
Mobile Agent Based Evacuation System
When The Battery Runs Out : EASTER

Heisuke KANEKO and Yoshiaki FUKAZAWA
Waseda University

3-4-1 Okubo, Shinjuku-ku,
Tokyo, 169-8555, JAPAN

fheisuke,fukazawag@fuka.info.waseda.ac.jp

Fumihiro KUMENO
Mitsubishi Research Institute, Inc.
2-3-6 Otemachi, Chiyoda-ku,
Tokyo, 100–8141, JAPAN

kumeno@mri.co.jp

Nobukazu YOSHIOKA and Shinichi HONIDEN
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo, 101-8430, JAPAN
fnobukazu,honideng@nii.ac.jp

Abstract

As mobile computing becomes common, the battery is-
sue of mobile computing devices has become increasingly
notable. To this end, research and development of various
power-conservation devices and methods are actively tak-
ing place. However, the conventional method of extending
the battery life through power-conservation can never pre-
vent the unintentional shutdowns of applications due to the
dead battery. This research aims to realize the evacuation
of applications on a mobile computing device to another de-
vice before the battery runs out by creating the application
as a mobile agent. Particularly, by introducing the con-
cept of the Crisis Management Center, dynamic and smooth
evacuation of multiple application agents will become pos-
sible. This paper explains and verifies the effectiveness of
the EASTER (Escape Agent System from dying batTERy),
a system developed for the purpose of recovering the ap-
plications when a battery is running out through the use of
mobile agent system.

1 Introduction

The use of mobile computing devices such as PDAs and
cellular phones is expanding rapidly, their performance is
fast improving and they start to incorporate Java virtual ma-
chine (JVM). In addition, wireless networks such as wire-
less LAN and Bluetooth can be used for the above devices,
enabling the use of various applications at any time and any

place. In other words, we can execute applications that have
been downloaded via wireless networks on our mobile com-
puting devices.

Thus, while mobile computing devices have become in-
dispensable in our life, issues that did not exist in conven-
tional PCs and servers are surfacing at the same time, such
as batteries with limited or small capacity, unstable network
that are prone to get cut off any time, etc. Particularly, the
battery issue is serious. When the battery runs out, we can-
not use the applications running on the device and important
data can be lost.

In order to resolve this battery issue, researches on ex-
tending battery life through increasing the battery capacity,
developing a power saving device or applying power man-
agement technology such as an automatic sleeping mode,
have been active. Undoubtedly, power-conservation can ex-
tend the operation time of a mobile computing device, but
unless the user recharges the battery, it will eventually die
out; thus it is impossible to completely eliminate the risk of
“ battery shortage when an application is running”. In fac-
ing this issue, we have changed our point of view with the
following thoughts: “Can we make an application protect
itself before the battery runs out?” In other words, our pro-
posal suggests that an application carry an adaptive capacity
against the dead battery.

We consider such an adaptive ability to be one of the
following three types.

(1) Saving important data to files

(2) Transferring important data to the network

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

Figure 1. Evacuation action of an application
agent.

(3) Transferring both important data and the application it-
self to the network

In case (1), once a user recharges the mobile computing
device, he can restart the operation. However, he cannot
restart it unless he recharges the device whose battery has
run out. Thus, restarting the operation on another device is
impossible.

A user in case (2) can restart the operation on another de-
vice as long as he can download the evacuated data that was
uploaded to the network. However, there is no assurance
that an application running on the original device can be
used on another device. Further, when the continual opera-
tion of applications on amobile computing device is crucial,
a sudden application termination and the loss of data lead to
the serious damage.

The method in case (3) offers a solution to all the prob-
lems described in case (1) and (2). Therefore, the best way
for an application to protect itself in the event of the battery
running out is to transfer not only the data but also the ap-
plication itself to another safe device via the network. We
call this safe device the “shelter device”. When an applica-
tion that succeeds in evacuating, it can continue operating
on the shelter device. Moreover, it is possible to transfer an
evacuated application from the shelter device to another de-
vice. This enables the user to restart evacuated applications
on any device.

To achieve this function, we use a mobile agent that is a
program that migrates freely on the network along with its
code and state. That is, we configure applications formobile
computing devices as mobile agents in which the evacuation
function is embedded for when the battery runs out. The
application agent can thus evacuate to another device before
the battery runs out (Figure 1).

