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Abstract

Adaptive control is a very important field of system controtidas attracted a lot of interest from
researchers in recent years. Linear system theory is veslaf®ed and there exist many excellent
adaptive control results for linear systems. On the othedhanost of real plants are nonlinear and
linear approximative models can not do well in the accuraoblem of these plants. Therefore,
many nonlinear black-box models (neural networks, wavedetorks, adaptive fuzzy systems, etc.)
have been used to control of nonlinear systems. Howeveg #re two problems for these nonlinear
models: the controller designing and the stability of cgprending control system. The controllers
based on these nonlinear models are more difficult to bergdatathan based on the linear models.
Stability and accuracy of the control system for nonlingatems are difficult to be ensured in one
method or one nonlinear model.

A quasi-linear black-box modeling scheme has been propegbdvhich the techniques based
on well developed linear system theory could be extendedmdmear systems. It constructs mod-
els consisting of two parts: a macro-part and a kernel-pHne macro-part is a user-friendly in-
terface constructed using the specific knowledge and theacteaistics of network structure; the
efforts of this part are to introduce some properties fawardo certain applications, such as con-
troller designing. In this thesis, AutoRegressive eXogenfARX) model structure is chosen as
macro-part because of various useful linearity properiiéss macro structure makes the proposed
controller easily get and use like based on ARX model. Thadlgpart is a nonlinear black-box
model which is used to represent the complicated coeffgiehmacro-parts. In this thesis, neural
networks, radial basis function networks, and neural fuzztyvorks are chosen as the kernel-parts
which improve the control accuracy. Obviously, the aboveefiog scheme can construct different
macro-parts and kernel-parts with applying specific knogéefor different application interests.
However, the stability is still a problem which must be sdlviethe controllers based on the quasi-
linear black-box modeling scheme want to be used in the redbw

The motivation of this thesis is intended to research ontadapontrol of nonlinear dynamical
systems based on the quasi-ARX black box models. Accorditiietquasi-ARX modeling scheme,
several improved quasi-ARX black-box models are proposedifferent nonlinear control require-
ment. The obtained quasi-ARX black-box model is considéoelave two properties: the linear
property and the nonlinear property. Based on the modehclexistics, two controllers can be ob-
tained: one linear controller and one nonlinear controllére linear controller is used to ensure the
control stability and the nonlinear controller is utilizemlimprove the control accuracy. A switch-
ing mechanism is proposed between the two controllers. drptemise of stability, the switching



mechanism will tend to choose the nonlinear controller far &ccuracy. On the other hand, the
switching mechanism will return to linear controller to aresstability when the stability of control
system is destroyed. Therefore, the stability and accypamlylems in adaptive control process are
solved by one model following the quasi-ARX modeling scherneestigations are made to do
system identification, control design for nonlinear systeand stability analysis of control system
under the framework of linear control theory based on the medeling scheme.

A quasi-ARX neural network (NN) following the quasi-lineblack-box modeling scheme is
constructed and its application for stability adaptivetoolnof nonlinear systems is proposed. The
obtained quasi-ARX NN model is divided into two parts: theelr part is used to ensure the
nonlinear control stability, and the nonlinear part isizéitl to improve the control accuracy. One
linear controller is obtained based on the linear part arel rmmlinear controller is given based
on the quasi-ARX NN model. In order to combine both the siigbiind universal approximation
capability, a 0/1 switching law is established in our pragbsontrol system by a switching criterion
function based on system input-output variables and ptiedi@rrors. An adaptive controller is
designed for nonlinear dynamical systems based on theneotajuasi-ARX NN model and the
proposed switching mechanism, and its stability is anay#ds obviously the stability of adaptive
control system is proved in theory, and the accuracy of tbpgsed control method is higher than
linear method through the simulations. Therefore, the @sed controller is friendly interface,
stability, higher accuracy and adaptive.

Nevertheless, there are still some aspects needed to bevietpin the above control method.
One is that the 0/1 hard switching method is not very smodth;second is the assumption of
global boundedness also can be relaxed; the third is thaiarameters of quasi-ARX NN model
to be adjusted on-line are highly nonlinear, which deteties the adaptability of control system.
Motivated by the above aspects, three improvements are givehe quasi-ARX model. Firstly, a
fuzzy switching mechanism is constructed based on themystégtching criterion function which
is better than the 0/1 switching law. Secondly]-difference operator is used in the ARX-like ex-
pression of system to relax the assumption of global boumseion higher-order nonlinear terms.
At finally, Radial Basis Function Network (RBFN) is used tplexze the NN in the quasi-ARX
black-box model which is understandable in terms of paramseind is not a absolute black-box
model, compared with NN. The simulation includes two patttg fuzzy switching control results
based on quasi-ARX NN model and the fuzzy switching congelits based on quasi-ARX RBFN
model andi-difference operator. The simulation results show thafptftegposed control model and
method based on the three improvements have better cortformance.

In real world, a lot of systems are MIMO with complicated chog. Due to the difficulty of
decoupling problem, most of the control techniques deatldpr SISO systems cannot be extended
directly for MIMO systems. It is also a change for controlteys based on quasi-ARX black-box
model. Therefore, a MIMO quasi-ARX black-box model is pregd in this thesis and improves the
qguasi-ARX model which can be used as the predictor of MIMOlinear systems. The adaptive
multivariable PID controller with a decoupling compensadnd a feed-forward compensator is
presented for the control of nonlinear MIMO systems usirgptoposed MIMO quasi-ARX RBFN
prediction model. The parameters of such controller aexctedl based on the generalized minimum



control variance. In this chapter, the corresponding Btglinalysis is given. The proposed control
method can satisfy accuracy, stability and decouplingirements for MIMO nonlinear systems.

When NFN is used as kernel-part, variables and the ordeeofitidel increases, the complexity
of input-output designing the NFN also increases. In ordeaesolve this problem in the identifi-
cation process, a Nonlinear Principal Components Anal#$i3CA) network trained by Artificial
Neural Network (ANN) is introduced in quasi-ARX Neuro-Fyzgetwork (NFN) model, instead
of PCA network when the input variables of NFN are nonlinearre@ation. Because the output
of NPCA network is used as the input of quasi-ARX NFN modegntithe number of input is re-
duced. The control method is given based on the improved-@iX NFN model with NPCA.
This method reduces the number of controller parameteringmaves the control performance of
the controller based on the quasi-ARX modeling.
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Chapter 1

Introduction and Motivation

1.1 Systems

A system is an object in which variables of different kindemact and produce observable signals,
in loose terms[1]. Our interesting observable signals atpud, and external signal which can be
manipulated are called input. The systems can be dividedimar and nonlinear systems by the
relation between input and output signals. Thanks to thelsifnameworks and properties of linear
systems, they have been found in much real application aswhrehed in system identification
control theory and signal processing[2, 3]. However, nigj@ystems are nonlinear whose output
is not directly proportional to their input. The study of tioear systems have attracted much
attention from all fields of sciences and humanities. Beedhsy have been everywhere in the
real world, such as food-webs, ecosystems, metabolic pgthwand also include systems which
are founded and used by human, such as robot, aeronautiellitesaunpiloted avion, industrialized
machine and electric arc furnace. A part of nonlinear systeam be considered of an approximation
or combination of multiple linear systems[4, 5, 6]. Therefaconfronted with a kind of nonlinear
systems problem, it is indeed a happy circumstance wherud@okan be obtained by linearizing.
The systems also can be divided into single-variant and+vaultant systems by the input/output
number of systems. A Single-Input and Single-Output (SIS@tem is typically simpler than
Multiple-Input Multiple-Output (MIMO) systems which is etwvn in Fig.1.1, whereu(t) is input
variable andy(t) is output variable. The theory research on SISO systems dwrs $tarted since
1960s, and many significant results have been obtainedf,18), 11]. Systems which have more
than one input and more than one output are known as MIMO mgstg2, 13]. Then, the vectors
u(t) andy(t) are used to represent multiple inputs and multiple outpittstive desired number. As
we know, MIMO systems usually have a complicated dynamioalpting behavior which are not

1



u(t)

y()
e — System —

Figure 1.1: Schematic diagram of the SISO system.

several SISO systems side by side. Hence the traditiondy st SISO systems can not directly to
implement on complicated MIMO systems.

1.2 System Identification

System identification is the theory of how mathematical nider dynamical systems are con-

structed from observed data[14]. Prior knowledge or assiompabout the systems which generate
the observed data guide the choice of model structure. #negl to distinguish under three levels
of prior knowledge, which have been given as follows [15]

» White Box models: This means that a system is perfectly knatis possible to construct
the model entirely from prior knowledge and physical insigh

» Grey Box models: This means that some physical insightagdale, but several parameters
still need to be determined from observed data.

» Black Box models: This means that no physical insight idlalke or used, but the model
structure is chosen from families which have good flexip#itd have been “successful in the
past”.

1.2.1 Black-Box Modeling

A black box model is chosen when little prior knowledge isikade and is a standard flexible
structure which can be used to approximate a lot of diffesystems. In order to describe the
system exactly, some reasonable assumptions about systmade. One common assumption is
that the unknown system is linear which is very useful for ynaroblems but this is never true in
real applications. Linear system theory is very well degetband there are many results which can
be applied to the obtained linear models.

However, the linear assumption is strict for real world vwhias many nonlinear systems. In
recent years, nonlinear modeling and identification hatra@ed much attention from control and
system identification fields. Many nonlinear models havenlreposed in the literatures: ‘classic’



models derived from \olterra series or Winner series [16, ard nonlinear black-box models
based on the nonlinear nonparametric models (NNMs) sucheasaNNetworks (NNs)[18, 19,
20], Wavelet Networks (WNs) [21, 22], Neuro-fuzzy NetwoilRéFNs)[23, 24] and Radial Basis
Function Networks (RBFNSs) [25, 26]. We can see that the neali black box models is very paid
to the flexibility of the model structures. The structuralelarity and simplicity, which are very
important and useful features have been ignored. That theiliterature, some authors have used
a “linear model + NN” type hybrid scheme to identify and cohtnonlinear system [27, 28, 29].
However its linear structures and nonlinear structuresangbined in a less effective and efficient
way. Recently, a hybrid quasi-linear black-box modelingesne is given by incorporating a group
of certain NNMs into a linear structure[14]. The basic idéawxh hybrid method is first to increase
the overall model flexibility by using NNMs and then to restrihe flexibility in the higher order
nonlinearity which can be to achieve the model simplici#§][1

It has been shown that a general nonlinear system can beseggdréy a linear model whose
coefficients consist of constant parameters and nonlieeanst In this model, a group of NNMs are
incorporated into the linear structure to represent thdimear terms. Since NNMs in the hybrid
structure is only one nonlinear term of the coefficients réwgiirement of each NNM is reduced and
the flexibility of individual NNM also can be restricted torse extent. Therefore, some parameters
of NNMs can be determined by usirggpriori knowledge. The efficient use of varioaspriori
knowledge information will play an important role on the higbmodeling. The model constructed
in this way is named as quasi-linear black-box model showgril.2, which has a linear structure,
flexibility and simplicity [14].

The quasi-linear black-box model which consists two paatsnacro-model part and a kernel
part was proposed in[24, 30]. ARX or ARMAX were used as thenmawodel part which are a user-
friendly interface constructed using already known knalgkes and the characteristic of structure.
The ordinary NN and NFN have been chosen as the kernel pachvidused to parameterize the
coefficients of macro-model, respectively. The identifaatesults based on the quasi-linear black-
box models for nonlinear systems have been got as in Ref83B3, 34].

1.3 Control technology and Control Theory

Control technology play an important role for the human pesg during the 20th century. They
bring much positive impact and scientific methodology tmhes many challenges in today’s so-
ciety. They also establish the theoretical basis to actiexgomatization, and propose advanced
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Figure 1.2: Hybrid quasi-linear black-box model.

control equipments and production technology for many stigufields. Especially, the widely used
digital computer makes wider application field for controlemice and technology.

Control theory that deals with influencing the behavior ohayical systems is an interdisci-
plinary subfield of science, which originated in mathensa#ind engineering, and evolved into use
by the social sciences, like sociology, psychology, anchicrology.

1.3.1 History and Development

The history and development of control theory has followwal ¢ontrol technical development to
heel, and even is running far ahead of engineering practiseme fields. There four main phase
for control under the different period as follows.

The first phase is Early Control. In this period, the develeptrof control theory is based the
invention and improvement of control technology. Earlyttohsystems of various types supported
ancient civilizations, such as Clepsydra, Seismoscopgudad loom and Speed Governor. J. Watt
designed centrifugal governor to control the speed of amerig 1788. Therefore, a more formal
analysis just began with a dynamics analysis of the cegtifgovernor which is conducted by the
physicist J. C. Maxwell in 1868 [35]. Then, Maxwell’'s classt® E. J. Routh improved the analysis
results of Maxwell to the general case of linear systems b 18hich brought a flurry of interest
in the field. In 1877, analyzed system stability using défdial equations was analyzed by A.
Hurwitz, resulting in what is known as the Routh-Hurwitzdhem. J. M. Gray designed the first
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full automatic steamship in 1868 he general problem of the stability of motiaas accomplished
by A. M. Lyapunov as his doctoral thesis in 1892[36].

The second phase is The Pre-classical Period. Engineermdbrky designed automatic steer-
ing systems for the US Navy, and published theoretical aiglyf a Proportion Integration Differ-
entiation (PID) controller in 1922. The open-loop controhematic diagram is given by Fig.1.3.
The first widely practical version of the differential anzdy was constructed by H. L. Hazen and
V. Bush at MIT, 1928-1931. The revolutionized Negative Featk Amplifier was invented by
electrical engineer H. S. Black in 1927[37]. The originavbrcybernetics N. Wiener defined the
notion of Feedback. The structure of closed-loop contrehmyn in Fig.1.4. Atmosphere pressure
feedback control system was made by E. Sperry and C. Masanst@hility is the master problem,
the differential equations with constant coefficients igheanatics tool and the control technology
and control theory are developed synchronously in thisogeri

The third phase is Classical Control. The classical Fregu&esponse methods was developed
by Nyquist and H. W. Bode[38]. In 1948, the bo@kberneticspublished by N. Wiener meant
that the Cybernetics appeared. MIT radiation laboratognéted Nichols Chart Design method,
and R. S. Philips introduced the effect of noise in servoraeidms. The Root Locus method
was proposed by W. Evans in 1948. Thus, the classical caieolry was finished which studied
on signal-input linear system expressed by transfer fancéind based on the frequency method
and Root Locus method. Many famous book were published ipéhned, such as E. D. Smith’s
Automatic Control EngineeH. Bode'sNetwork Analysis and Feedback Amplifeand X. Qian’s
Engineering Cyberneticsit was an important part of guidance systems, fire-conystesns and
electronics by World War Il. The rapid development theorydgs the industry developed at very
fast speed in this process.



The forth phase is Modern Control. The world came in a pehakfuelopment period. The
control of nuclear reactor and aerospace is more complariyrequirement than the classical con-
trol object, this led to the development of multi-variablentrol systems[39]. Furthermore, since
efficiency and optimality were paramount, Optimal Contr@thod was proposed based on L. S.
Pontryagin’s Maximum Principle and R. Bellman’s dynamiognamming. R. E. Kalman intro-
duced the state-space analysis systems, adaptive coygteirs controllability and so on, which is
the theory foundation of modern control [40, 41]. The depseient of gigantic supercomputers of-
fered the feasibility calculation. Although they could be#h the reactor and aerospace problem,
those were limited to use in the generic industry becauseeofdmplexity and investment. Hence,
many researcher still work on the frequency domain methagsarticular, N. H. Rosenbrock [42].
He transited multiple-variable system into several singldable systems based on diagonal dom-
inant. This method brought the revival of the frequency donmaethods. In the 70s, the methods
were appeared such as Sequence Return Difference methadicllExpansions method and Char-
acteristic Locus Design method, which were considered atemdrequency domain methods [43].
Their basal idea was to use the classical control methodamgiting multiple-variable into several
single-variable. In 1965, fuzzy set and fuzzy control wasppsed by L. A. Zadeh [44]. And in
1967, K. J. Astrom proposed least squares identificatiorchvreésolved linear system parameters
identification problem. R. W. brockett used differentiabgeetry to study nonlinear control in 1976
and A. Isidori publishedNonlinear Control Systemis 1985. H,, robust control design was first
given by G.Zames in 1981. Some theory such as nonlinearmysbatrol has been running far
ahead of engineering practice.

1.3.2 Some Topics in control

Obviously, the stability of a general dynamical systemgagis main problem of the control theory
research. The study of a general dynamical system desasiltledlyapunov stability criteria is just
in theory. The overwhelming majority of obtained controlb@sed on this study have never be used
in practice. The bounded-input bounded-output (BIBO)lstédr a linear system means that output
will stay bounded for any bounded input. This theory has Widgiided the controller design in
real world. Therefore, stability for nonlinear systemst tt@mbines a notion similar to Lyapunov
stability and BIBO stability have attracted much interest.

From the development of control, the linear control theasthkas a branch of Engineering and
as modern Applied Mathematics has been successfully estadl Still, the vast majority of real
systems is nonlinear. Although the nonlinear propertiesevekealt with by essentially patching



together linear regimes, or linearize such classes of mystnd applying linear techniques, in
many cases it can be achieve the accuracy requirement ahaeankystem control. Some nonlinear
control which directly use the NNM to design controller caver convenient usefulness for user.

In the real world, a lot of systems are MIMO with complicatesupling. Due to the diffi-
culty of decoupling problem, most of the control technigdeseloped for SISO systems cannot
be extended directly for MIMO systems by transiting muétiplriable into several single-variable.
Then, multivariable decoupling control is also the topippar research direction.

