
Studies on algebraic structure of
dynamical Yang-Baxter maps

Diogo Kendy Matsumoto

Waseda University
Graduate School of Fundamental Science and Engineering

Major in Pure and Applied Mathematics
Research on Algebraic Analysis

December 2014





Acknowledgment

The author would like to express his deepest gratitude to Professor Kimio
Ueno. Professor Ueno is his academic supervisor and chief examiner for this
thesis. Without his constant encouragement and advice, this thesis would
not attain completion.

The author is also grateful to Professor Jun Murakami, Professor Martin
Guest and Professor Daisuke Takahashi for examining this thesis and helpful
advice. The author is grateful to Professor Youichi Shibukawa and also to
members of Ueno’s laboratory for valuable advice and a lot of discussions.

The author thanks his father Antonio Kaoru Matsumoto and his mother
Ivete Andrade e Silva Matsumoto for their encouragement and financial sup-
port. The author also thanks his family Rieko and Rui for their encourage-
ment.

Diogo Kendy Matsumoto

Major in Pure and Applied Mathematics

Graduate School of Fundamental Science and Engineering

Waseda University

3-4-1, Okubo, Shinjuku-ku

Tokyo, 169-8555

JAPAN

3





Contents

1 Introduction 7

2 Dynamical braces and dynamical Yang-Baxter maps 19
2.1 Dynamical Yang-Baxter maps . . . . . . . . . . . . . . . . . . 19
2.2 Braces and dynamical braces . . . . . . . . . . . . . . . . . . . 24
2.3 Combinatorial aspects of dynamical braces . . . . . . . . . . . 31
2.4 Graphs of dynamical braces and their properties . . . . . . . . 33

3 Quantum Yang-Baxter equation, braided semigroups, and
dynamical Yang-Baxter maps 39
3.1 Tensor category SetH and dynamical Yang-Baxter maps . . . 39
3.2 QYBE and braided semigroups . . . . . . . . . . . . . . . . . 43
3.3 Semigroups with left or right unit . . . . . . . . . . . . . . . . 45
3.4 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . 47

5





Chapter 1

Introduction

In this doctoral thesis, we discuss the algebraic structure of dynamical Yang-
Baxter maps under some conditions. A dynamical Yang-Baxter map, which
was proposed by Shibukawa [33], is a set-theoretical solution of the dynamical
Yang-Baxter equation that is a dynamical analogue of the quantum Yang-
Baxter equation. This thesis is based on the articles [27, 28] which were
already published. First of all, we mention some history, from quantum
Yang-Baxter equation to dynamical Yang-Baxter map.

The quantum Yang-Baxter equation

The definition of the quantum Yang-Baxter equation is as follows.

Definition 1. Let V be a vector space, and R be a linear operator on V ⊗V .
The following equation on V ⊗ V ⊗ V is called the quantum Yang-Baxter
equation

R23R13R12 = R12R13R23. (1.0.1)

Here, Rij denotes the action of the linear operator R : V ⊗ V → V ⊗ V on
the i-th and the j-th components of V ⊗ V ⊗ V .

The quantum Yang-Baxter equation first appeared manifestly in the work
of McGuire [29] in 1964 and Yang [42] in 1967. In these articles they used the
quantum Yang-Baxter equation to solve a one-dimensional quantum many-
body problem, and in [2, 3] Baxter showed the importance of the quantum
Yang-Baxter equation by solving the eight-vertex lattice model. Today the
quantum Yang-Baxter equation has turned out to be one of the fundamental
equations in the theory of integrable systems.
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As an important event in the study of the quantum Yang-Baxter equation,
we mention quantum groups briefly. In the beginning of 80’s, the study of the
quantum Yang-Baxter equation has been performed actively in Russia [22,
23]. This study led to the idea of a quantum group. Through these studies
Drinfel’d [7] and Jimbo [17] introduced a quantum group as a deformation
of group or a Lie algebra, which has a non commutative and a non co-
commutative Hopf algebra structure. Using the quantum group Drinfel’d
and Jimbo construct the solutions of the quantum Yang-Baxter equation
systematically.

The Yang-Baxter map

In the 90’s, Drinfel’d [8] suggested to study set-theoretical solutions of the
quantum Yang-Baxter equation, which are called Yang-Baxter maps [41],
and defined them as follows.

Definition 2. Let X be a non-empty set. The Yang-Baxter map is a map
R : X ×X → X ×X which satisfies the following equation on X ×X ×X,

R23R13R12 = R12R13R23. (1.0.2)

Here R12, R23, · · · are maps from X×X×X to X×X×X defined as follows:

R12(a, b, c) = (R(a, b), c),

R23(a, b, c) = (a,R(b, c)), · · · (a, b, c ∈ X).

The Yang-Baxter map has relations with many areas [1, 10, 14, 16, 24,
31]. In [24], Lu-Yan-Zhu construct invertible Yang-Baxter maps satisfying
compatibility conditions by means of bijective 1-cocycles. In [10], Etingof,
Schedler, and Soloviev gave a classification of the invertible Yang-Baxter
maps satisfying non-degenerate and unitary conditions, and they discuss the
geometric and algebraic aspects of these Yang-Baxter maps.

The quantum dynamical Yang-Baxter equation

Gervais and Neveu introduced a quantum dynamical Yang-Baxter equation
as a generalization of the quantum Yang-Baxter equation in a physics paper
[15], and the study of mathematical aspect was started by Felder in [12].
Therein he proposed the quantum dynamical Yang-Baxter equation as a
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quantization of the classical dynamical Yang-Baxter equation, and explained
a relation with conformal field theory and statistical mechanics.

As a generalization of the quantum Yang-Baxter equation the quantum
dynamical Yang-Baxter equation is defined as follows [11].

Definition 3. Let h be a finite dimensional commutative Lie algebra over
C, h∗ a dual space of h, and V a semisimple h-module. Then the following
equation with respect to (meromorphic) functions R : h∗ → Endh V ⊗ V is
called the quantum dynamical Yang-Baxter equation

R23(λ)R13(λ− h(2))R12(λ) = R12(λ− h(3))R13(λ)R23(λ− h(1)) (∀λ ∈ h∗).
(1.0.3)

Here R12(λ), R12(λ−h(3))), · · · are linear transformation on V ⊗V ⊗V defined
as follows:

R12(λ)(u⊗ v ⊗ w) = (R(λ)(u⊗ v)⊗ w),

R12(λ− h(3))(u⊗ v ⊗ w) = (R(λ− wt(w))(u⊗ v)⊗ w), · · · (u, v, w ∈ V ),

wt(w) means a weight of w under h.

In this definition λ ∈ h means a dynamical parameter, which differs
from spectral parameter. If h = 0, the quantum dynamical Yang-Baxter
equation turns into the quantum Yang-Baxter equation. As an important
generalization, we can define the quantum dynamical Yang-Baxter equation
with spectral parameter as follows [11].

Definition 4. Let h be a finite dimensional commutative Lie algebra over
C, h∗ a dual space of h, and V a semisimple h-module. Then the following
equation with respect to (meromorphic) functions R : C× h∗ → Endh V ⊗ V
is called the quantum dynamical Yang-Baxter equation

R23(u23, λ)R13(u13, λ− h(2))R12(u12, λ)

= R12(u12, λ− h(3))R13(u13, λ)R23(u23λ− h(1)) (∀λ ∈ h∗).(1.0.4)

Here uij = ui − uj.

As in the case of the quantum groups, many people tried to define an
algebraic system from the quantum dynamical Yang-Baxter equation [9, 12,
13, 18]. There are two types of this algebraic system. In contrast with the
quantum groups these algebraic systems are not Hopf algebras, which have
a generalized Hopf algebra structure called quasi-Hopf algebra or h-Hopf
algebroid.
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The dynamical Yang-Baxter map

A dynamical Yang-Baxter map is a set-theoretical solution of the quantum
dynamical Yang-Baxter equation, which was proposed by Shibukawa [33] in
2005 as follows.

Definition 5. Let H and X be non-empty sets, φ : H × X → H. The
dynamical Yang-Baxter map associated with H,X, φ is a map R(λ) : X ×
X → X ×X(λ ∈ H) which satisfies the following equation on X ×X ×X,

R23(λ)R13(φ(λ,X
(2)))R12(λ) = R12(φ(λ,X

(3)))R13(λ)R23(φ(λ,X
(1))).
(1.0.5)

Here R12(λ), R12(φ(λ,X
(3))), · · · are maps from X ×X ×X to X ×X ×X

defined as follows:

R12(λ)(a, b, c) = (R(λ)(a, b), c),

R12(φ(λ,X
(3)))(a, b, c) = (R(φ(λ, c))(a, b), c), · · · (a, b, c ∈ X).

As a special case the dynamical Yang-Baxter map includes the Yang-
Baxter map.

In [34], Shibukawa gave a characterization of the dynamical Yang-Baxter
maps satisfying invariance conditions by using left quasigroups and ternary
operations. The dynamical Yang-Baxter map yields bialgebroids [37] and
discrete integrable systems through 3D compatible ternary systems [21]. Fur-
thermore, suitable homogeneous pre-systems [19], related to reductive homo-
geneous spaces, can produce the dynamical Yang-Baxter map. Until now,
there are many interesting results [33, 34, 35, 36]. The dynamical Yang-
Baxter map are expected to relate with many areas like the ultra discrete
integrable systems and discrete geometries.

This paper consists of two parts, based on the articles [27] and [28]. Here
we explain about these articles. For details see Chapter 2 and Chapter 3.

Dynamical braces and dynamical Yang-Baxter maps

In the first part, which is based on [27], we discuss right non-degenerate dy-
namical Yang-Baxter maps with unitary condition, and study these algebraic
and combinatorial structures.

First, we propose an algebraic system called a dynamical brace. The
dynamical brace is a generalization of the brace that was proposed by Rump
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in [32] as a generalization of the radical ring. The radical ring means a
ring (R,+, ·), which has a group structure with respect to multiplication
a ∗ b := a · b + a + b (∀a, b ∈ R). For examples of the radical ring, consider
the Jacobson radical. In [32] Rump shows a relation between brace and non-
degenerate Yang-Baxter map with unitary condition. The dynamical brace is
an algebraic system with a family of multiplications that is defined as follows.

Definition 6. Let H be a non-empty set, (A,+) an abelian group with the
family of multiplications {·λ : A × A → A}λ∈H and φ : H × A → H. We
call (A,H, φ; +, {·λ}λ∈H) a dynamical brace if the following conditions are
satisfied for all (λ, a, b, c) ∈ H × A× A× A:

(1) (a+ b) ·λ c = a ·λ c+ b ·λ c,
(2) a ·λ (b ·λ c+ b+ c) = (a ·φ(λ,c) b) ·λ c+ a ·φ(λ,c) b+ a ·λ c,
(3) The map γλ(b) : a �→ a ·λ b+ a is bijective.

Using a dynamical brace we can construct a dynamical Yang-Baxter map
as follows. Let (A,H, φ; +, {·λ}λ∈H) be a dynamical brace, then R(λ) : A ×
A→ A× A(λ ∈ H) defined by

R(λ)(a, b) = (Rλ
b (a),L

λ
a(b)) := (γλ(γλ(a)(b))

−1(a), γλ(a)(b)) (1.0.6)

is a right non-degenerate dynamical Yang-Baxter map associated with A,H, φ,
which satisfies the unitary condition

PR(λ)PR(λ) = idA×A, (∀λ ∈ H).

