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Abstract

In recent years, there have been many attempts, to introduce robots

to areas where they come into direct contact with people. Through

the approach presented in this thesis, an anthropomorphic robot is to

be enabled to act in the same environment as its human partner with

the intention to perform a certain task. In contrast to interaction

through predefined actions, the robot is to dynamically adapt to the

human partner behavior to reach a common goal.

A class of robots, that perform a very rich communication with hu-

mans are musical performance robots. Anthropomorphic musical per-

formance robots have the ability to mechanically emulate the human

way of playing a musical instrument. In particular, a Musical-based

Interaction System (MbIS) that allows human musicians to interact

with the Flutist Robot WF-4RV is proposed. The system focuses on

musical interaction with the purpose of creating novel ways of musi-

cal expression. The system consists of several modules with different

tasks, for each task, there is one specific module that analyses the

output from the camera and microphone of the robot and maps the

extracted information to parameters that modify the musical perfor-

mance. From the point-of-view of the user the interaction system is

separated into two stages, that accommodate for users of different

skill levels.

The basic level interaction stage uses audio and visual analysis, to

allow the user control aspects of the robot performance. The trans-

lation of the input provided by the user and the modulation of the

robot parameters is conditioned by the real-time state of the robot.

In the extended level interaction interface, my goal is to give the user



the possibility to interact with the robot more freely (compared to

the basic level). To achieve this, I propose a simple learning system

that allows the user to link instrument gestures with musical patterns.

Here, the correlation of sensor input to sensor output is not fixed.

To verify the proposed contribution of the described interaction sys-

tem to the research field of Human-Robot Interaction (HRI), several

experiments were performed. With these experiments the concep-

tual functionality of the interaction system as an interface for musical

interaction with a performance robot is demonstrated. The results

show that the proposed system introduces a novel action-perception

scheme with learning capabilities that enables wind instrument play-

ing anthropomorphic robots to dynamically adapt their behavior, de-

pending on the human partner’s intentions for achieving a common

goal: a natural and intuitive musical interaction.
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Chapter 1

Introduction

1.1 Human-Robot Interaction Research

1.1.1 Robots in a Human Environment

Since the 1960’s industrial production processes have become more and more

automatized. The development of industrial robots has helped to improve pro-

duction quality and production speed in many industry areas. Rapid development

has taken place in the car industry, where from the late 1970’s production pro-

cesses like welding and painting of car parts has been strongly accelerated by the

use of robotic arms equipped with the respective production tool. In other ar-

eas like the IT industry, robots rapidly assemble complex electronic devices with

high accuracy. Through the use of vision analysis systems and other sensory

equipment, production quality can be asserted to a high level.

More recently, there have been several attempts to introduce robots also in

areas where they come into direct contact with people. Apart from scientific

research, one of the starting points of this development was the toy industry in

the 1980’s. Further development has established robots in households to perform

everyday tasks like dust cleaning. In places more inviting to innovation such as

trade fairs or art exhibition spaces, robots have been used as visitor guides and

information terminals. Furthermore, development efforts worldwide are intend-

ing to push robot technology to perform medical treatment tasks and patient

care. With the prospect of elderly societies in several developed countries, one
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Figure 1.1: Overview of different classes of anthropomorphic robots, that are

capable of human-robot interaction. Musical performance robots belong to the

class of entertainment robots.

important future field of application of robot technology is in health and welfare

care.

As soon as a robot is expected to operate in an environment that is shared with

people, the robot needs to be able to interact with humans. Sensory units allow

the robot to find its area of operation and define its task space. It needs to be able

to detect the proximity of people and give humans the possibility to operate it

through an appropriate interface. The people being in the same environment with

the robot, regardless if they passively or actively use the device, need to have the

possibility to control the machine’s actions. In case of emergency, a mechanism

to immediately secure the operation of the robot needs to be provided.

The amount of operability of a robot depends on the character of the interface

that is used for interaction. The more natural interaction the interface allows, the
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easier it is for unskilled users to interact with the robot. The optimum solution

is completely human-like interaction with the machine. Recently there have been

many research efforts to develop interfaces which allow natural communication

between human and robot. The development of such an interface has shown to

be a challenging task. Robots that integrate into human environments in many

cases are very complex devices. To use these devices without initialization or

regular adjustment by an engineer, requires a user interface that makes a large

amount of parameters accessible in an abstracted, user-friendly way. This re-

quires careful considerations not only from a technical point-of-view, but also

from a social-scientific perspective. In Fig. 1.1, an overview of different types of

anthropomorphic robots capable of human-robot interaction are displayed. Dis-

played in the group of assistance robots, the robot PR2 has been developed by the

company Willow Garage as an universal purpose robot, that is able to perform

autonomous navigation in complex environments and can execute object manip-

ulation tasks in cooperation with human users ([2]). The research connected to

the development of this robot focuses on simultaneous localization and mapping

(SLAM)-based navigation and human-robot interaction. The anthropomorphic

robot Twendy-One, developed at Waseda University, is also able to achieve vari-

ous tasks in common surroundings such as a living room or kitchen. It is equipped

with force compliant arms, that allow it to safely interact with humans. One of

the research goals to enable to robot to perform tasks with human-like dexterity

([3]). ARMAR-III has been developed at the Technical University of Karlsruhe.

Specialized on operation in a kitchen environment, it uses machine vision tech-

niques to manipulate common kitchen objects like cereal boxes, plates and glasses.

Using its force compliant arms, it is able to insert items into a dishwasher. The

robot is used for various research purposes, including the development of robust

image processing algorithms and motion planning methods ([4]). The company

Aldebaran has developed the small-scale anthropomorphic robot Nao as a tool for

research and educational purposes. Although the company itself does not perform

actual scientific research with the robot, several universities use Nao to do ex-

periments in the fields of human-robot interaction, robot vision, motion planning

etc. ([5]). Based on a similar concept, the robot Robovie has been developed at
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Figure 1.2: Anthropomorphic musical performance robots can be grouped into

two subtypes: Passive musical performance robots and active musical perfor-

mance robots

Advanced Telecommunications Research Institute International (ATR) as educa-

tional platform for machine learning and human-robot interaction research ([6]).

Two entertainment robots shown displayed in Fig. 1.1 are the violin playing

robot, that was developed by Toyota Motors ([7]) and the dancing robot created

at Tohoku university ([8]). Whereas the research connected with the violin play-

ing robot focuses on the reproduction of human motor skills, the dancing robot

is to interact naturally with humans during a dance performance.

1.1.2 Musical Performance Robots

Robots, that perform a very rich communication with humans are musical per-

formance robots. Anthropomorphic musical performance robots the ability to
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mechanically emulate the human way of playing a musical instrument. These

technically very complex robots reach high performance levels, that are compa-

rable to the skill level of professional human musicians. A feature that in most

cases they still lack however, is the ability to interact with other musicians. Play-

ing a fixed, invariable sequence, they might be able to perform together with

other players, but as soon as there is a spontaneous variation in the musical

performance, the human and the robot performance will be de-synchronized.

Similar to a rough classification, that we attempted for robots capable of

human-robot interaction we also divide musical performance robots into two

groups. Passive musical performance robots do not interact with their musical

partners, but play a static, predefined performance. The purpose of these robots

is to play an instrument at a high level of dexterity. A passive musical perfor-

mance robot may be anthropomorphic, but generally the focus of its design is

functionality. In spite of this design premise, passive musical performance robots

may be extended with perceptional equipment (sensors) to enable communication

with its musical partner.

The purpose of active musical performance robots is inter-play with human

musicians or other robot musicians to create a lively, natural performance. In

order to convey a more human-like feel to their performance, active musical per-

formance robots may have an anthropomorphic body. This is supported by the

assumption, that the more the human body is emulated, the more the robot will

be able to integrate into a human environment. This principle however, applies

not only to the additional capabilities provided by an anthropomorphic robot,

but also includes the physical constraints that are inherited with the human-

like design structure. The necessity to adjust inter-play with the robot to these

human-like physical constraints, automatically gives a more natural feel to the

interaction.

Examples of anthropomorphic musical performance robots and their classifi-

cation are shown in Fig. 1.2.

The saxophone robot APR-SX2, developed at Hosei University, is an example

of a passive musical performance robot. APR-SX2 is able to play the saxophone

at the level of an intermediate to advanced human player. A complex mechanical

lever system has been constructed to enable the robot to strike all keys of a tenor
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saxophone. The application focus of the robot lies on performance dexterity, it

has only limited anthropomorphic characteristics.

At Ryokoku University the anthropomorphic violin playing robot has been de-

veloped. This robot has a total of 7 degrees-of-freedom, with the goal of studying

the artificial reproduction of the bowing motion of a violin player. This musical

performance robot has not yet been developed as far, as that it can play complete

tunes. In the present research stage it is able to play single notes without any

interaction capabilities. An important part of its design concept is the integra-

tion of the japanese Kansei into its performance. This means that the robot is to

be equipped with a human-like sensitivity to add expressive nuances to its play,

according to the musical context.

At Georgia University of Technology the percussion performance robot Haile

has been developed. Haile can be classified as simplified active performance robot,

as it can acoustically interact with its fellow musicians to a certain degree. How-

ever, the research focus in the realization of this performance interface is different

from the approach I present in this thesis. In this thesis, I introduce an interaction

system that is to provide a human-like interface for an anthropomorphic musical

performance robot. Haile’s design is not anthropomorphic. Its mechanical design

is relatively simple, and cannot be enabled to play different instruments apart

from the drum.

The two further introduced active musical performance robots are the WABOT-

2 piano playing robot and the Waseda Flutist No. 4 Refined IV (WF-4RIV).

WABOT-2 has been developed in 1984 at Waseda University. It is the first in a

line of anthropomorphic musical performance robots constructed at Waseda Uni-

versity. WABOT-2 is a able of limited interaction with other human performers,

by following the voice of a singer. It acquires information about the musical score

to be performed by capturing notes with a video camera and processing the image

data.

The development of musical performance robots at Waseda University has

been continued with the construction of the Waseda flutist robot. The WF-4RIV

is the predecessor of the interaction system, that I propose in this thesis. This

robot is capable of limited interaction with human musicians: it is able to track

the gaze of a musician partner. Furthermore it can offline-process musical audio
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Figure 1.3: If the robot plays together with a human band without interacting

with the other musicians, the result is a static, unnatural and sterile performance.

This gives a negative, unsatisfactory impression on the human musicians and the

audience.

data and extract certain performance parameters, in order to apply these to its

own performance.

1.2 Research Background

The research on musical robots has a long tradition at Waseda University. Nearly

thirty years ago the late professor Ichiro Kato has developed the humanoid pianist

robot WABOT-2 ([9]), that was able to play a piano song from a score of notes.

After the successful development of the piano robot, the research on an anthro-

pomorphic flutist robot has been started ([10]). In order to better understand the

human flute performance, several mechanical and cognitive improvements have

been done towards understanding the dexterity of humans to play wind instru-

ments and proposing novel ways of musical expression. Thanks to the bio-inspired

design of the mechanically simulated organs of the robot, the most recent ver-

sion, the Waseda Flutist No. 4 Refined IV (WF-4RIV) is considered to play the

flute similar to the performance of an intermediate human player. This has been

verified by a survey as well as through the use of an evaluation function to com-
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Figure 1.4: If the robot is able to react to musical and visual feedback from the

human musicians, the result is an inter-active performance. Such a performance

gives the positive impression of a natural performance to the other musicians and

the audience.

pare the performance quality of a professional flute player and the flutist robot

([11]). In addition, as an approach towards enhancing its cognitive capabilities,

an automatic melody recognition system and face tracking vision system were im-

plemented, to enable the robot to interact with flutist beginners ([12]). Through

experimental results it was shown, that the flutist robot is able to interact with

flutist beginners under controlled experimental conditions (acting as a musical

tutor). Considering these results, it was proposed, that in order to extend the

interaction capabilities of the flutist robot with musical partners, further research

efforts should be done ([10]).

In this further research efforts I try to integrate the flutist robot with a human

band. The goal is to try to give the robot the interactive capabilities to actively

play together with human musicians or other musical performance robots. As

shown in Fig. 1.3, if the robot completely lacks interactivity with its musical

environment, the result is a static, unnatural and sterile performance. Such a

performance especially during a longer presentation will not make a stimulating,

entertaining impression on the audience. A passive performance is predictable

and does not contain improvised or situation-based alterations. If the robot is
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able to perceive information from its environment, it can adjust to the musical

concept of its partnering musicians (Figure 1.4). The higher the degree to which

this is achieved, the more lively, natural and human-like the whole performance

is going to become. A natural performance will give a positive impression on the

human band, as well as the audience.

1.3 Research Objective and Motivation

Through the approach presented in this thesis, I try to enable an anthropomor-

phic robot to act in the same environment as its human partner with the intention

to perform a certain task. In contrast to interaction through predefined actions,

the robot is to dynamically adapt to the behavior of the human partner to reach a

common goal. Through perceiving information via various communication chan-

nels, the robot should be aware of its situation within a certain environment and

act accordingly (perception-action scheme). By the development of a multi-modal

interface with teach-in capabilities, I would like to use anticipated communication

patterns related to the target task to provide natural interaction to the human

partner of the robot.

In this thesis I would like to attempt to prove the hypothesis, that

the proposed perception-action scheme-based, human-robot interac-

tion system is suitable to enable natural, task-oriented collaboration

with an anthropomorphic robot (Figure 1.5).

The implementation of a perception-action scheme means, that the robot is

able to perceive actions within its environment through various communication

channels, process this information and provide feedback to the environment. If

this methodology is implemented well enough, communication with the robot

will be perceived by the human interaction partner as natural communication.

For this reason, it is desirable to realize the concept of perception and action, in

order to mimic human behavior. In this thesis, I applied this principle to a musical

context, but I also attempt to develop an interaction system, that is extendable

to other application areas (such as kansei engineering, communication science,

music composition). Besides working on basic perception modules for visual
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Figure 1.5: In order to integrate a robot into a human environment, the robot

needs to be able interact with its human user. As a concept to enable such an

interaction, I propose a perception-action scheme as shown in this figure.

and acoustic analysis, I put special consideration to the translation of sensory

information into action.

Regarding this translation, I especially focus on two points: First, although I

mimic parts of the human body with an anthropomorphic robot, when controlling

the robot, I still need to take into account the specific mechanical structure of

the robot. This needs to be reflected in the conception of the interaction system

and the way perceived information is translated into action. Second, I consider

that humans, when communicating naturally, do not always translate information

instantly into action, but they also use their memory, to delay or alter action. By

implementing a teach-in concept into one part of the interaction system, that I

propose in this thesis, I attempted to account for this behavior.

In particular, I propose a Musical-based Interaction System (MbIS) that al-

lows human musicians to interact with the Waseda Flutist Robot No. 4 Refined

V (WF-4RV). The system focuses on musical interaction with the purpose of

creating novel ways of musical expression. The anthropomorphic robot is not

merely used as an instrument-playing machine, but it is enabled to act as a mu-

sical partner. The WF-4RV achieves this by processing acoustic as well as visual

sensor input and by mapping those incoming inputs into musical outputs. The

system has three specific novelties that separate it from other musical interac-
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Figure 1.6: This figure shows the development timeline of musical performance

systems at Waseda university. The research on the WABOT-2 piano robot,

started by late Prof. Ichiro Kato, has been continued in Takanishi laboratory

with the development of the flutist robot (WF series) and saxophone robot (WAS

series). The general concept of the Musical-based Interaction System is compli-

mentary to the developed robotic systems, in order to enable them to interact

with human musicians.
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tion systems: It does not only use acoustic sensor data to render new musical

content, but also has a vision recognition system to react to gestures by other

musicians. The music is performed by a anthropomorphic robot that is designed

to emulate the human way of playing the flute as closely as possible. This incor-

porates that the robot has, like a human player, certain physical limitations that

need to be taken into account within the interaction system. As the interaction

with a complex robot like the WF-4RV is considered to be a challenge for a mu-

sician, the interaction system is adjustable to a beginner and an advanced skill

level. Through these novel developments, I try to create a natural interaction

system for an anthropomorphic robot entity that conveys a human-like feeling.

Fig. 1.6 shows a timeline, where the proposed MbIS fits into the family of musical

performance robot systems, that have been developed at Waseda University.

The system consists of several modules with different tasks, for each task, there

is one specific module that analyses the output from the camera and microphone

of the robot and maps the extracted information to parameters that modify the

musical performance. From these parameters MIDI data is generated and sent to

the robot. The robot itself has a motor control module that receives the MIDI

information and adjusts the movement of the motors accordingly. The separation

of the user interface into two stages takes place in the sound and video analysis

part of the system.

The basic level of interaction uses visual analysis: Virtual Faders and buttons

sense the instrument movements of the robots partner musician. The data sent

from the input sensor processing to the robot control module is modulated by

the physical state of the robot. I use histogram-based audio analysis to verify, if

the performance output of the robot is according to the intended result. In the

extended level interaction interface, my goal is to give the user the possibility to

interact with the robot more freely (compared to the beginner level). To achieve

this, I propose a simplified learning (teach-in) system that allows the user to link

instrument gestures with musical patterns. Here, the correlation of sensor input

to sensor output (mapping strategy) is not fixed. Furthermore, I allow for more

degrees-of-freedom in the instrument movements of the user. As a result this

level is more suitable for advanced level players. For this task I use a particle

filter-based instrument gesture detection system. A Bayesian mapping algorithm

12
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is employed in order to ensure, that if the teaching musician does not account

for all combinations of instrument orientation and musical output in the teaching

phase, in the performance phase the robot will automatically play the most closely

matching answer modulation to a given instrument state.

To verify the proposed contribution of the described interaction system to the

research field of HRI, several experiments were performed. With these experi-

ments the conceptual functionality of the interaction system as an interface for

musical interaction with a performance robot is to be demonstrated. To evaluate

the system, musicians of different skill levels were asked to interact with the robot,

following their personal intention for musical expression. I analyzed the result

of these experiments practically by recording incoming sensor data and musical

output. This recorded data was examined in order to investigate the accuracy

and robustness of the proposed method.

I evaluated the system in terms of the practicability of the HRI concept by sur-

veying the personal performance experience of the human partner musicians. The

proposed experiments were based on a comparative, technical and non-technical

user-oriented evaluation to verify the contribution of the proposed interaction

system to the HRI research field. I regard the system as being functional in re-

spect to its purpose from a technical as well as from a user-experience point of

view. Therefore, I consider the system as a whole, due to its novel components,

as a conceptual as well as a practical contribution to the HRI field.

1.4 Related Research

Automatic music performance machines have been developed since the early 19th

century. These first musical robots were mostly mechanical piano players like

Fourneauxs Pianista or Voteys Pianola ([13]). Though the principle of tone gen-

eration when automatically playing an instrument has not changed much since

then, in former times, the ways to make a performance sound more natural were

very limited. Since in the 1960s and 1970s, the possibility of electronic triggering

and transduction of music, as well as music synthesis, has technologically ad-

vanced rapidly. In the 1980s first musical robots were constructed and have since

then become a more and more popular research topic. Anthropomorphic, robotic

13
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Figure 1.7: A comparison of the technical characteristics of Haile, developed at

Georgia Institute of Technology and WF-4RIV developed at Waseda University.

string instruments like the Guitar-Bot ([14]) were created. GuitarBot is only one

of several robots developed within the cooperation project LEMUR ([15]). Re-

cently LEMUR has worked together with the well-known musician Pat Metheny

to create a robotic orchestra, called the orchestrion. This large-scale robotic or-

chestra contains among others the TibetBot (Tibetan Singing Bowls robot), !rBot

(Novel percussive instrument robot), ForestBot (Tree-like percussive instrument

robot), ModBot (Simple, modular one-actuator instrument robot). At the Uni-

versity of Electro-Communications the MuBot string instrument robot series has

been developed ([16]), that has more recently resulted into an anthropomorphic

violin playing robot ([17]). From Hosei University results about an automatic

trumpet performance robot ([18]) and an automatic saxophonist robot ([19]) have

been published. A more exotic musical performance robot are Trimpins robotic

turntables ([13]), that use control over the rotational speed of a record and the po-

sition of the tone-arm to rearrange the musical content of a record. If more than

one of these robotic turntables are used synchronously, complex re-arrangements

of recorded material is possible.

14
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The approach of processing musical audio input by matching it to predeter-

mined musical content has been developed by several researchers ([20]). Various

techniques to perform artificial composition and improvisation have been pro-

posed. The work that might be closest to the approach presented in this thesis is

the work by Weinberg ([21]). The percussion robot Haile is able to tune in to the

rhythm of a partner musician and within a certain limit varies its performance to

display improvisation capabilities. One of the main differences between WF-4RV

and the Haile are the level of complexity of the sound generation mechanisms of

the robots (Figure 1.7). Considering required mechanical dexterity, flute play-

ing on the one hand requires the accurate synchronization of several organs to

produce sound. Drum playing on the other hand, is in comparison a relatively

simple process and requires only the control of the hand motion. To perform

rhythm analysis Haile utilizes external Max/MSP objects that are mainly based

on, similar to my method, measuring volume peaks in a certain frequency range.

In my approach I developed software components in C++, that I performance op-

timized for my purpose. In particular, special image processing methods (motion

perception-based tracking, particle filter-based tracking) and audio processing al-

gorithms (histogram-based rhythm and melody tracking) were implemented to

work computationally efficiently.

Weinberg has concentrated on the interaction between human musicians and

his music robot. His robot can actively adjust to the play of partner musicians,

imitating their behavior of creating a rhythm. His work uses an approach of

analyzing the recorded music data and extract information about the current

musical situation by applying a rhythmic rule-set. Although I also base my

aural interaction on imitating a human musician, I do so by comparing musical

input with prerecorded sequences in the library using a histogram method. A

further substantial difference is that my system also involves visual processing.

I combine audio-visual perception in a two levels of interaction system. This

enables human-robot communication that is more natural and complete than

previously introduced systems. From the musical point of view our system allows

adjustment of the flutist robots performance according to the musicians musical

intentions.

15



1.5 Contents Overview

1.5 Contents Overview

I laid out the remainder of the thesis as follows (1.8):

1. Chapter 2 - Musical-based Interaction System (MbIS) Overview

In this chapter I introduce the interaction system presented in this thesis.

I describe the hardware platform on which the system was implemented,

the flutist robot WF-4RV. I consider the application of the Waseda Flutist

Robot in different musical contexts. To integrate the WF-4RV into an active

performance environment with human players, I propose a skill-dependent

Musical-based Interaction System (MbIS). Experimental results, that ex-

plain the capability of the robot to play an interactive performance are

shown and evaluated.

2. Chapter 3 - Image Processing Module Implementation The MbIS is

divided into several modules. To allow the robot to do visual communication

with its human partners I implemented an image processing module. The

basic level interaction module uses motion tracking to create virtual faders

and virtual buttons that can be used by a musician similar to traditional

studio controllers. In the extended level interaction system, I apply particle

filter-based histogram tracking to follow instrument movements with more

degrees of freedom. In an experimental section I evaluate the functionality

of the image processing modules.

3. Chapter 4 - Audio Processing Module Implementation In this chap-

ter, I introduce the audio processing module of the MbIS. For both skill

levels, after a basic audio signal analysis, histogram-based pattern library

matching is applied. In the basic level interaction mode, recorded audio

material is searched for known rhythmical content. In the extended level

interaction mode, rhythmical patterns as well as melodic content are eval-

uated. I verify the effectiveness of both methods experimentally.

4. Chapter 5 - Mapping Strategy Implementation In this section I

describe the mapping strategy implementation of the Musical-based Inter-

action System (MbIS). The mapping module is responsible for converting
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the information from the sensor processing system into parameter mod-

ulation of the musical performance of the flutist robot. I chose different

mapping strategies for the beginner level interaction system and the ad-

vanced level interaction system, in order to accommodate for different user

skill levels. I present the results of experiments to evaluate the functionality

of the mapping strategy module for various user inputs.