1.3.3 Adaptive Control

In the early 1950, it was found that ordinary constant-ghiear feedback control could not work
well in changed conditions. Therefore, adaptive contradesr for the requirement in connection
with the design of autopilots for high performance aircfdfi]. Adaptive control is one control
which involves modifying the control law to deal with the dethat the systems are slowly time-
varying, disturbance or uncertain. In the 1960s, there weaay contributions to control theory
which were important for the development of adaptive cdngnach as state space, stability theory,
stochastic control theory and dynamic programming. Systlemtification and parameter estima-
tion have also major developed. The stability of adaptivetesys were correctly proved in the late
1970s and early 1980s, and it is possible to implement agapgulators simply and cheaply based
on the rapid and revolutionary progress in microelectranidll now, a mass of development of the
field is taking place, both on universities and industry [48, 48, 13, 49, 50]. Adaptive control
loops are widely used in aerospace, process control, séepist), robotics and other industrial con-
trol systems. Therefore, it is no longer just an importabtietical subject of study, but is also
providing solutions to real-world problems.

Types of adaptive control strategies mainly conclude Gahe8uling Regulators (GSRs), Self-
Tuning Regulators (STRs) and Model Reference Adaptive ©tets (MRAC, also know as an
MRAS or Model Reference Adaptive System). GSR is a parametirset of linear controllers
which is one of the simplest and most intuitive forms of adaptontrol. In operation the parameters
are measured and the controller in action is scheduled @iocpto the parameters.

STRs Control

The basic idea of STRs: it is assumed that the regulator pesmare adjusted all the time, in an
adaptive system which is shown in Fig.145.(¢) is the desired output. The main parameters esti-
mation methods of STRs are gradient methods and least saquedihed and control design methods
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Figure 1.5: The self-tuning regulator principle.

are PID, pole-placement, LQG, predictive control, and solowas first given by Kalman in 1958.
Until 1973, Astrom and Wittenmark first proposed STRs in 1973 [51]. Bef®975, STRs con-
troller are based minimum variance theory. The generalgsfituning controller was developed
by Clarke and Gawthrop [52] which resolved the main weakmmésSTRs. The pole-assignment
STR algorithm based on the sub-optimal design was givenhwikibetter than above STRs except
optimization by Edrounds in 1978. However, there are sorablpm when the systems have nonlin-
earity and serious uncertainty. Since 1980s, developedhheetworks has shown potential ability
to control the systems which are highly nonlinearity andoser uncertainty. Then, the research of
STRs control based neural network has attracted much iattelpécause of its approximate arbi-
trary, learning uncertain, highly robustness and parplietessing, and so on.

MRAC

It is one important category of feedback adaptive controhasg.1.6. The general idea of MRAC
is to create a closed loop controller with parameters wharhlme updated to change the response
of the system. Local parameter optimization method is thim idaa to design the controllers from
1958-1966, which would lead to unstably. Therefore, Lyagwstability theory was introduced in
MRAC to resolve the stability problem by Butchart, Shachtldark and Phillipson, from 1966
to 1972. But it is need that differentiation signals of alites or output. Augmented error signal
method and Popov super stability theory have been used askdoon input signal. However, it is
difficult to that above methods need to direct get all systtes. There two methods to use for the
problem: direct method and indirect method. Since 1980rat@etwork model was introduced to
MRAC.

There are many directions which adaptive control links \&ihn Fig 1.7. As we know, adaptive
control are strong ties to nonlinear systems theory.

Adaptive controller offers certain advantages over cotivaal controller, When the systems
to be controlled contain unknown parameters. Adaptiverobtiieory has been developed into a
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Figure 1.7: The directions link with adaptive control.

considerable mature stage based on linear models [2, 53}e¥w, it is difficult to control in the
case of black-box type nonlinear systems. The difficultyha & linear black-box model can not
obtain enough accuracy, while a suitable nonlinear modegng difficult to find.

Hu et al(1999) [30] proposes an adaptive predictor for generalineal systems based on the
use of a class of NF models. The NF-based predictor can beptiated as a linear predictor net-
work consisting of a global linear predictor and severahldimear predictors with interpolation. It
has two distinctive features as well as good predictionitgbits parameters have explicit meaning
useful for initial value setting in parameter adjustmentmay be transformed into a form linear for
the variables synthesized in control system, which makesidg a control law straightforward. Hu
et al.(2004) [54] discusses quasi-ARX black-box model far ¢ontrol of nonlinear systems. Con-
trast to a conventional method, the new method does not usdifgbtly as a nonlinear controller
or nonlinear prediction model, but use it indirectly via aRX-like macro-model. The ARX-like
model incorporating NN is constructed in such a way that & &ianilar linear properties to linear
ARX model. The nonlinear controller is then designed in ailsinway as designing a controller
based on a linear ARX model which is shown in Fig.1.8.
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Figure 1.8: Controller based on the hybrid quasi-ARX black-model.

1.4 Challenges

Stability and accuracy of control system are two importaiafems which have been resolved

based on one model. When quasi-ARX black box models are usetbhlinear system control,

several challenge must be faced:

Stability Problem
Stability problem must to be resolve if the control systenminta be used in real world.

Accuracy Problem
The controller should have better accuracy in the stableniges

Complicated plants
In fact, the controlled systems is more complicated suctasundedness, Multi-Input and
Multi-Output (MIMO).

Adaptive Control
The off-line control can not do well in the changing condiso The proposed control law is
needed that adapts itself to such changing conditions.

Identification problem
Identification problems include the choosing of model striresand parameter estimation. It
is necessary step before controlling.
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1.5 Goals of the Thesis

For complicated dynamical, the linear model cannot attapeetable control results and the classi-
cal nonlinear model cannot be stability. The challenget®tasks will require novel modifications
of existing control models and methods. In this thesis, thproved adaptive stability controller
based on quasi-linear black-box model are developed aniieddpr nonlinear systems control.
More precisely, quasi-linear black-box model have lineat for stability of control and nonlinear
part for control performance. In order to combine both tlabidity and universal approximation
capability in our controller, a switching mechanism isaalnced. The parameters of nonlinear part
can be determined by prior knowledge. The identification process is also improved.

The work presented here aims to assess the performances mfofosed control system. The
thesis also shows how the proposed control method handefdhementioned challenges.

1.6 Thesis Outlines and Main Contributions

This thesis presents our work that has been done over ththiastyears. It consists of six chap-
ters. Chapter 1 gives a background and an outline for theemi@sis. Chapter 2 introduces an
improved quasi-ARX NN model and discusses its applicatioadaptive switching control of non-
linear systems. Chapter 3 obtains a stabilizing fuzzy $witg controller for nonlinear system based
on a quasi-ARX RBFN model, a fuzzy switching function and-difference operator. Chapter 4
proposes a MIMO quasi-ARX model, and a multivariable detiagpPID controller for MIMO
nonlinear systems based on the proposed model. Chapterr&viegpthe quasi-ARX model based
NPCA network which resolve the dimension problem in idecdifion process. Finally, Chapter 6
gives a summary for the whole thesis. The flow of this thesiieicted in Figure 1.9.

This thesis summarizes the research on quasi-linear lblaxknodels, especially corresponding
controllers, their applications to adaptive control pesbt and their stability problem.

Chapter 2 introduces an improved quasi-ARX NN and discusses its eqipdin to adaptive control
of nonlinear systems. A switching mechanism is employedfarove the performance of the
controller based on the quasi-ARX NN prediction model whiek linear and nonlinear parts.
An adaptive controller for a nonlinear system is estabtish&sed on the proposed prediction
model and the switching law, and some stability analysis©iefdontrol system is shown.

The proposed adaptive control system is distinctive toratbatrol systems in the following
issues:
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Figure 1.9: Flow diagram of this thesis.

» The proposed controller is linear for the variables sysittedl in control systems
» The parameters of the proposed controller have explicinimgs

» The proposed control system is only one prediction modétkvbombines a switching
algorithm.

Chapter 3 explores a fuzzy switching adaptive control approach forlinear systems. The pro-

posed fuzzy switching adaptive control law is composed ofi@asgARX RBFN prediction
model and a fuzzy switching mechanism. The quasi-ARX RBF&djgtion model consists
of two parts: the linear part used for a linear controller $suae boundedness of the input
and output signals, and the RBFN nonlinear part used to iveptiwe control accuracy. By
using the fuzzy switching scheme between the linear andmeanl controllers to replace the
0/1 switching, it can realize a better balance betweenldgiabnd accuracy. Theory analy-
sis and simulation results show the effectiveness of thpqa®d control method on stability,
accuracy and robustness.

The contributions related to this fuzzy switching adapteatrol are that:



13

* The proposed control system is linear for the variablerssized (), including in the
regression vectorg(t) and ¥ (¢);

» The three predictors are obtained directly from only orentfied quasi-ARX RBFN
model, and all are linear for the control variahlé) to be synthesized in the control
system;

» The nonlinear control system could have quick responseesimly linear parameters
are adjusted on-line.

* The control system employs a fuzzy switching mechanisneats of a simple 0/1
switching.

» The control method of the previous control based the ga& model is off-line and
doesn't give the stability analysis. The proposed contystesm is on-line and stability
which is ensured by a fuzzy witching mechanism.

Chapter 4 introduces a MIMO gquasi-ARX model and a multivariable degadowg PID controller
for MIMO nonlinear systems based on the proposed model. Tdmoged MIMO quasi-ARX
model improves the performance of ordinary quasi-ARX modehe proposed controller
consists of a traditional PID controller with a decouplingrgpensator and a feed-forward
compensator for the nonlinear dynamics from the MIMO queRX model. Then an adap-
tive control algorithm is presented using the MIMO quasi>ARBFN prediction model and
some stability analysis of control system is shown.

The main contributions related to the MIMO quasi-ARX modedidhe nonlinear multivari-
able decoupling PID controller are that:

» The proposed method improve the quasi-ARX model to modekitstems from SISO
to MIMO which is more complex.

» The proposed method uses RBFNSs as nonlinear models wtedmear in parameters
through fixing the nonlinear parameters &yriori knowledge. Incorporating the net-
work models with this property, the quasi-ARX models becdimear-in-parameters.

» The proposed adaptive control algorithm is a decouplimgrobalgorithms which deals
with coupling in nonlinear system based on linear methodsramlinear networks.

» The proposed adaptive control algorithm based on the MIM@gARX RBFN pre-
diction model is stability which is proved in this chapter.
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Chapter 5 introduces a Nonlinear Principal Component Analysis (NP@Aimprove the iden-
tification of the quasi-ARX Neuro-fuzzy Networks (NFN) maddeOne part of the quasi-
ARX model is the ordinary NFN to parameterize the coeffidemhich faces to a problem
of high dimension. Because the controller shares the pdaeaswith the quasi-ARX predic-
tion model, then the complexity will lead to the huger partarefor controller designing.
NPCA is used for this part to deal with this problem. The psses of modeling, parameter
estimating and control are given in detalil.

The main contributions related to this model are shown devist
» However, variables and the order of the model increases;dmplexity of as the num-

ber of input-output designing the NFN also increases. Adisal Components Analysis
(PCA) is introduced to reduce the dimension of the NFN.

* In fact, the input variables do not only depend on each dihearly. When nonlin-
ear correlations between variables exist, a NPCA will dbscthe data with greater
accuracy than PCA.

Chapter 6 concludes this work, summarizes the thesis and gives stugges$or further research.



Chapter 2

Adaptive Switching Control of
Nonlinear Systems Based on Quasi-ARX
Neural Network

2.1 Introduction

Adaptive control of complex nonlinear dynamical systems &i@racted much attention and devel-
oped significantly during the last few decades. Many adapmidntrol methods have been proposed,
and the corresponding stability and convergence have begag[55, 56, 57, 10, 58, 59, 60, 61, 62,
63]. Neural networks have been used to identify and conwolinear dynamical systems because
of its ability to approximate arbitrary mapping to any dediaccuracy [64, 65, 66, 67, 54, 22]. One
of the successful examples is that neural networks are usstdlyg to identify and control nonlinear
systems [55, 66, 56, 48, 68].

However, from a user’s point of view, there are three majdicgms on those neural network
models. One is that their parameters do not have usefupiti@tions. The second is that they do
not have a friendly interface for controller design and eystnalysis [24, 54, 69, 70]. The third
one is that the result is local, i.e., the initial weights afeural network have to be “close enough”
to the true ones in order for the stability result to hold [71]

To solve these problems, a quasi-ARX neural network modgeblean proposed which embod-
ied a macro-model part and a kernel part [54, 72]. The maadaipart is a user-friendly interface
constructed using priori knowledge [73] and the characteristic of network structimethis chap-
ter, we will limit our discussion to a quasi-ARX approach. eTllimear ARX model has a various
useful linearity properties which will solve the former tywmblems. The kernel part is an ordinary
neural network, which is used to parameterize the coefticiehmacro-model and is different from

15
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a nonlinear ARX model based directly on neural networks.aBee of the nonlinear characteristics,
the quasi-ARX neural network can be used to identify androbnbnlinear systems accurately. In
our previous research, an off-line control scheme is givahthe effectiveness of the quasi-ARX
neural network is shown [54]. In the control system, the jmteah model and controller share
the same parameters as in linear cases. However, an adegitreller has not been proposed for
nonlinear systems control with the quasi-ARX model. Whatre, the stability analysis is also
lacked.

As we know, one of the successful approaches to solve thiitst@ooblem of neural network
based control system is to use multiple models adaptiveckadt control [74, 75, 71, 60, 76, 77].
Therefore, those prediction and control systems have niame dne model which adds the com-
plexity of the control problem.

Motivated by the above discussion, an adaptive control $aqevaoposed for nonlinear dynamical
systems based on the characteristic of quasi-ARX neuralanktstructure, and then the control
system stability is proved. In this chapter, quasi-ARX méuretwork is divided into two parts:
the linear part is used to ensure the nonlinear controllgial@ind the nonlinear part is utilized to
improve the control accuracy. In order to combine both thbikty and universal approximation
capability in our controller, a switching law is establidhigased on system input-output variables
and prediction errors.

This chapter is organized as follows: In Section 2.2, thesiwmred system is given. In Section
2.3, an improved quasi-ARX prediction model is introducedda on neural network and switch-
ing mechanism, then the parameters identification methedgiven. Section 2.4 describes adaptive
control using the improved quasi-ARX prediction model andlgzes the stability under the switch-
ing criterion function. Then, numerical simulations areriesl out to show the effectiveness of the
proposed model in Section 2.5. At last Section 2.6 gives smmmelusions.

2.2 Problem Description

Consider a single-input-single-output (SISO) nonlinéaretinvariant system whose input-output
relation described by:

y(t) = gle(t) + (@), (2.2.1)
o) = [ylt—1),..y(t —n),u(t—d),...,
u(t —m —d+1)]7
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wherey(t) denotes the output at timdt = 1,2, ...), u(¢) the input,d the known integer time delay,
©(t) the regression vector, amd m the system orderg(-) is a smooth nonlinear function amd)
the system disturbance.

Now the following assumptions will be used:

Assumption 1: (i) g(-) is a continuous function, and at a small region arouiit) = 0, it is
C*° continuous;

(i) there is a reasonable unknown controller which may hEressed by:(t) = ﬁ(é(t)), where
) =[y@t) ..yt —n) u(t —1) ... u(t —m) y*(t+1) ... y*(t + 1 —1)]T (y*(t) denotes reference
output);

(iii) the system has a globally uniformly asymptoticallpalste zero dynamics.

2.3 Quasi-ARX Neural Network
2.3.1 Regression Form Representation

A general nonlinear system described by (2.2.1) can besepted in a regression which has been
shown in Ref.[24, 67].

UnderAssumption 1(i), the unknown nonlinear functiog(,(¢)) can be performed Taylor ex-
pansion in (2.2.1) on a small region aroup@) = 0:

y(t) = 9(0) + ¢ O (1) + 567 (O O)p(t) + - +0(0) (23.1)

where the prime denotes differentiation with respecp ), then introducing the notations:

vo = g(0)
T
0(p(t) = (g’(O) + %¢T(t)g”(o) 1. )

== [al,t an,t bO,t bm_Lt]T

where the coefficients; ; = a;(¢(t)) (i = 1,..,n) andb;; = b;j(¢(t)) (j = 0,...,m — 1) are
nonlinear functions op(¢). A regression form of the system (2.2.1) is described by.22.3

y(t) = yo + ¢ (1)(p(t)) +v(t). (2.3.2)

However,y(t) needs to be predicted using the input-output data availgble timet — d in a
prediction model. Considering this, we hope that the cdefiisa; ; andb;; are calculable using
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the input-output data up to time— d. For this reason, replace iterativejyt — 1), [ =1,...,d — 1
in the expressions af; ; andb; ; with their predictions:

yt—0)=g@t—10),1=1,..,d—1 (2.3.3)

whereg(-) is a predictor(t — 1) whose elementg(t — k), [ +1 < k < d — 1 are replaced by
their predictions, and define the new expressions of thdicizefts by:

Qi = ip = a;(p(t —d)), biy = by = bi(p(t —d))
whereg(t — d) = q~%(t) andé(t) is a vector:
o) = [y(t) ...yt —n+ D) u(t) ...ult —m —d +2)]". (2.3.4)

And ¢! is a backward shift operator, e g u(t) = u(t — 1).
Now, two polynomialsA(q¢—1, ¢(t)) and B(¢~!, ¢(¢)) based on the coefficients , andb; ; is
defined by:

Alghot) = 1- Cll,th_1 — o= anq "
B(q_17 o) = bor+...+ bm—l,th_mJrl

A similar-linear ARX model is developed:
Alg' o®)y(t) = yo + Blg™" ¢(0)q "ult — 1) + v(t). (2.3.5)
For a system described by (2.3.5), a representation is givém Ref.[54]:
y(t+d) =y +alg™, o(t)y(t) + Bla™", o(t))ult) (2.3.6)

where

vo="F(q~",6(1))vo,
Oé(q_17 ¢(t)) = G(q_l, ¢(t))) = oot + al,tq_l + ...+ an—l,tq_n+l;
Bl () = F(q™", o) B(q™", d(t) = Bost Braqd t + oo + Brnsdoosq ™2,

andG(q 1, ¢(t)), F(q~!, ¢(t)) are unique polynomials satisfying:

F(g o)) A(g ", o(t) =1—G(g™ ", é(t)g ™" (2.3.7)



19

As we know, the linear ARX model is linear in the input varibl(¢), then an controller can
be obtained easily and shares parameters from the modele\¢ovthe model (2.3.6) is a general
one that is nonlinear in the variabigt), because the coefficiengg, o, andg;; are functions of
¢(t) whose elements contairn(t), wherei = 0,...,n — 1 andj = 0,...,m + d — 2. To solve this
problem, arextra variablez(t) is introduced and replace the variablg) in ¢(¢) with an unknown
nonlinear functiorp({(t)) where

) = [yt) .yt—mi+ 1D zt+d) ..zt —ng+d+1)ut—1) ... ult —ny)]"

including the extra variable(t + d) as an element. Undétssumption (i), the functionp(&(t))
is existent. Then we have a model expressed by:

y(t+d) = ye + g E())y(t) + Bla™ E())ult) (2.3.8)

wherey; is y4 whose variable(t) is replaced by(-).