However, if multiple agents evacuate on their own, with-
out any considerations to other agents, some applications
may fail to evacuate. We therefore introduce the Crisis
Management Center, which manages all information on a

Figure 2. Crisis Management Center.

mobile computing device and devises an effective evacua-
tion plan (Figure 2).

This paper explains and verifies the effectiveness of the
EASTER (Escape Agent System from dying batTERy), a
system developed for the purpose of recovering the appli-
cations when a battery is running out through the use of
mobile agent system.

The remainder of this paper is organized as follows.
Section 2 describes the kinds of applications benefit from
the EASTER. Section 3 describes the introduction of the
Crisis Management Center. Section 4 presents a detailed
overview of the EASTER. In Section 5, we report some ex-
periment results to confirm the applicability and validity of
the EASTER. Section 6 presents a review of related works,
while Section 7 offers our conclusions and future work.

2 Application Examples

In this section, we describe the kinds of applications that
usefully benefit from the EASTER.

The EASTER enables not only the saving of data but
also the continuous execution of the application. Thus, ap-
plications, whose continued operation is essential will ben-
efit from the evacuation accomplished by the EASTER. To
explain further, we will use the scenario of an emergency
service call out. When an accident occurs, the ambulance
attendants hurry to the rescue of injured person with PDA
because they cannot carry the heavy equipment in the am-
bulance vehicle. On arriving, they confirm the identity of
the injured party and download his medical record from the
database at the medical center. Next, an attendant exam-
ines the patient and inputs information such as heart rate or
blood pressure into his PDA. Care of the patient may re-
quire multiple applications. For example, one application
may communicate with the server at the medical center, an-
other may show the real time graphic representing the heart
rate. If the PDA battery were to run out, important data
would be lost and essential operations cease. It is crucial
that the operation continue in a crisis situation as the one

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

described in this scenario. If applications could evacuate
to another attendant’s PDA by means of the EASTER, the
important data and operation would not be lost.

Other than applications for emergent situations, appli-
cations that run automatically without a user, such as web
collection programs that surf the WWW, benefit from the
EASTER. These applications can continue to run after evac-
uation, and thereafter return to the original device, which a
user has recharged the battery, with the results of their op-
eration.

Normal applications can also benefit from the EASTER.
For example, when a user is writing an e-mail and the bat-
tery runs out, if the mailer can evacuate, a user can keep the
content of his unfinished e-mail and continue to write on
another device nearby immediately. Because of evacuation
of application, a user need not install a new mailer and set
up large amounts of personalized information on the new
device that a user must start to use instead of the original
device whose battery has runs out.

3 Crisis Management Center

In the future, more than one application will be running
on a mobile computing device as same as a PC. If all ap-
plication agents detect the battery shortage and attempt to
evacuate simultaneously, there is a great possibility that the
entire evacuation system may be obstructed. In other words,
if multiple agents individually make the decision to evacu-
ate, they may end up obstructing each other. This phenom-
ena caused by individual agents not understanding the sur-
rounding environment (only thinking about itself) is defined
as rush crush.

One of the measures to avoid rush crush is similar to the
multi-agent system where all the agents exchange informa-
tion frequently and devise an evacuation plan cooperatively.
However, this type of feature generally increases the bur-
den of the system, and is difficult to operate on the low-
performance machines such as PDAs and cellular phones.
Furthermore, adding a sophisticated feature on each agent
causes the data size of each agent increase and may result
in longer migration time on the network during the evacu-
ation. Finally, sophisticated planning in a low-resource en-
vironment takes much time and the situation may worsen
during the execution.

For these reasons, we decided not to adopt the above
multi-agent solution. In the EASTER, each application is
implemented as a simple mobile agent, which migrates with
both code and data but does not have high intelligence and
cooperative features. Alternatively, we introduce the Crisis
Management Center that manages all agents’ information
and monitors the situation on a mobile computing device to
devise an efficient evacuation plan.

Figure 3. System hierarchy.

4 Overview of the EASTER

As mentioned above, the Crisis Management Center effi-
ciently evacuates some applications that are implemented as
mobile agents before the battery runs out, thereby prevent-
ing the loss of applications and their operation information.
After an evacuation, an application can still easily use its
operation information and restart its operation on the shel-
ter device. Evacuation is impossible, however, when the
battery life is very short or a wireless network cannot be
used. In such a case, the Crisis Management Center com-
mands applications to evacuate into local files. Evacuation
to local files is an undesirable alternative, however, as men-
tioned in Section 1. Thus, the basic principle in making
an evacuation plan of the Crisis Management Center is to
evacuate the maximum number of agents to shelter devices.

