
Divisible Load Scheduling on
Heterogeneous Distributed Systems

異種分散システムにおける
可分タスクのスケジューリング

July 2008

Graduate School of Global Information and Telecommunication Studies
Waseda University

Audiovisual Information Creation Technology II

Abhay Ghatpande

In memory of my papa

P R E F A C E

With the proliferation of the Internet, volunteer computing is rapidly becoming feasible
and gaining popularity. Volunteer computing is a form of distributed computing in which
a large number of average users offer their computers to serve as processing and storage
resources for scientific research projects or what are known as grand challenge problems.
Similarly, grid computing and cloud computing, which provide mechanisms for users and
applications to submit and execute computationally intensive workflows on remote re-
sources, are being used for wide variety of applications today.

The jobs that can be submitted to these systems are limited because they use open and
shared resources that introduce three important challenges: (a) heterogeneity, (b) uncer-
tainty, and (c) network latency and delay. If an application has a complex structure, then
a lot of time is spent waiting for data to be transferred between the participating nodes.
This makes divisible loads ideally suited for execution on volunteer and grid computing
systems. Divisible loads are perfectly parallelizable and can be arbitrarily partitioned into
independently and identically processable load fractions.

Divisible loads usually follow the master-slave model of computation: a master node
holds the entire (divisible) load and distributes it to the slave nodes; the slave nodes per-
form requisite processing on the allocated load fractions, and send the results back to
the master. This research considers two of the above mentioned issues: (a) the slaves are
heterogeneous, i.e., they differ in computation speed and the bandwidth of the network
that links them with the master node, and (b) the networks have high latency, i.e., the
bandwidths can be considerably lower than the computation speeds.

Under these conditions, the focus of this research is to minimize the makespan, i.e.,
the total time from the point that the master begins sending out load fractions to the
point where result collection from all slaves is complete. This involves optimizing (a) the
selection of slaves to allocate load, (b) the quantity of load to be allocated to each, (c) the
order (sequence) in which the fractions are sent to the slaves, and (d) the order in which
the slaves send the results back to the master. This optimization problem is referred to
as the DLSRCHETS (Divisible Load Scheduling with Result Collection on HETerogeneous
Systems) problem.

i

Divisible Load Theory (DLT), the mathematical framework for the optimization of Di-
visible Load Scheduling (DLS) has been studied for over ten years. Most of the work has
concentrated on the case where no results are returned to the master. This simplifies the
analysis to a great extent, and allows for derivation of optimal load fractions and sequence
of distribution to the slaves. The addition of result collection and system heterogeneity
breaks down this simplicity. The complexity of DLSRCHETS is an open problem and there
is no known polynomial-time algorithm for an optimal solution to DLSRCHETS. Before
this research, the only proposed solutions to DLSRCHETS were FIFO (First In, First Out)
and LIFO (Last In, First Out) type of schedules, which are not always optimal.

This work considers the most general form of DLSRCHETS. No assumptions are made
regarding the number of slaves that are allocated load, both the network and computation
speeds of the slaves are considered to be heterogeneous, and idle time can be present in
the schedule if it reduces the makespan.

The overall flow of this thesis is as follows. The theoretical basis of DLSRCHETS is first
established, and it is defined in terms of a linear program for analysis. The optimal sched-
ule for a system with two slaves is extensively explored because the proposed algorithms
are built on it. Two new polynomial-time algorithms, namely ITERLP (ITERative Linear
Programming) and SPORT (System Parameters based Optimized Result Transfer) are pro-
posed as solutions to DLSRCHETS. The performance of traditional and new algorithms is
compared using a large number of simulations and the proposed algorithms are shown to
have superior performance. The thesis is organized into five main chapters, preceded by
an introduction, and terminated by a conclusion as described below.

Chapter 1. Introduction establishes the research context that forms the basis for this
thesis. It introduces the application areas of volunteer and grid computing, and the prob-
lems faced in scheduling applications on these platforms. Next, divisible loads and divis-
ible load scheduling are introduced along with the important results to date. The short-
comings of traditional DLT and the research objectives are laid out. Traditional methods
are compared with the new approaches in this thesis, and the contributions of this thesis
are elaborated. The organization of the thesis is explained.

Chapter 2. System Model defines the systemmodel uponwhich this thesis is built. There
are several important constraints and assumptions that are used in the problem defini-
tion. The first one is that the communication and computation times are linearly increas-
ing functions of the size of data. Similarly, the size of result data generated by a processor
is directly proportional to the size of its allocated input load data. The constant of propor-
tionality depends only on the application under consideration and is the same for all the
processors. It is assumed that a processor can do only one thing at a time, i.e., communica-

ii

tion and computation cannot overlap in a processor. Further, a processor can communi-
cate with only one other processor at a time. This is known as the unidirectional one-port
model. All operations including data transmission, reception, and computation follow the
atomic or block-based model, i.e., they proceed uninterrupted in a single installment un-
til the end. In this chapter, justification is given for all these assumptions considering the
target applications and environment.

Chapter 3. Analysis of DLSRCHETS provides a detailed derivation of the DLSRCHETS
problem definition. After first laying the theoretical basis, the DLSRCHETS problem is de-
fined in terms of a linear program. The analysis of the optimal solution to DLSRCHETS
is presented. Two important proofs are given — one for the allocation precedence condition
and the other for the idle time theorem. The allocation precedence condition is necessary
to limit the number of possible schedules of DLSRCHETS to a finite number. It argues that
there always exists an optimal solution to DLSRCHETS in which the entire load is first dis-
tributed to the slaves before themaster starts to receive results from the slaves. The proof
uses rearrangement of the timing diagram to substantiate the claim.
The proof of the idle time theorem is more complicated as it uses the geometry of lin-
ear programming. A brief introduction to linear programming is included in the chapter
for this reason. The idle time theorem states that not all slaves may be allocated load in
the optimal solution, and irrespective of the number of slaves that are allocated load, at
most one slave can have idle time in the optimal solution. In linear programming, some
solutions can be degenerate. Analysis proves that the idle time theorem is true for both
non-degenerate and degenerate cases.

Chapter 4. The ITERLP Algorithm proposes thenewpolynomial-time ITERLP algorithm.
The complexity of DLSRCHETS is an open problem and finding the optimal solution is
difficult. Thus, one has to resort to heuristic algorithms under the circumstances. The
proposed ITERLP algorithm reduces the number of possible allocation and collection se-
quences to m each instead of the usual m!. The rationale behind the pruning of possible
schedules in ITERLP is explained.
The computation cost of ITERLP is still quite high — in the worst case O(m3) linear pro-
grams have to be solved. The simulations show that ITERLP performance is much better
than LIFO and FIFO over a wide range of parameter values. The performance of the al-
gorithm is quite stable; schedules generated by ITERLP have execution time close to the
optimal in most of the cases. In the extensive simulations performed, the maximum devi-
ation of processing time with respect to the optimal is 0.8% for 5 processors, and it takes
about 3 to 5 minutes to find the schedule. As the number of processors increase, the time
required to compute the solution increases. For example, it takes around 80 minutes to

iii

compute the ITERLP schedule for 65 processors. Because the expected error is low, even
though computation cost is high, ITERLP allows comparison of other heuristic algorithms
when it is impractical to find the optimal solution.

Chapter 5. The Two-Slave System lays the foundationof the two-slave system that forms
thebasis for the SPORTalgorithm. Several important concepts are introduced in this chap-
ter. It begins with the three types of possible optimal schedules in a two-slave system and
the related derivations. This is followed by the derivation of the optimal schedule for two
processors using simple if-then-else clauses. This derivation includes two important re-
sults: (a) the condition for optimality of the LIFO and FIFO schedules, which shows that
whether LIFO (resp. FIFO) is faster for a two-slave system depends only on the commu-
nication speeds of the links, and (b) the condition for the existence of idle time in a FIFO
schedule that shows a relationship between the presence of idle time and the computa-
tion and communication speeds of the two processors, and the type of divisible load under
consideration. Next, the equivalent processor for LIFO and FIFO schedules in a two-slave
system is derived. The equivalent processor enables the combination of two processors
into a single virtual processor. The equivalent processor concept is extended to an arbi-
trary number of processors, and its applications are explained. Amethod to determine the
number of processors to allocate load is derived using the equivalent processor concept.

Chapter 6. The SPORT Algorithm introduces the SPORT algorithm as a solution to the
DLSRCHETS problem. Alongwith the allocation and collection sequences, the SPORT algo-
rithm finds: (a) the number of processors to use for computation, and (b) the load fractions
to be allocated to the participants. The important point is that this is done without solv-
ing time-consuming linear programs. The number of possible allocation and collection
sequences is limited to a few, potentially optimal permutations. Because of this, with a
set of processors sorted by decreasing communication speed, the complexity of SPORT is
O(m), wherem is the number of available processors. The algorithm is robust to system
composition and it provides good schedules for both homogeneous and heterogeneous
types of systems. In the large number of simulations performed, the maximum deviation
of processing time with respect to optimal is 1.5% for 5 processors. SPORT is very fast —
it takes less than a second to find the solution for 500 processors.

The basic idea behind SPORT is very simple — to use two processors at a time and build a
piecewise locally optimal schedule. However it is not very straightforward to be able to do
this directly, and several necessary tools are designed. Detailed explanation regarding the
working of the algorithm is given. Themethod of deriving load fractions using binary tree
traversal is explained. Results of the comprehensive simulation testing of the algorithms
are presented.

iv

Chapter 7. Conclusion summarizes the various points covered in the thesis and presents
several ideas for future work. It is proposed that future work can proceed in the follow-
ing main directions: (a) Theoretical analysis of complexity and other optimality results,
(b) Extensions to the current systemmodel, (c) Modifying the nature of DLSRCHETS itself,
and (d) Development of applications and physical testing.

ACKNOWLEDGEMENTS

I express my sincere gratitude to my advisor Prof. Hiroshi Watanabe, and co-advisors,
Prof. Hidenori Nakazato and Prof. Olivier Beaumont. Without their guidance and encour-
agement, I would have made no progress. I thank Dean Yoshiyori Urano and Prof. Wataru
Kameyama, for being on the jury, and for their questions and comments on the disserta-
tion.

I am deeply indebted to several people who helped me over the years. Some of them
are Prof. Thomas Robertazzi, Prof. Veeravalli Bharadwaj, Prof. Maciej Drozdowski, Prof.
Gerassimos Barlas, Prof. Jeff Erickson, Prof. Akihisa Kodate, Dr. Henning Breuer, and Dr.
Jim Dowling.

My thanks to all my friends and colleagues who have enriched my life in ways too
numerous to mention.

And finally, a big thank you to my family — my greatest asset. I am fortunate to be
surrounded by such wonderful, supportive people.

v

T A B L E O F C O N T E N T S

Preface i

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Research Context . 1

1.1.1 Volunteer and Grid Computing 1
1.1.2 Divisible Loads and Scheduling . 3
1.1.3 Shortcomings of Traditional DLT 6

1.2 Research Objectives . 9
1.3 Thesis Contributions . 10
1.4 Thesis Organization . 13

2 The System Model 17
2.1 Introduction . 17
2.2 Job Execution Model . 17
2.3 Communication and Computation Model 18
2.4 Communication and Computation Parameters 20
2.5 Result Data Model . 21
2.6 Communication and Computation Time 21
2.7 Summary . 23

3 Analysis of DLSRCHETS 25
3.1 Introduction . 25
3.2 Problem Formulation . 25
3.3 A Primer on Linear Programming . 33

3.3.1 General Linear Programming Problem 33
3.3.2 Geometry of Linear Programming 34

vii

3.3.3 Bases, Feasibility, and Local Optimality 36
3.4 Analysis of Optimal Solution . 36
3.5 The Importance of Idle Time . 43
3.6 Summary . 45

4 The ITERLP Algorithm 47
4.1 Introduction . 47
4.2 Brief Introduction to Permutations . 47
4.3 Proposed Algorithm . 50
4.4 Algorithm Explanation . 51
4.5 Finding Candidate Sequences . 52
4.6 Complexity and Discussion . 53
4.7 Simulation Results and Analysis . 54

4.7.1 Algorithm Variants for Comparison 55
4.7.2 Simulation Method . 56
4.7.3 Result Plots and Analysis . 57

4.8 Summary . 60

5 Two-Slave System 63
5.1 Introduction . 63
5.2 Two-Slave System Configuration . 64
5.3 Schedule f . 67
5.4 Schedule l . 69
5.5 Schedule g . 72
5.6 Optimal Schedule in Two-Slave System 74
5.7 The Concept of Equivalent Processor . 76
5.8 Equivalent Processor for Schedule f . 77
5.9 Equivalent Processor for Schedule l . 78
5.10 Equivalent Processor for Schedule g . 79
5.11 The Equivalent Processor Theorem . 79
5.12 Extending the Equivalent Processor Concept 82

5.12.1 The General FIFO Schedule . 83
5.12.2 General FIFO Equivalent Processor 84
5.12.3 The General LIFO Schedule . 86
5.12.4 General LIFO Equivalent Processor 87
5.12.5 Results Using General Equivalent Processor 88

5.13 Summary . 89

viii

6 The SPORT Algorithm 91
6.1 Introduction . 91
6.2 Proposed Algorithm . 92
6.3 Algorithm Explanation . 95
6.4 Complexity and Discussion . 99
6.5 Simulation Set A . 100

6.5.1 Set A1 — C homogeneous, E homogeneous 101
6.5.2 Set A2 — C homogeneous, E heterogeneous 103
6.5.3 Set A3 — C heterogeneous, E homogeneous 105
6.5.4 Set A4 — C heterogeneous, E heterogeneous 106
6.5.5 Simulation Result Analysis . 108

6.6 Simulation Set B . 111
6.6.1 Simulation Method . 111
6.6.2 Simulation Results and Analysis 111
6.6.3 Discussion on Performance of LIFOC and SPORT 113

6.7 Summary . 115

7 Conclusion 117
7.1 Summary of the Thesis . 117
7.2 Ideas for Future Work . 120

7.2.1 Theoretical Analysis . 120
7.2.2 Extending the System Model . 120
7.2.3 Modification of DLSRCHETS . 120
7.2.4 Application Development . 121

References 123

List of Publications 131

Acronyms and Abbreviations 133

List of Symbols 135

ix

L I S T O F F I G U R E S

1.1 A heterogeneous master-slave system . 3
1.2 Divisible load partitioning . 5
1.3 The timing diagram for AFS policy . 6
1.4 Timing diagram for FIFO schedule . 7
1.5 Timing diagram for LIFO schedule . 8
1.6 A possible schedule in this research . 10

2.1 A general schedule for DLSRCHETS . 18
2.2 The heterogeneous master-slave systemH 21

3.1 A possible schedule withm = 3 . 27
3.2 Interleaved result collection . 28
3.3 A schedule that satisfies the Feasible Schedule Theorem 31
3.4 Timing diagram for the optimal LIFO schedule 40
3.5 The rearranged optimal LIFO schedule . 41
3.6 Timing diagram for an optimal FIFO schedule 42
3.7 An optimal FIFO schedule with idle time 42
3.8 Optimal LIFO schedule for Example 3.1 . 44
3.9 Optimal FIFO schedule with idle time in both processors 45
3.10 Optimal FIFO schedule with idle time in one processor 45

4.1 A feasible schedule form = 3 . 49
4.2 ITERLP progress illustrated for 4 processors 51
4.3 Normalized Execution Time form = 4, δ = 0.2, Case 9 57
4.4 ⟨∆T ⟩ form = 4, δ = 0.2 . 58
4.5 ⟨∆T ⟩ form = 5, δ = 0.8 . 59
4.6 ⟨∆T ⟩ form = 5, δ = 0.5 . 59
4.7 ⟨∆T ⟩ w.r.t. ITERLP,m = 10, δ = 0.2 . 60
4.8 ⟨∆T ⟩ w.r.t. ITERLP,m = 20, δ = 0.5 . 61
4.9 ⟨∆T ⟩ w.r.t. ITERLP,m = 30, δ = 0.8 . 61

xi

4.10 ⟨∆T ⟩ w.r.t. ITERLP,m = 30, δ = 0.2 . 62

5.1 A feasible schedule form = 3 . 65
5.2 A heterogeneous two-slave system . 66
5.3 Timing diagram for Schedule f . 67
5.4 Timing diagram for Schedule l . 69
5.5 Timing diagram for Schedule g . 72
5.6 The concept of equivalent processor . 76
5.7 Equivalent processor in Schedule f . 78
5.8 Equivalent processor in Schedule l . 79
5.9 Equivalent processor in Schedule g . 80
5.10 General FIFO schedule and equivalent processor 83
5.11 General LIFO schedule and equivalent processor 86

6.1 The SPORT Algorithm . 96
6.2 An example of SPORT for three processors 97
6.3 Calculating the load fractions in SPORT 98
6.4 The main and sub-intervals used for Simulation Set A 102
6.5 ⟨∆T ⟩ in Set A1 form = 4, δ = 0.2 . 103
6.6 ⟨∆T ⟩ in Set A1 form = 5, δ = 0.8 . 104
6.7 ⟨∆T ⟩ in Set A2 form = 4, δ = 0.5 . 105
6.8 ⟨∆T ⟩ in Set A2 form = 5, δ = 0.2 . 105
6.9 ⟨∆T ⟩ in Set A3 form = 4, δ = 0.8 . 106
6.10 ⟨∆T ⟩ in Set A3 form = 5, δ = 0.5 . 107
6.11 ⟨∆T ⟩ in Set A4 form = 4 . 108
6.12 ⟨∆T ⟩ in Set A4 form = 5 . 108
6.13 ∆T in simulation set B,m = 10 . 112
6.14 ∆T in simulation set B,m = 100 . 113
6.15 ∆T in simulation set B,m = 300 . 114
6.16 Comparison of wall-clock time for SPORT, LIFOC, and FIFOC 116

xii

L I S T O F T A B L E S

1.1 Comparison with traditional DLS without result collection 11
1.2 Comparison with traditional DLS with result collection 11

4.1 Results for C = {10, 15}, E = {10, 10}, δ = 0.5 53
4.2 Results for C = {10, 15, 20}, E = {10, 10, 1}, δ = 0.5 54
4.3 Parameters for ITERLP simulations . 56
4.4 Maximum ⟨∆T ⟩ of FIFOC . 58
4.5 Maximum ⟨∆T ⟩ of LIFOC . 58
4.6 Maximum ⟨∆T ⟩ of ITERLP . 60

6.1 Parameters for SPORT simulation sets A and B 101
6.2 Minimum statistics for SPORT simulation set A 109
6.3 Maximum statistics for SPORT simulation set A 110
6.4 Statistics for LIFOC in simulation set B . 115
6.5 Comparison of wall-clock time for SPORT, LIFOC, and FIFOC 115

7.1 Algorithm feature and performance comparison 118

xiii

C H A P T E R 1

I N T R O D U C T I O N

1.1 RESEARCH CONTEXT

Parallel and distributed computing has been a topic of active research for over 50
years. The basic idea behind parallel computing is very simple — the simultaneous use
of multiple computing elements to solve a computational problem. The primary reasons
for using parallel computing are:

• To solve problems faster, i.e., save time

• To solve larger problems

• To solve several problems at the same time

There are other secondary reasons, such as economic benefits, technology limitations on
serial computing, memory constraints of single computers, and availability of cheap, off-
the-shelf (COTS) hardware.