As we know, the system model can be considered to have twe. [fane part is linear on input
and output variables and the model parameters is indepenflé(x). The other part is nonlinear
on input and output variables which coefficients depend(on Define the new expressions of the
coefficients by:

Qi = Qi = a0+ a;(£(1)),
Bie = Bjx = Bip + Bi(£(t)).
Moreover, we typically lets; = n, no = m+d — 2, nz = 1, which gets

) =[y@) ...yt —n+ 1)zt +d)ult —1) ... ult —d+2)].7

As we know, in a control system, the extra variableg + d) can be replaced with the reference
signaly*(¢ + d). Introducing the following marks:

U(t) = [Ly(t)..y(t —n+ 1) u(t)..ut —m —d+2)]T;

Of = [Ye A0t - ny—14 Bost - Brurd—2]’ s
we get the improved ARX-like macro-model expression by:
y(t +d) = VT (1)O. (2.3.9)

The coefficientsy; ; (i = 0,...,n — 1) andg;; ( = 0,...,m + d — 2) can be considered as a
summation of two parts: the constant paftandg., and the nonlinear function part dn(t) which
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are denotedy; , — o} andg;, — 3. Then, the expression of system in the predictor form (32
be described by:

y(t+d) = V(o + 9" (t)eg, (2.3.10)

wheref = [af ... ok, B .. Bl 4 0] ad O} = (a0t — af) - (n-14 — o) (Bos —
BE) o Bmtda—24 — Blrig_o)]- s(-) = \I'T(t)(%’g

The following assumptions for the system are used as in [Réfs(1, 76]:

Assumption 2(i) The linear part parameteédie in a compact regiox; (ii) The nonlinear term
¢(-) is globally bounded, i.€|| <(-) ||< D and the bound is known.

2.3.2 Quasi-ARX Neural Network

The elements 0B, are unknown nonlinear function gft), which can be parameterized by neural-
fuzzy networks and neural networks as in Refs.[24, 72]. im¢hapter, a neural network is chosen
which can deal with higher dimensional problems.

The quasi-ARX neural network model is expressed by thevallg equation after parameter-
izing ©¢ with an MIMO neural network:

y(t+d) = W) TN (E(t),Q)) (2.3.11)

whereN/ (-, -, -) is a generalized 3-layer neural network witinput nodes)/ sigmoid hidden nodes
andn + 1 linear output nodes The 3-layer neural network can be expressed by:

N(E®),Q) =0+ W T(W(t) + B) (2.3.12)

whereQ) = {W', W2, B, 6} is the parameters set of the neural netwdik! ¢ RM>*N W2 ¢
RIN+1D*M zre the weight matrices of the first and second layBrs, R *1 is the bias vector of

hidden nodesy € R+ *1 is the bias vector of output nodes, ahfl) is the diagonal nonlinear

1—
1+

of neural network which has been defined in the above section.

operator with identical sigmoid elementgfor exampleo(x) =

¢ ). £(t) is the input variables

Then we can express the quasi-ARX neural network predictiodel (2.3.9) in a form of:

y(t+d) = 0T ()0 + T () - WD (WE(t) + B). (2.3.13)

The number of input node & = dim(&(t)) = n + m, the number of output node is equakton (¥ (¢)) = N + 1
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2.3.3 Model Parameter Identification

From (2.3.13) we can see that the model parameters can lbedivito two classes: the linear part
6 and the nonlinear paft’*, W2, B. Different identification algorithms are used to estimate t
parts.

The linear part parametéris updated as:

o a(t)U(t — d)ei(t)
O) =00 —d) + g5 d)T\P(lt —d)

(2.3.14)

whered(t) is the estimate of at time instant. And

. 1 if \el(t)\ > 2D
alt) _{ 0 otherwise (2:3.15)

wheree; (¢) is the linear part error and is defined as follows:
er(t) = y(t+d) — W(&)T(t). (2.3.16)

The nonlinear part parameters are adjusted by BP algoriffire.adjusted error of this part is
defined by:

ea(t) = ylt+d)—v)T0@) — T (OWAHOT(WH@)ER) + B(t)) (2.3.17)

where©(t) £ {W(t), W2(t), B(t)} are the estimates 6", W2 and B at time instant t, respec-
tively.

Similar to Ref.[71], no restriction is made on how the parameé(t) are updated except they
always lie inside some pre-defined compact regdion

O(t) e hV t. (2.3.18)

2.3.4 Switching Criterion Function

Define the switching criterion function as follows:

S aiD)(] i) | —4D?)

B I
Ji(t)_; 21+ a; ()% (I — k)TU(I - k))

t

tex Y (L—a() | e@) ), i=1,2 (2.3.19)
I=t—N+1
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|

I “Cortroller |
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PR e R '
— Controller - I
y* u(t)=u(a(q.§0). g, £0), x(1) :_ -

Figure 2.1:A switching control to nonlinear system based on quasi-ARMral network.

whereN is an integer¢ > 0 is a predefined constant, and

a(t) _{ 0 otherwise (2.3.20)

Now, give the expression of switching layy based on the switching criterion function:

_ Lt Ji(t) > J2(2)
Xt_{ 0 otherwise. (2.3.21)

By comparingJ; () and.Jz(t), decides when the nonlinear part is abandoned; (f) > J»(t) the
nonlinear part is added, else only use linear part to identif

2.4 Controller Design and Its Stability

2.4.1 Controller Design

To control a given system, the controller design includes steps: the first step for identifying
the improved quasi-ARX prediction model; and the second &e deriving and implementing
control law. We can obtained the identified improved quaRiXAprediction model from above

parts, expressed by:
gt +d) = W ()OE(1), xe) (2.4.1)

where©(£(t), xt) = [l Qo - Gny—1,6.x Bogx - Brutd—2,6]"» Will be used for controller de-
sign. d ¢, = &4+, xea™g, @,g,x = B4+, Xtﬁ"i,g and[a™; ¢, B"i,g] = W (W(t) + B).
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/ .
* Switchi
/ Linear model ([ + 1) Wllai)vmg l
v, (t+1)=a'(q")y®) + B (qHu(t)
/ v(t) e (zl
C >
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© »| Nonlinear black-box system -
u, (1) Controller Controller parameters
u(a' g8 q") [ yx(+1)

Controller parameters
M2 (t) Controller P

(g™, E0), Blq”,E0))) |

Figure 2.2: A switching control to nonlinear system between a quasi-AfXiral network and a linear
model.

Consider a minimum variance control with the criterion fiimic as follows:

M(t+1) = %(y(t +d) —y*(t+d)* + %u(t)z (2.4.2)
where) is weighting factor for the control input.
The controller can be obtained by solving:
OM(t+1)
ou(t)
In the case where a conventional neural network is used asdicpon model, a controller can

=0 (2.4.3)

not be derived directly from an identified model because efrtbnlinearities. However, the im-
proved quasi-ARX neural network model is linear in the ingariablew(¢). Therefore, a controller
is derived from the proposed model:

_ BO@X 5 Ar,—1 .
u(t) = Bt )\((ﬁo,t Blg™, &), xe)Qu(t — 1)

Yyt 4 1) — (g™ E®), x )y () — Ten)- (2.4.4)
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where the controller parameteis, , andg; ¢, come from the predictor and the switching law.
Figure 2.1 shows the adaptive switching controller basetherimproved neural network pre-
diction model for unknown nonlinear systems and Fig.2.2gia switching control to nonlinear
system between linear model and quasi-ARX model. We canlsselttie identified model and
controller share their parametetst, £(¢), x¢) and B(t,g(t),Xt). The switching lawy; firstly is
calculated from input and output signals and model errbes) ts used in the controller.
The proposed controller has three distinctive features:

(1) itis linear for the variables synthesized in controlteyss;
(2) its parameters have explicit meanings;
(3) itis only one controller which combines a switching afgom.

Give the stability analysis of the proposed nonlinear cargystem as follows:

Theorem: For the system (2.2.1) with adaptive controller (2.4.4)thed input and output signals
in the closed-loop system are bounded. Moreover, the tgakiror of the system can converge on
zero when a properly neural network is determined.

Proof: Firstly, the model erroe(t) is defined by:

~

e(t)=y(t +d) — T(6)T(t) — x, @7 (t) - W (OT (W' (1)(t) + B(2))
=y*(t+d) —y(t+d) (2.4.5)

Then subtracting, from both sides of (2.3.14), and gives:

a(t)U(t —d)(T(t —d)TO(t — d) — w(t))

O(t)=0(t —d) — TG AT d) (2.4.6)
whered(t) = 0(t) — 0y andw(t) = y(t + d) — U()T0(¢).
Consider the following functional:
V() =0@)|>. (2.4.7)

Then, noting that(¢) = 0 or 1, and combined with (2.3.15) and (2.3.16), we can get as in [REf

~ 2a(t)(ei(t) —wt)ei(t) | a®)(t = )TVt - d)es(t)?
1+ 9t —d)TV(t—d) 1+ 9t —d)TU(t—d))?

a(t)(2e1(t)w(t)) a(t)er ()2
14+ 9t —d)TU(t—d) 14+ U(t—d)TU(t— d) (2.4.8)

V)=V (t—d)

<V(t—d)+




25

From2ab < ka? + b?/k, Yk, the following inequality holds:

a(t)(e}(t)/2 + 202 (1)) a(t)er (t)*
Visvit—d+ 1+\I/(1t—d)T\I'(t—d) N 1+\I’(t—d1)T‘I’(t—d)
2a(t)D? L at)e(t)?

<V(t—d)+ (2.4.9)

1+t —d)TU(t—d) 214+9(t—d)TU(t—d)

In view of Eq.(2.4.9){V (¢)} is a nonincreasing sequence bounded below by zero. Moreover

N
| a(t)(e(1)? — 4D?)
]\}E}(l)otz_; 2(1 + \I’(t — d)T\I’(t _ d)) < 00, (2.4.10)

and

lim a(t)(ey(t)? —4D?)

Nos 20+ Ut —d)TU(t—d)) 0. (2.4.11)

From the definition (2.3.16) af; (¢) and (2.4.1), we have:

e1(t)=Ay(t) — 7 (t — d)i(t — d) = y(t) — y(t —d) + y(t — d) — y"(t)
=y(t) — y*(t). (2.4.12)

Along with (2.4.12) and (iii) inAssumptions 1, there exist positive; andc, as in [76] such that:
| o(t = d+1) < e1+e2 max, || ex(7) | (24.13)

It can be seen that the boundednesg;@t) determines the boundedness of the input and output
signals. Now it is assumed thet(¢) is unbounded. Then through (2.3.20), ther&'is- 0, when

t > T, |lex(t)|| > 2D anda,(t) = 1, and the numerator in Eq.(2.4.11) is a positive scalar se-
quence. Therefore, there is a monotony increasing sequencs,)|| such thatim;_, . |le1(t,)]|

as in Ref.[76]. Since

alta)(ex(tn)* —4D?) alty)(e1(tn)? — 4D?)
20+ W(ty — )T U(ty, —d)) ~ 21+ ([lo(tn — d+ )| + [[o(tn — 2d + 2)[])?)
alty)(e1(tn)? — 4D?) alty)(e1(tn)? — 4D2)

> =

2(1 4 (2e1 + 2c2 maxg<r<t,, || e1(7) [1)2)  2(1 4 (2e1 + 2¢2 || ex(tn) [1)?)’
then,

a(ty)(e1(ty)? — 4D?) 1
A AT Uty — T O, — ) — 82 (2:4.14)

But it contradicts (2.4.11). Hence, the assumption is fafs#e; (¢) is bounded.
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By the definition (2.3.17) oé2 (), (2.4.1) and (iii) inAssumptions 1 there exist positive con-
stantsdy, ds as in Ref.[76]:

I plt —d+ 1) 1< di +dy max | ex(r) | (2.4.15)

Along with (iii) of Assumptions 1 similar to Ref.[71]];(¢) is always bounded by (2.3.19) and
(2.4.10).J2(t) has two cases:

(i) Normal Case.J(t) keeps to be small.

By the switching function (2.3.19)imy .« 2(‘;1%2:3%3?;‘553)) — 0 holds on. With (2.4.15)

and similar to the boundedness proofeft), the errores(t) is bounded. Since(t) = (1 —
xe)e1(t) + xeea(t), thereforeg(t) is bounded.

(i) Abnormal Case./,(t) becomes large gradually due to the overfitting of the quagkAIN
predictor.

SinceJ;(t) is bounded. So there exists a constgrguch thaty; = 0, V¢ > to. The model also
has bounded errax(t).

By (2.4.5) and (iii) inAssumptions ], there also exist positive constarjts f> as in Ref.[76]:

ot —d+1) [l fi + fo max [l e(7) | (2.4.16)

<7<t

From above inequalities and the boundedness(©f the input and output of the closed-loop
switching control system are bounded.

Then through the switching function (2.3.19) and switcHang (2.3.21), it can be obtained that
the system chooses the controller corresponding to thdesnmabdel error as the control input of
the system. Therefore, from the definitionsepft) andes (), the tracking error of the system is
equivalent to the smaller model error.

The linear control system is always bounded. If a properineat model is chosen and the
accurate parameters is adjusted, the nonlinear contarlef(t) can converge on zero. It also exists
a constanf which satisfies(; = 1, Vt > T. Then the tracking error of systelim; . ||e(?)]| (=
lim; .~ ||e2(t)||) can converge on zero.
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2.5 Control Simulations
Example 1

Now consider a nonlinear SISO system:

_exp(—12(t—2))xy(t—1) | (05 (uP(t —2) +42(t - 3))) xy(t — 2)

y(t)

L u(t—3) +y2(t—2) T+u?(t—2) +y2(t—1)
sin(u(t — 1)« y(t —3)) xy(t —3)  sin(u(t — 1) *y(t —2)) xy(t — 4)
T+u2(t—1) +y2(t —3) T+u?(t —2) +y2(t—2)
Case 1

The desired output in this example is a piecewise function.

0.6y*(t—1)+r(t—1)
) t € [1,100] U [151, 200]
Y (1) =\ 0.7sign(0.4493y* (¢ — 1) + 0.57r(t — 1))
t € [101, 150]

(2.5.2)

wherer(t) = 1.2 % sin(27t/25).

In this case, we will chose the switching control system leetwa linear model and a quasi-ARX
model as show in Fig2.2. At the quasi-ARX model part, a neneavork with one hidden layer and
20 hidden nodes as in Ref.[54] is used and other paramet&fysa = 4,n = 3,c = 1 andN = 2.
The quasi-ARX model can be trained off-line by the hierarahiraining algorithm as in Ref.[54].
This model is used on-line as an identifier which nonlineat jgaadjusted by BP algorithm and
linear part by above section mentioned algorithm. The ARXlelpart,m = 4,n = 3. This model
is adopted on-line as an identifier by above section merdiatgorithm.

Figure 2.3 gives the results of Example 1. In Fig.2.3(a), dbtline is the desired output,
the solid line denotes the proposed method control oujpit) and dashed line shows the linear
control outputyy(t). The Fig.2.3(b) gives the control input where solid and dddines denote the
proposed method control and linear control input, respelgti The errors are shown in Fig.2.3(c).
The switching sequence is presented which 1 is nonlineaehard O is linear model in Fig.2.3(d).

Case 2

The desired output in this example is a piecewise function:

() = {0.4493y* (t—1)+0.57r(t —1) t € [1,100] U [151,200] (2.5.3)

0.7sign(0.4493y* (t — 1) + 0.57r(t — 1)) t € [101,150]
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Figure 2.3:Switching control results of Example 1.
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Figure 2.4:Control Results for Example 1.
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wherer(t) = 1.2 x sin(27t/25).

To identify the system, we use the following quasi-ARX néumetwork model:
yi(t+d) = 9T ()0 + 07 (1) - W T (WE(t) + B). (2.5.4)

In the nonlinear part, a neural network with one hidden legmd 20 hidden nodes is used
and other parameters satisfy = 4,n = 3,d = 1. The improved quasi-ARX model can be
firstly trained off-line by the hierarchical training algivm as in Ref.[54]. Figure 2.4 shows the
performance when the adaptive controller (2.4.4) is uselte Jarameters of switching criterion
function are chosen to he= 1.2 and N = 3.

In Fig.2.4(a), the dot line is the desired output, the sdli@ ldenotes the proposed method
control outputy, (t) and dashed line shows the linear control outgi{t). Obviously, the control
output with the proposed method is nearly consistent wighdbsired output at most of the time.
The mean of linear control errors is -0.0364 and the varia0e2930. The mean of the proposed
method control errors is 0.0035 and the variance is 0.003®réefore, our method is better than
linear control. The Fig.2.4(b) gives the control input weolid line and dashed line denotes
the proposed method control input(t) and linear control inputiy(t), respectively. We can see
that the input signals have small fluctuation. The errorssamvn in Fig.2.4(c). The switching
sequence is presented which 1 is model with nonlinear pdrfasmmodel without nonlinear part in
Fig.2.4(d)). From the Fig.2.4(d), even though the modehwibnlinear part can often control very
well, it degrades sometimes and the model only with linear lpas to work until the nonlinear part
can recover. Therefore, the linear part will work all thedinbut the neural network part will work
under the switching sequence.