4.1 System Hierarchy

The hierarchy of the EASTER is presented in Figure 3.

Using a Java-based mobile agent system enables any ap-
plication to run on any device after evacuation. At this time,
we employed AgentSpace [10] as a mobile agent system,
which is a Java-based mobile agent system that supports
weak mobility. However, because code/state mobility is re-
quired for achieving evacuation, other mobile agent systems
such as Aglets [5] or Voyager [6] may also be used. We em-
ployed AgentSpace because it zips the necessary transfer
data when an agent migrates, and we expected to shorten
the evacuation time by this migration method. However,
it turned out the zip process takes a long time for zip pro-
cess on mobile computing devices whose performance is
highly restricted. We therefore appended the non-zip mi-
gration method to AgentSpace.

The EASTER hierarchy functions to provide the Crisis
Management Center, evacuation of applications, and accep-
tance of evacuated application agents.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

Table 1. Category of callback methods.
before an evacuation after an evacuation

escapeCompletely() recoverCompletely()
escapeQuickly() recoverQuickly()
escapeToFile() recoverFromFile()

Table 2. Behavior when an agent evacuates.
Alert Level Behavior

Low before execute escapeCompletely()
after execute recoverCompletely()

Medium before execute escapeQuickly()
discard low important-level resources

after execute recoverQuickly()

High before execute escapeToFile()
after execute recoverFromFile()

4.2 Shelter Device

A shelter device may be a PC at a user’s home that is
continually connected to the Internet or a PC at user’s office.
It may be a server accessible by the public. Or, it may be a
mobile computing device of a user’s friend who happens to
be nearby and so the user can restart the operation instantly.

As showed in Figure 3, for a device to function as a shel-
ter device, JVM and Mobile Agent System (AgentSpace)
and the EASTER must be installed in the device.

We expect in the future that when a certain shelter device
becomes usable by movements of a user or purchases of
a service, the mobile computing device will automatically
detect and use it. Currently, however, the user must assign
shelter devices he wants to use.

4.3 Agent’s Evacuation Behavior

4.3.1 Callback Methods

Each of the application agents must execute the built-in pro-
cess before and after an evacuation. For example, an agent
may discard unnecessary data and GUI components or stop
Java threads before an evacuation. Or the agent may restart
its operation or migrate to other devices after an evacuation.
The functions to be executed before and after an evacua-
tion, however, are not common to all applications but de-
pend on each individual application. Therefore, we provide
callback methods, which are executed before and after an
evacuation. The callback methods are interfaces of an ab-
stract class, which is the super-class of an application agent
in the EASTER. An application developer only describes
each built-in process in the callback methods. We provide
three types of callback methods, as listed Table 1. This en-
ables an agent to execute an evacuation appropriate to the
situation. The evacuation flow is described in 4.3.3.

4.3.2 Evacuation Policy

In the EASTER, each agent does not evacuate by itself but
follows evacuation plans provided by the Crisis Manage-
ment Center. It is necessary, however, to reflect each agent’s

policy on an evacuation. We call this an evacuation policy
whose contents are as follows.

� agent’s level of importance (levels 1 � 3)

� resource’s level of importance (low or high)

� desirable shelter device

� desirable evacuation timing

4.3.3 Evacuation Flow

An application agent starts its operation after informing its
evacuation policy to the Crisis Management Center. While
an application operates carries out its operation, it need not
keep track of the condition of battery and other agents; that
is the Crisis Management Center’s job. When an agent must
evacuate, the Crisis Management Center gives an evacua-
tion command to the agent.

The evacuation command includes an alert level that is
divided into three stages. Each agent executes a callback
method and discards unnecessary resources according to the
alert level. Table 2 illustrates the evacuation behavior of
agents.

4.4 Crisis Management Center

The Crisis Management Center provides the following
functions for making efficient evacuation plans in order to
prevent rush crush.

1. information management

2. estimation of evacuation time

3. making evacuation plans

4. dynamic modification of evacuation plans

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

4.4.1 Information Management

The information, in addition to each agent’s evacuation pol-
icy, which is necessary for making evacuation plans, is as
follows.

� battery life

� bandwidths between a mobile computing device and
shelter devices

These pieces of information need to be checked periodically
because they vary constantly.