Here P is a map defined as follows

P : A× A→ A× A, (a, b) �→ (b, a).

This result is obtained as a corollary of Theorem 6 in Chapter 2. In Theo-
rem 6, we give a characterization of the dynamical Yang-Baxter map, which
corresponds to the dynamical brace.

Like the brace, the dynamical brace satisfies the next relation with respect
to multiplications a ∗λ b := a ·λ b+ a+ b (∀a, b ∈ A, λ ∈ H),

(a ∗φ(λ,c) b) ∗λ c = a ∗λ (b ∗λ c).
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This relation can be considered as an associative law of a dynamical algebraic
system.

In the latter part of Chapter 2, we describe the combinatorial aspects
of the dynamical brace. For the dynamical brace (A,H, φ; +, {·λ}λ∈H), we
identify the map

Rλ(a) : A→ A, b �→ b ∗λ a = b ·λ a+ b+ a = γλ(a)(b) + a

with the action of the element (a, γλ(a)) of semidirect product A � Aut(A)
on A. By using this identification we regard Sλ = {Rλ(a)|λ ∈ H, a ∈ A} as
a subset of A� Aut(A),

{(a, γλ(a))|a ∈ A}
for all λ ∈ A, and we characterize the dynamical brace in a combinatorial
way as follows (See Theorem 8).

Theorem 1. Let (A,+) be an abelian group and H a non-empty set.

(1) Let (A,H, φ; +, {·λ}λ∈H) be a dynamical brace. We set a family of
subsets {Sλ}λ∈H as follows. Sλ := {Rλ(a) : A → A, b �→ b ∗λ a|a ∈
A} ⊂ A� Aut(A). Then, {Sλ}λ∈H satisfies the following conditions:

(a) ∀a ∈ A, ∃!f ∈ Aut(A) s.t., (a, f) ∈ Sλ,

(b) ∀(a, f) ∈ Sλ, ∃!μ ∈ H s.t., (a, f)−1Sλ = {(a, f)−1(b, g)|(b, g) ∈
Sλ} = Sμ.

We denote the unique f ∈ Aut(A) of condition (a) by fλ(a).

(2) Let {Sλ}λ∈H be a family of subsets of A � Aut(A) and suppose that
{Sλ}λ∈H satisfies the above conditions (a) and (b). Define multiplica-
tions {·λ}λ∈H on A by a ·λ b := fλ(b)(a)− a, and a map φ from H ×A
to H by φ(λ, a) = μ, which is determined uniquely by condition (b).
Then (A,H, φ; +, {·λ}λ∈H) is a dynamical brace.

(3) The correspondence between (1) and (2) is one-to-one.

As a special case, when #(H) = 1, {Sλ}λ∈H corresponds to a regular
subgroup of A � Aut(A) [5, 6]. A subgroup S of A � Aut(A) is said to be
regular if, given any a ∈ A, then for each b ∈ A there exists a unique x ∈ S
such that x.a = b. Here . denotes an action of S on A.
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Through this combinatorial expression, we obtain a way to construct
dynamical braces, and we exhibit some examples associated with abelian
groups Z3,Z2 × Z2.

Quantum Yang-Baxter equation, braided semigroups, and dynam-
ical Yang-Baxter maps

In the second part, which is based on [28], we start from the following simple
examples of idempotent Yang-Baxter maps [4, 34].

Let G be a group, and let eG denote unit element of G. Then the maps
σi : G×G→ G×G (i = 1, 2),

σ1(a, b) = (eG, ab) and σ2(a, b) = (ab, eG) (a, b ∈ G), (1.0.7)

satisfy the idempotent condition

σ2
i = σi, (i = 1, 2),

and the quantum Yang-Baxter equation

σi × idG ◦ idG×σi ◦ σi × idG = idG×σi ◦ σi × idG ◦ idG×σi (i = 1, 2),

This equation is equivalent to the quantum Yang-Baxter equation of the form
(1.0.2).

The aim of this part is to generalize the above examples from the view-
point of category theory. In this generalization braided semigroups play an
important role. The braided semigroup is a generalization of the braided
group [36, 40], which is a useful concept in the construction of the Yang-
Baxter map [24]. To define a braided semigroup, we use a tensor category.
A tensor category is a category C with the following data,

(1) a functor ⊗ : C × C → C, which is called tensor product,

(2) a unit object I,

(3) a natural isomorphism a : ⊗ ◦ (⊗× id) → ⊗ ◦ (id×⊗), which is called
an associativity constraint,

(4) natural isomorphisms l : ⊗(I × id) → id, r : ⊗(id×I) → id, which are
called left and right unit constraints with respect to I,
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satisfying the pentagon axiom and the triangle axiom. We denote by 1X :
X → X the identity morphism of an object X.

By using the tensor category, the quantum Yang-Baxter equation is de-
fined as follows,

Definition 7. Let C be a tensor category, X an object of C and σXX :
X ⊗X → X ⊗X a morphism of C. Then the following relation is called a
quantum Yang-Baxter equation in C,

a◦σXX⊗1X◦a−1◦1X⊗σXX◦a◦σXX⊗1X = 1X⊗σXX◦a◦σXX⊗1X◦a−1◦1X⊗σXX◦a.
(1.0.8)

Here, a = aX,X,X .

As a generalization of the braided group, we define a braided semigroup
by using the tensor category as follows.

Definition 8. Let σXY : X ⊗ Y → Y ⊗ X be a morphism of the tensor
category C.

(1) A pair (X,mX) of an object X and a morphism mX : X ⊗X → X is
a semigroup, if and only if mX satisfies

mX ◦ (mX ⊗ 1X) = mX ◦ (1X ⊗mX) ◦ aX,X,X . (1.0.9)

This morphism mX is called a multiplication.

(2) A pair (X,ΔX) of an object X and a morphism ΔX : X → X ⊗X is
a co-semigroup, the dual concept of the semigroup, if and only if ΔX

satisfies

aX,X,X ◦ (ΔX ⊗ 1X) ◦ΔX = (1X ⊗ΔX) ◦ΔX . (1.0.10)

The morphism ΔX is said to be a comultiplication.

(3) A matched pair of semigroups X = (X,mX) and Y = (Y,mY ) (Cf.
[26, 36, 39, 40]) is a triple (X, Y, σXY ) satisfying:

(1Y ⊗mX) ◦ aY,X,X ◦ (σXY ⊗ 1X) ◦ a−1
X,Y,X ◦ (1X ⊗ σXY )

=σXY ◦ (mX ⊗ 1Y ) ◦ a−1
X,X,Y ; (1.0.11)

(mY ⊗ 1X) ◦ a−1
Y,Y,X ◦ (1Y ⊗ σXY ) ◦ aY,X,Y ◦ (σXY ⊗ 1Y )

=σXY ◦ (1X ⊗mY ) ◦ aX,Y,Y . (1.0.12)
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A pair (X, σXX) of a semigroup X and a morphism σXX : X⊗X → X⊗X is
called a braided semigroup, if and only if the triple (X,X, σXX) is a matched
pair of semigroups.

We obtain the following results as our main theorem.

Theorem 2. Let X = (X,mX) be a semigroup with a comultiplication
ΔX : X → X⊗X on the tensor category C. If the pair (X, σXX := ΔX ◦mX)
is a braided semigroup, then σ satisfies the quantum Yang-Baxter equation
in the tensor category C.

Theorem 2 show that the braided semigroup plays an important role in
a construction of a solution of the quantum Yang-Baxter equation.

In section 3.3, we construct the braided semigroup and comultiplication
by means of semigroup with a left or right unit. A left unit ηl (resp. a right
unit ηr) of a semigroup (S,mS) is a morphism ηl : I → S (resp. ηr : I → S)
satisfying mS ◦ηl⊗1S = lS (resp. mS ◦1S⊗ηr = rS). Define comultiplication
as follows:

Δ1 := (ηl ⊗ 1S) ◦ l−1
S and Δ2 := (1S ⊗ ηr) ◦ r−1

s .

Then (S, σi := Δi ◦mS) (i = 1, 2) is a braided semigroup. In this construc-
tion the multiplication mS and the comultiplications Δi(i = 1, 2) satisfy the
following relation

mS ◦Δi = idS, (i = 1, 2).

This relation σi(i = 1, 2) satisfies the idempotent condition.
We introduce a tensor category SetH , which is associated with a non-

empty set H, to construct the dynamical Yang-Baxter map.

Definition 9. Let H be a non-empty set. SetH denotes the following cate-
gory:

(1) an object is a pair (X, ·X) of a set X and a map ·X : H × X →
H, (λ, x) �→ λ ·X x,

(2) a morphism f : (X, ·X) → (Y, ·Y ) is a map f : H → Map(X, Y )
satisfying

λ ·Y f(λ)(x) = λ ·X x, (∀λ ∈ H, ∀x ∈ X),
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(3) the identity 1 and the composition ◦ are defined by

1X(λ)(x) = x (λ ∈ H, x ∈ X) and (g ◦ f)(λ) = g(λ) ◦ f(λ) (λ ∈ H),

for objects X, Y, Z and morphisms f : X → Y, g : Y → Z.

The SetH has a tensor category structure as follows:

(1) the tensor product X ⊗ Y of the objects (X, ·X) and (Y, ·Y ) is a pair
(X × Y, ·) of the Cartesian product X × Y and the following map
· : H × (X × Y ) → H,

λ · (x, y) = (λ ·X x) ·Y y, (λ ∈ H, (x, y) ∈ X × Y ).

(2) the tensor product of the morphisms f : X → X ′ and g : Y → Y ′is is
defined by

(f ⊗ g)(λ)(x, y) = (f(λ)(x), g(λ ·X x)(y)), (λ ∈ H, (x, y) ∈ X × Y ).

(3) the associativity constraint a, the unit I, and the left and the right unit
constraints l, r are as follows,

(a) aXY Z(λ)((x, y), z) = (x, (y, z)),

(b) I = ({e}, ·I), a pair of the set {e} of one element and the map ·I
defined by λ ·I e = λ,

(c) lX(λ)(e, x) = x = rX(λ)(x, e).

The tensor category SetH is a generalization of the tensor category Set.

Definition 10. A morphism σ : X × X → X × X of SetH is a dynamical
Yang-Baxter map if and only if σ satisfies the quantum Yang-Baxter equation
in SetH .

As an application, we construct the braided semigroup with left or right
unit by means of left quasigroups [30, 38].

Definition 11. A left quasigroup Q is a non-empty set, together with a
binary operation · : Q × Q → Q such that the left translation map L(a) :
Q � b �→ a · b ∈ Q is bijective for all a ∈ Q.
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For simplicity of notation, we write ab (a, b ∈ Q) instead of a · b, and
denote L(a)−1(b)(∈ Q) by a\b. Here, L(a)−1 : Q → Q is the inverse of
L(a). A left quasigroup is a generalization of a group, which is not always
associative For examples of left quasigroups see Example 7 of Chapter 3.

