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Chapter 1

Introduction

Over the past two decades, the application of robotic and machine technol-
ogy has expanded from industrial use to residential use. Advances in hard-
ware and software computing have also enabled sophisticated implementa-
tion, that covers not only the motion control and the dynamic planning strat-
egy but also the learning and the sensorimotor coordination for autonomous
robots. Future machines and robots will be required to interact with people
in a dynamic and uncertain environment. Therefore, research is specifi-
cally concerned with cognition in the context of man-machine-environment
interaction.

Regarding the information sharing among people and robots, natural and
intuitive multimodal communication, and the active function of thinking
and understanding people’s feelings are key subjects. On the other side,
regarding the sharing of physical action space, robots must ensure the safety
and precision of their motion, assuming physical contact with people.

Many researchers have emphasized the importance of studying human-
machine communication. Multimodal communication between people and
machines by means of speech, gestures and haptics are firmly focused on the
key issue for the residential use of future machines and robots. The term
"multimodal communication” refers to the integrated way of communication
with various modalities of information such as images, acoustics, languages,
gestures and facial expression. They are transmitted through human senses
typified by the sense of sight, hearing, touch, smell and taste.

Multimodal communication is an extremely complicated process to which
every aspect of human information processing contributes. Researchers have
investigated not only medias and multimedia information but also psychol-
ogy and social science that are the human-related and biologically inspired
studies, for example, natural language, cognitive science, and artificial in-
telligence. Thus it is necessary to thoroughly conduct an interdisciplinary
study of multimodal communication.

An approach that gains insights coming from human communication can
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indeed be used in the domain of multimodal human-machine communication.
The conventional method is, however, based largely on the informational
process by systems. Consequently, this means that the logical communica-
tion is the focal point. Up to today, many studies about human-computer
interaction have been reported. Most of these approaches are thought of
as computer-aided interaction. For example, regarding impedance control
aimed at the soft and flexible control for realizing force and task fulfillment,
physical interaction is virtually realized by inverse and forward kinematic
calculations. Whereas, it is absolutely imperative to construct a human-
machine communication system taking into account the qualitative property
of communication.

Information processing in multimodal communication can be classified
into three properties: that is physical, intelligent and Kansei! information
processing. It is regarded that physical, intelligent and Kansei interactions,
respectively, are caused by these types of processing.

Physical information processing has long been studied, which deals with
physical data from the environment. The laws of nature underlying multi-
modal human-machine communication governs the behavior of both humans
and machines like the rest of nature. This information processing is based on
”signal processing” with special attention paid to the physical interpretation
of the phenomenon.

With the improvements in information technology, intelligent informa-
tion processing has become a main issue in many fields. Classical artificial
intelligence has emerged as the issue. The causality of implementation is
described as the logical rule. Symbols, signs, and language are used as the
explanation of knowledge. Modeling is the process of describing the system
in terms of mathematical equations.

Recently, the research phase has entered a new stage, that is, Kansei
information processing. Kansei is a Japanese word that means something
like ”sensitivity”, ”intuitiveness” and ”feeling”. People have a certain feel
about the use of the word ”Kansei”, although the scale is not measured in
a quantitative way, and not visible like the feelings of people. Kansei infor-
mation processing thus deals with the subjectivity of people’s perceptions.
The Kansei system is described in terms of emotional resonance, comfort
and satisfaction.

The measurement of common human Kansei in a qualitative way, i.e.,
questionnaires, have been widely investigated in the engineering and psycho-
logical fields. These results are applied to product development and have
achieved some positive results. Also, the measurement of psychophysical
quantities by statistical methods has been significantly undertaken for un-
derstanding human Kansei, affectivity and emotion in psychology. On the

1" Kansei” as described by capitalization of the first letter is used throughout this
dissertation. It can be also described by capital letters in some articles and books.



basis of these results, a modeling of the subjectivity and individual Kan-
sei in a significant way is definitely required. This approach significantly
differs from a conventional evaluation based on objectivity and logic. The
subjectivity and individual Kansei should be treated as psycho-physiological
interrelationship.

In this dissertation, the development of systems and robots that can in-
teract with people in a natural, cooperative and intuitive manner is mainly
focused on. In particular, an attempt at differentiating the ways of commu-
nication between humans and machines through multimodal channels will
be discussed by physical, intelligent and Kansei interactions. It can be seen
that this enables the system to do different and effective processing in a
real, dynamic and uncertain environment. The aim is that the developed
systems or robots can have the ability to provide an output in accordance
with the type of input through an appropriate modality for the commu-
nication. The study of system embodiment is also the issue. The proper
concepts of situatedness and embodiment are also used in different ways in
these studies.

The main issue is divided into the following three parts:

1. Physical and intelligent interaction: A developmental study of an
autonomous Humanoid? robot

2. Kansei interaction: An applied study of the construction of music-
based human-robot communication

3. Kansei measurement: A basis study of the measurement of Kansei in
a quantitative way

The author first introduces the modeling of a hierarchical structure of
multimodal communication between humans and machine. The implica-
tions of this structure for the construction of computational and mechanical
models will also be described. Afterwards, each style of interaction, i.e.,
physical, intelligent and Kansei will be described with some case studies.
The discussion and conclusion of this dissertation will then follow.

Most systems dealing with physical interaction are carried out by the
same method of intelligent interaction at the processing level. In contrast,
here the author proposes a hierarchical architecture that has two indepen-
dent layers in order to clearly differentiate the physical and intelligent inter-
actions. The types of behavior caused by the computational procedures of
the system are constrained by the procedures of physical interaction. The
behavior of the developed robot can reflect continuous inputs from a com-
plicated external environment so that the robot could behave in a natural
and intuitive manner.

2The term ”Humanoid” denotes an anthropomorphic robot designed to behave like and
interact with people. The use of the term covers either or both ”having human-like form”
and "having human characteristics.”
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As an example of Kansei interaction, music-based human-robot commu-
nication has been investigated. A substantial robotic interface is constructed
for the realization of an interactive musical environment for collaborative
work between people and machine. The robot can be effectively used for
musical performances with motion by the exploitation of the embodiment.
The ”moving instrument” can display the refractive motion on stage while
producing sound and music by embedded stereo speakers according to the
context of the performance.

Sound and music are typical channels of non-verbal communication that
humans often use to express their mind. To date, many studies about
the musical interaction between humans and machines have been proposed.
However, few studies have described the autonomous mobile robot for mu-
sical performance although humans often accompany music with body mo-
tion. In such a multimodal musical environment, assume that the style of
interaction can be classified along two axes: the robot’s autonomy and di-
rect/indirect contact. Throughout this study, an interaction paradigm of
establishing virtual and real world connections by a robotic interface was
investigated.

Regarding the issue of Kansei measurement, a novel artificial neural net-
work model is proposed, which can obtain a nonlinear mapping to associate
the physical features of an object with its impression. This is a new measure-
ment method of Kansei information, that aims at embedding given objects
into an arbitrary space, namely description space, under the condition where
a difference or similarity (distance) between two objects is given.

Multivariate analysis is effectively used in the field of data analysis, which
is a statistical method that can effectively explain and illustrate a general
trend in data. The evaluation and visualization of Kansei information have
been conducted by such a statistical method. Also, an artificial neural net-
work (ANN) is often used for data analysis, as the extension of the statistical
methods based on a linear model. ANN is applied to various problems, which
are difficult to be conducted by conventional computers due to a nonlinear
property.

The proposed model realizes learning from such a relationship. This
approach will be described by comparing it to the related statistical methods
and other models of neural networks.

Dissertation Organization

This dissertation is divided into eight chapters, which is organized as follows.

Chapter 2 gives an introduction of the literature and related research on
multimodal communication between human and machine, and also presents
a proposal for a hierarchical structure of multimodal human-machine com-



munication. The superiority of the process by differentiating the style of
communication in physical intelligent and Kansei interaction will be de-
scribed. The author makes clear the features and aim of this study, and will
compare the study to other works in related research areas.

Chapter 3 gives an explanation and interpretation of physical and in-
telligent interaction. The implications of the proposed structure will also be
presented.

Chapter 4 presents the development of an autonomous humanoid robot
with a double-layered hierarchical architecture. In this architecture, a signal
processing layer and computational layer are hierarchized for the differen-
tiation between physical and intelligent communications. The originality
and advantage of the implemented robotic architecture will be discussed.
In addition, some examples of physical and intelligent interactions will be
given such as force following, motion by grasping, object tracking and reach-
ing, reaction to environmental sound, and speech conversation. In regard
to each behavior of the robot, the internal process of the system and the
sensing data from external environment will be explained. Moreover, note
that the network-based architecture works for the achievement of diverse
and different types of communication in a simultaneous way. This allows
the system to effectively execute various types of behavior in parallel.

Chapter 5 provides an introduction of Kansei interaction. Synthetic
and analytical methods to understand the mechanism of Kansei interaction
will be employed in the following two chapters. The traditional view of the
Kansei interaction and the problem underlying the topics will be described.

Chapter 6 describes human-robot communication through music, which
is considered a synthetic approach for understanding the Kansei interaction.
Sound and music are typical channels of non-verbal communication in which
Kansei plays an important role. The proposed approach to equip musical
instruments with an autonomous mobile ability will provide for a new com-
puter music performance in the real world. The construction of three mobile
robots for music-based human-robot interaction is described along with a
model of the human-machine-environment.

Based upon the proposed model, these robots have been developed in
collaboration with composers and choreographers. They performed not only
in the experimental laboratory but also at a public exhibition and demon-
strations. This explains the credibility and advantage of practicability. Al-
though it is difficult to evaluate and assess the effects of these robots, the
author believes that the development of these robots that can perform in
the real world is a worthwhile subject.

Chapter 7 presents a new model for the measurement of Kansei. Re-
garding the proposed model of artificial neural network, the algorithm, the
structure, and the mathematical formulations will be given. By comparing
the Multi-Dimensional Scaling method (MDS) and Hayashi’s Quantization
Theory IV (QT-IV), the mathematical proof for applying the related prob-
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lem will be followed. Also, the proposed model is applied to a learning
environment that is composed of learning objects with physical features
along with its impression as an example of Kansei information. It is proved
that the algorithm can effectively associate between physical features of an
object and its Kansei information.

In the proposed method, if the distance between two input patterns
is given as a teacher signal, the network can obtain a nonlinear mapping
from an input space to an output space under the condition so that the
given distance is preserved. This is a new method of Kansei quantization
by mapping from a physical pattern space to another space based on the
psychological patterns. In addition, new data, which are not used in the
training in the network, can also be evaluated by the generalization ability
of the network. Also, by applying an individual data set on impression to
the system, visualization of the nonlinear mapping is used at an early stage
to measure differences among individuality and characteristics common to
all.

Chapter 8 summarizes the contributions made in this dissertation. The
discussion throughout these basic and applied studies will be also given. The
conclusion of this dissertation and suggestions for further researches are also
included.



Chapter 2

Objectives and Approach

2.1 Multimodal Communication

Graphical User Interface (GUI) is recognized as a confirmed technology for
people to interact with computers. When someone uses a computer - con-
sumer use by normal means - he/she works by hitting the keyboard key with
their fingers, and moving the mouse using their arm and hand, while looking
at the monitor and hearing the reacted sounds such as beeps, key clicks from
the speakers, etc. These can be carried out with the aid of GUI technology.
Usability! is improved at a rapid rate with an improvement in the related
technology. This shows that people use multimodality for their interaction
with a computer, and the interaction with multimodality has enhanced the
paradigm of Human-Computer Interaction.

The term modality refers to the input and output channels of humans.
In the human view, the communication channel is composed of sense organs.
The modality and sense organ is tightly coupled with perception. Of course,
the processing is carried out in the nervous system, and muscle-brain circuit.
Table 2.1 shows the different senses and their corresponding modalities and
sense organs as defined in physiology [Charwat, 1992]. As noted by Shepherd
[Shepherd, 1998], the notion of the human sensory modality can be divided
into seven groups including its internal/external chemical reactions at the
neurophysiological level as shown in Table 2.2.

The understanding of visual and acoustical modality has received much
more attention than the other modalities. Some of the sensory modalities
are not taken up due to their controversial aspects and other reasons. The
sense of balance does not have a cortical representation. Taste is not a very
useful channel of man-machine interaction. People usually do not want to
taste or ”bite” a machine or an interface.

'In fact, it is not easy to describe the usability of an interface in a quantitative way.
This is also a subject in which Kansei plays an important role.

7
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Sensory perception | Modality Sense organ

sense of sight visual eyes

sense of hearing auditive ears

sense of touch tactile skin

sense of smell olfactory nose

sense of taste gustatory tongue

sense of balance vestibular organ of equilibrium

Table 2.1. Different senses and their corresponding modalities and sense organs as defined
by physiology. This table is originally quoted from [Silbernagel, 1979], which is simplified
and modified in [Schomaker et al., 1995].

2.1.1 Communication in interaction

Here, the term Human-Machine Communication is used as against Human
Human-Robot Interaction. The communication aspects are thus focused on,
that is, the context of physical interaction such as cooperative handling of
pieces and task fulfillment will not be considered.

In the information exchanged between people and machine, the seman-
tics are different according to the direction. The user - usually a human
- first configures the robot by assembling and programming, and specifies
a particular task. Furthermore, the user, as a partner, may supervise the
robot to achieve the given task and provides an evaluation of the robot’s
performance.

In the residential environment, it is indispensable to design interfaces
which allows untrained people to make efficient, intuitive and safe use of a
robot. People must be provided with an interface that allows him/her to
intuitively interact with the robot. The need for enhancing Human-Machine
Communication is closely related to the idea of allowing humans to make
use of robots.

An ecological view to communication is a more basic attitude. Lindstrém
et al. [Lindstrom et al., 1999] stated that communication is the process
whereby individuals send and receive information (information exchanged)
about each other and their surroundings. Communication is achieved through
the use of signals, i.e., traits that have specially evolved to transfer informa-
tion between one individual (the signaler) to another (the signal receiver).
The robot does not need to construct its own symbols for communication
purposes, but utilizes the user-defined symbols for its own perceptions and
actions.

The purpose of communication is tightly related to the level of commu-
nication. Consequently, the following two keywords are considered.

1. The path: the information exchanged in which modality and how it
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Sensory modality

Form of energy

Receptor organ

Receptor cell

Chemical (internal)
blood oxygen

glucose

pH (cerebrospinal fluid)

O3 tension
carbohydrate oxidation
ions

carotid body
hypothalamus
medulla

nerve endings
gluco-receptors
ventricle cells

Chemical (external)
taste

ions & molecules

tongue & pharynx

taste bud cells

smell molecules nose olfactory receptors
Somatic senses
touch mechanical skin nerve terminals
pressure mechanical skin & deep tissue encapsulated
nerve endings

temperature thermal skin, hypothalamus peripheral & central
pain various skin & various organs | nerve terminals
Muscle sense*!
muscle stretch mechanical muscle spindles nerve terminals
muscle tension mechanical tendon organs nerve terminals
joint position mechanical joint capsule nerve terminals

& ligaments
Sense of balance
linear acceleration mechanical sacculus/utriculus hair cells
angular acceleration mechanical semicircular canal hair cells
Sense of hearing
hearing mechanical cochlea hair cells
Sense of vision
sight mechanical retina photoreceptors

Table 2.2. Human sensory modality at the neurophysiological level.

*IMuscle sense,

Kinesthesia, means perception of body movements in physiology and psychology. It
is the perception that enables one person to perceive movements of the own body.

[Shepherd, 1998]
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is transmitted.
2. The causality: an event is caused by what kind of input stimulus.

2.1.2 Harmonized human-machine environment

With the aid of the growth of multimedia technology, human-machine com-
munication by means of speech, gestures and haptics has been implemented
in various scenes of our lives. Nowadays, the improvements in technology
have enabled us to develop human-like robots (for example, [Hirai et al., 1998]
[Brooks et al., 1999] [Hashimoto et al., 2002]). Advances in hardware and
software computing have also enabled sophisticated implementation such as
motion control and dynamic planning strategy. Recently, human-cooperative
robots have become more widespread all over the world. The research on
a humanoid robot [Lim et al., 1999][Miwa et al., 2001] [Ogata et al., 2000]
[Iwata et al., 2001][Tojo et al., 2000] has also been widely extended from the
mechanical realization to the biological analysis of human beings.

The aim is to build a harmonized environment, where people and ma-
chines can ”live” together and interact with each other. This "harmoniza-
tion” is defined as the naturalness and intuitiveness of communication. The
machine is required to make its own decision according to the precise se-
lection of communication channels. In this kind of communication, multi-
modality is one of the key issues. It provides natural, seamless and intuitive
communication between humans and machines. The robot is a machine
with a mobility and high redundancy. It allows humans to interact with it
in various ways. The machine also should be able to achieve a given task in
various ways.

In recent years, pet-type robots have become commercially available.
They can exhibit attractive and devoted behavior so that the audience is
satisfied with its performance. These are examples of an advanced interface
that has a substantial body with multimodality. Such multimodal human-
machine interactions typified by non-verbal communication have been widely
investigated. In communication among people, non-verbal communication
plays an important role, sometimes more important than verbal communica-
tion. A classic psychological work [Mehrabian, 1972] remarked that only 7%
of the meaning of a message is communicated through verbal exchange. On
the other side, 55% of the meaning of a message is expressed through non-
verbal ways, such as facial expression, posture, and gesture. The remaining
38% is dependent upon the voice quality such as tone and intonation.

In the sketched harmonized human-machine environment, the robot would
behave in response to given stimuli and its internal state in a real environ-
ment. The robot can continue to interact with the humans who do collabo-
ratively work and play together, even in situations where unexpected inputs,
disturbances and interruptions occur.



2.2. Overview of the Approach 11

Environment

Self-feedback KANSEI Level Self-feedback
Self-awareness ( ) Self-awareness
Non-ogical like

Intelligent Level

People Machines
information, logic

Physical Level

force, energy

Figure 2.1. A layered communication model: there are three levels of communication
according to the style of interaction; physical, intelligent and Kansei interaction.

2.2 Overview of the Approach

As described in the previous section, assume that a communication between
human and machine is modeled with a hierarchy as illustrated in Figure
2.1. There exist three styles of communication from a qualitative point of
view: physical, intelligent and Kansei interaction.

A humanoid robot "iSHA” (interactive Systems for Humanoid Agent)
have been developed, which is designed to behave like and interact with hu-
mans. An intelligent robotic architecture is implemented, which integrates
goal-oriented subsystems by taking the flexibility and scalability of the sys-
tem into consideration.

So far, most robotic systems have been designed for achieving a partic-
ular task. In this conventional view of system design, one module or one
function performs one task. On the contrary, a complicated system such as
a humanoid robot should be designed from an integrated point of view. For
instance, some integrated systems for a humanoid robot have been reported
[Cheng et al., 2000a][Cheng et al., 2000b][Imai et al., 1999]. These systems
embed a mechanism through channeling all inputs into an integrated system
in a competitive and cooperative manner.

tSHA has an upper body resembling a human in shape and a mobile
base with two wheels. The upper body with a head and two arms has 24
degrees-of-freedom. Two wheels situated under the body provide a safe and
robust locomotion. Each eye equipped with a small CCD camera, small
microphones embedded in the head, and touch sensory devices on the body
provide binocular vision, auditory and touch sensing abilities to the robot,
respectively.

Regarding the issue of Kansei interaction, a substantial robotic interface
is proposed for the realization of an interactive musical environment for col-
laborative work between humans and machines. This is a new paradigm of
a human-machine Kansei interaction through sound and music. The robot
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can be effectively used for musical performances with motion by exploitation
of the embodiment. The "moving instrument” can display the refractive mo-
tion on stage while producing sound and music by embedded stereo speakers
according to the context of the performance.

Sound and music are typical channels of non-verbal communication that
humans often use to express their mind in which Kansei plays an impor-
tant role. So far, many studies about musical interaction between humans
and machine have been proposed. However, few studies have described the
autonomous mobile robot for musical performance although humans often
accompany music with body motion. In such a multimodal musical environ-
ment, the style of interaction can be classified along two axes: the robot’s
autonomy and direct/indirect contact. Throughout this study, an interac-
tion paradigm has been investigated for establishing virtual and real world
connections by a robotic interface.

The moving instrument works as a sort of reflector to create an acoustic
and visual space in the multimodal environment. The proposed approach to
equip musical instruments with an autonomous mobile ability is providing
new computer music performances in the real world.

Regarding the issue of Kansei measurement, a new method of Kansei
quantization using an improved artificial neural network model will be de-
scribed. The mechanisms and the process of human perception have been
widely discussed in many research fields. In the process of perception, one
possible explanation is that physical features in a high-dimensional space
perceived by humans are mapped onto another low-dimensional space in
the human mind which contains semantic parameters.