4.4.2 Estimation of the Evacuation Time

Predicting each agent’s evacuation time is necessary in or-
der to make an appropriate evacuation plan. The flow of an
individual agent’s evacuation is as follows.

(1) executing a callback method depending on the alert
level indicated by the Crisis Management Center

(2) transforming an agent into transfer data

(3) migration of the transfer data to a shelter device

We call (1) and (2) pre-evacuation process and (3) migration
process.

To measure the time for pre-evacuation process, the
EASTER makes a copy of each agent and has it execute
a pre-evacuation process. We call this sequence a rehearsal
process. There are three types of pre-evacuation process ac-
cording to the three alert levels. Moreover, as mentioned
in 4.1, we prepare two methods of data transfer (zip or
non-zip). Thus, the Crisis Management Center executes six
types of rehearsal processes for every agent.

It is possible to estimate the time required for a migration
process by using formula (1) if the transfer data size and the
bandwidth are known.

MigrationT ime(sec)

= TransferDataSize(bit)=Bandwidth(bps) � � � (1)

Transfer data size can be predicted by the copied agent’s
transfer data that results from its rehearsal process. Band-
width can be calculated by sending data periodically to a
shelter device from a mobile computing device and measur-
ing the elapsed time.

In a real situation, some agents and the Crisis Manage-
ment Center work in parallel. Thus, it is difficult to make
exact predictions because their operations often come into
conflict. Moreover, predictions differ significantly from ac-
tual value in the following situations.

� the amount of data that an agent holds changes dramat-
ically after its most recent rehearsal process

� the pre-evacuation process in the most recent rehearsal
process differs from that of the actual evacuation

� there is a delay in the migration process due to a
change in the network condition

As the result, the Crisis Management Center needs to mod-
ify an evacuation plan when the predicted migration time
differs from the actual value. Moreover, in order to have the
most up-to-date information as possible, the EASTER must
carry out the rehearsal process periodically.

4.4.3 Making Evacuation Plans

After the rehearsal processes of all agents have been per-
formed, the Crisis Management Center can devise evacua-
tion plans.

First, the Crisis Management Center selects the shelter
device to which each agent evacuates. In principle, the Cri-
sis Management Center selects the device whose bandwidth
is the widest among the available shelter devices. However,
if a desirable shelter device is assigned in the evacuation
policy of an agent, the Crisis Management Center evacuates
the policy owner agent to the assigned shelter device.

The selection of a shelter device enables the estimation
of evacuation time because the rehearsal process is com-
pleted and the migration process can be predicted by for-
mula (1). Thus, the Crisis Management Center determines
a transfer method for every alert level. The Crisis Man-
agement Center compares the estimation time of zip migra-
tion method and non-zip migration method and selects the
shorter migration method for every alert level.

Finally, the Crisis Management Center determines the
evacuation order and the alert level for each agent by the
algorithm shown in Figure 4. As a rule, the Crisis Manage-
ment Center evacuates agents in the order of their impor-
tance level. For agents of the same level, the Crisis Man-
agement Center evacuates agents in short order of the pre-
dicted evacuation time in order to evacuate the maximum
possible number of agents. A = fa1; a2; � � � ; aNg repre-
sents a permutation of agents. Order(A,3), order(A,2) and
order(A,1) present operations which order the permutation
of agents A with the alert levels low, medium, and high.
T 1

n
; T 2

n
andT 3

n
represent predicted evacuation times of an

agent an(1 � n � N) with the alert levels low, medium
and high. C1

n; C
2

nandC
3

n are evacuation commands to an
agent an(1 � n � N) with the alert levels low, medium
and high. C is the permutation of evacuation commands
that results in this process.

From the results of this process, we can calculate the start
time of the evacuation plan from formula (2).

StartT ime = CurrentT ime

+(LifeT ime �AllT ime) � � � (2)

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

Figure 4. Algorithm for an evacuation plan.

4.4.4 Modification of an Evacuation Plan

The appropriate evacuation plan can evacuate all agents suc-
cessfully in ideal situations. In practice, however, there are
several external factors that come into play, such as the
user’s operations or changes of the network environment
with the movement of mobile computing devices. Such ex-
ternal factors may affect the prediction. Moreover, as men-
tioned in 4.4.2, it is impossible to eliminate accidental error
from the prediction. Thus, the Crisis Management Center
must observe the surrounding situation after having made
an evacuation plan and modify the evacuation plan when
the prediction is found to be incorrect.