For a left quasigroup (Q, ·) and λ ∈ Q, we define the binary operation ·λ
on Q, and equivalence relation ∼ on Q by

a ·λ b = λ\((λa)b) (a, b ∈ Q),

λ ∼ μ ⇐⇒ a ·λ b = a ·μ b (∀a, b ∈ Q).

We write H := Q/ ∼. Let s : H → Q be a right inverse of the projection
Q � λ �→ [λ] ∈ H; that is, s : H → Q is a map satisfying s([λ]) ∼ λ for all
λ ∈ Q, and we define a map ·Q : H × Q → H by [λ] ·Q a := [λa] (λ, a ∈ Q).
This Q = (Q, ·Q) is an object of SetH .

Theorem 3. The maps σ1([λ]), σ2([λ]) : Q × Q → Q × Q, (λ ∈ Q) defined
by:

σ1([λ])(a, b) = (s([λ])\s([λ]), λ\((λa)b))
σ2([λ])(a, b) = (λ\((λa)b), s([(λa)b])\s([(λa)b])) (a, b ∈ Q) (1.0.13)

are idempotent dynamical Yang-Baxter maps.

In this construction the set of dynamical parameters H has a relation
with the left nucleus

Nl(Q) = {a ∈ Q|(a · x) · y = a · (x · y) (∀x, y ∈ Q)},

of the left quasigroup (Q, ·) (See Remark 6). If Q is a group, which is an
example of left quasigroup, both σ1 and σ2 are the same as the Yang-Baxter
map in 1.0.7 for any right inverse s.





Chapter 2

Dynamical braces and
dynamical Yang-Baxter maps

2.1 Dynamical Yang-Baxter maps

Let X,H be non-empty sets and φ a map from H×X to H. We call elements
of H dynamical parameters.

Definition 12. A map R(λ) : X × X → X × X (λ ∈ H) is a dynamical
Yang-Baxter map (DYB map) associated with X,H, φ if R(λ) satisfies the
following equation on X ×X ×X for all λ ∈ H:

R23(λ)R13(φ(λ,X
(2)))R12(λ) = R12(φ(λ,X

(3)))R13(λ)R23(φ(λ,X
(1))).
(2.1.1)

Here R12(λ), R12(φ(λ,X
(3))), · · · are maps from X ×X ×X to X ×X ×X

defined by
R12(λ)(a, b, c) = (R(λ)(a, b), c),

R12(φ(λ,X
(3)))(a, b, c) = (R(φ(λ, c))(a, b), c) (a, b, c ∈ X).

As a special case of DYB maps, we can define Yang-Baxter maps as
follows.

Definition 13. A map R : X × X → X × X is a Yang-Baxter map(YB
map) if R satisfies the following equation on X ×X ×X:

R23R13R12 = R12R13R23. (2.1.2)

Here Rij are defined in the same way as in the definition above.

19
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As can be seen from the definitions above, a YB map is just a DYB map
which is independent of the dynamical parameter.

We represent a map R(λ) : X ×X → X ×X (λ ∈ H) by

R(λ)(a, b) = (Rλ
b (a),L

λ
a(b)) (λ, a, b) ∈ H ×X ×X. (2.1.3)

For (a, λ) ∈ X ×H, we define maps Lλa : X → X,Rλ
a : X → X by

Lλa : b �→ Lλa(b),R
λ
a : b �→ Rλ

a(b). (2.1.4)

For λ ∈ H, we set Lλ : X ×X → X,Rλ : X ×X → X by

Lλ : (a, b) �→ Lλa(b),R
λ : (a, b) �→ Rλ

b (a). (2.1.5)

Let L be a map λ �→ Lλ and R a map λ �→ Rλ. By rewriting the definition
of the DYB map we obtain the next lemma.

Lemma 1. A map R(λ) : X×X → X×X (λ ∈ H) associated with X,H, φ
is a DYB map if and only if L,R satisfies the next three relations for all
(λ, a, b, c) ∈ H ×X ×X ×X:

Lλa · Lφ(λ,a)b = LλLλ
a(b)

· Lφ(λ,Lλ
a(b))

Rλ
b (a)

, (2.1.6)

Rλ

(L
φ(λ,Lλ

a (b))

Rλ
b
(a)

(c))
· Lλa(b) = L

φ(λ,Lλ
aL

φ(λ,a)
b (c))

(Rλ

L
φ(λ,a)
b

(c)
(a))

·Rφ(λ,a)
c (b), (2.1.7)

Rφ(λ,Lλ
a(b))

c ·Rλ
b (a) = R

φ(λ,Lλ
aL

φ(λ,a)
b (c))

(R
φ(λ,a)
c (b))

·Rλ

L
φ(λ,a)
b (c)

(a). (2.1.8)

Proof. The proof is straightforward.

Definition 14. Let R(λ) be a DYB map associated with X,H, φ.

(1) We say that R(λ) is left non-degenerate if the map Rλ
a is bijection, and

R(λ) is called right non-degenerate if the map Lλb is bijection for all
(λ, a, b) ∈ H ×X ×X. When R(λ) is left and right non-degenerate we
call it non-degenerate.

(2) Let P be a map fromX×X toX×X defined by P (a, b) = (b, a). We say
that R(λ) satisfies the unitary condition if R(λ) satisfies PR(λ)PR(λ)
= idX×X for all λ ∈ H. When a DYB map satisfies the unitary condi-
tion we call it a unitary DYB map.
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(3) We call the next condition about a map φ : H×X → H the weight-zero
condition:

φ(φ(λ, a), b) = φ(φ(λ,Lλa(b)),R
λ
b (a)),

for all (λ, a, b) ∈ H ×X ×X.

Lemma 2. A DYB map R(λ) : X × X → X × X(λ ∈ H) associated with
X,H, φ satisfies the unitary condition if and only if L,R satisfy the next
relations for all (λ, a, b) ∈ H ×X ×X:

LλLλ
a(b)

·Rλ
b (a) = a, (2.1.9)

Rλ
Rλ

b (a)
· Lλa(b) = b. (2.1.10)

Proof. The proof is straightforward.

Example 1. (1) Let X be a non-empty set and idX×X the identity map.
Then (X, idX×X) is a unitary YB map. We call this YB map the trivial
solution.

(2) (Lyubashenko, see [10]) Let X be a non-empty set. r : X ×X → X ×
X, (a, b) �→ (R(a),L(b)). Here L,R are maps from X to X. Suppose
that L and R are bijections. Then (X, r) is a YB map if and only if
LR = RL. Moreover (X, r) satisfies the unitary condition if and only
if R = L−1. We call this solution (X, r) a permutation solution.

The following proposition give relations between two DYB maps associ-
ated with distinct spaces.

Proposition 1. [33, Y. Shibukawa]

(1) Let H be a non-empty set and R′(λ) a DYB map associated with
X,H ′, φ. If there exist maps ψ : H → H ′ ρ : H ′ → H(ψρ = idH′),
then the map R(λ) : X ×X → X ×X (λ ∈ H), R(λ) = R′(ψ(λ)) is a
DYB map associated with X,H, ρφ(ψ × idX).

(2) Let X be a non-empty set and R′(λ) a DYB map associated with
X ′, H, φ. If there exist maps ρ : X ′ → X ψ : X → X ′ such that
(ψρ = idX′), then the map R(λ) : X ×X → X ×X (λ ∈ H), R(λ) =
(ρ× ρ)R′(λ)(ψ × ψ) is a DYB map associated with X,H, φ(idX ×ψ).
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Definition 15. Let R(λ) be a DYB map associated with X,H, φ and R
′
(λ

′
)

a DYB map associated with X
′
, H

′
, φ

′
. R(λ) is equivalent to R

′
(λ

′
) if and

only if there exist two bijections F : X → X
′
, p : H → H

′
such that

(1) pφ = φ
′
(p× F ),

(2) (F × F )R(λ) = R
′
(p(λ))(F × F ),

for all λ ∈ H.

The next theorem show us that the right non-degeneracy condition and
the unitary condition are suitable conditions to simplify DYB maps. In [31],
Rump showed it in the case of the YB maps.

Theorem 4. Let Lλa : X → X be bijections for all (a, λ) ∈ X × H, and
Rλ
b (a) := (LλLλ

a(b)
)−1(a). Suppose that the maps Lλa,R

λ
b satisfy the relation

(2.1.6) of Lemma.1. Then a map R(λ) : X ×X → X ×X defined by

R(λ)(a, b) := (Rλ
b (a),L

λ
a(b)) = ((LλLλ

a(b)
)−1(a),Lλa(b))

is a right non-degenerate unitary DYB map associated with X,H, φ.

Proof. First, we show that the relation (2.1.7) follows from the relation
(2.1.6).

Put A = L
φ(λ,Lλ

a(b))

Rλ
b (a)

(c), B = LλaL
φ(λ,a)
b (c). Then

LHS of (2.1.7) = Rλ
AL

λ
a(b)

= (LλLλ

Lλ
a (b)

(A))
−1Lλa(b)

= (LλB)
−1Lλa(b),

RHS of (2.1.7) = L
φ(λ,B)

(Rλ

L
φ(λ,a)
b

(c)
(a))

Rφ(λ,a)
c (b)

= L
φ(λ,B)

(Lλ
B)−1(a)

(L
φ(λ,a)

L
φ(λ,a)
b (c)

)−1(b).

Thus, we must prove (LλB)
−1Lλa(b) = L

φ(λ,B)

(Lλ
B)−1(a)

(L
φ(λ,a)

L
φ(λ,a)
b (c)

)−1(b). We have

(Lλa)
−1LλBL

φ(λ,B)

(Lλ
B)−1(a)

(L
φ(λ,a)

L
φ(λ,a)
b (c)

)−1(b) = (Lλa)
−1(LλaL

φ(λ,a)

Rλ

(Lλ
B

)−1(a)
(B)

)(L
φ(λ,a)

L
φ(λ,a)
b (c)

)−1(b)

= L
φ(λ,a)

Rλ

(Lλ
B

)−1(a)
(B)

(L
φ(λ,a)

L
φ(λ,a)
b (c)

)−1(b)

= b.
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Next, we show that the relation (2.1.8) follows from the relation (2.1.6).

Put X = Lλa(b), Y = L
φ(λ,Lλ

a(b))

Rλ
b (a)

(c), Z = LλX(Y ). ThenRλ
Y (X) =LHS of (2.1.7)

and

LHS of (2.1.8) = (L
φ(λ,Lλ

a(b))

L
φ(λ,Lλ

a (b))

Rλ
b
(a)

(c)
)−1(LλLλ

a(b)
)−1(a)

= (LλXL
φ(λ,X)
Y )−1(a)

= (LλZL
φ(λ,Z)

Rλ
Y (X)

)−1(a)

= (L
φ(λ,Z)

Rλ
Y (X)

)−1(LλZ)
−1(a)

= (L
φ(λ,Z)

L
φ(λ,Z)

Rλ

L
φ(λ,a)
b

(c)
(a)

R
φ(λ,a)
c (b)

)−1(LλZ)
−1(a)

= R
φ(λ,Z)

R
φ(λ,a)
c (b)

Rλ

L
φ(λ,a)
b (c)

(a)

= RHS of (2.1.8).