5. Chapter 6 - Evaluation of the Proposed Interaction System from

a HRI Research-oriented Perspective This chapter describes the pre-

viously introduced system from an universal HRI research-orientated point-

of-view. To clarify the advantages of the implemented interaction system, I

compare passive and interactive operation of the robot. I perform an anal-

ysis of the restricted parameter adjustment within the physical limitations

of a robot and an analysis of the variable sensor mapping of the advanced

level interaction system, through experiments under realistic circumstances.

I evaluate the basic level interaction system as well as the extended level

interaction system from a non-technical user perspective.

6. Chapter 7 - Conclusion In this chapter I show a concluding evaluation

of the results and considerations in this thesis. I suggest future works as a

perspective to continue the propose research path.
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Figure 1.8: An overview of the contents of the thesis is shown in this chart.
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Chapter 2

Musical-based Interaction

System (MbIS) Overview

2.1 Introduction

The WF-4RV is equipped with sensors that allow it to acquire information about

its environment. Due to the human-like design of the robot, it emulates two of

the human’s most important perceptual organs: the eyes and the ears. Therefore,

two miniature video cameras and a stereo microphone were integrated into the

head mechanism of the robot. A major part of the typical performance of a jazz

composition is based on improvisation. Musicians take turns in playing solos

based on the harmonies and rhythmical structure of a song. Upon finishing his

solo section, one musician will give a acoustic or visual signal to designate the

next soloist. A Musical-Based Interaction System (MbIS) is proposed, to allow

the interaction between the flutist robot and musicians based on two levels of

interaction. The flutist robot WF-4RV has been developed for several years, by

several generations of students. As an inevitable result of this process, the overall

structure of the robot electronics and software implementation has become too

complex to be easily extendible and understandable. To improve this situation, in

the course of this thesis, besides focusing on the interaction system, I completely

rewrote the motor control software of the robot. I also remade the complete

electronics and wiring system of the robot, to make it less space-consuming and

more reliable.
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2.2 Waseda Flutist Robot 4 Refined V

2.2.1 State of the Art of the Flutist Robot

The anthropomorphic flutist robot ([22], [12], [23]) has been developed to study

the methodology of human motor control ([11]), to introduce novel ways of man-

machine interaction and to propose interesting applications for humanoid robots

(i.e. musical tutor, etc.). After initial stages of research the flutist robot has

been capable of basic playing techniques ([22]), the sound production quality

(fingering, breath control etc.) being similar to a flutist beginner’s. After further

developments, extended technical skills ([24]), which are typically practiced by

intermediate level flutists (i.e. vibrato, etc.), have been successfully implemented.

More recently, in [24], the Waseda Flutist Robot No.4 Refined III (WF-4RIII)

has been presented. This version of the flutist robot has automatically generated

musical expressiveness by modeling the performance of a professional flutist using

a Neural Network (NN). In this way, individual musical sound characteristics such

as slightly varying note duration and vibrato amplitude were reproduced. Me-

chanically, the WF-4RIII has been developed with 43-DOFs in total. Compared

to previous versions the mechanical design of the lung system was improved and a

human-like vocal cord designed. These modifications have allowed very accurate

control of note duration and vibrato. As result, the expressiveness of the musi-

cal performance of the flutist robot, which also plays an important role during

interaction with humans, has been significantly enhanced ([23]). During the de-

velopment process there has been constant cooperation with professional flutist

players to verify the performance level of the flutist robot ([10]).

Thanks to these recent improvements on the WF-4RIV, the flutist robot is

capable of a performance similar to an intermediate player. From the interaction

point of view, in [25], an auditory feedback system has been developed. For

this purpose, the perceptual capabilities of the flutist robot have been enhanced.

In particular, the flutist robot has been enabled to recognize melodies by using

Hidden Markov Models [26], evaluate the performances of flutist beginners and

detecting and track human faces [12]. However, the interaction between the flutist

robot and the musical partner have been too limited (several restrictions were
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considered regarding the conditions of the interaction). Therefore, I considered

to perform improvements on the perceptual capabilities of the robot.

Building upon this achievement, further research has been focused on improv-

ing the capabilities of the robot to play together with its musical partner more

interactively. As a main goal, I plan to enable musical robots to actively coop-

erate with a human band, thus creating novel ways of musical expression. For

this purpose, I considered it necessary to enhance the perceptual abilities of the

flutist robot to process musical information from the aural and visual perceptual

channels.

2.2.2 The Mechanical Hardware of WF-4RV

The Waseda Flutist Robot WF-4RV is an anthropomorphic musical performance

robot. It consists of several separate components, that in conjunction give the

robot the ability, to emulate human flute playing. In total, the WF-4RV is

composed of 41-DOFs (degrees of freedom).

The air pressure to play the flute is produced by a 2-DOFs lung mechanism.

The lung system of the robot has been designed as imitation of a human lung.

The breathing cycle can be adjusted to control the flow of the air beam from the

mouth of the robot to the mouthpiece of the flute. The lung system is composed

of two airtight acrylic cases. Each of these cases contains a bellow controlled by a

crank mechanism, to pull and push air in and out. As the lung system is airtight,

the bellows have no contact with the acrylic surface during the breathing cycle.

This minimizes the inhalation time, decreases the mechanical noise and increases

the quantity of air being exhaled from the lips.

A special mechanism was designed to mimic the human vocal cord. During

flute play, the vocal cord modulates the air flow from the lung with variable

amplitude and frequency. In musical terms, the sound effect that is produced

through the regular (e.g. sinusoidal) manipulation of the air-flow is referred to

as vibrato.

The tonguing mechanism and lips mechanism are key mechanical components

of WF-4RV to generate a natural flute sound. They are employed to improve

the clarity of the produced sound and to enhance the quality of the transitions
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between different notes. The lips mechanism of the WF-4RV is composed of 3-

DOFs to accurately control the shape of the air beam. The lips themselves are

made from a thermoplastic rubber called Septon ([27]). Septon has the advantage,

that it is as elastic as rubber while it can be modeled like plastic. Using Septon, we

can easily create different shapes to produce more human-like lips. Additionally,

other kinds of lip forms can be designed so that the flutist robot can play other

wind instruments just by changing the lip part.

A mechanism emulating the human tongue is located inside the oral cavity.

This construction has 1-DOF and is controlled using a DC motor. The motor

axis is connected to the tongue via a directly attached link. As a result of this

new design of the oral cavity and tonguing mechanism, the WF-4RV can emulate

double tonguing. This effect is achieved by obstructing the air flow using the

front and back tip of the tongue. In order to hold the flute in the correct position

to play, the robot has humanoid arms and hands. Its fingers can open and close

the keys of the flute in 8 Hz. The flute is attached to the right hand with a

fixture. In total, the arm system has 7-DOFs, divided into upper arm mechanism

with 4-DOFs and the lower arm mechanism with 3-DOFs.

The two video cameras of the robot are attached to a 3-DOFs eye system,

that allows to pan and tilt the camera view. A face mask has been designed to be

fixed to the head mechanism of the robot, enhancing the human-like appearance

of WF-4RV.

2.2.3 Motor Control System

WF-4RV consists of 41-DOFs with 41 active joints that are controlled by one

servo motor each. Each of these motors is connected to a central unit, the robot

control PC. The robot control PC contains six Interface PCI-6205 counter boards

to record the signal from the encoder units of the servo motors. The motion of

each motor is controlled by one motor driver. The flutist robot contains four

types of motor drivers: Maxon motor drivers, TITech motor drivers, Tokuden

motor drivers and Yasukawa AC motor drivers.

Three Interface digital-to-analog (PCI-3300) converter boards send low cur-

rent analog voltages to the motor drivers, which convert these low current voltages
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into high current voltages to drive the servo motors. In case of the Maxon motor

driver and the Yasukawa AC drivers, the motor driver is also connected with the

encoder output of the corresponding motor. Each joint of the robot, except for

the finger joints, is equipped with an optocoupler to allow for calibration of the

zero position of the servo. The output from these optical sensors is connected to

a digital I/O board (Interface PCI-2000) in the robot control PC.

In the course of the research for this thesis the wiring of the robot has been

renewed. In case of the old wiring, the motor connections of the robot (mo-

tor drive voltage, encoder signal, calibration sensor) were connected to a set of

boxes, located behind the computer. These boxes, containing the motor drivers

to control the robot, were connected to the counter, digital I/O and D/A hard-

ware of the control computer. Summarized the following disadvantages of this

design have been observed: A spacious location is required for the operation of

the robot. Transport is complicated due to the large number of external con-

nections, boxes and other items. The very large amount of wiring is prone to

damage, short-circuits and connection failures.

Therefore a new wiring system has been introduced. The motor drivers, except

the AC drivers, were moved into a compartment below the robot (into the seat of

the robot). Previous wiring was completely removed and the new wiring attached

using safe and affordable components. The remaining peripherals, which were

not inserted into the robot structure itself (robot control PC etc.), were placed

inside a wheeled 19” rack mount, placed behind the flutist robot. The following

advantages were achieved with the new connection concept: The size of the robot

peripherals reduced to a third. Through the reduced overall wire length, the robot

is less prone to connection problems. Better transportability has been achieved

due to less peripherals and fixed installation within rack mount.

2.2.4 Vision and Audio Processing Hardware

In comparison to the passive performance hardware (Figure 2.1), the hardware

system of WF-4RV has been significantly improved. The vision and audio pro-

cessing systems are separated from the robot control PC (Figure 2.2). The audio
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Figure 2.1: The figure shows the hardware control system used in the passive

performance setup. A MIDI sequencer feeds MIDI data to the robot control PC,

that controls the servos of WF-RV. A MIDI tone generator has been added to

provide background accompaniment.

/ visual processing PC is connected to the robot control PC by a TCP / IP

network.

Two Point Grey Firefly cameras integrated in the head mechanism of the

robot, obtain video data at a resolution of 480 x 640 pixels and a sampling speed

of 30 frames per second. The cameras are connected to the processing computer

by two IEEE1394 connections.

Sound data is sampled at 44.1 kHz with a resolution of 16-bit. A Soundman

OKM II stereo microphone, connected to an Echo Digital Audio Audiofire 4 inter-

face through a pre-amplifier adapter Soundman A3, is used to record WF-4RVs

partner musicians performance. The left and right part of the stereo mircophone

are attached to the sides of the head of the robot for stereo-acoustic perception.

The audio interface is also connected to the audio-processing PC by a IEEE1394

connection.
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Figure 2.2: This figure shows an overview of the hardware of the interactive

performance setup. A computer vision and mapping strategy subsystem as well

as an audio processing unit have been added. All components are connected over

a TCP/IP network.
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2.2.5 Implementation of Servo Motor Control and Initial-

ization

To provide more flexibility and future expandability, the software controlling

the basic functions of the flutist robot has been re-written in the course of this

research. The tasks of the control software of WF-4RV can be summarized in

the following points: The robot control software has several tasks. Regarding

the control of the motors of the robot, it is to perform manual and automatic

initialization of the servo motors. The position of the servo motors is to be

controlled, with the possibility to generate movement patterns and sequences

from the position states of the motors. Transitions from one pattern to the

next are achieved by continuous position control. Lung, vocal cord, tonguing,

lips and fingers, are controlled through special purpose interfaces, that make

accurate adjustment more easy. If needed inverse kinematics calculation can be

performed within these modules. Pattern and sequence states, as well as all other

state parameters of the robot can be saved, loaded and edited. Through MIDI

and middleware communication, the robot control software can communicate

with program sections that are located on different computer units, such as the

mapping module of the MbIS.

The purpose of the WF-4RV’s controller module is to control the active joints

of the flutist robot, in order to produce the flute sound. From a user point-of-

view, the state of each joint can be accessed separately. A joint can be initialized

manually (by moving the joint to the initialization position by hand), or it can

be initialized through an automatic procedure. In the automatic procedure, a

constant command voltage moves the motor of a joint automatically to its ini-

tialization point. The initialization point is the position where the optocoupler

connected to the joint changes its state. All joints expect the fingers are equipped

with such optocouplers. In case of the fingers, the joints are moved to an initial-

ization position (all flute keys closed state) by hand and the joints then manually

initialized. Force initialization means that the current position of a motor en-

coder is defined as zero position joint. In case of failed initialization or hardware

problems, de-initialization of a joint or re-initialization are also possible.
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After a joint has been initialized, it is position controlled by the motor control

thread. The thread calls the control routine of each initialized joint of the robot

every 5ms. To provide as exact timing as possible, it polls timing information

from the CPU performance counter.

In a previous version of the robot control program, it was attempted to run

the position control of the motors in a separate thread each. This attempt was

not successful due to the lack of thread prioritization mechanisms in Microsoft

Windows. However, to synchronize all motor controllers in a single thread does

not seem to lead to any performance deficiency. When all joints are initialized

and controlled synchronized, a 5 ms timing cycle can be maintained.

The controller itself, that is used to adjust the position of each joint is a PID

(Proportional Integral Differential) controller. The parameter settings of each

joint have been adjusted and these settings saved in the program code. Careful

adjustment of the parameters has led to satisfactory control results, so that a

normal PID controller is considered to be sufficient for the accurate positioning

of the flutist robot joints.

A set of joint positions is saved as a pattern. A pattern therefore contains

the encoder values of a selected number of joints. When generating a pattern

the user selects which joint encoder values will be part of the pattern. Motor

encoder values of the current state of the robot, as well as motor encoder target

values can be inserted into a pattern. Patterns are assigned a name and can be

saved, loaded and deleted. Therefore manual teach-in can be performed in order

to generate a pattern. This is important in case a new pattern is to be created

in an easy manner. The procedure to achieve this is displayed in Fig. 2.3.

To move the robot from one joint configuration to another, the pattern gen-

erator of the program linearly interpolates between the current joint states of the

robot and the target position saved in a pattern. The speed with which the robot

moves to the joint positions that are saved in a pattern can be selected by the

user. Patterns are saved as text files, that can be edited. Therefore manual ma-

nipulation of the patterns is possible. The format of these text files is displayed

in Fig. 2.4.

Patterns can be grouped to be executed sequentially. For each pattern in such

a sequence, the execution speed can be selected. When a sequence is finished and
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Figure 2.3: To create a new pattern the user has to follow a teach-in procedure

to manually set the encoder positions, define pattern name and execution speed,

and finally save a new pattern.

Figure 2.4: The figure displays the format of a pattern file. Besides the pattern

name, the file contains the encoder data for each joint position that is to be saved

in the pattern file.
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Figure 2.5: The purpose of a sequence file is to create a chain of patterns, that

can be used to continuously control the robot. Additionally to the name of

each contained pattern, also the transition speed from one pattern to the next is

recorded.

its last pattern has been reached it automatically stops. The user has the option to

loop a sequence, so that it runs continuously until it is manually terminated. The

format of the sequence files is displayed in Fig. 2.5. Sequence speed and sequence

selection can be modified by commands through the middleware connection of

the program. Details of the middleware implementation are explained later on in

this chapter.

2.2.6 Novel Lung and Breathing Control Implementation

In principle the control of the lung movement, the vocal cord movement, the

tonguing movement and the finger movement can all be controlled through the

general motor control dialog, the pattern generator and the sequence generator.

To make the usage of these components easier for the user, several special purpose

dialogs have been developed.

The lung controller dialog contains buttons to directly start and stop the

movement of both lung motors. It also has input fields to set upwards and down-

wards movement speed. The vocal cord controller enables the user to set open

and close position of the vocal cord, directly switch between these two positions

and control vibrato amplitude and frequency. The tonguing controller contains

input fields to set zero and on-position as well as the duration of the tonguing

mechanism. A button allows the user to test the functionality of the tonguing

movement. The finger movement controller assigns open and close encoder val-

ues for each finger. For each note that can be played by the flutist robot, finger

position, lip position and lung speed can be set separately in the note control
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dialog. Each of the special purpose controllers run in their own thread. Accurate

thread timing can be monitored by the user in the thread master timing dialog.

We have experimented with two different methods to realize continuous breath-

ing speed. Due to the construction of the lung mechanism, if we control the rota-

tion of the motors of the lung at a constant speed, the plates which push the air

up in the lung cylinders do not move accordingly, but accelerate and decelerate.

The relationship of the rotation angle of the lung motor axis and the position

of the lung plates can be calculated using forward-kinematics. To control the

breathing speed to a constant value (compute the required rotation angle of the

motor axis from the target position of the lung plates), an inverse-kinematics

calculation has been employed.

Apart from the inverse-kinematics method, an additional way to compen-

sate the previously described inconstant breathing speed has been proposed. The

amount of air being pumped by the lung mechanism was measured for one breath-

ing cycle. To measure this air-flow I inserted an air-flow meter between the lung

and head mechanism of the robot. I recorded the air-flow data during a breath-

ing cycle and saved it into a data file. Each time the software is started, this

data file is read, and from the contained information a compensation function is

calculated. The algorithm is applied as is displayed in Fig. 2.6. This purpose of

this compensation function is to provide a steady air-stream to produce a flute

sound of constant volume, that is independent from the fill level of the robot’s

lung.

Despite the described efforts, practical experiments with both setups, the

inverse-kinematics method and the look-up table compensation, show that both

methods do not provide sufficient results for the tone production equal to an

intermediate human player. Therefore, I tried to compensate the inconsistency

of the air-flow, by manipulating the lung speed manually. I did this by applying a

piece-wise linear compensation function. Using this function, and by continuously

improving its parameters with each experiment, I was able to achieve constant

breathing air-flow.

Interaction with human musicians requires the flutist robot not only to play

a carefully optimized performance. The robot also needs to be able to adjust its

play to the actions of its musical partner, without diminishing its performance
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Figure 2.6: Constant air flow at the mouthpiece of the flute robot is essential for

a good tone generation. The air-flow at the mouthpiece was measured in direct

control mode of the lung (no inverse kinematics), and the measured data was

used to compensate the lung speed to achieve a constant air-flow as shown in the

algorithm diagram above.
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Figure 2.7: WF-4RV and professional flutist player Professor Fujita performed

Mozart’s Ave Verum Corpus in a duet to evaluate the functionality of the air-flow

control.

quality. In first interaction experiments, I found, that especially for more com-

plex melody sequences, the performance quality is not sufficient, using the tone

generation method explained so far. To evaluate this capability I asked a profes-

sional flutist player to suggest an exemplary score. The flutist suggested the piece

Ave Verum Corpus by Wolfgang Amadeus Mozart. The piece was performed as

a duet performance with the professional flutist player and WF-4RV as shown in

Fig. 2.7.

After performing several performance experiments with WF-4RV playing the

suggested test piece, the professional flutist concluded, that the tone-to-tone tran-

sitions were not sufficiently clean, especially in cases of jumps from high notes

to low notes (intervals of half an octave or more). As a solution he suggested to

adjust the air-flow envelope for each tone separately.

An adjustment of the note envelope for each tone during a performance re-

quires very fast and accurate control of the air-flow. To do this adjustment the

possibility of direct control of the air-flow strength by modulation the lung speed
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Figure 2.8: In a) the principle of the transition from one note to the next is shown

based on the MIDI input to WF-4RV. b) shows the adjustment of lungs speed

depending to the currently played note, but without air-flow control envelope. In

c) the lung speed adjustment envelope to prevent overblowing is shown.

of the robot was considered. Note-to-note transitions during a performance are

triggered by MIDI note data input to the motor control system of the robot as

shown in Fig. 2.8a. So far, although different lung speeds were adjusted for

different notes, speed levels were switched directly from one note to the next

(Figure 2.8b). To provide a gradual adjustment of the air-flow, I implemented

a transitions curve as shown in Fig. 2.8c. The shape of this envelope curve is

similar to an Attack-Decay-Sustain-Release (ADSR, [28]) curve that is used to

shape volume and filter envelopes in electronic music synthesizers.

In an experiment using the musical score, that was suggested by the pro-

fessional flutist, I evaluated the performance of controlling the air-flow envelope
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directly by adjusting the lung speed. I modified the WF-4RV motor control soft-

ware in order to use different speed parameters for each note to be played. In the

following experimental section of this chapter, I will present results of these exper-

iments that show, that the note-to-note transition clearness has been significantly

improved.

2.2.7 MIDI / Middleware Communication Management

The WF-4RV control software communicates with the image processing software,

the audio processing software and the music sequencer through two different

interfaces. Through these communication interfaces the software can receive con-

trol commands to trigger notes and change performance parameters, such as the

vibrato frequency. The interface also can be used to send status information

about the robot (such as the lung fill status of the robot) to other software com-

ponents. The MIDI (Musical Instruments Digital Interface, [29]) interface is a

serial communication interface that allows the transmission of note and expres-

sion parameter data. Therefore, the interface is suitable for conveying musical

information.

To send more complex modulation parameters, ICE (Internet Communica-

tions Engine, [30]) is used as a middleware system. This library allows to send

and receive data between different computers and operating systems with a high

bandwidth. The Robot Operating System (ROS [31]) is used for the internal

communication between the sensor processing components. For communication

with the Windows motor control software, I use the Internet Communications

Engine (ICE [30]). Because so far no native Windows port of ROS has been

released, two different middleware systems had to be employed.
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2.3 Musical Context Considerations for

WF-4RV

2.3.1 Passive Performance Setup

The flutist robot WF-4RV is able to play the flute at the level of an intermediate

human player. In past performances, the robot has played with a human musi-

cian, doing a passive performance. That means that the robot was not able to

actively react to the play of its human partner, but rather performing a static

MIDI score from a PC sequencer, with the human player adjusting his output

to the performance of the robot. The resulting flute duet is similar to the inter-

action of two human players considering tone quality, but as the communication

between the players is only unidirectional, the overall performance is not naturally

dynamic.

2.3.2 Active Performance within a Human Band

During a musical performance musicians express themselves by visual commu-

nication and acoustic communication. Fig. 2.9 shows jazz saxophonist Charles

Lloyd moving his instrument up and down, according to the rhythm of the music

he is playing. Saxophonist Joe Henderson uses a similar instrument gesture to

give a visual cue to another musician in his band, when finishing his solo per-

formance. The use of acoustic synchronization allows band members to perform

parts of a composition together, without at the same time reading a score of

notes.

Two principal ways of human musicians to interact with each other during

a performance are communication through the acoustic and visual channel. Al-

though aural exchange of information seems predominant in a musical band setup

there is also a large amount of communication exchanged through visual interac-

tion. In my research, I have examined methods to visually track the movements

of the instrument of a musician performing together with the robot.

For this purpose, I propose to enable the flutist robot to interact more natu-

rally with musical partners, by implementing a Musical-based Interaction System
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Figure 2.9: The figure shows a sequence of a typical instrument movement per-

formed by saxophonist Charles Lloyd ([1]).

(MbIS). The MbIS is to be designed in order to enhance the perceptual capabil-

ities of the flutist robot, to process both visual and aural cues occurring during

the interaction.

2.4 Development of a Skill Level-dependent Musical-

based Interaction System (MbIS)

2.4.1 Requirements to the Characteristics of the MbIS

The Musical-Based Interaction System (MbIS) has been proposed, to allow the

interaction between the flutist robot and musicians based on two levels of inter-

action (Figure 2.10). The purpose of the two-level design is to make the system

usable for people with different experience levels. Two human players have to

get used to each other, get used to the way they interact and musically commu-

nicate with each other: I would like to introduce the same kind of behavior for

the anthropomorphic flutist robot. A musician who has no experience in playing
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together with the robot might require more time to adjust to the particularities

of this type of human-machine interaction. For that reason, I designed the be-

ginner level interaction system that provides easy-to-learn controllers having a

strong resemblance to established studio equipment. Considering an advanced

level player, I want the robot to offer a way of interaction that satisfies more re-

fined ways of creative expression. The second, advanced level interaction system

thus allows to control the performance parameters more freely.

Considering a situation of two human musicians intending to play together,

the higher skilled person would always have to adjust his way of interaction to the

less skilled person. Resulting in a bi-directional process, the lower skilled person

also adjusts his play in order to improve his own skills. With the approach shown

here, I intend to model this kind of interaction between two human players, and

apply it to the communication of WF-4RV and a human musician. At first, the

human player can choose the beginner interaction level to get basic knowledge

about how to control the robot. As the skill of the human musician improves,

he can switch to the advanced interaction level to control the robot with greater

freedom and produce more expressive musical performance.

