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１ Summary

Previous work in Spectral Correlation Density (SCD) 
estimation of cyclostationary signals has been based on the 
Weighted Overlapped Segment Averaging (WOSA) 
estimator that is known to have low resolution and high 
frequency leakage. In this paper we address the estimation 
of the SCD using the high resolution Minimum Variance 
Distortion-less Response (MVDR) estimator. Using the 
Matched Filterbank (MAFI) approach to spectral estimation 
we derive SCD estimators based on the classic WOSA and 
MVDR. The MAFI approach provides a common base that 
allows direct comparison between the SCD estimators and 
gives better insight of the relation between them. Numerical 
examples are presented to validate the derived estimators 
and to quantitatively evaluate their performance in terms of 
cycle frequency resolution, variance and bias of the SCD 
estimates.

２ Introduction

In several engineering and science fields most signals 
are generated by means of periodic processes (i.e. 
modulation) and as a consequence the generated signals 
exhibit (second order) moments that are periodic in time. 
These signals are better modeled as cyclostationary and can 
be characterized by cyclic descriptors like the cyclic auto-
correlation and spectral correlation density [2].

These cyclic descriptors are fundamental tools from 
where more complex cyclic descriptors can be obtained like 
the cyclic magnitude and cyclic phase, the cyclic coherence 
spectrum and the cyclic Wigner-Ville spectrum that have a 
rich set of practical applications in communication systems, 
mechanical vibration analysis, meteorology, economics, 
hydrology and acoustics [1, 5, 6, 7, 8, 20].

For most applications it is often more convenient and 
natural to analyze the structure of cyclostationary signals in 
the frequency domain. Therefore, it is of practical interest 
to estimate the spectral correlation density (SCD) from 
samples of the observed signal.

Most of the proposed SCD estimators in the literature 
are based on WOSA [9] that is well known to have poor 
resolution properties and large spectral leakage [1] [5]. 
These limitations are especially troublesome when we deal 
with short length observations of the signal that is a 
common occurrence in practical systems. The Minimum 
Variance Distortion-less Response (MVDR) [3, 11] has 
gained attention in the last decade in array processing and 
spectral estimation due to its higher resolution capabilities 
even with short length observations. In this work we argue 
that SCD estimation can also benefit from these high 
resolution properties and evaluate MVDR as a good 
alternative for SCD estimation.

For evaluation purposes we derive three estimators, 
two based on MVDR and one based on WOSA, using a 
Matched Filterbank (MAFI) approach [21, 16]. The MAFI 
approach provides a common base where each method only 
differs in the filters design and their bandwidth estimate. 
This allows direct comparison between methods and 
simplifies their implementation.

In the next section we present a short review of the 
SCD and present a simple example of cyclostationary signal 
that is used later to validate the derived SCD estimators. We 
also formulate the SCD estimation problem as a joint 
spectrum estimation problem (i.e. cross spectrum) using 
Cyclic Demodulates. In section 4 following the MAFI 
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Fig. 1　Theoretical and estimated SCD.
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approach, we derive cross spectrum estimators based on 
MVDR and WOSA and present how these estimators can 
be used to estimate the SCD. In section 5 we evaluate 
numerically the statistical properties of these estimators in 
terms of cycle frequency resolution, bias and variance and 
finally in 6 we present some discussion on the numerical 
results and future research work.

３ The Spectral Correlation Density

A zero mean stochastic process x (n) is cyclostationary 
(in the wide sense) if the auto correlation function given by

( , ) { ( / )} ( / )} ( )xR n E x n x n∗= + −2 2 1t t t

is periodic in time with an integer period N:

( , ) ( , ); , ( )x xR n R n lN n l Z= + ∀ ∈ 2t t

Since the auto-correlation Rx(n, t) is periodic it accepts 
Fourier Series expansion and can be written as:

( , ) ( ) ( )n
x xR n R e−=∑ 3a ia

a

t t

where the Fourier coefficients:
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are the cyclic auto correlations and { / }N
k Nk N =−= 2a p are 

the cyclic frequencies. Note that for a = 0 the cyclic 
correlation ( )xRa t reduces to the conventional auto 
correlation. As with conventional spectral analysis it can be 
shown that the Fourier Transform of these lag-dependent 
coefficients give raise to the spectral correlation density 
(SCD)[5]:
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xS w R e

+∞
−

=−∞

= ∑ 5a a i t

t

t

The above equation Sa(w) displays the power distribution 
of the signal with respect to both the spectral frequency w 
and the cycle frequency a. In this respect the spectral 
correlation density contains an additional dimension related 
to the non stationary features of the signal.