The computing elements in parallel computing may be a single computer with multi-
ple processors (these daysmultiple cores in a single CPU are also common), or several com-
puters connected by a network, or usually a combination of both. The application under
consideration decides the choice of architecture, i.e., the level at which parallelism can be
most efficiently exploited as dictated by the algorithm. In this thesis, the focus is on wide
area distributed computing, in which the computers are loosely-coupled and geographically
dispersed. Parallelism follows the data-parallelmodel, and individual computers indepen-
dently run entire programs on their share of the data.

1.1.1 Volunteer and Grid Computing

With the proliferation of the Internet, volunteer computing [3–5] is rapidly becoming
feasible and gaining popularity. Volunteer computing is a form of distributed computing

1

in which a large number of average users offer their computers to serve as processing and
storage resources for scientific research projects or what are known as Grand Challenge
Problems such as [93]:

• astronomy and astrophysics,

• biological, human genome,

• chemical and nuclear reactions,

• cryptography,

• geological, seismic activity,

• weather and climate study.

Similarly, grid computing [43, 44] and cloud computing [72, 96], which are new distributed
computing paradigms, provide mechanisms for users and applications to submit and ex-
ecute computationally intensive workflows on remote resources. Grids are being used for
a large number of applications today such as:

• astronomy & space exploration [50, 90],

• distributed video capture, storage and retrieval [31],

• distributed image processing [80, 89],

• polygon rendering for simulation and visualization [58, 67],

• satellite data processing [91],

• computer vision [89],

• medical simulation [19], and many more.

All these systems essentially follow the master-slave approach shown in Fig. 1.1. It is a
star connected (single-level tree) network where the center of the star (root of the tree)
forms the master and the points of the star (leaf nodes of the tree) form the slaves. The
master holds all the data associated with a job (problem) that has to be processed in some
manner. The data is then divided into a number of parts, and distributed to the slaves. The
slaves perform the requisite computation on their respective parts in parallel, and return
the computed results back to the master.

Because of the use of open and shared resources, one of the biggest problems faced by
these new forms of distributed computing is the network latency and delay. This places a

2

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

	 	 	 	 	
	 	 	 	 	
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1.1 A heterogeneous master-slave system. Slaves can have different computing
speeds and the network links connecting them to the master can have different band-
widths.

limitation on the types of jobs that can be submitted to these systems, if the systems are
to be used efficiently. If an application has complex structure, then a lot of time is spent
just waiting for data to be transferred between the participating nodes.

Volunteer computing uses anonymous contributed resources, and a large degree of
heterogeneity exists in the network bandwidth and processing power of the participating
nodes. In the case of grid or cloud computing, usually the resources are contributed by
institutions, but here too, the resources are highly heterogenenous and shared among
many users.

The geographical distribution of computing capabilities and the resource heterogene-
ity requires novel approaches to access, transfer, and process data. The basic technology
for exploiting computational grids is grid middleware, which is provided by toolkits such
as Globus [43], Legion [51], and UNICORE [76], and for volunteer computing by software
such as BOINC [2]. Thesemiddleware toolkits offer information infrastructure services for
security, communication, fault detection, resource anddatamanagement, andportability.
The availability of these basic services permits the focus on algorithms for improving the
utilization and efficiency of the system without worrying about how the implementation
will be carried out.

1.1.2 Divisible Loads and Scheduling

Scheduling has been an important area of study for a long time. Scheduling is one
of the main areas of contemporary mathematics as a branch of combinatorial optimiza-
tion [87]. The origin of scheduling lies in the operations research mainly in production

3

and project management [6, 30, 40]. As the complexity of computer systems grew, the re-
sults from these areas were applied to the management and control of computer systems.
Scheduling is now an important part of the design of libraries and compilers [7, 71, 83],
operating systems [41, 88], and real-time systems [53, 79, 81, 86, 102]. Scheduling theory
and its range of theoretical and practical results is too vast to be presented here. There
is however one branch of scheduling theory that has gained wide importance over the
last few years and that has been studied extensively for its simplicity and tractability —
Divisible Load Theory (DLT) and Divisible Load Scheduling (DLS).

Divisible loads are a special class of parallelizable applications that have very regular
linear structure, and which if given a large enough volume, can be arbitrarily partitioned
into any number of independently and identically processable load fractions (parts). In
Fig. 1.2, each light gray square represents a unit task and the set of 100 such squares rep-
resents the divisible load. As seen in Fig. 1.2, the divisible load (job) can be partitioned
in any number of ways. Each part undergoes the same processing as the others, and can
be processed independently of the others. The shape of a part is not important, and the
partitioning of a divisible load should not be confused with a 2-dimensional cutting prob-
lem [29]. Figure 1.2 just illustrates that a divisible load is composed of independent tasks
that can be clustered together arbitrarily.

Examples of applications that satisfy this divisibility property include massive data-
set processing, image processing and rendering, signal processing, computation of Hough
transforms, tree and database search, Monte Carlo simulations, computational fluid dy-
namics, and matrix computations. Divisible loads are especially suited for execution on
volunteer, grid and cloud computing systems because of the absence of interdependen-
cies and precedence relations between the different parts into which the load is divided.

The partitioning of a divisible load, the allocation (mapping) of the parts to appropri-
ate processors for execution, and the sequencing (ordering) of the transfer of the parts to
and from the processors, is together known as Divisible Load Scheduling. Divisible Load
Theory is the mathematical framework that has been established to study the optimiza-
tion of DLS [9, 11–13, 22–27, 34, 36, 48, 49, 56, 62, 63, 65, 73–75, 84, 85].

The hallmark of DLT has been its relative simplicity and deterministic nature. The
basic principle of DLT to determine an optimal schedule for the master-slave system in
Fig: 1.1 is the AFS (All slaves Finish Simultaneously) policy [9]. This states that the opti-
mal schedule is one in which the load is distributed such that all the nodes involved in
the computation finish processing their individual load fractions at the same time [52]. It
is illustrated in Fig. 1.3 that shows the timing diagram of the slaves’ communication and
computation. The time spent in communication with the master is shown above the hor-
izontal axes, and the time spent in computation by the individual slaves is shown below

4

.
.α1

.α6

.α11

.α16

.α21

.α2

.α7

.α12

.α17

.α22

.α3

.α8

.α13

.α18

.α23

.α4

.α9

.α14

.α19

.α24

.α5

.α10

.α15

.α20

.α25

.α1 .α2 .α3

.α4 .α5 .α6 .α7 .α8

.α9 .α10 .α11

.α1

.α6

.α2

.α7

.α5

.α3

.α4

.α1 .α2 .α3 .α4 .α5

.α1

.α2

.α3

.α4

.α5

.α1

.α2

.α3

.α4

.α5

Figure 1.2 The data set associated with a divisible load (job) can be arbitrarily parti-
tioned in any number of ways. Each part undergoes the same processing as the others,
and can be processed independently of the others. The shape of the part is not important.
The figure just illustrates that a divisible load is composed of independent tasks that can
be clustered together arbitrarily.

the horizontal axes. This convention is followed throughout this thesis. As can be seen,
all the slaves finish their computation at time T .

Blazewicz and Drozdowski [28] revised the traditional system model with overhead
factors, while Bharadwaj et al. [26] extended the study with closed-form solutions for op-
timal processing time. Sohn et al. [85] used the DLT tominimize total monetary cost when
utilizing system resources. There are several papers that have tackled other implementa-
tion related issues. For example, Li et al. [63] dealt with finite size buffer constraints which
are very important when considering shared resources. Another issue is the granularity
of the input load, i.e., the fact that practical loads are not infinitely divisible but have a
certainminimum size. Bharadwaj and Viswanadham [21] analyzed bus networks by intro-
ducing a divisibility factor and dividing the load in integral multiples of the factor. Several
other issues such as processor release times, multi-installment load distribution, fault-
tolerance, and start-up costs have been addressed in [23, 101, 104]. Some other important
papers in the DLT area are [9, 11–13, 22, 23, 25, 26, 34, 36, 48, 49, 56, 62, 65, 74, 84, 85]. The
definitive reference for this field is the book by Bharadwaj et al. [24], while Drozdowski
[39] offers some excellent insights into the practical implementation of DLT on various

5

.
.Time

.p1
.

.

.p2
.

.

.

.pm
.

.
.T

.
. .. .Allocation .. .Computation

Figure 1.3 The timing diagram for AFS policy. All processors finish their computation
at the same time T . This is the optimal schedule when there is no result collection phase.

architectures. Bharadwaj et al. [27] and Beaumont et al. [15] recently published reviews
of the work done to date in DLT. An exhaustive listing of papers regarding DLT and DLS is
available on Thomas Robertazzi’s homepage [73].

1.1.3 Shortcomings of Traditional DLT

The AFS policy yields closed-form equations to determine the optimal load fractions
to be allocated to the processors, and allows easy theoretical analysis of the systemperfor-
mance. The AFS policy implies that after the nodes finish computing their individual load
fractions, no results are returned to the source. This is an unrealistic assumption for most
applications on volunteer and grid computing, as the result collection phase contributes
significantly to the total execution time. This is a serious shortcoming of traditional DLT.

Along with the AFS policy, there are two assumptions that have implicitly pervaded
DLT literature to date:

(a) Load is allocated to all available processors (slaves), and

(b) A processor is never idle except for the time when it is waiting for the reception of
its allocated load fraction from the master.

The presence of idle time in the optimal schedule has been overlooked in DLT work on
result collection and heterogeneity. It is a very important issue because it may sometimes
be possible to improve a schedule by inserting idle time.

6

.
.Time

.p1
.

.
.

.p2
.

.
.

.

.pm
.

.
.
.T

.
. .. .Allocation .. .Computation .. .Collection

Figure 1.4 Timing diagram for FIFO schedule. The results are collected in the same se-
quence as the load fractions are allocated. Though not shown in this figure, optimal FIFO
schedules may have idle time.

A few papers have dealt with DLS on heterogeneous systems to date [16–18, 24, 36,
77]. Bharadwaj et al. [24], Chap. 5 proved that the sequence of allocation of data to the
processors is important in heterogeneous networks. Without considering result collec-
tion, they proved that for optimum performance,

(a) when processors have equal computation capacity, the optimal schedule results
when the fractions are allocated in the order of decreasing communication link ca-
pacity, and

(b) when communication capacity is equal, the data should be allocated in the order of
decreasing computation capacity.

As far as can be judged, no paper has given a satisfactory solution to the scheduling prob-
lem where both the network bandwidth and computation capacities of the slaves are dif-
ferent, and the result transfer to the master is explicitly considered.

Cheng and Robertazzi [34] and Bharadwaj et al. [24], Chap. 3 addressed the issue of
result collection with a simplistic constant result collection time, which is possible only
for a limitednumber of applications onhomogeneousnetworks. All other papers that have
addressed result collection to date, advocated FIFO (First In, First Out) and LIFO (Last In,
First Out) type of schedules. As shown in Fig. 1.4, in FIFO, results are collected in the same
order as that of load allocation, while in LIFO, the order of result collection is reversed
as shown inFig. 1.5. Barlas [9] addressed the result collection phase for single-level and

7

.
.Time

.p1
.

.
.

.T

.p2
.

.
.

.

.pm
.

.
.

.
. .. .Allocation .. .Computation .. .Collection

Figure 1.5 Timing diagram for LIFO schedule. The results are collected in the reverse
sequence as allocation of load fractions. In the optimal LIFO schedule, no processor has
idle time.

arbitrary tree networks, but an assumption regarding the absence of idle time was made
without justification. Essentially he analyzed only two cases:

(a) when communication time is zero, and

(b) when communication networks are homogeneous.

The optimal sequences derivedwere essentially LIFO or FIFO. Rosenberg [77] too proposed
the LIFO and FIFO sequences for result collection. He concluded through simulations that
FIFO is better when the communication network is homogeneous with a large number of
processors, while LIFO is advantageous when the network is heterogeneous with a small
number of processors.

For the first time, it was shown in [17] that the LIFO and FIFO orderings are not always
optimal for a given set of processors. In [16, 18], it was proved that all processors from
a given set of processors may not be used in the optimal solution. For the unidirectional
single-port communication model (see Chapter 2), [16–18] proved the following features
in optimal schedules:

• In optimal LIFO and FIFO schedules, load is allocated in the order of decreasing com-
munication link bandwidth.

• In the optimal LIFO schedule, no processor has idle time.

• There exists an optimal FIFO schedule inwhich atmost one processormay have idle
time.

8

• If there exists a processor with idle time in an optimal FIFO schedule, then it can al-
ways be chosen to be the last processor in the allocation sequence (i.e. the processor
with the slowest communication link).

The above optimality results have been derived strictly for LIFO and FIFO type of sched-
ules, and are not applicable for the general case considered in this thesis.

1.2 RESEARCH OBJECTIVES

The focus of this research is to study the scheduling of divisible loads on heteroge-
neousmaster-slave systems when the slaves return result data to themaster. Specifically,
it seeks to minimize themakespan of such a schedule, i.e., to minimize the total time from
the point that the master begins sending out load fractions to the point where result col-
lection from all slaves is complete. This involves optimizing

(a) the selection of slaves to allocate load,

(b) the quantity of load to be allocated to each,

(c) the order (sequence) in which the fractions are sent to the slaves, and

(d) the order in which the slaves send the results back to the master.

This optimization problem is called the Divisible Load Scheduling with Result Collec-
tion on HETerogeneous Systems (DLSRCHETS) problem, and it is formally defined and an-
alyzed in detail in this thesis. The most general form of DLSRCHETS is considered. No
assumptions are made regarding the number of slaves that are allocated load, both the
network and computation speeds of the slaves are assumed to be heterogeneous, and idle
time can be present in the schedule if it reduces the makespan.

Finding an optimal solution to DLSRCHETS is surprisingly difficult. In fact, the com-
plexity of DLSRCHETS is an open problem and there is no known polynomial-time algo-
rithm for an optimal solution to DLSRCHETS. Thus it is important to find some character-
istics of DLSRCHETS and to gain insight into the optimal solution. Some of the questions
that are addressed in this thesis are:

• How can the general DLSRCHETS problem be definedmathematically?What are the
necessary conditions to be able to do that?

• Should all slaves be allocated load first before they start sending results back to the
source in the optimal solution?

• Will all available slaves be allocated load in the optimal solution?

9

.
.Time

.p1
.

. .
.

.p2
.

. .
.

.p3
.

. .
.

.p4
.

. .
.
.T

.
. .. .Allocation .. .Computation .. .Collection .. .Idle time

Figure 1.6 A possible schedule in this research. Allocation and collection sequences can
be arbitrary. Idle time may be present in all participating processors if it helps reduce the
total processing time T .

• Howmany slaves that are allocated load will have idle time in the optimal solution?

• Is it possible to identify some relationship between system computation and com-
munication speeds and the optimal solution? Under what circumstances is a partic-
ular schedule optimal? What causes it to be optimal?

• If finding an optimal solution is difficult, is it possible to find some near-optimal
heuristic algorithms to solve DLSRCHETS?

Tables 1.1 and1.2 summarize thedifferences between traditional divisible load schedul-
ing and this research.

1.3 THESIS CONTRIBUTIONS

Several original and unique contributions resulted from the work on this thesis:

The Allocation Precedence Lemma (Chapter 3) The allocationprecedence condition states
that, themaster distributes load to all participating slaves first, before receiving any results. The al-
location precedence lemma proves that in the general case considered in this thesis, there
always exists an optimal schedule that satisfies the allocation precedence condition. This
is necessary to limit the range of optimal solutions to DLSRCHETS to a finite number.

The Idle Time Theorem (Chapter 3) A proof is given for the Idle Time Theorem, which
states that, there exists an optimal solution for DLSRCHETS in which, irrespective of whether load

10

Table 1.1 Salient features of this research as compared to traditional DLS without result
collection. The theorems in traditional DLS are not applicable to this research.

DLS without result collection This Research

Ignores result collection. Explicitly schedules result collection phase.

Theorem Optimal schedule uses all avail-
able processors.

Selects only necessary number of proces-
sors.

Theorem Optimal allocation sequence
is in order of decreasing communication
bandwidth irrespective of computation
speed.

Optimal sequence depends on both com-
munication and computation speeds; it
cannot be predefined.

Theorem No processor has idle time in
the optimal schedule.

Theorem There is an optimal solution
where only one processor may have idle
time.

Table 1.2 Salient features of this research as compared to traditional DLS with result
collection. This research is distinctly more general in nature. The theorems for LIFO and
FIFO are not applicable here.

DLS with result collection This Research

Considers only LIFO or FIFO Considers completely general schedule

Theorem Optimal schedule uses all avail-
able processors.

Selects only necessary number of proces-
sors.

Theorem Optimal allocation sequence
is in order of decreasing communication
bandwidth irrespective of computation
speed.

Optimal order depends on both communi-
cation & computation speeds; it cannot be
predefined.

Usually ignores idle time. Recently consid-
ered idle time in FIFO.

Considers idle time to reduce makespan in
some cases.

Theorem There is an optimal FIFO sched-
ulewhere only one processormay have idle
time.

Theorem There is an optimal schedule
where only one processor may have idle
time.

is allocated to all available slaves, at most one of the slaves allocated load has idle time, and that
the idle time exists only when the result collection begins immediately after the completion of load
distribution. This is one of the principal contributions of this thesis. First, because it shows
that in some cases insertion of idle time can be beneficial, and second, because it enables

11

the definition of a constraint on the number of processors to be used in the SPORT algo-
rithm.

The ITERLP Algorithm (Chapter 4) Thenew ITERLP (ITERative Linear Programming) al-
gorithm is proposed and found to be near-optimal after rigorous testing. The ITERLP al-
gorithm does not necessarily use all processors (slaves) and determines the number of
processors to be used by repeatedly solving a number of linear programs. The complexity
of ITERLP is polynomial in the number of slaves (m) and requires solving O(m3) linear
programs in the worst case. Though the algorithm is computationally too expensive to be
used for a large number of slaves, nevertheless it can be used as a benchmark to compare
other heuristic algorithms when obtaining the optimal solution is impractical.