Example 2
The system is a nonlinear one governed by

y(t):f[y(t - 1)7 y(t - 2)7 y(t - 3)7 u(t - 1)7 ’LL(t - 2)] (255)
where

x1292325(xr3 — 1) + 24
1+ 23 + 3 '

f[$1,$2,$3,$4,$5] =
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Case 1

e(t) € N(0,0.001) is a white noise. The desired output in this example is a pisgefunction.

0.6y*(t—1)+r(t—1)
) = t € [1,100] U [151, 200]
0.7sign(0.4493y* (t — 1) + 0.57r(t — 1))
t € [101,150]

(2.5.6)

wherer(t) = 1.2 xsin(27t/25). The algorithm is similar with Example 1 whose parametersfyat
m=3,n=2¢=15andN = 3. and results is shown in Fig.2.5.

Case 2

The desired output in this example is a piecewise function.

‘(1) = {O.Gy*(t -1 +rt—1) t € [1,100] U [151, 200] (2.5.7)

0.7sign(0.4493y* (t — 1) + 0.57r(t — 1)) t € [101,150]
wherer(t) = sin(27t/25).

In the nonlinear part, a neural network with one hidden larat 20 hidden nodes is used and
other parameters satisfy = 3,n = 2,d = 1. Figure 2.6 shows the performance when the adaptive
controller (2.4.4) is used. The parameters of switchingeddn function are chosen to lee= 1.5
andN = 3.

Figure 2.6 gives the results of Example 2 whose marks are satheExample 1. From the
Fig.2.6(a), the linear control output signals have largaplitude and far away from the desired
output. However, the proposed control output is almostadence with the desired output. The
similar conclusion also can be get from errors. The meame#li control errors is -0.1011 and the
variance is 0.0687. The mean of the proposed method coatf®ld090 and the variance is 0.0031.
The Fig.2.6(d) shows that the switching mechanism is efficie

2.6 Conclusion

In this chapter, a new framework for the nonlinear systenptga control is established based on
an improved quasi-ARX neural network which a switching ailfpon is introduced. Different from
some relative work which established more than two premhatnodels and made switching among
so many corresponding controllers as in Ref. [71, 76], tlppsed method is simpler and control-
easier because of the compact and efficient structure afid@ystem. Simulations have been given
to show the effectiveness of the proposed method both onlitstamd accuracy.
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Chapter 3

Adaptive Fuzzy Switching Control of
Nonlinear Systems Based on Quasi-ARX
RBFN Model

3.1 Introduction

In the past decades, there has been a lot of interests iraihiézhg adaptive control of dynamical
systems [2, 78, 10]. Some adaptive control schemes for digahgystems via linear control theory
have been obtained as in Refs.[79, 60, 80]. However, thdliziafy adaptive control of dynam-
ical systems is a difficult problem because the plants arayawonlinear in practical dynamical
systems. Hence, the performance of linear control modelsno satisfy requirement. For this
reason, some nonlinear prediction models have been dedfop nonlinear systems to overcome
the difficulty in predictor and controller design for nordar systems. Until now, Neural Networks
(NNs)[18, 19, 20], Wavelet Networks (WNs) [21, 22], Neutty Networks (NFNs)[23, 24] and
Radial Basis Function Networks (RBFNSs) [25, 26] have beeectly used to identify and control
nonlinear dynamical systems because of their abilitieppraimate arbitrary mapping to any de-
sired accuracy. However, it still exists difficulties in pareter identification, controller design, and
stability guarantee, during using these control systems.

The multiple model system structure was firstly proposed @f.[R1], which contains a lin-
ear model, a NN-based nonlinear model and a 0/1 switchindhamem. The system structure is
utilized to ensure the stability of control system and toriowe the control performance. And in
Ref.[76], the assumption of global boundedness on higtagraonlinear terms is relaxed by intro-
ducing ad-difference operator, and a rigorous analysis on the tnackiror is presented. All these
control methods have to identify at least two models. To $ifgnghe identification for control,
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in our previous work a quasi-ARX NN model with a switching manism has been studied for
nonlinear system adaptive control as in Refs.[81, 20], tvisa combination of a linear part and a
following 0/1 switching nonlinear part. It can satisfy thalslity and the performance requirement
by using only one model. Nevertheless, there are still sspecs needed to be improved in the
control method based on quasi-ARX NN model. One is that then@fd switching method is not
very smooth; the second is the assumption of global bourssdalso can be relaxed; the third
is that the parameters of quasi-ARX NN model to be adjustetinenare highly nonlinear, which
deteriorates the adaptability of control system.

In this chapter, al-difference operator is used in the ARX-like expressionydtem to relax
the assumption of global boundedness on higher-ordermemliterms as in Ref.[76]. And a fuzzy
switching mechanism is constructed based on the systeratsmgt criterion function. The corre-
sponding switching controller is obtained, which is diffet with the 0/1 switching law between
multiple models. The fuzzy switching mechanism has thraeasons: one is that the controller
becomes a linear controller when the fuzzy switching fuorctralue equals to 0 and the nonlinear
part is abandoned; another is that the fuzzy switching fanotalue equals to 1 and the nonlinear
part is fully used; the third is that the fuzzy switching ftioa value belongs to (0,1), in which
the control accuracy is improved with more emphasis on tmdimear part, while the convergence
speed is improved with less emphasis on the control acculidady fuzzy switching mechanism is
also different with the normal fuzzy control as in [82, 83Fhase it is just used in the prediction
model and depends on a switching criterion function.

As we know, the quasi-ARX model embodies an ARX-like macradeigart and a kernel
part [54, 72, 20]. The kernel part is an ordinary network modech as NNs, WNs, NFNs and
RBFNSs. to parameterize the nonlinear coefficients of macodel Some types of the ordinary
network models, such as WNs, RBFNs, and NFNs, can be regasiednlinear models linear
in parameters through fixing the nonlinear parametera pyiori knowledge[84, 85, 86, 87, 67].
Incorporating the network models with this characterjstie quasi-ARX model becomes linear-
in-parameters if those nonlinear parameters are detedhfidine. During control process, only
linear parameters are adjusted on-line which can redugemses time of adaptive control. RBFNs
have been used for the nonlinear system control becauseiofsimple topological structure and
precision in nonlinear approximation [25, 26, 88, 89]. Camgal with NN, RBFN is understandable
in terms of parameters, then is introduced as the kerneimp#re quasi-ARX model to replace the
NN which has been used in Refs. [71, 54, 76, 20].
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Motivated by the above discussions, a stabilizing switgltontrol for nonlinear system is pro-
posed based on the quasi-ARX RBFN model, dhdifference operator and the fuzzy switching
mechanism. The parameters of quasi-ARX RBFN model are aazegl into three types: the first
type of parameters for the linear part of model, the secopeé ¢f linear parameters for the nonlinear
part of model and the third type of nonlinear parametersterrionlinear part of model. The first
two types of linear parameters are all adjusted by a reaitstast Square (LS) algorithm on-line,
while the third type of nonlinear parameters is determingdpplying an Affinity Propagation (AP)
clustering method off-line [90].

The chapter is organized as follows: Section 3.2 describesionlinear system considered,
and ad-different operator is used to obtain an ARX-like expressid system ind-different form.
Section 3.3 introduces a quasi-ARX RBFN prediction modebsehparameters are identified by
AP clustering method and LS algorithms. Section 3.4 contgra fuzzy switching adaptive control
system based on the quasi-ARX RBFN predictors, and anatiieestability of the control system.
Section 3.5 carries out numerical simulations to show tliectfeness of the proposed control
method. Finally, Section 3.6 presents the conclusions.

3.2 Problem Description
3.2.1 Systems

Consider a single-input-single-output (SISO) nonlingaetinvariant dynamical system with input-
output relation as:

y(t +d)=g(e(t)), (3.2.1)
o) =[y(t+d—1),..y(t+d—n),ut),.., ut—m+1)]"

wherey(t) denotes the output at tintét = 1,2, ...), u(¢) the input,d the known integer time delay,
©(t) the regression vector, and, m the system ordersy(-) is a smooth nonlinear function, and
at a small region aroung(t) = 0, it is C°° continuous. The origin is an equilibrium point, then

9(0) = 0.
3.2.2 ARX-Like Expression

Under the continuous condition, the unknown nonlinear fiency (¢ (t)) can be performed Taylor
expansion on a small region aroup) = 0:

y(t+d) =g'(0)e(t) + %sﬁT(t)g”(O)sD(t) o (3.2.2)
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where the prime denotes differentiation with respectpt¢). Then the following notations are
introduced:

1
(g/(0)+§<pT(t)g”(0) + - )T = [al,t < Gnt bO,t bm_Lt]T

wherea; ; = a;(p(t)) (i =1,..,n) andb; ; = b;(x(t)) (j = 0,...,m — 1) are nonlinear functions
of p(t).

However, we need to geft(t + d) by using the input-output data up to timén a model. The
coefficientsa; ., andb; ;, need to be calculable using the input-output data up to tin® do so,
let us iteratively replacg(t + [) in the expressions af; ; andb; ; with functions:

y(t+1) = g@t+1), 1=1,..,d—1 (3.2.3)

wherep(t +1) is o(t + 1) whose elementg(t + k), [+ 1 < k < d—1 are replaced by Equ.(3.2.3),
and define the new expressions of the coefficients by:

aig = iy = a;(p(t)), bje=bjz = bj(4(t))
whereg(t) is a vector:
o) = [y(t) ...yt —n+ D) ut)...ult —m —d +2)]". (3.2.4)
Now, introduce two polynomialgi(¢—t, ¢(t)) and B(¢~ !, ¢(t)) based on the coefficients, de-
fined by:
Alg o) =1—aig " — . = anig ™
B(q_17 o(t)=bot+ ...+ bm—17tq_m+l7

whereg~! is a backward shift operator, e.g- 'u(t) = u(t — 1). Then, the nonlinear system (3.2.1)
can be equivalently represented as the following ARX-likpression:

Alg™H,¢()y(t +d) = B(q™, o(t) Ju(?). (3.2.5)
By the Equ.(3.2.5)y(t + d) satisfies the following equation as in Ref.[54]:
y(t+d) = alg™, o(1)y(t) + Bla™" o(t))u(t), (3.2.6)
where
alg o) =Gg 1, d1)) = aos + a1q t + o+ apo1g” " (3.2.7)
Bla~ o) =F(g ', ¢(1)Blg ', ¢(1)),

Bout B14q " + oo+ Brnga—opq ™, (3.2.8)
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andG(qt, ¢(t)), F(q~', ¢(t)) are unique polynomials satisfying:
Flg ' o)Al o) =1-Glg™", é(t)g™" (3.2.9)
3.2.3 D-difference Expression

The coefficientsw; ; (¢ = 0,...,n — 1) andg;; (j = 0,...,m + d — 2) can be considered as a
summation of two parts: the constant paftand 3%, and the nonlinear function part @t) which
are denotedy; ; — o} and3;, — 85. Then, the expression of system in the predictor form (32a6
be described by:

y(t+d)=¢" ()0 + ¢" ()0, (3.2.10)

whered = [a} ... ol | 8} ... ﬁ£n+d_2] and©p = [(ao: — ad) o (an_1s — b)) (Box —
B) oo (Bta—2.4 — Bhyra_s)]-

Apply ad-difference operator, defined by = 1—¢¢, to (3.2.10). Then the following expression
of system ind-difference form can be obtained:

Ay(t +d) =T ()0 + (U (1)), (3.2.11)

whered(t) = A¢(t). s(¥(t)) = ¥ ()05 = A¢T(1)0} and ¥(t) = [y(t) ... y(t —d — n +
1) u(t) ... u(t —m —2d 4+ 2)]7 .

The following assumptions for the system are used as in [Réfs(1, 76]:

Assumption 1: (i) The system under consideration has a global represemtéd.2.10); (ii)
The linear part parametefslie in a compact regiort; (iii) The system has a globally uniformly
asymptotically stable zero dynamics; (iv) The nonlinedfedence terms(-) is globally bounded,
i.e. || <(-) ||I< D and the bound is known; (v) The system is controllable, incivia reasonable
unknown controller may be expresseddiy) = p(£(¢)), where{(t) is defined in Section (3.3.1).

3.3 Quasi-ARX RBFN Prediction Model
3.3.1 Quasi-ARX RBFN Model

As we know, a controller can be derived easily and can shassrers from the identified predic-
tion model, when the prediction model is linear in the inpatableu(t). However, the Equ.(3.2.11)
is a general one which is nonlinear in the variable), because the‘?@ are based o (t) whose

elements contain(t). To solve this problem, aextra variablez(t)! is introduced and an unknown

'Obviously, in a control system, the reference sigyigl + d) can be used as the extra variablg + d).
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nonlinear functiorp(£(t)) is used to replace the variabigt) in 6%, UnderAssumption 1(v), the
function p(£(t)) exists. Define:

EB)=[y(t) ...yt —n1) z(t +d) ... 2(t —ng +d) u(t — 1) ... u(t — ng)]*

including the extra variable(t + d) as an element. A typical choice foi, ng, andns in {(t) is
ni=n+d—1,ny =m+ 2d — 2 andnz = 0. We can express the Equ.(3.2.11) by:

Ay(t+d) =7 ()0 + U7 (t)07, (3.3.1)

whered? = 07,.
The elements ofy are unknown nonlinear function df(¢), which can be parameterized by
NN or RBFN. In this chapter, the RNFN is used which has locapprty.

M
OF = wiR;(£(t),9)), (33.2)
j=1

whereMM is the number of RBFsy; = [w1;, wa;j, ...,wn;]” the coefficient vector, ani; (£(t), Q)
the RBFs defined by:

R;(&(t), Q) = e NllE =212 j=1,2,..., M, (3.3.3)

whereQ); = {\;, Z;} is the parameters set of the RBFXK|; is the center vector of RBF and are
the scaling parameter§;e || denotes the vector two-norm. Then we can express the quRXi-A
RBFN prediction model for (3.3.1) in a form of:

M
Ay(t+ d)=yT ()0 + > T (t)w,R;(£(1), Q). (3.3.4)

j=1
Now, introducing the following notations:

w11 w12 - WM
W=[wiwy..wy]=| N (3.3.5)

WN1 WN2 * - WNM
M le(t) 21

N(E@) = ' : (3.3.6)

e €W —Z?
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the quasi-ARX RBFN model is further expressed by
Ay(t +d)=yT ()0 + VT (H)WN(E(t)) = T (1) + Z(1)T O, (3.3.7)

where® = [ w1y ... Wp1 ... wins ... wpar |7 and=(t) = N(E(t)) @ U(t).

Remark 1 Comparing with Ref.[76], in which the model described byHtyu.(16) is only an
approximate one, the quasi-ARX RBFN prediction model dbscdrby Equ.(3.3.4) is an accurate
model of the system in-difference form (3.2.11).

3.3.2 Parameter Estimation

By (3.3.7), according to the parameter property, the modedpeters are divided into three groups:
the linear parametet of the linear part)” (¢)6, the linear parameted and the nonlinear parameter
Q; of the nonlinear parb” (t)WA(£(t)). The nonlinear parametefk; are determined off-line. Let
us denote the estimation 6%; by Q;. In order to determine the centers and widths of the RBFN,
AP clustering method is employed. The ceriteiis the arithmetic mean value of all training data in
each cluster. The width; is o times the largest distances between all training data ih elaster.
The parameter8 and© are estimated by using on-line identification algorithnespectively.

The linear parametét of linear part of model is updated as in Ref.[71]:

o a(t)y(t — d)er(t)
0(t) =60t —d) + T 6 = d)%(lt —d)’

(3.3.8)

whered(t) is the estimate of at time instant, which also denotes the parameter of a linear model
used to approximate the systemdutlifference form. And

. 1if \el(t)\ > 2D
alt) = {Ootherwise (3.3.9)

wheree; (t) denotes the error of the linear model, defined by
er(t) = Ay(t) — ot — d)T0(t — d). (3.3.10)

The linear parameted of nonlinear part of the quasi-ARX model is updated by a L®aigm:

. P()Z(t — d)ea(t)

Ot) = O(t —d) + R — TP =) (3.3.11)

where@(t) is the estimate o at time instant. ©(0) = O is assigned with an appropriate initial
value.ex(t) is the error of quasi-ARX model, defined by

ea(t) = Ay(t) — ot — d)T0(t — d) — 2T (t — d)O(t — d). (3.3.12)



42

And

P(t) = (3.3.13)

P(t—d)—PT(t —d)Z(t —d)TE(t — d)P(t — d)

1+Z2(t—d)TP)ZE(t —d) ’
Similar to Ref.[71], no restriction is made on how the parameé(t) are updated except they
always lie inside some pre-defined compact regdion

N

O(t) e hV L. (3.3.14)

3.4 Controller Design and Its Stability
3.4.1 Switching Criterion Function

Consider a similar switching criterion function as Ref]f71

- @il e) |? 4D
HO=2 50wyt — 790 — @)

tex Yo (L—a) e ), i=12 (3.4.1)

I=t—N+1
whereN is an integer and > 0 is a predefined constant. And,

STt ei(t)] > 2D
ailt) = {Ootherwise (3.4.2)

It is obvious thatu1(t) = a(t).