3.1　Spectral Correlation Properties
We know from classic spectral estimation theory that 

the spectrum of a periodic signal with period N is also a 
periodic sequence with period N. Thus the support region of 
the spectral correlation in the plane is contained between  
−p ≤ w=2pk /N ≤ p with −N /2 ≤ k ≤ N/2.

Also the spectral correlation density (5) presents the 
following properties in the bi-frequency plane a−w [1]:

( ) ( ) ( ) ( )S w S w S w∗ = + = − 6a -a -aa

( ) ( ) ( ) ( )S w S w S w∗ ∗= + = − 7-a a aa

These symmetry properties in the bifrequency plane added 
to the periodicity in the plane restrict the frequency support 
of the spectral correlation to the principal quadrant of the 
bi-frequency plane.

3.2　Example of a Cyclostationary Signal
A simple example of cyclostationary signal is an 

harmonic sinusoid in additive noise:

( ) ( ) ( ) ( )cx n w n v n= + + 8fAcos

where v (n) is assumed real, stationary white noise with zero 
mean and variance v

2s , A is a constant amplitude and wc 
and f are deterministic constants in (0, p) and (−p, p) 
respectively. Using equation (4) and equation (5) we can 
derive an expression for the SCD of this model as [6, 8]:

( ) [ ( ) ( )] ( )
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AS w w w w w
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For a signal with zero phase the SCD would have two peaks 
at (w, a)= (±wc, 0) of amplitude / vA +2 24 s and two peaks 
at (w, a)= (0, ±2wc) with amplitude A2/4.

3.3　Cyclic Demodulation
To understand this interpretation we simply have to 

insert the auto correlation function definition given by 
equation (1) into (4):

( ) { ( / ) ( / )} ( )n
xR E x n x n e∗ −= + −2 2 10a iat t t

then define u (n) and v (n) such that:

( ) ( ) ( )
n

u n x n e
−

= 2 11
ai

( ) ( ) ( )
n

v n x n e= 2 12
ai

replace them in equation (10) to obtain:

( ) { ( / ) ( / )} ( )xR E u n v n∗= + +2 2 13a t t t

The equation above shows that ( )xRa t is the cross correlation  
of u (n) and v (n), and therefore from equation (5) follows 
that Sa(w) is the cross spectral density of u (n) and v (n). 

Fig. 2　Filter bank interpretation to spectral 
density estimation.
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This interpretation suggests that Sa(w) can be estimated 
using any cross PSD estimator such as the WOSA and 
MVDR.

４ Filter bank PSD estimation

The concept of spectral estimation via filter banks is 
depicted in figure 2. Basically we have a zero mean signal 
vector [ ( ), ( ), , ( )]Tx n x n x n Q= − − +1 1nx with spectral 
density S (w) and pass it through a bank of narrow band 
filters [ ( ), ( ), , ( )]T

w h h h Q= −0 1 1h each one steered at a 
different frequency w. The output at the filters is given by:

( ) ( ) ( ) ( )
Q

H

q
y n h q x n q

−

=

= − =∑
1

0
14nh x

and the output power P (w) is:

{ }( ) ( ) ( )H
w wP w E y n= =

2 15xxh R h

where Rxx is an estimate of the auto correlation matrix of xn. 
By measuring the output power P (w) at one filter we can 
estimate the spectral density S (w) by the relation [12, 14]:

( )( ) ( )
H

w w

N N

P wS w
B B

= = 16xxh R h

at the frequency the filter is steered and where BN is an 
estimate of the effective filter bandwidth.

Based on equation (16) we can then design different 
S (w) estimators by choosing different filters and bandwidth 
parameters.