Condition for Idle Time (Chapter 5) The idle time theoremproves that under somecon-
ditions, idle time may be present in a single processor, but does not specify when the idle
timewill be present, i.e., underwhat conditions of the processor communication and com-
putation speeds does it occur. For the first time in DLT, the condition to identify the pres-
ence of idle time in a FIFO schedule for two slaves is derived. It has already been proved
that there can never be idle time in a LIFO schedule. What is surprising is the simplicity
of the condition, and how it is related not only to the communication and computation
speeds, but also to the particular divisible load under consideration, specifically to the
ratio of size of the result data to the size of input data.

Condition for Optimality (Chapter 5) The identification of the limiting condition for
the optimality of the FIFO and LIFO schedules for two processors is a significant addition
to DLT. This condition shows that even though the presence of idle time depends on the
divisible load under consideration, whether LIFO or FIFO is optimal in a two-slave system
depends only on the communication speeds of the two processors, and the computation
speeds do not matter. This condition supports the conclusions drawn by Rosenberg [77]
regarding the performance of LIFO and FIFO.

The concept of equivalent processor (Chapter 5) The equivalent processor concept was
used by Bharadwaj et al. [24] to prove a number of results in traditional DLT. It is intro-
duced here for the first time in divisible load scheduling for heterogeneous systems with
result collection. The equivalent processor is used to summarize the total processing ca-
pacity of a pair of slaves. It enables derivation of a piecewise locally optimal solution to
DLSRCHETS by combining two processors into one (virtual) processor at a time.

The SPORT Algorithm (Chapter 6) Thepolynomial-timeheuristic algorithmSPORT (Sys-
temParameters based Optimized Result Transfer) is another principal contribution of this
thesis. The algorithm gives near-optimal solutions to DLSRCHETS and is robust to system

12

heterogeneity. The SPORT algorithm does not necessarily use all processors and deter-
mines the number of processors to be used based on the system parameters (computation
and communication capacities). SPORT simultaneously finds the sequence of load alloca-
tion and result collection, and the load fractions to be allocated to the processors. Given
m processors sorted in the order of decreasing network link bandwidth, the complexity
of SPORT is of the orderO(m), which is a huge improvement over ITERLP. It is rigorously
tested using simulations and its performance is found to be only slightly worse than that
of ITERLP.

1.4 THESIS ORGANIZATION

This thesis is organized into five main chapters, preceded by an introduction, and
terminated by a conclusion as described below.

Chapter 1. Introduction establishes the research context that forms the basis for this
thesis. It introduces the application areas of volunteer computing and grid computing,
and theproblems faced in scheduling applications on these platforms.Next, divisible loads
and divisible load scheduling are introduced along with some important results to date.
The shortcomings of traditional DLT are enumerated and the research objectives are laid
out. The traditional methods are compared with the new approaches in this thesis, and
the contributions of this thesis are elaborated. The organization of the thesis is explained.

Chapter 2. System Model defines the systemmodel uponwhich this thesis is built. It ex-
plains the various choicesmade to represent the communication and computation speeds,
the model used for size of result data, the assumptions and reasons regarding continuous
delivery of data, the unidirectional one-port communication model, and the decision to
use linear models of computation and communication time. Models are ultimately ap-
proximations of the real systems and are necessary to be able to analyze the system per-
formance without getting caught up in the finer details. It is important to strike the right
balance between abstraction and accuracy.

The model proposed is appealing in its simplicity and at the same time, complete in its
coverage. The assumptions arewell justified for the applications and the environment tar-
geted in the thesis — divisible loads on heterogeneous master-slave platforms. The most
important constraints are:

• Communication and computation time is a linearly increasing function of the size of
data.

• Size of result data is proportional to the size of allocated input load data.

13

• Communication and computation cannot overlap — a processor can do only one
thing at a time.

• A processor can communicate with only one other processor at a time — the unidi-
rectional one-port model.

• Data transmission and reception occurs in a single installment— non-preemptive or
atomic or block-based model.

Chapter 3. Analysis of DLSRCHETS provides a detailed derivation of the DLSRCHETS
problem definition. After first laying the theoretical basis, the DLSRCHETS problem is de-
fined in terms of a linear program.

This chapter primarily presents the analysis of the optimal solution to DLSRCHETS. Two
important proofs are given — one for the allocation precedence condition and the other
for the idle time theorem. The allocation precedence condition is necessary to limit the
number of possible schedules of DLSRCHETS to a finite number. It argues that there al-
ways exists an optimal solution to DLSRCHETS in which the entire load is first distributed
to the slaves before the master starts to receive results from the slaves. The proof uses
rearrangement of the timing diagram to prove the claim.

The proof of the idle time theorem is a bitmore complicated. It uses the geometry of linear
programming. A brief introduction to linear programming is also included in the chapter
for this reason. The idle time theoremmakes a very interesting claim— that not all slaves
may be allocated load in the optimal solution, and irrespective of the number of slaves
that are allocated load, at most one slave can have idle time in the optimal solution.

The assumption that all processors are allocated load can greatly simplify analysis, but it
is not realistic. Instead of making this assumption without justification, the case when all
processors are not assumed to be allocated load in the optimal solution is considered. The
analysis is not so simple in this case. In linear programming, there is a possibility of some
solutions being degenerate. Hence the analysis is carried out for both non-degenerate and
degenerate cases. It is proved that the idle time theorem is true for both cases.

Chapter 4. The ITERLP Algorithm proposes thenewpolynomial-time ITERLP algorithm.
The complexity of DLSRCHETS is an open problem and finding the optimal solution is dif-
ficult. Thus, one has to resort to heuristic algorithms under the circumstances. The logical
approach to solving a combinatorial optimization problem by approximation is pruning.
That is, to find some criterion that can be used to reduce the number of possible output
combinations. The proposed ITERLP algorithm reduces the number of possible allocation
and collection sequences tom each instead of the usualm!. The rationale behind the prun-
ing of possible schedules in ITERLP is explained.

14

The computation cost of ITERLP is still quite high — in the worst case O(m3) linear pro-
grams have to be solved. The simulations show that ITERLP performance is much better
than LIFO and FIFO over a wide range of parameter values. The performance of the al-
gorithm is quite stable; schedules generated by ITERLP have execution time close to the
optimal in most of the cases. In the extensive simulations performed, the maximum devi-
ation of processing time with respect to the optimal is 0.8% for 5 processors, and it takes
about 3 to 5 minutes to find the schedule. As the number of processors increase, the time
required to compute the solution increases. For example, it takes around 80 minutes to
compute the ITERLP schedule for 65 processors. Because the expected error is low, even
though computation cost is high, ITERLP allows comparison of other heuristic algorithms
when it is impractical to find the optimal solution. A possible hypothesis is offered for the
near-optimality of the algorithm.

Chapter 5. The Two-Slave System lays the foundationof the two-slave system that forms
thebasis for the SPORTalgorithm. Several important concepts are introduced in this chap-
ter as below.

• The three types of possible optimal schedules in a two-slave network and the related
derivations.

• Derivation of optimal schedule for two processors using simple if-then clauses and
closed-form equations.

• The condition for optimality of the LIFO and FIFO schedules. The result shows that
whether LIFO (resp. FIFO) is faster for a two-slave system depends only on the com-
munication speeds of the processor links.

• The condition for the existence of idle time in a FIFO schedule. It shows a relationship
between the computation and communication speeds of the two processors and the
type of divisible load under consideration.

• Equivalent processor for LIFO and FIFO schedules and related derivations. The equiv-
alent processor enables the combination of two processors into a single virtual pro-
cessor.

• The extension of the equivalent processor concept to an arbitrary number of pro-
cessors and its applications. A method to determine the number of processors to
allocate load is derived using the equivalent processor concept.

Chapter 6. The SPORT Algorithm introduces the SPORT algorithm as a solution to the
DLSRCHETS problem. Alongwith the allocation and collection sequences, the SPORT algo-
rithm finds: (a) the number of processors to use for computation, and (b) the load fractions

15

to be allocated to the participants. The important point is that this is done without solv-
ing time-consuming linear programs. The number of possible allocation and collection
sequences is limited to a few, potentially optimal permutations. Because of this, given a
set of processors sorted in the order of decreasing communication speed, the complexity
of SPORT isO(m), wherem is the number of available processors. The algorithm is robust
to system composition and it provides good schedules for both homogeneous and hetero-
geneous types of systems. In the large number of simulations performed, the maximum
deviation of processing time with respect to optimal is 1.5% for 5 processors. SPORT is
very fast — it takes less than a second to find the solution for 500 processors.
The basic idea behind SPORT is very simple — to use two processors at a time and build
a piecewise locally optimal schedule. However it is not very straightforward to be able
to do this, and several necessary tools are designed. Detailed explanation regarding the
working of the algorithm is given. Themethod of deriving load fractions using binary tree
traversal is explained.
The comprehensive simulation testing of the performance of the algorithms is undoubt-
edly the highlight of this chapter. SPORT performance is proved to be robust to hetero-
geneity, number of participants, and value of δ. Moreover, this superior performance is
obtained at a fraction of the computation time of other algorithms.

Chapter 7. Conclusion summarizes the various points covered in the thesis and presents
several ideas for future work. It is proposed that future work can proceed in the following
main directions:

1. Theoretical analysis of complexity and other optimality results,
2. Extensions to the current system model,
3. Modifying the nature of DLSRCHETS itself, and
4. Development of applications and physical testing.

16

C H A P T E R 2

T H E S Y S T E M M O D E L

2.1 INTRODUCTION

To study and analyze a physical problem, it is necessary to reduce it to its equivalent
mathematical form. This is called creating amodel of the problem, ormodeling the problem.
It is difficult and sometimes unnecessary to capture every aspect of a physical system.
The correct level of abstraction to be used, and the parameters to be modeled, depend on
the problem under consideration and the purpose of the analysis. Once a correct model is
identified, it enables fairly accurate results to be obtainedmathematically without having
to construct the actual system.

The model used in this thesis to approximate the master-slave system is fairly stan-
dard inDLT literature. This chapter explains the various parameters that are used through-
out the remainder of this thesis and the reasons behind some of the choices that were
made.

2.2 JOB EXECUTION MODEL

This thesis targets divisible loads (also interchangeably called jobs or applications) to
be executed on heterogeneous master-slave platforms. The master-slave type of job ex-
ecution is a popular choice for developing parallel processing applications. For example,
the master-slave execution model has been used for image processing and computer vi-
sion [25], matrix multiplication problems [48], large genetic database searches [82], image
rendering algorithms [95], computational fluid dynamics (CFD) codes [32], Monte Carlo
simulations [10], and tree search algorithms [60].

The execution of a divisible job on each slave comprises of three distinct phases in the
following order— the allocation phase,where data is sent to the slave from themaster, the
computation phase, where the data is processed, and the result collection phase, where
the slave sends the result data back to the source. The computation phase begins only after

17

.
.Time

.p1
.

.
.

.p2
.

.
.

.p3
.

.
.
.T

.p4
.

.
.

.
. .. .Allocation .. .Computation .. .Collection

Figure 2.1 A general schedule for DLSRCHETS. Processors can do only one thing at a
time — either compute or communicate. There are three phases for each processor — al-
location, computation, and result collection, in that order. However, phases of different
processorsmaybe interleaved. Eachphase is atomic, i.e., continues to its endwithout inter-
ruption. Communication phases (either allocation or collection) cannot overlap as shown
by the dashed lines. Computation phases are independent of each other.

the entire load fraction allocated to that slave is received from the source. Similarly, the
result collection phase begins only after the entire load fraction has been processed, and
is ready for transmission back to the master. This is known as the non-preemptive, atomic,
or block basedmodel, and each phase forms a block on the time line as shown in Fig. 2.1.

2.3 COMMUNICATION AND COMPUTATION MODEL

The non-preemptive communication and computation phases necessitate that the
slaves are continuously and exclusively available during the course of execution of the
divisible load, and have sufficient buffer capacity to receive the entire load fraction in a
single installment from the master. Traditionally, DLT has used the single installment de-
livery of data. Banino et al. [8] and Beaumont et al. [14] considered a multi-installment
strategy. The data is considered to be split into equal sized tasks, and the maximum num-
ber of tasks that can be delivered to the processors in a given time interval is found. They
argue that in the steady state, separate modeling of result collection is unnecessary. They
concluded that allocation should proceed in the order of decreasing communication band-
width for optimal performance in the steady-state.

In this thesis, the focus is on the more traditional form of single-installment DLS on
account of the following reasons:

18

• To get a better understanding of the underlying problem structure when result col-
lection and node heterogeneity are considered together.

• The scheduling of tasks is essentially left to chance in the multi-installment strat-
egy. Collisions during communication are likely to cause delays.

• For certain applications, multi-installment distribution of data is difficult or not
desirable.

All processors (master as well as slaves) follow a unidirectional single-port communica-
tion model, and a no-overlap computation model. That is, master and slaves can do only
any one thing at a time — either communicate or compute (the no-overlap model), and if
communicating, then either send data or receive data (the unidirectional one portmodel).
During communication between the master and slave, both are kept busy for the entire
duration of the transmission. This model is well accepted and has been used in most of
the papers in this area [9, 11–13, 22–26, 34, 36, 57, 74, 84, 85], just to cite a few.

A few papers have considered DLS with a multi-port model for the master [54, 70, 103,
104]. If it is possible to have as many ports as there are slaves, and also be able to pro-
gram the source to communicate simultaneously with all the slaves, then the problem of
sequencing allocation and result collection becomes irrelevant.

The unidirectional single-port model is used in this thesis for the following reasons:

• Traditionally, DLT has used the unidirectional single-port (sequential) communica-
tionmodel, as evidenced by the large body of literature using thismodelmentioned
above and in Chapter 1 versus the few papers [54, 70, 103, 104] cited above for the
multi-port model.

• As mentioned in Chapter 1, this thesis addresses DLS on generic heterogeneous sys-
tems such as volunteer and grid computing platforms. The master-slave topology
is an application-level logical construct on these systems. The source is not a special
machine as used in the papers [54, 70, 103, 104] cited above, but can be anymachine
that wants to participate in the computation.

• An experimental setup such as the one described in [16, 18] using MPI (Message-
Passing Interface) to implement the master-slave processing follows the unidirec-
tional single-port model as it is found to be more realistic in practice. As noted
in [92], scatter-gather operations inMPI need to be improved before it can be reliably
used for simultaneous data transfer to and from several slaves.

• If each slave was to be connected to the master by a dedicated link (port), then the
number of slave processors that could be used would be seriously limited as it is not

19

practical to have a large number of physical ports on a computer.

2.4 COMMUNICATION AND COMPUTATION PARAMETERS

These days there is an almost endless variety of computers available. Computers can
differ in almost every aspect – right from the lowmotherboard interconnection bus level
to the high OS (operating system) level, and everything else in between including the
CPU type, CPU speed, CPU quantity, CPU on board cache memory, size of RAM, hard disk
space, auxiliary processors, to name just a few features. Thus, if one were to truly model
heterogeneity, the feature vector of differentiation would be large.

However, in a master-slave system, from the master’s point of view, observing the
performance of an application on a slave, it is not necessary to model most of the features
mentioned above. This is because, even thougheach feature affects theperformance of the
application to a certain extent, it does not help themaster to know how that happens. The
master has to finish a certain task in theminimum amount of time, so all it really needs to
know is how much time will it take for a slave to process the task, so that the master can
decide whether or not to allocate that task to that particular slave. The processing time of
a task on a slave includes the time to send the relevant data to the slave, the time for the
slave to carry out the requisite computation on the data, and the time required to receive
the result data from the slave once the computation is complete.

Thus, even though the slaves may actually differ in a number of ways, as far as the
master is concerned, the heterogeneity manifests itself only in the different time it takes
to communicate and receive data from the slaves, and for the slaves to compute the re-
sults. Hence a master-slave network can be characterized in terms of the communication
and computation speeds (times) of its components.

A heterogeneousmaster-slave (sometimes called as star or single-level tree) systemH =
(P,L) is as shown in Fig. 2.2, whereP = {p0, . . . , pm} is the set ofm+1 processors, and
L = {l1, . . . , lm} is the set ofm network links that connect themaster scheduler (source)
p0 at the center of the star (root of the tree), to the slave processors p1, . . . , pm at the
points of the star (leaves of the tree). E = {E1, . . . , Em} is the set of unit computation
times of the slave processors, and C = {C1, . . . , Cm} is the set of unit communication
times of the network links, i.e., pk takes Ek time units to process a unit load transmitted
to it from p0 inCk time units over the link lk. It follows thatEk, Ck > 0, k ∈ {1, . . . ,m}.
The values in E and C are assumed to be deterministic and available at the master.

The master holds a divisible load (job)J that is to be distributed and processed onH.
Based on the unit communication and computation time values of the slaves, the master
p0 splits J into parts (fractions) α1, . . . , αm and sends them to the respective slave pro-

20

...p0
.E0

..p1
.E1

.l1
.C1

..p2
.E2

.l2
.C2

..pk
.Ek

.lk

.Ck

..pm
.Em

.lm
.Cm

Figure 2.2 The heterogeneous master-slave system H. The processors have different
computation speeds and network bandwidths.

cessors p1, . . . , pm for computation. Each such set ofm fractions is known as a load distri-
butionα = {α1, . . . , αm}. The source does not retain any part of the load for computation.
Since the job J is assumed to be arbitrarily divisible, αk ∈ R+

0 , αk ≥ 0, k ∈ {1, . . . ,m}.
The unit communication and computation times are conditional upon the jobJ under

consideration. So ideally, the values should be indexed asCJk andEJk , to indicate that the
values are valid only for the job J . In this thesis, this index is omitted as the context of
analysis and discussion is always clear to be the job J .

2.5 RESULT DATA MODEL

For thedivisible loads under consideration, such as image andvideoprocessing, Kalman
filtering, matrix conversions, etc., the computation phase usually involves simple linear
transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated
load fraction is αk, then the returned result is equal to δαk. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted
model for returned results in literature to date [1, 9, 16–18, 24, 36, 77, 104]. In this thesis,
it is assumed that 0 ≤ δ ≤ 1.

2.6 COMMUNICATION AND COMPUTATION TIME

The time taken for communication and computation is assumed to be a linearly in-
creasing function of the size of load fraction. For a load fraction αk, αkCk is the transmis-
sion time from p0 to pk, αkEk is the time it takes pk to perform the requisite processing
on αk, and δαkCk is the time it takes pk to finally transmit the results back to p0.

Though a linear model is considered for computation and communication times for

21

the sake of simplicity, all results can be easily extended to other (e.g. affine) cost models.
For example, the computation time and the load allocation time of a processor pk can be
defined as ek(αk) and ck(αk), where ek(·) and ck(·) are functions of the allocated load
fraction αk. Similarly, the size of result data can be an application-dependent function
dJ (·) of αk, giving a result collection time ck(dJ (αk)) for a processor pk.