Next, we consider a non-empty setX with a commutative binary operator
+ : X × X → X, (x, y) �→ x + y. (The associativity of + is not assumed
here.)

Corollary 1. LetX = (X,+) be a non-empty set with a commutative binary
operator +, and bijections Lλa : X → X satisfying

Lλa · Lφ(λ,a)b = LλLλ
a(b)+a

, (2.1.11)

for all (λ, a, b) ∈ H ×X ×X. Then a map R(λ) : X ×X → X ×X

R(λ)(a, b) = (Rλ
b (a),L

λ
a(b)) := ((LλLλ

a(b)
)−1(a),Lλa(b)),

gives a right non-degenerate unitary DYB map associated with X,H, φ.

Proof. We show that the relation (2.1.6) follows from the relation (2.1.11).

RHS of (2.1.6) = LλLλ

Lλ
a (b)

(Rλ
b (a))+Lλ

a(b)
= Lλa+Lλ

a(b)
= LHS of (2.1.6).
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2.2 Braces and dynamical braces

In this section, we begin with an introduction of a relation between the brace
and the YB map. This relation was proved by Rump in [32].

Definition 16. [32, W. Rump] Let A = (A,+) be an abelian group with
a multiplication · : A × A → A. We call (A,+, ·) a brace if the following
conditions are satisfied for all a, b, c ∈ A:

(1) (a+ b) · c = a · c+ b · c (Right distributive law),

(2) a · (b · c+ b+ c) = (a · b) · c+ a · b+ a · c,
(3) The map γ(b) : a �→ a · b+ a is bijective.

Proposition 2. [32, W. Rump] An abelian group A = (A,+) with a right
distributive multiplication is a brace if and only if A is a group with respect
to the operation a ∗ b := a · b+ a+ b, (a, b ∈ A).

Proposition 3. Let (A,+, ·) be a brace and 0 the unit of the abelian group
(A,+). Then (A,+, ·) satisfies the next relation for all a ∈ A,

0 · a = a · 0 = 0.

Proof. 1. 0 · a = 0 is trivial.
2. a · 0 = a · (0 · 0 + 0 + 0) = (a · 0) · 0 + a · 0 + a · 0, hence γ(0)(a · 0) =
(a · 0) · 0 + a · 0 = 0 = 0 · 0 + 0 = γ(0)(0). Therefore we obtain a · 0 = 0 by
using bijectivity of γ(0).

Example 2. [31, W. Rump] 1. Abelian group (A,+) with a multiplication
a · b = 0 is a brace (a, b ∈ A). We call this (A,+, ·) trivial brace.
2. Let R = (R,+, ·) be a ring and Jac(R) a Jacobson radical of R. Then
Jac(R) has a group structure with respect to the operation a∗b = a ·b+a+b
(a, b ∈ Jac(R)). Therefore (Jac(R),+, ·) is a brace. In general, a ring R =
(R,+, ·) having a group structure with a multiplication a ∗ b = a · b + a + b
is called radical ring. On account of this, the brace is a generalization of the
radical ring.

Theorem 5. [32, W. Rump] Let (A,+, ·) be a brace. Then a map R :
A× A→ A× A defined by

R(a, b) := (γ(γ(a)(b))−1(a), γ(a)(b)) (a, b ∈ A),

is a non-degenerate unitary YB map.
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Next we introduce the dynamical brace as a generalization of the brace.

Definition 17. Let H be a non-empty set, A = (A,+) an abelian group
with the family of multiplications {·λ : A × A → A}λ∈H and φ a map from
H×A to H. We call (A,H, φ; +, {·λ}λ∈H) a dynamical brace (d-brace) if the
following conditions are satisfied for all (λ, a, b, c) ∈ H × A× A× A:

(1) (a+ b) ·λ c = a ·λ c+ b ·λ c (Right distributive law),

(2) a ·λ (b ·λ c+ b+ c) = (a ·φ(λ,c) b) ·λ c+ a ·φ(λ,c) b+ a ·λ c,
(3) The map γλ(b) : a �→ a ·λ b+ a is bijective.

Definition 18. (Q, ·) is a right quasigroup if and only if Q is a non-empty
set with a binary operation (·) having the property below:

R(a) : Q→ Q, b �→ b · a is bijective for all a ∈ Q.

A left quasigroup are similarly defined, and a non-empty set Q with left and
right quasigroup structure is called a quasigroup [30].

We can extend Proposition 2 to the d-brace as follows.

Proposition 4. Let H be a non-empty set, A = (A,+) an abelian group
with a family of right distributive multiplications {·λ : A× A → A}λ∈H and
φ a map from H × A to H. Then (A,H, φ; +, {·λ}λ∈H) is a d-brace if and
only if A is a right quasigroup with respect to operations

a ∗λ b := a ·λ b+ a+ b, (2.2.1)

and satisfies the next relation for all (λ, a, b, c) ∈ H × A× A× A,

(a ∗φ(λ,c) b) ∗λ c = a ∗λ (b ∗λ c). (2.2.2)

Proof. 1. Let (A,H, φ; +, {·λ}λ∈H) be a d-brace. Consider maps R∗
λ(b) : a �→

a ∗λ b = a ·λ b+ a+ b = γλ(b)(a) + b (b ∈ A). Because of bijectivity of γλ(b),
R∗
λ(b) is bijection. Hence (A, ∗λ) is a right quasigroup. The relation (2.2.2)

follows from conditions (1) and (2) of d-brace.
2. Suppose that A satisfies the conditions of proposition. Then the relation
(2.2.2) implies condition (2) of Definition 17, and bijectivity of γλ(b) follows
from a right quasigroup structure of (A, ∗λ).
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Note that
a ∗λ b = a ∗μ b ⇐⇒ a ·λ b = a ·μ b, (2.2.3)

for all (λ, μ, a, b) ∈ H ×H × A× A.

Proposition 5. Let (A,H, φ; +, {·λ}λ∈H) be a d-brace. Then

·φ(φ(λ,a),b) = ·φ(λ,b∗λa), (2.2.4)

as a map from A× A to A, for all (λ, a, b) ∈ H × A× A.

Proof. It follows from the next calculation:

(d ∗φ(φ(λ,a),b) c) ∗λ (b ∗λ a) = {(d ∗φ(φ(λ,a),b) c) ∗φ(λ,a) b} ∗λ a
= {d ∗φ(λ,a) (c ∗φ(λ,a) b)} ∗λ a
= d ∗λ {c ∗λ (b ∗λ a)}
= (d ∗φ(λ,b∗λa) c) ∗λ (b∗λa).

Therefore we obtain d ∗φ(φ(λ,a),b) c = d ∗φ(λ,b∗λa) c, for all c, d ∈ A.

Proposition 6. Let (A,H, φ; +, {·λ}λ∈H) be a d-brace and 0 the unit of the
abelian group (A,+). Then

(1) 0 ·λ a = 0,

(2) a ·φ(λ,0) 0 = 0,

for all (λ, a) ∈ H × A.

Proof. 1. 0 ·λ a = 0 is trivial.
2. a ·λ 0 = a ·λ (0 ·λ 0 + 0 + 0) = (a ·φ(λ,0) 0) ·λ 0 + a ·φ(λ,0) 0 + a ·λ 0, hence
γλ(0)(a ·φ(λ,0) 0) = (a ·φ(λ,0) 0) ·λ 0 + a ·φ(λ,0) 0 = 0 = 0 ·λ 0 + 0 = γλ(0)(0).
Therefore we obtain a ·φ(λ,0) 0 = 0 by using the bijectivity of γλ(0).

Definition 19. (1) Let (A,H, φ; +, {·λ}λ∈H) be a d-brace. If a multiplica-
tion ·λ satisfies a·λ0 = 0·λa = 0 for all a ∈ A, we call ·λ zero-symmetric.
We call the d-brace zero-symmetric if all multiplications of the d-brace
are zero-symmetric.

(2) Let (A,H, φ; +, {·λ}λ∈H) be a d-brace and K a subset of H.
If (A,K, φ|K×A; +, {·λ}λ∈K) is again a d-brace, we call it a restricted
d-brace.
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(3) Two d-braces (A,H, φ; +, {·λ}λ∈H) and (A
′
, H

′
, φ

′
; +

′
, {∗λ′}λ′∈H′ ) are

isomorphic if and only if there are bijections F : A→ A
′
, p : H → H

′

such that

(a) F (a+ b) = F (a) +
′
F (b),

(b) F (a ·λ b) = F (a) ∗p(λ) F (b),
(c) pφ = φ

′
(p× F ),

for all (λ, a, b) ∈ H × A× A.

In general, the d-brace is not zero-symmetric (see Example 5).

Let us reconsider Corollary 1 stated in the section 2.1. Suppose that
A = (A,+) is an abelian group, H a non-empty set and φ a map from
H × A to H. To obtain a DYB map associated with A,H, φ, we need to
construct maps Lλa : A → A that satisfy Lλa · Lφ(λ,a)b = Lλ

Lλ
a(b)+a

, for all

(λ, a, b) ∈ H × A× A. The next theorem states a relation between d-braces
and DYB maps. This theorem is a generalization of Theorem 5 to the case
of the DYB maps.

Theorem 6. Let A = (A,+) be an abelian group, H a non-empty set and
φ a map from H × A to H.

(1) Let (A,H, φ; +, {·λ}λ∈H) be a d-brace. Then {Lλa := γλ(a) : A →
A}(λ,a)∈H×A is a family of automorphisms of the abelian group (A,+)

that satisfies Lλa · Lφ(λ,a)b = Lλ
Lλ
a(b)+a

, for all (λ, a, b) ∈ H × A× A.

(2) Let {Lλa : A→ A}(λ,a)∈H×A be a family of automorphisms of the abelian

group (A,+) that satisfies Lλa ·Lφ(λ,a)b = Lλ
Lλ
a(b)+a

. Define multiplications

on A by a ·λ b := Lλb (a) − a, for all (λ, a, b) ∈ H × A × A. Then
(A,H, φ; +, {·λ}λ∈H) is a d-brace.

(3) The correspondence between (1) and (2) is one-to-one.

Proof. 1. We prove that {Lλa := γλ(a) : A → A}(λ,a)∈H×A is a family of

automorphisms of the abelian group A and satisfies Lλa · Lφ(λ,a)b = Lλ
Lλ
a(b)+a

,

for all (λ, a, b) ∈ H × A× A.
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(i) As a result of the definition of d-brace, Lλa is automorphism.

(ii) The relation Lλa · Lφ(λ,a)b = Lλ
Lλ
a(b)+a

is proved as follows.

LHS = γλ(a)γφ(λ,a)(b)(c)

= (c ·φ(λ,a) b+ c) ·λ a+ c ·φ(λ,a) b+ c

= (c ·φ(λ,a) b) ·λ a+ c ·λ a+ c ·φ(λ,a) b+ c

= c ·λ (b ·λ a+ b+ a) + c

= c ·λ (γλ(a)(b) + a) + c

= γλ(γλ(a)(b) + a)(c)

= RHS.