4.1　WOSA Method
The simplest filter wch we could design is a rectangular 

window of N samples with amplitude one:

[ , , , ] ( )T= 1 1 1 17h

this filter steered at a frequency w becomes:

( ), , , ( )
Tjw j N w

w e e − =  
11 18h

and has constant bandwidth:

( )H
N w wB N= = 19h h

Replacing these into equation (16) we get:

( ) ( )
H

w wS w
N

= 20xxa R a

where aw is known as the steering vector and is defined as:

( ), , , ( )
Tjw j N w

w e e − =  
11 21a

Equation (20) is the general Weighted Overlapped Spectrum 
Averaging (WOSA) spectral estimator. In this basic form 
equation (20) is equivalent to the well known periodogram:
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H H
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By splitting the signal vector xn in segments of length Q 
and averaging the spectral densities of each segment we can 
obtain the Bartlet (Averaged Periodogram) method:

( )
M

H
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−

=

= ∑
1

0

1 24xx m mR x x

where M = N /Q is the number of segments and xm=[x (mQ), 
x (mQ − 1), …, x (mQ −Q + 1)]T. Using this correlation 
matrix the estimator becomes:
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We could also apply windows (filter) Rxx and/or overlap the 
segments; operations that would result in other classic non-
parametric methods of spectral estimation. During our 
numerical examples we won’t use any pre windows as they 
further degrade the already poor resolution of the WOSA 
method and will always use maximum overlapping of 
segments that presents the minimum cycle leakage for the 
WOSA method [1].

4.2　MVDR Method
The square filter used by WOSA has a sinc shaped 

impulse response H (wc) as shown in figure 3 and as we can 
see this shape has a direct impact in the estimate of P (wc).

To improve the estimate MVDR implements a narrow 
band filter with impulse response equal to unity (distortion-
less) at the frequency wc while reducing as much as possible 
the power at the other frequency bands (minimum variance) 
[11].

This filter design is a well known optimization 
problem where we solve for wch by minimizing the power:

( )H
w w w= 27c c cxxh h R h

Fig. 3　Spectral density estimation via filtering.
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subject to the constraint H
w =1ch a where a is the steering 

vector defined in (21).
This optimization problem has a known solution given 

by [3, 11]:

( )w

−

−= 28c

1
xx

H 1
xx

R a
h

a R a

replacing this in (15) gives the PSC (Power Spectrum 
Capon) estimator:

( ) ( )cP w −=
1 29H 1
xxa R a

To get S (wc) we must normalize P (wc) by the filter 
bandwidth BN as per relation (16). A simple estimate of BN is 
given by the reciprocal of the filter length, that is BN=1 /Q, 
that results in the MVDR estimator [3]:

( ) ( )MVDR c
QS w −= 30H 1

xxa R a

Another estimator known as normalized MVDR or 
NMVDR is obtained by using the relation BN=aHa that 
results in [13]:

( ) ( )NMVDR cS w
−

−= 31
H 1

xx
H 2

xx

a R a
a R a

We can see from equations (30) and (31) that both MVDR 
and NMVDR are adaptive filters as they depend on the 
signal features Rxx. This is in contrasts with the rectangular 
filter used by WOSA that is generic and does not consider 
the signal to be filtered in its construction.

4.3　Cross Power Spectrum Estimation 
and SCD Estimation.

From a filtering point of view the estimation of the 
cross power spectrum from two data vectors x1 and x2 can 
be based on the design of two narrow band pass filters 1xh

and 2xh steered at the same frequency wc. Therefore the 
cross power spectrum can be inferred as the cross 
correlation of the filter outputs at lag zero [14]:

( ) { } ( )H
x xP w E=1 2 321 2y y

where y1 and y2 are the filter outputs given by H
1x 1h x and

H
2x 2h x respectively. Using (16), (20), (30), (31) and (32) 

we can easily find:
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w w w w

H
w w
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=

33

34

35

1 2

1 1 1 2 2 2

1 1 2 2

1 1 1 2 2 2

1 1 2 2

x x

1 1
x x x x x x
1 1
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1 1
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a R a

a R R R a
a R a a R a

a R R R a
a R R a

where, Rx1x1, Rx2x2, and Rx1x2 are the Q x M auto correlations 
and the cross correlation respectively of the signal vectors.

Using these cross spectrum estimators we are now able 
to obtain an estimate of Sa(w) using the cyclic demodulation 
procedure described in section 3.3 and shown in figure 4.