The flutist robot WF-4RV is a complex humanoid robot. It has 41-DOFs and

is therefore very complicated to control. To initialize and maintain the robot,

specialized technical personnel is required. When performing together with the

WF-4RV, attention needs to be paid to the physical limitations of the robot.

Parameters that are modulated by the user must stay within the specifications

of the device, otherwise there is a risk of hardware damage. As beginning users

are usually not familiar with the operation of a complex humanoid robot, the

interaction system needs to be able to scale the user input to fit with the value

range for valid operation. As an example, the flutist robot has a certain maximum

vibrato amplitude and vibrato frequency. If these maximum values are surpassed,

the vibrato mechanism of WF-4RV might be damaged. Furthermore does the

robot’s lung have only a limited air volume. If this air volume is exhausted the

robot needs to pause operation to inhale. During this time, the user cannot

musically interact with the WF-4RV.

To implement the proposed MbIS, I present the details of the audio-visual

processing module interface, that enables the robot to interact with its partners.
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The motivation is to enhance the cognitive capabilities of the robot, based on the

principle that, if the case of a Jazz combo is considered, not only the acoustic but

also visual interaction plays a key role in communication between the musicians.

A major part of the typical performance of a piece of Jazz is based on impro-

visation. In these parts the musicians take turns in playing solos based on the

harmonies and rhythmical structure of the piece. Upon finishing his solo section

one musician will give a visual or acoustic signal, a certain melody, a motion of

the body or his instrument, to designate the next soloist. As such, the role of

visual communication in a band or orchestra is not to be underestimated. Apart

musical communication that takes place acoustically during a performance, other

channels are also used to exchange information. These signals change the per-

formance, but by themselves are not supposed to be perceived as cues by the

audience. While not being actually audible they do change the course of the per-

formance significantly ([1]). To use WF-4RV as a creative tool, and to integrate

the robot into a jazz band setup, the robot needs to be able to understand such

cues and process them into appropriate modulation of its performance.

2.4.2 Basic Level Interaction System

In the basic level interaction stage I focus on enabling a user who does not have

much experience in communicating with the robot to understand about the de-

vice’s physical limitations. We use a simple visual controller that has a fixed

correlation regarding which performance parameter of the robot it modulates, in

order to make this level suitable for beginner players. The WF-4RV is built with

the intention of emulating the parts of the human body that are necessary to

play the flute. Therefore it has artificial lungs with a limited volume. Also other

sound modulation parameters like the vibrato frequency (generated by an artifi-

cial vocal chord) have a certain dynamic range in which they operate. To account

for these characteristics the user’s input to the robot via the sensor system has

to be modified in a way that it does not violate the physical limits of the robot.

As the whole interaction system consists of several modules with different

tasks, for each task, there is one specific module that analyses the output from

the camera and microphone of the robot and maps the extracted information to
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Figure 2.10: Diagram of the proposed Musical-based Interaction System (MbIS)

that was implemented in the Waseda Flutist Robot WF-4RV. The system cap-

tures the performances actions of the human musician and, after the experience

level selection stage, maps the processed sensor information into musical per-

formance parameters for the robot. The robot’s performance provides musical

feedback back to the human musician.
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parameters that modify the musical performance. From these parameters MIDI

data is generated and sent to the robot. The robot motor control module receives

the MIDI information and adjusts the movement of the motors accordingly. The

separation of the user interface into two stages takes place in the sound and video

analysis part of the system.

The basic level of interaction is composed by the following analyses: Visual

Analysis (virtual Faders and buttons sense the instrument movements of the

robots partner musician. Buttons switch the currently played melody pattern.

The virtual fader controls the song speed) and Audio Analysis (Rhythm patterns

played by the partner musician are analyzed and compared with a previously

acquired library. The robot reproduces the detected rhythm pattern).

2.4.3 Extended Level Interaction System

In the extended level interaction interface, my goal is to give the user the pos-

sibility to interact with the robot more freely (compared to the beginner level).

To achieve this, I propose a simplified learning (teach-in) system that allows the

user to link instrument gestures with musical patterns. Here, the correlation of

sensor input to sensor output is not fixed. Furthermore, I allow for more degrees-

of-freedom in the instrument movements of the user. As a result this level is

more suitable for advanced level players. For this task I use a particle filter-based

instrument gesture detection system. A Bayesian mapping algorithm is employed

in order to ensure, that if the teaching musician does not account for all combina-

tions of instrument orientation and musical output in the teaching phase, in the

performance phase the robot will automatically play the most closely matching

answer modulation to a given instrument state.

The extended level of interaction requires more experience in working inter-

actively with the robot, but also allows for more complex control of the musical

performance. The user adjusts parameters by changing the orientation of his

instrument. If the user is holding a wind instrument like the saxophone, he can

adjust two musical parameters at the same time, one by moving the instrument

sideways and the other one by bending the instrument closer or further away from

the robot. These movements require more practice and are in their effect on the
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performance not as easily conceivable as the techniques in the basic interaction

level. One option of parameter control mapping is to let these movements mod-

ulate the amplitude of the vibrato of the flute tone. Changing vibrato amplitude

is a way of enhancing performance expression, that is knowingly perceived only

by more experienced musicians.

Similarly, the extended level of interaction processes the same incoming infor-

mation at a higher level of perception as follows: Visual analysis (a particle filter

based algorithm is used to track a musicians instrument movements. Movement

information is mapped to modulate the vibrato amplitude of the robots play.)

and audio analysis (rhythm and melody patterns are analyzed, matched against

the robots library and, in case of successful recognition, they are reproduced).

Regarding the assignment of expression parameters of the robot to either the

beginner or the advanced skill level, I would like to point out, that I implemented

these two skill levels with regard to technical as well as musical conditions and

requirements. The flutist robot is technically a very complex construction that

requires very accurate control in every element of its body. If one part of the

robot is not suitably controlled, the robot will not be able to produce any sound.

As a result the ways that the performance of the robot can be controlled may be

limited.

2.5 Experimental Evaluation of the Musical Per-

formance System

2.5.1 Experiment Purpose

The purpose of the experiments in this section, is to show that the performance

capabilities of the flutist robot WF-4RV are suitable for the robot to be used

as an implementation platform of the proposed musical-based interaction system

(MbIS). In case of an inter-active performance, the way in which the user will

manipulate the musical performance of the robot is not to be determined before-

hand. Every action is decided by the user, and therefore cannot be predicted by

the robot. If the changes in the performance cannot be computed in advance, the
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robot needs to able to process them in real-time. Only in this way it can react

appropriately to spontaneous input by the musician.

In case of the basic level interaction system, the input controllers (virtual fader

and buttons) give the musician various possibilities to modulate the performance

parameters of the robot. The mapping module of this level of the MbIS is adjusted

with feedback information from the physical state parameters of the robot. In

case of the extended level interaction system, the musician can select the musical

patterns to be performed by the robot using instrument gestures. This can result

in very sudden switches of the musical material, that is transmitted to the robot.

To play an appropriate interactive performance, the robot needs to be able to

play these sudden transitions accurately.

To ensure this, the proposed air-flow envelope control system was developed.

Using the envelope system, the lung speed is adjusted individually for each note

to be played, in order to achieve precise note-to-note transitions. In the following

experiments I compare the performance capabilities of the previous control system

and the new system with note envelope control.

2.5.2 Experiment Conditions

I performed experiments using two different experimental platforms: the flutist

robot WF-4RV without the envelope controlled tone generation system and the

flutist robot WF-4RV with the envelope controlled tone generation system. As

musical base material, I chose the classical piece Ave Verum Corpus by Wolfgang

Amadeus Mozart. The piece was suggested as a test piece to evaluate the musical

performance quality of the flute robot by the collaborating professional flutist.

The note data of the song is sent directly to the motor control module of the

flutist robot from the music sequencer software. The robot control system has no

information about the characteristics of the music beforehand. Two phrases A

and B were selected from the evaluation piece. Both phrases contain note jumps,

that according to the professional flutist are, even for an intermediate human

player, hard to perform. These two phrases were performed by the robot (with

and without the envelope control system activated) and the output recorded.
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Figure 2.11: a) Shows a phrase A from Ave Verum Corpus, as it is played by the

flutist robot, in case the air-flow envelope control is used. The pitch and volume

decay time of the second note is 0.1s longer than decay of the reference signal.

b) shows the same phrase played without air-flow control. In this case the pitch

and volume decay time amounts to 0.6s over the reference decay time.
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Figure 2.12: This graph shows pitch and volume plot of phrase B from Ave Verum

Corpus. a) displays the resulting performance of WF-4RV with air-flow envelope

control (decaytime = 0.1s). b) shows the same phrase without air-flow envelope

control (decaytime = 0.6s). A decrease in volume of 20dB during the decay

phase can be observed.
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2.5.3 Experiment Results

I evaluated the experimental results focusing especially on two difficult phrases

in the beginning and the end of the composition. The result of the experiment

using phrase A is shown in Fig. 2.11. In case of phrase A both systems show

an accurate performance of the phrase, except for a note jump occurring after

2s. At the time of the note jump, the envelope controlled system is able to

reproduce the notes close to the reference at 2.1s. The system without envelope

control on the other hand, is not able to perform the tone pitch control accurately.

The result is a pitch curve that is very different from the reference, with the

tone only being correctly produced again from 2.6s. In case of phrase B similar

results are visible. These are displayed in Fig. 2.12. The phrase is replayed

similarly to the reference for both systems (from 0s to 3s and from 4s to 9s),

whereas the envelope controlled system outperforms the uncontrolled system for

note jumps. Although the pitch reproduction accuracy is more accurate when

using the envelope controlled system, there is still a slight delay of about 0.05s

in the tone production, when a large interval occurs. This is due to the breath

release time, that is inserted in-between two notes in case of note jumps. This

has the purpose of avoiding overblown tones, that are visible in the pitch graph

of the non-envelope controlled performance (at 3.5s for phrase A and at 2s for

phrase B).

2.5.4 Discussion

The experimental results show that the tone generation is improved, when using

the envelope controlled air-flow system. It is an important aspect for a spon-

taneous performance with the robot, that the robot is able to perform scores

with note jumps well. From the recorded experimental data, I consider the per-

formance capabilities of the robot to be suitable for an interactive performance.

However, the musical material, that was used for testing was quite limited (only

one exemplary tune was tested). In the following sections we apply the musi-

cal interaction system to another musical piece, the jazz standard The Autumn

Leaves. As I will try to show later on, the system proves to be suitable for the per-

formance of this further test tune as well. Although the new system improves the
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note-to-note transitions, a certain delay of tone production can also be observed.

This means, that for the system to perform well, very accurate adjustment of the

tone parameters is necessary. This results in a trade-off between accurate note

timing and accuracy of note-to-note transitions.

2.6 Conclusion of this Chapter

In this chapter I introduced general technical aspects of the experimental robotic

system. In the first part, I described the technical setup of the flutist robot

WF-4RV, specifically the mechanical hardware, with focus on the motor control

electronics and software implementation. Furthermore, I explained, how the sys-

tem hardware has been changed from a passive performance system to an active

performance system. While working on this thesis, besides developing the various

aspects of the interaction system, I also tried to improve the control electronics

and software of the flutist robot WF-4RV. I rewrote the control software of the

flutist robot to improve modularity and to accommodate for future extensions

and improvement. I also remade the complete wiring system of the robot to re-

duced the power and space requirements of the robot unit. These improvements

were complete within a duration of around 2 years. As a result, the flutist robot

WF-4RV system is more easily initialized, safer to operate and easier to trans-

port. By simplifying the wiring system the probability of operation failure of the

robot has been reduced. I tried to put great attention to these points, as the

robot has to fulfill various requirements, in order to produce a good performance.

In the second part of this chapter, I introduced the Musical-based Interaction

System (MbIS). I introduced this interaction system focusing on developing a sys-

tem, that is usable by users with different experience levels, is easily adaptable

to different robot models, makes use of various communication channels and is

able to adjust itself to the physical constraints of the robot. A system integrating

all four of these points has not been developed before and is, especially in a mu-

sical context, novel and original. From a more general human-robot interaction

research perspective, the system’s objective is to act as a natural interaction plat-

form between a human user and an anthropomorphic robotic entity. The system
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is divided into basic level interaction for less experienced users and the extended

level interaction system to accommodate for users with higher experience.
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Chapter 3

Image Processing Module

Implementation

3.1 Introduction

Humans communicate with each other through various perception channels, such

as vision, audition and tactile feedback. Vision is one of the most important

channels, through which we gather visual information about our environment

and our own situation inside this environment. Using our eyes and perceptual

processing connected with them inside the brain, we are able to perceive actions

of other humans by studying their appearance and movements. To make a robotic

system work efficiently in a human environment, it makes sense to emulate the

human vision by means of a video processing system. To interact with humans,

it is of advantage, if the robot is able to perceive body movements and gestures,

that are performed by the robot’s interaction partner. Various systems, that can

track the whole human body, the human face or specific body parts, have been

developed in the past ([32], [33], [34]).

Especially for our purpose of developing the Musical-based Interaction Sys-

tem, the detection of the instrument movements of the partner musician of the

flutist robot are important. In a human band, players do not only exchange

musically hearable information, but they also communicate by looking at each

other and giving each other gestures with their instruments. This is specifically

important in musical performances, that contain improvised content. In this case
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musicians need to synchronize their play, without relying on a fixed arrangement,

that defines who is going to play at which time. By using instrument gestures,

the musicians can determine each other’s performance role (solo player, accom-

paniment player) while continuing their play.

With the two vision processing algorithms that are proposed in this chap-

ter, it was attempted, to create a perception interface for the described kind of

instrument gesture communication. Regarding previous research, there has be

intensive work being conducted in the field of visual gesture recognition for sev-

eral years. Important state-of-the-art publications in the field are introduced in

the section below (3.2). For the two different levels of the interaction system, two

different vision processing algorithms are proposed. The video processing in the

beginner level interaction system uses a motion area detection method to allow

the user to control virtual controllers (virtual in the sense that they do not have a

physical manifestation and the user manipulates them by gestures) by instrument

movements. This system is designed in a musician-friendly way as the controllers

resemble the virtual pendent of buttons and faders as they are used on a mix-

ing console in a music studio environment. For this reason a musician can be

expected to be familiar with the principle of operating these controls, resulting

in a steep learning curve. The advanced interaction module uses a particle filter

based object tracker to follow the motions of a musical instrument. As informa-

tion from both of the cameras of the robot is provided, the algorithm is able to

recognize three dimensional gestures.

These vision processing algorithms were chosen, to satisfy requirements that

were posed to the system. It should be easy to use for the user. If possible no or

a very short (one time) initialization process, should be necessary. Furthermore,

we would like to, on the long term, use our interaction system in various environ-

ments, not only in the laboratory, but also at exhibitions or on a concert stage.

Therefore the system should be able to cope with varying lighting environments

and cluttered / changing background. As described in the previous chapter, space

considerations are also important for the complete system. In case the system is to

be transported to another location, the amount of computer hardware necessary

to support the interaction system should be minimized. Computational efficiency

of the proposed vision algorithms was therefore also considered. Connected with
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this issue, processing methods were selected, that are relatively simple to be im-

plemented, but still are suitable to support the purpose of the Musical-based

Interaction System.

3.2 Related Research and State of the Art

Several methods for tracking user gestures that do not rely on a camera interface

have been proposed. The BodySuit introduced by [32] registers body movements

of a performer through bending sensors and converts these signals into musi-

cal performance modification parameters. Hasan ([35]) uses the principle of the

Theremin instrument and other sensors to track a performers hand movements.

In this work we design an interaction method for the anthropomorphic flutist

player. It is an important part of our research goal to develop the different parts

of the robot, resembling their human counterparts as closely as possible. This

premise encourages us to recognize human gestures visually, using the two cam-

eras built into the head of the robot.

In [36] and [37]; different kinds of tools have proposed to generate musical

data from vision processing. Although two commercially available systems Eye-

Con ([33]) and A Very Nervous System ([38]) are generally able to output MIDI

(Musical Instrument Device Interface) data from camera input, the target for

these systems seem to be dance performances. In contrast we tried to optimize

our system to suit the needs of a person who wants to interact with a device

musically. For this reason we on the one hand designed virtual controllers similar

to ones that have been used in mechanical MIDI controller devices. On the other

hand we use the orientation data of the interacting musical instrument itself to

control the robots performance.

Particle filtering techniques as utilized in the advanced level interaction sys-

tem have been used to solve various tracking problems (according to a survey

published in [39]). In [34] an approach (without the use of markers) to track

the complete human body is described. In [40], hand gestures of a person are

recognized using a similar principle. These works rely on tracking human body

parts by analyzing their color profile. The search for the best match of an initially
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Figure 3.1: Using a virtual fader, the musician can control the performance of

the flutist robot with simple instrument movements. Given a suitable mapping

strategy, the motion of the instrument could control the vibrato expression of the

flutist robot.

determined color profile within a certain image area is performed by a particle

filter.

3.3 Basic Level: Motion Perception-based Track-

ing

3.3.1 Introduction

In this section we will describe the functionality of the motion tracking algorithm

that we use in case of the beginner level interaction system. The method is

inspired by an interface extension called Eyetoy ([41]) that the company Sony in

its first version introduced about ten years ago for its gaming console Playstation.

It enables players to control games by movements of their body in front of a small

camera connected to the gaming console. The similarity of these games and

our application with the flutist robot is that in both cases, we need to extract

information about a person‘s movement in a varying environment. The general

principle of functionality of the basic interaction level vision processing module

is shown in Fig. 3.1.
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3.3.2 Motion Perception-based Tracking System Imple-

mentation

Similar to the principles applied in the Playstation games, in our research we

use only the moving parts of a video for analysis. A related method called delta

framing is employed in video compression (i.e. MPEG I compression as in [42]).

Thus, if we have a continuous stream of video images, for every frame we calculate

a difference image with the previous frame:

pr = |pp − pc| (3.1)

pr: absolute difference for the resulting pixel

pp: pixel at the same position in the previous image

pc: same pixel in the current image

We threshold the resulting image, and thus create a b/w bitmap of the parts

in the video image, that have changed from one frame to the next:

pr =

{
0 if pc ≤ tr

255 if x > tr
(3.2)

pr: threshold pixel value

tr: threshold level

pc: same pixel in the current image

To smoothen the result we calculate a running average over several of these

images [43]:

pr = α ∗ pp + (1− α) ∗ pc (3.3)

pr: average for the resulting pixel

pp: pixel at the same position in the previous difference image

pc: same pixel in the current image
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3.3 Basic Level: Motion Perception-based Tracking

Figure 3.2: The different stages of determining the motion history of an object

using the motion perception-based instrument tracking algorithm. a) shows the

original (in this example synthetic) object moving over a fixed background. In

b) neighboring video frames have been subtracted from each other and the sub-

tracted images averaged over several frames to provide a motion history. c) shows

the thresholded binary image resulting from these image operations.

α: Averaging factor

The different stages of this averaging process is displayed in Fig. 3.2.

In a video game the information resulting from this delta-framing method

might be used to destroy enemies or do a virtual boxing fight. However, we want

to use it to control musical content. In music production, composers use switches

and faders to control their electronic musical instruments, so we tried to model

these controls in image space. The first controller we created is a simple push-

button, in functionality similar to a drum pad of an Akai MPC drum machine

([44]). These push buttons can be positioned anywhere in the video image. If a

push button is triggered, a previously defined signal is sent to the flutist robot.

At this stage of our research, the user can watch the input of the video camera

on a monitor located beside the robot. On the screen the position of the push

buttons is graphically displayed. The buttons are drawn in a semitransparent

color, so the area covered by the button is clearly defined and at the same time
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3.3 Basic Level: Motion Perception-based Tracking

Figure 3.3: Virtual buttons and faders resemble music studio controllers, that

can be manipulated by instrument motion. The buttons allow discreet ON and

OFF states, triggered by the instrument moving into button area. Faders record

continuous values that are adjusted by the position of the instrument.

the video image beneath can still be seen. To detect if a button is switched on

or off, we employ the algorithm in Fig. 3.4.

As a second controller we implemented a virtual fader, that can be used

to continuously set a performance value. In this case, the position of a fader

can be changed for example by a motion of the hand. For each change of the

fader position, a MIDI controller message is sent to the robot. The fader slowly

resets itself to a default position after it has been manipulated. This prevents

a fader from remaining in an erroneous position that might have resulted from

background noise (i.e. a person moves in the background of the image, causing an

undesired change of the fader position). A fader can be deliberately positioned

in the image and orientated in any angle to allow the user to easily adjust it to

his control requirements and physical constraints. The principle functionality of

both, the virtual fader and the virtual button are displayed in Figure 3.3. To

determine the position of a fader, we use the algorithm in Fig. 3.5. A second
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3.3 Basic Level: Motion Perception-based Tracking

Figure 3.4: The figure displays a flow-chart of the algorithm to determine the

current state of a virtual button. The decision if a button is triggered depends

on the number of motion pixels detected within the button area. Depending on

the application environment the trigger threshold can be adjusted.
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3.3 Basic Level: Motion Perception-based Tracking

implementation using an algebraic calculation to determine the new fader value

v has also been implemented:

sinα =
yp − y0
|r|

⇐⇒ (3.4)

α = arcsin
yp − y0
|r|

(3.5)

cos β − α =
|v|
|r|

(3.6)

v = cos (β − arcsin
yp − y0
|r|

)|r| (3.7)

r: distance vector between (x0, y0) and (xp, yp)

v: fader value vector

α: angle between r and the x-axis

β: orientation angle

The calculation of the control value of a virtual fader is graphically shown

in Fig. 3.6. The position of the baseline (the position the fader automatically

adjusts itself to, when it is not touched) of the fader can be freely defined. For

some control parameters of the flutist robot a homing position at zero might not

be optimal. For variations in vibrato expression, the baseline position might be

at a moderate vibrato amplitude value, allowing the fader to be moved to actuate

slight positive and negative alterations to the vibrato amplitude.

3.3.3 Experiment Objective

For the purpose of experimentation in case of the basic level interaction we chose

the very reduced setup of two virtual buttons and one virtual fader. In this

configuration we mapped the virtual fader to control the pattern play tempo of

the robot. The two virtual buttons allow to switch between two melody patterns.

We chose the notes of melody pattern one and the notes of melody pattern two

to be within separate octaves, to be easily able to distinguish between the two

when doing pitch analysis on the sound result. The song tempo is varied between
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3.3 Basic Level: Motion Perception-based Tracking

Figure 3.5: The figure displays a flow-chart of the algorithm to determine the

current value of a fader. Also in case of the fader, the number and position of

active pixels within the fader area determine the fader value. Additionally, to

prevent the fader value from jumping, only motion pixels with a certain vicinity

of the current fader position are included in the calculation.
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3.3 Basic Level: Motion Perception-based Tracking

Figure 3.6: The figure outlines the functionality of the fader given a certain

instrument position and fader angle. Here, β is the angle of the fader controller

and α is the angle of a vector pointing to one motion pixel on the fader line.

Figure 3.7: In this screenshot a saxophone player controls a single virtual fader

with the cone of his instrument. The amplitude of the virtual fader shown in the

small graph on the bottom changes according to the musician’s movement. The

left side of the picture shows the flutist robot WF-4RV.
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3.3 Basic Level: Motion Perception-based Tracking

60bpm and 160bpm (bpm = beats per minute). Although the robot would be

able to play up to much higher tempos, we chose the upper and lower limit of the

song tempo to be within musically reasonable limits.

In both experiment modes the interacting person is standing in front of the

robot inside the viewing angle of the robot cameras. The interacting person can

see a graphical representation of the interaction interface as well as the video

image recorded by the cameras on a computer screen installed beside the robot.

The user, an intermediate level musician, is instructed to utilize the interaction

interface to vary the flutist performance in a way that is comprehensible in a

musical sense, performing more or less regular movements with his instrument.

For each of the parameters that we intend to manipulate we perform a separate

experimentation run. That results in three experiments: the virtual buttons

changing the current melody pattern, the virtual faders changing the song tempo

and the instrument orientation varying the vibrato amplitude. For each of these

experiments we record separate data, that we also analyze separately.