The purpose of this method is to construct a non-linear mapping that
associates between physical features of an object and its impression. The
network can obtain the non-linear mapping between the input objects and
the outputs by providing the desired distance between the objects, not the
desired output. The desired distance represents the similarity between the
input objects. By applying this method to real world problems such as a
modeling of emotional facial expression and multi-class classification, the
verification of the method is discussed.

2.3 Related Work

The term Artificial Intelligence has attracted many researchers in many
fields over the past few decades. Up to now, many influential AT approaches
have been found not only in the engineering field but also psychological and
philosophical fields. For example, Minsky [Minsky, 1986] has portrayed the
mind as a society of tiny components, namely agent, that do not themselves
have a mind, as illustrated in Figure 2.2 Intelligence is explained as a
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AGENT Seen by itself, as an agent, BUILDER
is just a simple process that turns other
—— Seen from outside, as an agency,

agents on and off.
BUILDER does whatever all its
@ @ @ @ subagents accomplish, using
one another’s help.
etc.

Figure 2.2. The Society of Mind: a figure describing an agent and an agency, quoted
from [Minsky, 1986, p.23]. This book explains how minds work and how can intelligence
emerge from nonintelligence.

combination of simpler things. It is not enough to explain only what each
separate agent does, but should understand how a group of agents, namely
agency, does - that is, those parts are interrelated.

Many different approaches to AI must be pursued. A definition of Artifi-
cial Intelligence is ”the field of research concerned with making machines do
things that people consider to require intelligence. There is no clear bound-
ary between psychology and Artificial Intelligence because the brain itself is
a kind of machine.” [Minsky, 1986] This is quoted from the glossary in the
back of the book.

On the other hand, the terms artificial life and evolutionary computation
have become some of the key issues in robotics research. For instance, ap-
plications of evolutionary robotics (for example, [Brooks, 1997, Fogel, 1999,
Harvey et al., 1996, Watson et al., 1999]) have often been conducted. With
the improvement in large-capacity batteries and high-power inverters, au-
tonomous and self-subsistent ability can be integrated into the robot. These
characteristics are also essential factors in order for the robot to coexist with
humans.

The survival ability of creatures has lately received attention in artificial
life discussions [Steels, 1993]. With the aim of true and complete auton-
omy, survival robots have developed to enable a small mobile robot to learn
and obtain survival strategy on how and when to recharge its own battery
[Birk, 1996][Tabe et al., 2001].

The study of man-machine symbiotic systems have been emphasized with
the aim of investigating how people and machines interact with one another
through action and perception. Klingspor et al. [Klingspor, 1997] remarked
that the three most important factors for the Human-Robot Communication
(HRC) are: purpose of communication (i.e., the purpose of the exchanged
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Figure 2.3. Fungus Eaters, which are robots to live on a far planet, to collect ore for
a reward, and to survive itself for the maintenance, rather to live there. This figure is
quoted from [Toda, 1962]

information and the level of abstraction), communication media (verbally,
via gestures, via explicit interaction) and direction of communication (vise
versa or in both directions). This thesis study are much paid attention to
the level of communication.

Graefe et al. developed a humanoid service robot HERMES focusing
on dependability [Bischoff et al., 2002]. They argue that dependability is
a consequence of fundamental design decisions in the context of intelligent
experimental robots. The developed humanoid robot HERMES was pre-
sented to the general public every day for 6 months in a special exhibition
with only 3 failures: one motor controller, one motor driver and one audio
amplifier. An improved dependability of intelligent robots are explained by:

1. Learning from nature how to design reliable, robust and safe systems

2. Providing natural and intuitive communication and interaction be-
tween the robot and its environment

3. Designing for ease of maintenance

4. Striving for a tidy appearance

The dependability directly contributes the credibility of a robot. It will
be much required for future machines, especially human cooperative robots.
A long-term dependability test can be conducted at a public exhibition.

Pfeifer et al. emphasized the importance of the embodiment and situ-
atedness of the intelligent robot [Pfeifer et al., 1999]. He created the first
Learning Fungus Eater as a physical material object. The Fungus Eater
learned to avoid obstacles in order to evade them and run along walls. This
behavior left the impression of emotion with observers. Goals are awarded



2.3. Related Work 15

and motivations emerged - being observed -, although it simply interacted
with its environment. However, it could not sufficiently supply itself with
food, since the corresponding motivation was not inserted into it. This cir-
cumstance of the autonomy was then considered in the Self-sufficient Fungus
Eater, with the help of only one logical rule, that is, the motivation to eat
mushrooms. Also, by observers despite a relatively simply structured be-
havior, a high emotional intensity was endowed to this model.

Fungus Eaters were sketched by Masanao Toda, who is a psychologist
in the 60’s: The Fungus Eaters are robots, whose main task is it to collect
uranium ore on a far planet for which a reward is paid (Figure 2.3). In order
to maintain their energy level, they can feed themselves with mushrooms,
which are planted and grown. Since all activities of the robots use energy,
including thinking, they are constantly forced to ponder the decision that
occurs between ore collecting and mushroom consumption. Besides there
are mechanical obstacles and changing environments. From these relatively
simple basic assumptions, complex decision conflicts result. This model is
sketched for the experiences with these natures, the psyche of people and
their emotions.

Although the survival ability will not be discussed in this thesis study, the
author considers that the ability is a fundamental factor of an autonomous
robot. Four different types of robots that appear in this dissertation are all
battery-operated. This concept underlies the development of an autonomous
robot.






Chapter 3

Physical and Intelligent
Interaction

Communication among humans consists of two types: physical and intel-
lectual interactions. The former is the communication under physical con-
straint and interaction in accordance with direct/indirect contact. The latter
is informational interaction through intellectual ability of a high order with
each other. Humans can do either of these interactions or a combination
of both types of interaction. For instance, speech conversation is one of
the most effective and intellectual interactions between humans but is not
physical interaction. In contrast, the hand shaking has two aspects: people
express a sign of goodwill with this motion and also gain force interaction
according to the motion at the same time. These interactions are caused by
different demands and processing. Physical interaction is composed mainly
of immediate responses and simple types of behavior. Intellectual interac-
tion is composed of intelligence and sophisticated types of behavior.

Physical Interaction | Intelligent Interaction
Demand Reflexive motion Intellectual motion

(Real-time) (Intelligent)

Steady-continuous On-and-off
Processing | Simple Complicated

Table 3.1. The characteristics of physical and intelligent interactions. The details of the
processing will be described in the following sections.

Consequently, an architecture that can clearly separate the physical and
intelligent interaction not only by the computational framework but also at
the processing level for providing multiple operating systems to the robot.

17
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Style . . . .
Modality Physical Interaction Intelligent Interaction
Sight Camera-based sensing | Tracking/reaching objects
Hearing Stereo microphone Sound localization
Sound sensing Speech Conversation
Dancing movements
Pitch detection
Touch Body touch Various types
Handshakes of Behavior
Reaction to touch sensing
Force Following
Handshakes
Smell (by Olfactory organ) (Distinguishing flavors)
Taste (by Gustatory organ) | (Distinguishing foods)

Table 3.2. The implemented style of interaction between people and the robot. The
details of the processing will be described in the following sections.
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Most of the systems dealing with physical interaction, including compu-
tational compliance control, are carried out by the same method as intellec-
tual interaction at the processing level. In contrast, this is a new approach
for processing method based on a hierarchical architecture that has two in-
dependent layers in order to clearly separate the physical and intellectual
interactions. The types of behavior caused by the intellectual procedures
of the system are constrained by the physical procedures. Assume that the
mixture of processing can thus provide safety and credibility for communi-
cation to the machine.

In the next chapter, as an example of physical and intelligent inter-
actions, a development of a humanoid robot platform is described, which
integrates a number of agents such as image and speech processing, and a
haptic interface. Also, a robotic architecture by taking into consideration a
physically grounded approach is proposed. The architecture allows various
types of behavior executed in parallel. The characteristics of the robotic
design are 1) autonomous and self-subsistent ability 2) system plug-in and
behavior plug-in architecture, and 3) human-like modalities.






Chapter 4

Development of a Humanoid
Robot

In this chapter, an overview of a developed humanoid robot and some ex-
perimental results is presented. Illustrating the novelty and effectiveness of
the proposed approach with examples of both physical and of intelligent in-
teraction. The developed robot has several distributed agents that can work
independently. Each agent has channels of communication between human
and machine in a multimodal environment.

4.1 Robotics System Design

An architectural framework for sensing and reasoning processes should allow
the robot to display goal-oriented behavior and should preserve the ability
to respond to critical situations in a real-time environment.

Some key points to be considered in the design of a planning and control
architecture are that the robotic architecture should be distributed, allow
both reactive and deliberative reasoning, and involve a method for dealing
with information from multiple sources.

The architecture developed for control of Shakey the Robot is well-known
as a centralized architecture [Nilsson, 1980]. The robot operated by gath-
ering all available sensory data and creating a unified representation of its
environment. Although the centralized architecture has the advantage of
enabling the robot to behave autonomously in a coherent fashion and with
multiple goals, it is not appropriate for a real-time system in a dynamic
and uncertain environment. In contrast to the centralized architecture, sub-
sumption architecture ([Brooks, 1986] as illustrated in Figure 4.1) that
employs priority-based arbitration is one of the representative instances of
behavior-based architecture [Arkin, 1998]. In the architecture as typically
described, simple types of behavior are hierarchically organized so that more
complex types of behavior emerge. A robot control system should be de-

21
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SENSOrs s

Figure 4.1. Subsumption Architecture: Control is layered with higher level layers sub-
suming the roles of lower level layers when they wish to take control. The system can be
partitioned at any level, and the layers below form a complete operational control system.
[Brooks, 1986]

composed according to not the structure of the internal functions but the
desired behavior of the machine in response to the external environment.
Such behavior-based architecture for the supervision of mobile robots is
recently in wide usage as intelligent robotics architecture. For example,
an approach to build a sociable robot with the subsumption architecture
has been reported [Breazeal et al., 2000]. It is, however, not a physically
grounded architecture but a computational one based on intelligent process-
ing.

4.1.1 Double-layered hierarchical architecture

In the developed robot, a double-layered structure is adopted, as illustrated
in Figure 4.2. It should be noted that a double-layered hierarchical pro-
cessing is implemented in order to clarify the stimulus difference.

There exist two layers: signal processing layer and computation layer.
As for the signal processing layer, data from touch sensing devices are fed
to the behavior coordinator. The cells of the output layer correspond by
signals to the actuators.

As for the computation layer, sensing data are given to input cells from
a sensing module installed in the robot (e.g., low-level robot sensor data,
equipped stereo cameras, microphones and tactile sensors), and each cell
has a unique source from an input channel. In the internal procedure in the
computation layer, there are two types of behavior coordinator in which each
one receives signals independently from all input cells. These coordinators
are based on short-time and long-term memory. Each behavior coordinator
is connected to and has influence on the others by activation and inhibition.
A weighted sum of the input signals is fed to these coordinators. Each one
corresponds to a style of behavior of the robot (e.g., dancing movements,
binocular object tracking, response to tactile sensing). Specifically, a signal
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Figure 4.2. iSHA - Robotic Architecture: consisting of two layers, signal processing layer
and computation layer that have a role of performing physical interaction and intelligent
interaction, respectively.

in the input cells is transmitted to the behavior coordinator. The output
of each coordinator is then multiplied by certain (fixed) weight parameters
and transmitted to the output cells. Each cell has a unique connection to
output channels such as actuators, sound and visual outputs. The operations
through the connection constitute a linear combiner.

The signal to actuators from both layers is simply summed by the analog
adder and is fed to each actuator. That is, the behavior of the robot depends
upon the balance of the signals from both physical and intellectual processing
layers. That is, the signal to actuators represented by the target angle for
each joint 4; (i=1,2, ..., 26) is simply described as:

N
U; = Zwijbj (ume < < Uima:}c) (4'1)
j=0

where N denotes the number of behavior module, and b; represents the
output of jth behavior coordinator.

In the present work, the connection between behavior coordinator and
the weight parameters are predetermined and fixed. Consequently, the
meaning of each type of behavior is predetermined by the system designer.
The multi-goal tasks are achieved because each behavior coordinator pro-
duces an action independently.
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Behavior @—>
fault detection subsystem
Behavior @—)

diverse-redundant system

Figure 4.3. Fault detection system and diverse redundant system: upper figure illustrates
the conventional system that contains fail-safe subsystem. While, lower figure illustrates
a system that holds two (or more) complete operating subsystems.
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Figure 4.4. Processing flow: The upper figure illustrates the conventional processing
that is a single control method even if the informational processing is distributed. While,
the lower figure shows the proposed processing method that holds multiple control ways.

®)

Note that this layered architecture enables the robot to hold multiple
control ways. At present, the control command for the robot comes from
two lines, which means holding two independent operating systems inside
the robot. This characteristic is very important from safety point of view.

Fail-safe system is designed to go into a safe mode if and when the system
happens to fail as illustrated in the upper figure of Figure 4.3. It reduces
risk of contamination and provides a highly reliable system with. These
systems contains one or some subsystems for monitoring the stabilization of
the system. Once an unexpected event happened to the system, the fail-safe
subsystem alarms or lockout system for the safety.

This fail-safe system, however, is tied to the fault-tolerant scheme. The
problem on the fault detection becomes a subject of discussion. Moreover,
the fault detection system is required highly reliable as well as the target
system of it own.
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On the other hand, the proposed architecture consists of a diverse and
redundant system as illustrated in the lower figure of Figure 4.4. Here,
two subsystems works independently and provides reliability to the whole
system.

For instance, in case the user encounters dangerous situations - ill-posed
and subternatural behavior by the robot -, he/she can restrain the behavior
by pushing the robot body parts. This means a compensation method with
an appropriate control command from another channel, which differs from
system lockout or shutdown. That is, although command for forwarding
motion is processed in mind, the motion does not result since the body is
pushed from the front. In that case, because intelligent processing in mind of
the robot (realized by computers) and physical signal processing in the whole
body (realized by digital/analog circuit) are mechanically differentiated, the
control command (from mind) and a real behavior of the robot is not the
same but different from each other.

4.2 System Overview

As a first step in the realization of a harmonized human-machine environ-
ment, a humanoid robot has been developed. The robot’s behavior can
reflect continuous inputs from a complicated external environment so that
the robot could behave in a natural and intuitive manner. The robotic ar-
chitecture involves two types of processing: physical and intelligent (logical).
The multi-process and independently distributed modules provide adaptive
and robust control to the robot.

The developed robot iSHA has a number of degrees-of-freedom in its
body, especially around the head. Humans can make a variety of body
expressions by using muscles. In place of the muscles, actuators (DC or
AC) on joints conduct the behavior of the robot. Figure 4.5 shows the
overview of the developed humanoid robot.

t1SHA can be divided into two body parts, an upper and a lower body.
The upper body resembles a human in shape, while the lower body is a
wheelchair. The upper body with a head and two arms has totally 24 DOFs;
8 for the head, 4 for the neck, and 6 for each arm. The lower body has two
wheels, which are independently driven, that provide safe and robust lo-
comotion to the robot. The total is thus 26 DOFSs in its whole body. In
particular, the eye structure has actuators independent of the head move-
ment. This therefore helps the robot to achieve a fast object tracking.

The host computer (ART-Linux, Celeron 700MHz) that works to control
the actuators with the hardware-scheduled real-time process is embedded in
the backside of the robot. The images obtained by two small CCD cameras
are transmitted to another embedded computer (Windows 2000, Pentium II1
800MHz) that is engaged in the image processing with the image processing
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Figure 4.5. Autonomous humanoid robot ”4SHA”: The upper body with a head and
two arms has totally 24 DOFs; 8 for the head, 4 for the neck, and 6 for each arm. The
lower body has two wheels, which are independently driven.

board (Hitachi IP5000), as well as the processing of the data from the sensory
receptors of the microphone, the sound-sensing devices and tactile devices.

4.3 Robotic Architecture

The characteristics of the developed humanoid robot are summarized as
follows:

4.3.1 Autonomous and self-subsistent ability

Most individual creatures have an autonomous and self-subsistent ability.
These are focused on as the fundamental character of system design. The
developed humanoid robot does not need any power supplier from the exter-
nal environment but can itself move and act with an embedded lead storage
battery. Two included computer can then make the robot autonomous.

4.3.2 System plug-in and behavior plug-in

The developed robot has a substantial interface integrating a number of
multimodal components. In such a system, it is desirable that any subsys-
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Figure 4.6. The double-layered structure: the Physical Layer corresponds to signal
processing layer, while the Intelligent Layer corresponds to perceptional layer in Figure
4.2

tems can be added to the existing robotic system. As for the flexibility and
scalability of instruments, a network-based architecture inside the body has
been adopted. Figure 4.7 illustrates the modules such as a speech recog-
nizer /synthesizer, an image processor, a behavior coordinator, a receptor of
auditory sensing, and a touch sensing and haptic interface device that have
been developed as server applications. Moreover, the robot can be easily
connected to the local area network via an embedded wireless connection.
The robot, therefore, not only can perform autonomously but can also be
handled by a remote control operation over a TCP/IP network connection.
The proposed robot thus allows a system plug-in extension with the aid of
a general Ethernet connection. Moreover, connecting an existing network
and internet, the robot can access to a database and world-wide-web sys-
tem seamlessly. This feature has enabled the robot be as an application for
humanoid network interface.

As for the robotic architecture, the concept of a behavior plug-in has
been realized by a behavior-based architecture and a multi-process operating
platform, ART-Linux, which is a real-time operating system designed for
support development of large-scale real time processing software. In short,
the real time processing performance is added to the Linux operating system.
Thus, any abilities or types of behavior can be flexibly attached in the
developed robotic architecture . The hardware scheduling is guaranteed by
the operating system. The details of software architecture are described in
the next section.

4.3.3 Human-like modalities

1SHA has several channels of communication with the external environment.
These are designed so as to enable humans to give stimuli to the robot in
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Figure 4.7. Network-based modules: These modules have been designed and developed
as server applications. Information through them is exchanged via TCP/IP protocol.

the same way as communication among humans. Each eye is equipped
with a small CCD camera that provides binocular vision to the robot. The
equipped stereo microphones provide an auditory sense and enable the robot
to receive environmental sounds. The robot can thus execute simple sound
localization.

Touch-sensing devices have been implemented, which consist of a metal
plate and a cushioning material on the front, back and left sides of the
body. Additionally, the robot has a hand-shaped force interface to sense
the human’s intention by hand shaking that is one of the intuitive ways of
communication. These allow us physical interaction with the robot through
our hands or body.

4.4 Experiments

In this section, some preliminary experimental results are introduced as
examples of the two styles interaction: 1) Reaction to touch sensing, 2)
Hand shaking, 3) Tracking and reaching an object by the binocular vision
system, 4) Dancing movements according to a given tempo, 5) Reaction to
auditory sensing and 6) Integrated types of behavior.

The robot allows humans around it to behave freely. The robot’s per-
formance is designed for human intuitive understanding so that each type
of behavior can be accepted easily by the companions who interact with
the robot. Throughout these experiments, the effectiveness of the proposed
robotic architecture will be evaluated. The robot performs an action in re-
sponse to human stimuli in real-time. The types of behavior are chosen and
carried out, depending upon the robot’s priorities.
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Cushioning material
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Binary switch

Figure 4.8. Equipped touch-sensing devices: The device on the front or back side has
three switches, while the one on the left side has one switch.

In the following experiments, most actuators are operated by position
control. By obtaining the angle of each joint with the embedded encoder,
the control module provides each joint with the desired angle 6;. Conven-
tional PID control is applied for each joint. The PID gain parameters are
empirically chosen and fixed through experiments. The control module in-
dependently processes in the robot operating system by parallel computing.

t
ult) = —Kya(t) — Kai(t) — K /0 o(r)dr (4.2)

where x(t) denote the position at time ¢, K,,, K4, and K; represent the
proportional, derivative and integral controller parameter, respectively. In
this work, a discrete PID control (velocity form) is adopted to control for
all actuators except for vehicles.

w(t) = u(t— 1)+ Au(t) (4.3)
Kp(et —e1) + Kie (4.4)
+Kq((er —er—1) — (-1 — er—2))

L
S
=
I

where e; represents deviation at time ¢. That is, Ae(t) is represented by
(€t — €t_1).

4.4.1 Reaction to touch sensing

Reactive movement is one of the basic types of behavior implemented at
the physical signal processing layer. Physical interaction with people is the
highest priority for the robot.

The developed touch-sensing devices are illustrated in Figure 4.8. The
device on the front or back side has three switches, while the one on the left
side has one switch. By applying an external force to the plate, the robot
can obtain a human’s intention by physical interaction. In this experiment,
the robot moves in a direction so as to cancel the applied external force. The
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Figure 4.9. Equipped hand-shaped force interface: The interface that is embedded in
the right arm enables us to communicate with the robot by shaking hands.

robot moves left, right, backward and forward according to the combination
of switches.

For example, a push from the front side causes the robot to move back-
ward. Although the robot is tracking an object and moving his arms to reach
the object, physical interaction can still be possible. Therefore, the robot
would respond immediately trying to continue tracking the object under the
given constraint.