2. We prove that (A,H, φ; +, {·λ}λ∈H) is a d-brace.
(i) By the definition of Lλb , multiplication ·λ satisfies the right distributive
law.
(ii) As a consequence of γλ(b)(a) = a ·λ b+ a = Lλb (a), γλ(b) is a bijection.
(iii) The relation a ·λ (b ·λ c + b + c) = (a ·φ(λ,c) b) ·λ c + a ·φ(λ,c) b + a ·λ c is
proved as follows.

LHS = a ·λ (Lλc (b) + c)

= LλLλ
c (b)+c

(a)− a

= LλcL
φ(λ,c)
b (a)− a

= Lλc (a ·φ(λ,c) b+ a)− a

= Lλc (a ·φ(λ,c) b) + Lλc (a)− a

= RHS.

3. The proof is straightforward.

Corollary 2. Let (A,H, φ; +, {·λ}λ∈H) be a d-brace. Then the map R(λ) :
A× A→ A× A (λ ∈ H) defined by

R(λ)(a, b) = (Rλ
b (a),L

λ
a(b)) := (γλ(γλ(a)(b))

−1(a), γλ(a)(b)), (2.2.5)

is a right non-degenerate unitary DYB map associated with A,H, φ.

Proposition 7. Let {Lλa : A → A}(λ,a)∈H×A be a family of automorphisms
of the abelian group A and satisfies,

Lλa · Lφ(λ,a)b = LλLλ
a(b)+a

(for all (λ, a, b) ∈ H × A× A).



29

Then {Lλa : A→ A}(λ,a)∈H×A satisfies

Lφ(φ(λ,a),b)c = Lφ(λ,L
λ
a(b)+a)

c ,

for all (λ, a, b, c) ∈ H × A× A× A.

Proof.

Lλa(L
φ(λ,a)
b Lφ(φ(λ,a),b)c ) = LλaL

φ(λ,a)

L
φ(λ,a)
b (c)+b

= Lλ
Lλ
a(L

φ(λ,a)
b (c)+b)+a

= Lλ
Lλ
aL

φ(λ,a)
b (c)+Lλ

a(b)+a

= LλLλ

Lλ
a (b)+a

(c)+Lλ
a(b)+a

= LλLλ
a(b)+a

Lφ(λ,L
λ
a(b)+a)

c

= Lλa(L
φ(λ,a)
b Lφ(λ,L

λ
a(b)+a)

c ).

As a consequence of this corollary, if the map L : H → Map(A×A,A) is
an injection, φ satisfies the weight-zero condition. ForRλ

a(b) := (Lλ
Lλ
a(b)

)−1(a).

Remark 1. In general, it seems to be natural to assume that the d-brace
(A,H, φ; +, {·λ}λ∈H) satisfies the condition ·λ = ·μ ⇐⇒ λ = μ, (λ, μ ∈ H).
For this reason, the injectivity of L with respect to parameter H seems to
be natural. Therefore the weight-zero condition also seems to be natural.

The next theorem gives a relation between brace structures and d-brace
structures over modules. (i.e., a relation between some YB maps and DYB
maps).

Theorem 7. Let G be a group, A = (A,+) a G-module and (A,+, ·) a
brace. We denote an action of λ ∈ G by fλ. Suppose φ be a map from G×A
to G, and define multiplications ·λ (λ ∈ G) over A by

a ·λ b := f−1
λ (fφ(λ,b)(a) · fλ(b) + fφ(λ,b)(a))− a, (2.2.6)

for all a, b ∈ A. Then (A,G, φ; +, {·λ}λ∈G) is a d-brace if and only if the map
φ : G× A→ G satisfies

fφ(λ,b∗λa) = fφ(φ(λ,a),b),

for all (λ, a, b) ∈ G×A×A. Here multiplications ∗λ are defined by a ∗λ b :=
a ·λ b+ a+ b.
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Proof. Using a ·λ b = f−1
λ (fφ(λ,b)(a) · fλ(b) + fφ(λ,b)(a)) − a we can express

operations ∗λ as follows

a ∗λ b = f−1
λ (fφ(λ,b)(a) ∗ fλ(b)),

this multiplication satisfies the right distributivity, and (A, ∗λ) is a right
quasigroup for all λ ∈ H. To obtain the theorem we need to see (a ∗φ(λ,c)
b) ∗λ c = a ∗λ (b ∗λ c).

LHS = f−1
λ (fφ(λ,c)(a ∗φ(λ,c) b) ∗ fλ(c))

= f−1
λ ((fφ(φ(λ,c),b)(a) ∗ fφ(λ,c)(b)) ∗ fλ(c)),

and

RHS = f−1
λ (fφ(λ,b∗λc)(a) ∗ fλ(b ∗λ c))

= f−1
λ (fφ(λ,b∗λc)(a) ∗ (fφ(λ,c)(b) ∗ fλ(c))),

hence we obtain the theorem by comparison of LHS and RHS.

Remark 2. If an action of group G is faithful, a map φ satisfies

φ(λ, b ∗λ a) = φ(φ(λ, a), b) ((λ, a, b) ∈ G× A× A). (2.2.7)

This relation corresponds to the weight-zero condition in the DYB map.

Example 3. Let (F,+,×) be any field with a trivial brace structure · .
Define an action of a ∈ F by fa(b) := a2b and define φ : F × F → F
by φ(a, b) := fa(b) + a = a(ab + 1). From Theorem 7 we obtain a ·b c =
{(bc+1)2 − 1}a. Then φ satisfies φ(a, b ∗a c) = φ(φ(a, c), b) (i.e., weight-zero
condition). Hence (F, F, φ; +, {·a}a∈F ) is a d-brace.

The DYB map R(a) (a ∈ F ) associated with F, F, φ which corresponds
to this d-brace is as follows.

R(a)(b, c) = ({a(ab+ 1)2c+ 1}−1b, (ab+ 1)2c),

for all a, b, c ∈ F .
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2.3 Combinatorial aspects of dynamical braces

In this section, we give the combinatorial aspects of the d-brace. From these
aspects we obtain a way to describe the d-brace as some family of subsets.

Theorem 8. Let (A,+) be an abelian group and H a non-empty set.

(1) Let (A,H, φ; +, {·λ}λ∈H) be a d-brace. We set a family of subsets
{Sλ}λ∈H as follows. Sλ := {Rλ(a) : A → A, b �→ b ∗λ a|a ∈ A} ⊂
A� Aut(A). Then, {Sλ}λ∈H satisfy the following conditions:

(a) ∀a ∈ A, ∃!f ∈ Aut(A) s.t., (a, f) ∈ Sλ,

(b) ∀(a, f) ∈ Sλ, ∃!μ ∈ H s.t., (a, f)−1Sλ = {(a, f)−1(b, g)|(b, g) ∈
Sλ} = Sμ.

We denote the unique f ∈ Aut(A) of condition (a) by fλ(a).

(2) Let {Sλ}λ∈H be a family of subsets of A � Aut(A) and suppose that
{Sλ}λ∈H satisfy the above conditions (a) and (b). Define multiplica-
tions {·λ}λ∈H on A by a ·λ b := fλ(b)(a)− a, and define a map φ from
H×A to H by φ(λ, a) = μ, which determines uniquely in the condition
(b). Then (A,H, φ; +, {·λ}λ∈H) is a d-brace.

(3) The correspondence between (1) and (2) is one-to-one.

Proof. 1. Because of Rλ(a)(b) = b ∗λ a = b ·λ a + b + a = γλ(a)(b) + a and
γλ(a) ∈ Aut(A), we can regard Rλ(a) as an action of (a, γλ(a)). Therefore
Sλ � {(a, γλ(a))|a ∈ A} ⊂ A�Aut(A). Next we prove that {Sλ}λ∈H satisfies
conditions (a) and (b).
(i) Condition (a) follows from the definition of Sλ.
(ii) For Rφ(λ,a)(b) ∈ Sφ(λ,a), we obtain Rλ(a)Rφ(λ,a)(b)(c) = (c ∗φ(λ.a) b) ∗λ a =
c ∗λ (b ∗λ a) = Rλ(Rλ(a)(b))(c) for all b ∈ A. Because Rλ(a) is a bijection,
we obtain the following equality

Rλ(a)Sφ(λ,a) = {Rλ(a)Rφ(λ,a)(b)|b ∈ A}
= {Rλ(Rλ(a)(b))|b ∈ A}
= Sλ.

2. We prove that (A, ∗λ) is right quasigroup, and satisfies (a ∗φ(λ,c) b) ∗λ c =
a ∗λ (b ∗λ c) for all (λ, a, b, c) ∈ H × A× A× A.
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(i) By definition of multiplications, we obtain a ∗λ b = fλ(b)(a) + b, therefore
∗λ is an action of (b, fλ(b)). Hence (A, ∗λ) is right quasigroup.
(ii) We prove that (A, ∗λ) satisfies the relation (2.2.2). Take (b, fφ(λ,c)(b)) ∈
Sφ(λ,c), (c, fλ(c)) ∈ Sλ, by definition of φ

(c, fλ(c))(b, fφ(λ,c)(b)) = (c+ fλ(c)(b), fλ(c)fφ(λ,c)(b)) ∈ Sλ.

Therefore (c + fλ(c)(b), fλ(c)fφ(λ,c)(b)) = (c + fλ(c)(b), fλ(c + fλ(c)(b))) by
condition (a). From this we obtain the relation (2.2.2) as follows

(a ∗φ(λ,c) b) ∗λ c = fλ(c)fφ(λ,c)(b)(a) + fλ(c)(b) + c

= fλ(fλ(c)(b) + c)(a) + fλ(c)(b) + c

= a ∗λ (b ∗λ c).

3. The proof is straightforward.

A subgroup S of A � Aut(A) is said to be regular if, given any a ∈ A,
then for each b ∈ A there exists a unique x ∈ S such that x.a = b. Here
. denotes an action of S. From this, we express regular subgroup as S =
{(a, f(a))|a ∈ A}.
Corollary 3. Let A = (A,+) be an abelian group.

(1) Let (A,+, ·) be a brace. Then {R(a) : A → A, b �→ b ∗ a|a ∈ A} is a
regular subgroup of A� Aut(A).

(2) Let S be a regular subgroup of A�Aut(A). Define a multiplication on
A by a · b := f(b)(a)− a. Then (A,+, ·) is a brace.

(3) The correspondence between (1) and (2) is one-to-one.

Proof. A case of #(H) = 1.

Remark 3. F.Catino and R.Frizz have obtained a similar result in [5, 6]. In
[6] they called an algebra with brace structure a radical circle algebra.

From Theorem 8, we obtain a way to construct d-braces. i.e., start from
a subset X with condition (a), and consider all subsets {(a, f)−1X}(a,f)∈X .
Continue this operations to all subsets {(a, f)−1X}(a,f)∈X until it closes.

The next proposition corresponds to Proposition 5 and Proposition 7.
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Proposition 8. Let {Sλ}λ∈H be a family of subsets of A � Aut(A), and
suppose that {Sλ}λ∈H satisfy the conditions of Theorem 8. Then {Sλ}λ∈H
satisfy

Sφ(φ(λ,a),b) = Sφ(λ,fλ(a)(b)+a),

for all (λ, a, b) ∈ H × A× A.