In case of changing melody patterns during interaction using the virtual but-

tons, one melody is pattern is played and once it is finished the system waits for

the next event. In case of continuous control, one melody pattern is infinitely

looped, as our aim is observe continuous changes on the sound output. The eas-

iest way to do that is to keep the current melody pattern constant and to vary

the expression parameters. A screenshot of a saxophone player using a virtual

fader is shown in Fig. 3.7.

3.3.4 Experiment Method

We measure the status of the interaction system in two places. We monitor

and save the events of a button being triggered and the continuous values of

the faders when they are sent from the computer vision module to the mapping

module. At the same time we record the sound output of the robot with a

microphone placed in front of the robot. We records both types of information in

a music recording application (Ableton Live). This is the advantage of sending

the data from one module to the next in MIDI data form, with one application we

can handle discreet data (MIDI notes), continuous data (MIDI controller data)
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3.3 Basic Level: Motion Perception-based Tracking

and audio information (recorded with an audio interface). The disadvantage is

that the resolution of continuous controller data is limited to 8 bit. However for

our purpose of qualitatively evaluating the interaction system this resolution is

considered to be sufficient.

When analyzing our experiments we intentionally do not work with ground

proof data coming from a third-party motion tracking device. We bear in mind

that the accuracy of our system may be inferior to that of other available systems.

Our intention is to create a user interface that allows spontaneous interaction with

a robot. For the interacting person the feeling of spontaneousness does not so

much depend on the accuracy of the algorithm but on its responsiveness and

intuitiveness of use. For the data analysis we compare the system input, the

movement of the user’s instrument, respectively the results from the computer

vision, to the sound output of the robot. We use a FFT spectral analysis algo-

rithm to detect the pitch and amplitude of the music data. This enables us to

qualitatively extract pitch / melody pattern, song tempo and vibrato amplitude

from the music data.

For discrete information input in case of the virtual buttons, we separate

the course of one experiment into several stages or states. For example if the

user triggers button one, we enter state A (high notes melody pattern), because

button one is associated to the melody pattern that lies above the pattern for

button two. Respectively the same happens when touching button two, state

B (low notes melody pattern) is entered. To verify the responsiveness of the

interaction itself we observe in the graph if the state of the resulting sound of

the robot is according to the input state. After one melody pattern has been

played the system enters an idle state until the next event. When the artificial

lungs of the robot are empty and the robot needs time to refill them, it is not

able to generate sound for a certain duration. This state is called breathing point.

During continuous control in case of interaction using the virtual fader, we only

consider two different stages. One is the continuous control state, in which one

melody pattern is looped, and the other state is again the breathing state where

sound output is stopped.

The virtual buttons have a width of 80pixel and a height of 60pixel, resulting

in an area of 4800pixel2. If the musician stands in front of the robot at a distance
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of 3m, this pixel are relates to an area approx. 1m2 in the camera plane. In

case of the virtual fader, the controller has a length of 200pixel and a height of

60pixel, which results in a controller area of 12 ∗ 103pixel2. The musician can

therefore control the virtual fader in a space of 2.5m2.

3.3.5 Experiment Results

Regarding the basic interaction level, Fig. 3.9 and Fig. 3.8 show the outcome

of our experiments. Fig. 3.8 presents the results for a musician manipulating

two virtual buttons (button A and B), switching between two melody patterns.

The graph is divided into several phases that resemble the activity states of the

interaction system. Low notes pattern states are triggered by the user touching

the area of button A. When the button is activated the computer vision module

sends a MIDI signal to the performance control module to trigger the assigned

musical pattern that is to be played by the robot. The result of the pitch analysis

of the recorded output can be seen in the pitch graph of Fig. 3.8. A trigger of

button A results in a low note pattern being played consisting of MIDI notes 67

(g4), 71 (b4), 74 (d5). Touching button B respectively results in notes 77 (f5),

81 (a5), 84 (c6). The last note of a pattern is continued until the next button

trigger, in a state that we call idle state. At that time, the robot does not do

anything else than hold the last note sent from the performance module. We

observe regular operation of the buttons at 3s, 8.5s, 13.5s, 18.3s, 22s (for button

A) and at 0s, 5.5s, 10.5s, 18s, 27s (for button B). The button trigger at 18s is to

be especially considered, as here button B is triggered while the low notes melody

is still playing. The trigger of a new melody while another one is playing makes

the robot switch patterns immediately. After the switch has been conducted,

operation is continued as usual. As we can see from the pitch analysis, response

to button activity is fast, in the graph we observe not delay or lag. When we

look at the volume plot we can identify areas, where the level suddenly drops for

a certain duration. These moments are called breathing points and relate to the

time when the robot’s lung system is deflated and needs to pull air in order to be

able to produce the air-beam necessary to generate the flute sound. As the lung

breathing speed is constant we see these events regularly happening at 4s, 15s
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Figure 3.8: Similar to the previous graph this graph shows the relationship be-

tween the recorded user movements triggering two virtual buttons and the analy-

sis of the sound output of the flutist robot. The resulting activity stages represent

the two different melody patterns that are associated to the two buttons, an idle

phase and the breathing point.
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Figure 3.9: The graph shows the relationship between the recorded user move-

ments adjusting a virtual fader and the analysis of the sound output of the flutist

robot. According to the amplitude of the fader (here displayed as relative percent

value), the tempo of the robot performance changes with a range of a maximum

of 170bpm to a minimum of 70bpm.
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and 26s in the graph. The duration of one breathing phase is ≈ 10s long, with

the ‘breathing in‘ taking approximately 1s.

Fig. 3.9 shows results of the experiment to evaluate the functionality of the

virtual fader in order to adjust the musical interaction between the human player

and the robot. The virtual fader manipulates the speed of the pattern currently

being played by the robot when moving a virtual fader in level 1 interaction mode.

Movements are executed in different tempos, From 5s to 10s slow movement is

performed, whereas the time from 17s to 30s is dominated by faster changes.

Fader movement relates to changes in song tempo as can be observed in the pitch

graph. The higher the fader value the closer the tones recorded in the pitch

graph move together on the timescale. When closely observing the tones in the

pitch plot we see that a note duration in case of the furthest fader movement

ranges from about 0.2s long, which relates to 170bpm in song tempo, and 1s for

the fader position closest to its baseline, which relates to around 70bpm. These

values comply with what we previously determined as the highest and lowest

tempo values for our pattern. We conclude, that the pattern play tempo does

change as intended in compliance with fader movement. This is true for the whole

duration of the measurement except for the breathing points that occur in the

same way as in the previous experiment. The time between two breathing points

is again approximately 12s and their duration is 1s. This is also reflected in the

volume plot, that although it shows changing volumes for the different tones of

the played pattern, at the breathing times the volume drops significantly.

As a main difference to the virtual buttons, during control using the virtual

fader there are only two possible states, the continuous control state where the

fader movement adjusts the song speed, and the breathing point where the robot‘s

lungs are refilled. It remains to note, that the breathing tempo of the lung does

not change when the fader volume changes. The speed for the upwards movement

of the lung stays the same during the whole experiment. Regarding the irregular

volume values for different notes, due to the nature of sound generation at the

flute mouthpiece, with constant air pressure from the lung, the output volume

varies from note to note. As a drawback, between the recorded fader values and

the sound output slight lagging can be observed. This is a result of the running

average we apply to the digitized video input. Depending on the application of
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the system the amount of averaging can be varied. Basically the averaging can

be regarded as a low-pass filter: The more averaging, the smoother the recorded

data will be, but as a trade-off, the response time of the system will be slower.

However, we made the practical experience that this error does not strongly affect

the applicability of the system.

3.4 Extended Level Interaction System: Parti-

cle Filter-based Tracking

3.4.1 Introduction

With our second vision processing approach, used in the advanced interaction

level, we concentrate on creating a visual interface, that enables a human to con-

trol the robot through gestures with his musical instrument as freely as possible.

A further emphasis here is to create an interface, that allows on the one hand

to control the musical expression of the robot accurately, but also robustly and

in a computationally efficient way. In the past we have exhibited the robot on

several occasions and we found that each place had very different lighting and

background conditions. Our gesture detection method should not only work in

an optimized laboratory environment, but also in real environments; thus, we

need to find a way to cope with these varying ambiances. There might be a con-

stantly changing background (i.e. people passing by, stopping to watch the robot

perform) and below-optimum lighting sources (i.e. stage lighting facing into the

cameras of the robot). Another difficulty is that the humanoid head of the robot

can move during a performance. This requires our image processing algorithm

to adapt rapidly to fundamental changes of background (fundamental in contrast

to a small object being moved in the background). Particle filter-based track-

ing has been reported to achieve reliable and robust tracking results in various

environments. For this reason we chose this algorithm as tracking method for

the advanced interaction level. The basic principle of the particle filter-based

tracking is shown in Fig. 3.10.
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Figure 3.10: Another way of controlling the expression of a musical performance

robot is the use of a particle filter-base color histogram tracker. In this application

the inclination of the instrument of the musician is tracked, by following the color

profile of the musician’s hands holding the instrument.

3.4.2 Mathematical Background

The particle filter is used to predict the object positions in our video sequence.

These object states behave like a hidden Markov process. That means that we

have a sequence of unobserved (hidden) states xk from time k = 0 to k = n (x0:k)

and parallel to these a sequence of observed states yk (y0:k). The relationship of

these unobserved and observed states is characterized by two probability density

functions ([45]):

- p(xk|xk−1) for k >= 0 (one actual state xk only depends on the state one

time-step prior in time, k indexes the time-step)

- p(yk|xk) for k >= 0 (an observation yk only depends on the current state

xk)

- the sequence has an initially known distribution p(x0)

We use the probability density function to describe the development of our system

as it contains all the necessary information about the probability distribution of
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possible states in a convenient form. We have

E(x) =

∫ ∞
−∞

x f(x) dx (3.8)

to calculate an estimation E(X) of a state variable x from the probability density

function f(x). In order to do our object tracking we want to know which state an

object is likely to have, given a certain observation. We gain information about

this state from evaluating the posterior density function p(x0:k|y1:k). Particularly

for the particle filter, the posterior density function is approximated by generating

a set of random samples and assigning weights to these random samples according

to their importance (definition of the pdf for a discrete random variable from [46]).

p(x0:k|y1:k) ≈
Ns∑
i=1

wi
kδ(x0:k − xi0:k) (3.9)

where {xi0:k, i = 1, ..., Ns} areNs random samples with associated weights {wi
k, i =

1, ..., Ns}. We wrote y1:k (index starting at 1) as the initial state x0 is known and

needs not be observed, thus there is no y0.

The weights wi
k are normalized such as that

Ns∑
i=1

wi
k = 1 (3.10)

which means that

wi
k =

w∗in∑Ns

i=1w
∗i
n

(3.11)

with {w∗in , i = 1, ..., Ns} as the non-normalized weights.

We pull these samples from a proposed probability density function (PDF)

q(xi0:k|y1:k) that characterizes our assumption about the posterior state ([47]).

The ratio

w∗in ∝
p(xi0:k|y1:k)

q(xi0:k|y1:k)
(3.12)

thus describes how well our current random draw xi0:k fits the the real state.

Furthermore, as both pdfs should describe the same reality we have∫
p(xi0:k|y1:k)dxi0:k ≈

∫
q(xi0:k|y1:k)dxi0:k (3.13)
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As we are dealing with a sequence of video frames (resembling our Markov

chain), we need to find a rule how to augment each weight when transitioning to

a new time-step [47]. By (first for non-discrete states x) factorizing q in

q(x0:k|y1:k) = q(x0:k|x0:k−1y1:k)q(x0:k−1|y1:k−1) (3.14)

and using Bayes’ estimation on our prior like

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k)

p(y1:k)
(3.15)

we finally get (now for the discreet case)

w∗ik = w∗ik−1
p(y1:k|xi0:k)p(xi0:k|xik−1)
q(xi0:k|xi0:k−1, y1:k)

(3.16)

By setting the proposal distribution [48]

q(xi0:k|xi0:k−1, y1:k) := p(y1:k|xi0:k) (3.17)

we reach

w∗ik = w∗ik−1p(y1:k|xi0:k) (3.18)

, which means that we modify the particle weight from a previous frame only

with the likelihood p(y1:k|xi0:k). In case of the proposed color histogram tracking

method we calculate a new weight by multiplying its old value with the measure

of similarity between the color histogram of its new (determined by Gaussian

distribution) position and the original color histogram of the tracked object, de-

termined at initialization. To measure this likelihood we apply the Bhattacharyya

[49] coefficient of similarity between histograms,

ρ[pi, q] =
m∑

u=1

√
piuqu (3.19)

with pi being the histogram of one seeded particle, q resembling the object color

histogram sampled at initialization and m expressing the histogram size indexed

by u.

Although we adapt new object coordinates only from the particle with the

highest likelihood, as the particle filter method works recursively, the informa-

tion about the other particles are not lost. A particle with an initially lower than
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maximum likelihood is not abandoned, but can still propagate to gain more like-

lihood. However, research on particle filters has shown that in case all particles

are kept for the whole tracking run, all particles but one tend to be degraded

to probabilities close to 0. There are several ways to counteract this behavior

[47]. We have chosen the method of re-sampling. After each new predict-update

cycle, particles with a probability lower than a certain threshold are exchanged

for newly initialized particles. This threshold as well as the optimum number of

particles to be used have been determined manually.

3.4.3 Implementation

We propose to implement color histogram matching ([50]) and particle tracking

([47]) to follow the movement of a musical instrument. The combination of the

two methods is an established way to follow an object with a certain color profile.

We propose this method, because compared to the previously proposed motion

perception-based tracking using the virtual faders and buttons, it allows more

freedom of movement for the user. In case of the virtual faders and buttons, the

controller areas are fixed in the video image and cannot be moved during the

performance. The tracking algorithm proposed in this section gives the user the

possibility to move into any area of the image, while still being able to control

the robot with his instrument movements.

The system is initialized manually by defining the starting positions of the

player’s hands (Figure 3.11). For the computation of the 3D data, the algorithm

makes use of a stereometry mapping technique. We do not calculate a complete

depth map of the scene, but limit our matching to the four patches found by

the particle tracker. One might argue that we could also use 2D techniques

to compute a depth image: as we try to emulate human perception, we prefer

using two cameras and stereo pair matching. The proposed technique also saves

resources due to the limited number of points being calculated.

To begin with, the user marks the initial location of the image areas to be

tracked. Four areas are selected: One patch for each hand in the left eye camera

and one patch in the right eye camera. A color histogram is generated from

each of the selected image areas. Once a new video frame is acquired we find
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Figure 3.11: The figure shows the cycles of our particle filter system. The system

is initialized with a known state. The following state is predicted by seeding

particles and the new state of the object measured by comparing the candidate

particles. The re-sampling stage re-initializes a certain amount of particles to

avoid degradation.
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a random distribution of locations around the previous location of each of the

patches. For each of these particles a histogram is generated and compared with

the initialization histogram. The particle with the most similar color profile is the

new position of the tracked patch. Particles with less likelihood are also saved,

each weighted according to its likelihood. The more particles are being used the

more accurate the method becomes.

After we found the x-y-axis coordinates of the image patches, we now calculate

the distance of a patch from the camera. To achieve this we examine the difference

between the x-position of the patch in the left camera image to the x-position in

the right camera image. The larger the difference, the closer the patch is located

to the camera. Without calibration we cannot determine the absolute distance of

the patch from the camera. However, if we work with relative values to compute

only changes in orientation and position, this is not necessary.

We model the shape of the saxophone as a line. The hands of the player

are located on two spots on that line. The average of the position of the hands

is recorded as the center position of the saxophone. Similarly we deal with the

orientation: We consider a line drawn from the center of one hand to the center of

the other. The inclination of the line is the orientation of the instrument. There

is no ambiguity about the position, as normally a player would not hold the

instrument upside down. From the 2D coordinates of the four hand particles we

calculate the relative position, inclination and rotational angle of the instrument.

To compute the depth values of both hands we use a z-transformation:

∆xp = abs(xpl − xpr), z =
1

∆xp
α (3.20)

∆xp is the distance between the x-axis of the patch in the left camera image

(xpl) and the right camera image (xpr). Accordingly z denominates the z-axis

of the patch. We use α as a constant to adjust the value of ∆z for further

calculations.

Inclination and rotational angle are obtained by transforming the Cartesian

coordinates resulting from the object tracking into a cylindrical system. ∆x, ∆y,
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and ∆z denote the vector between the saxophone player’s hands.

∆x = x1 − x0 (3.21)

∆y = y1 − y0 (3.22)

∆z = z1 − z0 (3.23)

θ = arctan(

√
∆x2 −∆y2

∆z
) (3.24)

φ = arctan(
∆y

∆x
) (3.25)

for ∆x ∧∆y > 0.

We use a cartesian coordinate system parallel to the view plane of the robot

to calculate roll (φ), pitch (θ) and yaw (ρ) inclination of the instrument.

φ = arctan(
∆y

∆x
), θ = arctan(

∆y

∆z
), ρ = arctan(

∆x

∆z
) (3.26)

The flutist robot performance can be controlled by MIDI data. Two kinds of

MIDI data are evaluated by the robot: A MIDI note (containing pitch and note

duration information) triggers the tone generation routines of the robot. As the

flute is a monophonic instrument, only one tone can be played at a time. The

robot evaluates MIDI controller data as continuous information. Tone volume

and vibrato amplitude are manipulated by sending MIDI controller data to the

robot.

3.4.4 Experiment Objective

In this section I introduce an experiment, that was conducted, in order to evaluate

the technical functionality of the particle filter-based tracking algorithm. The

purpose of the experiment is to confirm, if the the proposed algorithm works as

has been intended with the development. In case of the extended interaction

level vision processing system this means, that by using the proposed method,
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Figure 3.12: The orientation angles of the instrument are calculated from the

two patch positions. In this picture, a saxophone is shown as an example. The

method itself is applicable to other kinds of woodwind instruments as well.
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Figure 3.13: The orientation of the instrument is altered by leaning forward with

the upper body. This movement is typical for giving a cue in a band performance.

Figure 3.14: The figure shows a screenshot of an experiment in which the par-

ticle filter-based color tracker is used to follow the instrument angle of a human

saxophone player. In the lower right graph the the currently detected angle is

plotted. On the left side the flutist robot WF-4RV is shown.
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3.4 Extended Level Interaction System: Particle Filter-based Tracking

the flutist robot is able to track the instrument movements of a human wind-

instrument performer. These movements might then be mapped to modulate

the performance parameters of the robot. In comparison to the basic interaction

level vision processing system, the particle filter-based tracking gives the partner

musician of the robot the possibility to perform movements with a higher degree of

freedom. As a result, the musician can move his instrument anywhere in the image

space, while the robot tracks the instrument orientation. In the experiments we

did not use simulated input to the tracking system, but asked a human musician

to perform typical instrument movements in front of the robot camera. As I will

show in the further chapters, I would like to evaluate the system particularly for

the case of natural and intuitive interaction within a human band. The suitability

of the proposed particle filter-based tracking to be integrated into such a system

is to be demonstrated with the following experiment.

3.4.5 Experiment Method

In case of the particle tracking algorithm, rather than proposing an experiment

that is very complex (e.g. integrating the system in its current form into a human

band), we decided to perform basic experiments to explore the capabilities of our

idea. In the experiment the vibrato amplitude of the flute player is manipulated

by changing the saxophone orientation. We considered that the absolute posi-

tioning of the saxophone relative to the robot does not have to be evaluated: the

orientation of the saxophone is calculated from the absolute position values of the

hands. Thus, is the absolute position of the instrument calculated as the mean of

the hand positions. The saxophone can be rotated by the player, in terminology

changing ‘pitch‘, ‘roll‘ and ‘yaw‘. Fig. 3.12 shows a 3-dimensional representation

of the detection method of the saxophone orientation. Fig. 3.13 shows a typical

movement sequence, that is performed during control of the flutist robot using a

wind-instrument. An image of the robot view of such an interaction is shown in

Fig. 3.14. For the experiment we asked a human wind-instrument player (saxo-

phonist) to stand in front of the robot and perform instruments that, he considers

typical during a musical band performance. After initializing the system to rec-

ognize the color histogram of the hands of the musicians, the robot used the
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3.4 Extended Level Interaction System: Particle Filter-based Tracking

Figure 3.15: The graph shown in this figure displays the modulation of the per-

formance tempo of the flutist robot proportional to the inclination angle of the

instrument of the musician. At at orientation of 180 degree the performance

speed is set to 160bpm. An orientation of 50 degree relates to a tempo of

approximately 70bpm.

particle filter-based tracker to follow the musician’s instrument orientation. The

angle of the instrument orientation is directly translated into modulation of the

flutist robot’s performance tempo. I recorded the musical output of the flutist

robot and, in order to evaluate the result result of the experiment, analyzed its

pitch.

3.4.6 Experiment Results

The experimental results for the advanced interaction level are displayed in Fig.

3.15. Movements of the instrument in front of the robot camera is recorded as

orientation values that change the vibrato amplitude of the flute sound. To keep
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the analysis as simple as possible only one tone is played, as can be observed from

the horizontal line of the pitch plot. The average volume of the sound output be-

comes higher with less vibrato as the amount of air streaming through the glottis

mechanism of the robot, that controls the vibrato, is at these times higher and

produces louder volume. However, the vibrato oscillates over this average value

and changes its amplitude according to the orientation value calculated by the

particle tracking algorithm. At 16s we observe a maximum of approximately 100

controller tics that relates to a vibrato amplitude of 10dB in the volume plot. A

minimum at 25s accordingly produces a very low vibrato amplitude. At 9.5s, 19s

and 29s we, in compliance with the previous experiments, find breathing points.

The distribution of the breathing points is equidistant and of equal duration. The

re-filling period of the lung is the only time that the tone pitch is not reported as

constant. At that time, when the robot does not produce any sound, the reported

pitch values result from the environment noise recorded by the microphone.

3.5 Discussion

The results for the motion perception-based tracking as well as for the particle

filter-based tracking, show that the movements of a musical wind-instrument can

be tracked using the proposed method. In the result graphs we see that motion

of the instrument of the experiment subject proportionally relates to the musical

output of the flutist robot. However, both methods have their advantages and

disadvantages. The virtual fader and virtual buttons on the one hand, require

no initialization procedure and work very reliably. On the other hand, as they

there position on the screen is fixed, they do not allow for much freedom of

movement by the musician. In case of users with little experience level, this

can be of advantage, but for users with more experience, I proposed the particle

filter-based tracker. As described before, this tracker follows the hands of the

musician by evaluating color histograms. The result graphs show the relationship

of changing the inclination of the musical wind-instrument of the experimental

subject with the musical output of the robot. Although this method requires

initialization before being used, it provides more flexibility of movement to the

musician. For the calculation of the instrument angle, relative position values
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3.6 Conclusion of this Chapter

are used. Therefore, the user can translate the instrument to any position in the

image space, without producing wrong results. The experiments show, that the

requirements to the tracking algorithms were satisfied: With both methods the

motion of a wind-instrument can be sufficiently tracked, to modulated a musical

parameter of the flutist robot. All the experiments were performed under a

single controlled environment. So far I conducted the experiments under constant

lighting, in a quiet environment with static background (laboratory space). The

application of the proposed algorithms in a realistic stage environment has so far

not been evaluated.

3.6 Conclusion of this Chapter

Two image processing methods for the musical based interaction system were

introduced. The suitability for basic interaction using direct mapping has been

shown. Vision is one channel for information exchange between a musician and

the flutist robot. In the experiments presented in this chapter, the two proposed

vision processing algorithms for the basic and extended level of interaction are

shown to be a suitable suitable to calculate information about the musician’s

instrument motion. As performance material a short phrase from the jazz stan-

dard The Autumn Leaves has been used. The virtual buttons gave a musician

the possibility to trigger two different melody patterns. The virtual fader and the

particle filter-based tracker were installed to continuously regulate performance

parameters of the flutist robot continuously. In both experiments the performance

tempo of the robot is controlled from 70bpm to 170 for a duration of approx. 20s.