The functions ck(·), ek(·), and dJ (·) are concave,monotonically non-decreasing func-
tions of αk. This category of functions includes all non-decreasing linear, affine, and con-
stant functions. The concave non-decreasing nature ensures that the communication or
computation time of a slave for a larger load fraction is always greater than the time for a
smaller load fraction. In this thesis, ck = αkCk and ek = αkEk are linear functions, while
dJ = δ is a constant function.

In packet-switched networks, (most distributed and grid computing platforms will use
packet-switched public networks such as the Internet) the communication time of a data
message between two nodes can be approximated as

tcomm = S +DU + LC,

whereS is themessage start-up time (required formessage packing, routing decision, etc.),
C represents the transmission rate (time units per data unit), L is the message length,D
is the distance between two nodes (number of hops), and U is the commutation time per
switch [39, 68]. It has been confirmed by Ni and McKinley [68] that DU ≪ S and can
be neglected. In case of grid computing, the term LC is expected to dominate since the
amount of data to be transferred is considerable. Thus, it is reasonable to omit S and
approximate the communication delay (time) to be directly proportional to the amount
of data being transferred.

Casanova and Marchal [33] introduced an interesting difference between the two
types of links in grid computing— the local-area intra-cluster links, and the Internet back-
bone inter-cluster links. On the intra-site links, bandwidth is shared approximately in the
ratio of the number of processors sharing the link. However, on the Internet backbone
links, the sharing of bandwidth is not predictable. By assuming point-to-point links be-
tween each pair of processors, the details of bandwidth sharing are abstracted. This is fea-
sible, since bandwidth between twoprocessorswill bemeasured using services such as the
NWS (Network Weather Service) [98, 99], ReMoS (Resource Monitoring System) [38, 64],
or GIS (Grid Information Service) [42, 43] that take into consideration the underlying net-
work topology while computing (predicting) the bandwidth.

In general, the processors in a network are classified as identical, uniform, or unre-
lated [24]. Processors are identical if they take the same amount of time to compute a given

22

load. Processors are said to be uniform, if they have different speeds, but the speeds are
independent of the type of load. For example, if a processor px takes time tx to process a
given load, and processor py takes time ty to process the same load, then the ratio tx/ty
is a constant for all loads. The processors are unrelated when the speed of processors is
dependent on the type of load, i.e., the ratio tx/ty defined above, changes with the type
of load. In this thesis, all processors are of either uniform or unrelated type.

The computational capacity of a processor is not a deterministic quantity in the strict
sense since it is likely to vary with time on a shared system. However systems such as the
one used by Mutka [66], the NWS [100], or GIS [42] are able to predict the CPU availability
and computation capacity with a fair degree of accuracy. This (determinism of parame-
ters) assumption is supported by the fact that even in an analysis based on a stochastic
framework, the expected values of the performance measures of interest are obtained
with acceptable accuracy by replacing the random variables by their mean.

The assumption of a linear model for the computation time, rather than an affine
model is justified under the circumstances because the total time for computation will
bemuch larger than any constant computation overhead. However, as mentioned earlier,
all analysis for the linear model can be easily extended to affine cost models, and linear
models are assumed only for the sake of simplicity.

2.7 SUMMARY

This chapter presented the system model used in the rest of the thesis. The model is
appealing in its simplicity and at the same time complete in its coverage. The assump-
tions are well justified for the applications and the environment targeted in the thesis —
divisible loads on heterogeneous master-slave platforms.

The systemmodel used is fairly standard in DLT literature to date. Themost important
constraints are:

• Communication and computation time is a linearly increasing function of the size
of data.

• Size of result data is proportional to the size of allocated input load data.

• Communication and computation cannot overlap — a processor can do only one
thing at a time.

• A processor can communicate with only one other processor at a time — the unidi-
rectional single-port or one-port model is used.

• Data transmission and reception occurs in a single installment.

23

C H A P T E R 3

A N A L Y S I S O F D L S R C H E T S

3.1 INTRODUCTION

In the previous chapters the basic ideas of divisible loads, divisible load scheduling,
result collection, and heterogeneous master-slave systems have been discussed. It is clear
that oneneeds to somehowdistribute, compute, and return results in theminimumamount
of time. Butwhat does itmeanmathematically?What is a schedule? How can it be precisely
defined? Moreover, what is the mathematical formulation of the DLSRCHETS problem? It
has been noted that the complexity of DLSRCHETS is an open question. In that case, how
can one analyze an optimal solution to DLSRCHETS? What information is it possible to
obtain regarding the optimal solution? This chapter addresses these questions.

The two important contributions of this chapter are the proof of the allocation prece-
dence condition and the proof of the idle time theorem. The proof of the idle time theorem
shows how both non-degenerate and degenerate solutions to a linear program can be use-
ful to offer insight into the problem structure. Another interesting part is the transition
of DLSRCHETS from a traditional schedule to a linear program.

3.2 PROBLEM FORMULATION

DLSRCHETS stands for Divisible Load Scheduling with Result Collection on HETeroge-
neous Systems. The name of the problem suggests that there are three important compo-
nents involved:

• divisible loads,

• result collection, and

• heterogeneous systems.

25

As mentioned previously, divisible loads can be partitioned into arbitrary sized fractions
that can be processed independently of each other. After processing, these fractions gen-
erate some result data that is large enough to warrant explicitly scheduling it back to the
master. The platform on which this execution takes place has computers that differ in
their communication and computation performance. The master is aware of these per-
formance differences, and must decide how to take advantage of the same.

In the DLSRCHETS problem, the master has to partition the load J into fractions
α1, . . . , αm, and manage the allocation of these fractions to, and collection of the results
from the processors p1, . . . , pm in theminimumpossible time. Let T = {1, . . . ,m} be the
set of tasks corresponding to them fractions that are allocated to, and R = {1, . . . ,m}
be the set of results that are collected from the processors p1, . . . , pm respectively.

Though the load fractions (tasks) can be processed independently of each other on the
respective processors, the single-port communication model implicitly induces a prece-
dence order on the distribution of the tasks and collection of the results. Let≺a and≺c be
total orders on the sets T andR respectively, such that≺a represents the sequence (order)
in which processors are allocated tasks, and ≺c is the sequence in which results are col-
lected from the processors at themaster. Then, i ≺a j implies that task i precedes task j (or
equivalently task j succeeds task i) in the allocation sequence≺a, and i ≺c j signifies that
result i precedes result j in the collection sequence ≺c. If {k ∈ T : i ≺a k ≺a j} = ∅,
then task i is the immediate predecessor of task j in ≺a, and is denoted as i 4a j. Sim-
ilarly, if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immediate successor of re-
sult i in ≺c, and is denoted as i 4c j. Define Bi≺a := {j ∈ T : j ≺a i} ∪ {i} and
F i≺a := {j ∈ T : i ≺a j} ∪ {i}, i.e., Bi≺a is the set of task i and the tasks before
i (predecessors of i) in ≺a, while F i≺a is the set of task i and the followers (successors) of
task i in ≺a. Bi≺c and F i≺c are defined accordingly for ≺c. The minimal element of ≺a is
defined as ≺+

a := ∃! i ∈ T : Bi≺a = {i} and the maximal element of ≺a is defined as,
≺−a := ∃! i ∈ T : F i≺a = {i}, i.e., ≺+

a and ≺−a are the first and last tasks allocated in ≺a.
≺+
c and≺−c are similarly defined as the first and last results returned in≺c.
For a given load J , the objective is to minimize the total processing time T , which is

defined as the time taken from the point when the master first initiates the allocation of
tasks, to the pointwhen themaster completes reception of all the results. From the system
model in Chapter 2, there are two important constraints to consider while scheduling the
tasks on the processors, viz. the exclusivity of the communication medium (single-port
model), and the non-overlap of communication and computation.

The schedule S of DLSRCHETS for a given load distribution α, is a pair (t, r), where,
t : T 7→ R+

0 is the task allocation start time function, and r : R 7→ R+
0 is the result

collection start time function. In a feasible schedule, the start times in t and rmust satisfy

26

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

.
. .. .Allocation .. .Computation .. .Collection

Figure 3.1 A possible schedule with m = 3. The three phases of each processor are
atomic and satisfy the constraints (3.1) to (3.9).

the following constraints:

tj − ti ≥ αiCi ∀ i ∈ {1, . . . ,m}, i 4a j (3.1)
ti ≥

∑
j∈Bi≺a\{i}

αjCj ∀ i ∈ {1, . . . ,m} (3.2)

rj − ri ≥ δαiCi ∀ i ∈ {1, . . . ,m}, i 4c j (3.3)
T − ri ≥

∑
j∈F i≺c

δαjCj ∀ i ∈ {1, . . . ,m} (3.4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . ,m} (3.5)
ti ̸= rj ∀ i, j ∈ {1, . . . ,m} (3.6)
rj − ti ≥ αiCi ∀ j ∈ {1, . . . ,m},∀ ti < rj (3.7)
ti − rj ≥ δαjCj ∀ i ∈ {1, . . . ,m},∀ rj < ti (3.8)
ti, rj ≥ 0 ∀ i, j ∈ {1, . . . ,m} (3.9)

Theprecedence constraints of≺a are enforcedby (3.1) and (3.2),while inequalities (3.3)
and (3.4) impose the precedence constraints of≺c and define the processing time T . The
fact that the result collection cannot begin before the execution of the entire load frac-
tion is complete is shown by (3.5). Constraints (3.6), (3.7), and (3.8) impose the single-port
model so that no allocation and collection phase can overlap. The non-negativity of the
start times is ensured by (3.9).

Figure 3.1 shows the timing diagram for a feasible schedule with m = 3. The time
spent in communication with the master p0 is shown above the horizontal axes, and time
spent in computation by the individual processors below the horizontal axes. Since p0

27

.
.Time

.pi .δαiCi

.pj .αjCj

.
. .. .Allocation .. .Collection

.ri

.tj

Figure 3.2 Interleaved result collection. There exists at least one pair of ri and tj that
immediately follow each other.

does not retain any part of the load for itself, there is no p0 axis. In this thesis, the tim-
ing diagrams are drawn so that the processors are numbered in the order of allocation
sequence. This is done to keep the diagrams easy to understand, and there is no loss of
generality, as it is just a question of renumbering the processors. It should be kept in
mind this is not true in general, i.e., processor k is not necessarily the kth processor in
the allocation sequence.

In a LIFO or FIFO schedule, the order of distribution and collection of fractions is pre-
defined, which explicitly determines t and r once α is known. However, in the general
case this is not so, and to efficiently find optimal schedules, it is necessary to constrain
the number of possible values that t and r can take. A lemma is stated based on the fol-
lowing condition that reduces the range of optimal solutions to a finite number.

Condition 3.1 (Allocation Precedence Condition). The master should first allocate the
entire load to the processors before receiving any results from the processors.

Lemma 3.1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS
that satisfies the allocation precedence condition. (There may exist other optimal schedules that do
not satisfy the allocation precedence condition.)

Proof. Consider a feasible schedule with processing time T , that satisfies (3.1) to (3.9) for
a load distribution α, and an arbitrary order of allocation and collection≺a and≺c, such
that some results are collected before the load is completely allocated first.

Then, there exists at least one pair (i, j) with i ≺a j, such that the result collection
starting at ri is followed by a task allocation at tj , without any other intermediate com-
munication phase as shown in Fig. 3.2.

Suppose that all load fractions in α, and all other start times in t and r are maintained
the same, and only the order of collection of result i and allocation of task j is exchanged,

28

such that the new allocation start time of task j is t′j = ri, and the new collection start
time of result i is r′i = ri + αjCj .

Since the above exchange does not alter the order of allocation of different tasks, the
precedence constraints of ≺a defined by (3.1) and (3.2) still hold. Similarly, the prece-
dence constraints of≺c, imposed by (3.3) and (3.4) also hold after the exchange. The con-
straints (3.6), (3.7), and (3.8) are valid after the exchange because the single-port model is
not violated by the exchange.

Only the conditions expressed by (3.5) require verification. Before the exchange, the
conditions ri − ti ≥ αiCi + αiEi and rj − tj ≥ αjCj + αjEj are satisfied. After the
exchange, the constraints (3.5) are still valid because r′i − ti = ri + αjCj − ti > ri − ti,
and rj − t′j = rj − ri > rj − tj .

From the above observations, it is clear that after the reordering, all conditions for
feasibility are still satisfied. Moreover, the orders≺a and≺c are unchanged, and no addi-
tional processing time is required for the reordering.

If a similar reordering is carried out for all such pairs (i, j), then the allocation prece-
dence condition is satisfied with no addition in total processing time T .

Now if there is an optimal schedule for DLSRCHETS that does not satisfy the alloca-
tion precedence condition, then a reordering can be performed as mentioned above so
that the schedule satisfies the allocation precedence condition without an increase in the
total processing time. That is, there always exists an optimal schedule that satisfies the al-
location precedence condition, and only such schedules need be considered in the search
for the optimal schedule.

Two other basic lemma are stated before the DLSRCHETS problem is formally defined.

Lemma 3.2. There exists an optimal schedule for DLSRCHETS that has no idle time between any
two consecutive allocation phases and any two consecutive result collection phases. (There may
exist other optimal schedules that do not satisfy this condition.)

Proof. Assume that a feasible schedule that obeys (3.1) to (3.9), and in addition also satisfies
the allocation precedence condition, has idle time between the consecutive communica-
tion phases (see Fig. 3.1). Let the processing time be T , the load distribution be α, and
(≺a,≺c) be the orders of allocation and collection.

According to the assumptions in the system model, all processors are available con-
tinuously and exclusively during the entire execution process, and the master can only
communicate with one processor at a time. For any i 4a j, when processor pi completes
the reception of its allocated task at time ti + αiCi, processor pj is already available and
can start receiving data immediately at tj = ti +αiCi. Because the schedule satisfies the
allocation precedence condition, load is first distributed to all the processors sequentially

29

before result collection begins. Thus the start time of each task i ∈ T can be brought for-
ward so that ti = t≺+

a
+
∑
j∈Bi≺a\{i}

αjCj , and the inequalities (3.1) and (3.2) are reduced
to equalities without exceeding T .

Following a similar logic to the one above, the result collection of each result i ∈ R
can be delayed to the extent necessary to make the result collection start time ri = T −∑
j∈F i≺c

δαjCj , with inequalities (3.3) and (3.4) reduced to equalities and no extra time
added to T .

Since any feasible schedule can be reordered in this manner to eliminate the idle time
between communication phases, it follows that an optimal schedule to DLSRCHETS also
has no idle time between any two consecutive allocation and result collection phases.

Lemma 3.3. There exists an optimal schedule for DLSRCHETS that has no idle time between the
allocation and computation phases of each processor. (Theremay exist other optimal schedules that
do not satisfy this condition.)

Proof. Following an argument similar to the one used in Lemma 3.2, since all processors
are always available, they can begin computing immediately upon receiving their load
fractions in the allocation phase without affecting the schedule.

Thus, any processor pi begins computing its allocated task at time t≺+
a
+
∑
j∈Bi≺a

αjCj

without crossing the time interval T . Since any feasible schedule can be reordered in this
manner, an optimal schedule to DLSRCHETS too has no idle time between the allocation
and computation phases of each processor.

Theorem 3.1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS
that satisfies Lemmas 3.1 to 3.3.

Proof. If there exists any optimal schedule that does not satisfy any of the Lemmas 3.1
to 3.3, it can always be reordered as explained in the respective proofs to satisfy the same.

From Theorem 3.1, it follows that only those schedules that satisfy Lemmas 3.1 to 3.3
need be considered in the search for the optimal solution to DLSRCHETS. A possible timing
diagram for such a schedule is shown in Fig. 3.3.

From the preceding discussion, it can be concluded that the start times t and r in the
optimal schedule for DLSRCHETS can be determined from the sequences ≺a and≺c, and
the load distribution α that minimize the processing time T . Hence instead of finding t
and r as in traditional scheduling practice, the DLSRCHETS problem is formulated as a
linear programming problem, to find ≺a, ≺c, and α that minimize T . Once the optimal
values of these variables are known, it is straightforward to find the optimal schedule.

30

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

Figure 3.3 A schedule that satisfies the Feasible Schedule Theorem. Result collection
starts only after load allocation to all processors is complete. Computation phase of each
processor follows its allocation phase without delay. Each allocation and collection phase
follows its predecessor without delay. Idle time may be present only between the compu-
tation and collection phases of each processor.

The constraints (3.1) to (3.9) and the allocation precedence condition are combined
into a unified form, and for each processor pi, constraints on T are written in terms of
Bi≺a and F i≺c . The DLSRCHETS problem is defined in terms of a linear program as follows.

Definition 3.1 (Divisible Load Scheduling with Result Collection on HETerogeneous Sys-
tems).
Given a heterogeneous network H = (P,L), a divisible load J , unit communication
and computation times C, E , find the sequence pair (≺∗a,≺∗c), and load distribution α∗ =
{α∗1, . . . , α∗m} that

Minimize T
Subject To:

∑
j∈Bk≺a

αjCj + αkEk +
∑
j∈Fk≺c

δαjCj ≤ T k = 1, . . . ,m (3.10)

m∑
j=1

αjCj +
m∑
j=1

δαjCj ≤ T (3.11)

m∑
j=1

αj = J (3.12)

T ≥ 0, αk ≥ 0 k = 1, . . . ,m (3.13)

In the above formulation, for a sequence pair (≺a,≺c), and a load distribution α, the
LHS (Left Hand Side) of constraint (3.10) indicates the total time spent in transmission of
tasks to all the processors that must receive load before the processor pi can begin pro-

31

cessing its allocated task, the computation time on the processor pi itself, and the time
for transmission back to the master of results of processor pi, and all its subsequent re-
sult transfers. For the no-overlap model to be satisfied, the processing time T should be
greater than or equal to this time for all the m processors. The single-port communica-
tion model is enforced by (3.11) since its LHS represents the lower bound on the time for
distribution and collection under this model. The fact that the entire load is distributed
amongst the processors is imposed by (3.12). This is the normalization equation. The non-
negativity of the decision variables is ensured by constraint (3.13).

The DLSRCHETS problem is defined similar to the throughputmaximization problem ad-
dressed in [16–18]. The throughput maximization problem and the execution time mini-
mization problem addressed in this thesis are duals of each other, and can be transformed
from one form into the other. Because all equations are linear in the decision variables, an
optimal solution to one form is also an optimal solution to the other form. However, the
problem formulation given in [16–18] is applicable only for a single pair of allocation and
collection sequences. LIFO and FIFO were selected as two instances of the problem and
respective optimality results were derived. The formulation in this thesis is completely
general and the scope of the problem is global, i.e. for all possible allocation and collec-
tion sequences. The optimality results for LIFO and FIFO presented in [16–18] can be easily
derived as subsets of this generic formulation.