The procedure is as follows: for each cyclic frequency 
a of interest we shift x (n) by a step size ±a /2 to obtain 
expressions (11) and (12) and use these frequency shifted 
versions of x (n) as inputs to any of the cross PSD 
estimators (33), (34) or (35). The output of this is the 
estimated Sa(w) at the respective cyclic frequency a.

５ Numerical Evaluation

In the discussion that follows we present the bias, 
variance and cyclic resolution properties of the SCD 
estimators presented in section 4.3 with different segment 
sizes for WOSA and different filter lengths for MVDR and 
NMVDR. We will refer to each test case with the method 
name followed by the segment or filter lengths (i.e. WOSA 
Q).

For WOSA the values of Q represent segment size and 
take the values N, N /2 and N /4 where N is the total number 
of samples of the signal. As mentioned above WOSA N is 
the known periodogram used extensively in classic spectral 
estimation. For MVDR and NMVDR Q represents the filter 
lengths and has a maximum value of N /2 because larger 
values would cause Rxx to be singular (i.e. non invertible) 
that would result in unstable spectral estimates.

In all simulations we generated 64 samples of the 
example signal presented in section 3.2 with a signal 
frequency of  fc=1.5Hz and sampled at 10Hz.

To simplify our numerical results we set the amplitude 
to A = 1. Also based on the periodic and symmetric 
properties of the spectral correlation (section 3.1) we only 
estimate the first quadrant of Sa(w) in the bi-frequency 
plane a−w and obtain the other three quadrants using the 
symmetry properties. This greatly reduces the computation 
time and memory consumption of our algorithm.

Before we can estimate Sa(w) using any of our derived 
estimators (33), (34) or (35) we need to estimate Rxx first.

We have the forward estimate:Fig. 4　SCD Estimation via cyclic demodulates 
Method.
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ˆ ( ) ( ) ( )
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R x n x n
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−
∗

=

= ∑
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0

1 36

or the forward-backward sample estimate:

ˆ̂̂ ˆ ˆ( ) ( )T
FB F FR R JR J 
1 37
2

where J is the reflection matrix. We prefer to use the 
forward-backward sample estimate as it is known to have 
better statistical properties than the forward-only estimate 
[10, 17].

5.1　Probability of cyclic resolution
We are interested in evaluating the probability of 

resolution of the cyclic frequency that is characteristic of 
the SCD.

Although there is no rigorous definition of cyclic 
frequency resolution we can define a resolution criterion as 
the frequency separation ∂a=a1−a2 at which the SCD 
evaluated at am= (a1+a2) /2 is equal to the average of the 

SCDs evaluated at a1 and a2 [19, 22]:

( ) { ( ) ( )} ( )mS w S w S w= +1 21 38
2

a a a

Using this criterion we can establish a random inequality to 
define a resolution event:

( , ) ( ( ) ( )) ( ) ( )mS w S w S wΓ = + − >1 2
1 2

1 0 39
2

a a aa a

Correspondingly we can define the binary probability of 
resolution Pres as [22]:

( ) ( )resP P= Γ > 0 40

To evaluate the probability of resolution we generated two 
signals using the same parameters but with frequencies wc 
and wc+∂a where ∂a takes values from 0Hz to 1Hz in steps 
of 0.05Hz. This two signals added together result in a SCD 
similar to those in figure 1 with four additional peaks at:

( , ) ( , )cw w= ± + ∂ 0a a

Fig. 5　Probability of resolution.

Fig. 6　Bias of the WOSA SCD estimator.
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Fig. 7　Bias of the WOSA MVDR estimator.
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Fig. 8　Bias of the WOSA NMVDR estimator.
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and

( , ) ( , ( )).cw w= ± + ∂0 2a a

In figure 5 we plotted the probability of cyclic resolution  
P (Γ>0) of the two peaks at (0, wc) and (0, 2 (wc+∂a)) as a 

function of the cyclic frequency separation ∂a.
As seen in the figure, all test cases present a threshold 

effect where the probability of resolution is zero until the 
smaller ∂a resolvable by each test configuration is reached. 
At this threshold point all methods, except for NMVDR 
N /8, rapidly achieve 100% probability of resolution of the 
two peaks.