Detected orientation angles of the wind-instrument range from approx. −90◦ to

90◦. In the following chapter, I will introduce an audio processing system, that

uses a second communication channel, the acoustic channel. In the interaction

system, information from both these channels is fused and concerted into musical

performance parameters. Both proposed methods are novel and original in their

implementation, and have been specifically developed for this thesis.
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Chapter 4

Audio Processing Module

Implementation

4.1 Introduction

In the previous chapter, the vision processing modules of the Musical-based In-

teraction System have been introduced. In this chapter we would like to propose

a module, to process interaction information through the auditorial communi-

cation channel (see Figure 2.10). In human communication acoustic interaction

is important for various reasons, one very important being the transmission of

information through human language. In the context of the application to the

MbIS, we propose a acoustic processing module, that allows the robot to analyze

the melodic and rhythmical content of its partner musician’s performance.

The proposed algorithm is able to perceive rhythm and melody information

from the acoustic input to the microphones of WF-4RV. The extracted data is

associated with a library of patterns, that is determined by the user before starting

the performance with the robot. To perform the basic frequency analysis of the

audio signal, regular filtering, Fast Fourier Transformation and peak analysis is

applied. To compare perceived musical content with library patterns we use a

histogram matching method.

There has been various research performed regarding acoustic processing algo-

rithms, very strongly also related to the field of music. Important scientific works

in this field are introduced, in section 4.2. The basic audio processing method
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4.1 Introduction

Figure 4.1: The figure shows the functional principle of the histogram-based

melody tracking. Input to the melody tracking module is the sound data of

the performance played by the musician. Output of the module is the index of

the detected melody pattern. After the musician plays a melody, this melody

is classified, if it matches one of the patterns in the library of the robot. If a

matching pattern is found, this pattern is mapped to a specific response by the

flutist robot.

that we use is very similar to what is proposed in other scientific work. What

is specific to our implementation, is the way, that we compare existing musical

pattern information (rhythmic and harmonic information) to currently recorded

material. To do this, we create histograms, containing the note timing values for

rhythmic tracking, and the note pitch information for harmonic tracking. These

histograms are created for the real-time detected musical information and the

information contained in the musical pattern library of the robot. To evaluate a

currently played musical pattern, the histogram of the pattern is compared with

the histograms contained in the library, using a special comparison coefficient (the

specific application of this coefficient will be described further below in section

4.3.1).

We chose this approach for the acoustic processing module, because it seems

especially suitable to be used within our interaction system. The rhythm as well
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4.2 Related Research

as the harmony detection algorithm do not need to be initialized specifically for

one user. This makes the method to be comfortably usable, also by users with

little experience in interacting with the flutist robot. The histogram method

is relatively easy to implement and computationally efficient (Operation time

of O(1)). The required result of a pattern comparison, that corresponds to a

detection match can be gradually adjusted, so that the method is adjustable to

environments, that are more noisy. In this case the required matching accuracy

would be reduced (which also has an influence on the false positives, though), so

that the impact of the environment conditions is compensated (in terms of true

positives). The general principle of functionality of the histogram-based melody

tracking is shown in Fig. 4.1.

4.2 Related Research

Extensive research has been done in the real-time rhythm extraction and the real-

time detection of harmonic structures within audio recordings. Various methods

have been proposed to detect transients in musical data, a requirement for per-

forming rhythmic analysis. Klapuri ([51]) uses division into frequency bands and

linear regression to detect the starting point of a rhythmical feature. Division

into high and low-energy peaks in addition to timing criteria ([52]) is applied

to allow application on polyphonic sound data. Rao-Blackwellian Models ([53]),

Online Onset Detection Models ([54]) and Brownian Motion Models ([55]) are

commonly used to extract tempo and structural information.

A popular approach for harmonic analysis (phonic transcription) is the so

called Blackboard Method. Originally not designed for audio analysis it has been

applied in this area by various researchers ([56], [57], [58], [54], [59], [60]). The

method is somewhat similar to the algorithm described here as it also uses a

‘knowledge source‘ (which in our case consists of a library of possible melody

patterns) to reinforce recognition. Multiple model based techniques have been

proposed using approaches ranging from spectral template matching ([61], [62])

to sequential Monte Carlo methods ([63], [64], [65]).

The idea of using histograms for characterizing audio material has been used

mainly in the context of efforts to archive large amounts of musical data ([66],
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[67], [68]). Based on this previous research we try to exploit the technique as a

simple method to characterize and match smaller pieces of harmonic and rhythmic

information.

4.3 Basic Level Interaction System: Histogram-

based Rhythm

Detection

4.3.1 Implementation

In this section we will describe the rhythm identification algorithm‘s principle of

operation. Our purpose is to extract real-time, rhythmic information from the

recorded sound data. The analysis result is matched with a library of timing

patterns that are saved as previous knowledge in the robot. The algorithm deter-

mines the best matching pattern and passes this information on to the mapping

module, in order to generate an output performance by the robot.

The performance of an instrumentalist is recorded and the data directly

streamed to the analysis algorithm. In the beginner level interaction mode, be-

cause we are interested in the rhythm information contained in the acquired data,

we examine it for timing characteristics. In the sound waveform separate notes

are represented as distinguishable amplitude peaks. We isolate these peaks by

thresholding, as it is shown in Eq. (4.1).

at =

{
0 if it ≤ m
it if it > m

(4.1)

at: thresholded sound wave value

m: threshold level

it: input sound wave

It is to note, that we consider only the case of portato play. If the interacting

musician plays legato, separate notes cannot be reliably identified by the algo-

rithm. Also we do not divide into frequency bands, as we restrict our approach

to monophonic signals.
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The duration of one tone impulse naturally is longer than a certain mini-

mum time. In order to prevent very short noise peaks from falsely triggering the

threshold we smoothen the sound wave with a running average calculation (Eq.

(4.2)). This computation acts, from a signal processing point of view, similar to

a low-pass filter ([43]):

pr = α ∗ pp + (1− α) ∗ pc (4.2)

pr: average for the resulting pixel

pp: pixel at the same position in the previous difference image

pc: same pixel in the current image

α: averaging factor

A gate control in a music studio works similarly. Instead of a running average

such a gate effect uses adjustable attack (the time a certain amplitude needs to

be retained for the gate to open) and release (the time the gate is open after

the amplitude has dropped below the threshold) times. In case of our threshold

filter, using the averaging calculation, we have equal attack and release times.

This is sufficient for our approach as we do not intend to generate well-sounding

output (as is the intention of a gate effect in music production) but to suitably

preprocess the data for further analysis (Figure 4.2).

The rhythm patterns have a certain length. To identify the most recently

played pattern we do not need to analyze all of the previous sound input. We

rather use a window that always contains only the most up-to-date part of the

recorded music information. This window continuously slides forward as new data

is acquired. The size of the window is the length of the longest rhythm pattern

in the robot‘s pattern library. Regardless which pattern is currently played by

the interacting musician, it will always completely fit inside the window.

Each positive edge of the thresholded sound wave in the time window repre-

sents a rhythmic pulse. To characterize the timing of this sequence of pulses as

a whole we calculate the time differences between adjacent pulses. Utilizing this

information we can construct a histogram, with one bin representing one certain
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Figure 4.2: This image displays a flow-chart of the note perception algorithm.

After a transformation into frequency-amplitude space, note-value, minimum vol-

ume and minimum duration are confirmed.

Figure 4.3: This figure shows the concept of creating a histogram from the rhythm

information within a score. Each column in the histogram represents a certain

difference in note-onset time. In the example two notes with a onset-difference

of 2T and one note with a delta of 3T are inserted into the sequence.
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Figure 4.4: These flow charts show the experimental procedures for a) rhythm

matching and b) melody matching. In case of the successful recognition of a

pattern, the matched pattern is repeated by the flutist robot.

time difference. Both axis of the histogram are normalized, with the result that

the maximum and minimum bin of the histogram always relates to maximum and

minimum pulse delta time. This histogram is then compared to the histograms

of the timing patterns in the library of the robot. The similarity between two

histogram is determined using the Bhattacharyya [49] coefficient (Eq. (4.3)).

ρ[pi, q] =
m∑

u=1

√
piuqu (4.3)

with pi being the histogram of one library pattern, q resembling the sampled

rhythm pattern and m expressing the histogram size. The sum is indexed by u

(Figure 4.3). To prevent patterns from being falsely detected we apply a threshold

to the similarity coefficient. If the result of the pattern comparisons falls below

this threshold the robot does not recognize the input as a known rhythm. The

result of the rhythmic analysis is the best match from the rhythm pattern library.
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Figure 4.5: The screenshot shows a typical configuration of the audio processing

module. The pattern, that is currently played by the human musician (left image),

is compared to the pattern saved in the pattern library (right image). In this

example the musician is performing pattern 2.
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4.3.2 Experiment Objective

The purpose of our experiments is to show how well a user can express his musical

intention using the provided interaction setup. The interaction system itself re-

sembles a closed control loop, with the robot on one side and the human musician

on the other side. The fact that decides about the quality of the output is how

responsive the robot is to the actions of its interaction partner. In the same way,

naturally it also depends on the skill level of the human player. To accommo-

date for these parameters our interaction system is separated into beginner level

interaction module and advanced level interaction module. For each of these, we

propose separate experiments. Although we examine the two modules in different

experiments we in principle use the same setup and evaluation method for both

(Figure 4.4).

In case of the beginner level interaction interface, the robot is programmed

with a library of three rhythm patterns. We chose these patterns specifically to

be easily discernible to prevent false recognition. For the current state of our

research, our purpose is to verify the functionality and also practicability of the

system as such. In the discussion we would like to point out, that there are

still several issues with the algorithm that might be improved. Different rhythm

and melody patterns can lead to identical histograms and therefore lead to false

positive recognition. The FFT processing algorithm needs to be carefully adjusted

to the average volume of the output of the performer. In the experiments these

settings were manually adjusted by the user.

4.3.3 Experiment Method

The experiment itself consist of a human saxophone player situated in front of the

robot at a distance of about 2 meters. The human musician has knowledge about

the three patterns that are contained in the robot‘s library. The three patterns

are melody excerpts from the jazz standard The Autumn Leaves (pattern 1, 2

and 3). With the start of the experiment, the subject will begin to deliberately

play one of these rhythm patterns on a single note. He will repeat playing this

rhythm until the robot responds. After that he will, again randomly, choose

the next pattern. This procedure is repeated for several times. The responses
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of the robot as well as the play by the musician that triggered a response are

recorded. The two recorded sound waves are examined using a FFT spectral

analysis algorithm to find pitch and amplitude of the music data. The gain of the

microphone used to record the audio information was set to +6dB. The size of the

FFT window was adjusted to 256samples with an overlap of 32samples. Looking

at the resulting graph we have the possibility to analyze the robot‘s choice of a

response. Also the time-relationship of input and output are to be examined.

The quality of the response can be characterized by how quickly (time difference

between musician‘s first complete play of the pattern and the robot‘s response) it

is produced and how accurately (compliance of the response timing pattern with

the input pattern). Fig. 4.5 shows a saxophone player experimenting with the

histogram-based melody tracking system. The right hand side of the image shows

a screenshot of the tracking software’s user interface during the experiment.

4.3.4 Experiment Results

As can be examined in Fig. 4.6, Pattern 1 consists of one bar of four equally

spaced quarter notes. The instrumentalist plays this pattern alternating between

the notes c and d at a tempo of 80bpm. After the first pattern has been performed

(from 0s to 3s), the robot answers by reproducing the same pattern (in begin-

ner level interaction mode pre-programmed to alternate between c and d). The

duration between the beginning of the instrumentalist‘s question and the robot‘s

answer is approximately 3s. The robot continues playing the last tone of the

rhythm pattern until the next successful recognition. During this time the robot

is in an idle state. The purpose of playing the last tone of a pattern continuously,

is to give the interacting partner of the robot a feeling of the breathing cycles of

the robot. When we look at the volume plot we can identify areas, where the

level suddenly drops for a certain duration. These moments are called breathing

points and relate to the time when the robot‘s lung system is deflated and needs

to pull air in order to be able to produce the air-beam necessary to generate the

flute sound. As the lung breathing speed is constant we see these events regularly

happening at 7.5s and 14s in the graph. The duration of one breathing phase

88



4.3 Basic Level Interaction System: Histogram-based Rhythm
Detection

Figure 4.6: Recorded input and output of the advanced level interaction system.

The top graph shows the amplitude plot of the flute robot response (A). In the

middle the pitch analysis of this response is displayed. The bottom graph details

the amplitude plot of the question (Q) by the robot’s partner musician. This

question acts as the musical target pattern for the flutist robot.
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is ≈ 10s long. At 7.0s the musician starts playing rhythm pattern 2. This pat-

tern is more complicated than the first one, consisting of one bar, containing two

eighth notes and two quarter notes. The answer of the robot is observed after

the pattern has been finished, at ≈ 9.5s. The duration between the last tone of

the question pattern and the robots answer is ≈ 0.1s. The third rhythm pattern

is the most complicated of the three sequences used in this experiment. Besides

a quarter and an eighth note it contains a triplet. The instrumentalists plays it

two times, at 14.5s and 19.8s. When played for the second time it is correctly

recognized by the aural processing algorithm and the robot gives a response at

24.5s.

In this section we have introduced the beginner level interaction system audio

processing module. With our method we are able to extract note and timing

information from the audio input of WF-4RV. This data is compared to rhythm

patterns stored in a user generated library. We use a histogram comparison

technique to determine the similarity between a recorded patten and a library

pattern. In the experiments we tested the detection capabilities of the proposed

method. The results show that the algorithm succeeded in matching rhythm

pattern played by a human musician, with a set of a rhythm pattern stored in

the pattern library of the flutist robot.

4.4 Extended Level Interaction System: Histo-

gram-based Melody Detection

4.4.1 Implementation

Our approach for the aural processing of the advanced level interaction aims to

create an interface that extends the amount of freedom a player has in controlling

the robot. At the same time the usage of the system becomes more demanding

for the human player in terms of skill level. However, it also allows a wider

scope of musical expressiveness. This advanced level approach analyzes the pitch

components of the recorded sound. In the following we describe the harmonic

component analysis. An overview of the structure of the system can be seen in

Figure 4.7
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Pitch information is recovered from the input data stream by applying a

discrete Fast Fourier Transformation (FFT). As we sample sound data in windows

of 1024 samples we apply the Hann windowing function (Eq. (4.4)) to smoothen

spectral leakage.

wi = ai0.5

(
1− cos

(
2πi

N − 1

))
(4.4)

wi: resulting amplitude for sample i

ai: input amplitude indexed with i

N : number of samples in the window

Similar to the timing analysis, we apply a running average to adjacent fre-

quency spectra and perform thresholding operations to reduce noise. If the thresh-

old amplitude is retained by one or more peaks of the spectrum for long enough

not to be suppressed by the low-pass filter, the peak with the highest amplitude

is identified as lead-frequency. A recently registered pitch frequency is approxi-

mated by the twelve-tone system note with the closest frequency. The value of

this note is queued into the sequence window.

When looking for harmonic information we look into the past only for the

number of notes contained in the longest library pattern. The note information

in the sequence window is gathered by generating a histogram from the pitch

values. Again we match this histogram to the library histogram in order to find

the best match. Information regarding which pattern was recognized is then

forwarded to the mapping module.

4.4.2 Experiment Objective

We perform the same method of experimentation for evaluating the aural recog-

nition algorithm of the advanced level interaction system as in case of the rhythm

recognition. In this case additionally to the three rhythm patterns, three harmony

structures are contained in the robot‘s library. During the experiment, the sax-

ophone player performs deliberate combinations of one timing and one harmony

pattern. The human musician‘s play and the recognition response of the robot
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Figure 4.7: Similarly to the rhythm detection method, note pitch values are

inserted into the histogram in order to compare currently played pattern and

library patterns. In case of this example, there are two notes with a pitch of c,

two with a pitch of d and one with a pitch of e.

are recorded and analyzed in the same way as in the previous experiment. We

chose all patterns to have the same length of 1 bar. This makes the recognition

of the end of one pattern more easy.

The activity in the interaction system regarding the aural processing is mea-

sured at two points. Additionally to the microphones that are integrated in the

head of the robot, we place a studio microphone in front of the saxophone player.

In case saxophonist and flutist robot play simultaneously, with this method we

are able to separate both sources. We consider that the music data which is loud-

est in one recording, originates from the closest sound source. Data from both

microphones is recorded in a digital audio workstation (DAW) application. It is

analyzed using a utility software programmed in the scripting language MAT-

LAB.

4.4.3 Experiment Method

For the advanced level interaction we used the same setup of microphones as for

the previous experiment. Now the robot‘s library contains, not only pure rhythm

patterns, but pattern that contain melodic content in addition to the rhythmical

information. In the experiment we asked a wind-instrument player (saxophonist),

to perform a sequence of these patterns in front of the robot. I try to evaluate the
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Figure 4.8: The graph shows a sequence of question and answer play between

a human musician and the flutist robot. If a pattern m played by the human

musician is detected by the melody recognition system, the phrase is repeated by

the flutist robot (r). Three patterns A, B and C are performed.
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functionality of the melody detection algorithm by analyzing the response of the

robot to this musical input. In the experiment I applied a simple direct mapping

of detected melody pattern and the output pattern of the robot. If one pattern is

detected the robot repeats the same pattern. As evaluation of the experimental

result, I compare, if input and output pattern are the same. Also I try to verify

accurate detection by checking the index of the detected melody pattern.

4.4.4 Experiment Results

The musician plays the first pattern at 30s. The robot’s answer is recorded at

36s. This sequence is repeated for the three different patterns at 41s, 52s and

64s. With the respective answers of the flutist robot at 46s, 56s and 70s. In

the graph displaying the detected melody pattern index, at the indicated times,

the detection of melody patterns A, B and C is confirmed. The detection curve

changes at the moment, the robot recognizes a new melody pattern, when it has

been played by the musician. As the lung status is reset each time one pattern

has been played, there are no breathing points visible, as have been visible in

case of continuous (performance of a looped pattern) performance.

4.5 Discussion

In this section we have introduced an aural pattern matching algorithm. Using

this method we were able to match melody patterns played by a human musi-

cian with a set of library patterns. In the experiments the flutist robot WF-4RV

verified successful recognition by repeating the pattern that was matched to the

musician’s play. WF-4RV is therefore able to engage in a simple form of question

and answer play with a human musician. In case a pattern fails to pass the simi-

larity threshold level that was described earlier, it will not be recognized. If this

threshold is high, the human musician has to be very precise in his performance.

If the threshold is low, false positive recognitions can occur. We experimentally

chose a threshold that lead to satisfying results in experimental environment. All

experiments were performed inside the laboratory. That means, that we used a
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very control and quiet environment, with little noise. In a realistic stage envi-

ronment, there might be noise from the audience, that needed to be taken into

account when adjusting the aural tracking system. We documented results for

both, the beginner level and the advanced level interaction system. The results

show, that, given controlled experimental conditions, our method does lead to

the intended outcome.

For our experiments we chose rhythm and melody patterns that are uniquely

identifiable by using the histogram technique. If two rhythm pattern contain the

same notes (same length) but in a different order, their histograms will be the

same. Incorrect recognition by our algorithm might be the result. Regarding

harmonic pattern we have in principle the same problem. However considering

short sequences in terms of harmony, the order of the notes might not play a very

important role. As long as the notes of two patterns with the same histogram

are situated in the same scale, the pattern reproduced by the robot might not

be the same as the input, but it will harmonically fit. The problem of patterns

that have the same histogram might occur more often, if there are more than the

so far evaluated three patterns in the library. So far we experimented only with

these patterns, because we considered it a sufficient number for a study of the

interaction system, that can be performed by non-technical personnel.

4.6 Conclusion of this Chapter

Information from the audio processing stage is the second channel of communi-

cation, that I use in the musical-based interaction system. As has been shown in

the experiments and described in the discussion section, the system can detect

melody and rhythm patterns performed by the partner musician of the robot and

compare these to a pattern library saved in the robot. The information about the

most fitting pattern is propagated to the mapping section of the MbIS. Here it

is fused with information from the other communication channel, the computer

vision module, that has been described in the previous chapter. I developed the

acoustic processing system specifically for the MbIS, during the preparation of

this thesis. Novelty and originality especially lies in the method of comparing

melody and rhythm sequences using histograms. Histogram matching is often
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used in application to image processing as shown in the previous chapter. I tried

to take the approach from image processing, where it is used to characterize the

colorization of an object, and use it in audio processing. Here we do not use colors

to setup the histogram, but rhythm and melody information. In the experiments

of this chapter we evaluated the capability of this method to classify rhythm and

melody patterns. For each case (rhythm and melody) we used a library of three

patterns. In our experiments, the recognition technique showed a detection rate

of 100% in case the musician played the pattern exactly as had been recorded

in the library of the robot. In the rhythm tracking experiment an example of a

pattern that was not correctly detected can be observed.
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Chapter 5

Mapping Strategy

Implementation

5.1 Introduction

So far we have mainly focused on the visual and acoustic sensor processing. In

this chapter we want to concentrate specifically on the last stage of the robot’s

performance system for translating sensor data into musically meaningful perfor-

mance modulation parameters (in the following, this part of the system will be

referred to as the mapping module). As an example, instrument movements as

shown in Fig. 2.9 are to be analyzed by the sensor processing system and then

translated into musical output by the mapping module. The mapping module of

the proposed MbIS consists of two levels, one stage for interacting with players

of a beginner skill level and one stage for more advanced players.

In the basic level interaction stage we focus on enabling a user who does not

have much experience in communicating with the robot to understand about the

device’s physical limitations. We use a simple visual controller that has a fixed

correlation regarding which performance parameter of the robot it modulates,

in order to make this level suitable for beginner players. The WF-4RV is built

with the intention of emulating the parts of the human body that are necessary

to play the flute. Therefore it has artificial lungs with a limited volume. Also

other sound modulation parameters like the vibrato frequency (generated by an

artificial vocal chord) have a certain dynamic range in which they operate. To

97



5.2 Related Research

account for these characteristics the user’s input to the robot via the sensor

system has to be modified in a way that it does not violate the physical limits

of the robot. To modulate the robot’s performance parameters we use a motion

tracking algorithm to detect a partner musician’s instrument movements. For

this purpose we introduced the previously describe, specialized virtual fader and

virtual button controllers.

In the extended level interaction interface, our goal is to give the user the pos-

sibility to interact with the robot more freely (compared to the beginner level).

To achieve this we propose a teaching system that allows the user to link instru-

ment gestures with musical patterns. Here, the correlation of sensor input to

sensor output is not fixed. Furthermore, we allow for more degrees-of-freedom in

the instrument movements of the user. As a result this level is more suitable for

advanced level players. We use the robot’s instrument gesture detection system

that we have introduced previously. A Bayesian mapping algorithm is employed

in order to ensure, that if the teaching musician does not account for all combina-

tions of instrument orientation and musical output in the teaching phase, in the

performance phase the robot will automatically play the most closely matching

answer modulation to a given instrument state.

Our new approach brings two significant novelties compared to how we have

dealt with sensor input in previous work. First, we now work with the acquired

sensor data conditionally by getting feedback from the body of the robot (e.g.

state of the lung) and using this feedback to modulate the influence of the user

interaction on the performance parameters. Second, in the advanced interaction

level, we allow the user to teach the robot how one or more sensor values modify

one or more performance parameter values.

5.2 Related Research

Learning-teaching techniques similar to the method proposed in this thesis have,

in various ways, been introduced in robot control. In [69] oral expression and

sensory inputs are mapped to control the motor of a robotic arm. The approach

uses information gained from camera images and microphone input to set up Hid-

den Markov Models (HMMs). These models contain a state-space representation
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of the generated training data. This information is used to execute tasks that

consist of combinations of the different teaching situations.

In [70], a similar approach by grouping sensor inputs (vision, sound, force) into

clusters has been proposed. These clusters are mapped to objects, and over time

build an object state history. From the information contained in this history an

action-space is created. This action-space is used as a look-up table to determine

a suitable action given a certain object situation.

Actions in a game taught by human demonstrators are used in [71] to attain

knowledge for human-robot interaction. From this information the introduced

robotic system creates a Bayesian network. Recorded patterns are clustered and

represented in a graph. From this pattern graph the robot is able to choose which

action applies to which game situation and is therefore able to actively play a

game together with humans.