In most switching control methods based on two or more ptiesianodels [71, 76, 20], hard
switching laws are used. That means that in those contréémsgs the linear and nonlinear predic-
tors are alternately used. However, the jumping switch déltrease the precision and adaptability
of the control system. Motivated by the accuracy requirdmaa introduce a fuzzy switching law
1+ based on the criterion functioh (¢) andJa(t):

1 if nt) > K
=< nt)if k<nit) <K (3.4.3)
0 if n(t) <k,
whereK andk are positive constants which satigfye (0,0.5), K € (0.5,1) andn(t) is a function
of J1(t) and.Jo(t) defined by
_ J1(t)
Jl(t) + Jg(t) +e€

n(t) € [0,1], (3.4.4)

wheree is a very small positive constant. Whep= 0, ©(t) = Oy, which reset®(#) to its initial
value.
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3.4.2 Adaptive Controller

Designing a controller for the nonlinear system (3.2.1)udes two steps: the first step to identify
the quasi-ARX model; and the second step to derive and imgaiéthe control law. Based on the
identified quasi-ARX model (3.3.4), we construct a predittinodel expressed by:

Gt + d)=(1 — p)Gu(t + d) + pGn(t + d) (3.4.5)
where
it + d)=v" (H)0(t) + y(t) (3.4.6)
Jn(t +d)=p" (1)0(t) + i U ()W () Ry (£(1), ) + (). (3.4.7)
=

Consider a minimum variance control with the criterion fiimie as follows:
M(t + d) = %(y(t—kd) C (4 d))?, (3.4.8)
wherey*(t) is a known bounded reference output. The optimal controlnfamimizing (3.4.8) is:
y(t+d) —y*(t+d) =0. (3.4.9)

Then corresponding to the predictors (3.4.5)-(3.4.7), areabtain the following controllers:

M

C T (D0() + ey W ()W, (OR;(E(1), Q) =y (t + d) — y(t), (3.4.10)
j=1

and two otherg; andC,, corresponding to the extreme casegpE= 0 andu; = 1, respectively

Cr T (®)0) = y* (t+d) —y(t) (3.4.11)
M

C s T (D0(1) + D W ()% ()R (E(8), Q) = y*(t +d) — (1) (3.4.12)
j=1

Figure 3.1 shows the proposed adaptive fuzzy switching-obsystem based on the quasi-ARX
RBFN for nonlinear systems. The control system has foumdiste features:

1) The control system (3.4.10) is linear for the variabletsgrized,u(t), including in the re-
gression vectorg(t) and ¥ (t);
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Predictor based on Quasi-ARX RBFN model <4
| Ye+d) == p)d(t+d)+ 3y (t+d) ————]l
|

> G, (t+d) =y (O00) + (1) R
¥y, (1+d) :wT(z)é(t)+ZWT(t)Wf(t)Rj(é(t),fz,)+y(r) Yol
1 Fuzzy Switching law

i ew:ez
| = /ux:/u(t"]](t)a‘lz(t))

I A

u > Nonlinear system Y =:

I
:_ - —Cp_nfr:)ﬁe_r_ o
Controll P : parameters :
ontroller e e

- R P I

P U0 = Uy (O, ¥ O, 50 1500,%,0,0,) >

Figure 3.1:A nonlinear adaptive control system based on the quasi-ABRKNRmodel and the fuzzy switch-
ing law.

2) The three predictors (3.4.5)-(3.4.7) are obtained dirédom only one identified quasi-ARX
model, and all are linear for the control variaklg) to be synthesized in the control system;

3) The nonlinear control system could have quick responseesonly linear parameters are

adjusted on-line;

4) The control system employs a fuzzy switching mechanistead of a simple 0/1 switching.

3.4.3 Stability Analysis

Give the stability analysis of the proposed nonlinear adrgystem as follows:

Theorem: For the system (3.2.1) with adaptive fuzzy switching cdidrd3.4.10), all the input
and output signals in the closed-loop system are boundededwer, the tracking error of the system
can converge on zero when a properly RBFN is determined.

Proof: Defining é(t) = é(t) — # and by the adaptation law (3.3.8), it follows that as desttib

in Refs.[71, 76]:
ar(t)(llex ()] — 4D?)

2(1+ 4T (1)v(t)

Similar to Refs.[71, 76], under the condition (3.4.2)t) is bounded. Moreover, we can get:

1@ < (16t — a)l|*

. L @) (e(t)? - 4D?)
]\}inootz_: 2(1+(t — d)TT,Z)(t —d)) < 00, (3.4.13)
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and

@@ ®)? —4D?)
t—o0 2(1 + (t — d)T(t — d))

— 0. (3.4.14)
From the definition (3.3.10) af; (¢) and (3.4.11), we have:

er(t)=Ay(t) — " (t — d)(t - d)
=y(t) —y(t —d) +y(t —d) —y" ()
=y(t) — y*(t). (3.4.15)

Along with (3.4.15) and (iii) inAssumptions 1, there exist positive; andcs, such that:
— <
ot —d+1) |< e1 +e2 max [ ea(7) | (3.4.16)

From Ref.[76], ife; (¢) is unbounded, then it will introduce the contradiction a#(34) through
using (3.4.16). Therefore, we can get thatt) is bounded.

By the definition (3.3.12) oky(t), (3.4.12) and (iii) inAssumptions 1, there exist positive
constantsly, d, as in Ref.[76]:

| o(t = d+1) < di + da ma | ear) | (34.17)

The errore(t) is defined as follows:

M
e(t)=Ay(t+d) — vT0(t) — pe Y T (&)W, R;(D(t), )
j=1
=y*(t+d) —y(t+d). (3.4.18)
By (3.4.18) and (iii) inAssumptions 1, there also exist positive constarfts f> as in Ref.[76]:
et —d+1) |I< fi + fo max, | e() | (3.4.19)

We can easily find that the second term in (3.4.1) is alwaysitbed by (3.4.2). Thereford (t)
is always bounded through employing (3.4.13)(t) has two cases:

(i) Normal Case./,(t) keeps to be small.

By the switching function (3.4.1)imy 2((112352252—(5));;%32)) — 0 holds on. With (3.4.17)
and similar to the boundedness proofegft), the errores(t) is bounded. Since(t) = (1 —
we)er(t) + uea(t), thereforee(t) is bounded.
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(i) Abnormal Case: J>(t) becomes large gradually due to the overfitting of the quadkA
RBFN predictor.

Since J; (t) is bounded, from Equ.(3.4.3) and (3.4.4) there exists ataots, such that)(t) <
k, e = 0, Vt > tg, so that the model erran(t) = e;(t). Thereforee(t) is also bounded. On the
other hand, sinc®(t) is reset to the initial valu®, wheny; = 0, e(t) becomes smaller again.
Jo(t) gradually returns to its Normal Case (i) by the switchingesion function (3.4.1).

From above inequality (3.4.19), sine&) is bounded, the input and output of the closed-loop
switching control system are bounded.

As in Ref.[76], the erroe;(t), i = 1,2, satisfieslim; ., || e;i(t) ||< 2D. By the switching
criterion function (3.4.1), the second term determinedlaey switching control system, that is to
say, the tracking error of the system dependent on the montel @nly. For the model error, we
have:

M
ex(t)=Ay(t +d) —T0(t) = Y T ()W, R;((t), ). (3.4.20)
j=1

The linear model is always bounded. If a proper nonlinearcsiire is chosen and the accu-
rate parameters is adjusted, for a predefined arbitraryl gpositive constant, |le2(t)| < ¢ <
dx limy_. |le1(t)]| can hold on. It also exists a constdnt satisfies)(t) > K,y = 1, Vi > Tk.

Then the tracking error of systelim; . |le(t)||(= lim;— ||e2(¢)]|) can converge on zero.

Remark 2: In an abnormal casel,(t) may become large. The condition &) € A ¥ ¢ in
Equ.(3.3.14) prevents,(t) and.J2(t) to become unbounded suddenly. On the other hand, increasing
J»(t) gradually leads ta; = 0, then©(¢) is reset to its initial valu®, in the switching mechanism.
This makes/,(t) gradually return to it normal case.

3.5 Control Simulations

In this section, we will divide into two cases to discuss thetool performance.

3.5.1 Case One

In this case, we will use two example to show the effectiverafsthe proposed fuzzy switching
based on NN.
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Figure 3.2:Control results for Example 1.

Example 1

Now consider a nonlinear SISO system:

(t)_exp(—yz(t —2) xy(t—1) (0.5 (Wt —2) +1°(t —3))) *y(t — 2)

ol 4wt - 3) +y2(t - 2) 1+u?(t—2) +y2(t—1)
sin(u(t — 1) xy(t —3)) xy(t —3) sin(u(t — 1) xy(t —2)) xy(t — 4)
T+u?(t—1)+y%(t—3) 14+ u?(t—2) +y%(t —2)
Fult—1) (3.5.1)

The desired output in this example is a piecewise function:

‘(1) = {O.4493y* (t—1)+0.57r(t —1) t € [1,100] U [151,200] (35.2)

1.4  sign(0.4493y*(t — 1) + 0.57r(t — 1)) t € [101,150]
wherer(t) = 1.2 % sin(27t/25).
To identify the system, we use the following improved quaRiX neural network model:

y(t +d) = 9T ()0 + T (t) - Wol (Wi£(t) + B). (3.5.3)

In the nonlinear part, a NN with one hidden layer and 20 hidugates is used and other param-
eters are setas = 4,n = 3,d = 1. The improved quasi-ARX model can be firstly trained ofielin
by the hierarchical training algorithm as in Ref.[54]. FHigB.2-3.4 show the performance when
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Control errors
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Figure 3.3:Control results for Example 1.

the proposed adaptive fuzzy switching controller is usetie parameters of switching criterion
function and fuzzy membership function are chosenasl.5, N = 3, K = 0.9 andk = 0.1.

Table 3.1: Comparison results of errors

mean of errors | variance of errors
linear control —0.0185 0.0551
switching control 0.0061 0.0365
proposed control 0.3305 % 107003 0.0051

In Fig.3.2(a), the red dot-solid line is the desired outphg,blue solid line denotes the proposed
method control outpug(¢) and green dashed line shows the linear control oujpit). Obviously,
the control output with the proposed method is nearly comsiswith the desired output at most
of the time. Look at Fig.3.2(b), the red dot-solid line is thesired output and the blue solid line
denotes the proposed method control ouggui. The green dashed line shows the 0 or 1 switching
control outputy; (¢). We can see that the proposed adaptive fuzzy switchingaltcan do better
than the 0/1 switching control in two points: one is the cogeace speed and the other is the
adaptability. Figure 3.3(c) gives the control input whelgetsolid line, red dot-solid line and green
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Figure 3.4:Control results for Example 1.

dashed line denotes the proposed method control iafiyt the linear control input,y(t) and the
switching control inputs; (¢), respectively. Obviously, the input signals have smalltélation.

The errors are shown in Fig.3.3(d). Table 3.1 also givesdhé&ast of three methods errors. The
error of the proposed control system is smaller than ther attethods. The switching sequence is
presented which 1 is model with nonlinear part and 0 is modiklout nonlinear part in Fig.3.4(e).

In the Fig.3.4(f), the fuzzy switching functiop; is shown. This figure can explain the reason
of the advantage of proposed method in convergence speeddaptive activity. The switching
control use nonlinear part where [100, 150] and abandon nonlinear part when the value of the 0/1
switching law is 0. However, the fuzzy switching law estabés a proportion controller between
linear and nonlinear control.

Example 2

The system is a nonlinear one governed by
y(t):f[y(t - 1)7 y(t - 2)7 y(t - 3)7 u(t - 1)7 u(t - 2)] (354)
where

:L'15L'21’35L’5(l’3 — 1) + x4
1423 + 23 '

flr1, w2, 73,24, 25] =
The desired output in this example is a piecewise function.

vt = {O.Gy* (t—1)+rt—1) t € [1,100] U [151, 200] (35.5)

0.7sign(0.4493y* (t — 1) + 0.57r(t — 1)) t € [101,150]
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Figure 3.5:Control results for Example 2.

wherer(t) = sin(27t/25).

In the nonlinear part, a neural network with one hidden laet 20 hidden nodes is used and
other parameters satisfy = 3,n = 2,d = 1. Figure 4.4 shows the performance when the adaptive
controller is used. The parameters of switching criteriamction and fuzzy switching function are
chosentobe =18, N =3, K =09andk =0.1.

Table 3.2: Comparison results of errors

mean of errorg variance of errors
linear control —0.0929 0.0610
switching control —0.0051 0.0067
proposed control  —0.0044 0.0032

Figure 3.5-3.7 give the results of Example 2 whose marksaresvith Example 1. From the
Fig.3.5(a), the linear control output signals have largaplitude and far away from the desired
output. However, the proposed control output is almosta@dance with the desired output. It also
can be found that the switching control results have someblgddt the last half time. The similar
conclusion also can be gotten from errors. The table 3.2 sliogcontrast of three methods. The
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Figure 3.6:Control results for Example 2.

error of the proposed control system is smaller than therottethods. The Fig.3.7(f) shows that
the fuzzy switching function is efficient.

3.5.2 Case Two

In this case, we will use two example to show the effectiversfsthe proposed control method
based on RBFN.
The system considered is a nonlinear one governed by

y(t):g[y(t - 1)7 y(t - 2)7 y(t - 3)7 u(t - 1)7 ’LL(t - 2)] + U(t)v (356)
whereg(-) is the nonlinear function with a disturbance:

T1Tox3T5(x3 — 1) + 24
glr1, T2, T3, T4, T5| =y ( ) 2) + g In(1 4 0.2z4). (3.5.7)
1+ x5+ 23

The two coefficient®, andg, of g(-) have a sudden changetat 101, described by

1 t € [1,100]
Pt=10.99 e [101,200]

and

1 t € [1,100]
“=11.01  te 101,200
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Figure 3.7:Control results for Example 2.

Andv(t) is the system disturbance describedbs) = (1+0.25¢1)é(t) whereé(t) € N(0,0.005)
is a white noise. The desired output considered is a pieedwixtion, defined by

JH (1) = {0.6y*(t — 1) +sin(27(t — 1)/25) t € [1,100] U [151,200] (35.8)

0.7sign(0.4493y* (t — 1) + 0.57sin(27(t — 1)/25)) t € [101,150).
Note that the origin of the system is an equilibrium pointt the high-order nonlinear part is not
bounded. A sudden change on the system and the system disterlare introduced in order to
show the robustness of the proposed control method.

When identifying the system, the quasi-ARX RBFN predictinadel (3.3.4) is used, in which
the number of RBF function8/ = 6, the model ordersn = 3 n = 2, the delayd = 1. And the
bound of the nonlinear difference term of the system is sél te 0.05.

1) Estimation of nonlinear parameter ;

The nonlinear parameter vectdls = {Z;, \;}, j = 1,..., M are first determined off-line. To
do so, the system is excited by a random sequence with thétadgibetween -1 and 1 as in Ref.[67]
and 1000 input-output data set are recorded. Then an ARedhigtalgorithm is applied to the data
set for partitioning the input space ¢ft) = [y(t) ... y(t —n) y*(t+1) u(t—1) ... u(t —m)]T. After
clustering, 6 clusters are generated automatically inrthatispace, so thdt/ = 6. The parameter
vectorZ; corresponds to the center of each cluster, whjlés calculated by multiplying a constant
o = 0.2 to the largest distance of the data in each cluster. Thetsesiif2; = {Z;, \;}, j=1,...,6
are shown in Tab. 3.3. What should be mentioned is that thineam parameters are fixed during
the whole adaptive control procedure, even a sudden chamgesoon the system.

2) Control without switching mechanism



Table 3.3: Estimates of parametéls, j =1, ..,6.

A Zy Z3 Zy Zs Zg
& | —0.7004 | 0.3719 | —0.4277 | —0.1317 | 0.4906 0.7850
& | —0.6574 | —0.5189 | 0.5649 | —0.5927 | 0.3156 0.7178
&3 | —0.7166 | —0.5581 | 0.5334 | —0.7247 | 0.1906 | —0.1573
&1 | —0.7470 | —0.3356 | —0.3553 | —0.7118 | —0.4443 | —0.3322
&5 | —0.0894 | —0.3522 | —0.2988 | 0.2550 | —0.2004 | —0.0555
&6 | —0.6441 | 0.4940 | —0.7349 | 0.3924 0.5749 0.8512
& | —0.7733 | —0.7251 | 0.7189 | —0.8273 | 0.5151 0.8512
A | 0.0185 0.0276 0.0318 0.0233 0.0286 0.0176

Table 3.4: Comparison results of the errors

mean of RMSE$ | mean of variances
fuzzy switching method 0.0147 0.047
0/1 switching method 0.0201 0.082
linear control method 0.0240 0.105

#Root mean spare errors (RMSESs) are calculated by RM&E%)\/ZtTZI(yi(t) —y*(t))?, where
T =200, i =1,..,50.

For comparison, the system is first controlled using a lirekaptive controller based ai
(3.4.11). The control results are shown in Fig.3.8. FiguB{e&8 shows the control output (solid)
and the reference (dotted) and Fig. 3.8(b) shows the cosrtrot. We can see that the control result
based on linear controller is not impressing and the perdoce needs to be improved. Then a
nonlinear adaptive controller based 65n(3.4.12) is applied to controlling the system. Although
the control accuracy is improved, the control system caja&only in 16 out of 100 trials Monte
Carlo simulations. A stabilizing mechanism is requiredtfa nonlinear adaptive control system.

3) Control with switching mechanisms

The adaptive control with a fuzzy switching mechanism dbecrin Section 4 is applied to con-
trolling the system. The parameters of switching critefiamction and fuzzy membership function
are chosenas= 1.5, N = 3, K = 0.9 andk = 0.1. WhenK = k = 0.5 the fuzzy switching
scheme reduces to a 0/1 switching scheme. Table 3.4 shoves¢hage performance of a Monte
Carlo simulation with 50 trials. The results of two switchimethods and linear control method
are proposed. We can see that the 0/1 switching control megats smaller control error than the
linear control method, and the fuzzy switching method invpsothe control performance further.
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Figure 3.8:Linear control results.

Figure 3.9 shows the control results, in which the compasgdmetween the proposed adaptive
fuzzy switching controller (3.4.10) and the 0/1 switchimgntroller are shown. In Fig.3.9(a), the
dotted line (red) is the desired outpyit(¢), the solid line (green) is the control output(t) of
the proposed fuzzy switching method, the dashed line (bfutje control outpuys(t) of the 0/1
switching control method. Figure 3.9(b) gives the controbes where the solid line (green) and the
dashed line (blue) denote the control errgr&) — y*(t) of the proposed fuzzy switching method,
the control errorgjs(t) — y*(t) of the 0/1 switching method, respectively. We can easilytbae
the proposed fuzzy switching method have approached a grsuidt sincet = 10 which is faster
than the 0/1 switching method. The performance of the pmgdszzy switching control method
is better than the 0/1 switching method whea [10, 100) U (110, 200], and the robustness of the
proposed fuzzy switching control method is much better tharD/1 switching method which have
be illustrated sinceé = 100. Therefore, the proposed fuzzy switching method have &betintrol
result than the contrastive control method. Figure 3.9¢@gthe control input where the solid line
(green) and the dashed line (blue) denote the proposed &uizghing method control input; (),
the 0/1 switching control inputz(t), respectively. Obviously, the input signals both of thepmsed
fuzzy switching control and switching control are smootivéth very small fluctuation than linear
control method.
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Figure 3.9:Control results for Example.