All methods of the same segment/filter size have 
similar probability of resolution marked by the circular 
regions in the plot. In all three circular lines NMVDR 
presents the best resolution followed by MVDR and finally 
WOSA. As segment/filter length increases all three methods 
improve in resolution capability but even with no averaging 
(WOSA N) WOSA lacks behind NMVDR N /4 in resolution.

This high resolution property, when compared to 
WOSA, is one of the praised strengths of the MVDR and 
NMVDR estimators and as we can see cyclic spectral 
analysis also benefits from this high resolution property.

5.2　Bias and Variance
To obtain the bias and variance of the SCD estimators 

we estimated the SCD at the point (w, a)= (0, 2wc) over a 
range of SNR values from −20dB to +20dB using different 
segment sizes for WOSA and filter lengths for MVDR and 
NMVDR estimators. For each value of SNR we repeated 
the experiment over 200 independent trials while 
accumulating the bias, variance and minimum squared error 
(MSE) of the spectrum magnitude estimates.

From the bias plots 6, 7 and 8 we can see that all 
estimators are biased with WOSA N having the largest bias. 
For segments sizes and filter lengths below N /4 we find 
that MVDR and WOSA estimators presents similar bias 
while NMVDR goes to both extremes, it has the lowest bias 
at N /8 but quickly increases for larger filter lengths

In the variance plots 9, 10 and 11 we see that WOSA 
and MVDR, as with the bias, present a similar behavior that 
improves as the SNR increases and with MVDR slightly 
better than WOSA. Also as with the bias, NMVDR has the 
lowest variance at N / 8 but also presents a quick 
degradation for larger filter lengths and SNR values.

To make an overall performance comparison between 
the estimators we plotted their Minimum Square Error 
(MSE) in Fig. 11. WOSA N /2, MVDR N /2 and WOSA 
N /4, MVDR N /4 present very similar performance as seen 
also in the bias and variance plots. These performance 
similarities appear because MVDR can be though as an 
adaptive version of the WOSA method. To see this it 
suffices to replace −

1 1

1
x xR and −

2 2

1
x xR in (34) with the identity 

matrix I and it will reduce to the WOSA estimator (33) [15]. 
NMVDR has the lowest MSE with short filter length but 
the performance degrades significantly as larger filters are 
used. Again we can see a trade-off in performance vs. 

Fig. 9　Variance of the WOSA SCD estimator.
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Fig. 10　Variance of the MVDR SCD estimator.
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Fig. 11　Variance of the NMVDR SCD estimator.
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segment/filter lengths as seen in the probability of 
resolution but in the opposite direction. Increasing lengths 
improves resolution but degrades the MSE performance 
while decreasing lengths improves MSE but reduces 
resolution.

６ Conclusions and Future Work

For applications that require to separate very closely 
spaced frequency components and do not care about the 
accuracy of the estimated spectrum magnitude the NMVDR 
would be the best candidate as it presents the best 
resolution. In most situations where less resolution is 
tolerable the MVDR method is a better candidate over the 
classic WOSA method as it has better resolution and 
comparable bias and variance. In more stringent 
applications it is possible to use the high resolution of 
NMVDR to locate the cyclic frequency bin positions and 
then use MVDR or the less complex WOSA to obtain SCD 
magnitude at those bin positions only. This way we may get 
the best SCD estimate by combining the properties of these 
estimators at the cost of higher computational cost.

As noted by others [4, 18] the high bias and variance 
presented by the NMVDR is caused by an over estimated 
bandwidth BN. We could improve the SCD estimates by 
selecting a better BN but care must be taken that such 
bandwidth values may result in an increased complexity 
with a little or no improvement on the final spectral density 
estimate [12].

Our numerical results show that both MVDR and 
NMVDR exceed in resolution the classic WOSA method 
and in the case of the MVDR a small improvement in 
variance and bias. This suggests that MVDR is a better 
candidate for SCD estimation. Further research will 
concentrate in efficient implementations of the MVDR and 
NMVDR methods to reduce the high computational cost 
mostly due to the matrix inversion.

Finally we must say that these empirical experiments 

where designed to test the capacity of the estimators to 
estimate the SCD of a simple cyclostationary signal and for 
that they are not exhaustive and analytical studies are 
required to obtain more compete results.
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