To keep the DLSRCHETS formulation as general as possible, the idle times in the def-
inition of the problem as in [16, 18] are not included. In [16, 18], it is assumed in the sys-
temmodel itself that idle time always lies between the computation and result collection
phase of a processor, when it may not always be so. The idle time can lie anywhere on
the time-line. Lemmas 3.2 and 3.3 prove that idle time can be transferred to lie between
computation and result collection phase of a processor.

Moreover, there is a discrepancy in the formulation used in [16, 18] because the con-
straints (2a) (corresponding to (3.10) here) are expressed as inequalities. These must ac-
tually be equalities since the idle times (xi) are already considered in the equations.

The decision version of DLSRCHETS used to analyze the problem complexity is:

Definition 3.2 (DLSRCHETS — Decision Variant).
Instance: Heterogeneous network H = (P,L), divisible load J , unit computation and
communication times E , C, time interval T .
Question: Can load J be processed onH, in at most T units of time?

Finding anoptimal solution to theDLSRCHETSproblem is surprisingly difficult. In fact,
there is no known polynomial-time algorithm to find the optimal schedule for the general
case considered in this paper, nor has the NP-completeness of DLSRCHETS been proved.

32

The problem is in NP, since the values of the two permutations and the load distribution
can be guessed, and it can be checked if the answer to the decision question is true or
false.

3.3 A PRIMER ON LINEAR PROGRAMMING

Since the analysis of the optimal solution in the next section depends entirely on the
nature of linear programming, a brief introduction to the relevant aspects of linear pro-
gramming is given. There is a lot of research and literature available on linear program-
ming and combinatorial optimization. Some of the good books that were referred to dur-
ing this work are [20, 35, 37, 69, 78, 94, 97].

3.3.1 General Linear Programming Problem

A linear programming problem searches for a vector x = (x1, . . . , xd)⊤ ∈ Rd that
maximizes (or equivalently, minimizes) a given linear function, among all vectors x that
satisfy a given set of linear (in)equalities.

Definition 3.3 (General Linear Programing Problem).
The general form of a linear programming problem is the following:

Maximize
d∑
j=1

cjxj

Subject to:

d∑
j=1

aijxj ≤ bi i = 1, . . . , p

d∑
j=1

aijxj = bi i = p+ 1, . . . , p+ q

d∑
j=1

aijxj ≥ bi i = p+ q + 1, . . . , n

xj ≥ 0 j = 1, . . . , d

Here, the input consists of a matrixA = (aij) ∈ Rn×d, a vector b = (b1, . . . , bd)⊤ ∈
Rd, and a vector c = (c1, . . . , cd)⊤ ∈ Rd. Each coordinate of the vector x is called a
decision variable. Each linear equality or inequality is called a constraint. The function x→
c⊤x is called the objective function. d denotes the number of variables, also known as the
dimension of the problem. The number of constraints is usually denoted n.

Definition 3.4 (Canonical Form).

33

A linear programming problem is in canonical form if it has the following structure:

Maximize
d∑
j=1

cjxj

Subject to:

d∑
j=1

aijxj ≤ bi i = 1, . . . , n

xj ≥ 0 j = 1, . . . , d

Or more compactly as
Maximize c⊤x
Subject to:

Ax ≤ b

x ≥ 0

Where, for any two vectors u = (u1, . . . , ud)⊤ and v = (v1, . . . , vd)⊤, the expression
u ≤ v means ui ≤ vi, i = 1, . . . , d.

The canonical form is important for analysis of optimal solutions. Any linear program-
ming problem can be converted into an equivalent canonical form as follows:

• Aminimization problem can be changed to amaximization problem bymultiplying
the objective function by−1.

• An equality constraint ∑dj=1 aijxj = bi can be replaced by two inequality con-
straints∑dj=1 aijxj ≥ bi and

∑d
j=1 aijxj ≤ bi.

• Constraints like∑dj=1 aijxj ≥ bi canbe changed to the form
∑d
j=1 (−aij)xj ≤ −bi.

• Any unrestricted (unbounded) variable xj can be replaced by the difference of two
nonnegative variables, xj = x+j − x

−
j , where x+j ≥ 0 and x−j ≥ 0.

3.3.2 Geometry of Linear Programming

Some definitions are necessary first before exploring the geometry of linear program-
ming.1

Definition 3.5. The function to bemaximized orminimized is called the objective function.
1My thanks to Prof. Jeff Erickson of the Dept. of Computer Science at the Univ. of Illinois at Urbana-

Champaign, for sharing his lecture notes on this subject.

34

Definition 3.6. A vector x ∈ Rd is feasible for an LP (Linear programming Problem) if it
satisfies all the constraints. A set of feasible vectors is called the constraint set. The set of
all feasible points is called the feasible region for that linear program.

Definition 3.7. A linear programming problem is said to be feasible if the constraint set is
not empty; otherwise, it is said to be infeasible.

Definition 3.8. A feasible maximum (resp. minimum) problem is said to be unbounded
if the objective function can assume arbitrarily large positive (resp. negative) values at
feasible vectors; otherwise, it is said to be bounded. Thus there are three possibilities for a
linear programming problem— itmay be bounded feasible, it may be unbounded feasible,
or it may be infeasible.

Definition 3.9. The value of a bounded feasiblemaximum (resp,minimum) problem is the
maximum (resp. minimum) value of the objective function as the variables range over the
constraint set.

Definition 3.10. A feasible x ∈ Rd at which the objective function achieves the value is
called optimal.

It is possible to interpret the constraints of a linear programming problem geometri-
cally as follows:

• Any linear equation in d variables of the form a⊤x = b defines a hyperplane in Rd.

• Any linear inequality in d variables of the form a⊤x ≤ b or a⊤x ≥ b defines a
halfspace in Rd, i.e., the hyperplane divides Rd into two halfspaces, each of which is
the set of points that satisfies a linear inequality.

• The set of feasible points (the feasible region) is the intersection of several hyper-
planes (one for each equality constraint) and halfspaces (one for each inequality
constraint). The intersection of a finite number of hyperplanes and halfspaces is
called a polyhedron; in case of the canonical form, it is the intersection of n+ d half-
spaces.

• Any halfspace and therefore any polyhedron is convex, i.e., if the polyhedron con-
tains two points x and y, then it contains the entire line segment xy.

• The problem of optimizing the objective function over all feasible vectors, is then
the question of finding a point in the polyhedron that is farthest in the direction
specified by the objective function. By appropriately rotating Rd (so that the ob-
jective function points downward), the linear program can be geometrically inter-
preted as looking for the lowest point in a convex polyhedron in Rd

35

• In non-degenerate linear programs, at most d constraint hyperplanes pass through
any point, and no constraint hyperplane is normal to the objective vector. In degen-
erate linear program, more than d constraint hyperplanes can pass through a point,
and the feasible vector is not unique at that point.

3.3.3 Bases, Feasibility, and Local Optimality

A basis is a subset of d constraints, which for non-degenerate linear programsmust be
linearly independent. The location of a basis is the unique point x that satisfies all d con-
straints with equality; geometrically, x is the unique intersection point of the d hyper-
planes. The value of a basis is c⊤x, wherex is the location of the basis. There are precisely(n+d
d

) bases. Geometrically, the set of constraint hyperplanes defines a decomposition of
Rd into convex polyhedra; this cell decomposition is called the arrangement of the hyper-
planes. Every d-tuple of hyperplanes (i.e., every basis) defines a vertex of this arrangement
(the location of the basis). Thus “vertex” and “basis” can be used interchangeably.

A basis is feasible if its locationx satisfies all the d linear constraints, or geometrically,
if the point x is a vertex of the polyhedron.

A basis is locally optimal if its location x is the optimal solution to the linear program
with the same objective function, and only the constraints in the basis. Geometrically, a
basis is locally optimal, if its location x is the lowest point in the intersection of those d
halfspaces.

It canbeproved that the value of every feasible basis is less thanor equal to the value of
every locally optimal basis, i.e., every feasible vertex is higher than every locally optimal
vertex. If a linear program has an optimal solution, it is the unique vertex that is both
feasible and locally optimal.

There are several algorithms to find the optimal solution to a linear programming
problem, the most popular ones based on the Simplex method [37] and the Interior-Point
method [55]. However, an explanation regarding these methods is beyond the scope of
this work.

3.4 ANALYSIS OF OPTIMAL SOLUTION

The processors allocated non-zero load fractions are called participating processors or
participants.

Theorem3.2 (Idle TimeTheorem). There exists an optimal solution to theDLSRCHETSproblem,
in which irrespective of whether load is allocated to all available processors, at the most one of the
participating processors has idle time, and the idle time exists only when the result collection begins
immediately after the completion of load distribution.

36

Proof. For a pair (≺a,≺c), the DLSRCHETS problem defined by (3.10) to (3.13) always has
a feasible solution. This is because, for any load distribution α that satisfies (3.12), T can
be made arbitrarily large to satisfy the inequalities (3.10) and (3.11). It implies that the
polyhedron formed by the constraints of the DLSRCHETS problem, P := {x ∈ Rm+1 :
Ax ≤ b, x ≥ 0} ̸= ∅.

According to the theory of linear programming, the optimal solution to DLSRCHETS
is obtained at some vertex of this polyhedron [37, 94]. As the DLSRCHETS problem has
m+ 1 decision variables and 2m+ 3 constraints, in a non-degenerate optimal solution, at
the optimal vertex,m+1 constraints out of thesemust be tight, i.e., satisfiedwith equality.
In a degenerate optimal solution, more thanm+ 1 constraints are tight.

It is clear that in an optimal solution, the normalization constraint (3.12) will always
be tight, and T will always be greater than zero. This means thatm constraints out of the
remaining 2m+1 constraintswill be tight in a non-degenerate optimal solution. There are
two possible ways to proceed with the analysis at this point depending on the assumption
regarding the allocated load fractions in the optimal solution.

1. ∀ k ∈ {1, . . . ,m} : αk > 0.

In this case, all the load fractions are assumed to be always greater than zero, i.e.
number of participants ism. Since all decision variables are positive, there can be
no degeneracy [94, Chapter 3].

It leaves onlym+1 constraints (3.10) and (3.11), out of whichmwill be tight in the
optimal solution. Hence, in the optimal solution, either,

(a) them constraints (3.10) are tight, and the (3.11) constraint is not, or

(b) the (3.11) constraint is tight and one of the (3.10) constraints is not.

If any constraint from (3.10) and (3.11) is not tight in the optimal solution, it im-
plies a shortfall in the LHS as compared to the optimal processing time. In con-
straints (3.10) this shortfall represents idle time in a processor, while in (3.11) it
represents the intervening time interval between completion of load distribution
from the master and the start of result transfer to the master.

Thus, if the option (a) above is true, then none of the processors have any idle time
in the optimal solution. If the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (3.11) is tight, it means that idle
time in a processor exists only when result transfer to the master begins immedi-
ately after completion of load allocation is completed. This is similar to the analysis
in [16, 18].

37

2. ∃ k ∈ {1, . . . ,m} : αk = 0.
In this case, some of the processors can be allocated zero load in the optimal solu-
tion.
The analysis has two parts — for non-degenerate and degenerate optimal solutions.
Non-degenerate Optimal Solution
If there are p (p ≤ m) participants in the optimal solution, thenm− p constraints
of (3.13) are necessarily tight. This means that out of them + 1 constraints (3.10)
and (3.11), only p constraints will be tight in the optimal solution. Hence, in an op-
timal solution, either,

(a) p of the (3.10) constraints are tight, m − p of the (3.10) constraints are not
tight, and the (3.11) constraint is not tight, or

(b) the (3.11) constraint is tight, p− 1 of the (3.10) constraints are tight, andm−
p+ 1 of the (3.10) constraints are not tight.

In the optimal solution, if the option (a) is true, then m − p processors have idle
time, while if the option (b) is true, thenm− p+ 1 processors have idle time.
Sincem−pprocessors arenot allocated load, it is obvious that they are idle through-
out in either of the above two options. The additional processor with idle time if the
option (b) is true has to be one of the participating processors. This means that idle
time in a participating processor exists only when the result collection begins im-
mediately upon completion of load allocation.

Degenerate Optimal Solution
Similar to the non-degenerate case, if there are p (p ≤ m) participants in the opti-
mal solution, thenm−p constraints of (3.13) are necessarily tight. Since the optimal
solution is degenerate, more than p constraints out of them + 1 constraints (3.10)
and (3.11) will be tight.
This means that in the optimal solution, irrespective of whether the (3.11) con-
straint is tight, at least p of the (3.10) constraints are tight, and less than m − p of
the (3.10) constraints are not tight. Since m − p processors are necessarily idle,
some of the (3.10) constraints corresponding to the processors allocated zero load
are tight in the degenerate solution.
Since ∀ k ∈ {1, . . . ,m}, Bk≺a , F k≺c ⊆ {1, . . . ,m}, it implies that,

∑
j∈Bk≺a

αjCj ≤
m∑
j=1

αjCj k ∈ {1, . . . ,m}

38

and

∑
j∈Fk≺c

δαjCj ≤
m∑
j=1

δαjCj k ∈ {1, . . . ,m}

It follows that,

∑
j∈Bk≺a

αjCj +
∑
j∈Fk≺c

δαjCj ≤
m∑
j=1

αjCj +
m∑
j=1

δαjCj k ∈ {1, . . . ,m} (3.14)

If (3.11) is not tight, then the RHS (Right Hand Side) of (3.14) is strictly less than T .
That is,

∑
j∈Bk≺a

αjCj+
∑
j∈Fk≺c

δαjCj < T k ∈ {1, . . . ,m} (3.15)

If ∃ k ∈ {1, . . . ,m} : αk = 0, then αkEk = 0, and from (3.15), it immediately
follows that the corresponding constraint from (3.10) can never be tight.
Thus, a constraint corresponding to a processor pk allocated zero load is tight in the
optimal solution only if

∑
j∈Bk≺a

αjCj +
∑
j∈Fk≺c

δαjCj − T = 0 (3.16)

or equivalently if (3.14) is satisfied with an equality, and the RHS of (3.14) is equal
to T , i.e, the (3.11) constraint is tight.
It is now clear that a degenerate optimal solution exists only when the (3.11) con-
straint is tight, and the condition (3.16) is satisfied. To find when the condition is
satisfied, consider the case where for some pair (≺a,≺c), one or more of the pro-
cessors allocated zero load follow each other at the end of the allocation sequence
and the start of the result collection sequence in the optimal solution.
For example, if αi, αj , αk = 0, and one or more of the following occur (the list is
not exhaustive):

• ≺−a = i and≺+
c = i

• i 4a j,≺−a = j and≺+
c = i

• i 4a j,≺−a = j,≺+
c = k and k 4c i

Only if such tail-end zero-load processors exist, then (3.14) is satisfiedwith an equal-
ity. Finally, if constraint (3.11) is tight in the optimal solution, then it follows that

39

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

.y > 0

Figure 3.4 Timing diagram for the optimal LIFO schedule. There is no idle time in any
processor because the intervening time interval between the end of the last allocation
phase and the start of the first result collection phase, y, is always greater than zero.

the constraints corresponding to these processors are tight.
The linear program obtained after eliminating the redundant constraints corre-
sponding to the tail-end zero-load processors has a non-degenerate optimal so-
lution. This is because, the feasible region defined by the constraints of the non-
degenerate problem does not change after addition of the redundant constraints.
Hence only a single participant processor has idle time in the degenerate optimal
solution.

From thepreceding discussion on the optimal solution to the linear program for a pair (≺a
,≺c), it follows that in the optimal solution to the DLSRCHETS problem, (≺∗a,≺∗c , α∗), at
themost one participating processor can have idle time. The idle time occurs onlywhen the
result collection fromprocessor≺+

c starts immediately after completion of load allocation
to processor≺−a .

There are m! possible permutations each of ≺a and ≺c, and the linear program has
to be evaluated (m!)2 times to determine the globally optimum solution (≺∗a,≺∗c , α∗) for
DLSRCHETS. Since the solution to the linear program is completely determined by the
values of δ, C and E , along with the pair (≺a,≺c), it is not possible at this stage to predict
which of the processors or how many processors will be allocated zero load.

Two corollaries to the optimal schedule theorem follow immediately.

Corollary 3.1 (Optimal LIFO Schedule). There exists an optimal LIFO schedule in which no
processor has idle time.

Proof. Figure 3.4 shows an optimal LIFO schedule for three slave processors. In a LIFO
schedule, the intervening time interval between the end of the last allocation phase and
the start of the first result collection phase, y ≥ αmEm, the computation time of the last

40

.
.Time

.p1 .α1C1 .δα1C1

.α1E1

.T

.p2 .α2C2 .δα2C2

.α2E2

.p3 .α3C3 .δα3C3

.α3E3

Figure 3.5 The optimal LIFO schedule rearranged so that the communication phases of
each processor are grouped together. The resulting constraints aremathematically equiv-
alent to the ones for Fig. 3.4. This rearrangement converts the schedule in to a form similar
to the one in Fig. 1.3 where no results are returned to the master.

processor in the allocation sequence. It is trivial to prove that the equality occurs in an
optimal schedule.

Since the intervening time interval, y > 0 always, it implies that constraint (3.11) can
never be tight. From the idle time theorem, it follows that no processor ever has idle time
in the optimal LIFO schedule.

An interesting addition to this proof is provided by Beaumont et al. [17]. It is proved
that the optimal LIFO schedule always uses all available processors. A brief sketch of the
proof is as follows. The LIFO schedule is rearranged so that the allocation and collection
phases of each processor are grouped together, followed by the computation phase. For
processor pk, this gives a combined communication time of (1 + δ)αkCk followed by a
computation phase of lengthαkEk as shown in Fig. 3.5. The resulting constraint equations
are mathematically equivalent to the formwhere the allocation and collection phases are
on either side of the computation phase as in Fig. 3.4.

This reordering of the timing diagram converts the schedule in to a form similar to
the case in Fig. 1.3, where no results are returned to the master, and all optimality results
for this form are applicable to the LIFO schedule. It is a well known result in DLT literature
that when results are not returned to the master, the optimal solution uses all available
processors [24]. Hence the proof.

Corollary 3.2 (Optimal FIFO Schedule). There exists an optimal FIFO schedule in which

1. either no participating slaves have idle time, or

2. at most one participating slave may have idle time.

There may exists other optimal solutions that do not satisfy these conditions.

41

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

.T

.y > 0

Figure 3.6 Timing diagram for an optimal FIFO schedule. In this schedule, there is no
idle time as constraint (3.11) is not tight, i.e., the intervening time interval between the
end of the last allocation phase and the start of the first result collection phase, y > 0.