For example, as soon as a network disconnection is de-
tected between the shelter device and the mobile comput-
ing device, the Crisis Management Center cancels the most
recent plan and replans. Or, when the accidental error ex-
ceeds the threshold that is assigned in advance, the Crisis
Management Center cancels and replans.

4.5 Use of the EASTER

An application developer implements his application as
a subclass of the abstract class EscapeAgent as shown in
Figure 5. Then the application has an ability to adapt in
the event the battery runs out. When an evacuation is nec-
essary, callback methods are executed automatically by the
EASTER.

A user only executes an application that is implemented
as above on the EASTER. There are, however, opera-
tional risks if the evacuation plan is set to end just before
the battery runs due to accidental error in the prediction.

Figure 5. Class hierarchy of application in the
EASTER.

Therefore, we introduced the concept of SafetyTime, which
shows the time required to accomplish an evacuation plan
before the battery runs out. A user can assign the value of
SafetyTime, and thereby, the value of LifeTime in Figure 4
is shown in formula (3).

LifeT ime = BatteryLife � SafetyT ime (3)

Also, a user can set the evacuation policies or the period of
examination of the network conditions.

When a user wants to set a device as a new shelter device,
he installs and starts the EASTER on the device. When a
user wants to register a new shelter device, he can assign it
as discussed in 4.2. A user can register a number of shelter
devices, and the Crisis Management Center selects the one
to be used for an evacuation, as described in 4.4.3.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

Table 3. Implementation environment.
mobile computing device COMPAQ iPAQ 3600
OS on mobile computing device pocketPC (WindowsCE ver3.0)
OS on shelter device Windows2000
wireless network IEEE802.11b
mobile agent system AgentSpace
JVM on the mobile computing device jeode(Personal Java 1.2)

4.6 Implementation Environment

Table 3 shows the current implementation environment
for the EASTER.

4.6.1 AgentSpace

AgentSpace is a Java-based mobile agent system. It pro-
vides the load and save function of a mobile agent, agent
migration between AgentSpace systems, and communica-
tion between agents. Figure 6 depicts the structure of
AgentSpace. AgentSpace transforms an agent into bit
data that consists of code and state by using Java serial-
ization function in order to migrate an agent. Moreover,
AgentSpace zips the bit data to shorten migration time.

We rehandled AgentSpace in two points. First, as de-
scribed in 4.1, we appended the non-zip migration method
to AgentSpace because the zip migration method takes a
long time on a PDA . Next, we appended the escape and
recover mechanism, which is the same as the dispatch and
arrive mechanism prepared in AgentSpace except for pro-
viding the handling of information peculiar to EscapeAgent
such as escape policy and alert level. Currently, the bound-
ary between the EASTER and the Mobile Agent System,
which is described in Figure 3, is unclear in the implemen-
tation. In future, we want to clearly delineate the EASTER
and AgentSpace (Mobile Agent System) to enable the vari-
ous Mobile Agent Systems to be freely replaceable.

4.6.2 Access to the Battery

The EASTER employs a Java-based mobile agent system
to enable any application to run on any device after evacua-
tion. The battery information cannot be accessed from JVM
because it is a native resource. Therefore, we attempted to
access the battery data by usingWin32API GetSystemPow-
erStatus() through Java Native Interface (JNI). However, we
were only able to get the capacity of the battery only in 10%
units and could not get the exact battery life. Thus, in this
study, we have decided to use virtual values for battery life.

However, performing an evacuation consumes some en-
ergy. Particularly, the wireless network interface is a signif-
icant consumer of power. As a result, the battery life may

Figure 6. System architecture of AgentSpace.

decrease more rapidly than predicted. Although we expect
this problem can be resolved by the modification function
of the EASTER, we must prepare the environment whose
battery life can be obtained in detail.

5 Evaluation

We carried out several experiments to evaluate the
EASTER. The agent used in the following experiments was
a simple console program. The agent’s operationswere only
to accept to the user’s input and generate a simple message.
The average bandwidth between iPAQ and the shelter de-
vice was 50Kbps.

5.1 Occurrence of Rush Crush

We carried out experiments with the following two sce-
narios to observe the agent’s behavior when the EASTER
evacuates two or more agents to another device.

� evacuating agents sequentially

� evacuating agents simultaneously

Figure 7 shows one of the experimental results obtained
when evacuating five agents. The transferred data size of
each agent was about 870KB.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

Figure 7. Evacuation of two or more agents.