Also in navigation related publications ([72]) particle filter / HMM-based

methods are utilized to reliably determine object and action-space. Especially if

a robot uses more than one sensor (more than one camera, laser-scanners, audio-

visual input, etc.) this method can greatly reduce the effort to find the set of

data that well represents the current state of a robot’s environment.

Specifically, the approach presented in this thesis is adapted from a problem

setting, in which a robotic arm is taught how to empty a glass of water into a sink

([73]). The robot learns this movement by demonstration, taking the glass from

a specific location. The goal is that, with changing initial location, the robot

autonomously is able to find the right way to empty the glass without assistance.

Similar to the other approaches referenced above this application uses a state-

space table to record the instructions during the teaching phase. During the

execution, sequential Bayesian filtering is employed to adapt the learnt data to

the current problem environment.
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5.3 Basic Level Interaction System: Direct Mapping

5.3 Basic Level Interaction System: Direct Map-

ping

5.3.1 Implementation

The purpose of the basic level interaction system mapping module is to translate

the actions of the user that are recorded through the virtual buttons and faders

into musical output (Figure 5.1). This output is to make musical sense in the

way that the user can express himself as freely as possible, while at the same time

respecting the physical limitations of the robot. One important limitation of the

WF-4RV flutist robot is the restricted air volume that can be contained by the

lung. Similar to the human breathing the robot is only able to produce sound for a

certain duration, until the lung is empty. The robot has also further limitations,

like a maximum playing speed and maximum modulation speed performance

parameters like the vibrato frequency.

When receiving data about the robot’s partner musician from the vision pro-

cessing system, we can map this data directly onto a musical performance pa-

rameter. In case of receiving a continuous value from a virtual fader controller,

this relationship can be formulated as shown below:

A(t) = k ∗ I(t) (5.1)

This equation contains the constant k representing a scaling factor to resize

the sensor (virtual fader) value I(t) to an appropriate output value A. Using

information about the maximum and minimum value emitted from this controller,

we can condition k accordingly, so that the output value A does not exceed the

acceptable range for the performance parameter.

A(t) = k(t) ∗ I(t) (5.2)

with

k(t) =

{
k if t < TBreathing

0 if t ≥ TBreathing
(5.3)
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Figure 5.1: The figure shows the functional principle of the basic interaction level

mapping system. The module has two input channels: Information about the

musician’s instrument movements (performance action) and feedback information

about the robot’s physical state. A performance action of the musician is mapped

into performance modulation. The mapping itself is modulated by state feedback

from the flutist robot. In the presented application, the lung fill level of the robot

regulates the value of the virtual fader. The fader value is faded-out in case of a

lung fill level above 80%.
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Some limitations of the robot however are not time-constant. The capability

of the robot to create an air-beam in order to play the flute, depends on the air

volume left in the lung. Taking this into account we add time-dependence to k.

TBreathing indicates the time duration of air remaining in the lung, enabling

a tone to be be produced. The equation expresses that the intended output of

the flute robot is to be conditioned with the fill-status of the lung. If the lung

becomes empty, the equation constant k(t) is set to 0, resulting in A(t) to become

0 as well. As result the flute robot does no produce sound output.

For this reason it is necessary to include the time-factor t into Eq. (5.2).

During a musical performance, there are several physical characteristics of the

flutist robot that are continuously changing. We need to condition k(t) in a

way, that it accounts for the time dependent limitations of the robot, such as

previously described, the lung. One option is to simply switch k(t) to 0, when

the lung reaches the volume limit and needs to be refilled.

5.3.2 Robot Constraint Restricted Mapping

The flute robot is a complex mechanical construction, built in order to emulate

the human way of playing the flute. It thus naturally bears similar limitations

to a human. It is important that when controlling or interacting with the flutist

robot the user does not drive the robot into these limitations, risking physical

damage of the machine and leading to unnatural performance behavior. This

is achieved by the implementation of a Constraint Restricted Mapping (CRM)

approach.

As the switch from a normal performance to a breathing break is very abrupt,

this method might not be satisfactory in a musical sense. Musical progressions

are normally characterized by smooth transitions or intentionally inserted breaks

at certain points. If a musician needs to interrupt his performance as a result of

physical constraints, that would, under normal circumstances, give the impression

of an unsatisfactory presentation to the audience. As every human has various

bodily constraints, these need to be integrated in the mode of performance in

a way, that is as little as possible perceivable by the audience. To address this

issue in a natural way we applied a method to provide smoother outline to the
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switching edges. Using a digital low-pass filter on the time-dependent condition-

ing as indicated in equation (5.2), we get smoother outlines for the switching of

the performance states (normal play / interrupted play due to lung-refill).

The modulation envelope that results from this method of smoothing is similar

to Attack-Decay-Sustain-Release (ADSR, [28]) curves used in electronic music

synthesizers. If we vary the parameters of the low-pass filter we can change

the slope of the attack curve. This enables us to adjust the smoothing in a more

human-like fashion. We implemented the digital low-pass filter as a Finite Impulse

Response (FIR, [74]) filter. This filter achieves a similar effect to value-averaging

by chaining delay stages and scaling stages. Considering a queue of values (in this

case the time-dependent values of k(t)), fractions of previous values are fed-back

to the current value and added. Depending on the number of these delay-elements

the low-pass / averaging effect becomes stronger.

Through the implementation of this method in the mapping module of the

beginner level interaction system we can guarantee that the robot’s partner mu-

sician can control the robot safely (within the robots value constraints). Using

the time-dependent scaling parameter and the smoothing filter, the robot will

automatically adjust the sensor input from the vision system to account for the

system’s mechanical properties (Figure 5.2).

Although the above principle was so far introduced using a virtual fader as

controller source, it also applies to the adjustment of data from a virtual but-

ton. In an interaction setting using virtual buttons, the user might be able to

switch between various melody patterns. If during the performance of one melody

pattern the volume drops due to the necessity of a lung-refill, this might seem

unnatural to the audience. A resolution to this problem is to calculate, if the

melody pattern to be played fits into the time remaining until the next lung-

refill; and in case it does not apply the proposed fade-out effect to the sequence

tempo (slow the sequence down) using the low-pass filter to smoothly finish the

last note of the pattern still fitting into the lung cycle (Equation (5.4), (5.5)).

A(t) = k(t) ∗ I(t) (5.4)
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Figure 5.2: Block diagram of the beginner level mapping method. m denotes

the movement value output from the sensor processing module, l the detected

lung fill level (Robot body state), t the fill level threshold, c the fill level control

value, r the movement data regulated by the fill level controller and o the filtered

musical parameter modulation output.

with

k(t) =

{
fadeout IF sufficient residual air volume

play IF residual air volume not sufficient
(5.5)

Here (Equation (5.4), (5.5)), we apply the same type of filter as described

in order to fade-out a note in case of the virtual fader scenario. As the musical

material is very similar we considered that the filter can be used in the same

way. The calculation of the length of the musical pattern to be played needs to

be taken into special consideration. Depending on the tempo of the song adding

the note values / breaks of one pattern together will result in the pattern length.

However, in case the tempo can be manipulated by the robot’s partner musician,

we need to take into account the range of adjustment that is possible and add

this amount to the pattern length as a tolerance margin.

104



5.4 Extended Level Interaction System: Bayesian Filtering-based
Mapping

5.4 Extended Level Interaction System: Bayesian

Filtering-based Mapping

The mapping approach for the advanced level interaction system, is based on the

assumption that the partner musician of the robot is a player of advanced skill

level. As a result the method leaves more space for free control of the robot. The

goal of our approach is to implement this technique into our musical interaction

setup to create sensible musical output. In contrast to the previous approach, this

time we do not use the virtual faders and buttons as input source, but the particle

filter-based tracker. In two phases, the teaching phase and the performance phase

we try to enable the robot to estimate the song state according to the input

received from the vision and audio processing system. If the robot knows the

current state of the song, it will be able to play an appropriate reaction to the

human partner musician’s actions. A deliberate number of input parameters (e.g.

horizontal and vertical instrument orientation), is to be mapped to a deliberate

number of output parameters (e.g. vibrato amplitude, played note value). This

should be done without the teaching musician having to account for all possible

state combinations. Using a particle filter, even if during the performance an

unknown state combination is given to the robot, it is to automatically play the

most closely matching answer modulation. The principle of this extended level

interaction is shown in Fig. 5.3.

At first, in the teaching phase, the teacher fills up the state-space table with

information on how to relate instrument orientation changes to performance mod-

ulation. Although the instrumentalist may spend a long time teaching, this in-

formation will probably not be complete. That means that there are states of the

instrument configuration that are not accounted for in the table.

In the performance phase, the robot reacts to the movements of the musician

in order to reproduce the previously learnt behavior. To relate a configuration

of the instrument (orientation) to a correct modulation, the robot uses a particle

filter (Bayesian filter). In Fig. 5.4, the robot takes the data from the vision

processing, seeds particles in the state-space table (e.g. in the button states and

fader states column) and selects the most closely related particle. The modulation

that this particle relates to (in the table), is played by the flutist robot.
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Figure 5.3: The figure shows the functional principle of the extended interaction

level. In a teach-in phase the musician creates an association between an instru-

ment gesture and a melody sequence. As input the orientation of the instrument

of the musician and the melody performed by the musician is processed. The

output is a state-space representation, that in the performance phase is used to

map the input of instrument gestures by the musician to performance output

commands to the robot.
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Figure 5.4: Block diagram of the advanced level mapping method. a) shows

the teach-in phase signal flow. I denotes the detected instrument motion, N the

detected note or rhythm sequence. b) displays the signal flow in the performance

phase. Additionally S denotes a state from the state table here (could be also

expressed as an (I, N) tuple).

107



5.5 Synchronization of Robot and Human Performance by Onset
Control

A Bayesian filter represents the PDF p(xk|zk−1) of state xk given observation

zk−1 were k is the discretized time. Specifically for the particle filter this PDF

is defined through a set of Ns random measurements sik with weights πi
k. In this

case, the current observation Xk is given by

Xk =
Ns∑
i=1

πi
ks

i
k (5.6)

and the PDF p(xk|zk−1) can be approximated as ([47])

p(xk|zk−1) ≈
Ns∑
i=1

πi
kδ(xk − sik) (5.7)

with
Ns∑
i=1

πi
k = 1 (5.8)

δ denotes the Dirac delta function. δ(xk − xik) represents the deterministic

relationship between the random samples and the actual state. Both of the

above equations show, how we gather random samples, assign them with weights

and construct an approximation of our actual state. The random samples (or

particles) are compared to the input gathered from the sensor processing modules.

We use this information to find the closest match of the state-space entries and

the sensor values. We restrict the algorithm to a limited set of samples Ns to

keep the computational effort manageable / real-time.

5.5 Synchronization of Robot and Human Per-

formance by Onset Control

Additionally to fluent interaction during the performance, based on the basic

and extended level interaction system, a synchronized start and end of the perfor-

mance is very important. As an extension of the previously introduced interaction

system components I used two virtual buttons (using the motion perception-based

tracking) to give the performer the possibility to control the onset of the flutist

robot performance. A screenshot of a saxophonist using this setup is shown in
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Figure 5.5: In this screenshot, the setup of the onset experiment is shown.

Fig. 5.5. Fig. 5.6 shows the MbIS, extended with the onset control system

module.

I evaluated the functionality of the onset control system experimentally. An

amateur saxophonist was asked to use the system to start and stop the perfor-

mance of a phrase from Ave Verum Corpus. Ave Verum Corpus is a classical

composition by Wolfgang Amadeus Mozart. The piece was suggested as an ex-

emplary score for the experiment by a professional flutist, who I collaborated

with for this research. A graph of these results is shown in Fig. 5.7. The graph

shows triggering of the virtual start button at 24s, 28s, 31s, 33.5s and 38s. The

corresponding stop button triggers can be observed at 26.5s, 27.5s, 32.5s, 36s

and 40.5s. Between the triggering of the start button and the actual start of the

performance of the flutist robot, a delay of 0.1s can be observed.
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Figure 5.6: This figure shows the MbIS extended with the onset control module.

It has been integrated as module that provides start and stop cues to the level

selection module. As with the level selection module the user can select an

interaction level according to his amount of interaction experience, he can with

the onset module, control the flow of the performance in an additional way.

5.6 Experimental Evaluation

5.6.1 Experiment Purpose

In the following section I propose experiments to evaluate the functionality of the

basic and the extended level mapping module. The task of the mapping module

is to relate input from the sensor processing modules (vision processing and audio

processing) to musical performance output played by the robot. The mapping

module has two different interaction levels to accommodate for performance with

players with different experience levels.

In the proposed experiments, I intend to evaluate the mapping module as

such, without any data from the vision or audio processing modules. Data from

the sensor analysis modules might also be used for testing. However in this case,

human input is necessary to generate test data. Human input is in this case

not suitable, as a human is not able to produce exactly the same movements

for every experimental run. As we would like to run experiment series with
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Figure 5.7: The result of the onset control experiment is shown in this graph. The

graph on the top of the figure shows the state of the virtual button to control the

start of the performance. If this button is triggered, the flute robot performance

is started. The Performance stop virtual button state graph shows the state of

the stop button to stop the performance. The is a delay of 0.1s between the

start trigger and the start of the performance.
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reproducible data, I generate simulated input for the mapping module. In the

experiments I would like to test if a given input to the mapping module results

in the output, that I intended, when I developed the module. In case of the basic

interaction level mapping module this means, that I would like instrument motion

data to be modulated by a physical state parameter of the robot. The result of

this calculation is to be mapped to parameter of the robot performance. As an

example, input from a virtual fader (as proposed in the vision processing chapter)

might be modulated by the lung fill level of the flutist robot. This modulated

data might then control the tempo of a musical pattern performed by WF-4RV.

Different human users provide very different input to the mapping module.

So, in the experiment, input wave-forms to the module were varied to find out

if the module works appropriately for different input scenarios. Fade-out curves

were exchanged to evaluate their effect on the performance output.

In case of the extended level interaction module, the teach-in and the per-

formance phase are to be evaluated. Both these phases are tested separately

in two experimental runs. In the performance phase the association table data

from the teach-in phase is used. In the experiments I try to confirm, that the

instrument orientation - melody pattern association, that was generated in the

teach-in phase is accurately reproduced in the performance phase. As different

users might assign different combinations of instrument orientation and melody

pattern, in the different experiments, such varying combinations were applied to

the system.

5.6.2 Experimental Conditions

To evaluate the basic interaction level mapping module experiment, experiment

runs with different input wave-forms and varying fade-out curves were performed

(Figure 5.8). I used two types of input wave-forms: Sinusoidal input waves and

rectangular waveforms to represent different types of human movement. These

waveforms were applied to the mapping module at three different frequencies: 0.1

Hz, 1 Hz and 10 Hz. The simulated input was to be modulated inside the mapping

modules by the lung fill level state of the flutist robot. This data was then output

to the motor control of the robot in order to modulate the performance tempo.
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Figure 5.8: The flow-chart shows the experimental method, that was used to

evaluate the basic level of interaction mapping module. Input to the mapping

module are different types of waveforms (sinusoidal, rectangular) with different

frequencies (0.1 Hz, 1 Hz, 10 Hz). The feedback from the lung fill status of the

lung modulates the input signal with a linear or exponential fade-out curve.

As exemplary musical score an excerpt from the piece Ave Verum Corpus by

Wolfgang Amadeus Mozart was used. The tempo of the phrase was modulated

in a range of 70 bpm to 170 bpm. To realize the fade-out, two different fade-out

curves were applied. An exponential curve and a linear fade-out curve.

To evaluate the extended level interaction system, varying instrument orien-

tation data was generated by a simulated input sine wave of 0.2 Hz (Figure 5.9).

The range of a typical instrument movement of a human player varies between

−90 and +90◦. To emulate this movement range, the sine-wave was programmed

to oscillate within this range. In the teach-in phase a user manually assigned

one of 3 different melody patterns to an instrument position. Two experiments

with different assignments were performed. In the performance phase, the same

simulated input is used to trigger the different patterns, by changing instrument

orientation. As musical evaluation material 3 different phrases A, B and C from

the previously mentioned Ave Verum Corpus were used.
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Figure 5.9: The experimental method to evaluate the extended level of interaction

is shown here. Three musical phrases from the piece Ave Verum Corpus by W. A.

Mozart are mapped to different instrument positions that are simulated using a

0.05 Hz sine-wave as an input. In the performance phase, such a sine-wave is used

to simulate input from the vision processing to trigger the previously taught-in

musical phrases.
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Figure 5.10: Basic interaction level mapping module experiment result graph

with sinusoidal input wave (0.1 Hz) and an exponential fade-out curve f(t) =

input ∗ (k ∗ 1/e(T − t)) (input: simulated module input, k: constant, T − t: time

from air consumption limit 80%).
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Figure 5.11: Basic interaction level mapping module experiment result graph

sinusoidal input wave (0.1 Hz) and linear fade-out curve f(t) = input∗(k∗(T−t))
(input: simulated module input, k: constant, T − t: time from air consumption

limit 80%).
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Figure 5.12: Basic interaction level mapping module experiment result graph

sinusoidal input wave (1.0 Hz) and linear fade-out curve f(t) = input∗(k∗(T−t))
(input: simulated module input, k: constant, T − t: time from air consumption

limit 80%).
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5.6.3 Experimental Results

In this section I describe the results of the previously explained experiment runs.

The results for the basic level interaction system are shown in Fig. 5.10 to Fig.

5.12. I show only the results for three selected experiments, that I consider to be

representative for the overall result. In all graphs the results for two breathing

cycles of the robot are shown. In the first experiment (Fig. 5.10) a sine-wave

of frequency 0.1Hz was applied as input to the basic interaction level mapping

module. An exponential curve was chosen as fade-out characteristic. The lung

fill level limit was set to 80%. The result shows direct control of the robot

performance tempo from 0s to 15s and 22s to 36s. Afterwards (15s to 21s and

36s to 41s) input from the virtual fader is modulated by the lung fill level, which

results into an exponential fade-out of the robot performance tempo. In the

following experiment (Fig. 5.11) an input sine-wave with the same frequency was

chosen, but this time with a linear fade-out curve. From 0s to 15s and 22s to 41s

the virtual fader input signal is directly translated into tempo modulation of the

robot performance. The linear fadeout, that is controlled by the lung fill-level

takes place from 15s to 20s and 36s to 41s (lung fill level limit: 80%). Breathing

points can be observed at 20s and 40s. In the third experiment (Fig. 5.12), that

I would like to describe in detail, the input sine-wave frequency has been set to

1Hz. This frequency is to emulate faster instrument movements, that might be

performed by a human musician. The unmodulated control of the performance

tempo can be observed in the graph from 1s to 15s and 22.5s to 36s. The linear

fade-out takes place from 15s to 21s and from 36s to 40s. There are breaks in the

breathing cycle to re-fill the lung from 0s to 1s from 21s to 22s. As the oscillation

of the input sine-wave is quite fast compared to the performance tempo of the

phrase played by the robot (70bpm to 170bpm), in the pitch graph, variations of

the performance tempo cannot clearly be seen.

The results for the extended interaction level mapping module experiments

are shown in Fig. 5.13 to Fig. 5.16. For each teach-in phase, three association

steps, involving three instrument gestures / positions and three manually trig-

gered melody patterns are shown. To simulate reproducible user input, an input

sine-wave of 0.05 Hz was used. Fig. 5.13 shows the result for the teach-in phase
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Figure 5.13: Extended interaction level mapping module teach-in phase experi-

ment 1.

Figure 5.14: Extended interaction level mapping module performance phase ex-

periment 1.
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Figure 5.15: Extended interaction level mapping module teach-in phase experi-

ment 2.

Figure 5.16: Extended interaction level mapping module performance phase ex-

periment 2.
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of the first experiment for the extended level. The teach-in phase is started by a

manual melody trigger input from 5s. An instrument angle of approx. 90◦ was

associated to melody pattern A. At 12s the next melody pattern B was man-

ually triggered and associated to an instrument angle of 0◦. The last melody

pattern C was assigned to an instrument orientation of −90◦ at 17s. This asso-

ciation information was saved in an association matrix as shown at the bottom

of the graph. In the performance phase as shown in Fig. 5.14, the experiment is

evaluated for two cycles of the input orientation sine-wave. Each time the input

orientation value moves to a new instrument state, the associated melody pattern

is performed by the flutist robot. At 2.5s the robot detects instrument state II

and therefore plays melody pattern B, that was associated in the previous teach-

in phase. At 6s, instrument state I is detected and melody pattern B is played.

At 17s, instrument state III is detected and melody pattern C is performed.

The graph shows a regular sequence of the performed melody patterns with the

progression of the input sine-wave.

In Fig. 5.15, another example of a teach-in phase is shown. In this result,

a different assignment between instrument orientation and melody pattern is

shown. At 0.5s, melody pattern B is associated with an instrument orientation

angle of 90◦. At 4.5s, an angle of 0◦ is assigned with melody pattern A, and

at 11s, −90◦ are associated with melody pattern C. The resulting association

matrix is again shown at the bottom of the figure. Fig. 5.16 shows the result of

the teach-in phase. The assignments, that were defined in the association matrix

are reproduced. At 2.5s, instrument state I is detected and melody pattern B

is played. At 6s instrument orientation II is detected and melody pattern A is

reproduced. At 18s, instrument state III is observed and correctly associated to

perform melody pattern C.

5.6.4 Discussion

In the experiments I tried to evaluate in how far, the proposed mapping mod-

ule functions according to the purpose of its development. In case of the basic

interaction level system the mapping module is to transform data from the vi-

sion processing module to modulation of musical performance parameters, using
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feedback data about the physical state of the robot. In the experiments for the

basic interaction level mapping module, I show that sensor input can be directly

translated into performance parameters and from a certain threshold level be

modulated by the lung fill level of the flutist robot. The experiments were per-

formed for different wave-forms and different wave frequencies. As successful

transformation was observed in case of all wave-forms and frequencies, I assume

that the mapping works for typical human instrument movements (wave-forms

and frequencies were chosen to emulate such typical movements). The feedback

modulation takes place as a fade-out. For this fade-out two different forms were

applied. With both wave-forms a complete fade-out within the critical lung fill

level takes occurs. In case of the exponential curve the fade-out is much quicker

than in case of the linear curve. For further experiments involving human inter-

action partners I favor the linear fade-out curve, as it allows for a more gradual

fade-out of the modulation parameter. In case of the faster input oscillations,

the result was not clearly observable in the robot performance pitch graph. The

performance tempo was in these cases slow, compared to the oscillation of the

input sine-wave. The higher frequency input waves were chosen to test the func-

tionality of the systems for possible inputs that might in principle occur, but in

the practical case, the sine-wave at a frequency of around 0.1 Hz most closely

models the typical human instrument movement. We will see this also in the

next chapter, where experimental results from interaction with human players

are shown.

In case of the extended interaction system the mapping module is to allow

the user to assign a relationship between instrument orientation and musical

output patterns in a teach-in phase. In a performance phase this assignment

data is to be used to give the user the possibility to select output patterns using

movements of his instrument while playing. In the experiments I show that

associations that have been assigned in the teach-in phase are correctly recalled in

the performance phase. This is shown for two example assignments and simulated

performance inputs. The assignments however are very simple. Three instrument

states are uniquely assigned to three melody patterns. The is no interference in

the assignments (Two melodies assigned to the same orientation area). This

makes the probability distribution in the assignment table very simple. In case
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of the experiments presented in this section I accounted for a limited case of

assignment complexity, because I considered it sufficient, in order to show that

the system is suitable to be used for the interaction with a human player. In case

of the interaction with a human player, in the scope of this thesis, I chose to limit

the experiments to a simple setup, that is easily understandable for musicians

without any engineering background.

5.7 Conclusion of this Chapter

As a result we expect improved performance capabilities of the robot. Compared

to the static, relatively simple mapping we have done so far, much more complex

interplay with the robot is possible.

Also collaborative performance of more that one musician, with a variety of

virtual buttons and faders to control the robot’s output, might be reasonable.