4.4.2 Hand shaking and tracking humans

A hand-shaped force interface have been developed as illustrated in Figure
4.9. The interface consists of 2 DOFs with rotary variable resisters and
1 DOF with sliding variable resisters so as to sense the three directions
of the human’s intention: push/pull, horizontal and vertical motions. The
interface that is embedded in the right arm enables us to communicate
with the robot by shaking hands. In handshake communication, humans
can express his/her mental intention in several ways: for example, holding
kindly or strongly. During the handshake, a force emerges according to
the difference between the motions of the hands. By applying a force to
the other, one can lead the other. The following conditions are set for the
intuitive understanding. (see also [Hikiji et al., 2000])

1) When a human grasps the interface, the robot responds by grasping
back with the thumb. 2) When a human applies a force to the interface, the

robot behaves so as to cancel the applied force by utilizing the right arm (2
DOFs), wrist (2 DOFs) and wheels (2 DOFs).

Figure 4.10 shows examples of the handshake communication.
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(a) grasping back (t=0.0, 1.0 and 1.5 [sec])

Figure 4.10. Hand shaking and the control: figures show an example of handshaking.
It can be seen that the finger moves according to human grasping motion. The user can
also push the robot by the hand although it is not natural human behavior.

4.4.3 Tracking and reaching an object

The robot tries to reach a recognized object through coordinated movement.
The cooperative movement of each part, such as eyes, neck and wheels, is
necessary for a robust and flexible object tracking. However, because the
joint structure has redundancy, the specified path can be chosen under an
arbitrary criterion. This experiment differs from the conventional binocular
vision system [Jain et al., 1995] in utilizing the whole body including the
eyes, neck, body and arms. In this experiment, each part is moved in co-
operation with the others to track the object segmented by extracting color
hue information through the binocular vision system. The tracking and
algorithm are independently divided into two terms, head and arm move-
ments.

Head movement:

The head contains 8 DOFs as illustrated in Figure 4.11. Each eye has 2
DOFs, horizontal (yaw) and vertical (pitch) axes. Seven of these are used
for object tracking.

A small ball that has a specified color for extraction is used for this
experiment. The coordinates of the center of the image of the recognized
object are calculated. The distance to the recognized object can also be
calculated by the azimuth difference. The accuracy is, however, not sufficient
to detect the object in 3D space for real use. Therefore, only 2D image
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Figure 4.11. Object tracking system: the robot gazes at and tracks an object utilizing
the head, the arm and the body with totally 14 DOFs.

coordinates of the object is used. As for the distance, the size of the object
as the average of the object in the images obtained from both eyes is used
as a substitute for the parallax. Based on these, the position of the object
in 3D space can be estimated.

The velocity of response at each joint is different due to the difference in
inertia for each part. Each eyeball moves faster than the neck, and the neck
moves faster than the body. In general, in order to hold the object in the
range of vision, not only eyeball motion but also the cooperative motions of
the neck and body are necessary. Before the object goes out of sight, the
robot head should follow the object.

The patterns of gazing at the object are thus itemized as follows: When
a target is located in the central part of the camera image and a short
distance from the robot, eyeball motion is induced due to the fast tracking
property. When the target is located peripherally around the camera image
and a short distance from the robot, neck motion results. When the target
is located at a great distance from the robot, body motion is finally caused.
In addition, when the target is located on the left /right side of each camera
image, the priority is given to the left/right eye, respectively. The torque
applied to each part is tuned so that it reflects the above characteristics.

Arm movement:

So far, many studies on the kinematics of a robot have been reported
[Flash et al., 1985][Tevatia et al., 2000][Zatsiorsky, 1998]. As for arm con-
trol, a method of the combination of primitive motions is adopted. By
using the estimated 3D position from the binocular vision system, the robot
changes its arm posture incrementally so that the robot hand reaches the
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object.

Unlike deriving a locus to the desired position, the robot takes a posture
for minimizing the mean-square error to the target incrementally at the local
coordinates. This algorithm does not aim to acquire an optimal pathway;
however, it contains adaptive and robust features. Even if a joint is broken
or disabled, the robot can continue to assume a posture using other joints.

A robot achieves the reaching task with 441 DOF's joints as illustrated
in Figure 4.11 (joints (8)-(10), and (12)). The yaw axis of the lower arm
(joint (11)) is used only as a conditioning direction for the palm of the hand.
The position of the hand at time ¢ can be estimated by the given kinematics.
Each joint can be moved with the basis shifting defined as the minim shifting
Af. The prospective posture at time ¢ 4+ 1 can then be obtained by the
product of the minim shifting Af and the arbitrary derivative gain k;. By
repeating this operation, the robot arm approaches the object. The arm
posture at time ¢, u(t), is described as:

u(t) = f(01(t), 02(t), 03(t), 6a(t)) (4.5)

The posture at time t+1 is delivered as:

01 t) + k151 . A101
) + kodo - Agby
) + k‘353 . A393
) + k404 - Ay04

u(t+1)=f (4.6)

where §=(-1,0,1)

where k1, ko, ..., k4 denote a gain constant to each basis shifting, and ¢ is
a bipolar step function at each joint 2. The prospective posture is determined
in order to minimize the following evaluation function F, aiming at moving
the hand position close to the estimated position @(t) of the recognized
object.

E = (a(t) —u(t +1))? (4.7)

With the use of a motion simulator system, the proposed algorithm is
proved to reach the vicinity of the object.

The object position is not estimated precisely and the pathway obtained
by the incremental reaching method is not proved to achieve the task in all
cases. However, in the cases in which the target is located in front of or near
the robot, the reaching movement can be successfully achieved.

Figure 4.12 shows camera images from both eyes, the result of segmen-
tation of a recognized object and the data flow of the object recognition.
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Figure 4.12. Data flow of the tracking and reaching object: the upper-left figure illustrate
images from CCD cameras embedded with eyes of the robot. The black-white images
illustrate the segmentation result of a target object.

4.4.4 Dancing movements

The robot can perform a dance movement according to a given tempo. The
tempo is defined as the rate of speed, motion or activity. For example, the
tempo and beats can be extracted from music and sound. It is considered
that the tempo is one of the parameters by which the robot and the external
environment are synchronized. The pre-defined gestures are very simple; the
robot dances by swinging his arms and head. By giving the size and fre-
quency of motion of the arms and waggling of the head, the robot can dance
with his whole body. The movement of both arms and head is synchronized
with the given tempo. The position is given by a sinusoidal pattern with
a frequency that corresponds to the tempo and an amplitude that corre-
sponds to the robot’s intention (currently a fixed value). The above dance
movement with three joints for the neck and four joints for each arm is im-
plemented in a behavior coordinator. The movement rule is described as
follows.

x;i(t) = Ajsin(0; + wt/©;) (4.8)

Ai denotes the amplitude, and w denotes frequency, which corresponds
to a given tempo of the movement at joint i. x;(t) represents the angle. ©;
represents the predetermined range of movement at each joint :. The robot
can perform a coordinated action by hardware scheduling with the body of
13 DOFs.

A tempo tracker have been implemented, which enables us to provide a
tempo to the robot by handclaps. The tempo of the robot T;ppet(= 1/w)
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is determined according to the obtained tempo with the equipped stereo
microphone. By tuning the timing, the robot can thus synchronize the
given periodical signals.

4.4.5 Reaction to auditory sensing

The three microphones embedded in the head are used for sound localization.
Moreover, the robot can receive some voice commands. One more micro-
phone and stereo speakers are attached for speech recognition and synthesis.
In the present system, the robot utters a voice command before executing
the ordered task such as stop, start, forward, backward, left, right, tracking
a ball and dancing.

4.4.6 Integrated types of behavior

Some integrated types of behavior are illustrated in Figure 4.13 and Fig-
ure 4.14. The above-mentioned types of behavior appear in parallel or
simultaneously, not in series. For example, the robot can distinguish be-
tween objects with different colors. People can ask the robot to gaze at an
object with specified color by speech. In addition, when the robot failed to
track the object by the head, humans can help the robot to find it by turning
it using the hand, e.g.) handclaps can be used for drawing its attention. The
important advantage of multimodal interaction is such an integrated type of
behavior. The robot should be able to achieve a given task in various ways.
The proposed system and architecture allow a number of types of behav-
ior by means of several channels of communication such as vision, auditory
and haptics. These channels make the robot behave more sophisticated and
flexible.

4.5 Discussion

In this chapter, the specifications and architecture of the autonomous robot
iSHA is introduced. The experimental results showed that the developed
robot provides various channels of communication between humans and the
robot.

As for the robotic architecture, a double-layered structure for physical
and intellectual interactions is proposed. The physical layer is placed as the
lowest one and has the highest priority. The communication ability of the
robot with its external environment depends upon the physical constraint.
The intellectual processing by computation is dependent upon and limited
by that.

In addition, human-like modality is the other characteristic of the devel-
oped robot. Following a particular object with the binocular vision system
and sound localization by an embedded stereo microphone are implemented.
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Figure 4.13. Multimodal interaction with iSHA: Various types of behavior appear in
parallel or simultaneously, not in series. This integrated type of behavior is important
advantage of multimodal interaction.
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Figure 4.14. An example of the integrated type of behavior: physical interaction and
intelligent interaction. Upper and lower figure respectively illustrates a voltage output for
left and right vehicles.

Moreover, haptic and tactile interfaces for communication between humans
and the robot have been introduced, which allow humans to perform em-
bodied interaction. At present, although binary sensors are implemented
for touch sensing, humans can handle the robot with their hands through
physical interaction. The physical interaction layer plays a role in gathering
the reflex actions of the robot. The developed robot thus provides various
ways of sophisticated communication by combining physical and intellectual
interactions.

The other focus is the robustness. The robotic architecture allows multi-
process tasks, and the control modules are implemented independently. In
addition, any instruments can be connected to each other with the network
protocol. Therefore, the robot has the robustness of both the system and of
behavior. Even if lost connections or machine problems occur in one of these
instruments, the robot tries to behave in a possible alternative way. The
proposed method of reaching an object is an example. Because the robot
assumes a posture by the defined basis shifting of each joint, it can continue
to follow the target even in the case where some joints are disabled, or the
motion is disturbed by an external force.

In such a complicated robotic system, the scalability of the system is also
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an important discussed attribute. A system plug-in architecture preserving
the advantages of behavior-based architecture is installed. The instruments
included in the robotic system are connected with the common TCP/IP
network protocol. For example, when a system module installed into the
existing robotic system, it can be simply put in the network to exchange
data via the network with/without cable. The constructed network system
inside the robot can accept the connection from any optional devices such as
the speech processing module, the image processing module, and a wireless
connection from an external computer. For example, a robot simulator that
runs on an external laptop computer can handle the robot over a wireless
LAN connection.

As for collaborative work with humans, dancing movements are an ex-
ample. The robot can dance according to a given tempo. The torque applied
to each actuator in phase with a given tempo represents the synergic effect
of the robot. By matching the phase between the external signals and the
robot’s internal cycle, a rhythmic synchronicity would take place. It is con-
sidered that a variety of input signals should influence the robot movements.
The robot would synchronize its motion with the extracted periodic signal.

In the present work, the developed robot requires numbers of empirically
predetermined parameters. Not only fundamental parameters such as the
PID gain, but also parameters for intellectual interaction such as the range
of reaching its object and the priority of the types of behavior. Tuning the
parameters by learning is considered as one of the necessary abilities.

The processing manner is classified into two types of procedures, physi-
cal and intelligent processing. In the proposed architecture, each behavior
coordinator received the sum of weighted stimuli from input channels. How-
ever, when one type of behavior is classified into a procedure, the role is
then consequently established. The difficulty is how to associate a behavior
type with the type of processing. Self-recognition and self-evaluation are the
future research topics. The robot must build an awareness of itself.

In this chapter, the research direction is sketched for building a harmo-
nized human-machine environment for a humanoid robot. The environment
is not limited only to humanoid robots but can also be extended to gen-
eral machines. In the near future, human-machine interaction will enter the
next stage, human-humanoid interaction. Such human-cooperative robots
will become an ”emotion activator”, which is regarded as a metaphor mean-
ing that the robot can not only imitate human motions and gestures but
also can stimulate humans with its movements and behavior.



Chapter 5

Kansel Interaction

Up to now, the Kansei communication have often been investigated, which
is regarded to include some terms such as feeling and sensibility, between hu-
mans and machine. In communications between humans, the role of Kansei
information is as important as logical information [Hashimoto, 1999]. No-
tice that such information is often processed not logically but unconsciously
and involuntarily. Such characteristics, or rather types of behavior, might
be regarded as Kansei. Humans have the ability to understand things by
intuition. In other words, aside from logic, humans adopt information pro-
cessing based on Kansei. Consequently, a robot that interacts with humans
should deal with the Kansei information processing. This is one of the re-
quirements for the harmonized human-machine environment.

Synthesis: Kansei-Oriented Communication The next chapter de-
scribes a substantial robotic interface for the realization of an interactive
musical environment for collaborative work between humans and machines.
The robot can be effectively used for musical performances with motion
by exploitation of the embodiment. The "moving instrument” can display
the refractive motion on stage while producing sound and music through
embedded stereo speakers according to the context of the performance.

The three musical platforms utilizing robotic technology and informa-
tion technology in different circumstances will be introduced. These are
effectively designed environments for artists such as musicians, composers
and choreographers not only for the music creation but also for the media
coordination. The architecture called the MIDI Network enables them to
control the robot movement as well as to compose music. Each works as a
sort of reflector to create an acoustic and visual space with multi-modality.
The proposed approach to equip musical instruments with an autonomous
mobile ability is providing new computer music performances in the real
world.

39
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”Her Kansei is excellent.”

”He is a man of rich Kansei.”

”He has no Kansei.”

”Her Kansei seems well suited to me.”

”The Beatles expressed the Kansei of the times.”
”The actress behaves with Kansei.”

”This sound stimulates my Kansei.”

”Polish up your Kansei to be an artist.”

"My Kansei cannot accept his music.”

Table 5.1. Typical examples in different contexts of Kansei [Hashimoto, 1997]: People
have an ability to understand things by intuition. In other words, people adopt information
processing based on Kansei, aside from logic.

Interactive multimodal environments are active spaces capable to observe
users and to establish high-level communications with them by means of
human gestures, movement, speech and singing. At the same time, such
spaces allow users to get feedback in terms of visual media, sound and music.

A number of promising fields of application are emerging for such human-
cooperative robots. These include interactive entertainment, interactive
home theatre, interactive tools for aerobics and gymnastic, rehabilitation
tools, tools for teaching by playing and experiencing in simulated environ-
ments, tutoring programs customized to students’ different learning styles,
tools for enhancing the communication about new products or ideas in con-
ventions and ”informative ateliers”, cultural and museum applications, and
computer-based games.

Analysis: Kansei Quantization On the other hand, another important
approach for understanding the Kansei interaction is the measurement of
Kansei. The mechanisms and the process of human perception have been
widely discussed in many research fields. In the process of perception, one
of the possible explanations is that physical features in a high-dimensional
space perceived by humans are mapped onto another low-dimensional space
in the human mind which contains semantic parameters.

The author first describes the statistical background for the measure-
ment of Kansei, especially the related methods utilizing the similarity or
dissimilarity between two objects for the evaluation. The proposed neu-
ral network model is then presented with some learning examples. As an
example of applications for real world problems, the proposed model will
be applied to the analysis of facial expression perception. The author also
attempted the measurement of the individual subjectivity and its visual-
ization. Furthermore, the performance on multiclass classification problems
will be also described.



Chapter 6

Music-Based Human-Robot
Interaction

6.1 Introduction

Sound and music are typical channel of non-verbal communication that hu-
mans often use to express their mind. Music is essentially a mode of expres-
sion of emotion and affection, and also a Kansei communication protocol
among people. Kansei is a Japanese word that means something like ”sen-
sitivity”, ”intuitiveness” and ”feeling”. People have certain feel about the
use of the word ”"Kansei”, although the scale is not measured in a quanti-
tative way, and not visible like the feelings of people [Hashimoto, 1999]. A
musical performance is a Kansei communication to express individual ideas
and thoughts with the aid of instruments. For increasing the degree of free-
doms of a musical expression, a number of researchers and musicians have
explored a new type of musical system that exceeds the physical limitation
of musical instrument and vocal cords.

These are mainly divided into two categories. One is a new kind of mu-
sical instrument to enhance expressiveness by utilizing a computer system
for controlling the sound and music effects based on conventional musical
instruments. Live interactive electronic music by hyper instruments based
on the organ, percussion and cello have been performed in the early stage
of these studies [Machover et al., 1989][Chung et al., 1991]. More recently,
Cook et al. [Cook et al., 2000] have developed an accordion that embeds
a microcomputer for controlling the sound. A Japanese traditional instru-
ment, the Sho, with attached sensors to sense the breathe of the player has
been developed by Nagashima et al. [Nagashima, 1999].

Others have attempted to create music according to human gesture and
entire body movement [Morita et al., 1991] [Camurri, 1995] [Siegel et al., 1999]
[Camurri et al., 2000]. Various types of sensing techniques have been used
to detect human motion, and the measured body movements are mapped
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to music or sound. One example is an instrument magnetic based motion
capture system [Paradiso et al., 1999]. Sawada et al. [Sawada et al., 1999]
introduced a ball-shaped instrument that can sense human grasping and the
movement. In addition, many studies that contain the above two features
were also reported [Katayose et al., 1993][Nakatsu, 1997][Paradiso, 1999].

As an example of an environment-oriented musical system, Rokeby has
attempted to construct a space in which the movements of one’s body cre-
ate sound and/or music. The Very Nervous System [Rokeby, 1995] is an
interactive sound installation utilizing multiple video cameras for music cre-
ation. It has been presented as an art installation in galleries, public outdoor
spaces, and has been used in a number of performances. The Virtual Cage
by Moller [Moller, 1997] is a floor for music creation, which can sense the
weight shift of human on it, and can create acoustic feedback by sound and
music. At the same time, the pneumatically controlled platform can move
and give physical feedback to the user.

On the other hand, some attempts have been reported a mobile robot
in order to connect the virtual and real musical worlds. Eto [Eto, 1998]
produced a network based robotic art installation. The robots in the site
for exhibition communicate with each other and create music. These robots
are controlled by users at the site or via the internet. Wasserman et al.
[Wasserman et al., 2000] reported a robotic interface for the composition
system, RoBoser. It is a small mobile robot and is an autonomous real-world
composition system by combining an algorithmic computer-based composi-
tion system.

The main purpose of this work is to investigate and explore the paradigms
of the Kansei interaction between humans and a robot in the framework
of museal exhibitions, theatre, music and art installations. Many studies
about the musical interaction between humans and machines have already
been proposed. However, although humans often accompany music with
body motion, few studies have reported the autonomous mobile robot for a
musical performance.

Consequently, focusing on an interaction metaphor that a robotic inter-
face can establish a virtual and real world connection, some sensory systems
and mobile robot platforms for the virtual musical environment in the real
world are proposed. The robotic interface is one of the possible partners
to interact with humans. The first idea was to equip a musical instrument
with an autonomous mobile ability for computer music performance in the
real world. The robot is effectively used for musical performances with mo-
tion because it can move around with the performer while generating sound
and music according to the performer’s movement and environmental sound
and image. Moreover, the robot can display the refractive motion according
to the context of the performance to create the human-robot collaborative
performance on stage. Applications for interactive art, music, and edutain-
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Figure 6.1. Modeling of Human-Machine-Environment: The style of the interaction can
be modeled along two axes: the autonomy of the robot and direct/indirect contact. The
region is largely divided into four areas according to the characteristics.

ment (education and entertainment) the rehabilitation (e.g., of autism) are
promising fields of this study.

This chapter presents an interactive multimodal artistic environment for
communication between humans and machines by introducing experimental
systems. The developed system is a sort of active aid for a musical per-
formance that allows the users to get feedback for emotional activation in
terms of sound, music, image and motion.

The author first describes the modeling of the Human-Machine-Environment
in music-based interaction in section 2. Three case studies will then be de-
scribed. Sections 3 and 4 present two types of semi-autonomous robotic
interfaces, Visitor Robot and the iDance platform. Section 5 describes an
autonomous robotic interface, MIDItro. Finally, a discussion and conclu-
sions will then be given.

6.2 Modeling of Human-Machine-Environment

In a multimodal musical environment, the style of interaction can be mod-
eled along two axes: the autonomy of the robot and direct/indirect contact
as illustrated in Figure 6.1. The description of each area is as follows:

1. (left-upper, the fourth quadrant) Reaction of robotic environment by
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means of music/sound, image and motion is caused by the emitted
sound and human behavior in the environment.

2. (left-lower, the third quadrant) Robot makes its own motion and
displays music/sound and image from the surrounding environment,
in accordance with environmental sound and image surrounding the
robot.