Proof. Because of condition (b) of Theorem 8, we obtain
(a, fλ(a))

−1Sλ = Sφ(λ,a). Therefore

Sφ(φ(λ,a),b) = (b, fφ(λ,a)(b))
−1Sφ(λ,a)

= (b, fφ(λ,a)(b))
−1{(a, fλ(a))−1Sλ}

= {(b, fφ(λ,a)(b))−1(a, fλ(a))
−1}Sλ

= (fλ(a)(b) + a, fλ(a)fφ(λ,a)(b))
−1Sλ

= Sφ(λ,fλ(a)(b)+a).

2.4 Graphs of dynamical braces and their prop-

erties

Let (A,+) be an abelian group, H a non-empty set and {Sλ}λ∈H a family
of subsets of A � Aut(A). Set Sλ = {(a, fλ(a))|a ∈ A} and suppose that
{Sλ}λ∈H satisfies the conditions (a) and (b) of Theorem 8. Then, by the
condition (b) we obtain a directed graph G(A) that consists of

V (A) = {Sλ|λ ∈ H} (vertex set),

E(A) = {(Sλ, Sφ(λ,a))|λ ∈ H, a ∈ A} (edge set).

We call this graph G(A) associated with (A,+, {Sλ}λ∈H) a graph of d-brace.
As a consequence of this, vertex Sλ corresponds to multiplication ·λ (i.e.,

dynamical parameters correspond to vertices of graphs), map φ means a
connection of edges, and #(A) is a degree of graph. This graph has the
following properties.

Proposition 9. (1) Each vertex Sφ(λ,a) has a loop. Namely (Sφ(λ,a), Sφ(λ,a)) ∈
E(A) for all (λ, a) ∈ H × A.



34

(2) The edge (Sφ(λ,a), Sφ(φ(λ,a),b)) ∈ E(A) has an inverse edge. Namely
(Sφ(φ(λ,a),b), Sφ(λ,a)) ∈ E(A) for all (λ, a, b) ∈ H × A× A.

(3) For the edge (Sφ(λ,a), Sφ(λ,a)) ∈ E(A), the corresponding multiplication
·φ(λ,a) is zero-symmetric. Hence all d-braces include a zero-symmetric
restricted d-brace.

(4) Two isomorphic d-braces give the same underlying graph.

Proof. 1. By Proposition 8.

(Sφ(λ,a), Sφ(λ,a)) = (Sφ(λ,a), Sφ(φ(λ,a),0))) ∈ E(A).

2. By definition (Sφ(φ(λ,a),b), Sφ(φ(φ(λ,a),b),fφ(λ,a)(b)−1(−b)) ∈ E(A), and

Sφ(φ(φ(λ,a),b),fφ(λ,a)(b)−1(−b)) = Sφ(φ(λ,a),0) = Sφ(λ,a),

follows from Proposition 8. Therefore (Sφ(φ(λ,a),b), Sφ(λ,a)) ∈ E(A).
3. This follows from the definition of ·λ and Proposition 6. For the latter
part, we restrict the set of dynamical parameters to Imφ. Elements of Imφ
correspond to vertices with loops.
4. Let (A,H, φ; +A, {·λ}λ∈H) and (B, I, ψ; +B, {·μ}μ∈I) be two isomorphic
d-braces. By definition of isomorphism, there are maps F : A → A

′
,

p : H → H
′
such that F, p satisfy the conditions of Definition 19. If

(Sλ, Sφ(λ,a)) ∈ E(A), then (Sp(λ), Spφ(λ,a)) = (Sp(λ), Sψ(p(λ),F (a))) ∈ E(B).
Therefore we obtain a bijection between two graphs.

Lastly, we give some examples of graphs, and corresponding multiplica-
tion tables of d-braces. In the following graphs, we ignore the degree of loops,
i.e., we denote a loop by a single edge.

Example 4. Let A be an abelian group. Then A itself is a regular sub-
group of A�Aut(A). This regular subgroup corresponds to the trivial brace
structure on A. (See Example 2).

Example 5. Set A = {0, 1, 2} = Z3, Aut(A) = {idA, τ}, τ : (0, 1, 2) �→
(0, 2, 1) and

A� Aut(A) = {I = (0, idA), (0, τ), (1, idA), (1, τ), (2, idA), (2, τ)}.
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Then following families of subsets of A � Aut(A) satisfy conditions (a) and
(b): (Sλ1 , Sλ2 , Sλ3 , Sλ4), (Sλ1 , Sλ2 , Sλ3 , Sλ5), (Sλ1 , Sλ2 , Sλ3 , Sλ6). Here

Sλ1 := {I, (1, τ), (2, τ)}, Sλ2 := {I, (1, idA), (2, τ)},

Sλ3 := {I, (1, τ), (2, idA)}, Sλ4 := {(0, τ), (1, idA), (2, idA)},
Sλ5 := {(0, τ), (1, τ), (2, idA)}, Sλ6 := {(0, τ), (1, idA), (2, τ)}.

In this case the set of dynamical parameters is H = {λ1, λ2, λ3, λi} (i =
4, 5, 6).

Graphs of (Sλ1 , Sλ2 , Sλ3 , Sλi), and corresponding multiplication tables of
Sλ1 , Sλ2 , Sλ3 , Sλ4 , Sλ5 , Sλ6 are as follows: (the three graphs are same).

Sλi

��

��

���
��

��
��

��
��

��
��

�
Sλ1

��

Sλ2
��

�����������������
Sλ3

��

·λ1 0 1 2 ·λ2 0 1 2 ·λ3 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 0 1 1 0 1 0
2 0 2 2 2 0 0 2 2 0 2 0

·λ4 0 1 2 ·λ5 0 1 2 ·λ6 0 1 2
0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0 1 1 0 1
2 2 0 0 2 2 2 0 2 2 0 2

Therefore d-braces corresponding to (Sλ1 , Sλ2 , Sλ3 , Sλ4), (Sλ1 , Sλ2 , Sλ3 , Sλ5)
and (Sλ1 , Sλ2 , Sλ3 , Sλ6) are not isomorphic. Hence the inverse of Proposition
9. (4) is not true.

Moreover in this example, the triple (Sλ1 , Sλ2 , Sλ3) again satisfies condi-
tions (a) and (b). From this we obtain a subgraph of the above graph as
follows.
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Sλ1
��

Sλ2
��

�������������
Sλ3

�������������
��

It means that the d-brace of (Sλ1 , Sλ2 , Sλ3) is a restricted d-brace of d-
braces of (Sλ1 , Sλ2 , Sλ3 , Sλi), i = 4, 5, 6.

Example 6. We give three examples over A = {(0, 0), (0, 1), (1, 0), (1, 1)} =
Z2 × Z2. Let τ , π and σ be automorphisms of A defined by

τ : ((0, 1), (1, 0), (1, 1)) �→ ((0, 1), (1, 1), (1, 0)),

π : ((0, 1), (1, 0), (1, 1)) �→ ((1, 0), (0, 1), (1, 1)),

σ : ((0, 1), (1, 0), (1, 1)) �→ ((1, 0), (1, 1), (0, 1)).

Then the pairs (Sλ0), (Sλ1 , Sλ2), (Sμ1 , Sμ2 , Sμ3 , Sμ4)

Sλ0 = {I = ((0, 0), idA), ((0, 1), π), ((1, 0), π), ((1, 1), idA)},
Sλ1 = {I, ((0, 1), τ), ((1, 0), τ), ((1, 1), idA)},
Sλ2 = {I, ((0, 1), τ), ((1, 0), idA), ((1, 1), τ)},
Sμ1 = {I, ((0, 1), τ), ((1, 0), σ), ((1, 1), idA)},
Sμ2 = {I, ((0, 1), τ), ((1, 0), τσ), ((1, 1), τ)},
Sμ3 = {I, ((0, 1), σ−1), ((1, 0), τσ), ((1, 1), σ−1)},
Sμ4 = {I, ((0, 1), σ), ((1, 0), τ), ((1, 1), idA)},

satisfy the conditions (a) and (b). The graphs of (Sλ0), (Sλ1 , Sλ2) and
(Sμ1 , Sμ2 , Sμ3 , Sμ4) are as follows. Because Sλ0 �� A, Sλ0 corresponds to a
non-trivial brace.

Sλ0
��

Sλ1
��

Sλ2
��
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Sμ1
��
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��
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��
��

��
��

Sμ2
		

Sμ3
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Sμ4��

The multiplication tables of ·λi , ·μj that correspond to Sλi , Sμj are as
follows: i = 0, 1, 2 and j = 1, 2, 3, 4.

·λ0 (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,0) (0,0) (0,0)
(0,1) (0,0) (1,1) (1,1) (0,0)
(1,0) (0,0) (1,1) (1,1) (0,0)
(1,1) (0,0) (0,0) (0,0) (0,0)

·λ1 (0,0) (0,1) (1,0) (1,1) ·λ2 (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
(0,1) (0,0) (0,0) (0,0) (0,0) (0,1) (0,0) (0,0) (0,0) (0,0)
(1,0) (0,0) (0,1) (0,1) (0,0) (1,0) (0,0) (0,1) (0,0) (0,1)
(1,1) (0,0) (0,1) (0,1) (0,0) (1,1) (0,0) (0,1) (0,0) (0,1)

·μ1 (0,0) (0,1) (1,0) (1,1) ·μ2 (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
(0,1) (0,0) (0,0) (1,1) (0,0) (0,1) (0,0) (0,0) (1,0) (0,0)
(1,0) (0,0) (0,1) (0,1) (0,0) (1,0) (0,0) (0,1) (0,0) (0,1)
(1,1) (0,0) (0,1) (1,0) (0,0) (1,1) (0,0) (0,1) (1,0) (0,1)

·μ3 (0,0) (0,1) (1,0) (1,1) ·μ4 (0,0) (0,1) (1,0) (1,1)
(0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
(0,1) (0,0) (1,0) (1,0) (1,0) (0,1) (0,0) (1,1) (0,0) (0,0)
(1,0) (0,0) (1,1) (0,0) (1,1) (1,0) (0,0) (0,1) (0,1) (0,0)
(1,1) (0,0) (0,1) (1,0) (0,1) (1,1) (0,0) (1,0) (1,0) (0,0)





Chapter 3

Quantum Yang-Baxter
equation, braided semigroups,
and dynamical Yang-Baxter
maps

3.1 Tensor category SetH and dynamical Yang-

Baxter maps

In this section, we construct dynamical Yang-Baxter maps, which generalize
(1.0.7), after a brief review of the tensor category SetH [35, 36]. For category
theory, see [20, 25].

Let H be a non-empty set. We denote by SetH the following category:
its objects are pairs (X, ·X) of a set X and a map ·X : H × X � (λ, x) �→
λ·Xx ∈ H; its morphisms f : (X, ·X) → (Y, ·Y ) are maps f : H → Map(X, Y )
satisfying λ ·Y f(λ)(x) = λ ·X x (∀λ ∈ H, ∀x ∈ X); the identity 1 and the
composition ◦ are defined by

1X(λ)(x) = x (λ ∈ H, x ∈ X) and (g ◦ f)(λ) = g(λ) ◦ f(λ) (λ ∈ H)

for objects X, Y, Z and morphisms f : X → Y , g : Y → Z. We will often
write λ ·X x simply by λx.