The 0/1 switching sequence are shown in Fig.3.10(a), in lvhics the model with nonlinear
part and 0 is the model without nonlinear part. In the Figd@), the fuzzy switching function value
e 1s shown. The 0/1 switching control use nonlinear part sinee3, while the nonlinear model
may not be identified accurately, then it deteriorates therobconvergence speed and adaptive
activity. The switching control sequence changes betweandl1 frequently since the system
have a disturbance. The switching control sequence equélsand can not improve the control
performance if the nonlinear model may be accurate . Thegsexpfuzzy control sequenge <
[0, 1] whent € [10, 30]U[50, 60]U[120, 130]U[160, 180], improves convergence speed, performance
and robustness of the control system.

Remark 3: The nonlinear parametegs; and)\; j = 1, ..., M of the RBFN part are determined
by a priori and only the linear parametews; j = 1, ..., M are adjusted during control process. The
quasi-ARX RBFN prediction model used in the adaptive cdngrdinear in the on-line adjustable
parameters. Therefore, the proposed adaptive contra@rmyseeds less response time of adaptive
control and has more quick convergence speed than thoggaisonlinear prediction model based
on NN. The time od the proposed method is only about ten sacand the control method based
on NN is over five minutes with 200 steps.
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Figure 3.10:Switching sequences for Example.

3.6 Conclusions

In this chapter, a stabilizing switching controller for tiopar system is designed based on a quasi-
ARX RBFN model and a fuzzy switching function. Different Wwisome relative works, in which
more than two controllers are established and 0/1 switameghanism is designed[71, 76], the pro-
posed control method uses a smooth switching between a tona&oller and a nonlinear controller
both of which are derived from the same identified quasi-ARBFR prediction model. It can sat-
isfy the stability, response and performance requiremétht only one model used. A-difference
operator is used to relax the assumption of global boundsdoe higher-order nonlinear terms as
in Ref.[76], which improves our previous work of Refs.[20for parameterizing the coefficients
of the macro-model, a RBFN is used in the kernel part to rephdl, thus nonlinear parameters
of the proposed quasi-ARX RBFN prediction model can be dateed bya priori knowledge,
then the prediction model only remains linear parametetsetadjusted on-line. Simulations are
given to show the effectiveness of the proposed method omat@tability, accuracy, response and
robustness.



Chapter 4

Multivariable Decoupling Control of
Nonlinear MIMO Systems Based on
MIMO Quasi-ARX Model

4.1 Introduction

Nonlinear system control has become a considerable topieifield of control engineering. Many
control results have been obtained for nonlinear Singbetirand Single-Output (SISO) systems
based on the black box models, such as Neural Networks (NMs)elet Networks (WNs), Neuro-
Fuzzy Networks (NFNs) and Radial Basis Function NetworkBKRS), because of their abilities
to approximate arbitrary mapping to any desired accur&gy®6, 21, 22, 23, 24, 25]. These black
box models have been directly used to identify and contralinear dynamical systems.

Due to the complexity of nonlinear Multi-Input and Multi-@ut (MIMO) systems, most of
the control techniques developed for SISO systems cannattbaded directly for MIMO systems.
One of the main difficulties in MIMO nonlinear system conti®Icoupling problem. As such, it
is important to investigate the realization of decouplingtcol. Many adaptive decoupling control
algorithms have been proposed to deal with coupling in neali system based on linear methods
and nonlinear networks [91, 92, 93, 94, 76]. Some decougorgrol methods of them are diffi-
cult not only to achieve accurate requirement and stapility also to be implemented in industrial
applications. On the other hand, PID controller has beerlyidpplied in controlling the SISO
system because of its simple structure and relatively eatystrial application[95, 96]. However,
PID controller can not be directly used for MIMO model. Lafgy & Chai[97] proposed a mul-
tivariable decoupling PID controller for MIMO linear systs based on the linear PID control and
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generalized minimum variance control law. What's more,iZhaChai[98] presented a multivari-
able PID control method using neural network to deal withlimear multivariable processes. In
this control system, the nonlinear unmodeled part estidhbyeneural network is considered as a
black box. The initial weights of neural network, local nmra and overfitting are the problems
which need to be resolved.

In our previous work, a quasi-AutoRegressive eXogenousXARodel with an ARX-like
macro model part and a kernel part was proposed, and a dentwds designed for SISO sys-
tems [72, 54, 20, 99]. The kernel part is an ordinary netwodkleh, but it is used to parameterize
the nonlinear coefficients of macro model. As we know, RBFigehplayed an important role
in control engineering, especially in nonlinear systemtic@rbecause of their simple topological
structure and precision in nonlinear approximation [8§, &pecially, RBFNs can be regarded as
nonlinear models which are linear in parameters when fixirgrionlinear parameters ypriori
knowledge[86, 87]. Incorporating the network models wihis tproperty, the quasi-ARX models
become linear-in-parameters. Therefore, the RBFNs argechio replace the NNs as in [20].

The SISO model and control methods based on quasi-ARX maahehot be directly applied
to MIMO nonlinear systems. Motivated by the above discussi@an MIMO quasi-ARX model
is first proposed for MIMO nonlinear systems and then a nealimultivariable decoupling PID
controller is proposed based on the MIMO quasi-ARX modelictvltonsists of a traditional PID
controller with a decoupling compensator and a feed-fotm@mpensator for the nonlinear dy-
namics based on the MIMO quasi-ARX model. Then an adaptimtraiter is presented using the
MIMO quasi-ARX RBFN prediction model. The parameters oftsaontroller is selected based on
the generalized minimum control variance. In this papeasgdRX RBFN model is divided into
two parts: the linear part is used to guarantee the stahititydecoupling, and the nonlinear part is
used to improve the accuracy.

The chapter is organized as follows: Section 4.2 descrimadnlinear MIMO system consid-
ered, and then a hybrid system expression is obtained andM®Muasi-ARX RBFN model is
proposed. In Section 4.3, a multivariable decoupling PlIDtcmler is got based on the proposed
model and generalized minimum variance control law. Theadaptive control algorithm is pre-
sented using the MIMO quasi-ARX RBFN prediction model arel¢brresponding parameter esti-
mation methods are proposed in Section 4.4. Section 4.esamut numerical simulations to show
the effectiveness of the proposed control method. Fin8kygtion 4.6 presents the conclusions.
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4.2 An MIMO Quasi-ARX Model
4.2.1 Systems

Consider an MIMO nonlinear dynamical system with inputpauitrelation as:

y(t + d)=f(p(t)), 4.2.1)
et)=ly(t+d—1)T, .yt +d—ny) u®)", .. ult—n,+ 177

wherey = [y1,...,4,]7 € R" andu = [uy,...,u,|T € R™ are system input and output vectors,
respectively,d the known integer time delay,(t) the regression vector, ang, ,n, the system
orders.f(:) = [fi(-), ..., f(-)]T is a vector-valued nonlinear function, and at a small regimund
o) = 0(0 = [0,...,0]T), they areC*> continuous. The origin is an equilibrium point, then
f(0) = 0. The system is controllable, in which a reasonable unknawntroller may be expressed
by u(t) = p(&(t)), where(t) is defined in Section (4.2.4).

4.2.2 ARX-Like Expression

Under the continuous condition, the unknown nonlinear fiencfx (¢ (t)), (i = 1,...,n) can be
performed Taylor expansion on a small region aroyiy = O:

(e +d) = S 0)0(0) + 56T O FEO)p(E) + . 4.22)

where the prime denotes differentiation with respectoto). Then the following notations are
introduced:

1
() + 50" (OF0) +--)T = farf ap®, oa ort bk, T

ny7t o TLu, TLu,

whereaﬁ’f = aﬁ’k(go(t)) (¢t =1,..,ny) and bé’i = bg»’k(go(t)) (j = 0,...,n, — 1) are nonlinear

functions ofip(t).
However, we need to gett + d) by using the input-output data up to timén a model. The
coefﬁcientmﬁ’iC andbé.”tC need to be calculable using the input-output data up to tiriie do so, let

us iteratively replace(t + 1) in the expressions af;} andb’; with functions:
y(t+s)=09(@t+s)), s=1,..,d—1 (4.2.3)

whereg(t+s) is ¢(t+s) whose elementg(t+m), s+1 < m < d— s are replaced by Equ.(4.2.3),
and define the new expressions of the coefficients by:

Lk <Lk Lk Lk 3lk 7Lk
Ay = Ay = 0y (o(1)), biy =bjy = b; (o(1))
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whereg(t) is a vector:
o(t) = yt)' ..yt —ny + D u®)’ ut —ny, —d+2)7)7. (4.2.4)

Now, introduce two polynomial matrice&(q—!, ¢(t)) andB(q~!, ¢(t)) based on the coeffi-
cients, defined by:

Alg o) =l —aig ! —... - n, 14 ";
B(q_17 (b(t)) :bO,t +...+ bnu_17tq_”u+17

wherea, ; = (aﬁzf)NxN, i=1,.,n, andb;; = (bg’,’;)NxN, j = 1,..,ny. Then, the nonlinear
system (4.2.1) can be equivalently represented as theviolpARX-like expression:

Alg™ o(t)y(t +d) =B(q~ ', 6(t))u(t). (4.2.5)

By the Equ.(4.2.5), ley(t + d) satisfies the following equation:

y(t +d) = A(g™, ¢(t))y(t) + B(g~, ¢(t))u(t), (4.2.6)
where
Alg™"¢() = Aos + Areg ™ + oo 4 Any g™ (4.2.7)
Blg " o(t) =F(qg~ ", ¢(t)B(q™", o(1)),
=B+ Bl,tq_l + .+ Bnu+d—2,tq_nu_d+2, (4.2.8)

Ai(i=0,..,ny, —1)andB;(j = 0, ...,n, + d — 2) are coefficient matrices. AnG(g~1, ¢(t)),
F(q~!, #(t)) are unique polynomials satisfying:

Fg ' o)A(g ", o(t) =1 — Alg ", o(t)g . (4.2.9)

4.2.3 Hybrid Expression

The coefficients matriced; ; (i = 0, ...,n, — 1) andB,; (j = 0, ...,n, + d — 2) can be considered
as a summation of two parts: the constant pgrand Bj., and the nonlinear function part efit)
which are denoted!?’, andB}",. Then, the expression of system in the predictor form (3 &aé be
described by:

Y(t +d) = Aq)y(t) + Bl(q 1 u(t) + A(q ", 6(@)y(E) + B (g, 6())u(t) (4.2.10)
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where

Similar with Ref.[98], the linear polynomial matri®’(¢—!) can be expressed #(¢~!) =
Bl(q~1) + Bl(q~') with B'(¢~!) being diagonal an#’(¢—!) being a polynomial matrix with zero
diagonal elements.

Then, the linear and nonlinear expression of system (4.2di®be obtained as:

y(t +d) = Al (g )y(t) + B (g u(t) + B'(q~")u(t)
+ AN o())y(t) + B (g7, o(t)u(t) (4.2.11)
4.2.4 Quasi-ARX RBFN Model

Now, we will propose an MIMO quasi-ARX RBFN model. Howevéretv(4(t)) are based of¥ (¢)
whose elements containt). To solve this problem, aextra variablex(¢)! is introduced and an
unknown nonlinear functiop({(t)) is used to replace the variahiét) in ¢(¢), Underassumption,
the functionp(£(t)) exists. Define:

) =yt) T .yt —n)T x(t+d)T .x(t —nz+d)T ut — 1T . ut —n)T)T

including the extra variablg(t + d) as an element. A typical choice fof, na, andns in (t) is
ny =ny — 1,n2 = n, +d — 2 andnz = 0. We can express the Equ.(4.2.11) by:

y(t +d) = " (1) + £ (t)07, (4.2.12)

wherey”(t) = ¢(t —d) andQy = [Ay, ... A}, _1, Bf, ..., B}, _;.,]. The elements of; are
unknown nonlinear function af(t), which can be parameterized by NN or RBFN. In this chapter,

the RBFN is used which has local property:

M
O = QR;(ps,&(1), (4.2.13)
j=1

'Obviously, in a control system, the reference sigridt + d) can be used as the extra variakle + d).
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where M is the number of RBFs.Q); = [Q;1,...,8;,] is the coefficient matrix with);; =

[w}ismwii] T, d =1,..., M. And R;(£(t), ;) the RBFs defined by:

Ri(pj, (1)) = e~ lO=Xl* 5 — 1 9 M, (4.2.14)

wherep; = {o;, X;} is the parameters set of the RBFX; is the center vector of RBF ang are
the scaling parameterg;e ||o denotes the vector two-norm. Then we can express the quRXi-A
RBFN prediction model for (4.2.12) in a form of:

y(t+d) =T () + €7 (¢ ZQR (pj,€(1)), (4.2.15)

4.3 Controller Design
4.3.1 Nonlinear Multivariable Decoupling PID Controller

Introduce the following performance index:

M (t + d)=|ly(t +d) — R(g™)y"(t +d) + S(g~)u(t) + Qg™ Hu(t)], (4.3.1)

whereR andS are the diagonal weighting polynomial matrices, & a weighting polynomial
matrix with diagonal elements.
The optimal control law minimizing (4.3.1) is:

y(t+d) —R(g~ )y (t +d) +S(g~")u(t) + Qg Mu(t)=0 (4.3.2)

Substituting (4.2.11) into (4.3.2), the following equatis obtained:

(B'(¢™") + Qla~)u®)=R(g ")y (t + d) — A'(q () — (B'(¢™") + S(g™))u(t)
— (B™(g~ Y ®))u(t) + A", o(6)y(1)). (4.3.3)
whereB!(¢7') + Q(¢™') = A H(¢™1), with A = diag{\(,..\,} andH(¢™") = (1 —¢7 ) - I.

By introducingR(¢~!) = Al(¢~") and Bl (¢ 1)S(¢™!) = Q(¢ " )B' (¢~ !). whenn, — 1 < 2, a
nonlinear decoupling PID controller is obtained, similaattraditional PID controller:

H(g")u(t) = A" (g et) — H(g " u(t) — v(e(?)). (4.3.4)

whereH (q~1) = A(B(¢ ") + S(g ")) andv(¢(t)) = A(B" (¢4, @(£))u(t) + A" (g1, &(t))Y(1))-
e(t) =y (t +d) — y(t).
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Figure 4.1: The multivariable decoupling PID control systeased on MIMO quasi-ARX model.

The controller (4.3.4) is substituted into the system @),3the obtained closed-loop system
which is show in Fig.4.1 will be stable, and the decouplingtoal effect and tracking errors can be
eliminated.

A velocity-type form of the PID controller is given:

H(g Hu(t)=K,(e(t) — e(t — 1)) + Kre(t) + Kp(e(t) — 2e(t — 1) + e(t — 2))
—H(g M u(t) — v(e(t)). (4.3.5)

The gain can be selected as:

Kp:—/\(2A2 + Al),
K]:)\(Ao + A+ Ag),
Kp=AAs. (4.3.6)

where whem, =1, A; = Ay = 0, and whem,, = 2, A, = 0.

4.3.2 Parameter Estimation

Determining p; Using Knowledge Information

As mentioned earlier, we need the model is simplicity andilfiéty simultaneously during the
modeling. However, the uncertain parametgfsncreases the overall flexibility of model and then
restricts the flexibility in the higher order nonlinearityz.hen, the scale and position parameters
p; of the basis function in the RBFN is determined using knogéethformation. It is assumed
that the physical insight of the control plant is not avdiaim a black-box modeling. Then, the
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prior knowledge information are mainly got from the obtairdata and the errors. Some kinds of
knowledge information can be used as follows:

the information about the operating regiongf) which can be got easily from the observed
data.

« the information concerning the structure of the nonlingat which can be obtained by using
various linear models to identify the system.

* the information about the relations among the element§(in This information can be
known wher¢(¢) is chosen.

* the information concerning the size of the prediction exiand their relations with the region
of £(¢) which may be got during the estimation.

A: A strategy for Determining p ,

Now propose a method to initialize and the following strategy is not only suitable for RBFN,
but also suitable for NFN and B-spline based models.

Denotes as followsp; = [#] 7} ... #), 05]" (j = 1,..., M). N = dim(¢(t)) is the dimension
of the inputs.{ = [z;,7 = 1, ..., N] and the inputs region is mostly locatedXfin < £ < Xmax,
Xmin = [Zi mins@ = 1, ..., N|, Xmmax = [%i max,? = 1,..., N]. Thenodesare put into the input
hyperplane as shown in Fig.4.2. If the number of hodes cooreting tox; is denoted as;, the
total number of the nodes will b#/ = TIY n;. Then, the parameters; are chosen so that the
functionR(p;, {(¢)) have appropriate shape and are put onto every nodes. A stbeilagram for

determiningp; for RBFN with N’ = 2 andM = 4 x 3 is shown in Fig.4.2.

B: Several Hints for Reducing M
The prior knowledge about the regioXmin, Xmax) is the least information for determining the
scale and position parametgrs. However, when N is very large, the number M may be rather
large. Therefore, more obtained information can reducentimeber of nodes or improve the node
assignment. The hints is given as follows:

* Hint A: If the system is linear irx;, n; can be equal to 1.

* Hint B: if no more information, we can assign andn,,; corresponding te/(¢ — 1) and
u(t — 1) with appropriate values, while set all otherto 1.
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Figure 4.2: A schematic diagram for determiningfor RBFN.