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3
.

.δα3C3

.T

.
. .Idle time

.y = 0

Figure 3.7 Timing diagram for an optimal FIFO schedule with idle time. In this schedule,
the intervening time interval between the end of the last allocation phase and the start of
the first result collection phase, y = 0, i.e., constraint (3.11) is tight. This necessitates idle
time to be present.

Proof. In a FIFO schedule, the intervening time interval between the end of the last allo-
cation phase and the start of the first result collection phase, y, can be either greater than
or equal to zero as shown in Figs. 3.6 and 3.7. Note that y < 0 is not possible as it violates
the unidirectional one-port condition.

If the intervening time interval y > 0 in an optimal solution, then from the idle time
theorem, it follows that no participating processor will have idle time. On the other hand
if constraint (3.11) is tight, and y = 0 in an optimal solution, then there can be a single
processor with idle time.

There may be other optimal solutions when y = 0 in which more than one processor
has idle time. But, it can be guaranteed that at least one optimal solution exists in which

42

there is a single processor with idle time.

In addition to this corollary, in [16, 18], two other results are proved:

1. The optimal order of allocation (and result collection) in a FIFO schedule is when
processors p1, . . . , pm are arranged such that C1 ≤ C2 ≤ . . . ≤ Cm.

2. For such an optimal FIFO schedule, if a processor has idle time, then this processor
can always be chosen to be processor ≺−a , i.e., the last processor in the allocation
sequence. In this case it is also the processor with the slowest network link.

It is important to note however, that both these results may not be true for the general
case considered in this thesis.

3.5 THE IMPORTANCE OF IDLE TIME

As mentioned earlier, traditional divisible load theory both with and without result
collection, usually only considers schedules in which a processor has no idle time once it
begins reception of its allocated load fraction. Two factors were responsible for the atti-
tude towards idle time:

1. usually only homogeneous systems were considered, and

2. when heterogeneous systems were considered, it was assumed that the computa-
tion speed of a processor is slower than the communication speed of its network
link.

But both these assumptions are not always valid in the new distributed computingmodels
that use open and shared resources.

In this work, because of the one-port communication restriction, the load allocation
and result collection necessarily proceeds in a sequential manner, and a processor has to
be idle up to the point where load transfer to it from the master begins. This idle time is
minimized by having each allocation and collection phase follow its predecessor without
delay, as proved in Lemma 3.2. Similarly, any idle time between the allocation phase and
computation phase of a processor only adds to the makespan T , as shown in Lemma 3.3.
But the same reasoning cannot be extended to the idle time between the computation
phase and result collection phase in a processor. In fact, the example in this section shows
that sometimes there can be no schedule if idle time is not considered to be present before
the result collection phase.

43

.
.Time

.p1 .201
202 · 100

.201
202

.201
202 · 100

.T

.p2 . 1
202 · 100

. 1
202

.201
202 · 100

Figure 3.8 Theoptimal LIFO schedule for the systemconfiguration in Example 3.1. There
is no idle time, and the makespan T = 201

202 (100 + 1 + 100) ≈ 200.005 units.

Example 3.1. Consider the following system configuration: m = 2, C1 = C2 = 100,
E1 = E2 = 1, and δ = 1. It is a system with two identical slave processors where the
communication speed is 100 times slower than the computation speed. Admittedly, the
parameters are a bit exaggerated to simplify explanation, but similar results can be easily
obtained with other values.

For a system with two slaves, there are three possible cases:

Individual schedule If the entire load were to be distributed to either p1 or p2, the pro-
cessing time would be T = 100 + 1 + 100 = 201 units.

LIFO schedule For the optimal LIFO schedule, the load fractions and processing time can
be calculated easily using the formulae in Section 5.4 as α1 = 201

202 , α2 = 1
202 , and T =

201
202(100 + 1 + 100) ≈ 200.005 units. The resulting timing diagram is shown in Fig. 3.8.
The result is an improvement over the earlier case where the entire load is distributed to
a single processor.

FIFO schedule An optimal FIFO schedule without idle time cannot be constructed for this
system. There are at least two optimal FIFO schedules for this system when idle time is
considered to be present between the computation phase and result collection phase of
each processor.

The first one is obtained by using the formulae in Section 5.3. The load fractions are com-
puted as α1 = α2 = 101

202 = 0.5. The timing diagram for this case is shown in Fig. 3.9. It is
observed that idle time of 49.5 units is present in both processors, and the total process-
ing time is T = (50 + 0.5 + 49.5 + 50 + 50) = 200 units, which is better than the LIFO
schedule.

Similarly, using the formulae in Section 5.5, the load fractions are obtained as α1 = 100
101

and α2 = 1
101 . The timing diagram for this schedule is as shown in Fig.3.10. The idle time

of 9999
101 = 99 units is transferred to the single processor p2. The total processing time is

still T = 100
101(100 + 1 + 100 + 1) = 200 units.

44

.
.Time

.p1 .50
.0.5 .49.5

.50

.p2 .50
.0.5 .49.5

.50
.T

.

Figure 3.9 An optimal FIFO schedule with idle time in both processors for Example 3.1.
The makespan is T = (50 + 0.5 + 49.5 + 50 + 50) = 200 units.

.
.Time

.p1 .100
101 · 100

.100101

.100101 · 100

.p2 .100101

. 1
101 .9999

101

.100
101

.T

.

Figure 3.10 Optimal FIFO schedule with idle time in one processor for Example 3.1. The
makespan is T = 100

101 (100 + 1 + 100) = 200 units. This schedule satisfies the idle time
theorem and Corollary 3.2.

The above example clearly shows that when result collection is considered together
with slow communication speeds, idle time is an important factor when minimizing the
total processing time.

It is important to note that neither having two optimal FIFO solutions, nor having an
optimal FIFO solution with idle time in both processors is a violation of idle time theorem
or Corollary 3.2. Both the idle time theorem and Corollary 3.2 state that there is at least
one optimal solutionwith idle time in a single processor. It does not necessarilymean that
there is only one optimal solution.

3.6 SUMMARY

This chapter primarily presented the analysis of the optimal solution to DLSRCHETS.
Two important proofs were given — one for the allocation precedence condition and the
other for the idle time theorem. The allocation precedence condition is necessary to limit
the number of possible schedules of DLSRCHETS to a finite number. It argues that there

45

always exists an optimal solution toDLSRCHETS inwhich the entire load is first distributed
to the slaves before the master starts to receive results from the slaves. The proof uses
simple rearrangement of the timing diagram to prove the claim.

The proof of the idle time theorem is a bitmore complicated. It uses the theory behind
the geometry of linear programming. A brief introduction to linear programming is also
included in the chapter for this reason. The idle time theorem makes a very interesting
claim — that not all slaves may be allocated load in the optimal solution, and irrespective
of the number of slaves that are allocated load, at most one slave can have idle time in the
optimal solution.

The assumption that all processors are allocated load can greatly simplify analysis, but
it is not realistic. Instead ofmaking this assumptionwithout justification, the casewhenall
processors are not assumed to be allocated load in the optimal solution is considered. The
analysis is not so simple in this case. In linear programming, there is a possibility of some
solutions being degenerate. Hence the analysis is carried out for both non-degenerate and
degenerate cases. It is proved that the idle time theorem is true for both cases.

46

C H A P T E R 4

T H E I T E R L P A L G O R I T HM

4.1 INTRODUCTION

If the networkH hasm slave processors, then (m!)2 linear programs have to be solved
to find the optimal solution for DLSRCHETS. This is practically impossible to carry out for
m ≥ 7. For example, it takes 80 minutes to find the optimal solution to DLSRCHETS for
m = 6 on a Power Mac G5, with 2GB of memory. Simple linear extrapolation yields that
to compute the optimal solution form = 7, it will take 3920 minutes or approximately 65
hours; that is if the computer does not first run out of memory.

The complexity of DLSRCHETS is an open problem and finding the optimal solution
is difficult. Thus, one has to resort to heuristic algorithms under the circumstances. The
logical approach to solving a combinatorial optimization problem by approximation is
pruning. That is, to find some criterion that can be used to reduce the number of possible
output combinations. This is the approach taken by branch and bound and genetic algo-
rithms for example.

In this chapter, the ITERLP algorithm is proposed. It uses awell-known result in DLT to
prune thenumber of linear programs to be solved. The complexity of ITERLP is polynomial
in m, and in the worst case O(m3) linear programs have to be solved. This is still quite
expensive for large values of m, but as the simulation results show, ITERLP can be used
as a benchmark to compare other heuristic algorithms when it is impossible to find the
optimal solution.

4.2 BRIEF INTRODUCTION TO PERMUTATIONS

In Chapter 3, it was explained how the allocation and collection sequences define
precedence orders. The entire analysis was carried out using the sequences as total orders.
For further analysis, it is important to understand the allocation and collection sequences
as permutations. A brief explanation of permutations is given in this section. Landin [61]

47

serves as a good introductory reference.

Definition 4.1. A permutation f , also called an arrangement number, is a rearrangement of
the elements of an ordered list (set) V into a one-to-one correspondence onto V itself,
i.e., f : V 7→ V . This means that for any v ∈ V , there exists a u ∈ V , such that f(u) = v.

A permutation can be considered as a way of reindexing the set V = {v1, . . . , vn}. For
the sake of convenience, when discussing permutations, symbols for the elements in a set
(e.g. v) are omitted and only the indices are considered. Then permutations just involve
operations with the index set {1, . . . , n}. The permutation f is represented by listing its
values at i = 1, . . . , n as {f(1), . . . , f(n)}.

The number of permutations on a set of n elements is given by n! (n factorial).

Example 4.1. For example, there are 2! = 2 permutations of {1, 2}, namely {1, 2} and
{2, 1}, and 3! = 6 permutations of {1, 2, 3}, namely {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1},
{3, 1, 2}, and {3, 2, 1}.

Definition 4.2. The symmetric group Sn of degree n, is the group of all permutations on n
symbols.

Sn is therefore a permutation group of order n! and contains as subgroups every group
of order n.

Example 4.2. S3 =
{
{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}

}.
Definition 4.3. An inverse permutation is a permutation in which each number and the
number of the place which it occupies are exchanged.

The inverse permutation is represented as {f−1(1), . . . , f−1(n)}. Inverse permuta-
tions are sometimes also called conjugate or reciprocal permutations. Inverse permutations
are important because they allow finding the position of a slave processor in the allocation
or collection sequence.

Example 4.3. For example, f1 = {3, 1, 4, 2} and f2 = {2, 4, 1, 3} are inverse permuta-
tions, since the positions of 1, 2, 3, and 4 in f1 are f2, and the vice versa.

The number of ways of obtaining an ordered subset of k elements from a set of n ele-
ments is given by

nPk =
n!

(n− k)!

48

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

.x1

.x2

.x3

Figure 4.1 A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result
collection begins only after the entire load is distributed. Each allocation and result collec-
tion phase follows its predecessor without delay. The computation phase of each proces-
sor follows its allocation phase without delay. Idle time may be present in each processor
between the end of its computation phase and the start of the result collection phase.

Example 4.4. For example, there are 4!/2! = 12 ordered 2-subsets of {1, 2, 3, 4}, namely
{1, 2}, {1, 3}, {1, 4}, {2, 1},{2, 3}, {2, 4}, {3, 1}, {3, 2}, {3, 4}, {4, 1}, {4, 2}, and {4, 3}.

Definition 4.4. The unordered subsets containing k elements are known as the k-subsets of
a given set.

The number of k-subsets on n elements is given by the binomial coefficient (nk).
Example 4.5. There are (32) = 3, 2-subsets of {1, 2, 3}, namely {1, 2}, {1, 3}, and {2, 3}.

The allocation and collection sequences can be considered as permutations on the
index set of the set of slave processors {p1, . . . , pm} of a heterogeneous networkH. In the
remainder of this thesis, the allocation sequence is represented by σa, and the collection
sequence is represented by σc, both of which are permutations of the index set K =
{1, . . . ,m} of slave processors.

To differentiate from the representation ofσa as a function, the values in the allocation
and collection permutations are accessed using the standard square bracket array index
notation: σa[i] and σc[i], i = 1, . . . ,m. The inverse permutations σ−1

a and σ−1
c act as

query or lookup functions, so that σ−1
a [i] and σ−1

c [i], i = 1, . . . ,m, indicate the position
of processor pi in the allocation and collection sequence respectively.

Example 4.6. For the schedule shown in Fig: 4.1, σa = {1, 2, 3}, σc = {2, 3, 1}, σ−1
a =

{1, 2, 3}, and σ−1
c = {3, 1, 2}.

Using this new convention, after application of the Feasible Schedule Theorem (Theo-
rem 3.1), for a sequence pair (σa, σc) and load distribution α = {α1, . . . , αm}, a slave
processor pi

49

• starts receiving its data at trecvi =
σ−1
a [i]−1∑
j=1

ασa[j]Cσa[j]

• starts execution at texeci = trecvi + αiCi

• stops execution at tstopi = trecvi + αiCi + αiEi = texeci + αiEi

• starts sending results at tsendi = T −
m∑

j=σ−1
c [i]

δασc[j]Cσc[j]

• may have idle time xi = tsendi − tstopi ≥ 0

4.3 PROPOSED ALGORITHM

The ITERLP (ITERative Linear Programming) heuristic algorithm finds a solution by
iteratively solving linear programs. The rationale behind ITERLP is as follows. All opti-
mality results to date for DLS on heterogeneous systems, those ignoring result collec-
tion [22, 24, 27, 28, 56, 59] as well as those considering result collection [1, 9, 16–18],
have advocated load allocation in the order of decreasing communication link bandwidth.
Hence processors are initially sorted in that order in ITERLP. Since neither LIFO nor FIFO
schedule is always optimal, the new processor being introduced in an iteration could po-
tentially be interleaved in any position in the optimal sequence. So the ITERLP heuristic
tests all possible positions for the newly introduced processor. To build the sequences at
reasonable (polynomial) cost, ITERLP assumes that the relative positions of the processors
already determined are not modified by the additional processor.

In the algorithm below, the allocation and collection sequences σa and σc are indexed
by superscripts k ∈ {1, . . . ,m}, to indicate the number of slave processors in the se-
quence.

Algorithm 1 (ITERLP).

1: Sort processors p1, . . . , pm such thatC1 ≤ . . . ≤ Cm

2: Select processors p1 and p2

3: Find optimal allocation and collection sequence pair (σ2
a, σ

2
c)

4: Add processor p3

5: Find optimal sequence pair (σ3
a, σ

3
c) such that the relative order of σ2

a and σ2
c is preserved

6: Similarly add one processor at a time, and for k ≤ m processors, find optimal sequence pair
(σka , σ

k
c) such that the relative orders of σk−1

a and σk−1
c are preserved

50

.

.

.

...Iteration 1 ...2 proc. ...1 ...22 ...1

...Iteration 2 ...3 proc. ...1 ...3 ...22 ...1 ...3 .

...Iteration 3 ...4 proc. ...1 ...4 ...3 ...2 ...2 ...1 ...4 ...3

..Allocation Seq ..Collection Seq

Figure 4.2 ITERLP progress illustrated for 4 processors. The number of processors at
each iteration increases by one. The relative positions of the processors do not change
fromone iteration to thenext.Withk processors, there arek possible allocation sequences
and k possible collection sequences, requiring k2 LPs to be solved. The worst case com-
plexity of ITERLP is of the order of∑mi=1 k

2 = m3.

7: In any iteration, if any processor is allocated zero load, then the algorithm terminates

4.4 ALGORITHM EXPLANATION

Processors are first sorted by increasing value ofCk (i.e., decreasing value of commu-
nication link bandwidth). The first two processors are selected and the optimal (σa, σc)
pair (the one with the lowest processing time for the two processors) is determined by
solving the linear program defined by the constraints (3.10) to (3.13) four times — once
for each permutation of the allocation and collection sequence. The next processor in the
sequence is added in the next iteration and the linear program is solved again. The new
processor can be interleaved at any position in (σa, σc), but with an additional constraint
that the relative positions of processors already determined are maintained. In any iter-
ation, if processor k is allocated zero load, then the algorithm terminates and does not
proceed to the next iteration with k + 1 processors. As the optimal sequence pair is ob-
tained by solving linear programs at each step, the load distribution α corresponding to
the sequence pair is simultaneously obtained as an artifact of the solution to the linear
program. Thus, though the emphasis is on determining the optimal sequence pair, in re-
ality, it is not just the sequence pair but the 3-tuple (σa, σc, α) that is determined.

Example 4.7. If the optimal sequences at the end of the first iteration are σ2
a = {1, 2}

and σ2
c = {2, 1}, then in the second iteration, the set of possible allocation sequences is

Σ3
a =
{
{3, 1, 2}, {1, 3, 2}, {1, 2, 3}

}, and the set of possible collection sequences is Σ3
c ={

{3, 2, 1}, {2, 3, 1}, {2, 1, 3}
}. So 3 × 3 = 9 linear programs one for each sequence pair

51

are solved and the optimal sequence pair (out of these nine pairs) is determined.

4.5 FINDING CANDIDATE SEQUENCES

The important part of the ITERLP algorithm is finding the set of possible allocation
and collection sequences in every iteration. This set is a subset of the symmetric group
Sk for k processors. The procedure to determine the set of candidate sequencesΣka of the
allocation sequence for k ≥ 3 processors is given below. The procedure for finding Σkc is
analogous.

procedure find_candidate_sequence

1: define candidate sequence set Σka ← ∅

2: find the symmetric group Sk

3: for ∀s ∈ Sk do

4: find set Λk−1 of (k − 1)-subsets of s

5: if ∃λ ∈ Λk−1 such that λ = σk−1
a do

6: Σka ← Σka
∪
s

7: end if

8: end for

9: return

The ‘∪’ operator signifies that the sequence s is appended to the set Σka to obtain the
updated set Σka.

The procedure find_candidate_sequence is explained in Example 4.8 to find the al-
location sequence candidates for k = 3.

Example 4.8. It is assumed that already σ2
a = {2, 1} has been found optimal in the first

iteration. S3 =
{
{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}

}, the symmet-
ric group for k = 3 is first obtained. Then start with s = {1, 2, 3}. The set of 2-subsets
for this is Λ2 =

{
{1, 2}, {1, 3}, {2, 3}

}. Because no element of Λ2 is equal to σ2
a, s cannot

be a candidate sequence. Continuing in this manner, the first candidate sequence is ob-
tained as {2, 1, 3}, because one of its 2-subsets, namely {2, 1}, is equal to the σ2

a obtained
previously. Similarly, the sequences {2, 3, 1} and {3, 2, 1} are determined to be candidate
sequences.

52

Table 4.1 Results for all algorithms for C = {10, 15}, E = {10, 10}, δ = 0.5. In this
case, ITERLP results agree with the optimal.