3. (right-upper, the first quadrant) Through a direct contact between
human and robot, the robot follows the applied force and also dis-
plays its own motion and creates sound and music according to the
environmental sound and image, and data upon physical contact.

4. (right-lower, the second quadrant) Through an indirect contact be-
tween a human and robot, the robot autonomously displays its motion
and creates sound and music according to the environmental sound
and image.

In the left-upper field, the fourth quadrant, a model of an environmen-
tal robot is considered. An environment is "robotized,” that means people
interact with the surrounding environment where human motion and the
omitted sound can be sensed by the wall, objects, room and the house.
The surrounding environment then responds by generating sounds, images
and also motions, e.g., the wall moves to people, or object transforms ac-
cording to the stimuli. The author has contributed to the related work
[Takahashi et al., 1999]. This model will not be described in this disserta-
tion, but is indeed a future consideration.

In the framework of human-machine interactions, the assumption was
made that humans do not need to wear any special on-body sensors. They
are observed by on-board robot sensors and an attached video camera. A
camera-based sensor system is developed to increase its input capabilities.
This allows humans to carry freely on their tasks.

The following sections present three styles of music-based human-machine
interactions with the experimental performance results.
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6.3 Case study I: Visitor Robot
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Figure 6.2. Case study I: Visitor Robot, that is a semi-autonomous robot for music-based
human-machine interaction. [Suzuki et al., 1998]

Most of studies on the interaction between humans and robots have
paid attention to understanding human biomechanics, sensing and control
strategies so that the robot can give a performance similar to human beings
[Hollerbach, 1996]. However, few have treated the emotional-based interac-
tion of the robot itself.

Based on the above consideration, an intelligent agent for interaction
between humans and robots embedding artificial emotions has been con-
structed. Using the developed system, the gestures of a human, scenes and
sounds in the surrounding environment can cause the robot to change its
emotional state, and therefore, its behaviors and reactions in the environ-
ment. With regard to this issue, some interesting experimental results have
been reported [Nakatsu, 1997][Bates et al., 1992]. Many researchers have,
however, paid attention to the analysis of movement, extraction of emo-
tional parameters, while trying to realize the interaction through artificial
emotion, which has the ability of self-organizing and adaptation being an-
other scenario [Camurri et al., 1997].

The developed system is a robotic environment based on the agent ar-
chitecture, which is useful software for multimedia applications in real time
[Camurri et al., 1998]. The outputs are produced through three compo-
nents: rational, emotional and reactive. Each component operates under
the influence from the other modules. As a whole, they work to map the
input parameters of the external world to the output ones.

A robot embeds a computational model of artificial emotion, which is
constructed by taking advantage of the self-organization of an improved
model of Kohonen’s Self-Organizing Map. The network is adapted so that
it can represent an emotional state; the current emotional state of the robot
is determined as a result of competition with other states modeled by the
network. Moreover, the state changes dynamically and represents the so-
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Figure 6.3. An emotional agent architecture ”Robotic Agent” for multimodal environ-
ment: The details of the agent architecture is described in [Camurri et al., 1998]

called ”personality” of the robotic agent.

It exhibits its current emotional state by means of integrated visual
media, environmental lights, music, and changes in behaviors and style of
movement. This allows the human high-level biofeedback effects to generate
another motion by feeling.

The gesture, behavior and movement of a human can cause the robot
to change its "emotional state”, which is exhibited by means of integrated
visual media, music, and changes in the robot’s style of movement and be-
havior.

6.3.1 System overview

The small robot on wheels is a Pioneer 1 robotic platform by ActivMedia,
Inc, that is equipped with a camera, infrared localization sensors, local audio
system, and two wireless communication channels for both audio and video
signals. The inputs of the robotic agent are given from the robot’s low-
level sensor data and a camera placed on the robot. As outputs, the system
integrates three kinds of communication channels: movement (the behaviors
of robot), visual (environmental light), and acoustic (music and sound).
Figure 6.3 shows the data flow detail in the developed emotional agent
"Robotic Agent”. The outputs are produced through three components:
rational, emotional and reactive. Each module operates under the influence
from the other modules. As a whole, they process input parameters from
the external world and produce output parameters. It should be noted that
only high-level information is processed through the rational and emotional
modules. The Rational produces controlling data of the behavior of the
robot and stimuli to the emotional module. On the other hand, the Reactive
module produces parameters for dynamic output. The Emotional module
is the core, which changes the current emotional state of the robotic agent.
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Note that the stimuli produced by the Rational component are given
to the Emotional component in order to drive the artificial emotion. The
emotional state, which represents the personality of the robotic agent, then
influences each communication module at the Quiput component.

The system for the robotic agent works under the Win32s operating
systems. The robot communicates by three different radio links (digital
I/O control data, video and audio signals) with the supervisor computer on
which the model of artificial emotions is realized. The robot also possesses
an on-board audio diffusion system, connected by radio, which integrates
the audio diffusion system placed in the environment. Three computers
connected by an Ethernet network control different various aspects; the first
contains the emotional model and control movement, the second deals with
”emotional mirrors”, and the third generates sounds and music. The robot
agent and the other applications are written in C++ (MS Visual C++).

6.3.2 Sensing external environment

Sensor input Input module mainly consists of two components. One is a
receiver from the robot’s sensor. Its role is gathering data from the robot’s
sensor every one hundred milliseconds. The following data are computed:
the absolute and relative positions of a human and the robot, and distance
and area when a human is around the robot. Logarithmic units as the dis-
tance have been adopted. The space around the robot is divided into five ar-
eas. Five ultrasound sensors are placed in front of the robot. The sensor data
gathered by Saphira [Konolige et al., 1996] is processed by the Input Mod-
ule. The special purpose robotic software Saphira [Konolige et al., 1996] has
been adopted, that was developed by SRI (Stanford Research Institute) in
order to handle the low-level details of the robot, such as drive motors and
wheels. It is used for control of the Pioneer 1 robotic platform by ActivMe-
dia, Inc. In other words, the component observes the environment around
the physical relationship between the human and robot.

Gesture recognition system Another component is a camera-based sen-
sor system, which allows human gestures as inputs of high-level information.
This system allows a human to communicate with the robot with the aid of
a small light source.

With the aid of a small camera on the robot, the current position of the
light is detected every 100 milliseconds, and the current position of the light
is sent to the robotic agent about twenty times per second. The detection
starts when the user turns on the light in front of the robot, and ends
when he turns it off. This duration is extracted as one phase. Figure 6.4
shows the process of gesture recognition. Each gesture is normalized to the
smallest rectangle from the center of the light positions. Therefore, it does
not depend upon the area of the human’s gesture. The detected area is then
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Figure 6.4. Process of gesture recognition process: A camera-based sensor system al-
lows human gestures as inputs of high-level information. The system allows a human to
communicate with the robot with the aid of a small light source.

quantified into an 8x8 image data. This image is used as input data for the
recognition processes. Moreover, the agent extracts several parameters as
input data, not only the pattern of gesture, but also the size of the detected
area and duration of one phase.

As the pattern recognition of gesture, a low level processing and a sim-
ple back propagation neural network is used. In the present study, it is also
possible that the data is sent to the robotic agent as "negative” and ”pos-
itive” information. For experiments, ten gestures seem to be sufficient for
communication with the robot. The circle-gesture, for example, can mean
a positive stimulus, while a slash-gesture can mean a negative one. The
time of recognition is less than one second, which is effective for real-time
interaction.

6.3.3 Robot reaction

Robot control The output module consists of three components. One is
a component to control the robot.

Two types of control are prepared: behaviors and movements. The for-
mer means a high-level behavior so that robot might produce performance
similar to the human. In short, it seems that each behavior has a rea-
son such as following a human or escaping, attention or avoidance, turning
around a human. On the other hand, the latter corresponds to quite sim-
ple movements: forward, backward and turns. These types of behavior and
movement patterns are controlled by orders from the Rational component.

Music generation The component of the music process is discussed here.
Music is one of the most important ways of communication. In this sys-
tem, the application to "modulate” the score skeleton music with MIDI is
adopted. The application is described by the Max/MSP patch. The agent
outputs particular data to the application so that the generated music can
reflect the emotional state. In the component of music generation, the data
are arranged so that it can reflect the emotional state and style of movement
of the robot. The robotic agent generates parameters used to modulate the
score skeleton in each time slot. They include not only the emotional state
but also the movement of the robot through its ”Reactive” module. They
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consist of emotional parameters and physical relations between the human
and robot such as distance and area. For example, the music volume is
changed by the physical distance obtained at the Input component between
the robot and human. In addition, when the robotic agent receives gesture
information, parameters are also sent to the music process thus influencing
the score skeleton. The main four patterns of music that correspond to each
emotional state are prepared. Each music pattern is composed so that the
impression would reflect each emotional state.

Visual Media - The ”emotional mirror” A further output is the con-
trol of visual media. It is available to show the emotional state of the robot,
and also the user can see if the robotic agent detects the light carried with
his hand. It is expected that performers can understand the state of a
robot more clearly with different output channels. The visual component,
as another example, is based on the idea of an ”emotional mirror”. Figure
6.5 shows an example of the aspect and the implementation of the emo-
tional mirror. The robot sees what is in front of it (people’s faces, artworks)
warped according to its emotional state. For example, a face could appear
"mirrored”, distorted in a vortex or re-processed with bright colors, respec-
tively corresponding to positive and negative emotional states. During the
performance, the system shows such images on a TV screen in real time.

Figure 6.5. Dynamics of Emotional Mirror: What the robot sees appears ”mirrored”,
corresponding to the positive and negative emotional states. During the performance, the
system shows such images on a TV screen in real-time.

6.3.4 A model of artificial emotion

One of the motivations to construct artificial emotion is the complexity while
making decisions in the robotic agent. The agent receives many inputs from
the external environment, such as its position to the human and gestures.
In addition, the agent should also refer to the internal state. In other words,
artificial emotion is one of the means that supports the agent making deci-
sions dynamically and flexibly. In the real world, the robotic agent divides
input into only four vectors for simplicity. The artificial emotion model then
consists of four states, which form the personality of the robotic agent. This
structure is called ”emotional space” as shown in Figure 6.6.



50 Chapter 6. Music-Based Human-Robot Interaction

oQo
000
oee
mEe

CnEEEEEE

[olelolelo)uim|m|m|n] | [-Yolo]

eOUNEEENe

: State A
: State B
: State C
: State D

sst oo [[CNEEES

Q00000oOUIOuEECCO
Q0000000000000
000000000000000
000000000000000
0000000OU0OUIOdoC
00000 0000000000
000ceed0IOCEOO
0000o0000000e000
000100000000000
0ooed00000000600

Q0o
Q0o
Q0o

see
ee®e0ONO00CcHE*

(111 Juimim[mimimys) ][]
40000 NEEEEE

Figure 6.6. The change in the emotional state after a stimulus is given: The model is
inspired by the dynamics of human emotion.

The model is divided into four areas that represent the emotional state,
and each symbol corresponds to a particular state of emotion. Each state
with a typical human emotional condition is called Happy, Angry, Melan-
choly or Tranguil for simplicity. The number of each symbol (cell) represents
the rate in emotional space, and each state represents a unique character
of the robot. In other words, it represents the personality of the robotic
agent. The emotions compete with each other. The area occupied by each
state then shows a rate in the emotional space of the robot. When a state
changes in emotional space, the other states are also influenced by each
other. For instance, when a state changes becomes wide, the others should
change to narrow through competition in the network. It should be noted
that each state is always competitive in this model. The feature of self-
organizing is applied to the artificial emotion of the robot. Considering
changes in the emotional state as a result of the competition with different
emotional states, an emotional model based on Kohonen’s Self-Organization
Map (SOM) [Kohonen, 1994] is constructed. The network is improved so
that it is suitable for dynamic changes in the emotional state. As described
in [Ahalt et al., 1990], the torus model of SOM is used in the present study.

Self-Organization Processing The network is improved so that it is
suitable for dynamical changes of the emotional state. As described in
[Ahalt et al., 1990], the torus model of SOM is used.

Kohonen’s algorithm is established in an unsupervised way. Using the
neural network, n-dimensional input space is mapped onto m-dimensional
lattice space A. Each unit has a weight vector w of n-dimensions, w; =
[wi1, Ws2, ..., wip], and is assigned to each input vector v, v; = [vi,, Vi, ..., Vi, |-
The mapping is formed so that the weight w of active unit is closest to the
current input vector v in the nearest neighbor rule as follow.

||lw; —v|| > ||w;* — v Vie A (6.1)
The network is tuned in a learning step according to the following rule.

Aw ) = eN; i ®) (”(t) - w(t)) Vie A (6.2)

)



6.3. Case study I: Visitor Robot 51

In the neighborhood function A between the nearness of cells i*, the
strength parameter p is added so that the network can work dynamically. A
is determined as:

() _ 5x(0)
Ag-® = exp (_pw> (6.3)
20
e is the constant learning parameter, and ||-|| denotes the Euclidean distance

in A. The neighborhood range is determined by the selection of radius
o. Additionally, the strength parameter p is added into the function as
continuous establishing the network. The strength parameter reflects a sort
of given stimulus to the network. If a human, for example, plays the same
gesture wide and fast, the stimulus should be strong, or narrow and slow, it
should be smaller. The connection zone Z(t) is also available. As well as the
strength parameter p, Z(t) is determined every learning process regardless
of global time. From this, the rule of renewal weights is given as eq. (6.3).
A, ®) — { 6A(i)i* D —wM) vie z* (1) (6.4)
w; Vi & Z*(t)

Network Structure and Dynamics The architecture of the modified
self-organization map consists of 15x15 cells in two-dimensions with a torus
structure, which means the upper and lower sides of the network, as well as
the left and right sides, are connected to each other. Each cell has dimensions
of emotional states. Here the input space is four dimensions. When a human
gives information to the robot, the agent can understand it by its strength.
The larger this parameter, the stronger the influence toward the network
(see the details in [Suzuki et al., 1998]).

The kinds of symbols represent the emotional state. Each symbol also
represents the activation of a neuron in the unit. Its size represents the
amount of activation in each cell. In the center of the occupied area by each
state, the size is almost large. However, in parts of the borders, they are
always smaller than the others. Therefore, in parts of the border, each state
is competitive with each other. This model is inspired by a dynamics of
human emotion.

The change in the emotional state is shown in Figure 6.6. This figure
shows the emotional state after state A has increased. Comparing the left
and right figures, it can be seen that the occupied area by state A increased,
while, the areas of the other states became smaller than before.

Once the robot is put into multimodal environments, the emotional state
begins to be change based on the external world. Through the proposed
model of artificial emotion, the state dynamically changes according to the
input data.
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Figure 6.7. Case study I: Visitor Robot that performs at a museal exhibition ” Arti
Visive 2 (Visual Arts 2) 7, Palazzo Ducale, Genova in October 1998.
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Figure 6.8. The supervisor system at ” Arti Visive 2”7 (Visual Art 2), which is a museal
exhibition held in Palazzo Ducale, Genova, Italy, in October 1998.

6.3.5 Performance demonstration

The developed system has been demonstrated in the interactive art installa-
tion at " Arti Visive 27, a museal exhibition held in Palazzo Ducale, Genova,
in October 1998. The robot freely tours in the exhibition as one of the many
people who frequent it, a sort of medium between humans and machines liv-
ing together in the exhibition area. Sensors allow him not only to avoid
collisions with people surrounding him, but also to observe the artworks
and the visitors in order to interact with them. In the latter presentation,
the robot also has been ”dressed” with a scenography for the art installation.
On the top of the dressed robot, a small camera has been installed.

Visitors can communicate with the robot in several ways. For example,
they can approach it, act in front of its "eyes”, follow it, ignore it, or become
an obstacle in its path. The robot interprets some stimuli as positive, other
as negative causing the evolution of its emotional state. As described below,
the emotional state is exhibited by means of the robot’s movement, music,
sound, and visual media.
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6.4 Case study II: the iDance Platform
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Figure 6.9. Case study IL: the iDance platform [Suzuki et al., 1999] that is a semi-
autonomous robot for music-based human-machine interaction.

A semi-autonomous human cooperative robot will be described in this
section. Through direct contact between a human and the robot, the robot
follows the applied force and also displays its own motion and creates sound
and music according to the environmental sound and image, and data upon
physical contact.

The system software is based on an agent architecture for real-time mul-
timodal interactions. The user can easily associate the agents on Max/MSP
GUI. The module of sound analysis mainly extracts the pitch and velocity of
the input sound including the human voice and instrumental sounds every
100ms. The module of image analysis extracts the color composition and
temporal structure of the input image including the environmental scene
and human gestures at the same rate of sound analysis. The sound, im-
age and robot motion are compiled from the composition patch referring
to the outputs of the behavior coordinator. The input data from the four
strain-gage sensors, and sound and image analysis module are mapped into
stimuli to activate the internal process components of the agent. These
components produce the robot behavior including the displayed image and
MIDI sounds, which can be influenced by the performer’s movement, envi-
ronmental sounds and images. It should be noted that communication data
are exchanged through the MIDI channel among the main controller and
others.

6.4.1 System overview

The overall of the developed system is shown in Figure 6.10. The sys-
tem consists of four components: mobile robot, motion interface, main con-
troller and output devices. In this study, an omni-directional mobile plat-
form [Hirose et al., 1993] is used for a mobile base. In addition, a motion
interface called ”"plate” is installed in order to receive external force infor-
mation. The interface ”plate” enables simple locomotion by a weight shift
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Figure 6.10. System overview of the iDance platform: To make the interaction with
human, the system integrates three kinds of communication channels: acoustic (music
and sound), movement (the behaviors of robot), and visual.

and force application [Yokono et al., 1998]. Also, a CCD camera and two
microphones are installed in order to get environmental visual and auditory
information, All these instruments and others including a Macintosh G3
computer and audio speakers are installed to make the mobile robot semi-
autonomous. A number of useful modules for motion devices have added to
the Max/MSP architecture. The modules communicate with the robot and
motion interface through the MIDI controller to exchange serial and MIDI
data. Therefore, this provides a effective musical platform where users can
easily associate with each other including not only music generation but also
movement of the mobile robot.

6.4.2 Sensing external environment

To have interactions with a human, the system integrates three kinds of
communication channels: acoustic (music and sound), movement (the be-
haviors of robot), and visual. First, the input component consisting of these
three modules will be described.

Motion Interface Module The first module is an action receiver that
has the role of gathering data from the motion interface at the MIDI rate
(31.25kbps). The interface can obtain the center of gravity data of objects
on the mobile robot, which is measured by four strain-gage sensors bonded
under the plate. If a user provides a force to the object on the plate, the four
strain-gage sensors bonded under the plate measure the center of gravity.
Since the strain-gage element changes its resistance value according to the
applied load, the applied load can be measured as a change in voltage, and
the center of gravity calculated using these voltage values by a single chip
computer. The module on the Max/MSP patch receives a data list about
the center of gravity, and calculates the desired direction.
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Sound Input Module The second one is a part of the sound input. This
module can obtain auditory information with two microphones installed on
both sides of the mobile platform. From this, the system allows users to
interact with the robot by using his voice and handclap. The following
three sub-modules were developed for the Max/MSP patch.

Volume and Pitch Tracking: The volume and pitch data of the obtained
sound from the installed microphone are calculated. The component called
the Sound Analyzer works to extract the sound features and auditory infor-
mation of the environmental sound. The input source of the object is the
sound wave from the microphone that comes equipped with the standard
Macintosh MIC-in. It outputs the following sound features:

Sound features

(i) Velocity

(ii) Fundamental frequency
Auditory information

(iii) Environmental state

The sound from each microphone is measured using eq. (6.5), where N
and A denote the number of samples per frame and the maximum amplitude,
respectively.

N-1
V[db] = 10 logo (% > 2% (t+ nAt) /A;> (6.5)

n=0

The cepstrum method is adopted for the identification of the fundamen-
tal frequency. The method uses the harmonic structure obtained by Fourier
transform at the high range of the cepstrums. In order to decrease sampling
errors, the fundamental frequency is regarded as a value of the nth peak of
the frequency divided by n as shown in eq. (6.6).

p p
n=1 n=1

In addition, the system can also recognize the state of the environment
from the auditory information. an experimental thresholding of the sound
velocity and spectrum density were determined in order to distinguish each
mode of auditory information such as noisy, silent and singing.

A Max/MSP object for extracting the specified pitch information of
the environmental sound including a human voice is constructed using this
method. As well as handclaps, a singing voice can be directed toward the
robot as auditory information. For example, when the system obtains hu-
man’s voice and is able to capture the pitch information, the backing scale
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Figure 6.11. Tempo tracking object on Max/MSP: While users clap hands, this sub-
module calculates the tempo by extracting the peak of the volume data.

will be changed to allow the users to control the high/low chord with his
voice.