* Hint C: The nodes which can be replaced by employing intatjum of NNMS may be
removed from the hyperplane.

Estimation of Parameter Vectors(),

If the process is knowrt) is obtained by using Talyor expansion at its equilibriunfjestvise, it
can be replaced by its estimatiofis.

Estimation of Parameter Vectors();

Parameter vectorQ;, (j = 1,..., M) can be estimated by simplified multivariable Least-Squares
algorithm as in Ref.[2]. Now, introduce the notations:

Q=1[F,...9)7, o@) =) @ vE@1)7, (4.3.7)

where the symbaok denotes Kronecker production afid, (t) = [R;(p;,£(t)), 7 = 1, ..., M], the
MIMO gquasi-ARX model (4.2.10) can be expressed in a likedinregression form:

y(t + d) = 7 (1) + T (1) (4.3.8)
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The parametef? is updated by a LS algorithm while fixing; and(2:

A A P(t)o(t — t
Q) = Ot — d) + 02l — d)ef )t_ (4.3.9)
where{)(t) is the estimate of2 at time instant. e(t) is the error vector of MIMO quasi-ARX
model, defined by

e(t) =y(t) — T () — ®(t — d)TQ(t — d). (4.3.10)
And

_Pt—d)—PT(t—d)®(t—d)To(t —d)P(t —d)
1+ ot —d)TPH)(t —d) '

(4.3.11)

4.4 Stability Analysis

There are some assumption made:

Assumption 1: (i) y*(¢) ia a bounded deterministic sequence;«ii}(t)) is globally bounded,
lv(o(t))| < A, where the boundan is known; (iii) The choices of andS(¢~!) are such that
det{H (¢ )A(g™") + ¢ /B(g HAA (g H)y(t +d)} #0.

Theorem For the MIMO nonlinear system (4.2.1) with the controller3(®), together with the
parameters of the controller selected by Sec.(4.2), aBitjmals in the closed-loop system described
above can be bounded, and the tracking error can be madédesany specified constafhibver a
compact set by properly choosing the structures and paessnett quasi-ARX RBFN model, that is
limy—oo [|y(t +d) —y*(t +d)|| <e.

Proof. The nonlinear part estimation error vector can be desciiyed

M
e(t) =V(p(t +d)) — € (t+d) Y _Q(t + d);R;(p;, £(t + d)). (4.4.1)
7j=1

We can see that, if the nonlinear decoupling PID controle3.6) is used to the system (4.2.11),
the following input-output dynamics are obtained as in [R8]:

(H(g HA(G ) +q Blg HAA (¢ ))Y(t + d) (4.4.2)
=B(¢ HAA (¢ "y (t + d) + H(g " HV((t + d) — B¢ )U((t + d)),
(Alg™H(g D +g Mg A (g )u(t + d) (4.4.3)

=A(g YA (g Y (t +d) — g N (g IV((E + d) — Alg (¢ + d)),
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Substitute (4.4.1) into (4.4.2) and (4.4.3), the equatemesgiven as follows:

(H(a DA ) +a Bla IAG(@ )Yt +d) =B(g HAG(g )y (t+d)  (4.4.4)
+(H(g™) = B(g))V(g(t +d)) + Bla™H)e(t),

(Alg™HH(g ) +a Mg HA (@ u(t +d) = Alg™HAA (¢ Y (t +d)  (4.4.5)
—(g" A7)+ ATVt + d) — AlgHe(t),

From (4.4.4), (4.4.5) and Assumption 1, there exist constanC-,Cs,C; satisfying:

Iy(t + )| <C1 + G mmass [[=(t) (4.4.6)
u)]| <Cs + Cs max, <(t)], (4.4.7)

Because the universal approximations of the RBFNs, theastin error:(¢) can be achieved less
than any constant over a compact set by properly choosing their structurespangimeters. It can
be got that:

le(t +d)[[<Cs + Cp max [le(t)]| < C7 + Cs¢ < Co. (4.4.8)

whereCs, Cg, C7, Cg, Cg constants.
Then, the boundness of all the signals in the closed-looj@sys got.

The tracking error of the system is obtained as:
e(t) = lim [ly(t +d) —y'(t +d)| < C (4.4.9)

whereC > 0 is a constant.

4.5 Numerical Simulations

In order to study the behavior of the proposed control metisothe numerical simulations are
described in this section.
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45.1 CaseOne

The MIMO nonlinear system to be controlled is described by:

n(t+1)=09m (1) - T

—|—O.7u1 (t — 1) + 0.3UQ(t) - 0.5UQ(t — 1)

+ 0.4 sin(u; (t))

+uv1(t)
yo(t +1)=—0.4sin(y3(t)) — 0.1ya(t — 1) + ug(t — 1)
—0.3sin(ui(t)) +0.2us (t — 1)
+0.8sin(ug(t)) 4+ 0.5u3(t — 1) + va(t). (4.5.1)

In this case,w;(t) andws(t) are disturbance given by (t) = (1 + 0.25¢ 1)e(t) and vy (t) =
(1 + 0.25¢71)e(t), wheree(t) € N(0,0.001) is a white noise. The desired output of system is
giveny; (t) = sign(sin(2xt/50)) andy;(t) = 0.7.

The proposed control method in Section 3 and 4 is illustraféettive in the control stability
and robustness. The order are chosemas= n, = 2 and time delayl = 1. The regression
e(t) = [yt — 1) ya(t = 1) yi(t = 2) ya(t — 2) ua(t — 1) ua(t — 1) wi(t — 2) uz(t — 2)" and
E(t) = [y (t—1) yo(t — 1) y1(t —2) y2(t —2) yi () yi (t) v () ui(t —2) ua(t —2)]*. Based on the
priori acknowledge, we ch00386,,,x = [22224 14 1] andXy, = [-2-2-2-2 -4 -1 -4 —1].
The parameterp; can be determined by the proposed method in Section (4.3.2).

For comparison, under the same simulation conditions attdtive same parameters value,the
control output results by the typical PID controller is shbw Fig.4.3, where the PID controller
has neither the decoupling compensator nor the nonlingar Pphe corresponding control inputs
are given in Fig.4.4. Figure 4.5 and 4.6 show the proposettaaesults and the Tab.4.1 gives the
comparison results of the errors. Obviously, the proposedraller has better control performance
than the typical one.

Table 4.1: Comparison results of errors based on two comtethod

mean of errorg variance of errors

y1(t) typical method 0.0317 0.1909
: proposed method —0.0033 0.2161
y2(t) typical method —0.0196 0.0377

. proposed method —0.0190 0.0282
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Figure 4.3: Control results of the typical PID control.

45.2 Case Two

The MIMO nonlinear system to be controlled is described by:

Yt + 1)=0.9y1 () — % + 0.4 sin(ur (1))
+0.7u1 (t — 1) + 0.3ua(t) — 0.5ua(t — 1)
ya(t + 1)=—0.4sin(y3(t)) — 0.1y (t — 1) + ug(t — 1)
—0.3sin(uq(t)) + 0.2uq (t — 1)
+0.8sin(ug(t)) + 0.5u3(t — 1),t € [0,150). (4.5.2)
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Figure 4.4: Corresponding control inputs of the PID contnethod.

0.4y1(t - 1)
1+ y3(t—1)
+0.6uq (t — 1) + O.4UQ(t) — O.5UQ(t - 1)

ya(t +1)=—0.5sin(y3(t)) — 0.1ya(t — 1) 4+ ua(t — 1)
—0.3sin(ui(t)) +0.3ui(t — 1)
+0.9sin(up(t)) 4+ 0.5u3(t — 1),t € [150, o). (4.5.3)

yi(t +1)=0.6y:(t) — + 0.4sin(uy (1))

In this example, a system disturbance appears when50. The desired output of system is
givenyj (t) = sign(sin(xt/50)) andys(t) = 0.7.

In this example, the proposed control method in Section 34aiddillustrated effective in the
control stability and robustness. The order are choser), as n,, = 2 and time delayl = 1. The
regressionp(t) = [y1(t—1) ya(t—1) y1(t—2) yo(t—2) ur (t—1) ua(t—1) u1 (t—2) u2(t—2)]" and
E(t) = [y1(t—1) yo(t — 1) y1(t —2) yo(t —2) yi(t) i (t) yi(t) ui(t —2) ua(t —2)]7. Based on the
priori acknowledge, we cho03§,.x = 2222414 1] andX i, = [-2-2-2-2—-4—-1—-4—1].

Under the same simulation conditions and with the same peteasvalue, the control output
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Figure 4.5: Control results of the proposed control method.

results by a typical PID controller is shown by Fig.4.7, whéne PID controller has neither the
decoupling compensator nor the nonlinear part, for corspatri In Fig.4.7, the dashed line is the
desired output and the solid line denotes the proposed mhethrttrol outputy; (¢) andys(t). The
corresponding control inputs; (¢) andus(t) are given in Fig.4.8. The proposed method outputs and
corresponding control inputs are shown in Fig.4.9 and All®can see that our proposed method is
nearly consistent with the desired output at most of the twhieh is better than typical PID control
method whert € [0,150). Obviously, the control performance of our proposed metisaduch
better than typical PID control method when the system hstsidiance when = 150. The input
signals have small fluctuation as shown in Fig.4.10.

Tab.4.2 gives the comparison results of the errors. Oblyiptiee mean and variance of errors
of the proposed method are smaller than the typical PID obmnitethod.
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Figure 4.6: Corresponding control inputs of the proposedrobmethod.

4.6 Conclusions

In this chapter, an MIMO quasi-ARX model is first introduceghd a nonlinear multivariable de-
coupling PID controller is proposed based on the proposedeior MIMO nonlinear systems.
The proposed controller consists of a traditional PID aalldr with a decoupling compensator
and a feed-forward compensator for the nonlinear dynamas the MIMO quasi-ARX model.
And an adaptive control system is presented using the MIM&ig&RX RBFN prediction model.
The parameters of such controller is selected based on tteralzed minimum control variance.
The proposed control method has more simplicity structaresbetter control performance. The
nonlinear part is not a black box whose parameters can bentatd bya priori acknowledge.
Simulations are given to show the effectiveness of the megonethod on control accuracy and
robustness when a disturbance appears in the system.



50 100 150 200 250 300
time(s) t
2
oo — o ]
2 A - o - O
@
= or B
N
>
1 . . . . .
50 100 150 200 250 300

time(s) t

Figure 4.7: Control results of a typical PID control.
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Figure 4.8: Corresponding control inputs of the PID contnethod.
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Table 4.2: Comparison results of errors based on two comtethods

y,(t) andy *(t)

y,(t) and y,*(t)

mean of errorg

variance of errors

y1(t) typical method 0.066
. proposed method —0.0034
y2(t) typical method —0.0063
: proposed method —0.0029

0.1612
0.0108
0.1256
0.0060
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Figure 4.9: Control results of the proposed control method.



—4 . . . . .
50 100 150 200 250 300
time(s) t
2

l .

\:{\‘ M
0 .
1 . . . . .
50 100 150 200 250
time(s) t

300

Figure 4.10: Corresponding control inputs of the proposedrol method.
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Chapter 5

An |dentification Method for
Quasi-ARX Model

5.1 Introduction

Today, nonlinear systems have received increasing aitefitbm all fields of sciences and humani-
ties [66, 100, 30, 54, 22, 63, 101], and have been everywhdfeireal world, such as food-webs,
ecosystems, metabolic pathways. They also include sysidrich are founded and used by human,
such as aeronautical satellite, unpiloted avion, indalstead machine (electric arc furnace). How to
accurately and handily control those complex systems has the problem which we must face to.
At the last few years, Neural Networks (NNs) and Neuro-Fudeyworks (NFNs) have been used
to nonlinear modeling because they can learn any nonlinegpimgs and got many good results
[30]-[22]. Whereas, a nonlinear model based directly on HNNFNSs are not handiness to be used
for control and fault diagnosis.

To solve this problem, we have proposed a quasi-ARX modedaigeme which consists two
parts: a macro-part and a kernel-part[30]. The macro-gaatuser-friendly interface constructed
using already known knowledge and the characteristic ofvort structure. Sometimes, linear
model is chosen such as ARX model. The format of its coeffisiean be easy got. The kernel-part
is an ordinary NN or NFN, which is used to parameterize thdfioients of macro-model and is
different from a nonlinear ARX model based directly on NN\#tNs. When NFN is used in the
kernel-part, the obtained quasi-ARX model is linear in taegmeters to be estimated. This linearity
is a very useful feature from the viewpoint of control.

However, variables and the order of the model increases;dahmplexity of as the number of
input-output designing the NFN also increases. A lineandfpal Components Analysis (PCA) is

77
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introduced to reduce the dimension of the NFN input on therapsion that the input variables
of NFN is linear correlation [101]. In fact, the input variab do not only depend on each other
linearly. When nonlinear correlations between variabldstea Nonlinear Principal Components
Analysis (NPCA) will describe the data with greater accyrdan PCA [102, 103, 104].

Motivated by the above discussion, a NPCA network trainedAbyficial Neural Network
(ANN) is used to reduce the dimension for the quasi-ARX miodgel

The rest of this chapter is organized as follows. In Secti@n the considered system is given
and the quasi-ARX modeling is introduced. Section 5.3 mlesia predictor. Section 5.4 introduces
how to train NPCA and parameter adjustment. Then, numesinallations are carried out to show
the effectiveness of the proposed modeling approach indests. At last Section 5.6 gives some
conclusion.

5.2 Problem Description and Modeling
5.2.1 Problem Description
Consider a single-input-single-output (SISO) black-borlmear
y(t)=g(p(t)) + v(t), (5.2.1)
o) =yt —1),..y(t —n),u(t —d),..., u(t —m —d+1)]T
wherey(t) denotes the output at timt€t = 1,2, ...), u(t) the input,d the known integer time delay
(For simply, let d=1 in this chapter. Other conditions cargbefollowing same method.)(¢) the

regression vector, andt) the system disturbancey(-) is a nonlinear function which satisfies the
following assumes[30]:

* g(-) is a continuous function, and @a(t) = 0 it is C* continuous.
« the input-output of system(t), y(t), are bounded, where the bounds are knowa psori.

» the system is controllable, where a reasonable unknowitralten may be expressed by

u(t) = p(&(t)), where(t) = [y(t) ... y(t—n) u(t—1) .. u(t—m) y*(t+1) ... y*(t+1—1)T
(y*(t) denotes reference output).

It needs to derive an explicit expression f) to control the system (5.2.1). In this chapter, a
minimum prediction error adaptive controller is got thrbuginimizing the criterion function as
follows:

M(t+d) = %(y(t +1) =y (t+1)*+ %u(t)2 (5.2.2)
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where) is a weighting factor for the control input.
The proposed controller has two distinctive features:

(1) itis linear for the variables synthesized in controlteyss;

(2) its parameters have explicit meanings.

5.2.2 Quasi-ARX Modeling

Through Taylor expansion of functiay(-) around the regiop(t) = 0

y(t)=g(0) +g'(0)e(t) + %wT(t)g”(O)w(t) + . ot (5.2.3)

Let

T
0(p(t)) = <g'(o) + %«pT(t)g”(O) + - )
:[alvt ce Qnt b07t bm—l,t]T

where the coefficients; ; = a;(¢(t)) andb; ; = b;((t)) are nonlinear functions ab(¢). g(0)= 0
is assumed for simplicity. We can get a regression form ofjfs¢em (5.2.1) is described by (5.2.4)
as in Ref.[30]:

y(t) = " (H)0(p(t)) + v(t) (5.2.4)
A similar-linear ARX model (5.2.4) is developed as a macrodet:
Alg L e®))y(t) = Blg ', p(®)u(t — 1) + o(t) (5.2.5)
whereq~! is the backward shift operator, e g u(t) = u(t — 1).

n

Alg o) =1—a1sq " — ... —ansq”
Blg (1)) =bos+...+ bm—l,tq_m+1-

5.3 Prediction Based on Neurofuzzy and NPCA

Whend = 1, an 1 step predictor is given Ref.[105]:

y(t+1) = alg™", o)y(t) + Bla™", o(t)u(t) (5.3.1)
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Figure 5.1: An image of the quasi-ARX maodel.

where

alg o) =aos+ .. Fan_1g" "

Bla ™, 0(t) = Bog + -+ Bme1a” ™

The predictor based on Neurofuzzy and NPCA networks is stasfrig.5.1.
The system described by Eq.(5.2.1) are assumed to be bqswed can parameterize ;, 3; +
by using a class of neurofuzzy models:

M
=0y + Z wiiN5(p;, x(9(1)))

j=1

M
Bt =B + Z Wi, jN5(j, %(0(1)))
j=1
wherea;, (i = 0,1,...,n — 1), B, (k = 0,1,...,m — 1) andw;; are constant parameters.
N¢(-,-) is the fuzzy “basis function” ang; is its parameter vector. From Ref.[100], the fuzzy
“basis function” V¢ (-, -) is expressed explicitly by

Soi51 wig (Mot (21(1)
S pag (k)

Ni(pj, x(o(t))) = (5.3.2)
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wherer = dim(x(t)), andA is the minimum operatot)/ is the number of fuzzy rules;,(t) are
the elements ok(t), andﬂAi(') is the membership function of fuzzy séf;. The triangle function
is used as membership function.

The input variables of NFX(t) is supposed to be the vectoft). However, when the dimen-
sion of ¢(t) is large, for a simple designing method the number of fuziy may increase dramat-
ically. To solve this problem, a NPCA network (5.3.3) is aduced to reduce the dimensionality
instead of PCA network, becauggt) is a regression one whose elements are highly nonlinear
correlated. Express the NPCA network by:

x(¢(t)) = QWV, (1)) (5.3.3)
whereQW, é(t)) = W2f(Wlie(t) + BY) + B2 W = {W! B!, W2 B?}, f(-) is sigmoidal
function (i.ef (z) = =)

Following from the equations (5.2.1)-(5.3.3) and defining :
Qo= (a;, ;) i=0,...n—1;k=0,....m—1
Q= (wij,wr;) 1=0,.,n—1k=0,...,m—1
We have a predictor expressed by:

M
y(t+ 1) =" (1) + Y Q6" ()N} (pj, QV, 6(1))) (5.3.4)

j=1
5.4 Implementation Aspects

In this section, we discuss some issues concerning the ingoltion of the predictor to adaptive
control of nonlinear systems.