Algorithm σa σc α T

OPT {1, 2} {1, 2} {0.625, 0.375} 18.4375
ITERLP {1, 2} {1, 2} {0.625, 0.375} 18.4375
LIFOC {1, 2} {2, 1} {0.765, 0.235} 19.1176
FIFOC {1, 2} {1, 2} {0.625, 0.375} 18.4375

4.6 COMPLEXITY AND DISCUSSION

In every iteration of ITERLP for k processors, the order (sequence) of allocation and
collection of k − 1 processors is already fixed in the previous iteration. When a new pro-
cessor k is added, the number possible positions at which it can be placed is given by the
binomial coefficient (kk−1) = k. Thus the procedure find_candidate_sequence always
generates k candidate sequences as output for k processors, even though the symmetric
group has k! possible sequences. This implies that:

• For k processors, σa and σc are restricted to k permutations each.

• For k processors, k2 linear programs have to be solved to find the optimal sequence
pair (σka , σkc).

• In the worst case,∑mk=1 k
2 = O(m3) linear programs have to be solved in ITERLP.

To compare performance with the brute forcemethod of finding the optimal solution,
ITERLP can find the solution for about 65 processors in 80minutes on a PowerMac G5with
2GB of memory. When m is increased to 100, it takes around 15 hours. Of course, this is
much too expensive to be practically used for large values ofm. However, it is found that
ITERLP generates significantly better schedules than traditional algorithms (see Sect. 4.7)
and it can be used as a benchmark to compare other heuristic algorithms.

ITERLP asserts that maintaining the order of processors found in the previous itera-
tion in the current iteration generates schedules that are close to optimal. The following
examples with three processors proves that this is not true in general.

Example 4.9. Let C = {10, 15, 20}, E = {10, 10, 1}, and δ = 0.5. The results obtained for
the different algorithms are given in Tables 4.1 and 4.2. Details of the algorithms used are
given in Sect 4.7. It is observed that after the first iteration, the optimal sequences found
by ITERLP are σ2

a = {1, 2} and σ2
c = {1, 2}. In the second iteration, when processor p3 is

added, ITERLP returns the sequences as σ3
a = {1, 2, 3} and σ3

c = {3, 1, 2}. However, the
optimal sequences for the three processors obtained by brute force, are σ∗a = {1, 2, 3}

53

Table 4.2 Results for all algorithms for C = {10, 15, 20}, E = {10, 10, 1}, δ = 0.5. In
this case, the collection sequence detected by ITERLP is different from optimal. Moreover,
the addition of a third processor reverses the optimal order detected for two processors
in Table 4.1.

Algorithm σa σc α T

OPT {1, 2, 3} {3, 2, 1} {0.7108, 0.2187, 0.0705} 17.7690
ITERLP {1, 2, 3} {3, 1, 2} {0.6126, 0.3676, 0.0198} 18.0371
LIFOC {1, 2, 3} {3, 2, 1} {0.7108, 0.2187, 0.0705} 17.7690
FIFOC {1, 2, 3} {1, 2, 3} {0.6061, 0.3636, 0.0303} 18.1818

and σ∗c = {3, 2, 1}. That is, the optimal collection sequence for the first two processors is
reversed by the addition of the third processor.

Example 4.10. Another interesting example occurswhenC = {10, 15, 20},E = {5, 10, 15},
and δ = 0.5. The sequences found by ITERLP are: σ2

a = {1, 2}, σ2
c = {1, 2}, σ3

a = {1, 3, 2}
and σ3

c = {1, 2, 3}. The optimal schedule is σ∗a = {1, 2, 3} and σ∗c = {2, 3, 1}.

In Example 4.10, as in Example 4.9, the order of collection sequence is reversed. As the
optimal collection sequence is not included in the set of candidate collection sequences
for ITERLP, it causes ITERLP to detect the wrong allocation sequence too.

In this work, to date a lot of simulations have been carried out, and no set of values
of C, E , and δ has been found that reverses the order of processors’ allocation sequence
in the optimal schedule obtained by brute force. The allocation sequence in the order of
decreasing communication bandwidth is always found optimal. Given this fact, the above
example in which ITERLP returns an incorrect allocation sequence, just goes to show the
extreme dependence of the optimal solution on the values of the parameters C, E , and δ.
Even though a fairly large number of sequences are evaluated in ITERLP, a small pertur-
bation is sufficient for a wrong solution to be detected.

4.7 SIMULATION RESULTS AND ANALYSIS

On open networks, it is usual for processors to have wide variation in values of Ek
andCk [45]. In a networkH, it is possible that the ratios min E : max E andmin C : max C
reach 1:100. Further, they can appear in any combination. For example, a fast processor
may have a very slow network connection, while a processor with a fast link may be over-
loaded and not have enough computation speed. Along with system heterogeneity, it is
important to verify the effect of the application (δ) on the algorithms. To rigorously test
the performance of ITERLP, several simulations were performed with different ranges for
Ek, Ck, and δ.

54

4.7.1 Algorithm Variants for Comparison

The performance of ITERLP was compared to three algorithms, viz. OPT, FIFOC, and
LIFOC, which are explained below. In all, more than 300,000 simulation runs were carried
out using parameter values that cover most situations observed in practice.

The globally optimal schedule OPT is obtained after evaluation of the linear program
for all possible (m!)2 permutations of (σa, σc). The MATLAB™ linear program solver lin-
prog is used to determine the optimal solution to the linear program defined by con-
straints (3.10) to (3.13) for each permutation pair. The processing time for each pair is
calculated, and the sequence pair and load distribution that results in the minimum pro-
cessing time is selected as the OPT solution. This ensures that the minimal set of proces-
sors is used and the optimal processing time is found.

LIFOC and FIFOC heuristics are as follows. In FIFOC, processors are allocated load and
result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link band-
width of the processors, while result collection is the reverse order of increasing commu-
nication link bandwidth of the processors. Example 4.11 showshowσa andσc are obtained
for FIFOC and LIFOC.

Example 4.11. Let C = {20, 10, 15}, E = {5, 15, 10}. The processors are first sorted in
the order of decreasing communication link bandwidth (i.e. by increasing value of Ck).
The sorted processor numbers give the allocation sequence σa = {2, 3, 1} for both FIFOC
and LIFOC. For FIFOC, the result collection sequence, is the same as σa, i.e. σc

∣∣
FIFOC

=
{2, 3, 1}, and for LIFOC, the result collection sequence is the reverse ofσa, i.e.σc

∣∣
LIFOC

=
{1, 3, 2}.

For FIFOC, the sequence pair (σa, σc) so obtained, along with the sets C and E , and δ,
are used to construct the linear program defined by constraints (3.10) to (3.13), which is
passed to the linear program solver linprog, that determines the optimal FIFOC solution.
For LIFOC, using the transformation explained in [17], the optimal solution is found by
using the closed form equations given in [85].

Preliminary simulations for other heuristic algorithms, viz. FIFO, LIFO, FIFOE, LIFOE,
and SUMCE, revealed such large errors in favor of ITERLP, that it was decided not to pur-
sue them further. The solutions to FIFO and LIFO are calculated similar to FIFOC and LIFOC
except for the fact that the processors are not initially sorted. FIFOE and LIFOE distribute
load fractions in the order of decreasing computation speed (i.e., increasing value of com-
putation parameter, Ek). SUMCE distributes and collects load fractions in the order of
increasing value of the sum Ck + Ek + δCk (equivalent to sorting by the sum Ck + Ek).

55

Table 4.3 Parameter values used for ITERLP simulations. There are 25 cases with dif-
ferent values of unit communication and computation times. In each case, the intervals
are uniformly sampled to generate the sets C and E . The intervals cover a wide range of
parameter values such that all combinations of slow and fast communication and compu-
tation speeds are covered. The maximum min to max ratio is 1 : 100. The intervals not
only change in range (ratio), but also in the absolute value.

Case Ck ∈ Ek ∈ Case Ck ∈ Ek ∈
1 [1,10] [1,10] 14 [10,100] [1,100]
2 [1,10] [10,100] 15 [10,100] [10,1000]
3 [1,10] [100,1000] 16 [10,1000] [1,10]
4 [1,10] [1,100] 17 [10,1000] [10,100]
5 [1,10] [10,1000] 18 [10,1000] [100,1000]
6 [1,100] [1,10] 19 [10,1000] [1,100]
7 [1,100] [10,100] 20 [10,1000] [10,1000]
8 [1,100] [100,1000] 21 [100,1000] [1,10]
9 [1,100] [1,100] 22 [100,1000] [10,100]
10 [1,100] [10,1000] 23 [100,1000] [100,1000]
11 [10,100] [1,10] 24 [100,1000] [1,100]
12 [10,100] [10,100] 25 [100,1000] [10,1000]
13 [10,100] [100,1000]

4.7.2 Simulation Method

Simulations were carried out for m = 4, 5 and δ = 0.2, 0.5, 0.8. For each variant
algorithm, viz. OPT, LIFOC, FIFOC, and ITERLP, at each value of m and δ, 100 simulation
runs were carried out for the 25 cases in Table 4.3. The values ofEk andCk were obtained
by sampling continuous uniform distributions in the regions specified in Table 4.3. The
total processing time for each variant algorithm, TVAR, was calculated in each run.

For example, Fig. 4.3 shows the execution times normalized with respect to TOPT for
m = 4, δ = 0.2, case number 9. The solid line indicates the performance of ITERLP. As
can be observed, ITERLP has the best performance, followed by LIFOC and FIFOC.

Fig. 4.3 also distinctly shows the dependence of processing time on the system param-
eters. To quantify the performance of the algorithms, the percentage deviation from the
optimal processing time for each variant in each of the 25 cases was calculated as:

∆TVAR =
TVAR − TOPT
TOPT

∗ 100% (4.1)

Mean deviation from optimal, ⟨∆TVAR⟩, for each variant was calculated by averaging
∆TVAR over 100 simulation runs. Values of ⟨∆TVAR⟩ were then plotted.

56

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 1.1

 10 20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Sample Number

ITERLP
LIFOC
FIFOC

Figure 4.3 Execution time normalized w.r.t. optimal form = 4, δ = 0.2, Case 9. The 100
results are sub-sampled by 4 for plotting. A value of 1 means the execution time is equal
to the optimal time. ITERLP has the best performance, followed by LIFOC and FIFOC. This
figure appears in [46].

4.7.3 Result Plots and Analysis

The plot of ⟨∆T ⟩ form = 4, δ = 0.2 is shown in Fig. 4.4. It can be observed that ITERLP
consistently outperforms FIFOC and LIFOC in all the cases. As the value of δ increases, it
is observed that the performance of LIFOC and ITERLP becomes very similar, while the
error of FIFOC increases, as the plot form = 5, δ = 0.8 in Fig. 4.5 shows. Not only does
the performance become similar, but also it gets very close to optimal. It can be concluded
that for heterogeneous systems, where result collection time is large (comparable to the
load allocation time), the performance of LIFOC and ITERLP is almost equal and optimal.

For intermediate values of δ, the performance of ITERLP is moderately better than
LIFOC, and largely better than FIFOC as seen in Fig. 4.6 form = 5, δ = 0.5.

Though the algorithms show a clear dependence on the value of δ, the reason for the
variation in performance can only be hypothesized at this juncture. In the case of LIFOC
for example, when δ is large (δ ≫ 1), and especially when δ → +∞, the load allocation
and result collection looks similar to the casewhen δ = 0, only in the reverse. LIFOC is still
optimal in this case (if it was optimal earlier), while for FIFOC it would be the worst pos-
sible sequence. For the case when δ = 1, by using the schedule transformation explained
in [17], it can be seen that LIFOC processes exactly twice the amount of load in half the
time, as would be processed if there would not have been any result collection phase. No
such statement can be made about FIFOC.

Table 4.4 gives the maximum values of ⟨∆T ⟩ for FIFOC, the case numbers when they
occur, and the corresponding values of ⟨∆T ⟩ for ITERLP for those cases. Table 4.5 gives

57

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
ve

ra
ge

 P
er

ce
nt

 D
ev

ia
tio

n

Case Numbers

ITERLP
LIFOC
FIFOC

Figure 4.4 Average percent deviation ⟨∆T ⟩ form = 4, δ = 0.2. ITERLP has the lowest
deviation followed by LIFOC and FIFOC. This figure appears in [46].

Table 4.4 Maximum ⟨∆T ⟩ of FIFOC. FIFOC error increases with the increase inm and δ.
ITERLP error is virtually unchanged.

m
δ = 0.2 δ = 0.5 δ = 0.8

FIFOC case ITERLP FIFOC case ITERLP FIFOC case ITERLP
4 3.91 9 0.25 10.29 7 0.24 12.31 18 0.35
5 4.40 7 0.32 10.96 7 0.35 14.33 7 0.36

Table 4.5 Maximum ⟨∆T ⟩ of LIFOC. LIFOC error decreases slightly with the increase in
m and δ. ITERLP error is virtually unchanged. So ITERLP and LIFOC performance becomes
similar.

m
δ = 0.2 δ = 0.5 δ = 0.8

LIFOC case ITERLP LIFOC case ITERLP LIFOC case ITERLP
4 1.66 1 0.33 1.39 23 0.45 1.13 23 0.53
5 1.24 23 0.37 1.27 4 0.08 1.63 4 0.12

similar values for LIFOC. The value of ⟨∆T ⟩ for FIFOC form = 4, δ = 0.5, case number
7, is 43 times that of ITERLP for that case. Similarly, ⟨∆T ⟩ for LIFOC form = 5, δ = 0.8,
case number 4, is 13.5 times that of ITERLP for that case. That is, ITERLP generates good
schedules for cases that cause FIFOC and LIFOC to perform poorly.

The maximum values of ⟨∆T ⟩ of ITERLP and the case numbers when they occur are
given in Table 4.6. The maximum ⟨∆T ⟩ of ITERLP is 0.68%, and it occurs at case number
1 of m = 5, δ = 0.5. It is observed that the error remains below 1% irrespective of the
value ofm or δ.

58

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
ve

ra
ge

 P
er

ce
nt

 D
ev

ia
tio

n

Case Numbers

ITERLP
LIFOC
FIFOC

Figure 4.5 Average percent deviation ⟨∆T ⟩ form = 5, δ = 0.8. ITERLP has the lowest
deviation followed by LIFOC and FIFOC. LIFOC performance is almost the same as ITERLP
while FIFOC error is quite large. This figure appears in [46].

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
ve

ra
ge

 P
er

ce
nt

 D
ev

ia
tio

n

Case Numbers

ITERLP
LIFOC
FIFOC

Figure 4.6 Average percent deviation ⟨∆T ⟩ form = 5, δ = 0.5. ITERLP has the lowest
deviation followed by LIFOC and FIFOC. LIFOC error is moderately improved while FIFOC
performance deteriorates. This figure appears in [46].

To evaluate the performance of the algorithms with the increase in number of nodes,
the processing times of FIFOC and LIFOCwere comparedwith ITERLP. This is because, OPT
cannot be practically carried out beyondm = 5. 100 simulation runs were carried out for
m = 10, 20, 30, δ = 0.2, 0.5, 0.8 for each of the 25 cases listed in Table 4.3.

As the number of processors and the value of δ increase, the performance of ITERLP
and LIFOC becomes very similar, while there is an increase in the error of FIFOC. The 95%
confidence interval bars indicate that the ⟨∆T ⟩ of FIFOC with respect to ITERLP varies

59

Table 4.6 Maximum ⟨∆T ⟩ of ITERLP. ITERLP error is virtually unchanged with increase
inm and δ. FIFOC error increases, while LIFOC error slightly decreases with the increase
inm and δ.

m
δ = 0.2 δ = 0.5 δ = 0.8

ITERLP case LIFOC FIFOC ITERLP case LIFOC FIFOC ITERLP case LIFOC FIFOC
4 0.33 1 1.66 2.14 0.45 23 1.39 5.81 0.53 23 1.13 7.35
5 0.51 12 1.13 2.41 0.68 1 0.90 5.99 0.58 18 0.82 12.06

-1

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
ve

ra
ge

 P
er

ce
nt

 D
ev

ia
tio

n

Case Numbers

LIFOC
FIFOC

Figure 4.7 Average percent deviation ⟨∆T ⟩with respect to ITERLP atm = 10, δ = 0.2.
With increasedm but low value of δ, ITERLP performance is much better than LIFOC and
FIFOC. This figure appears in [46].

widely. The progression of performance is clearly reflected in Figs. 4.7 to 4.9 that plot the
values of ⟨∆T ⟩ with respect to ITERLP for (m, δ) pairs (10, 0.2), (20, 0.5), and (30, 0.8)
respectively.

However, at small values of δ, ITERLP performs better than both LIFOC and FIFOC even
with large number of processors as can be seen in Fig. 4.10 that plots the value of ⟨∆T ⟩
with respect to ITERLP form = 30, δ = 0.2.

4.8 SUMMARY

Obtaining an optimal solution to DLSRCHETS by enumerating all possible permuta-
tions of the allocation and collection sequences is impractical for more than six slave pro-
cessors. LIFO and FIFO are two of the simplest possible schedules for DLSRCHETS. How-
ever, they suffer from a few problems:

• It is not specified how to obtain the optimal number of processors to use. In practice

60

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
v
e
ra

g
e
 P

e
rc

e
n
t
D

e
v
ia

ti
o
n

Case Numbers

LIFOC
FIFOC

Figure 4.8 Average percent deviation ⟨∆T ⟩with respect to ITERLP atm = 20, δ = 0.5.
With increased value of δ, LIFOC performance improves but is still moderately worse than
ITERLP, but FIFOC performance degrades noticeably. This figure appears in [46].

-5

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
v
e
ra

g
e
 P

e
rc

e
n
t
D

e
v
ia

ti
o
n

Case Numbers

LIFOC
FIFOC

Figure 4.9 Average percent deviation ⟨∆T ⟩with respect to ITERLP atm = 30, δ = 0.8.
With even higher values ofm and δ, LIFOC performance is almost equal to that of ITERLP,
while FIFOC error is very large. This figure appears in [46].

onewould resort to techniques such as thresholding (e.g., all processors forwhich the
ratio of load allocated to the largest load fraction exceeds 1:100will be dropped), but
the algorithm itself does not include a way to determine this.

• It is known that LIFO and FIFO are not always optimal. Thus, there always exists a
possibility that some other sequence is optimal.

• It is not clear when LIFO or FIFO is to be used. Previous studies have indicated that

61

-1

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

A
v
e
ra

g
e
 P

e
rc

e
n
t
D

e
v
ia

ti
o
n

Case Numbers

LIFOC
FIFOC

Figure 4.10 Average percent deviation ⟨∆T ⟩with respect to ITERLP atm = 30, δ = 0.2.
With high value ofm and low value of δ, ITERLP performance is better than that of LIFOC
and FIFOC. This figure appears in [46].