This SetH is a tensor category. In fact, the tensor product X ⊗ Y of the
objects X = (X, ·X) and Y = (Y, ·Y ) is a pair (X × Y, ·) consisting of the
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Cartesian product X × Y and the following map · : H × (X × Y ) → H.

λ · (x, y) = (λ ·X x) ·Y y (λ ∈ H, (x, y) ∈ X × Y ).

The tensor product of the morphisms f : X → X ′ and g : Y → Y ′ is
defined by (f ⊗ g)(λ)(x, y) = (f(λ)(x), g(λx)(y)) (λ ∈ H, (x, y) ∈ X × Y ).
The definitions of the associativity constraint a, the unit I, and the left and
the right unit constraints l, r are as follows: aXY Z(λ)((x, y), z) = (x, (y, z));
I = ({e}, ·I), a pair of the set {e} of one element and the map ·I defined by
λ ·I e = λ; lX(λ)(e, x) = x = rX(λ)(x, e).

Definition 20. A morphism σ : X ⊗ X → X ⊗ X of SetH is a dynamical
Yang-Baxter map [27, 33, 35, 36], iff σ satisfies the QYBE (3.1.1) in SetH .

a◦σ⊗1X ◦a−1◦1X⊗σ◦a◦σ⊗1X = 1X⊗σ◦a◦σ⊗1X ◦a−1◦1X⊗σ◦a. (3.1.1)

Here, a = aX,X,X .

If this dynamical Yang-Baxter map is an automorphism in SetH , then it
is exactly a Yang-Baxter operator [20, Definition XIII.3.1].

Remark 4. (1) The dynamical Yang-Baxter map in the above definition
is called a dynamical braiding map satisfying an invariance condition
[34, Definition 2.8].

(2) If H is a set of one element, then the tensor category SetH is the tensor
category Set consisting of sets, and the dynamical Yang-Baxter map
is exactly a Yang-Baxter map.

Every left quasigroup [30, 38] can produce dynamical Yang-Baxter maps.

Definition 21. A left quasigroup Q is a non-empty set, together with a
binary operation (·) on Q such that the left translation map L(a) : Q � b �→
a · b ∈ Q is bijective for all a ∈ Q.

For simplicity of notation, we write ab (a, b ∈ Q) instead of a · b, and
denote L(a)−1(b)(∈ Q) by a\b. Here, L(a)−1 : Q → Q is the inverse of
L(a). We note that the binary operation of the left quasigroup is not always
associative.

Example 7. (1) The group G is a left quasigroup.
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(2) The set Z of integers, together with a binary operation a · b := b − a
(a, b ∈ Z), is a left quasigroup. This binary operation is not associative.

(3) Let V denote the vector space (Z/3Z)4 over the finite field Z/3Z. We
define the binary operation (·) on V by

a · b = (a1 + b1, a2 + b2, a3 + b3, a4 + b4 + (a3 − b3)(a1b2 − a2b1))

for a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) ∈ V . The pair (V, ·) is a left
quasigroup; moreover, this is a smallest commutative Moufang loop
that is not a group [30, Example IV.5.1].

For a left quasigroup Q and λ ∈ Q, we define the binary operation (·λ)
on Q by

a ·λ b = λ\((λa)b) (a, b ∈ Q). (3.1.2)

We denote by Qλ the set Q with the above binary operation (·λ) (3.1.2).
Proposition 10. Qλ is a left quasigroup for any λ ∈ Q.

Remark 5. The binary operation (·λ) is called a left derivative of (·) with
respect to λ ∈ Q [30, Section III.5].

A relation ∼ on Q defined by

λ ∼ μ ⇔ a ·λ b = a ·μ b (∀a, b ∈ Q) (3.1.3)

is an equivalence relation on Q. We write H := Q/ ∼.

Proposition 11. If λ ∼ μ, then λa ∼ μa for any a ∈ Q.

Proof. By the definition (3.1.2), a ·λ (x ·λa y) = (a ·λ x) ·λ y for x, y ∈ Q, and
consequently a ·λ (x ·λa y) = a ·μ (x ·μa y) = a ·λ (x ·μa y), since λ ∼ μ. On
account of Proposition 10, x ·λa y = x ·μa y for x, y ∈ Q, which is the desired
result.

Remark 6. Each equivalence class [λ] ∈ H containing λ ∈ Q is the set
λ · Nl(Qλ). Here, Nl(Qλ) is a left nucleus [30, Definition I.3.2] of the left
quasigroup Qλ: Nl(Qλ) = {a ∈ Qλ | (a ·λ x) ·λ y = a ·λ (x ·λ y) (∀x, y ∈ Qλ)}.

We define a map (·) : H ×Q → H by [λ] · a := [λa] (λ, a ∈ Q). Because
of Proposition 11, this definition makes sense.
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Proposition 12. Q = (Q, ·) is an object of SetH .

Let s : H → Q be a right inverse of the projection Q � λ �→ [λ] ∈ H;
that is, s : H → Q is a map satisfying s([λ]) ∼ λ for all λ ∈ Q. We denote
by σ1([λ]) and σ2([λ]) (λ ∈ Q) the maps on Q×Q defined by:

σ1([λ])(a, b) = (s([λ])\s([λ]), λ\((λa)b));
σ2([λ])(a, b) = (λ\((λa)b), s([(λa)b])\s([(λa)b])) (a, b ∈ Q). (3.1.4)

Theorem 9. Both σ1 and σ2 are dynamical Yang-Baxter maps.

We will give a proof of this theorem in Section 3.4 after clarifying the
structure of σi (i = 1, 2) in Sections 3.2 and 3.3 from the viewpoint of category
theory.

Example 8. (1) If the left quasigroup Q is a group G (See Example 7
(1)), then the set H has only one element, and the maps σi := σi([λ])
(i = 1, 2, λ ∈ G) are the same as those in (1.0.7) for any right inverse
s (See also Remark 4 (2)).

(2) If the left quasigroup Q is Z in Example 7 (2), then λ ∼ μ ⇔ λ = μ
(λ, μ ∈ Z). As a result, the set H is isomorphic to Z as sets, and
every right inverse s satisfies s([λ]) = λ (λ ∈ Z). The maps σi([λ])
(i = 1, 2, λ ∈ Z) are as follows:

σ1([λ])(a, b) = (2λ, b− a+ 2λ);

σ2([λ])(a, b) = (b− a+ 2λ, 2b− 2a+ 2λ) (λ, a, b ∈ Z).

(3) If the left quasigroup Q is V in Example 7 (3), then 1 < #(H) <
#(V )(= 81). The element 1V := (0, 0, 0, 0) is the unit element of (V, ·),
and the inverse a−1 of a(∈ V ) is −a. Because (V, ·) is a Moufang loop,
(ba−1)a = b for any a, b ∈ V [30, Section IV.1]. By virtue of Proposition
11,

a ∼ b⇒ aa−1 ∼ ba−1 ⇔ 1V ∼ ba−1 ⇒ 1V a ∼ (ba−1)a⇔ a ∼ b;

that is, a ∼ b ⇔ ba−1 ∼ 1V . A straightforward computation shows
that a ∼ 1V ⇔ a = (0, 0, 0, a4) (a4 ∈ Z/3Z), and the relation a ∼ b
is consequently equivalent to that b = a + (0, 0, 0, r) (∃r ∈ Z/3Z).
H(= V/ ∼) is thus a set of order 27. Since the orders of the sets H
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and V are different, the method in [34] does not produce this example
directly. Finally, the maps σi([λ]) (i = 1, 2, λ ∈ V ) for any right inverse
s are as follows:

σ1([λ])(a, b) = (1V , x); σ2([λ])(a, b) = (x, 1V ) (λ, a, b ∈ V ).

Here, the element x ∈ V is defined by

x =(a1 + b1, a2 + b2, a3 + b3,

a4 + b4 + λ1(a2b3 − a3b2) + λ2(a3b1 − a1b3) + (λ3 + a3 − b3)(a1b2 − a2b1))

for λ = (λ1, λ2, λ3, λ4), a = (a1, a2, a3, a4), b = (b1, b2, b3, b4) ∈ V .

3.2 QYBE and braided semigroups

This section establishes a relation between the QYBE and braided semi-
groups in tensor categories, which play an essential role in the proof of The-
orem 9.

Let C = (C,⊗, a, I, l, r) be a tensor category. That is to say, C is a
category with a tensor product ⊗ : C × C → C, an associativity constraint
a : ⊗ ◦ (⊗ × id) → ⊗ ◦ (id×⊗), a unit object I, and left and right unit
constraints l : ⊗(I× id) → id, r : ⊗(id×I) → id with respect to I, satisfying
the pentagon axiom and the triangle axiom. We denote by 1X : X → X the
identity morphism of an object X.

A pair (X,mX) of an object X and a morphism mX : X ⊗X → X is a
semigroup, iff mX satisfies

mX ◦ (mX ⊗ 1X) = mX ◦ (1X ⊗mX) ◦ aX,X,X . (3.2.1)

This morphism mX is called a multiplication. A pair (X,ΔX) of an object
X and a morphism ΔX : X → X ⊗X is a co-semigroup, the dual concept of
the semigroup, iff ΔX satisfies

aX,X,X ◦ (ΔX ⊗ 1X) ◦ΔX = (1X ⊗ΔX) ◦ΔX . (3.2.2)

The morphism ΔX is said to be a comultiplication.

Let σXY : X ⊗ Y → Y ⊗X be a morphism of the tensor category C.
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Definition 22. A matched pair of semigroups X = (X,mX) and Y =
(Y,mY ) (Cf. [26, 36, 39, 40]) is a triple (X, Y, σXY ) satisfying:

(1Y ⊗mX) ◦ aY,X,X ◦ (σXY ⊗ 1X) ◦ a−1
X,Y,X ◦ (1X ⊗ σXY )

=σXY ◦ (mX ⊗ 1Y ) ◦ a−1
X,X,Y ; (3.2.3)

(mY ⊗ 1X) ◦ a−1
Y,Y,X ◦ (1Y ⊗ σXY ) ◦ aY,X,Y ◦ (σXY ⊗ 1Y )

=σXY ◦ (1X ⊗mY ) ◦ aX,Y,Y . (3.2.4)

A pair (X, σX) of a semigroup X and a morphism σX : X ⊗X → X ⊗X
is called a braided semigroup, iff the triple (X,X, σX) is a matched pair of
semigroups.

Remark 7. The matched pair (X, Y, σXY ) of semigroups gives birth to a
semigroup. In fact, (Y ⊗X,mY⊗X) is a semigroup with the morphismmY⊗X :
(Y ⊗X)⊗ (Y ⊗X) → Y ⊗X defined by

mY⊗X = mY ⊗mX ◦ aY⊗Y,X,X ◦ (a−1
Y,Y,X ◦ 1Y ⊗ σXY ◦ aY,X,Y )⊗ 1X ◦ a−1

Y⊗X,Y,X .
(3.2.5)

(X ⊗X,mX⊗X) is hence a semigroup, if (X, σX) is a braided semigroup.