Similar to the beginner level interaction system mapping module, also here we

need to keep the physical limitations of the robot in mind. To do this, after the

teaching phase we analyze the state-space table for invalid parameter state-effects

(the effect of a certain song condition on the modulation) to be directed to the

robot. If one of these invalid state-effects is found, it is replaced with the closest

valid effect state.

In the experimental section we have shown, that the basic interaction level

works according to its development purpose. It converts the instrument motion

input by the musician into parameter modulation of the flutist robot performance.

At the same time the mapping is adjusted by the physical state of the robot. In

our experiments this physical state is the fill-level of the lung of the robot. We

tested several input waves (sine and square waves with frequencies ranging from

0.1 Hz to 10 Hz) and two different fade-out curves (exponential and linear fade-

out curve). As a result, after consultation with a professional, we chose a linear

fade-out curve as optimum for using the basic interaction mapping module in

case of a real interaction as described in the next chapter.

In case of the extended interaction system, we verified the functionality of the

teach-in phase and the performance phase by using various input combinations.

The instrument orientation motion was simulated using a 0.1 Hz sine-wave. The
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input of 3 melody patterns was triggered manually. We conclude from the exper-

imental results, that the use of the extended interaction system mapping module

is valid for the real interaction experiments with human musical partners.
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Chapter 6

Evaluation of the Proposed

Interaction System from a HRI

Research-oriented Perspective

6.1 Introduction

In this chapter I would like to describe the previously introduced system from

a universal HRI Research-orientated point-of-view. An analysis of the restricted

parameter adjustment within the physical limitations of a robot and an analy-

sis of the variable sensor mapping of the extended level interaction system are

performed through experiments under realistic circumstances. I first show a com-

parative evaluation of a passive and an interactive performance. This evaluation

is done in two ways: A performance index for both performance methods is cal-

culated and compared. The impression on listeners is evaluated through a survey.

In a technical evaluation, I demonstrate the system’s functionality by presenting

data from experiments with the interaction system. Finally, the basic level in-

teraction system as well as the extended level interaction system are evaluated

from a non-technical user perspective. As a conclusion, the proposed interaction

system is considered from a HRI point-of-view.

One application of the research proposed in this thesis is to enable the robot to

interact with other players by perceiving information from its environment. From

a more general Human Robot Interaction-oriented perspective, a system is to be
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developed, that is able to recognize and create information that is transmitted

during human communication. This information is contained in several channels

such as acoustic expression or visual gestures.

For the implementation of this system an application to the musical context

was chosen. To perform a piece of music, musicians need to constantly synchronize

their play through several communication channels. To provide an entertaining

experience to the audience this interaction needs to be flexible and at the same

time exact. Therefore musical interaction is considered to be very rich in infor-

mation. As the communication is focused on playing a piece of music and in

this sense orientated on a fundamental scheme (the musical score, chord progres-

sion etc.), recurring patterns and structure provide an environment of limited

complexity.

In the previous chapters we have introduced the vision sensor processing mod-

ule, the audio processing module and the mapping strategy module of the pro-

posed interaction system. I have shown in experiments that in a musical context,

the system gives musicians the possibility to manipulate certain performance pa-

rameters of a complex humanoid robot. With the basic level interaction system

and the extended level interaction system I accommodate for the specific experi-

ence level of the different users. In this section I would like to show experiments,

that were performed to validate the results of the research, the ability of the robot

to reliably detect, analyze and answer to information provided through several

communication channels from its musical partner is to be documented.

In the first part of the chapter I perform the comparative analysis, in order to

determine the different characteristics (by calculation and listener survey) of the

passive and active performance system. It follows a technical system evaluation

from interaction experiments in realistic situation oriented circumstances. Re-

stricted parameter adjustment within physical limitations, as well as the analysis

of variable sensor mapping of the advanced level of interaction, are evaluated.

In the third part of the chapter, I look more closely at the experimental system

evaluation from the non-technical user perspective. I perform a user survey for

the beginner level interaction system and the advanced level interaction system.

From the results of these comparative, technical and human-point-of-view

related evaluations I draw the conclusion, that the proposed interaction concept
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is applicable for musical applications, and with adjustments also in a more general

HRI context.

6.2 Comparative Evaluation of the HRI Inter-

face: Comparison of Passive and Interactive

Musical Performance

6.2.1 Objective

In this section I describe how passive and interactive musical performance with

WF-4RV was evaluated. In the first part, I introduce a performance index, that

has the purpose of mathematically characterizing the synchronicity of movements

of the musical partner and the performance of the robot. In the second part, the

results of a user survey to characterize, how the two performance modes are

perceived by the listener. In a third part, I draw preliminary conclusion from

these results. The result from this section will later on be evaluated in resume

together with the technical demonstration and the user-perspective validation.

Both, the quantitative and the qualitative evaluation rely on the same musi-

cal material. The jazz standard The Autumn Leaves has been chosen as exper-

imental material, because it a well-known piece of music, that can be musically

appreciated my non-musicians and musicians alike. It does not require a very

high instrument skill level to be performed, and thus allows a broader range of

experimental subjects to interact with the flutist robot.

Images showing a musician during passive and active performance are shown

in Fig. 6.1 and Fig. 6.2.

6.2.2 Performance Index: Method and Results

I created the performance index as a mean to quantitatively characterize the

differences between the passive and the interactive (using the MbIS) performance

of the robot. When considering the movements of a musician during a musical

performance, as has been already considered in the first chapter, the synchronicity

to the musical expression of the performer is high. If the musician plays very lively
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Figure 6.1: In this screenshot a passive performance between the flutist robot

WF-4RV and a human musician is displayed. The robot does not react to the

play of the human musician. It plays a static score that is being sent from a MIDI

sequencer.
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Figure 6.2: In this screenshot an inter-active performance with the flutist robot is

displayed. Here the robot reacts to movements of the musician’s instrument (the

musician’s hands respectively) and maps these into performance modulation.
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musical material, the movements might be very strong, in case of quieter material,

feeling might be expressed through slower motions.

The performance index was proposed based on the consideration, that strong

change of musical material correlates to strong instrument motion. In order to

measure this relationship I propose the following equation:

p =
1

T

∫ T

t=0

di(t)
dt

dr(t)
dt

dt (6.1)

p: Performance index

T : Performance duration

i(t): Interaction-partner-state vector at time t

r(t): Robot-state vector at time t

In this equation I calculate the performance index p as an integration of the

time differential of the interaction-partner-state vector i(t) and the time differ-

ential of the robot-state vector r(t). I integrate over the time parameter t with

an integration interval equal to the duration of the recorded performance data

T . The performance factor is normalized by factor 1
T

to allow the comparison of

performances of different durations.

To apply the performance index evaluation, I recorded a passive performance

of the jazz composition The Autumn Leaves and an inter-active performance

of the same piece. I divided the melody of the theme of the song into three

different parts, that I refer to as melody patterns A, B, C. At the same time, I

also characterize the instrument motion of the musician with three states I, II,

III. Each of these states corresponds to a certain instrument angle interval.

- state I relates to 0◦ − 30◦

- state II relates to 30◦ − 60◦

- state III relates to 60◦ − 90◦
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Trial p (passive) p (active) T

1 0.32 0.76 50s

2 0.44 0.74 50s

3 0.30 0.83 50s

4 0.37 0.84 50s

5 0.47 0.89 50s

Table 6.1: The performance index result table is shown here. A higher index

relates to a better action-reaction result. p (passive) describes the performance

index for a passive performance, p (active) shows the result for an inter-active

performance. Five trials have been conducted. The result shows a higher average

performance index of 0.82 (variance 0.13) for the active performance, compared

to a lower average index of 0.35 (variance 0.15) for the passive performance.

Using the integral the temporal changes of instrument state related to changes

of the currently played melody pattern are summed. The result of this sum

is a measure of the synchronicity of the instrument motions and the musical

performance of the flutist robot.

I used the instrument tracking method of the advanced level interaction system

to determine the instrument motion and the histogram-based melody tracking to

identify the melody patterns.

The results shown in Fig. 6.1 express, that for the passive performance the

relationship between motion and performed melody pattern is less strong than in

case of the inter-active performance. To show that the performance index evalu-

ation works reliably, we performed five trials of the same experiment (performed

by the same player) and compared the resulting performance indices. Variances

for both passive and active performance indices range to approximately 0.1. The

average performance index for the passive performance amounts 0.35 and the

according value for the active performance results in 0.82.
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Adjective pair Enquired characteristic

interesting / boring Does the performance catch the listener’s at-

tention?

beautiful / awful Is the performance overall perceived as pleas-

ant?

melodic / atonal Does the performance make a well composed

impression on the listener? Are there atonal-

ities?

rhythmical / at random Is the performance rhythmically ordered and

orientated to a constant beat?

homogenous / varied Can the performance be characterized as di-

versified or is it rather monotonous?

natural / artificial Does the performance convey a human like

touch?

emotional / rational Are the elements in the performance that

make the user feel in a certain way / has an

influence on the mood of the user?

Table 6.2: The table explains the adjective pairs used for the listener survey.

6.2.3 Evaluation by Listener Survey: Method

Additionally to the quantitative evaluation with the performance index, I also

performed qualitative validation of the distinction between passive and active

performance by a user survey. The user survey was done using the same mu-

sical material as introduced in the previous section: A passive and an active

performance movie of the jazz piece The Autumn Leaves.

As experimental subjects, I chose 15 amateur musicians and 2 professional

musicians. I created a questionnaire, that included 7 adjective pairs.

This method of posing a questionnaire was derived from a method proposed

in [75].

The purpose of the survey was to find the impression of the two performance

modes on the listener. This impression was characterized by the adjective pairs

shown in Tab. 6.2. For each adjective pair, the survey subject was asked to
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Figure 6.3: The methodology of the listener point-of-view survey is displayed in

this flow diagram. The passive and active performance movie are shown, then

the survey subject is asked to fill-out the questionnaire form.

express to which degree the performance could be classified by a certain adjective

by selecting an integer number between 1 and 5. Applied to the adjective pair

interesting / boring, a 1 would account for a completely boring performance and

a 5 for a really interesting one. If a listener was indecisive on which adjective to

choose, he could choose a 3 to emphasize neither one of both adjectives.

A flow chart of the experimental method of the survey is shown in Fig. 6.3.

6.2.4 Evaluation by Listener Survey: Results

For the amateur musicians I achieved the results shown in Fig. 6.4a. 15 Amateur

musicians were asked to characterize the difference between the active and the

passive performance video, that they were shown, using 7 different adjective pairs.

The result of the survey shows, that in case of the adjective pairs interesting

/ boring, homogenous / varied, natural / artificial and emotional / rational,

there is a significant difference (p-test result > 0.05) between the active and the

passive performance. For the pair interesting / boring, the listener judged the

active performance to be more attention attracting than the passive performance.

The average score for the active performance here is 4.5 and 2.8 for the passive

performance. For the adjective pair homogenous / varied, the amateur musician
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Figure 6.4: In the two graphs above, the results of the listener survey to compare

the active and passive performance are shown. In a) the averaged questionnaire

scoring by the amateur musicians is shown. b) shows the survey results for the

professional musicians. The T-test results framed with a green rectangle point to

an adjective category for which there is a significant difference between the result

for the basic and extended level system. Red boxes show the scoring for a passive

performance and blue boxes display the results for an active performance.
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listeners gave an average score of 4 to the passive performance and a score of 1.

The active performance is judged to be more varied than the homogenous passive

performance. In case of the adjective pair natural / artificial, a score 2.5 was

reached for the active performance and a score of 2 for the passive performance.

The active performance is therefore judged to be more natural than the passive

performance. The adjective pair emotional / rational shows a higher score of

3.5 for the active performance, compared to 3.5 for the active performance. A

stronger emotional expression was attributed to the active performance than to

the passive performance. In case of the adjective pairs beautiful / awful, melodic

/ atonal and rhythmical / at random, there is no significant difference to be noted

between the passive and the active performance.

The results of the professional musician survey are shown in Fig. 6.4b. Two

professional musicians were asked to characterize the difference between the ac-

tive and the passive performance video, that they were shown, using 7 different

adjective pairs. Only in case of the adjective pair homogeneous / varied the result

of the p-test id > 0.05 and therefore shows a significant difference. The remain-

ing pairs (interesting / boring, beautiful / awful, melodic / atonal, rhythmical /

at random, natural / artificial, emotional / rational) are not attributed to be sig-

nificantly different for the active and the passive performance by the professional

musicians.

6.2.5 Discussion

For the comparative evaluation of a passive performance and an active perfor-

mance from a listener point-of-view, I performed a quantitative evaluation using

the performance index, and a qualitative evaluation performing a listener survey.

The performance index shows a higher average (0.82) for the active performance

evaluation. The passive performance average results amounts in only 0.35. The

performance index characterizes the amount of synchronized motion and change

of the musical performance. The result values confirm, that in the active per-

formance, the musical content changes in accordance to the movements of the

instrument of the musician. This leads to the conclusion that there is a stronger

relationship between musician physical action and musical reaction, in case of
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the active performance. As the active by conception and technical realization has

been developed to generate a musical performance, in which this relationship is

very strong, this result is according to our intended outcome.

However, with the proposed method, I can only characterize physical and

musical expression of the experimental subject to a certain degree, as far as

the vision and aural processing methods proposed in this thesis allow it. The

functionality of these modules has been described in the previous sections. A

musician’s expressive behavior during a performance is very rich in information

content. There might be parts of that information that express synchronicity (or

even non-synchronicity), that are not sufficiently be detected by the proposed

sensor processing technics, but still should have influence on the performance

index. Therefore is the performance, a quantitative way of expressing the action-

reaction relationship within an inter-active musical performance, but it needs to

be supplemented by further experimental proof.

To provide this further experimental proof, I performed a listener survey, in

which experimental subjects were ask to evaluate an active and a passive per-

formance. Especially in case of the survey with 15 amateur musician subjects,

the survey shows promising results. The active performance scored significantly

higher (with the result of the p-test > 0.05) for classifications interesting, var-

ied, natural and emotional. As I have already shown in the results regarding

the performance index, the active performance shows a higher degree of relation-

ship between visible actions by the musician and musical performance output.

This results in the impression of a more interesting and varied performance on

the listener viewer of the performance. In the Introduction of this thesis it was

stated that the active performance makes a more natural impression to the lis-

tener and the musical performer. Given, that this statement is true, the result

for the adjective pairs natural / artificial and emotional / rational can be ex-

plained. The active performance was attributed a higher score for naturalness

and emotionality than the passive performance. An explanation might be, that

the additional physical movement, resulting in stronger synchronicity of the two

performers, shows more human-like features, that a static performance without

further exchange of information might not display. This leads the listener / viewer
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to the conclusion that the active performance is more natural (human-like) and

conveying more emotional content than the passive performance.

With the proposed survey method, I try to qualitatively characterize the im-

pression of the active and passive performance on the user. However, I provide

to the survey subjects only a limited way of describing their impression. The

real judgement of the subjects might be significantly more diverse, than can be

expressed in the proposed adjective pairs. As a result, to a certain degree, the

result does sufficiently characterize the active and passive performance situations.

For further insight on its impact on the user, the technical evaluation and the

evaluation from the user point-of-view were performed.

6.3 Technical System Evaluation from Interac-

tion Experiments in Realistic Circumstances

6.3.1 Objective

In this section I describe the technical evaluation of the interaction system under

realistic circumstances. With realistic circumstances I intend to express, that I

did not set any specific environment conditions to improve the performance of

the interaction system. I tried to test the system in a similar situation as it might

be used in a real, public performance situation. Although the tests were still car-

ried out in the laboratory, I did not take any special effort in adjusting lighting,

background, environment noise level etc. Intentionally, I did not perform a quan-

titative evaluation of the performance system by comparing the input values from

the different sub-modules to ground-truth data, but concentrated on demonstrat-

ing the functionality by using the system in a realistic way. Experiments were

done with both the basic interaction system and the extended interaction system.

6.3.2 Analysis of Constraint-Restricted Mapping (CRM)

within Physical Limitations: Experiment Method

In the following I show the technical evaluation of the basic interaction level

system, using the robot Constraint Restricted Mapping (CRM). Purpose of the
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Figure 6.5: The technical experiment for the basic level of interaction was per-

formed as shown here.

evaluation is the demonstration of the technical functionality of the basic inter-

action system. In the experimental setup, an intermediate level saxophone player

improvises over a repetitive musical pattern from the theme of the jazz standard

piece The Autumn Leaves (the primary exemplary piece used throughout this

thesis). By moving his instrument, the musician can adjust the tempo of the

sequence, that is performed by the flutist robot. While the musician controls the

performance of the robot, his input is modulated by the physical state of the

robot. As the relevant state parameter can be deliberately selected by the user,

I chose the state of the robot’s lung to modulate the values, that are transmitted

from the sensor processing module.

In case of the basic level interaction experiment, the robot is controlled by

one virtual fader. This fader is used to continuously control the speed of a pre-

defined sequence that is played by the flutist robot. The output of the sensor

processing system determining the value of the virtual fader is conditioned by the

lung movement of the robot. I use the Constraint Restricted Mapping (CRM) to

continuously reduce the speed of the performed pattern, when we reach a fill-level

of 80% of the robot’s lung. In order to perform the experiment, an intermediate

138



6.3 Technical System Evaluation from Interaction Experiments in
Realistic Circumstances

Figure 6.6: In the beginner level interaction system, the user controls the tempo

of a pattern performed by the robot. The lung fill level plotted in the top graph,

modulates the input data from the virtual fader resulting in the robot performance

displayed by the pitch and the amplitude curve.

saxophone player stood in front of the robot (within the viewing angle of the

robot’s cameras). After introducing the functionality of the basic level interaction

system to the player I recorded data of the resulting performance with the robot.

A flow-chart of the experiment procedure is displayed in Fig. 6.5.

To achieve quantitative results for the first level interaction system we per-

formed the experiment with an intermediate flutist player. Fader movements

control the tempo of the tone sequence that is performed by the robot. If the

amount of air remaining in the lung reaches a certain limit (in this experiment

80% of the lung volume, see lung fill level graph), the fader value transmitted to

the robot is faded-out (using the low-pass filter previously described).

139



6.3 Technical System Evaluation from Interaction Experiments in
Realistic Circumstances

6.3.3 Analysis of Constraint-Restricted Mapping (CRM)

within Physical Limitations: Experiment Results

A graph of the result of the experiment is shown in Fig. 6.6. At 23.5s and 24s

the robot refills its lungs for a duration of approx. 0.5s. These breathing points

have a time-distance of approx. 40s (in the displayed graph one breathing cycle

is displayed). During the breathing points no sound is produced by the robot.

The fader value actually transmitted to the robot (Modulated fader value) is

faded out before the lung is completely empty. This adjustment can be observed

at 17.5s-22.5s in the fader value plot, the modulated fader value plot and the

robot output volume plot. As the fader value is faded-out rapidly, the resulting

performance tempo of the robot decreases from fast (160bpm) to slow (70bpm).

This variation can been seen in the pitch plot in the robot performance pitch

plot.

Musicians can engage in interplay without having to consider about the phys-

ical restrictions of the anthropomorphic robot. The constraint restricted map-

ping (CRM) makes the robot aware of its own limitations and able to adjust its

performance accordingly, similar to how a human player might act. I show in

my experiments, that this principle is applicable to simple improvisational play

together with a musician partner. As mentioned previously, I try to achieve musi-

cal expression to the degree that is possible, given the physical limitations of the

flutist robot. As first approach, in this research, the experiments were limited to

changes of the song tempo and vibrato amplitude. These expression parameters

are relatively simple in respect to the complex parameter variations, which a hu-

man musician applies, while performing a musical piece. However, to produce the

flute sound, accurate control of all degrees of freedom of the robot is necessary.

If this control is not accurate enough, the sound production will fail. For this

reason I limited the parameter modulations presented in these experiments to

relatively simple conditions.
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Figure 6.7: The experiment sequence for the advanced level of interaction.

6.3.4 Analysis of Interactive Mapping (IM) of the Ex-

tended Level Interaction System: Method and Re-

sults

In the following section I describe my approach to evaluate the technical func-

tionality of the extended interaction system. As purpose of the experimental

procedure I demonstrate the technical functionality of the extended interaction

system. Similar to the technical evaluation of the basic level interaction system,

I concentrate on a demonstration of the qualitative functionality of the system

under realistic circumstances, rather than calculating quantitative error values for

the separate system components. In the experimental setup, an intermediate-level

(instrument skill level) saxophone player controlled the robot for improvisation

of the theme on the piece The Autumn Leaves. The musician controls the robot

using the interactive mapping (IM) of the extended level interaction system. In

a teaching phase the musician associates instrument angles and melody patterns

to form a state association table in the memory of the flutist robot. In the per-

formance phase the musician uses this state association table to recall musical

patterns by his instrument motion during improvisation.

In the experiment for the advanced level interaction system I try to confirm

that, using the interactive mapping (IM) module, a musician of intermediate skill
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level has the possibility to teach the robot how to relate instrument motion with

the variation of musical parameters.

The experiment has two phases, the teaching phase and the performance

phase. In the first phase the interacting musician teaches a movement-performance

parameter relationship to the robot. In this particular case we relate one of three

melody patterns to the inclination angle of the instrument of the robot’s partner

musician. From this information the robot builds a state-space table, that relates

instrument angles to musical patterns. In the second stage the interaction partner

controls the robot with these movements. Using the proposed particle Bayesian

network-based filtering I search for the instrument angle in the state-space table

that most likely represents the current state. When a match is determined, the

robot plays the musical pattern that relates to the current instrument angle. The

transition of the teaching phase to the performance phase is defined by the num-

ber of melody patterns associated by the robot. In case of this experiment, the

switch occurs after 3 melody patterns have been recorded. A flow-chart of the

experiment procedure is displayed in Fig. 6.7.

The experiment was performed by the intermediate-level flute player. Af-

ter introducing the functionality of the system to the player, he performed one

teaching phase and the following performance phase. In the following I show and

evaluate an excerpt of the data recorded from the interaction of the intermediate

level player with the system.

The recorded data for the teaching phase can be seen in Fig. 6.8. In the first

part (from T = 0s), the instrument player moves his instrument to an angle of ap-

proximately 125◦ (state I) and plays melody pattern A. The flutist robot confirms

the detection of the pattern by repeating the melody. This is displayed in the

Robot performance pitch graph and marked with m (musician) and r (robot). The

association of pattern A and instrument state I is written to the robot state ta-

ble. At T = 18s the player changes his instrument position to approximately 100◦

(state II) and plays the next melody pattern, which is recognized and confirmed

as melody pattern B. The association of state II and pattern B is memorized in

the robot state table. At last (T = 22s), the instrumentalist moves his instrument

to state III (approximately 75◦, and plays melody pattern C. The association of

instrument state III and melody pattern C is saved in the association table.
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Figure 6.8: In the extended level interaction system’s teach-in phase the user

associates instrument motion with melody patterns. A melody pattern m per-

formed by the musician is repeated by the robot for confirmation r. The robot

state table shows the association that is being set-up the teach-in system.
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Figure 6.9: In the extended level interaction system’s performance phase the user

controls the robot’s output tone by changing the orientation of his instrument.

In the graph the detected instrument orientation, the associated musical pattern

and the output of the robot are shown.
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The results for the performance phase of the extended level interaction ex-

periment is shown in Fig. 6.9. In the teaching phase the musician associated

three melody patterns A, B, C, to instrument states I, II, III. In the performance

phase he recalls the melody patterns in order to build an accompaniment for an

improvisation. In the graph, each time the musician shifts his instrument to a

new angle (Instrument orientation graph), the detected instrument state changes.

As a result of this change the robot plays the answer melody that was associ-

ated in the teaching phase. This happens several times in the displayed graph.

At 15s the musician moves his instrument to an angle of 150◦ (state I) and the

robot immediately plays the associated answer melody (pattern A). At 20s he

shifts the instrument to 100◦ and triggers melody pattern B. When moving the

instrument to 50◦ at 23s, the robot answers with melody pattern C. It remains to

note, that, after one pattern has been performed the robot automatically resets

its lung until the next pattern is commanded. These short breathing spots can

be seen throughout the Robot performance volume plot, notably at t = 5s, t = 9s

or t = 13s.