In addition, simple sound localization has been also realized. By using
the difference in amplitudes from each microphone, the system can roughly
estimate the location of the sound sources. It is not easy to detect exact
sound sources with only two microphones. However, because the robot can
turn toward the measured target, it helps to capture the exact sound sources
more precisely.

Tempo Tracking: While users clap hands, this sub-module calculates the
tempo by extracting the peak of the volume data. The system can syn-
chronize the generated music with the estimated tempo in real time. The
player usually has a flicker error to produce a tempo. The module renews
the next tempo in order to take the flicker into account by the experimen-
tal threshold so that audience can easily listen to the music. Figure 6.11
shows an example of tempo tracking with two microphones. Since the sound
is captured every 10 ms, the time difference between each microphone is not
found in this experiment. In Figure 6.11, the left figure represents the
sound input from a microphone equipped with the left side, while the right
figure represents the sound input from the right one. The x-axis of each
graph represents time ¢, while the y-axis represents the volume of the input
sound source.

Camera-based Sensor System The third one is a camera-based sensor
system to obtain environmental information and human gestures. Moving
image data from the CCD camera are calculated in order to get color infor-
mation such as RGB data, hue, saturation and lightness every 100ms. From
this, the spatial and temporal features are also obtained such as the den-
sity of the edge, pattern data, and blinking information. The system allows
a human to communicate with the robot with the aid of a small symbolic
source such as an LED light or color flags. From this, users can provide a
sign to the robot with the location of detected symbol.
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This component is called the Image Analyzer can extract temporal and
spatial features [Gong et al., 1995] from moving images. The input source
of the object is a moving image from the video camera, while the output
consists of the following image features:

Color information

(i) RGB (Red, Green, Blue) components

(ii) Hue, saturation, and lightness components
Spatial and temporal features

(i) Edge density

(ii) Scene changing value (binary data)

In the present study, the sized of the captured frames are 320x240 pixels.
Each frame is divided into M x N areas. The features of the moving image
are calculated in both the whole frame and the image of each area to obtain
the global features and the local ones.

The values of RGB components obtained by the image data in each frame
is calculated as follows:

L 7’]7 _Zzlk mlayja
Mo (6.7)

k(al) ( ZZLk i,3,t)

i=11i=1
(k:R7G7B7H7S7L)

where L denotes the summation of each RGB brightness, and [ repre-
sents each one of the pixels. In the same manner, the calculations of hue,
saturation and lightness can be performed. m and n represent the width
and height of each divided area, respectively.

By using this color information, the average values of the edge density
are also extracted as the spatial features in eq. (6.8) by a two-dimensional
filter as: .

m—1n—1 -1 0 -1

(1,7, 1) ZZ 0 4 0 |-lglws,yy,t)

vi \ -1 0 ~1 (6.8)
M N
all ZZEk(Zajat)
(k=R,G,B)

where Ej, denotes the summation of each edge density.
On the other hand, for the acquirement of temporal features, the image
analyzer stores basic frame data as a background image at the beginning of
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Figure 6.12. The Image Analyzer object on Max/MSP: Moving image data from CCD
camera are calculated to get color information such as RGB data, hue, saturation and
lightness every 100ms.

the detection of the moving image. By comparing to the background image,
scene changing can be detected by calculating the temporal difference for
every newest frame (eq. (6.9)).

m— lnfl
Z ]a xlay])_lk(o)(xzay])
: JM N (6.9)
Da(t) = > Dy(iyj,t)
k=R,G,Bi=1:i=1

where D denotes the difference in brightness and [;,(0) and I (¢) represent the
brightness of the background and present image, respectively. The thresh-
old @ represents the horizontal line in the figure. When D, exceeds the
threshold, a scene change has occurred.

6.4.3 Robot reaction

The output module consists of two parts: sound and music generation, and
control movement of robot. Each output module operates under an influence
from the input modules. They calculate the output parameters from the
input parameters of the external environmental information through two
kinds of process component: long-term and short term reactive ones. The
details of the music creation are described as follows and the data flow is
shown in Figure 6.13.

Omni-Directional Mobile Robot Control The first output module is
the part that controls the robot. At present, two types of controls, active
and passive reaction, are prepared.

The former one works as a sort of robot behavior to chase humans. For
example, with the aid of symbolic flags, a robot can detect a human and
simply follow the symbolic flag. This chasing reaction also is caused by the
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Figure 6.13. Data flow of the iDance platform: Based on the prototype of generated
music, sound and musical features can be modified according to the input from sound,
image and motion modules.

input from the sound detection module. By using sound localization data,
the robot can turn and change the direction by itself. The latter one is a
kind of tool that a human can use to control the robot. When he pushes the
robot by his hand, the robot moves itself along the direction that the force
is given. In other words, this module allows a human to show his intention
with his action. The communication data format is the same as the MIDI
configuration, and sent to the external MIDI Controller (Motion MIDI). The
special hardware translates the MIDI format into the control of the mobile
robot.

Music and Sound Creation The second one is a part of the music and
sound generation. Some basic modes of music generation are prepared.
Based on the prototype of generated music, sound and musical features
can be modified according to the input from the sound, image and motion
modules.

By using the key information such as scene changing and applied force,
the system changes the current mode of the music generation. A few exam-
ples of music generation mode are described as follows.

Rule-based Music: We humans are familiar with the created music based
on musical theory. Also in the field of computer music, the structure of chord
progress and melody harmonizing has been often applied from many kinds
of musical theory. In this mode, the theoretical music generation is simply
adopted in order to make the simple chord progress. Using five typical
patterns based on the C chord, a basic melody is also composed within the
possible notes for each code.

Stochastic Music: Another kind of music generation, namely the stochas-
tic music mode is installed. Up to now, several research studies about
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Figure 6.14. Performance of the iDance platform: Figures show an example of dance
performance with the iDance platform.

stochastic music generation have been reported. For example, a historical
work is [Hiller et al., 1959][Grubb et al., 1997]. In this study, every begin-
ning phrase of starting this mode, the note set is determined by the input
data from the sound/image analysis. The chord progress and melody can be
created with a random value within the note sets. The prepared four kinds
of note sets are: major / minor pentatonic, and Japanese major / minor
scale. Pre-recorded Music: 72 sets of drum patterns are prepared: These
patterns have 6 different tempos and appear so that the rhythm could cor-
respond to the change in the image and sound input. The backing chord
progress is also generated with the tempo based on musical theory. Some
other MIDI files of melody are also used.

The musical features such as timber, pitch, volume, tempo and style
of music generation are modified by the users in real time. The mobile
robot becomes active when it is put into the environment where the robot
and humans perform. All of the output can then be continuously changed,
and also be modified according to both acoustic and visual features of the
environment.

6.4.4 Performance demonstration

The performer freely produces action on the platform, which continues to
create sound and music according to a given stimuli. The experiments prove
us that the system is an effective and interesting interaction between users
and robot by using multimodal communication channels.
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Figure 6.15. Case study III: MIDItro, an autonomous robot for music-based human-
machine interaction. [Suzuki et al., 2000]

Finally, an autonomous robot will be described in this section. Through
an indirect contact between a human and the robot, the robot autonomously
displays its motion and creates sound and music according to environmental
sounds and images, and physical contact data.

The system hardware includes two microphones, two speakers, a CCD
camera, and Macintosh G3 computer, all of which are installed on the mo-
bile robot. The software developed on Max/MSP environment consists of
the sound analyzer, image analyzer and behavior coordinator with the sen-
sor and motor drivers. The sound analyzer mainly extracts the pitch and
velocity of the input sound including the human voice and instrumental
sound at the frame rate every 30ms. The image analyzer extracts the color
composition and temporal structure of the input image including the envi-
ronmental scene and human gestures 10 times per second. The sound, image
and robot motion are compiled according to the composition patch referring
the outputs of the behavior coordinator.

The system can exhibit a style ”human-robot dance collaboration” where
the robot moves in concert with the human performer sensing the visual and
audio information.

6.5.1 System overview

An overview of the developed system installed in a two-wheeled mobile robot
is shown in the left figure of Figure 6.16. The system consists of four
components: a mobile base, main controller, and input and output devices.
In this study, an omni-directional mobile robot is used. A color CCD camera
and two microphones were installed in order to obtain environmental visual
and auditory information. All these instruments and others including the
Macintosh G3 computer and audio speakers are installed to make the mobile
robot autonomous. A hardware connector is constructed so as to adapt the
mobile base on Max architecture. The modules communicate with the robot
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Figure 6.16. Case study III: MIDItro, system overview. All the equipment is installed
on an omni-directional mobile base.

and main controller through MIDI controller in order to communicate with
the robot.

The robot consists of two components; an upper installed part, and a
lower mobile part. The CCD cameras and two microphones for stereo input
are attached in front of the upper part on the robot. This robot has bumper
sensors on the front and the back, tactile sensors on the sides, ultrasonic
sensors on the front, and an encoder, a gyro sensor in the lower mobile
part. Therefore, the location of the robot can be roughly calculated using
these sensing data. The cushion on the bumper reduces the shock from any
collision. A single chip computer is embedded in the robot in order to handle
the low-level control, drive motors and wheels. For the whole system, the
size of the robot is approximately 40x45x20 (widthxlengthxheight(cm)).

6.5.2 Sensing external environment

To modify the musical parameters such as melody, backing, tempo and
pitch, three types of information as described below are available to obtain
the sensing parameters.

Sensor Information The robot has three kinds of different sensors. The
bumper sensor installed on front and back can sense obstacle contact in seven
different directions. The dour-wire tactile sensors installed on both sides of
the robot can sense an applied force. The ultrasonic sensors can measure
the distance to obstacles in front of the robot in four directions in the range
of 50mm to 500mm. The sensor configuration is illustrated in Figure 6.18.
These three sensors are used not only to directly link musical parameters but
also to avoid obstacles without transmitting MIDI data. For safety, in case
when a bumper sensor sensed obstacles, the robot once stops to retrace its
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Figure 6.17. Processing flow of MIDItro: The mapping rule between input and output
modules is determined by composers and choreographers. The output module consists
of two parts for the sound and music generation and the control of the robot movement.
Each output module operates under the influence of environmental data from the input
modules.

steps. The other two sensors can be useful for avoiding collisions in advance.
These sensing data are converted by the MIDI controller and transmitted
to the main controller when the events occur.

Visual Information This module is a camera-based sensor system to
obtain environmental visual information and human gestures. By using a
modified Image Analyzer as described in section 5, moving image data from
the CCD camera are calculated to get the spatial and temporal features such
as RGB data, hue, saturation and lightness, the density of the edge, pattern
data, and blinking information every 100ms.

Auditory Information This module can obtain auditory information
with two microphones installed on both sides of the mobile platform. From
this, the system allows users to interact with the robot using his voice and
handclap. The following three sub-modules were developed on the Max
patch.

The first is a sub-module of simple sound localization. By comparing the
volume of sounds from each microphone, the system can roughly estimate
the location of the sound sources. It is not easy to detect exact sound
sources with only two microphones. However, the robot can turn toward
the measured target to more precisely capture the exact sound sources.

The second is a sub-module of pitch tracking by the Sound Analyzer.
The last sub-module has the role of tracking tempo. More details on the

detection of the visual and auditory information can be found in section
6.4.2.
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Robot movement MIDI Code | Primary Factor
Basic movement Bumper Sensor
Forward B-01 Contact at backside
Backward B-02 Contact at front
Sliding Tactile Sensor
left direction B-03 Contact at right part
right direction B-04 Contact at left part
Rotate Sound Localization
clockwise B-05 Source located at right
counterclockwise | B-06 Source located at left
Zigzag motion B-07 Randomly occurred
Circle motion B-08 Scene Change

Table 6.1. An example of predetermined set of primary factors for robot movement:
Sensory data of the robot is converted into the MIDI format by a special component, the
MIDI Converter.

Bumper Sensor
Ultrasonic Ultrasonic
Sensor \ \ f/ Sensor
Tactile m Tactile m
< ]
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RS
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— g
Bumper Bumper
Sensor Sensor

Figure 6.18. Sensors equipped with MIDItro. There are three kinds of sensing devices
such as bumper sensor (binary signal), ultrasonic sensor for the distance measurement,
and tactile sensor for sensing data upon physical contact.

6.5.3 Robot reaction

Mobile Base Control The robot can move omni-directional by rotat-
ing the lower mobile part against the upper installed part about the cen-
ter axis of the robot, and by independently controlling two driving wheels.
In this study, the robot is limited to six types of movements such as for-
ward /backward, left/right sliding, and rotate-clockwise/counter-clockwise.
The maximum speed is set to approximately 30 cm/s. For the experiment,
the primary factors that cause each style of robot motion are predetermined,
as described in Table 6.1. The MIDI code shows the defined addresses for
transmission to the computer.

Also, some experiments with regard to direct robot control by the MIDI
keyboard have been done. In this proposed platform, any additional musical
instruments that can transmit MIDI data are possible instruments to be
associated with.
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Figure 6.19. Performance of MIDItro: The left figure illustrates an example of interac-
tion based on the surrounding sounds. In the middle one, the robot is controlled by MIDI
keyboard with the aid of MIDI Network. The right one also illustrates a vision-based
interaction.

Mapping from input parameters to music By mapping from these
parameters to music, the music is created so as to reflect the input pa-
rameters from the external environmental information through two kinds of
process components; long-term deliberate and short-term reactive processes.
In part of the music and sound generation, some basic modes of music com-
position are prepared; stochastic, the algorithmic and pre-recorded modes.
Based on these prototypes of generated music, music and sound features
such as timber, pitch, volume, tempo and style of music generation can be
modified according to the input from the sound, image and motion modules.
The harmonic structure refers to the compositional rules. By using the key
information such as scene changing and applied force, the system changes
the current mode of music generation. In addition, 72 sets of drum patterns
have been prepared. These patterns have six different tempos and emerge so
that the rhythm could correspond with the change in the image and sound
input. Some other MIDI files of melody are also used. The musical features
are modified by users in real time. The mobile robot becomes active when
it is put into the environment where the robot and humans perform. All of
output can then be continuously changed.

6.5.4 Performance demonstration

Through a number of experiments with dancers, the synchronization be-
tween humans and robot can be found. Dancers do not significantly care
about the compositional structure of music, but the variety of the composed
music. These experiments proved to us that the developed multimodal com-
munication channels allow them to make an effective and interesting inter-
action with the robot.
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6.6 Discussion

Four robotic interfaces in the virtual musical environment are successfully
employed in art installations and demonstrations. These systems can exhibit
a style ”human-robot dance collaboration” where the robot moves in concert
with the human performer by sensing the visual and audio information.
Each system works as a sort of reflector to create an acoustic and visual
space around the moving instrument. Moreover, the robot can display the
refractive motion according to the context of performance to create the
human-robot collaborative performance on stage.

In the effective interaction system for the felicitous performance, the ap-
propriate responses must be required in real time. The substantial presence
of a robotic interface is one of the possible solutions to make an effective
reaction according to expressive motion of dancers. By providing the user’s
intention to the robot with his action, the robot not only reflects the inten-
tion with music generation but also with motion in real space. The small
motions of the human may be amplified by the robot to make the perfor-
mance more dynamic and exciting.

Moreover, the proposed musical environment is constructed under the
Max/MSP programming environment. Therefore, users can easily associate
the unrestricted relationship between different inputs and outputs because
all the components communicate with each other through the MIDI network.

6.6.1 MIDI network

In the performance systems that allow users to get feedback for the emo-
tional activation in terms of sound, music, image and motion, the flexibility
of the instrumentation must be considered. The conventional interactive
systems have paid less attention to designing the environment for users.
The proposed platform provides a useful design environment for artists such
as musicians, composers and choreographers not only to create music but
also to coordinate the media with the aid of the MIDI network.

The developed systems as described in the case studies have realized
the basic concept of MIDI Network, which provides a seamless communi-
cation among the devices of the proposed moving instruments. MIDI is a
sufficient communication protocol because computer-based music creation
is often done by MIDI sound, and easily available. All the exchanged data
among the robot, audio synthesizer, main controller and other instruments
is combined with the MIDI network in the developed systems. The diagram
of the experimental system is shown in Figure 6.20 (the iDance platform)
and Figure 6.21 (MIDItro). The robot can receive data as a control com-
mand, and transmit data from the sensors. The microchip converter op-
erates to exchange between these data and the MIDI data. Therefore, the
main controller can control the mobile robot with MIDI data just like mu-
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Figure 6.20. MIDI network in the iDance platform: Motion MIDI and Analog/MIDI are
small logic components whose processor is a microchip PIC controller.
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Figure 6.21. MIDI network in MIDItro: MIDI Mobile controller is a small logic compo-
nent whose processor is a microchip PIC controller.

sical instruments with a MIDI software environment. By taking advantage
of the MIDI format, other MIDI devices can be adopted with the system.
For example, the MIDI organ enables users not only to play music but also
to control the mobile robot.

6.7 Conclusions

In the near future, a human cooperative robot as a partner that makes co-
operative work with people will appear. These robots are required to have a
multimodal interface such as visual, audio and other sensory abilities, to en-
able them to share information space with humans. It is very important for
such robots to have abilities not only to actively work in the human environ-
ment, but also to have a flexible and safe interface without the requirement
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of specific training or tuning.

In this study, reactive responses in human-machine communications have
mainly been addressed. Recently, it is considered to add agents capable of
reflecting the users’ preferences. Further consideration is to provide more
sets of musical rules to make the system more impressive.

The sketched multimodal musical environment is an interactive space
where the robot would behave in response to the given stimuli and its in-
ternal state in the real environment, and where humans who play with the
robot can continuously interact with the robot.

Therefore, the system works as an emotion activator stimulating human
creativity. This means that it not only behaves like a human based on the
emotional understanding from human movement, but also to "activate” hu-
mans by integrated outputs. In the dance and music performances that are
required for its reaction in real time, a substantial interface plays an impor-
tant role. Music shrouds people with a hypothetical space and is thought
of as the creation of a virtual environment. The conventional graphical
user interface is not sufficient for interactions in such an environment. It is
considered that a substantial interface such as robot and virtual reality is
absolutely imperative. The author considers that the embodied interaction
between a human and the robot will open the next stage of human-machine
collaborative musical performance.



Chapter 7

Kansei Quantization

7.1 Statistical Background

7.1.1 Quantitative theory IV

The quantitative theory [Hayashi, 1952] is a method to convert obtained
data into a suitable quantity according to the purpose of use. Especially,
Hayashi’s Quantitative Theory IV aims at reconstructing the group by using
a distance (similarity) between each object. Therefore, the theory is utilized
to make clear about the structure of a given group, and to make a relative
arrangement using the similarity e;; between each other. In brief, when a
pair has a large similarity, they are placed on near coordinates. On the
other side, when a pair that has a small similarity, they are placed on far
coordinates. The method is the same to minimize the following ) with the
rearranged coordinates x; using the similarity e;; between data i and j.

n n
Q=Y eijlz; — x) (7.1)
i=1j=1
The method is also called e;; quantification. The various set of similarity
are available to rearrange the coordinates. From the mathematical point of
view, it is required to solve the following peculiar equation as shown in eq.
(7.2). Human’s subjective evaluation can be visualized by a possibly low
dimensional - two or three - dimensional space, namely perceptual space.

— ( Z aij> - T+ ( Z aij> STy = AT (72)
J=Llg#1 J=1,g#1

where a;; = e+ aj;

Q
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7.1.2 Multidimensional scaling

The aim of multidimensional scaling (MDS) [Kruskal et al., 1978] is to pro-
vide an arrangement of a set of objects in a geometric configuration from
the pattern of proximities (i.e., similarities or distances) between each two
objects. The small proximities and distances among points on the obtained
map mean the closer (smaller) the distance between the input objects.
While, the large proximities and distances among points on the obtained
map mean the further apart.

The process of MDS is to find a set of vectors in p-dimensional space such
that the matrix of Euclidean distances among them corresponds as closely
as possible to some function of the input matrix according to a criterion
function called stress. The equation and formulation will be described later.

The simplified algorithm is as follows:

1. Assign objects to arbitrary coordinates in p-dimensional space.

2. Compute a matrix of Euclidean distances D among all pairs of ob-
jects.

3. Compare the d(p) with the input distance matrix D by evaluating the
stress function. The smaller the value, the greater the correspondence
among them.

4. Adjust coordinates of each point in the direction for the best minimum
stress.

5. Repeat steps 2 through 4 until stress get the lowest value.

Figure 7.1 shows an example of MDS with ten U.S. cities from square
matrix of dissimilarity that corresponds to flying mileages between each two
cities. It can be seen that the arrangement of ten cities is roughly displayed
in the figure. Note that the arrangement is upside down in the vertical line
due to the property of MDS.

7.1.3 Sammon’s nonlinear mapping

A nonlinear mapping algorithm for data structure analysis has been pro-
posed in [Sammon, 1969]. The purpose of this algorithm is to describe the
structure in a lower dimensional space such that the inherent structure of
the data is approximately preserved under the mapping.