Let X = (X,mX) be a semigroup with a comultiplication ΔX : X →
X ⊗X. We write σ := ΔX ◦mX : X ⊗X → X ⊗X.

Theorem 10. If the pair (X, σ) is a braided semigroup, then σ satisfies the
QYBE (3.1.1) in the tensor category C.

Proof. Because σ = ΔX ◦mX ,

(Right-hand-side of (3.1.1)) = (1X⊗ΔX)◦(1X⊗mX)◦a◦(σ⊗1X)◦a−1◦(1X⊗σ)◦a.

Here, a = aX,X,X . On account of (3.2.3), the right-hand-side of the above
equation is (1X ⊗ ΔX) ◦ σ ◦ (mX ⊗ 1X). By making use of σ = ΔX ◦ mX

again, (1X ⊗ ΔX) ◦ σ ◦ (mX ⊗ 1X) = (1X ⊗ ΔX) ◦ ΔX ◦ mX ◦ (mX ⊗ 1X).
From (3.2.4), a similar argument induces that

(Left-hand-side of (3.1.1)) = a ◦ (ΔX ⊗ 1X) ◦ΔX ◦mX ◦ (1X ⊗mX) ◦ a.

This completes the proof in view of (3.2.1) and (3.2.2).
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Remark 8. (1) The dual concept of the braided semigroup is a braided
co-semigroup. Let σXY : X ⊗ Y → Y ⊗X be a morphism of a tensor
category C. A matched pair of co-semigroups (X,ΔX) and (Y,ΔY ) is
a triple (X, Y, σXY ) satisfying:

σXY ⊗ 1X ◦ a−1
X,Y,X ◦ 1X ⊗ σXY ◦ aX,X,Y ◦ΔX ⊗ 1Y = a−1

Y,X,X ◦ 1Y ⊗ΔX ◦ σXY ;
1Y ⊗ σXY ◦ aY,X,Y ◦ σXY ⊗ 1Y ◦ a−1

X,Y,Y ◦ 1X ⊗ΔY = aY,Y,X ◦ΔY ⊗ 1X ◦ σXY .
A pair (X, σX) of a co-semigroup X and a morphism σX : X ⊗ X →
X⊗X is a braided co-semigroup, iff the triple (X,X, σX) is a matched
pair of co-semigroups.

(2) The matched pair (X, Y, σXY ) of co-semigroups defines a co-semigroup
(X ⊗ Y,ΔX⊗Y ). Here,

ΔX⊗Y := aX⊗Y,X,Y ◦(a−1
X,Y,X◦1X⊗σXY ◦aX,X,Y )⊗1Y ◦a−1

X⊗X,Y,Y ◦ΔX⊗ΔY .
(3.2.6)

From this fact, (X⊗X,ΔX⊗X) is a co-semigroup, if (X, σX) is a braided
co-semigroup.

(3) A dual of Theorem 10 is also true. Let (X,ΔX) be a co-semigroup
with a multiplication mX . We set σ := ΔX ◦mX . If (X, σ) is a braided
co-semigroup, then σ satisfies the QYBE. The proof is similar to that
of Theorem 10.

3.3 Semigroups with left or right unit

In this section, we construct the braided semigroups in Theorem 10 by means
of semigroups with a left or right unit.

Let C = (C,⊗, a, I, l, r) be a tensor category, S an object of C, and
η : I → S a morphism of C. We define the morphisms Δi : S → S ⊗ S
(i = 1, 2) by

Δ1 = (η ⊗ 1S) ◦ l−1
S and Δ2 = (1S ⊗ η) ◦ r−1

S . (3.3.1)

Proposition 13. Both (S,Δ1) and (S,Δ2) are co-semigroups.

Proof. From (3.3.1), Δ1 ◦η = η⊗η ◦ l−1
I = η⊗η ◦r−1

I = Δ2 ◦η, which induces

Δ1 ⊗ 1S ◦Δ1 = Δ2 ⊗ 1S ◦Δ1 and 1S ⊗Δ2 ◦Δ2 = 1S ⊗Δ1 ◦Δ2. (3.3.2)
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By virtue of the triangle axiom,

aS,S,S ◦Δ2 ⊗ 1S = 1S ⊗Δ1. (3.3.3)

It follows immediately from (3.3.2) and (3.3.3) that Δ1 and Δ2 satisfy (3.2.2).
This proves the proposition.

A morphism η : I → S is called a left unit (resp. a right unit) of a
semigroup (S,mS), iff η satisfies mS ◦ η ⊗ 1S = lS (resp. mS ◦ 1S ⊗ η = rS).

Let (S,mS) be a semigroup with a left or right unit η. With the aid of
the above proposition, the morphisms Δ1 and Δ2 are comultiplications of S.
We define the morphisms σi (i = 1, 2) by σi := Δi ◦mS.

Proposition 14. For i = 1, 2, (S, σi) is a braided semigroup.

Proof. The following lemma and (3.2.1) immediately establish (3.2.3) and
(3.2.4) for the case i = 1.

Lemma 3. Δ1 satisfies:

1S ⊗mS ◦ aS,S,S ◦Δ1 ⊗ 1S = Δ1 ◦mS; (3.3.4)

mS ◦mS ⊗ 1S ◦ a−1
S,S,S ◦ 1S ⊗Δ1 = mS; (3.3.5)

mS ⊗ 1S ◦ a−1
S,S,S ◦ 1S ⊗Δ1 ◦Δ1 = Δ1. (3.3.6)

For the proof of the case i = 2, we use:

mS ⊗ 1S ◦ a−1
S,S,S ◦ 1S ⊗Δ2 = Δ2 ◦mS; (3.3.7)

mS ◦ 1S ⊗mS ◦ aS,S,S ◦Δ2 ⊗ 1S = mS; (3.3.8)

1S ⊗mS ◦ aS,S,S ◦Δ2 ⊗ 1S ◦Δ2 = Δ2. (3.3.9)

This completes the proof.

Proof of Lemma 3. The naturality of the left unit constraint l, together with
the fact that lS⊗S ◦ aI,S,S = lS ⊗ 1S, implies (3.3.4).

If η is a left unit of the semigroup (S,mS), then

mS ◦Δ1 = 1S, (3.3.10)

which induces (3.3.5) by virtue of the associativity (3.2.1) of mS.
If η is a right unit of (S,mS), then

mS ⊗ 1S ◦ a−1
S,S,S ◦ 1S ⊗Δ1 = 1S⊗S. (3.3.11)
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In fact, the left-hand-side of (3.3.11) is (mS◦1S⊗η)⊗1S◦a−1
S,I,S◦1S⊗l−1

S . The
triangle axiom, together with the fact that η is a right unit, gives (3.3.11),
which consequently yields (3.3.5).

The proof of (3.3.6) is immediate by taking (3.2.2), (3.3.10), and (3.3.11)
into account.

Some σi are idempotent.

Proposition 15. If η is a left unit, then σ2
1 = σ1; and, if η is a right unit,

then σ2
2 = σ2.

Proof. From (3.3.10) and the fact that σ1 = Δ1 ◦mS, σ
2
1 = σ1, if η is a left

unit. A similar argument induces that σ2
2 = σ2, if η is a right unit.

Remark 9. (1) (S, σi) (i = 1, 2) in Proposition 14 are also braided co-
semigroups because of (3.2.2) and (3.3.4)–(3.3.9). As a result, S ⊗S is
a semigroup with respect tomS⊗S, but also a co-semigroup with respect
to (Δi)S⊗S. Here, mS⊗S is the morphism (3.2.5) for X = Y = S, and
(Δi)S⊗S is the morphism (3.2.6) for X = Y = S and ΔX = ΔY = Δi.

(2) The quartet (S,mS,Δi, σi) (i = 1, 2) is a “bi-semigroup.” In fact, it
follows from (3.3.4)–(3.3.9) that

mS⊗S ◦Δi ⊗Δi = Δi ◦mS. (3.3.12)

The morphism Δi : S → S⊗S hence respects the semigroup structures
(See (1)). On the other hand, from (3.2.5) and (3.2.6), (3.3.12) is
exactly the same as

mS ⊗mS ◦ (Δi)S⊗S = Δi ◦mS,

which means thatmS : S⊗S → S respects the co-semigroup structures.
Therefore, we can regard S as a bi-semigroup.

3.4 Proof of Theorem 9

This section is devoted to a proof of Theorem 9. We follow the notation used
in Section 3.1.

Let Q = (Q, ·) be a left quasigroup (see Definition 21). We denote by H
the set of all equivalence classes of the relation (3.1.3) on Q.
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For any [λ] ∈ H (λ ∈ Q), mQ([λ]) is the map from Q × Q to Q defined
by mQ([λ])(a, b) = a ·λ b for a, b ∈ Q (Cf. [35, (3.3)]). For (·λ), see (3.1.2).
On account of (3.1.3), this definition is unambiguous.

Proposition 16. mQ : Q ⊗ Q → Q is a morphism of SetH . Moreover,
Q = (Q,mQ) is a semigroup in SetH .

Let s : H → Q be a right inverse of the projection Q � λ �→ [λ] ∈ H.

For any [λ] ∈ H (λ ∈ Q), η
(s)
Q ([λ]) is the map from I = {e} to Q defined by

η
(s)
Q ([λ])(e) = s([λ])\s([λ]).

Proposition 17. (1) η
(s)
Q : I → Q is a morphism of SetH .

(2) η
(s)
Q is a left unit of the semigroup (Q,mQ) (Cf. [35, (3.5)]).

Proof. We give only the proof of (1). For the proof, it is sufficient to show

that [λ]η
(s)
Q ([λ])(e) = [λ]e (λ ∈ Q, I = {e}). Because s([λ]) ∼ λ, [s([λ])] = [λ].

Hence,

[λ]η
(s)
Q ([λ])(e) = [s([λ])](s([λ])\s([λ])) = [s([λ])] = [λ] = [λ]e.

This completes the proof.

We set Δ1 = (η
(s)
Q ⊗ 1Q) ◦ l−1

Q , Δ2 = (1Q ⊗ η
(s)
Q ) ◦ r−1

Q , and σi = Δi ◦mQ

(i = 1, 2). It follows from Propositions 13, 14, 16, and 17 that each (Q, σi)
(i = 1, 2) is a braided semigroup in SetH with the comultiplication Δi, and a
straightforward calculation shows that the morphisms σ1 and σ2 are exactly
the same as those in (3.1.4). Theorem 10 thus proves Theorem 9.

Remark 10. (1) Remarks 8 (3) and 9 (1) with Propositions 16 and 17
also imply Theorem 9.

(2) The construction [27] of dynamical Yang-Baxter maps using dynami-
cal braces cannot produce the above dynamical Yang-Baxter map σ1, if
#(Q) > 1. Suppose, contrary to our claim, that there exists a dynam-
ical brace that gives birth to σ1 by the method in [27, Corollary 3.2.1].
Then this dynamical Yang-Baxter map satisfies the unitary condition
σ2
1 = 1Q⊗Q. As a result, σ1 = σ2

1 = 1Q⊗Q from Proposition 15. This
contradicts the condition that #(Q) > 1.
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