6.3.5 Discussion

With the experiments performed in this section, I tried the technical validity of

the basic and extended level of interaction. This was to be achieved not on a

sub-module level, as was done in the previous sections, but using the system as

a whole. Therefore the input was also provided by a real musician user, to see if

the system is suitable to work in a realistic context. In this case realistic context

means, that the characteristics of the user input are the same as user input, that

would occur during a stage performance in front of an audience. In case of the

basic level interaction system, the user generated a regular sinusoidal input wave-

form with a frequency of around 0.1Hz and an amplitude of around 0% to 100%.

This input data was translated into proportional modulation of the performance

tempo of the flutist robot. As soon as the fill level of the lung of the flutist robot

reached a level of 80%, the lung fill level started to adjust the modulation of

the performance by the musician and force a fade-out to the performance tempo

of the robot from 170bpm to 70bpm. As I showed in the experimental results
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graph, the intended outcome of the experiment can be verified by analyzing the

experimental data. However, the proposed experiment covers only one case of a

constraint restricted mapping (CRM) configuration. This configuration was sug-

gested a conceptual test of the basic level interaction system by the professional

musician, I worked together with, when planning the presented experiments. Also

have experiments only been performed for relatively simple types of user input.

In a realistic performance, more extreme movements and musical expression than

proposed here might occur. As a result the basic interaction level can be charac-

terized as functional from the technical point-of-view for a certain performance

scenario. The certainty, that the system works with every possible input data,

cannot be achieved. The system can only be evaluated on a case-by-case basis. I

tried to choose the situation proposed here as an example for a typical scenario.

To further classify, in how far this makes sense also from the point-of-view of a

real user, I try to explore in the next section.

The extended interaction level has been evaluated using a similar approach as

the previously applied technique for the basic interaction level. The extended level

of interaction was to be evaluated on an overall level, including the functionality

of all involved modules (sensor processing, mapping etc.). The input that was

used to verify, if the result data of the interaction with the extended level is

according to the implementation intention, was generated by a human musician.

In the previous section I used artificially generated input to show the functionality

of the basic and extended level mapping module. In this chapter, the intention

behind the proposed experiments is to show, if the system works in a realistic

context. This makes it necessary to use realistic, human input to evaluate the

system.

In the teach-in phase, the musician assigned three different melody patterns

to three different instrument angles. This assignment was intentionally defined

by the musician, using a melody pattern-based question-and-answer teach-in pro-

cess similar to the approach shown in Chapter 4. The association table was built

from two parameters (angle, musical pattern). The experiments show that after

a-priori definition of the melody pattern library and connected instrument ges-

tures, the robot is able to reproduce these pattern from the musician’s movements

in the performance-phase. In the experiments we have worked under a controlled
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experimental environment with limited complexity. Using the proposed mapping

strategy, more complicated applications, in which the state-space table contains

more parameters (distance of the player to robot, angle, vibrato amplitude, mu-

sical pattern etc.) are possible. The complete teach-in procedure takes a during

of about 30s. In the later performance phase, the assignment that has been set

in the teach-in phase is recalled by the musician, in order to create an interactive

performance based on the musical fragments from The Autumn Leaves. The re-

sults show an association between instrument angle and musical pattern output

as assigned in the teach-in phase.

In the extended interaction level experiment, I evaluated in the system in a

way, that I considered a typical use-case scenario. However this describes only

one of these scenarios. To a certain degree this leads to the conclusion, that as

the system can be used in the presented case, it is also suitable for similar perfor-

mance situations. To further evaluate the system for suitability to fundamentally

different scenarios, the proposed experiments might not be sufficient. With the

experiments in the following section I try to show, that at least for typical usage

by a human the musician, the system leads to a good impression on the user.

6.4 Experimental System Evaluation from the

Non-Technical User Perspective

6.4.1 Objective

In this section, I show experiments and their results that qualitatively document

the usability of the system. Goal of the development of the Musical-based In-

teraction System is to provide the user with an intuitive, natural interface to

interact with a musical robot. To find out about the acceptance of the system

and its general usability, the system needs to be tested with a variety of users,

the experience and comments of the users need to be recorded and these results

need to be analyzed. Users were asked to do a musical performance with the

flutist robot, first using the basic level interaction system and second using the

extended level interaction system. I asked the users to fill out a questionnaire for

each of these performances to characterize their experience with the system. This
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Figure 6.10: User survey method

experimental method was applied for professional musicians as well as amateur

musicians and the result statistically analyzed. With the results I try to show

that the system provides a natural user experience to users of different experience

levels.

6.4.2 Experiment Method

In Fig. 6.10 the experimental method of the user survey is shown. Purpose of

the experiment is a survey of the user evaluation of the system during practical

operation of the basic and extended level interaction system. For the evaluation of

the basic interaction system, I analyzed the the qualitative perception of the basic

interaction system with a questionnaire poll of 17 subjects (amateur musician and

professional musicians). For the evaluation of the extended interaction system I

analyzed the qualitative perception of the extended interaction system with a

questionnaire poll of 17 subjects (amateur musicians and professional musicians).

In the survey experiment I asked 15 male amateur musicians and 2 male

professional musicians to use the basic interaction system with WF-4RV and to

use the extended interaction system with WF-4RV. For each interaction level

one questionnaire needed to be filled out. Re-trials of the interaction system use

were allowed. Each questionnaire consisted of 8 pairs of adjectives, similar to the
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Adjective pair Enquired characteristic

natural / artificial Does the user perceive the interaction with

the robot as natural or artificial?

fast / slow Is the overall response time of the system per-

ceived as fast or also?

free movement / constrained

movement

Is the expressive movement required in order

to control the robot performance perceived

as free or constrained?

rhythmical / at random Is the performance of the robot that results

from the interaction perceived as rhythmi-

cally aligned or randomly arranged?

emotional / rational Does the resulting performance allow for

emotional expression of the user’s mental

state?

expressive / unexpressive Is the interaction with the robot perceived as

expressive or unexpressive?

easy / difficult Did the user find the interaction with the

robot easy or difficult?

system sufficient / insufficient Is the scope of the system perceived as suffi-

cient or insufficient?

Table 6.3: 8 Pairs of adjectives were chosen to allow users to characterize the

usability of the basic and extended interaction level.

approach proposed in [75]. As a score system, I asked each user to assign a score

from 1 to 5 for each adjective pair (Table 6.3).

For each adjective pair, the survey subject was asked to express to which

degree the performance could be classified by a certain adjective by selecting an

integer number between 1 and 5. Applied to the adjective pair natural / artificial,

a score of 1 would account for a very natural, human-like interaction and a score

of 5 for a very machine-like, static one. If a user was indecisive on which adjective

to choose, he could choose a score of 3 to emphasize neither one of both adjectives.
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Figure 6.11: This figure shows the results of the user survey for the basic interac-

tion system and the extended interaction system. In a) the averaged questionnaire

scoring by the amateur musicians is shown. b) shows the survey results for the

professional musicians. The T-test results framed with a green rectangle point to

a adjective category for which there is a significant difference between the result

for the basic and extended level system. Red boxes show the scoring for the basic

interaction level and blue boxes display the results for the extended interaction

level.
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6.4.3 Results

The results of the user survey for the active and passive interaction system are

shown in Fig. 6.11. 15 Amateur musicians were asked to characterize the dif-

ferences between the use of basic level of interaction and the extended level of

interaction. The users were asked to attribute 8 pairs of adjectives to the two

levels after interacting with the robot using each of these levels. The result of

the survey shows, that in case of the adjective pairs natural / artificial, free

movement / constrained, emotional / rational, expressive / unexpressive, easy /

difficult, there occurs a significant difference (p-test result > 0.05) between the

basic and extended interaction level.

For the pair natural / artificial, the amateur users in average gave a score of

1.7 to the basic and a score of 4 to the advanced interaction level. A similar result

was achieved for the adjective pair free movement / constrained with a score of

2 for the basic interaction level and 4.5 for the advanced interaction level. In

case of the adjective pair emotional / rational, the basic level scored 2 and the

extended level 4. The basic interaction level was attributed with a higher score

of 3.8, than the extended interaction level with 2 for the adjective pair easy /

difficult.

Furthermore, I asked 2 professional musicians to use the basic and extended

interaction level and attribute their impression with the previously described

adjective pairs. The outcome of the experiment is similar to the results for the

amateur musicians. In case of the adjective pair natural / artificial, the basic

interaction level scored 2, whereas the extended interaction level achieved 4. For

the adjective pair free movement / constrained a score of 2.2 was attributed to

the basic level of interaction and a score of 4.5 was attributed to the extended

interaction level. In case of the adjective pair emotional / rational the professional

musicians in average evaluated the basic level with a score of 2.5 and the extended

level with a score of 4. A score of 4.5 for the basic and 2.5 for the extended

interaction system were attributed for the adjective pair easy / difficult.
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6.4.4 Discussion

The intention of the employed user-study was to evaluate in which way the usage

of the basic and extended interaction level was characterized by the user. The

survey subjects were asked to provide such a qualitative characterization by giving

scores to a number of adjective pairs, as has been described in the previous section.

I found a significant difference in score attribution in case the five adjective pairs

natural / artificial, free movement / constrained, emotional / rational, expressive

/ unexpressive and easy / difficult. As has been mentioned previously for the

survey in the lister point-of-view evaluation section, these adjectives were chosen

to find an approximate characterization of the impression of the interaction on

the user. The real feeling a user has during the interaction, is difficult to be

measured and displayed as numerical representation. Therefore, I chose to show

this approach as a result that is closely related to the actual average impression a

typical user has during the interaction with the system. The results are congruent

for both the amateur musicians and the professional musicians. However, it has

to be taken into consideration, that the number of survey subject was less in case

of the professional musicians (two subjects) than in case of the amateur musicians

(15 subjects).

Compared to the basic interaction level the extended interaction level was

attributed a higher score for adjective pairs natural / artificial, free movement /

constrained, emotional / rational, expressive / unexpressive. The greater amount

of freedom of movement in case of the extended level of interaction is directly

related to the visual processing method chosen for this level. The particle filter-

based tracking allows instrument movements in the complete image space of the

robot cameras, whereas in case of the motion perception-based tracking, the track-

ing area is limited to the area occupied by the virtual controllers. On the other

side, as the virtual controllers are unmovable and provide a fixed reference for the

user, the basic interaction level might also be easier to use. This is expressed by

the user evaluation of the adjective pair easy / difficult. As a further fundamental

approach to make the interaction with the robot easier in the basic interaction

level, there is the robot state feedback concept. Using this approach, the user is

not directly confronted with the technical complexities of the anthropomorphic
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robot. Furthermore, the extended level of interaction offers the teach-in system

to provide more freedom of expressiveness to the user. However that also means

that the usage of the system in extended level mode becomes more difficult. The

scores attributed for the adjective pair expressive / unexpressive further confirm

this assumption. As average impression for the amateur musician survey subjects

as well as the professional musician subjects, the extended interaction level was

evaluated to be more natural and more emotional in its usage. This might be re-

lated to the additional freedom of expression given by the teach-in system and the

use of the particle filter-based tracking. As a completely human-like interaction

would grant a very high degree of autonomy to the musician partner of the robot,

the greater the number possible free decisions in the course of a performance are

and the more easily they are accessible, the more might the interaction itself be

classified as natural. As a result such a natural interaction gives the musician

freedom for emotional expression.

6.5 Conclusion of this Chapter

In this chapter the interaction system has been evaluated in three different cate-

gories. The difference between a passive performance and an active performance

was analyzed. Through the calculation of a performance index and the applica-

tion of a user study, I concluded that to a certain degree, the active performance

is more similar to a performance between humans, than a passive performance

between robot and human. This led to the next section, in which I displayed

experimental results to demonstrate the technical functionality of the basic and

extended level of interaction. Although these results did not cover all possible

cases of usage of the system, I decided to further evaluate the system with the

user survey shown in the next section. These user survey results show, that the

interaction system levels are characterized differently by the amateur and pro-

fessional musician users. The basic level interaction system on the one hand, is

evaluated to be more constrained and in general provide a more artificial feel, but

is easy to use. The extended level interaction system on the other hand is more

complicated in its usage, but due to its greater flexibility leads to more natural

and expressive performance.

153



6.5 Conclusion of this Chapter

These diverse results show, that an interaction system to suit all types of

users can not easily be developed. However, the results, that are displayed in the

listener and user survey show, that the general concept of the proposed system

points into the right direction. Although the musical application is a specialized

case of human-robot-interaction, it contains many characteristics (such as com-

munication through different perception channels etc.) that occur also in other

types of such interaction. This allows the consideration, that a similar system

with slight modification might also be applied to other cases of personal robotics.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis I propose an approach to a perception action scheme-based human-

robot robot interaction system, that is to allow natural and intuitive collaboration

between a human and a robot. I would like to present the following conclusions

that show that, to a certain degree, the intended result of developing such a

system has been achieved.

1. The anthropomorphic flutist WF-4RV in an interactive musical

context - To prove the concept of operation of this interaction system, I

implemented it for a musical context. In this musical context, the flutist

robot WF-4RV is to play together and interact with human musicians in

a natural way. The research is based on the fundamental consideration,

that an inter-active performance of a robot with human musicians, is more

enjoyable for the audience, than a passive, non-interactive performance. A

passive performance therefore leads to a static, unnatural impression on

the listener, whereas the inter-active performance is perceived as natural

and human-like. I tried to prove this statement with the listener survey

performed in the last chapter. In the experiment, the active performance

scored significantly higher (with the result of the p-test > 0.05) for clas-

sifications interesting, varied, natural and emotional. I also introduced a

performance index, that the active performance has a stronger relationship
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(pi = 0.82) between visible actions by the musician and musical performance

output than the passive performance (pi = 0.35).

2. Configuration of the active performance system of the WF-4RV

- Interaction with human musicians requires the flutist robot not only to

play a carefully optimized performance. The robot needs to be able to

adjust its play to the actions of its musical partner, without diminishing

its performance quality. An adjustment of the note envelope for each tone

during a performance requires very fast and accurate control of the air-

flow. I achieved this by directly controlling the breathing speed of the

flutist robot depending on the performed note. Using this envelope control

system, decay times for large note-intervals (more than 6 half-tones) was

reduced from 0.6s to 0.1s.

3. Development of the Musical-based Interaction System (MbIS) -

To give the robot the possibility to interact with its partner musicians, I

developed an interaction system, that is to allow human-like usability of

complex robot hardware. The interaction system is able to processes in-

formation from multi-modal communication channels. Within the research

focus of this thesis, visual and aural sensor processing was implemented.

The input from the sensor processing system is mapped to musical perfor-

mance parameters of the robot using two different strategies. Which one

of these strategies is being used, can be selected by the user, depending on

the experience level of the user.

4. Detection of visual cues - In the application proposed in this thesis I fo-

cused on visual and acoustic communication. The visual information is pre-

processed before being sent to the mapping module, where it is combined

with information from the acoustic processing to modify the performance

parameters of the flutist robot. When musicians interact with each other

in a band environment, they use visual as well as aural cues to synchronize

their performance. The most common visual cue performed especially by

wind instrument players, are instrument gestures like leaning the instrument
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into the direction of another player. I developed the visual processing sys-

tems (motion perception-based tracking and particle filter-based tracking)

to be able to detect this kind of movement.

5. Detection of acoustic cues - As aural cues musicians mainly use com-

monly known melody and rhythm patterns. If one musician plays one of

these known patterns, the other musicians in the band are informed about

the current song context. In this thesis I proposed histogram-based melody

and rhythm-based tracking, to find such known patterns within a sequence

played by a partner musician of the robot.

6. Evaluation of the MbIS In the experiments section of the thesis I eval-

uated the overall performance of the system in two different ways. First,

the system overall functionality was technically validated. This achieved

not on a sub-module level, but using the system as a whole. Therefore the

input was also provided by a real musician user, to confirm that the system

is suitable to work in a realistic context. Second, I performed a survey to

evaluate the system from a user perspective. As a result of this survey,

compared to the basic interaction level the extended interaction level was

attributed a higher score for adjective pairs natural / artificial, free move-

ment / constrained, emotional / rational, expressive / unexpressive. The

results, that were reached in the user survey show, that the general concept

of the proposed system points into the right direction. To a certain degree,

the overall hypothesis I proposed in this thesis has been confirmed. The

proposed perception-action scheme-based, human-robot interaction system

is suitable to enable natural, task-oriented collaboration with an anthropo-

morphic robot, given the controlled experimental environment described in

the previous sections.

7. Application to a general HRI context - The Musical-based Interaction

System (MbIS) was designed with the purpose to create an interaction

system that is generally applicable to a general Human-Robot-Interaction

context. The experimental results show, that the system works in a musical
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Figure 7.1: The figure shows an overview of the influences from various fields,
that are incorporated by the musical-based interaction system (inputs into the
MbIS unit). In the lower part of the figure, possible further impact areas of the
developed concept are displayed.

context. Although the musical application is a specialized case of human-

robot-interaction, it contains many characteristics (such as communication

through different perception channels etc.) that occur also in other types

of such interaction. This allows the consideration, that a similar system

with slight modification might also be applied to other cases of personal

robotics.

This research, due to the interdisciplinary approach among human-robot inter-

action, music engineering and robot engineering as well the potential application

of the novel perception-action scheme to other musical robotic platforms, has

the intention to contribute to the better understanding of the basic requirements

to enhance the human-robot musical interaction. In particular, further possible
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applications of the proposed perception-action scheme to other different kinds of

entertainment robots with slightly modifications are expected. In order to bet-

ter understand possible strategies to modify the behavior of the robot to further

strengthen the human-robot interaction, a teach-in method has been conceived

by implementing a memory model, which allows the robot to save a correlation

between a melody pattern that is performed by the musician and the musician’s

instrument movement. In this thesis try the knowledge of mechanisms of musical

interaction and to contribute to the previously mentioned fields as well as to other

related fields such as kansei engineering, communication science, music informat-

ics. An overview over possible impacts areas of the musical-based interaction

system is shown in Fig. 7.1. As one possible further application, the Global

Center of Excellence (GCOE) and the interACT program are shown. These are

both international collaboration programs, in which active exchange of knowl-

edge between research institutions is encouraged. Within these frameworks, the

proposed interaction system might be applied to a wide range of other personal

robot systems.

7.2 Future Work

In this final section, I would like to propose several improvements to the proposed

interaction system. With these improvements the functionality of the MbIS could

be improved to enhance the performance of the system and to make it suitable

for a wider range of application in personal robotics.

1. Audio processing algorithms - Generally regarding all proposed sensor

processing components, I would like to do further work to enhance the

algorithms and improve the robustness of sensor processing. Regarding the

audio processing, the pattern library size is now limited to three melody

patterns. I would like to extend the size of this library to, depending on

the musical material used, allow for more distinguished detection. The low

level routines of the audio processing also leave room for improvement. In

future works, I would like to improve the implemented algorithm to do

faster pitch detection. When using the onset detection system, I detected
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Figure 7.2: For future development a system for online-learning of the perfor-
mance behavior of the human musician is planned.

a time difference between the detection of the onset control signal and the

actual performance start (∆t = 0.1s). This might be due to the slow speed

of the audio processing.

2. WF-4RV performance quality - The performance quality of WF-4RV

using the improved lung control algorithm has been qualitatively evalu-

ated on a preliminary scale. In further experiments and analysis the im-

provement of the note-to-note transition quality should be more accurately

recorded and compared to the previous sound quality. An evaluation func-

tion might be employed to numerically express the improvement. So far

the use of an additional mechanical valve mechanism has been considered,

but not implemented. In further research such a speak-on valve could be

added to the robot, to provide even better air-flow envelope control.

3. Further evaluation of the MbIS - Qualitative and quantitative evalua-

tion of the interaction system have been performed in various ways. Nev-

ertheless I would like to do further evaluation of the proposed method. I

would like to apply the system not only to jazz, but also to other musical

styles. A classical piece of music (Ave Verum Corpus by Wolfgang Amadeus

Mozart) to which the MbIS might be applied has recently been suggested

by the professional flutist, that I worked together with for the research in

this thesis.
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4. Extension of the mapping modules - I would like to enhance the func-

tionality of both, the basic interaction level mapping module as well as the

extended level mapping module. In the basic level, so far only the lung

fill level status has been used as feedback from the physical state of the

robot. In future work I would like to uses further feedback channels from

the mechanical structure of the robot. Furthermore I would like to extend

the teach-in approach of the extended level interaction system to enable

the flutist robot to actively learn the performance behavior patterns of its

partner musician.

5. Application to realistic performance environments - So far the mu-

sician robot has mainly provided background accompaniment for the im-

provisation of the musician. In future works I would like to extend the

system in order to allow the flutist robot to take the lead performance as

well. The original goal of the Musical-based Interaction System is to allow

an interactive performance in front of an audience, on a stage. Because the

robot cannot be easily transported, I have so far not advanced to that level,

but I would like to test the system under realistic circumstances on a real

stage.

6. Application to general HRI context - From a more general HRI context

point-of-view, I would like to extend the application of the system to other

musician robots. The design of the interaction system is a general purpose

concept. Therefore, I would like to attempt to implement the system with

minor modifications to further personal robotics platforms.
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Appendix A

Microphone and Camera
Specifications

A.1 Preamplifier A3 Characteristics

Input impendance 1 kOhm
Output impedance 47 kOhm

Frequency response 20 Hz - 50 kHz (+0 / - 3dB)
Frequency response with filter 300 hz - 50 kHz (+0 / -3 dB)

Noise Level (A-weigthed) 47 kOhm loaded max 30 V
Max. output voltage 1,5 V eff.

Max. output voltage with ATT. 1.0 V eff
Battery 6 V (4LR44 o.)

Battery life time 50 h (OKM I), 100 h (OKMII)

A.2 OKM II Characteristics

Frequency range 20 Hz to 20 kHz
Channel Balance typ. ¡ 1,0 dB
S/N ratio re 1 Pa approx. 61 dB
Max. SPL (with A 3 Adapter) 108 dB
Max SPL (with A 3 Adapter 20 dB att.) 125 dB
Operating voltage max. 10 V
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A.3 Firefly Camera (FFMV-03M2C)

A.3 Firefly Camera (FFMV-03M2C)

Image Sensor Type 1/3 progressive scan CMOS
Image Sensor Type Global shutter using Micron TrueSNAP tech-

nology
Image Sensor Model Micron MT9V022
Maximum Resolution 752 (H) x 480 (V)
Pixel Size 6.0 m x 6.0 m
Analog-to-Digital Converter On-chip 10-bit ADC
Video Data Output 8 and 16-bit digital data
Image Data Formats Y8, Y16 (monochrome), 8-bit and 16-bit raw

Bayer data (color models)
Digital Interface 6-pin IEEE 1394a for camera control, video

data, power
Transfer Rates 400 Mb/s
Maximum Frame Rate 752x480 at 61 FPS, 320x240 at 112 FPS (re-

gion of interest) 320x240 at 122 FPS (2 x 2
pixel binning)

Partial Image Modes pixel binning and region of interest modes
via Format7

General Purpose I/O Ports 7-pin JST GPIO connector, 4 pins for trig-
ger and strobe, 1 pin +3.3 V, 1 Vext pin for
external power

Gain Control automatic / manual, 0 dB to 12 dB
Shutter Speed automatic / manual, 0.12 ms to 512 ms
Gamma 0 to 1 (enables 12-bit to 10-bit companding)
Synchronization via external trigger, software trigger, or free-

running*
External Trigger Modes IIDC v1.31 Trigger Modes 0 and 3
Power Requirements 8 to 30 V via IEEE-1394, less than one (1)

Watt
Dimensions (LxWxH) 24.4 x 44 x 34 mm
Mass 37 g (including tripod adapter)
Camera Specifications IIDC 1394-based Digital Camera Specifica-

tion v1.31
Memory Storage three memory channels for user configurable

power-up settings
Lens Mount CS-mount (5mm C-mount adapter included)

M12 microlens mount2
Compliance CE, FCC Class B, RoHS
Operating Temperature 0 to 45C
Storage Temperature -30 to 60C
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