The approximate structure preservation is maintained by fitting N points
in the lower-dimensional space. The interpoint distances approximate the
corresponding their interpoint distances in the original space.

Let X;,i =1,...,N be N vectors in the original space (m-dimensional),
and let Y;,i = 1,..., N be N vectors in the lower-dimensional space (n-
dimensional). Then, let the distance between the vectors X; and X; be
defined by d;;*, and also let the distance between the corresponding vectors



7.2. Review on Multilayered Perceptron 71

T T T T T
1000 +— T
* Houston * Mami
a * Los Angeles
g #* San Francisco * Atlania
& 01 s Denver -+
£ Washingion D.C.
O Chicago . *
* Sealtie * Now York
=100 1 T
f f l 1 f
—2000 —1000 0 000 2000
Dimension 1

Figure 7.1. Analysis of flying mileages between ten U.S. cities. (©1999, SAS Insti-
tute): Created from symmetric & square matrix of dissimilarity that corresponds to flying
mileages between each two cities.

Y; and Y be defined by d;;. The error E is defined how well the present
configuration of N points in the n-space represents the N points in the
original space, m-dimensional space.

1 g: [dij* — diy)”
2icjldij"] dij"

1<J

E

(7.3)

At the initial phase, after the number of dimension n is chosen, N vec-
tors, Y;, are randomly assigned in the n-dimensional space. The simplified
algorithm is as follows:

1. Choose the number of dimension, n, for an initial configuration.

2. Assign objects to arbitrary coordinates, Y; in n-dimensional space.

3. Compute an error F among all pairs of objects.

4. Adjust coordinates of each point in the direction, or equivalently
change the number of dimension for decreasing the error. In the
original work, a steepest descent procedure to search for a minimum
of the error (see [Sammon, 1969])

5. Repeat steps 1 through 4 until the error £ get the minimum value.

7.2 Review on Multilayered Perceptron

This section gives a review how multilayer networks can learn the nonlinear
discriminant function, and can provide the optimum solution to an arbi-
trary classification problem. Figure 7.2 shows a simple three-layer neural
network, consisting of an input layer, hidden layer', and output layer, links

'Rumelhart called this internal representation layer. The output of this layer can not
be directly obtained by the external environment - the input or output of the network.
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Figure 7.2. A Multilayer Perceptron (MLP): The middle layer is named as internal
representation layer in [Rumelhart, 1986]. They remarked that the output are generated
by the internal representation rather than by the original pattern. This figure is quoted
from [Rumelhart, 1986]. In the original figure, the flows are drawn in a vertical line.

between layers, which are interconnected by modifiable weights.

The function of units is often called neurons or cells because these
are based on properties of biological neurons. Each neuron computes the
weighted sum of its input z; to emit its output u; with weights w;; and its
nonlinear function of its activation, f.

m m
uj = ijixi +wjp = ijixi = wﬁ-x (7.4)
i=1 i=0

The function of its activation - activation function - is chosen according
to the desired training set, such as logistic function (sigmoidal function),
and hyperbolic tangent function and other arbitrary functions, however, the
differentiability is the only requirement of activation function.

fz) = m a0 (7.5)
f(z) =atanh(bz) a>0, b>0 (7.6)

In multilayer network, when an input signal @ are given to the network,
the signal of each output unit represents the discriminant function g ().

nH m
gr(@) =ye = f | D wiif (Z wjiT; + wj0> + wio (7.7)
j=1 =1

where the number of input units, hidden units, and output units denotes
m, ng, n, respectively. The interconnected weight between the input and
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hidden layer represents w;;, and the weight between the output and hidden
layer represents wy;.

Consider the training error on a pattern to be the sum over output units
of the squared difference between the desired output ; given as a teacher
signal and the actual output y,. The cost function F(t) is described as

l\.')lr—t

n
1
Ztk—yk :§||t—y||2 (7.8)

One of the most popular methods for training multilayer neural networks
is the backpropagation algorithm due to intuitive graphical representation
and the simplicity of design of models. It is also called that a natural
extension of the LMS algorithm and generalized delta rule.

Because the models are powerful and applicable for real world problems,
the backpropagation learning rule is widely used in many works [Bishop, 1995].
At the same time, the theoretical properties have also been studied so
far by many researchers [White, 1990] [Hornik et al., 1989] [Hornik, 1991]
[Hornik, 1993].

The backpropagation learning rule is based on gradient descent. The
weights are initialized with random values, and then modified so as to reduce
the training error step by step learning. The updating weights are described

as
oF

= Tow
where 7 is the learning rate, that is often a function of time, n(¢). This iter-

ative algorithm requires taking a weight vectors at iteration ¢ and updating
it as

Aw (7.9)

w(t+1) = w(t) + Aw(t) (7.10)

In the case of three-layered network, to start with the hidden-to-output
weights, wy;. eq. (7.10) can be re-written in component form

oF

—p— 11
"awkj (7.11)

Awkj =

wy; is not explicitly dependent on E. Therefore, eq. (7.11) can be described
using the chain rule for differentiation:

oF _ <6E> 8uk _ <6E 8yk> 6uk (7 12)

8’wkj - 6uk 8’wkj 6yk 8uk 8’wkj
where J, is defined as the sensitivity of unit &

OE  OF dyx

6 == = t - ! '1
K D Due D (te — yi) f' (ug) (7.13)
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The last partial derivative of eq. (7.12) is from eq. (7.4):

6uk

=h, .14
e = (7.14)

Bringing together these equations, the learning rule for the hidden-to-
output can be described as:

Awgj = ndghj =ty — ye) f'(ur)h; (7.15)

The learning rule for the input-to-hidden units is also described with the
delta rule. Calculate carefully the summation using the chain rule.

OF _ OF Oy 0ui

611in N 8hk 6vk 611in
— 0 1 - 2 PO N,
= <8hj lQ Ig(tk Yr) ]) fH(vj)z

n

= <— >tk — yk)f'(%)“}kj) f(vj)z; (7.16)

k=1

The sensitivity for a hidden unit is defined to be:
n
6]' = f’(vj) Z wkj5k (717)
j=1

Finally, the learning rule for the input-to-hidden units is summarized as:

iji = néjxi =N (Z wk]5k> f’(vj)xi (718)

=1

7.3 Distance Mapping Learning

The numbers of Euclidean distance between any two points of N points is
N(N —1)/2. In n dimensions, the distance d;; is defined as:

n ; 2
b =3 () — ) (719

k=1

The y,(;) represents the value of object 7 at k the dimension. However,
some objects are not satisfied with the formula of distance at all times. Such
objects often has redundancies, for example, subjective data. Therefore,
even by taking less notice of a strictly mathematical definition, to obtain
the data arrangement in possible low dimensions directly and approximately
using the relationship between each data must be important.
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Figure 7.3. Illustration of Distance Mapping Learning: The MLP(A) and MLP(B) are
the identical three-layered perceptrons whose weight coefficients are the same. Thus those
give the same mapping.

In this work, by using a new type of neural network, a method to con-
struct a non-linear mapping while keeping the distance between each data is
proposed, namely, Distance Mapping Learning (DML), which can rearrange
data in case that the only distance is given.

The purpose of the proposed method is to construct a non-linear map-
ping. Therefore, it is possible to obtain an evaluation about the relationship
of distance toward unknown data, which means the data that is not used at
the training process.

7.4 Neural Network Learning

The framework of the above-mentioned arrangement problem is formulated
as follows. In the m-dimensional physical feature space X, a pattern ¢ is
represented as vector ' = (z},x%,---,2¢ ). The target is to produce n-
dimensional vector outputs y* = (yi,4%,---,¥%), y/ € R" that preserve a
desired distance s;;(> 0) with regard to given inputs ' and 7 € R™.

The similarity s;; in human perception approximates Euclidean distance
dij between nonlinearly mapped patterns y*,y’ (=®(z'), ®(z’)) from phys-
ical feature space X. To solve the above problem, the following fitting value
W is minimized under a provisionally determined dimension order n.

W= 30 sy — dig)? (7.20)
(]

ly" — | (a)
dij = . . (7.21)
[@(x') — @(x7)]| (b)

where d;; denotes the distance between mapped vectors. The similarity
value s;; can be obtained by human evaluations by means of a question-
naire, i.e., a pair comparison method. The geometric arrangement in Eu-
clidean space is chosen because it is helpful for intuitive understanding of
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Input Hidden Output Layer

Distance Unit

Figure 7.4. Network structure: This model is available for non-linear mapping based
on the distance data. The Network A and Network B are the identical three-layered
perceptrons. This is named as Distance Mapping Learning network.

the data structure. In the conventional multidimensional scaling method
[Kruskal et al., 1978], the target is to minimize eq. (7.20) under the con-
straint of eq. (7.21)(b), not containing mapping function ® with input vec-
tor ®. Therefore, the arranged vector y does not have any relationship
with . However, the proposed method is to minimize eq. (7.20) under
the constraint of eq. (7.21)(b) so that nonlinear mapping function ® could
be derived from neural network learning. The diagram of the network is
illustrated in Figure 7.3.

7.4.1 Network structure

The structure of Distance Mapping Learning is shown in Figure 7.4. Net-
work A and network B are identical three-layered perceptrons. Two objects
A and B are required for the inputs to the networks. The outputs are the
semantic parameters of objects A and B. The nonlinear mapping between
the physical space an semantic space is therefore done by networks A and B.
The outputs of A and B are connected in parallel to unit C which calculates
the distance d4p in the semantic space. When xfl and :cZB are input, the
network outputs yzf4 and le from each output layer, respectively, while input
A 2B(i =1,2,---,m) are given. Each output vectors of networks
A, B can be of arbitrary dimensions.

In the learning process, rather than providing networks A and B with
absolute coordinates as a teacher signal, the semantic distance between the

vectors x
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inputs to network A and network B, s4p, is given.

7.4.2 Formulation

Error backpropagation algorithm Multi-layer perceptron (MLP) based
on an error backpropagation algorithm for minimizing the mean square error
is most popular [Rumelhart, 1986]. The least-squares learning and regres-
sion are discussed in [Geman et al., 1992]. This states that among all the
functions of x, regression is the best predictor of y given x, in the mean-
squared-error sense.

A training set (z',y'), (22,42)...(zP,yP)... is a collection of observed
(z,y) pairs. In other words, the pair (x,y) obeys some unknown joint
probability distribution.

To construct a non-linear function ®(x) based on the training set is
equivalent so that @ satisfies the desired output y. @ is generally determined
so as to minimize a given cost function. The learning process of a multi-layer
perceptron is described as:

(@) = [y - @) pla, y)dyda (7.2

where p(x,y) and ¢ denote the probability density function and mean-
squared error of ®(x) that represents a nonlinear functional of the neural
network, in which the goal of learning process is to minimize £.

Recalling Bayes formula and let @ = ®(x), the derivative 9s2(®)/00 is

calculated:

D~ Gl 1 -t vidyad]

= [ -2y - Owlwle)[ [ p(e)de]dy

= [ -2y - Olyle)dy

- _2V yp(yl)dy - [ Opyle)dy| >0 (7.23)

eq. (7.22) that is a simple quadratic formula regarding ¢ is delivered by
probability distribution y conditioned by @ :

i = ®o(@) = [ yp(ylo)dy (7.24)

Distance mapping learning On the other hand, the proposed neural
network differs from the conventional MLP in which the desired distance
between input data is given as a teacher signal. The mean-squared error ¢
is described as follows with probability density function p(z?, 2P, s) where
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s denotes the desired distance between (24, 2?), which may not be a deter-

ministic variable even though x* and «? are determined.

@) = [

As well as the above operation, the derivative 9¢%(®)/08 is calculated:
W i
A

= /(—23;d> (20‘4) p(s|z?, B)[/p(mA)da:A] [/p(mB)de]ds

_ _4[/ (% - 1) OAp(s|:13A,a:B)ds] 0 (7.26)

From this, a simple relation is delivered regardless of ¢ and probability
distribution s conditioned by x# and z?:

p(a:A xB s)dx*dxBds (7.25)

p(z?, z?, )d:cAd:chs}

Sij — z]

) (26%) plsla™, 2P )p(a*)p(a®)da daP ds

d—s (7.27)

Note that the proposed method is independent of linear transformation
and rotation in output space. Because the network that is trained by the
relative distances, these transforms can be applied without missing the prop-
erty.

dij(P(x'), @(@”)) = [|®(x") — @ ()] . (7.28)
— [(A®(a') + B) — (AB(2’) + B)|  (7.29)

(A: rotation matrix, B : translation matrix)

7.4.3 Learning rule

The connection weights in networks A and B are tuned to make the distance
dap close to teacher signal s4p. The sigmoid output function is used for
each neuron, and a modified back propagation method is applied for the
learning. Networks A and B start from the same initial connection weights
and are trained in the same manner to give the same mapping.

The learning rule is described below. The cost function of DML Ejy is
defined as follows:

Eq= zn:(SAB — dap)*/2 (7.30)

n

dap = | D (it —yf)? (7.31)
k=1
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Updating the connection weights in each iteration is performed as fol-
lows:

0FEy
Awj(t+1) = aaww

+ nAw;;(t) (7.32)
where a and 7 represent the learning parameter and the momentum, respec-
tively.

In this case, since w;; is not explicitly dependent on FE, the equation
should be re-written using the chain rule for differentiation. Moreover, yy
is either dependent on E explicitly, but dependent on d4p in this network.
The above equation is therefore described as:

0F, _ XR: (8E’d> Odap 3y;c4
8wij k1 8dAB 8y,‘3 8wij

< 0FE, > Odap 3ka
+ B
Odap Yy, Ow;;

- (—(SAB ) S — D )

k=1 v
¢ A B 3@1?
+ _(SAB—dAB)Z(yk — )" T Dw.
k=1 t
n B
_ Y WYy
= —(saB —daB) z:: (8%] s, (7.33)

The partial derivative 6y /Ow;; and 6yk /Ow;j are calculated as the
conventional backpropagation algorithm as described in 7.2:

391’3 1 Ayg A 391? 1/, B\1.B
5 = i = ; .34
gu =Wy GO = )] (7.34)

For describing the learning rule simply, the sensitivity 6,;4, 6P is defined
to be:

5 = (sam - dap) S it — yP)F (uf) (7.35)
k=1

57 = (san—dan) (0 — ) (Wh) (7.36)
k=1

The learning rule for hidden-to-output units is finally described:

Awy; = a(0ih] — 67 RY) (7.37)
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The learning parameter a and the momentum 7 are empirically chosen
for the stable convergence.

The network does not need absolute coordinates as the desired output,
only the desired distance between input data. It should be noted that the
structure and initial condition of network A and network B is identical, while
the number of cells in the output layers of network A network B can be set
arbitrarily, depending upon the structure of the required semantic space.
In the present work, experiments are carried out with two-dimensional out-
put space. FEuclidean distance is used as a teacher signal. In this frame-
work, this approach is basically similar to Sammon’s nonlinear mapping
[Sammon, 1969] and realizes the algorithm by a modified multilayer percep-
tron.

7.4.4 Visualization of the mapping aspect

%]

Figure 7.5. An aspect of the obtained mapping by distance mapping learning: In the
left figure, the significance of X and Y axis is not determined.

Figure 7.5 shows an example of non-linear mapping with four points
that consisting of a triangle and the center of gravity. In the left figure, the
significance of X and Y axis is not determined. It is possible to determine
the significance according to the purpose of use. From now, the space is
named as initial coordinates space. While, the right figure shows a non-
linear mapped space by the proposed method. The space is named as a
mapped space or description space.

In the initial coordinates space (left figure), objects B, C' and D are
arranged at each corner square, and A is arranged at a down half of side from
the other square. These four points are used for the training of the network.
F is not used at the training phase. The teacher signal is respectively given
to AB, BD and DA so that A, B and D could form a regular triangle.
The relation of distance with regard to C' are then given in order that C' is
arranged on the circumcenter of AABD.

In the arrangement of initial coordinates space, the position C' is put
at the outer side of AABD. Therefore, the space around C' is expected to
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Training set Test set
Flute* Clarinet
Classic Guitar* | Tenor Saxophone
Violin* Fagotto
Oboe* Harmonica
Trumpet* Euphonium
Trombone* Tuba
Cello* Horn
Piano* Electric Guitar
Cembalo* Harp
Contrabass
Viola
Organ
Accordion

Table 7.1. Training and test data set with musical instruments, totally 22 sounds: The
9 sound of musical instruments marked * are used for learning in the experiment.

be strained inside. In the initial coordinates space, distances of all sides at
AABD are different from each other, and have the relation BD > AB >
AD. Since the distance B'D' = A'B’ = A'D is given as teach signal at
the training process, the different aspects of constriction are shown in the
left figure along each side. Moreover, when an unknown data FE is given,
it is rearranged onto E’ of the right figure. E was on the line BD in the
initial coordinate space. However, mapping of C' makes an effect on E that
mapped onto the inside of AABD. In this way, the proposed neural network
enables the evaluation toward such an unknown data.

An experiment with a real data set was then conducted. Figure 7.6 il-
lustrates a result with the sound of musical instruments [Suzuki et al., 1997].

The first step is to extract the feature parameters from the sounds. 9
sounds are used as the example data to train the neural network. The sounds
are digitized into 16bit digital value at the sampling rate of 44.1kHz. The
duration of one sound is about 1.5 seconds to make 65,535 digital data. The
data is divided into 125 frames. The length of frame is 2048(46ms). Every
frame overlaps by 512 words(11.5ms). FFT (Fast Fourier Transformation)
is performed for every frame data to obtain the spectrograph. The sound
spectrograph is divided into 8 x 16 parts; 8 parts along the time axis, 16
parts along the frequency axis. Total power z; in part ¢ {i=1,2, ... , 8x16} is
used as the primary sound features. Therefore a sound data is characterized
by a physical feature vectors of 128 dimensions.

X(n){xl,xg, ...,.%‘128}

zi= Y ptf) (7.38)
area(a,B)
a=1,2..,8
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M : Trained Sound data
@ : New Sound data

y Trumpet - Basson
Organ Horn | [ ]
Violin
Tenor Sax
Cembalo
Flute
Tuba
Y m Trombone
® Harp
| Classic Guitar
Oboe
Accordion
Cello —® - Harmonica
. ——

._ Electric Gui ]
x Contrabass Piano

Figure 7.6. An arrangement of musical instruments: This is also an aspect of the obtained
mapping by distance mapping learning.

3=1,2,..,16

To reduce the feature vector dimension the Principle Component Analysis
(PCA) is introduced. The QR-law using a covariance matrix is adopted to
calculate numerically. Sound data can be represented by using the principle
component scores. The valid dimension p of principle components is deter-
mined so that the cumulative distribution rate is more than 95%. Therefore
sound data can be represented by the vector { P; ; i=1,2,..., p} which consists
of principle component scores as shown in eq. (7.39) where e;; denotes the
eigen vector element of jth principle component. The distribution rate of
the first principle component was 61.5%, and that of the second component
was 25.9%. And four principle components could satisfy the cumulative
distribution rate 95% of the source data.

S(n){Pl,Pg, ceey Pm}
8x16
F’i = Z €ijLj (7.39)
j=1

The second step is to construct the rule of non-linear mapping based on
comparisons between the sound data. The evaluations of a subject toward
10 musical instruments is used as teach signals. The subjects have no special
knowledge on music.

The learning time using these data took about 300 seconds CPU time
on Pentium III computer. From a result of the first experiment, an emo-
tional sound space can be obtained according to the data of subjects. After
the learning, the rest 12 data which were not used in learning, are mapped
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into the emotional sound space to examine the appropriateness of the ob-
tained mapping function. The mapping results were almost the same as the
arrangement using a multidimensional scaling method (MDS).

The third step is to consider the case of new data. This means that
it is not used on learning. Above-mentioned 22 instruments are illustrated
in Figure 7.6, namely 'Emotional Sound Spaces’. Since the network has
ability to map continuously, such new sound data can be arranged on the ob-
tained emotional space. It should be noted that the mapped axes are repre-
sented in the figure where two distorted lines correspond to the accentuated
axes in the original feature space whose axes correspond to principle compo-
nent. In these figures after mapping, each axis mean renew axis to evaluate
sound from emotional information. Noted that the proposed method will not
only give the similar measure as in MDS method but also map a new sound
in the obtained emotional space, which is a great advantage comparing with
the conventional statistical methods.

The experimental result shows that human evaluation towards sounds
is not always determined according to the instruments type such as wind
wood, brass, and strings, but is inclined to focus on the pitch. It can be
seen that the pitch of the instrument is higher in the top-left area, while is
lower in the bottom-right area.
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7.5 Model of Facial Expression Perception

Many research studies have been reported so far concerning the relation-
ship between a facial expression and its impression, especially in the field of
psychology, cognitive science and engineering, for example, [Ekman, 1992].
Facial expression has several physical features such as the shape and location
of each facial part, the skin color and the wrinkles. Non-verbal communi-
cation takes place by perceiving and generating his/her emotional facial
expression. Humans can guess another person’s mental state and emotion
according to the movement and posture of facial expression.