Figure 8. Time required to make an evacua-
tion plan.

When the Crisis Management Center evacuated agents
sequentially, the behavior of each agent was the same as
evacuating individually. On the other hand, the evacua-
tion time increased significantly in simultaneous evacua-
tion. Competition among Java threads, which operate to mi-
grate each agent, resulted in increasing the evacuation time.
This result indicates the occurrence of the rush crush situa-
tion discussed in Section 3 but is effectively handled by the
Crisis Management Center proposed in this paper.

5.2 Required Time to Make an Evacuation Plan

Figure 8 shows the relation between the number of
agents and the time it takes to make an evacuation plan.
Although the time required for making an evacuation plan
is not short, we still considering it to be not impractical.

5.3 Prediction Accuracy

Exploring the relationship between the time predicted by
a rehearsal process and the actual time is important. We

Figure 9. Pre-evacuation process.

Figure 10. Migration process.

Figure 11. Entire evacuation process.

investigated the difference between the predicted time and
the actual time for the pre-evacuation process, the migration
process, or the entire evacuation process, for the following
four types of agents. The results are presented in Figures 9
�11.

A pre-evacuation process required about 10 seconds (10KB
transfer data size)

B pre-evacuation process required about 10 seconds
(1010KB transfer data size)

C pre-evacuation process differed each time (10KB trans-
fer data size)

D pre-evacuation process required about 10 seconds and
adds 1000KB data after the latest rehearsal process
(the transfer data size changed from 10KB for the latest
rehearsal process to 1010KB for the actual evacuation)

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

Figure 12. Modification function operation
upon network disconnection.

The results of samples A and B show that the prediction
function of the EASTER is operable in actual situations.
The results of samples C and D show, however, that the
actual behavior differs from that predicted in the situation
described in 4.4.2.

5.4 Modification Facility of a Plan

5.4.1 When Wireless Network Is Disconnected

When using a mobile computing device, the network con-
nection frequently changes due to the user’s movement. A
function formodifying an evacuation plan is useful for deal-
ing with such changes. We explored how agents behave
when the network is temporarily unavailable in order to val-
idate the modification function.

Figure 12 shows that there existed some agents that could
not be evacuated before the battery ran out when the evacu-
ation plan was executed without modification. On the other
hand, when the modification function was available, the
EASTER could evacuate all agents successfully, although
some agents must have been evacuated at a higher alert
level. The modification function is important for evacuat-
ing maximum possible number of agents.

5.4.2 When Actual Behavior Differs from Prediction

We investigated how the modification function of an evac-
uation plan acts when the actual behavior differs from the
prediction. Some of the results obtained are shown in Fig-
ures 13 and 14. In this case, the threshold, which is used to
detect the accidental error discussed in 4.4.4, was assigned

Figure 13. Error generation!modification.

Figure 14. Error generation!failure.

as five seconds and the second agent’s actual pre-evacuation
process differed the prediction.

In Figure 13, all agents could be evacuated successfully
because the Crisis Management Center detected that the ac-
cidental error between the actual behavior and the predic-
tion exceeds the threshold, cancelled the rest of plan and
replaned when the second agent’s pre-evacuation process
was executed. In Figure 14, in contrast, two agents could
not be evacuated because callback methods cannot be can-
celled once executed even if the actual behavior is found to
differ from the prediction, while the migration process can
be cancelled any time. To reduce the damage induced by
this phenomenon as far as possible, we added the function
that records the history of the rehearsal process and evacu-
ates an agent whose rehearsal results differ each time after
evacuating all other agents at the same level of importance.

6 Related Work

Recently, the power-saving approach that migrates
power-consuming process from a mobile computing device
to a fixed server has been proposed [7], [8]. This approach
enables a power-consuming process to be migrated over
wireless networks to a server that performs the actual com-
putation, and the results are migrated back. Furthermore,
Rudenko et al. have described that the cost of process mi-
gration over wireless network is significant and developed
the Remote Processing Framework that decides where a
task should be run locally or remotely [9]. While this re-
search considers only the power-saving, Flinn have devel-
oped Spectra, a remote execution system that balances the
competing goals of performance, energy conservation, and
application quality [4]. Although these researches studies

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

are similar to the EASTER in their approach that use a mo-
bile program technique, their goal of power-saving is dif-
ferent from that of our study. As mentioned in Section 1,
the power-saving approach cannot resolve the risk caused
by the battery running out.