5.4.1 Linearity for wu(t)

In order to obtain a control law by differentiating the criee function defined by (5.2.2)

OM(t+1)

2u(t) =0 = u(t)

the predictor must be linear with respectt@). However, the predictor described by (5.3.4) is not
the case because the coefficients and3; ; are nonlinear functions of(y(t)) that containg.(t)
as its element.
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Now, we will use the method from Ref.[30]. Because we haveirassl that the system 1 is
controllable, where a reasonable unknown controller(is = p(£(t)). we use this unknowp(-)
to replace variable(t) in the coefficients:; , andb; ;

;=05 (x(p(1))) = ai(9,(t)) £ i (£())
Bi=Bi(x((t))) ~ Bi(p(t)) £ Bi(£(1))

whereg,(t) is ¢(t) whose elemeni(t) is replaced by(£(t)), that is,¢,(t) = [y(t) ... y(t —n +
1) p(€(t)) u(t — 1) ... u(t —m + 1)]T. £(¢) has a form of

E)=[yt) ..yt—n+1Dult—1)...ult—m+1)y*(t+1)] (5.4.1)

It follows that the predictor is expressed by

M
y(t+1)=0" (1) +Y_ Q6" (N (p;, QUV, E(1))(1)) (5.4.2)
j=1
which is linear w.r.tu(t).
Introduce the following notations

o=[f,of, ... ol
o(t)=[0" (1), ¢" ()T @ &L, (D]"

where the symbak denotes Kronecker productiafﬂf (t) = Ny(pj, QOV,&(1)(t), j =1, ..., M].
It follows that the predictor has a linear regression formprezsed by

y(t+1) = o7 (t)e. (5.4.3)

5.4.2 Parameter Adjustment

The predictor parameters must be adjusted on-line or méffiecause they are unknown and can
not be calculated from system parameters for the relatibmemn system parameters and predictor
parameters is unknown. Fortunately, many existing algoritan be applied to our case without
loss their properties.

Based on (5.3.4), parameters are divided into three pdrésit of NPCA network is the 1st
part; p; of the NFN network is the 2nd parf;(j = 0,..., M) is the 3rd part. An algorithm
consisting of three parts is used to the parameter adjustmen
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(1) Adjusting Part 1

During control process, the paramet&tsare trained off-line firstly. An autoassociative network
is designed to train NPCA network as Fig.5.2 as in Ref.[1@61) is the input and output layers.
x(&(t)) is the second hind layer. Weighitg* 12 W3 W* and biasB! B? B? B* are updated by

Figure 5.2: Network architecture for NPCA training with an@associative network.

using a BP algorithm which is same with Ref.[106]. Aftermiag, the input, first and second layers
are used for the input of NFN. Then we can get the input of NFiWokk by (5.3.3).

(2) Adjusting Part 2

Now to initialize p.

p; = [ & &7 (=1, M)

It can be seen from Eq.(5.3.2) thaf is a parameter vector associated with the partition of the
operating region as in Sec.4.3.2. The similar simple gyaite used for determining the parameters
p;- Only the least prior knowledge required for this methodhis operating region of the input
vector of multi-input and multi-output neurofuzzy model.eWan get the information from the
output of the trained NPCA network. Denot&gt) = [z1, 22, ...2] . [Xmin, Xmax] Which is the
operating region need to be known. Then the neurofuzzy mcatelbe built in a way shown in
Fig.5.3, which shows the case where= 2 and M = 4 x 4. Obviously, the value; is easily
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determined based on a vector given by:

1.2 n1
n2
— x w .o e w
X = |"272 2|, (5.4.4)
1,2 n
Ty Ty v Ty

NFN
A | | | |
A A | | | |
g
3 | | | |
X3 Np——¢——+——4——-——-
2 | | | | nodes
_, ) | | | |
X, NpE——————4—— 44— ——-
| | | |
| | | |
—1 o emin b — — b —— b — b — .
Xy 2 | | | |
| | | |
Migin | L i .
xll X} xl3 x14
I [ [ [
VS| | VL
NFN : |
—1 =7 =3 =2
Xl xl x] 'xl

Figure 5.3: Network architecture for NPCA training with art@associative network.

The efficient use of prior knowledge information for detemmg the parameterp; and the
orderM plays a key role in the quasi-ARMAX modeling [33], see S&&:2for detail. The follows
are some points:

* The least prior knowledge required for determinipgis the information about operating
region ofx(t) = [z;; i = 1,...,7]7. That is,[Xmin, Xmax] Should be known for the modeling
that the operating region is mostly located¥g,i, < z(t) < Xmax-
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» When NFNs described by (5.3.2) are used, the number of isiles = [] ;_, n, where the
number of fuzzy sets for variable is denotes as,. If dim(p(t)) is large,M will be rather
large. Therefore, NPCA network is used to reduce the numtiapat £.

(3) Adjusting Part 3

In Adjusting part 2,0 is adjusted while fixingp and W' B! W? B2, which is performed by
minimizing the following criterion function

Vn(©) = % SO + %C’a@T(t)Q(t) (5.4.5)
t=1

wheree(t) = y(t) — ®7(t)O(t — 1) is the prediction error and, is small positive value. I,

is chosen so small that the second term of Equ.(5.4.5) daesffect the convergence property of
adjusting algorithm, it is well known that the above miniation may be performed using many
existing methods available for linear adaptive predic&r [

5.5 Control Simulations
5.5.1 Deriving and Implementing Control Law
Consider a minimum variance control, we can obtained a oblatw with respect ta(t):
o BOJ . 1 .
u(t)= g5 o = Bla™ x@)ajutt = 1)
—yx(t) + " (t+1) = Alg™x()y(1)} (5.5.1)

A robust adaptive algorithm witdead zonewill be implemented which has been shown to be

effective for dealing with prediction error due to unmodklynamics [2]. Through analysis in
Sec.5.4.2p andW' B! W?2 B? are fixed firstly, then the parameters of controller can batitied
on-line. It can not implement it if directly introduces NN iasRef.[54].

5.5.2 Numerical Simulations

In this part, two examples will be carried out to show the @ffeness of the proposed scheme.

Example 1

The unknown system to be controlled is given in which thedimgart of system is described by

_ 0.7~ — 0.68¢ 2
GghH = 5.5.2
(67 = T T romig 2 (5-52)
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Figure 5.4: MSE between(t) andy*(t) calculated in a moving window for Example 1.

while the nonlinear element is a dead zone described by

u(t) —1.75 if u(t) > 2
z(t) = { 0.0625 x sign(u(t)) x u?(t) if fu(t)] <2
u(t) + 1.75 if u(t) < —2

The desired output of system is

y (t)=—0.2y"(t — 1) + 0.63y™ (t — 2) +r(t — 1) + 0.8r(t — 2) (5.5.3)

wherer(t) = sin(27t/25) + sin(27t/10).

Estimation data are sampled when system is excited usinignamput sequence. Firstly, trains
the autoassociative network using the algorithm desciin&&c.5.4.1. Welet = 3,m = 2,r = 2,
and a 5-6-2-6-5 autoassociative network is chosen asngpitét. 5-6-2 network trained parameters
are used for NFN. We also train PCA network For comparisom &eif.[101]. The other contrast
isn = 2,m = 2, from Ref.[105] under some prior knowledge. All parametectorp; is fixed to
its initial value.
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The Mean Square Errors (MSE) of three adaptive controllealisulated respectively in a mov-
ing window:

MSE() = = 0 (k) v (R)? (5.5.4)

where £ was chosen to b&00. Figure 5.4 shows the convergence properties of MSE, in whic
solid green line is the result of the proposed predictorhddsed line and dashed blue line are the
results of Ref.[105] and Ref.[101] respectively and thetidgure ignores the red line because it is
too larger. Itis clear that the proposed predictor has bpagormance than others.

y(t) and y*(t)
o

-4t 1 \/ 1 1 '/\ 1 \\’ 1 1 ]
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
time(s) t

u(t)

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
time(s) t

Figure 5.5: Upper diagram Controlled outputy(t) (solid red lines) and desired outpyt ()
(dashed green lines).¢wer diagram) Control inputu(t).

Figure 5.5 shows the controlled system output, referentiguband control signal. It is clear
that the proposed nonlinear adaptive predictor can cotiti®onlinear very well. But Example 1
just show the well control ability of proposed method whidnill need some prior knowledge. We
will use it to reduce the dimension of the Example 2 controbpem.
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Example 2
(t)— exp(—y?(t —2)) xy(t —1) | (0.5 (u’(t —2) +y*(t —3))) xy(t — 2)
=T 2t —3) + 20t — 2) T+ u2(t—2) + 2t —1)
sin(u(t — 1)« y(t —3)) xy(t —3)  sin(u(t — 1) *y(t —2)) xy(t — 4)
T+u2(t—1) +y2(t —3) T+ u?(t —2)+y2(t—2)
+u(t—1)+ov(t) (5.5.5)

and the disturbance(t) is described by
v(t) = (14 0.25¢7H)e(t) (5.5.6)

wheree(t) € N(0,0.001) is a white noise.

The desired output in this example is
y*(t) =06y (t—1)+r(t—1) (5.5.7)

wherer(t) = sin(27t/25)+sin(27t/10). Estimation data are sampled when system is excited using
random input sequence. Firstly, trains the autoassoeiatwork using the algorithm described in
Sec.5.4.1. Weleh = 4,m = 3,r = 2, and a 7-6-2-6-7 autoassociative network is chosen as
training net. 7-6-2 network trained parameters are useh i input.

Three kind predictors are used to compare with our proposettiad. In all figure, the solid
green line is the result of the proposed predictor and dasbeédine is the result of compared
method. Firstly, directly choosg/(t —1),...y(t—4),u(t—1),..,u(t —3)) as inputs of NFN, which
involves more thar3” parameters and slow the on-line adaptive control speed4.6ighows the
convergence properties of MSE.

Secondly, directly choosgy(t — 1), u(t — 1)) as inputs of NFN which is shown in Fig.5.7.

Finally, two methods are compared with us under two conatiovith or without noise. PCA
network has two output as the NFN input. The other isto ch¢gge-1), y(t—2), u(t—1), u(t—2))
as input which is same as Ref.[101]. Figure 5.8 and Fig.¥®thie MSE without considering noise
and with noise, respectively. Figure 5.10 shows the cdettosystem output, reference output
and control signal. All results indicate that our method caduce complexity and keep control
precision.
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Figure 5.6: MSE between(t) andy*(t) calculated in a moving window for Example 2.

5.6 Conclusion

Quasi-ARX modeling scheme based on ARX model and NFN not loatyaccurate representation
ability, but also has a structure similar to linear ARX modBlecause it is linear in the parame-
ters to be estimated. However, variables and the order aintbdel increases, the complexity of
input-output designing the NFN also increases. A lineangipial components analysis (PCA) is
introduced to reduce the dimension of the NFN input on tharapsion that the input variables of
NFN is linear correlation. In fact, the input variables dd paly depend on each other linearly.
In this chapter, A NPCA network is used to reduce the dimenfio the quasi-ARX NFN model.
This method reduces the number of controller parametersraprbves the control performance
of the controller based on the quasi-ARX modeling. Numérsoaulation results show that the
performance of the quasi-ARX model has been improved bgdititing the NPCA network.
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Figure 5.8: MSE between(t) andy*(¢) calculated in a moving window without considering noise,
in which dashed red line and dashed blue line are the reduRefd3 and Ref.7 respectively.
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Figure 5.7: MSE between(t) andy*(t) calculated in a moving window for Example 2.
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Figure 5.9: MSE between(t) andy*(t) calculated with noise, in which dashed red line and dashed
blue line are the results of Ref.3 and Ref.7 respectively.

1 —
A /r‘\
N s ‘
- o5t/ \ [ A [ -
bl / /\ [ I\ /N [
~ \ /) / / /
[V . \ \ / N
2 oy \ ) / VoS i
S [ \ /N oA \ U e
— \ \ [ \ / /A
> \ ] ./ \ \ \
> _osf \ \ / \ / \ -
\ \ / \
\ \/ \ /|
v J
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
time(s) t
1
0.5 k
g of :
_05, -

1910 1920 1930

1940 1950 1960 1970
time(s) t

1980 1990 2000

Figure 5.10: Upper diagram) Controlled outputy(¢) (solid red lines) and desired outpyt(t)
(dashed green lines).¢wer diagram Control inputu(t).



92



Chapter 6

Conclusions

6.1 Summary

In this final chapter, a summary for whole thesis will be given

Adaptive control have been studied as a classic researdmsfrede 1950s and adaptive control
based on the linear system theory has got great achievenagpecially, in many real-world appli-
cations. Recently, with the development of neural netwaskyelet network, radial basis function
network and some other nonlinear model, adaptive contng kaface some new challenges. It is
difficult to ensure the stability of these control systenthaligh it can give a higher accuracy control
performance. A quasi-linear black-box modeling schemebdeas constructed based on the linear
structure and the nonlinear model, so that the obtainedmeanrl black-box models contain not only
the linearity properties which are useful, but also havedgibexibility which is used to deal with
various nonlinear systems. In this thesis, quasi-ARX blagk models are constructed and their
applications for the nonlinear dynamical systems conttheme are studied. Investigations have
made to identification, model analysis adaptive controigiteand stability analysis of nonlinear
systems under the framework of linear system theory, ondléslof the improved model structure.
The main work of the thesis has been described in Chapterd2 add 5.

In Chapter 2, quasi-ARX neural network is divided into twatpa the linear part is used to
ensure the nonlinear control stability, and the nonlineat is utilized to improve the control accu-
racy. In order to combine both the stability and universgragimation capability in our controller,

a switching law is established based on system input-owgtébles and prediction errors. An
adaptive control law is proposed for nonlinear dynamicatesps and then the control system sta-
bility is proved. The proposed controller has three distwecfeatures:

(1) itis linear for the variables synthesized in controlteyss because of the linear structure.

93
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(2) its parameters have explicit meanings which shares fhenpredictor.
(3) itis only one controller which combines a switching afgom.

In Chapter 3, a stabilizing switching controller for nomar system is designed based on a
quasi-ARX RBFN model and a fuzzy switching function. Thepwsed control method uses a
smooth switching between a linear controller and a nonticeatroller both of which are derived
from the same identified quasi-ARX RBFN prediction model.e Hifectiveness of the controller
has been confirmed through numerical simulations. The wotkis chapter has contributions as

follows:

(1) The control system can satisfy the stability, respomskperformance requirement with only
one model used.

(2) A d-difference operator is used to relax the assumption ofaglbbundedness on higher-order
nonlinear terms, which improves the work of Chapter 3.

(3) For parameterizing the coefficients of the macro-moa@&®BFN is used in the kernel part to
replace NN, thus nonlinear parameters of the proposed-guXiRBFN prediction model
can be determined by priori knowledge.

(4) The prediction model only remains linear parametersei@djusted on-line which reduces
the number of on-line adjusted parameters.

In Chapter 4, an MIMO quasi-ARX model is first introduced, andonlinear multivariable
decoupling PID controller is proposed based on the proposmtkel for MIMO nonlinear systems.
a traditional PID controller with a decoupling compensaad a feed-forward compensator for
the nonlinear dynamical from the MIMO quasi-ARX model catshe proposed controller. Then,
an adaptive control system is constructed using the prap®O quasi-ARX RBFN prediction
model. Generalized minimum control variance are used tthgetontrol law and the stability proof
is also given. The proposed controller has the followinginiitive feature:

(1) It has more simplicity structures and better controfgrenance.
(2) It has better properties for controlling the system wiigturbance (noise).

(3) Its nonlinear part is not a black box whose parameterbeatetermined by priori acknowl-
edge.
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(4) Itis a stability controller.
The work in this chapter also shows that

(1) with the improved model structure, the control algorittvased on well developed linear
system theory could be extended to MIMO nonlinear systems.

(2) the linear structure of quasi-ARX model is used to resdhe decoupling problem and the
nonlinear part improves the control performance.

Chapter 5 introduces a NPCA network to reduce the dimensinthé quasi-ARX modeling.
One part of the quasi-ARX model is the ordinary neurofuzziwonek to parameterize the coeffi-
cients which faces to a problem of high dimension. A lineang@pal components analysis (PCA)
has been introduced to reduce the dimension of the NFN inpuh® assumption that the input
variables of NFN is linear correlation. In fact, the inputighles do not only depend on each other
linearly. When nonlinear correlations between variabbastea nonlinear principal components
analysis (NPCA) will describe the data with greater accuthan PCA. This improves the perfor-
mance of the quasi-ARX model. Numerical simulation resshiew that the performance of the
quasi- ARX model has been improved by introducing the NP Civaik.

6.2 Topics for Future Research

Although a lot of progress has been made, there are still raapgcts that need further investiga-
tions.

» Other control methods as as PEM and GPC based on the gueai-ihodel also can be used
for MIMO system control. The corresponding stability anctalgpling problem should be
researched in the next step.

* Some parameters of the model is trained off-line to redbeeohline feedback time. There-
fore, we will improved the on-line algorithm to low the feeultx time down in the next work.

 Although our control system can deal with some kinds ofuilisinces, it cannot do will
when disturbance is larger. The robustness of the fuzzychimiy adaptive control based on
quasi-linear model is key problem for us.

* In this thesis, we use a NPCA network is used to reduce themtion for the quasi-ARX
modeling. However, a nonlinear network are introduced mtkernel part of quasi-ARX
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model. Although linear part can be sure stability, the cbodibetween two parts should be
made certain. That is our future work to be sure the proposadkehstability.

» As we discuss in Chapter 5, variables and the order of theemondreases, the complexity of
as the number of input-output designing the NFN also inesalslotivated by the discussion,
support vector regression can be used to deal with the caropleulations

» The control model can be used to resolve practical problech as gene regulation network,

missile control in future research.
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