To judge and categorize emotional facial expressions have long been a
research subject, mainly in experimental psychology. It is well-known that
Schlosberg [Schlosberg, 1952, Scholsberg, 1954] proposed a three-dimensional
theory of facial expressions, which states that facial expression is located
along three scales: pleasant - unpleasant, attention - rejection, and sleep
- tension. The low-dimensional semantic space is composed of the high-
dimensional physical features of the face. In such a research, the method
of measuring the human impression of facial expression is usually done by
means of questionnaires. The facial expressions are arranged onto a low-
dimensional semantic space using statistical methods. The analyzed result,
however, does not contain the relationship between the physical features
and the impression parameters. There have been few research studies con-
ducted to relate the physical features of facial expression into its impression
parameters. In such a case, a neural network is appropriate for acquisi-
tion of nonlinear mapping between qualitatively different data. The non-
linearity in the perceptional processing of humans, which is regarded as
a sensitive or intuitive process, can be effectively performed using a mul-
tilayer perceptron classifier [Zhang et al., 1998]|[Padgett et al., 1997], com-
pared with conventional statistical approaches which are based on linear
functions [Russell et al., 1985][Katsikitis, 1997].

A modeling of the human perception of facial expressions is conducted for
the evaluating the performance of the distance mapping learning network.
Note that an element of semantic space corresponds to the output space
of the proposed neural network, where the distance is measured by the
similarity (similar - dissimilar) via facial expression perception. In other
words, this is a new method of treating symbolic values such as similarity.

Some similarity-based learning methods have been reported, for exam-
ple, a similarity-based distance is used, for instance, for image database
organization [Squire, 1998], the classification method [Duch, 1997]. How-
ever, the proposed method differs from these approaches in the training of
the network. In particular, the network is trained by a pair of inputs and
their distance, a similarity value, between given inputs.

The obtained human judgment of facial image is employed to create a
reduced feature space that is derived from the input feature space. The
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Figure 7.7. The concept of interrelationship and the structure of the learning network:
Both of the upper and lower figures correspond to each other. Parameters in Physical
Space is input to Network A or B. Outputs of Network A or B are then semantic param-
eters in Semantic Space. By a reproduction network, Network D, an inverse mapping is
constructed with multi-layer perceptrons.

human impressions of faces can thus be visualized by the mapped physi-
cal facial parameters onto the constructed two-dimensional semantic space.
Additionally, by obtaining the inverse nonlinear mapping, facial expressions
can be reproduced from the semantic parameters.

7.5.1 Interrelating modeling

The characteristics of the proposed interrelation model of facial expression
perception are summarized as follows:

1. The interrelating between the perceived physical feature of a face and
its impression is regarded as a nonlinear mapping.

2. The mapping rule is determined by the desired distances between any
two given inputs.

It is proper that human impression of a facial expression is caused by
the perceived physical feature of the face. A human’s impression is usually
obtained by means of questionnaires. Humans, however, cannot arrange a
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facial image onto an absolute coordinate in the semantic space. Therefore,
the common way is to represent data with an adjective pairs questionnaire.
In addition, the simplest way is a pair comparison method, in which each
subject scores a similarity value while two data are shown. In both cases, the
tested sample data are arranged in low-dimensional space by the obtained
human judgment. The axes of this space conventionally refer to the principal
components which are calculated by a particular statistical method.

Unlike those methods, this approach aims to solve the arrangement prob-
lem by a nonlinear mapping between the facial physical feature space and
a low-dimensional semantic space utilizing a distance-based neural network.
Data such as human judgment are often noisy and redundant. In such cases,
it can be important to obtain the arrangement in a low-dimensional space.

The proposed system consists of two stages: (1) construct the semantic
space and (2) reproduce facial expression from its semantic parameter. The
neural network in the first stage which is called Distance Mapping Learning
(DML) consists of three parts, networks A, B and unit C. Network D in the
second stage is called the reproduction network.

The reproduction network, network D, is an identical three-layered per-
ceptron, which is connected to network A or network B. The sigmoid output
function is used for each neuron, and the back propagation method is ap-
plied for the learning. The input of the reproduction network is used as the
output of network A (or B). The teacher signal of the network corresponds
the input data of network A (or B) so as to obtain a nonlinear inverse map-
ping from the semantic parameters to the physical feature parameters in
order to reproduce the facial expression.

The proposed network differs from a sandglass type neural network in
updating the weight. The reproduction network is trained once after DML is
converged. Thus the whole input space of DML that represents any possible
facial expressions can be mapped onto the semantic space. The reproduc-
tion network is then trained in order to construct an inverse mapping to
reproduce physical feature parameters.

7.5.2 Description of facial expression

As for the description of facial expression, FACS (Facial Action Coding
Unit) [Ekman et al., 1978] became popular, and the related studies have
been reported in the engineering field as well as psychology. This method
enables us to describe any facial expression with 44 kinds of Action Units
(AU) that are related to the movement of facial muscles.

In the present work, we, however, adopted a line drawing facial model,
that is an abstraction of facial expression, proposed in [Yamada, 1993a,
Yamada, 1993b] as a set of typical physical features of facial expression. It
consists of nine physical facial parameters, which correspond to facial move-
ments such as raise/lower of inner/outer eyebrows, eyes and upper/lower
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Figure 7.8. A line drawing model of facial expression proposed by Yamada
[Yamada, 1993a]. The nine parameters indicated by P; are used to generate an image
of facial expression. The movement of each parameter which is allocated to the eyebrows,
eyes and mouth changes the intensity of facial expression.
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Figure 7.9. Six fundamental emotional faces: Each alphabet letter corresponds to one
in the following experimental results. The correspondences of the rest of the alphabet is
referred to in [Yamada, 1993b].
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Configuration DML RN
Parameters
Learning parameter « 0.4 0.25
Momentum 7 0.3 0.3
Number of Cells
Input Layer 9 2
Hidden Layer 12 9
Output Layer 2 9
Learning
Error limit 1x107° | 1x107°
Instance 21 21

Table 7.2. Parameter configuration in the experiment for the analysis of facial expression.
DML, RN represent Distance Mapping Learning and Reproduction Network, respectively.
The results are illustrated in Figure 7.10, Figure 7.11.

lips as illustrated in Figure 7.8. Each face has line symmetry with respect
to the vertical central line on which the nose is located and fixed. Each
feature point is consistently connected to the others, introducing the Spline
interpolation.

Using this line drawing model, six faces of typical emotional categories
such as happiness, anger, disqust, fear, surprise and sadness are acquired
on the average of images drawn by 36 subjects in the previous work (see
[Yamada, 1993b]. Subjects moved the feature points of Figure 7.8 in order
to create the desired emotional face. Figure 7.9 shows the six fundamental
emotional faces, where each letter indicated on each face corresponds to one
in the later experiments.

Twenty-one physical facial expressions are then provided that include
fifteen in-between images of each emotional face in addition to the above six
fundamental faces. The mean image between the two categories is made by
the average of each parameter.

The line drawing model focuses not on multiple shapes of the face but
on the essential expressions. The advantage is the ease of quantitative op-
eration. Unlike FACS that contains redundancy due to the facial muscle
system, this model can operate directly with the geometrical features of
facial expression.

The input layer of the network has nine neurons corresponding to nine
feature parameters of a facial expression, xz(k) (t=1,2,---,95k=1,2,---,21).
Twenty-one prepared facial expressions, which consist of six fundamental
images; happiness, anger, disqust, sadness, surprise and fear, and fifteen in-
termediate images of these, are used as input patterns. A semantic distance
which is obtained in advance by calculating adjective pairs scores is used as
the teacher signal in this experiment.

The numbers of neurons in the hidden and output layer of networks A
and B are set to 12 and 2, respectively. The learning parameter « is 0.4, and
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Figure 7.10. Twenty-one faces arranged on the semantic space: The figure was modified
with the translation and rotation of the axes so that the horizontal and vertical axes could
correspond to pleasantness and activity, respectively.

the moment 7 is 0.3. When the error is smaller than 1 x 107>, the training
of the network is terminated. The average iteration was in the order of ten
thousands.

After the training of DML is completed, the reproduction network enters
the training phase. The number of neurons in each layer of network D is set
empirically to 2, 9, 9, respectively. The learning parameter « is 0.25, and
the moment 7 is 0.3. When the error is smaller than 1 x 107>, the training
of the network is terminated.

Figure 7.10 shows the obtained semantic space. Each coordinate of
the letter represents the output vector of the DML network, y* (or y?).
The figure was modified with the translation and the rotation of axes so
that the axes could correspond to those extracted by previous research
[Yamada, 1993b]. In this figure, the horizontal and vertical axes roughly
correspond to pleasantness (pleasant-unpleasant), and activity (low-high),
respectively. Each letter corresponds to each facial expression image in Fig-
ure 7.8. The correspondence of the rest of the alphabet letter is referred
to in [Yamada, 1993b]. The numeric character represents each physical axis
which corresponds to a feature parameter axis of the facial expression model.
The intersecting point is the origin in the physical feature space, which cor-
responds to the neutral (base) face shown in Figure 7.8. The nonlinearly
mapped axes of the physical feature can be shown in the semantic space.
With the aid of the generalization ability of the neural network, any given
artificial facial expressions are mapped onto the semantic space.
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Figure 7.11. Estimation of reproduced faces: estimated faces are illustrated in the
bottom of figure. Faces X and Y are estimated from a coordinate near E (Anger) and C
(Surprise), respectively.

7.5.3 Reproduction network

Inverse mapping can be constructed by using a multi-layer perceptron with
the back-propagation rule, presenting data in the semantic space as input
and data in the physical feature space as output. The upper part of Figure
7.7 shows the description of the neural network and the concept of the
proposed model that contains the bi-directional correspondences between
the physical and semantic spaces.

An example of the estimated facial image by the reproduction network
is illustrated in Figure 7.11. The letter indicated with X, Y around E
(Anger), C (Surprise) are coordinates in the semantic space. The reproduced
faces from these locations that are shown in the bottom part of Figure 7.11
can be recognized as faces in each emotional category. Even if the network
with the training set of the line drawing model is used, the mapping result
shows good performance with a real image set due to the generalization
ability of the neural network.
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a) Caucasian

b) Japanese

Figure 7.12. Examples of real image sets of Japanese and Caucasian facial ex-
pressions: images are extracted from JACFEE and JACNEUF facial image database
[Biehl et al., 1997].

7.5.4 Application to a real image set

In this experiment, the proposed model with a real image set has been eval-
uated. The input of the network is facial stimuli of a real image, consisting
of an expression of neutrality and happiness by one male Caucasian and one
female Japanese, from the JACFEE and JACNEUF facial image database
[Biehl et al., 1997], as illustrated in Figure 7.13.

The upper and lower lines show a male Caucasian and a female Japanese,
respectively. The leftmost figure in each line shows a neutral expression,
while the central figure presents an expression of happiness. Each right
image is each facial image along the line drawing model according to the
center figure. The nine feature points of each figure are obtained by a
manual process. The differences between neutrality and happiness are thus
used as the feature parameters of the facial expression of happiness.

As shown in Figure 7.13, both the Caucasian and Japanese facial im-
ages indicated double circles which are mapped onto the semantic space. It
can be seen that these faces are arranged in close to the coordinate of Hap-
piness. The same mapping rule of the neural network as shown in Figure
7.10 was used for evaluation in this experiment.

7.6 Performance in Multi-Class Classification Prob-
lems

In this section, a method of multiclass classification by utilizing a distance
mapping learning network is proposed. The network can obtain the non-
linear mapping between the input objects and the outputs by providing
a pair of objects and the desired distance between them. It thus realizes
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Figure 7.13. Application to a real image set: Both Caucasian and Japanese facial images
are indicated by double circles which are mapped onto the semantic space. The learning
set to construct the semantic space is the same as in Figure 7.10 in section 7.5.2.

multiclass classification based on pairwise classifications iteratively. The
validity of the model with two classification problems will be shown, e.g.,
Iris classification and facial expression classification.

To date, a number of techniques of multiclass classification have been
proposed. In the conventional classification problems, one tries to distin-
guish between two (or more) classes of objects, and most methods try to
estimate the probability density of the target set. On the other hand, a
powerful and effective method of two-class classification is proposed such as
Support Vector Machine [Vapnik, 2000]. One approach to classify multiple
classes is to combine two-class classifiers. Another approach has been re-
ported about multiclass classification by combining one-class classification
[Tax et al., 2001] that tries to distinguish between a set of objects and all
other objects. In these cases, although one can choose the classifiers so as to
adapt each two-class classification of target set, the number of class is given
or provisionally has to be set. However, it is often impossible or difficult to
know the number of class in the real-world problem.

In this section, a method of multiclass classification by utilizing Distance
Mapping Learning network will be described. The network can obtain the
non-linear mapping between the input objects and the outputs by providing
the desired distance between the objects, not the desired output. The desired
distance represents the similarity between the input objects. The network
thus realizes multiclass classification based on pairwise classifications.

By comparing to other existing methods, the proposed method differs
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Configuration Setting
Parameters
Learning parameter « 0.3
Momentum n 0.2
Scaling parameter p 0.6
Number of Cells
Input Layer 4
Hidden Layer 6
Output Layer 2
Learning
Iteration 10,000
Instance 75
Test Data 75

Table 7.3. Parameter configuration in the experiment for Iris classification. The result
is illustrated in Figure 7.14.

from these approaches in the training of the network. It should be noted
that the proposed model can deal with classification for an unknown number
of class. Only by presenting a pair of objects and the desired distance, the
network can map the objects onto the output space of arbitrary dimensions,
which is regarded as data description space. In this section, an application
to multiclass classification with some experimental results will be shown.

7.6.1 Iris classification problem

In this experiment, the proposed model is applied to Iris Classification prob-
lem [Fisher, 1936]. An Iris flower that has 4 attributes (length and width of
the flower’s sepal and petal) is classified into one of three classes (Iris-Setosa,
Iris-Versicolor, Iris-Virginica). One class is linearly separable from the other
two classes; the latter are not linearly separable from each other.

In the learning phase, a pair from 75 instances (contains evenly three
classes) and the teacher signal s 4p as described below are given for training
the network.

SAB = { 2 (p>0) (7.40)

where p represents the scaling parameter that is the scale of the distance
between two classes, A and B. If a training pair is chosen from the same
class, the teacher signal is set to 0.0. While, if they are chosen from different
classes, the value is set to p. In this experiment, p is set to 0.6. The number
of cells in the input, hidden and output layers are 4, 6 and 2, respectively.
The learning rate is set to 0.3, and the momentum is set to 0.2. After training
the network, the model holds a non-linear mapping from 4 attributes of Iris
flower to 2 dimensional output space.
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Figure 7.14. Performance of Iris Classification: x-axis and y-axis represents yo and yi,
respectively, that corresponds to the cells in the output layer. The dotted center line was
added afterwards.
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Figure 7.15. Generalization ability of the model in Iris Classification: Displaying the
Voronoi diagram (lines) with regard to the spot of each class gives an indication of the
class.
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Figure 7.15 shows the mapped objects in the two dimensional output
space after the 10,000 iterations. The objects are clearly classified into
three classes, and the center point of each class (called spot) forms a regular
triangle.

In order to verify the generalization ability, experiments with test data
that are not used for the training will be carried out. 75 test data are
mapped onto the output space as illustrated in Figure 7.17. Displaying
the Voronoi diagram with regard to the spot of each class gives an indication
of the class. The Voronoi diagram has the property that for each spot, every
point in the region around that spot is closer to that spot than to any of
the other spots. Although the network does not give the identification of
the class, the aspect of classification can be displayed with the aid of the
diagram.

7.6.2 Facial expression classification

The proposed model is applied to facial expression classification.

A line drawing model [Yamada, 1993b] of the facial expression and five
facial images of typical emotional categories such as happiness, anger, fear,
surprise and sadness are used for the classification problem. The learning
object is the same figures as Figure 7.9.

In the learning phase, a pair from 50 instances (contains evenly five
classes) is given for the training. The scaling parameter p is set to 0.6.
The number of cells in the input, hidden and output layers are 9, 12 and 2,
respectively. The learning rate is set to 0.3, and the momentum is set to 0.2.
Figure 7.16 shows the mapped objects in the 2 dimensional output space
after the 30,000 iterations. It can be seen that the objects are classified into
five classes, and the spot of each class forms a deformed pentagon. In case
that the number of spot becomes more than four, every spot that have a
constant distance to other spots cannot be arranged on 2 dimensional space.
Therefore, the training of the network is terminated when the number of
iteration steps becomes 30,000 in this experiment.

Figure 7.17 illustrates 50 test data that are mapped onto the output
space. The Voronoi diagram is also displayed as well as the previous ex-
periment. The result proves that the trained network holds a non-linear
mapping from 9 attributes of facial expression model to 2 dimensional out-
put description space.

7.7 Modeling of Individual Perception

An attempt to create an individual model for each subject is described in
this section. The difference in semantic space among subjects has been in-
vestigated. As an evaluation of the impression of facial images, the data is
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Figure 7.16. Performance of facial expression classification: Displaying the Voronoi
diagram (lines) with regard to the spot of each class gives an indication of the class.
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Figure 7.17. Generalization ability of the model in facial expression classification: x-axis
and y-axis represents yo and yi, respectively, that corresponds to the cells in the output
layer. The dotted center line was added afterwards.
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Configuration Setting
Parameters
Learning parameter « 0.3
Momentum n 0.2
Scaling parameter p 0.6
Number of Cells
Input Layer 9
Hidden Layer 12
Output Layer 2
Learning
Iteration 30,000
Instance 50
Test Data 50

Table 7.4. Parameter configuration in the experiment for Facial Expression Perception.
The result is illustrated in Figure 7.16.

obtained by means of a pair comparison method. On showing a pair of fa-
cial images from six fundamental emotional facial images as shown Figure
7.9, each subject marks the score for each pair in the seven-scaled seman-
tic differential method (dissimilarity, 1: most similar, 7: dissimilar). The
obtained data are normalized to 0-1 values as the teacher signal. The total
number of test sets is 15 (4C2). 30 subjects (23 male / 7 female) are mostly
graduate/undergraduate students (21-32 age) in our laboratory.

The numbers of neurons in the hidden and output layer of networks A
and B are set to 12 and 2, respectively. The learning parameter is 0.4, and
the moment is 0.3. When the error is smaller than 1 x 10~°, the training of
the network is terminated.

Figure 7.18 shows the difference in individual semantic space. In Figure
(a) three arrangements, of which one is the mean score of the subjects,
and the other two are examples that have representative forms as shown
in Figures (b) and (c) are illustrated. Each letter corresponds to one in
Figure 7.9. A similar trend can be seen with respect to the arrangement of
facial images except for the coordinate H (Disgust). This result supported
the belief of that the facial expression of Disgust is one of the ambiguous
faces from the psychological point of view. A certain measure of relationship
between the physical features of the face and its impression can be seen in
addition to subjective characteristics.

The mapping aspect demonstrates individual differences. For example,
comparing between Figures (b) and (c), although the difference in the ar-
rangement is just face H, the mapping aspect is quite different. In this
manner, visualizing the mapping aspect allows us to have a holistic inter-
pretation in addition to the evaluation of each facial expression.
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Figure 7.18. Comparing obtained semantic spaces of individual subjects: (a) combined
three arrangements; the mean result of all subjects and two distinguishing subjects whose
results are illustrated in (b)(c) with the mapped axes.
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(a)

Figure 7.19. The mapping aspect demonstrates individual differences: the three ob-
tained map are overlapped in this figure. A similar trend can be seen with respect to the
arrangement of facial images.

7.8 Discussion

With regard to the structure of the proposed neural network, the proposed
distance-based learning has some distinguishing properties compared with
conventional multi-layer perceptrons. The convergence is relatively stable,
but the converged arrangement often depends upon the initial conditions of
weights due to the characteristics of the network. Although the Euclidean
distance is given as a teacher signal in the present work, the algorithm
allows any other distance metric such as norm distance on Mahalanobis’
generalized distance. The influence of non-Euclidean distance functions is
also considered. In the framework of the proposed network model, nonlinear
mapping obtained by network A or B is constrained by the distance metric
in unit C. The analysis of the obtained manifold is one further consideration.
The issue is that unit C is replaced with a multilayer perceptron so that the
metric can be trained for given training sets.

The relationship between the number of training sets and errors is il-
lustrated in Figure 7.20. In accordance with the number of training sets,
the mean squared error increases since the output space is limited to a
two-dimensional space. The figure thus shows the reliability of the output
dimensions. As the result of the same experiments with different learning
sets, a similar trend can be seen in any case.

Also, a method of multiclass classification by utilizing Distance Map-
ping Learning network is described in this section. The notable point is
the method to obtain a nonlinear mapping between input data and the de-
scription parameter by using a neural network model in which the desired
distances between the input pair are given as a teacher signal set. The novel
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Figure 7.20. Relationship between learning error and number of training sets: The
learning set to construct the semantic space is the same as that in Figure 7.9 in section
7.5.2.

aspect of the proposed method is that the number of class is not needed for
the classification.