Acharya et al. have performed a research study that uses
a mobile program in order to adapt resource changes on a
mobile computing device [1]. They have developed Suma-
tra that is an extension of Java that supports resource-aware
mobile programs. This language provides programs with
mobility so that they can adapt to resource changes. This
research facilitates development of resource-aware mobile
programs and resembles the EASTER in terms of its basic
concept and goal. The resources treated in this research are,
however, network latency, network bandwidth, server load,
and CPU cycles; the battery is not referred to in that paper.
Moreover, in this research, applications are left to judge the
adaptation timing on their own. To avoid rush crush, appli-
cations in the EASTER do not judge the evacuation timing
on their own; it is the Crisis Management Center that makes
an evacuation plan.

There are a few researches that investigate the energy
consumption on a mobile computing device. Todd et al.
have described an energy model and an execution-driven
simulator incorporating this model for the PalmOS [2].Flinn
and Satyanarayanan have developed PowerScope, a tool
measuring application energy usage [3]. These tools obtain
the data of energy consumption by using a monitor device
such as oscilloscope and Digital Multimeter. We may have
to use these monitoring devices to obtain the detailed bat-
tery life data.

7 Conclusions and Future Work

In this research, we have implemented the EASTER and
performed some experiments to confirm its usability and va-
lidity. The saving of operation information and execution of
application when the battery runs out is crucial to a system
that cannot stop and must run continually. Moreover, appli-
cations that run automatically without a user or other normal
applications can benefit substantially from the EASTER as
described in Section 2.

However, we used virtual battery life because we could
not obtain the detailed battery life data. In the real world,
performing an evacuation consumes some energy, and as a
result, the battery life may decrease more rapidly than pre-
dicted. Although we expect this problem can be resolved by
the modification function of the EASTER, real experiments
must be executed.

Currently, we do not conduct detailed surveys on the
EASTER’s performance. In the future, we will explore its
performance in various operating systems, hardware, and
networks, and implement and evaluate practical applica-

tions. Moreover, in its current implementation, the bound-
ary between the EASTER and the Mobile Agent System is
unclear. We will reimplement the EASTER so as to clearly
delineate the Mobile Agent System in order to enable the
Mobile Agent System to be freely changed.

References

[1] Anurag Acharya, M. Ranganathan, and Joel Salt.
“Sumatra: A Language for Resource-Aware Mobile
Programs.” Mobile Object Systems: Towards the Pro-
grammable Internet Lecture Notes in Computer Science
1219. Springer Verlag. 1997.

[2] Todd L. Cignetti, Kirill Komarov, and Carla Schlatter
Ellis. “Energy Estimation Tools for the Palm.” ACM
MSWiM 2000: Modeling, Analysis and Simulation of
Wireless and Mobile Systems. 2000.

[3] Jason Flinn and M.Satyanarayanan. “PowerScope: A
Tool for Profiling the Energy Usage of Mobile Applica-
tions.” Second IEEE Workshop on Mobile Computing
Systems and Applications. 1999.

[4] Jason Flinn, SoYoung Park, and M.Satyanarayanan.
“Balancing Performance, Energy, and Quality in Per-
vasive Computing.” 22 nd International Conference on
Distributed Computing Systems (ICDCS’02). 2002.

[5] Danny B. Lange and Mitsuru Oshima. “Programming
and Deploying JAVA Mobile Agents with Aglets.” Ad-
dison Wesley. 1998.

[6] ObjectSpace, Inc. “ObjectSpace Voyager Technical
Overview.” ObjectSpace, Inc. 1997.

[7] Mazliza Othman and Stephen Hailes. “Power Con-
servation Strategy for Mobile Computers Using Load
Sharing.” Mobile Computing and Communications Re-
view. 1998.

[8] Alexey Rudenko, Peter Reiher, Gerald Popek, and
Geoff Kuenning. “Saving Portable Computer Battery
Power Through Remote Process Execution.” ACMMo-
bile Computing and Communication Review (MC2R).
1998.

[9] Alexey Rudenko, Peter Reiher, Gerald J.Popek, and Ge-
offrey H.Kuenning. “The Remote Processing Frame-
work for Portable Computer Power Saving.” Proceed-
ings of the 1999 ACM Symposium on Applied Com-
puting. 1999.

[10] Ichiro Satoh. “AgentSpace.” http://research.nii.ac.jp/
˜ichiro. 1997.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)

0-7695-1893-1/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

