博士論文概要

論文題目
An upstream nonconforming finite element method and its applications
上流型非適合有限要素法とその応用

申請者
大森克史
Katsushi OIMORI

昭和63年6月
理1279（1475）
流れの場での物質の流れの数値モデル化は、流れの連続方程式を数値モデル化する。

\[
\rho \nabla \cdot \mathbf{u} = 0 \quad \text{(連続方程式)}
\]

ただし、\(\rho \)は密度、\(\mathbf{u} \)は速度ベクトル、\(\nabla \)はgradオペレータ、\(\cdot \)は内積。

\(\rho \)は変動するものであるが、\(\mathbf{u} \)は一定と仮定する。この仮定は、流れの変動が時間的に大きく変化しない場合、数値計算においてはより簡単な計算を行うことができる。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{in}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{in}} \)は入力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{out}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{out}} \)は出力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{in}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{in}} \)は入力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{out}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{out}} \)は出力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{in}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{in}} \)は入力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{out}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{out}} \)は出力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{in}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{in}} \)は入力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{out}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{out}} \)は出力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。

\[
b_{\text{in}}(\mathbf{x}, t) = \sum_{k} \int_{V_k} f_{b_k}(\mathbf{u}, t) \, dV_k
\]

ここで、\(b_{\text{in}} \)は入力物質、\(f_{b_k} \)は各相の流れない係数、\(V_k \)は各相の流れない領域、\(n_k \)は各相の流れない数。

この式は、流れの場での物質の流れの数値モデルを導入する。

流れの場での物質の流れの数値モデルを導入する。
されている。近似解の推奨精度については、O(h)のエネルギーノルム精度が示されており、基盤数値実験を行った結果、振動のない良好な数値解が得られ、本近似の有効性が実証されている。

第3章では、上流型は圧縮一次有限差分法の応用として、次元定数変化Navier-Stokes方程式に対する近似を考案している。

\[
\begin{align*}
&-\nu \Delta u + \left(1 + \alpha \right) \frac{\partial u}{\partial t} + u \cdot \nabla u + \nabla p = \nabla \cdot (\rho \mathbf{u}) \\
&\frac{\partial (\rho u)}{\partial t} = \nabla \cdot (\rho \mathbf{u} u) \\
&\nabla \cdot \mathbf{u} = 0
\end{align*}
\]

（LNS）

\[
U^{m+1} = U^m - \nu \Delta U^m + \left(1 + \alpha \right) \Delta U^m + \nabla p = \nabla \cdot (\rho U^m).
\]

このスキームの物理のu*は与えられたで、dU* = 0を満たしていることが期待されるので、LNSの無仮想ペクトルの近似には、dU* = 0を仮定している。定常変化Navier-Stokes方程式と物理換算を用いるとき（高レイノルズ数）、物理換算は仮想ペクトルをより支配的になることによって、数値解の不変数現象が生ずる、この欠点を克服するために、上流型特徴の物理換算を適用することで、物理換算に対する“誤差”を高める。上流型近似を次のように表示している。

\[
\begin{align*}
V_{i+1} &= \sum_{j=1}^{N} \left(\mathbf{u}_{i+1,j} \cdot \mathbf{v}_{i,j} \right) \mathbf{v}_{i+1,j} \\
V_{i+1} &= \sum_{j=1}^{N} \left(\mathbf{u}_{i,j} \cdot \mathbf{v}_{i,j} \right) \\
\mathbf{v}_{i+1,j} &= \mathbf{u}_{i+1,j} - \frac{1}{2} \mathbf{u}_{i,j} \\
\mathbf{v}_{i,j} &= \mathbf{u}_{i,j} - \frac{1}{2} \mathbf{u}_{i+1,j}
\end{align*}
\]

現状において、\(U^{m+1} \)（\(m \geq 1 \)）は第2章での定義とは同様のものである。さらに、この上流型近似を用いた近似の可能を示すと共に、速度ベクトルの近似解についてはO(h)のエネルギーノルム精度を、圧力の近似解に対しては、O(h)のL2ノルム精度を導き、本近似の有効性を示唆している。