Further consideration is to apply the proposed method to the categorical
perception of facial expressions [Etcoff et al., 1992]. The analytical evalua-
tion of the network is one of the future issues. Although the Fuclidean dis-
tance is given as a teacher signal in the present work, the algorithm allows
any other distance metric such as Hamming distance, city-block distance
and Minkowsky distance. The influence of non-Euclidean distance functions
will be also considered.

7.9 Conclusion

The interrelation between the physical features of a facial expression and its
impression is realized by obtaining both physical-to-semantic and semantic-
to-physical mappings. A method to obtain a nonlinear mapping between
physical and emotional quantity has been introduced using a neural network
model in which the semantic distances between input data are given as a
teacher signal set.

Also, an application to display an artificial facial expression and a se-
mantic space has been developed. The system allows users to modify the
facial expression by a mouse operation and to show its correspondence in
the semantic space.

The proposed method has been proved to deal with a real image set with
the same approach. The categorical perception of facial expressions is one of
further considerations; for example, this is discussed in [Etcoff et al., 1992].
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Of future consideration is the proposed system for judging human facial
expressions, automatically extracting the particular feature parameters of
the face. In addition, the acquired bi-directional correspondences between
physical and semantic spaces can be applied to the semantic recognition and
generation of facial expression.






Chapter 8

Conclusion

8.1 Summary of Results

The author states the arguments of these studies made in this dissertation
with some keywords.

Development of a Humanoid Robot iSHA

- These studies are much stronger with actual experimental results.

- By differentiating the processing between physical and intelligent interac-
tions in the mechanical level, the experiment showed the emergence of a
sophisticated and integrated type of behavior.

- The control command for the robot comes from two lines, which means
providing two independent operating systems inside the robot. This char-
acteristic is very important from a safety point of view.

- A time trace showing activation levels of different behaviors, annotated
with verbal descriptions of human stimuli.

Music-Based Human-Robot Interaction

- Three styles of interactions have been investigated, based on the modeling
of the human-machine-environment. These studies are also much stronger
with actual experimental results.

- Since users can provide intention to a robot with his actions, a new style
of possible music generation can be provided. The embodied interaction
between humans and the robot has opened the next stage of human-
machine collaborative musical performance.

- The MIDI Network allows users to easily associate the relationship be-
tween the input and output modules, not only for music generation but
also behavior coordination.

- Sub-systems inside the robot perform in parallel with multimodality in
the real and continuous worlds.
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Kansei Quantization

- A new method of Kansei quantization is realized by the model of distance
mapping learning. The proposed method extended the multidimensional
scaling method scheme.

- By applying an individual data set on impression to the developed system,
visualization of the nonlinear mapping can be used for the measurement
of differences among individuality and characteristics common to all.

- New data that are not used in the training in the network can also be
evaluated by the generalization ability of the network.

8.2 Contributions

The contributions made in this dissertation are summarized as follows.

Intuitive Robot Operationality: The developed robots described in this dis-
sertation has been presented to the public at a number of demonstrations.
In various scenes, people successfully interacted with the robot without any
pre-knowledge of operating them. It is considered that the intuitive control
of the robot have contributed to this operationality criterion. For instance,
shaking hands and reactions to sounds are sufficient for users to easily and
intuitively interact with the robot.

Diversity and Redundancy: With regard to the interaction with the robot
iSHA, people can express his/her intentions to the robot in different ways.
For example, there are various ways to draw its attention: 1) handclaps
(making sounds), 2) Showing an object, 3) By speech, simply say ”turn
left /right, please.” 4) Grasping its hand and pulling it closer, and 5) Pushing
the body and making it turn around.

People can choose these ways according to the purpose of use and scene
setting. This is an important requirement for realization of natural interac-
tion. When one wanted to lead the robot to a specified location, the easiest
way is to take it by the hand, or to force it to there by pushing its body.
However, there may be a situation where one has something in their hands,
and it is difficult to accomplish the given task with physical contact. In
that case, one may need to operate the robot by speech or sounds. In this
way, diversity and redundancy are constitutive and important features in
multimodal interaction, which enables the machine to achieve a given task
by different ways through multimodality, despite an easier way to achieve
the given task.

Safety Factors: In case of errors in the installed control mechanisms in the
operating system, or unexpected events occur, it is effective and true to
stop its motion with physical contact by hand. The layered architecture
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start / goal (main auditorium)

~E robot's trace

(audience) 50m

Figure 8.1. Robodex2002 demonstration. (Pacifico Yokohama, from Mar. 27th - Mar.
31st, 2002. iSHA appeared in Robot Parade during the exhibition.

enables people who interact with the robot to limit activity in the robot
while other types of behavior are operative . Also, when the robot failed
to track the object using its head, humans can help the robot to find it by
turning it around with physical contact. Considering that the robot has
multiple operating systems and control paths, the robustness of the system
is enhanced.

Robustness and Dependability: The humanoid robot iSHA was successfully
demonstrated at a special exhibition, Robodex2002, with a human partner.
In fact, it had with only 1 failure, the embedded battery died during the
demonstration. Figure 8.1 illustrates the demonstration stage. The dashed
arrow is a trace of the robot, where a human partner brought the robot
around by pushing it to turn around, and grasping and pulling its hand to
lead it to a specific location. She was a person untrained in robot control
before. However, after being lectured for a few minutes, she successfully
performed the control, rather ”lead” the robot. Other robots on the stage
were not led by any human partners, but operated by remote-control or
behaved in preprogrammed way. Sufficient evidence of the robustness and
dependability of the robot are seen in the experimental results.

Synthetic Approach to Kansei Interaction: The effective mobile robot plat-
forms in multimodal artistic environment for music and dance performance
have been introduced. The proposed approach to equip musical instruments
with an autonomous mobile ability will provide a new computer music per-
formance in the real world. The developed system enables one to reflect
environmental visual and auditory information around the human and the
robot for the creative and dynamic performance. Since the users can provide
their intention to robot by action, a new style of possible music generation
can be provided. The author considers that the system has the capability
of creation in the virtual world to extend robot control in the real world.
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New Method of Kansei Measurement: This approach utilizing non-linear
mapping delivered good results in terms of fitting rate compared with the
conventional statistical analysis. In addition, new data which are not used
in the training in the network can also be evaluated by the generalization
ability of the network. It is considered that the proposed method can extend
the scheme of the multidimensional scaling method. Also by applying an in-
dividual data set on impression to the system, visualization of the nonlinear
mapping is used at an early stage to measure differences among individuality
and characteristics common to all.

8.3 Further Consideration

The author concludes by addressing the further consideration with the fol-
lowing four arguments.

Machine Vision Many studies on a robot vision system have been em-
phasized, which aims at gaining a visual feedback for robot control such
as object recognition in a 2D or 3D environment, and creating an envi-
ronmental map surrounding the robot, for example [Ayache et al., 1987]
[Jarvis et al., 1998]. The author became interested in the interaction metaphors
such as a multimodal interaction system including emotional affects in in-
teractive dance/music systems. A method to extract emotional information
from human gestures in real time is one of further considerations with regard
to machine vision research.

Some of the key concepts found in the exploration of human motion are
taken from Rudolf Laban’s (1879-1958) theoretical studies [Laban et al., 1947]
[Laban, 1963]. One of the most important approaches concerns his theory
of movement called Theory of Effort.

Laban introduced the notation method known as ”Labanotation”. By
using this notation, it is possible to record a variety of human motions.
It should be noted that the Labanotation is different from other similar
studies. (ex. Benesh Notation based on classical ballet). Labanotation is
not limited to a singular, specific style of dance but concerns every kind of
human motion.

With regard to Laban’s work and his theory, from a scientific point of
view, several attractive studies have been done, for example, a platform
of human-robot interaction has been developed in order to apply Laban’s
theory to the movement of the mobile robot [Nakata et al., 1998].

The focus differs from other existing systems that pay attention to ges-
ture recognition from a gesture vocabulary. The focusing point is the differ-
ence in intentions between two performances of the same segment.

The motion analysis is involved in mapping physical parameters onto
emotional information, namely Kansei analysis of a dance performance. The
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author is trying to realize a sort of ”"Kansei extractor” as the last goal
by extracted emotional information in a dance performance with the aid
of a camera-based computational system and based on Laban’s theory of
movement. (see [Camurri et al., 2000]) People can understand the emotional
mode, such as happy, angry and sad, and in which mode the actor performs.
It seems that human movement carries emotional information although it is
difficult to express the emotional effects with particular physical parameters.
From this point of view, the extraction of emotional information in a dance
performance with the aid of a computer system based on Laban’s theory of
movement is one needing further consideration.

Machine Listening Until today, many researchers have emphasized the
acoustic perception by machines. The term ”machine listening” refers to
the ability to self-generate musical preference according to the given au-
dio signals. As a primary attempt of constructing a machine listening sys-
tem, the author has contributed to the development of an artificial music
listening system that can understand an audio sound sequence as music
[Suzuki et al., 2002].

The music composition and performance by human is done as a result of
the repetition of creation and evaluation. Therefore, in the autonomous mu-
sic creation and performance by a machine, the ability of machine listening
is essentially required for the self-evaluation of music.

In case of music creation by humans, his/her musical preference may
be highly crucial in creating his/her own music. However, the unbiased
evaluation of the created music is quite difficult as the musical preference
is different from one to another. In the present study, assumed that the
musical preference is built up through the listener’s musical experiences. If
a person is familiar with western style music, his/her own musical preference
is based on the rhythm, tone and many other musical features of western
style.

The proposed machine listening system can learn from music without
teacher using multiple neural networks. The system has the ability to estab-
lish its own music theory from the experiences of listening to the raw sound
without any musical knowledge given in advance. Note that the proposed
system can accumulate these features by learning using neural networks.
The details of these features and the process of extraction are described in
the rest of this section.

In general, the analysis of the audio stream is assumed to be a spectral-
temporal pattern analysis by a dynamic clustering. First, the system dis-
criminates streams from the acoustical sequence of sound. The temporal
structure of the stream such as tempo and rhythm is extracted in parallel.
The relationship between the tempo and separated stream of sound is then
integrated.
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Machine Initiative With regard to the judgment, initiative is the ability
to use one’s judgment to make decisions and do things without needing to be
told what to do. In addition, initiative is also regarded as the first action or
movement, often intended to solve a problem. If one has/seizes the initiative,
one has/takes power and is able to control events. If one loses the initiative,
one no longer has the position of control or power that one had before. In
any case, the term of initiative is used in the scheme of communication or
interaction.

In communication between people and robots, people always take the
initiative until today. People usually control and govern the robot. Future
robots are required to make decisions in the collaborative works with people.
At that time, initiative plays a very important role because the initiative
transfer is one of typical human-human communication. Therefore, the de-
velopment of a machine that takes, rather tries to take, initiative is one of
further considerations.

For example, in the musical performance, it is natural that players ex-
change the initiative of performance with each other, without spoiling the
musical harmony. The author has contributed to a novel human-machine in-
terface system which allows the smooth initiative exchange between human
and machine during a performance [Taki et al., 2000]. Another advantage
of the developed system from an artistic point of view is that the initiative
transfer between the human and the system can realize a performance with
an unexpected and surprising style to stimulate the human creativity by
providing novel ideas for the music performance and music composition.

Machine Awareness In this dissertation, the hierarchical structure of
robot control provides a principle condition that the behavior of the robot
does not correspond to the intelligent process by the robot itself, because
physical signal processing is mechanically separated from that and the be-
havior emerged by the integration between these two processes. This aspect
is quite important and essential for the emergence of behavior.

The robot’s behavior and its range is given by some explicit rules, and
the robot behaves within this frame. This is the underlying problem for
robot control. In recent years, researchers in the intelligent robot field have
emphasized the behavior acquirement by a visual feedback system or learn-
ing. These are largely aimed at this acquirement for a given task. On the
other side, a behavior acquirement by imitating human motions has been
an active topic in the robotics field. However, it is considered that there are
passive methods of behavior acquirement.

It is still difficult for the robot to perform in the real world, where un-
expected events, disturbances and interruptions occur. Moreover, since the
robot does not have the ability to determine the range of its own action,
and unexpected trouble and failure will cause crucial problem.
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Based on the above consideration, the robot should have a somatic sense
to measure its own body conditions, especially pain. If the robot can mea-
sure its own pain, it can determine the range of action by itself. The pain is
divided into two areas: one deals with the joint parts consisting of the actu-
ator and gear. The other deals with the non-joint parts caused by physical
contact.

This research aims to formalize the pain occurring in the robot body, and
to associate it among the control command, and the data of physical contact
and physical constraints. In the hierarchical architecture, a module to sense
the pain can be embedded in the physical layer, and the learning module
that holds the condition, e.g., over current, inverse electromotive force, the
angle of the joint, the strain of the joint, and physical contact data around
the joint, can be embedded into the intelligent layer. These modules thus
work to avoid the situation in which the pain arises in the joint part.

The proposed mechanism allows the robot not only to have a self-calibration
ability but also to obtain knowledge about a prior risk avoidance. Note that
this is an active method of behavior acquirement and determination of a
range of action through the interaction between the robot and the environ-
ment.

Pain is one of the principles of action in the law of nature. Acquiring
the range of its own action by itself allows the ability of self-preservation.
This research provides important knowledge about the mechanism of self-
preservation, which is the fundamental ability of autonomous systems.






Appendix A

iSHA Configuration

Upper-torso
(24 degrees-of-freedom)

Binocular vision system
Stereo auditory sensor
Head and neck (12 DOF)
Three Microphones

Arm and Hand (6 DOF each)
Touch sensing device

Main controller

Hand-shape interface

Mobile base
(2 degrees-of-freedom)

Two built-in computers

Motor control modules

Motor control modules B (x20)
High-power AC Inverter (1100W)
Built-in rechargeable Pb-battery (24V)

Wheelchair locomotion
Motor control modules C (x6)

Figure A.1. Autonomous humanoid robot ”iSHA”. The upper torso resembling a human
in shape, with a head and two arms has 24 degrees-of-freedom. The lower base with two
wheels equipped under the body that provide safe and robust locomotion.
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112 Appendix A. iSHA Configuration
Body parts Number of actuators Motor vender
Eye ball DC servo x 4 (each 2) Maxon motor
Head DC servo x 4 Harmonic Drive
Shoulder AC servo x 4 (each 2) Panasonic MINAS
DC servo x 2 (each 1) Harmonic Drive
Arm DC servo x 4 (each 3) Harmonic Drive
Hand/wrist DC servo x 4 (each 2) Harmonic Drive
Finger DC servo x 2 (each 1) Escap
Foot (wheels) DC servo x 2 Hitachi Car Eng.

Table A.1. Mechanical configuration of Humanoid robot ¢SHA: Total number of the
actuators is 26; 24 DOFs for the upper body and 2 DOF's for the lower base.

CCD Camera
(x 2)

Microphones (x 1)
for speech recognition
Microphones (x 2)
for auditory sensing

Control server |
for robot control

Control server Il
for multimedia processing

Figure A.2. The head system and control system of ”iSHA”: Each eye equipped with a
small CCD camera, small three microphones embedded in the head.
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Body parts

Installed items

Control Server I

Operating System
Data Acquisition

ICP Electronics (PAC-107 Type)

(AMD K6-II 400MHz, 128MB RAM)
ART-Linux ver. 2.1.9 (for robot control)
Adlink PCI-6216 x2

(16-ch Analog Output Cards)

32-ch ISA Counter Board (custom-built)

Control Server II

Operating System
Data Acquisition

ICP Electronics (PAC-53H Type)
(Pentium IIT 800MHz, 256 MB RAM)
Windows2000 (for multimedia processing)
Hitachi IP-5000

Image Processing Board

CCD Camera
Microphones
Speaker System
Battery

High Power Inverter

Uninterruptible Power Supply (UPS)

Tokyo Electronic Industry CS6100 %2

Small capacitor microphone x3

Sanei House CEMI (ceramics speaker system)
Lead storage battery 24V24Ah x2

Exeltech XP1100

(DC24V input 1100W true sin wave output)
Sanwa Supply UPS-500DE

Motor Driver

Panasonic MINAS AC servo driver x4
TITECH Ver. 1 (PC-0121-1) x16
TITECH Ver. 4 (PC-0144-1) x6

Wireless LAN

Video Transmitter

Allied Telesys
CentreCOM WR11Mbps (IEEE802.11b)
RF Systems lab.

Table A.2. Hardware configuration of Humanoid robot iSHA: Most listed instruments
are commercially available. Some of them are custom-built instruments.






Appendix B

Laban’s Theory of Effort

Some of the key concepts in the exploration of human motion intention
are taken from Rudolf Laban’s work [Laban et al., 1947, Laban, 1963]. In
his theory of effort, he pointed out the dynamic nature of movement and
the relationship among movement, space, and time. Laban’s approach is
an attempt to describe, in a formalized way, the characteristics of human
movement without focusing on a particular kind of movement or dance ex-
pression. Effort theory principles can be applied to dance and to everyday
work practices.

The basic concept of Laban’s theory is effort that is a property of move-
ment. From an engineering point of view, it is considered that a vector of
parameters that identifies the quality of a movement performance. The most
important note is the description of the quality of movement. Theory of ef-
fort is not concerned with the degrees of joint rotation or moment directly,
but it considers movement as a communication media and tries to extract
parameters related to the its expressive power. During a movement perfor-
mance the vector describing the motion quality varies in effort space. Laban
studies the possible paths followed by this vector and the intentions they can
express. Therefore, variations of effort during the movement performance
should be studied.

Effort Space Laban indicates 4 components that generate what is called
"effort space”: space, weight, time and flow. Each component is measured
on a bipolar scale, in this way every component of effort space can have
binary values to represent opposite quality.

Laban’s basic theory considers the first 3 factors to develop a description
system for human movement.

In this way 8 possible combinations of the space can be identified; time
and weight factors, corresponding to states that the movement can assume
in its developing.
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Light Flexible

Direct
Free

Bound

Sustained Quick

Strong

Figure B.1. Effort Space with symbol expression, which is composed of space, weight,
time and flow.

Axes Indulging Effort | Fighting Effort
Space Direct Flexible

Time Sustained Quick

Weight | Light Strong

Flow Free Bound

Table B.1. Efforts table by Laban: a verbal description of the correspondence between
effort and movement.

Space: Regarding space, Laban says ”... whenever the body moves or

stands, it is surrounded by space. Around the body is the sphere of move-
ment, or Kinesphere, the circumference of which can be reached by nor-
mally extended limbs without changing one’s stance, that is, the place of
support...” [Laban, 1963, p. 85]. The Kinesphere is also referred to as per-
sonal space, while the whole space surrounding the Kinesphere (i.e., the
environment in which the act of movement is taking place) is referred to as
general space. When the body moves in space the Kinesphere follows it, so
the study of movement can be divided in two main branches: the movement
of the Kinesphere in general space and the movement of the limbs inside the
Kinesphere. The approach follows this method. A movement, in both kind
of spaces, will follow a definite direction or a sequence of different directions.
If the movement follows those directions smoothly the space component in
effort space will be flexible, while if it follows them straightly it will be
marked as direct.

Time: Laban considers two aspects of time: an action can be sudden or
sustained, which allows the binary description of the time component of
effort space. Moreover, in a sequence of movements, each of them has a
duration in time, the ratio of the duration of following movements gives the
time-rhythm, as in a music score.
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Weight: Weight is a measure of how much strength and weight is present
in a movement, so in pushing away an heavy object it will be necessary to
use body weight in order to succeed.

Flow: Flow is a measure of how bound or free appears a movement or a
sequence of movements.

The author has contributed to a study of attempting to extract Kan-
sei information directly from basic physical properties of movement (In-
vestigating personal space), and to find a symbolic representation of the
qualities of movement suitable for Kansei analysis (Investigating general
space) based on the Laban’s basic theory from the engineering point of view
[Camurri et al., 1999]. The developed system is able to locate the stretches
in space movement, which is the first important step in classifying move-
ment using Laban’s approach. Future work will develop a method to detect
the space component of effort while performing a stretch. Very important
expressive information can be obtained by the way in which paths are fol-
lowed in space. A direct movement has got different content from a flexible,
round movement performed to reach the same target point.

On the other hand, the work will also go toward the direction of im-
proving the process of direct extraction of Kansei and developing more ef-
fective symbolic descriptions of movement performances following Laban’s
approach. However, one important point showed by the work is that infor-
mation is carried not only by the state of a set of observed variables, but by
their change in time, so the rhythm of variations during time is and will be
a central part of the study.

The study to better classify the emotional impact of a live performance
of dancers. This means that the study of the Kansei of movement will try
to provide a high level description of the dancer performance, modulated by
a factor that is a function of the spatial position in which the movement is
performed.
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