LIFO is better for heterogeneous systemswhile FIFO is better formorehomogeneous
environments. But there are no clear guidelines as to what constitutes heterogene-
ity.

Thus there is a need for a polynomial time algorithm that is robust to heterogeneity, that
specifies the number of processors to use, and that generates good schedules.

As the brute force approach is not viable, one has to resort to a heuristic and prune
the number of solutions. The proposed ITERLP algorithm reduces the number of possi-
ble allocation and collection sequences tom each instead of the usualm!. The idea is to
generate a piecewise optimal solution by adding one processor at a time to the set of avail-
able processors. At the same time, the number of possible permutations is constrained by
limiting it to only those permutations that do not change the order of processors already
determined.

The computation cost of ITERLP is still quite high — in the worst case O(m3) linear
programs have to be solved. The simulations show that ITERLP performance is much bet-
ter than LIFO and FIFO over a wide range of parameter values. The performance of the
algorithm is quite stable; schedules generated by ITERLP have execution time close to the
optimal in most of the cases. Thus even though computation cost is high, it allows com-
parison of other heuristic algorithms.

The ITERLP algorithm forms a solution to the DLSRCHETS problem especially when it
is impossible to find an optimal solution for large number of processors.

62

C H A P T E R 5

A N A L Y S I S O F TW O - S L A V E S Y S T E M

5.1 INTRODUCTION

The ITERLP algorithmpresented inChapter 4 generates good schedules forDLSRCHETS,
but was seen to be computationally expensive for large number of processors. Another al-
gorithm is needed that has comparable performance but is fast to compute.

The idea behind ITERLP was to construct a schedule in a piecewise manner by adding
one processor at a time and finding the optimal schedule. The order of allocation and
collection sequences found in one iteration were preserved in the next iteration. This
limited the number of possible permutations of the allocation and collection sequences
to k permutations for k processors. The selection of processors to add at every iteration
is not random. There is a very definite order in which processors are added— in the order
of decreasing communication link bandwidth. It was observed that this order is preserved
in the allocation sequences in a large number of cases. This order of load allocation has
been recommended by all DLS literature to date, those ignoring result collection [22, 24,
27, 28, 56, 59] as well as those considering result collection [1, 9, 16–18]. Considering these
facts, the ITERLP algorithm could be potentially improved by:

• Maintaining the allocation sequence in the order of decreasing communication link
bandwidth.

• Further restraining the number of possible collection order permutations.

• Finding the optimal schedule out of the possible schedules by some method other
than by solving a linear program.

• Finding the load distribution without solving a linear program.

These points are the basis for the SPORT algorithm that is proposed in Chapter 6. One
of the problems with ITERLP was that in iteration number k it still had to solve a linear

63

program involving k processors. SPORT uses an ingenious way to construct a piecewise
optimal solution using only two processors at a time. There are three important innova-
tions in SPORT as listed below.

1. The crux of the SPORT technique is the equivalent processor and equivalent system
concept. Basically, it is a way to reduce a two-slave system into its equivalent virtual
single-processor system.

2. The second important concept involved is to find the optimal load distribution and
schedule for two processors using simple if-then statements and closed-form for-
mulae involving the system communication and computation parameters.

3. The third issue is that of limiting the possible collection sequence permutations.
In ITERLP, the new processor added in an iteration number k can be placed in k
different positions. In SPORT on the other hand, the new processor can be placed
in only two positions — either at the beginning of the collection sequence or at the
end. The position is decided by a simple comparison of parameter values.

It is clear that the two-slave system plays a pivotal role in the SPORT algorithm. This
chapter introduces the various concepts mentioned above. First the derivation of the op-
timal schedule and load distribution for two processors is explained in Sections 5.2 to 5.6.
Next the concept of equivalent processor is explained and the values of equivalent com-
putation and communication parameters are derived in Section 5.7. The derivation of op-
timal schedule includes the description of the condition for optimality of LIFO and FIFO
schedules, and the condition for the presence of idle time in a FIFO schedule for two pro-
cessors. Section 5.12 shows how the condition for idle time can be extended to an arbitrary
number of processors.

5.2 TWO-SLAVE SYSTEM CONFIGURATION

Traditional DLT assumes that load is always distributed to all the processors in a sys-
tem, and that a processor is idle only up to the point where it starts receiving its load
fraction. In the case of a heterogeneous system with result collection, these assumptions
may not always be true.

Let the allocation sequence be represented by σa, and the collection sequence is rep-
resented by σc, both of which are permutations of the index setK = {1, . . . ,m} of slave
processors in the heterogeneous systemH.

To recapitulate, as shown in Fig. 5.1, for a sequence pair (σa, σc) and load distribution
α = {α1, . . . , αm}, a slave processor pi,

64

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

.x1

.x2

.x3

.y

Figure 5.1 A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result
collection begins only after the entire load is distributed. Each allocation and result collec-
tion phase follows its predecessor without delay. The computation phase of each proces-
sor follows its allocation phase without delay. Idle time may be present in each processor
between the end of its computation phase and the start of the result collection phase.

• starts receiving its data at trecvi =
σ−1
a [i]−1∑
j=1

ασa[j]Cσa[j]

• starts execution at texeci = trecvi + αiCi

• stops execution at tstopi = trecvi + αiCi + αiEi = texeci + αiEi

• starts sending results at tsendi = T −
m∑

j=σ−1
c [i]

δασc[j]Cσc[j]

• may have idle time xi = tsendi − tstopi ≥ 0

Thus idle time xi may potentially be present in each processor pi because it may have
to wait for another processor to release the communication medium for result transfer.
It has been proved that in the optimal solution to DLSRCHETS, ∀i ∈ {1 . . .m}, xi = 0,
if and only if y > 0, and that there exists a unique xi > 0 if and only if y = 0, where y
is the intervening time interval between the end of allocation phase of processor σa[m]
and the start of result collection from processor σc[1]. For the FIFO schedule in particular,
processor σa[m] can always be selected to have idle time when y = 0, i.e., in the FIFO
schedule, xσa[m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always, no
processor has idle time, i.e., ∀i ∈ {1 . . .m}, xi = 0 always [16–18].

In the general case considered in this paper, for a pair (σa, σc), the solution to the
linear program defined by (3.10) to (3.13) is completely determined by the values of δ, E ,
C, and it is not possible at this stage to predict which processor is the one that has idle
time in the optimal solution. In fact, it is possible that not all processors are allocated load

65

...p0
.E0

..p1
.E1

.l1
.C1

..p2
.E2

.l2
.C2

Figure 5.2 A heterogeneous two-slave system. Both slaves have different computation
speeds and network bandwidths. The two-slave system is analyzed as it forms the basic
building block in the SPORT algorithm.

in the optimal solution, in which case some processors are idle throughout. The proces-
sors that are allocated load for computation are known as the participating processors (or
participants).

Thus any heuristic algorithm for DLSRCHETS must find both — the number of partic-
ipants, and the load fractions allocated to them. In the next chapter, a polynomial time
heuristic algorithm, SPORT is proposed that does this simultaneously. The foundation of
the SPORT algorithm is laid first by analyzing the case of a system with two slave proces-
sors.

The heterogeneous systemH = (P,L) withm = 2 is shown in Fig. 5.2. It is defined
by P = {p0, p1, p2} and L = {l1, l2}. The unit computation and communication times
are defined by the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it
is assumed that the total load to be processed available at the master is J = 1. Also it is
assumed that C1 ≤ C2. No assumptions are possible regarding the relationship between
E1 andE2, orC1 +E1 + δC1 andC2 +E2 + δC2 (or equivalentlyC1 +E1 andC2 +E2).

An important parameter, ρk, known as the network parameter is introduced, which in-
dicates for a slave pk, how fast (or slow) its computation parameter Ek is with respect to
the communication parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . ,m (5.1)

Themaster p0 distributes the loadJ between the two slave processors p1 and p2 so as
to minimize the processing time T . Depending on the values of δ, E and C, there are three
possibilities:

1. Entire load is distributed to p1 only.

66

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.T f

Figure 5.3 Timing diagram for Schedule f . This is the FIFO schedule without idle time
for two slaves.

The total processing time is given by

T 1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (5.2)

2. Entire load is distributed to p2 only.
The total processing time in this case is

T 2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (5.3)

3. Load is distributed to both p1 and p2.
It can be proved that as long asC1 ≤ C2, only the schedules shown in Figs. 5.3, 5.4,
and 5.5 can be optimal for a two-slave system. These schedules are the FIFO sched-
ule, the LIFO schedule, and the FIFO schedule with idle time in processor p2 respec-
tively. There can be no LIFO schedule with idle time [16–18].
In this thesis, these schedules are referred to as Schedule f , Schedule l, and Sched-
ule g respectively. Superscripts f , l, and g are used to distinguish the three sched-
ules. The equations for load fractions, processing times, and the conditions for opti-
mality of Schedules f , l, and g are derived in brief in the following Sections 5.3, 5.4,
and 5.5.

5.3 SCHEDULE f

This is the FIFO schedule without idle time for two slave processors. As mentioned
above, it is assumed that C1 ≤ C2. In this section, the equations defining Schedule f are
derived.

From Fig. 5.3,

αf1(E1 + δC1) = αf2(C2 +E2) (5.4)

67

Using αf1 + αf2 = 1 gives

αf1 =
C2 + E2

E1 + δC1 + C2 + E2

=
C2(1 + ρ2)

C1(δ + ρ1) + C2(1 + ρ2)

=
C2r
f
2

C1r
f
1 + C2r

f
2

(5.5)

αf2 =
E1 + δC1

E1 + δC1 + C2 + E2

=
C1(δ + ρ1)

C1(δ + ρ1) + C2(1 + ρ2)

=
C1r
f
1

C1r
f
1 + C2r

f
2

(5.6)

Where

rf1 = δ + ρ1

rf2 = 1 + ρ2

It is interesting to seeαf1 andαf2 asweighted ratios ofC2 andC1. Theweights are functions
of the network computation and communication parameters as well as the application
under consideration. The processing time of Schedule f is

T f = αf1C1(1 + δ + ρ1) + δαf2C2

Using (5.5) and (5.6),

=
C2r
f
2C1(1 + rf1)

C1r
f
1 + C2r

f
2

+
C1r
f
1 δC2

C1r
f
1 + C2r

f
2

=
C1C2

C1r
f
1 + C2r

f
2

(δrf1 + rf2 + rf1 r
f
2)

=
C1C2

C1r
f
1 + C2r

f
2

(
(1 + rf1)(δ + rf2)− δ

)
(5.7)

It is advantageous to distribute load to the two processors in Schedule f instead of pro-

68

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T l

.p2 .α2C2

.α2E2

.δα2C2

Figure 5.4 Timing diagram for Schedule l for the two-slave system. This is the LIFO
schedule for two slaves.

cessing it entirely on p1, if T f ≤ T 1. From (5.7),

T f ≤ T 1 ⇔ C1C2

C1r
f
1 + C2r

f
2

(δrf1 + rf2 + rf1 r
f
2) ≤ C1(1 + rf1)

⇔ C2(δr
f
1 + rf2 + rf1 r

f
2) ≤ (C1r

f
1 + C2r

f
2)(1 + rf1)

⇔ δC2r
f
1 ≤ C1r

f
1 (1 + rf1)

⇔ δC2 ≤ C1(1 + rf1)

⇔ δC2 ≤ C1(1 + δ + ρ1) (5.8)

Similarly, it is advantageous to distribute load to the two processors in Schedule f instead
of processing it entirely on p2, if T f ≤ T 2. Again using (5.7),

T f ≤ T 2 ⇔ C1C2

C1r
f
1 + C2r

f
2

(δrf1 + rf2 + rf1 r
f
2) ≤ C2(δ + rf2)

⇔ C1(δr
f
1 + rf2 + rf1 r

f
2) ≤ (C1r

f
1 + C2r

f
2)(δ + rf2)

⇔ δC1r
f
2 ≤ C2r

f
2 (δ + rf2)

⇔ δC1 ≤ C2(δ + rf2)

⇔ δC1 ≤ C2(1 + δ + ρ2) (5.9)

Equation (5.9) is always true for C1 ≤ C2.

5.4 SCHEDULE l

This is the LIFO schedule for two slave processors. In this section, the equations defin-
ing Schedule l are derived.

From Fig. 5.4,

αl1E1 = αl2(C2 + E2 + δC2) (5.10)

69

Using αl1 + αl2 = 1 gives

αl1 =
C2 + E2 + δC2

E1 + C2 + E2 + δC2

=
C2(1 + δ + ρ2)

C1ρ1 + C2(1 + δ + ρ2)

=
C2r
l
2

C1rl1 + C2rl2
(5.11)

αl2 =
E1

E1 + C2 + E2 + δC2

=
C1ρ1

C1ρ1 + C2(1 + δ + ρ2)

=
C1r
l
1

C1rl1 + C2rl2
(5.12)

Where

rl1 = ρ1 (5.13)
rl2 = 1 + δ + ρ2 (5.14)

We note that,

rl1 = rf1 − δ (5.15)
rl2 = rf2 + δ (5.16)

rl1 + rl2 = rf1 + rf2 = 1 + δ + ρ1 + ρ2 (5.17)

The processing time of Schedule l is

T l = αl1C1(1 + δ + ρ1)

Using (5.11),

=
C1C2r

l
2(1 + δ + rl1)

C1rl1 + C2rl2
(5.18)

Using (5.15) and (5.16)

=
C1C2(r

f
2 + δ)(1 + δ + rf1 − δ)

C1(r
f
1 − δ) + C2(r

f
2 + δ)

70

=
C1C2(1 + rf1)(δ + rf2)

C1r
f
1 + C2r

f
2 + δ(C2 − C1)

(5.19)

Load distribution in Schedule l is advantageous instead of distributing load entirely to
p1, if T l ≤ T 1. From (5.18),

T l ≤ T 1 ⇔ C1C2r
l
2(1 + δ + rl1)

C1rl1 + C2rl2
≤ C1(1 + δ + rl1)

⇔ C2r
l
2 ≤ C1r

l
1 + C2r

l
2

⇔ 0 ≤ C1ρ1 = C1ρ1 = E1 (5.20)

Equation (5.20) is always true. Similarly, Schedule l is advantageous as compared to pro-
cessing entire load on p2, if T l ≤ T 2. Again using (5.18),

T l ≤ T 2 ⇔ C1C2r
l
2(1 + δ + rl1)

C1rl1 + C2rl2
≤ C2r

l
2

⇔ C1(1 + δ + rl1) ≤ C1r
l
1 + C2r

l
2

⇔ C1(1 + δ) ≤ C2r
l
2

⇔ C1(1 + δ) ≤ C2(1 + δ + ρ2) (5.21)

Equation (5.21) is always true for C1 ≤ C2.

To find the limiting condition for the optimality of Schedules f and l, the equations
for T f and T l are compared. From (5.7) and (5.19),

T f ≤ T l ⇔ (1 + rf1)(δ + rf2)− δ
C1r
f
1 + C2r

f
2

≤ (1 + rf1)(δ + rf2)

C1r
f
1 + C2r

f
2 + δ(C2 − C1)

⇔ −δ(C1r
f
1 + C2r

f
2) + δ(C2 − C1)

(
(1 + rf1)(δ + rf2)− δ

)
≤ 0

⇔ (C2 − C1)
(
(1 + rf1)(δ + rf2)− δ

)
≤ (C1r

f
1 + C2r

f
2)

⇔ C1C2

(C1r
f
1 + C2r

f
2)

(
(1 + rf1)(δ + rf2)− δ

)
≤ C1C2

(C2 − C1)

⇔ T f ≤ C1C2

(C2 − C1)
(5.22)

Conversely, it can be easily proved that

T l ≥ C1C2

(C2 − C1)
⇔ T l ≥ T f (5.23)

71

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.T g
.x2

Figure 5.5 Timing diagram for Schedule g. This is the FIFO schedule with idle time for
two slaves.

5.5 SCHEDULE g

This is the FIFO schedule with idle time for two slave processors. In this section, the
equations defining Schedule g are derived.

From Fig. 5.5,

αg1E1 = αg2C2 (5.24)

Using αg1 + αg2 = 1 gives

αg1 =
C2

E1 + C2
=

C2

C1ρ1 + C2
(5.25)

αg2 =
E1

E1 + C2
=

C1ρ1
C1ρ1 + C2

(5.26)

The processing time of Schedule g is

T g = αg1C1(1 + δ + ρ1) + δαg2C2

Using (5.25) and (5.26),

=
C1C2(1 + δ + ρ1)
C1ρ1 + C2

+
δρ1C1C2

C1ρ1 + C2

=
C1C2

C1ρ1 + C2
(1 + δ)(1 + ρ1) (5.27)

Idle time occurs in processor p2 (i.e., x2 ≥ 0), only when

αg2E2 ≤ δαg1C1 (5.28)

72

From (5.25) and (5.26),

αg2E2 ≤ δαg1C1 ⇔
C1ρ1

C1ρ1 + C2
ρ2C2 ≤

C2

C1ρ1 + C2
δC1

⇔ ρ1ρ2 ≤ δ (5.29)

This is one of the most interesting conditions regarding idle time, derived for the first
time in DLT. The condition is appealing because of its simplicity; in the way it summa-
rizes the complex relationship between the presence of idle time in a two slave network
with the system computation and communication parameters and the application under
consideration. Further confirmation of this condition is obtained in Sect. 5.7.

It is advantageous to distribute load to the two processors in Schedule g instead of
processing it entirely on p1, if T g ≤ T 1. From (5.27),

T g ≤ T 1 ⇔ C1C2

C1ρ1 + C2
(1 + δ)(1 + ρ1) ≤ C1(1 + δ + ρ1)

⇔ C2(1 + δ)(1 + ρ1) ≤ (C1ρ1 + C2)(1 + δ + ρ1)

⇔ C2(1 + δ)ρ1 ≤ C1ρ1(1 + δ + ρ1) + C2ρ1

⇔ δC2 ≤ C1(1 + δ + ρ1) (5.30)

Similarly, it is advantageous to distribute load to the two processors in Schedule g
instead of processing it entirely on p2, if T g ≤ T 2. Again using (5.27),

T g ≤ T 2 ⇔ C1C2

C1ρ1 + C2
(1 + δ)(1 + ρ1) ≤ C2(1 + δ + ρ2)

⇔ C1(1 + δ)(1 + ρ1) ≤ (C1ρ1 + C2)(1 + δ + ρ2)

⇔ C1(1 + δ)(1 + ρ1)− C1ρ1(1 + δ + ρ2) ≤ C2(1 + δ + ρ2)

⇔ C1(1 + δ)− C1ρ1ρ2 ≤ C2(1 + δ + ρ2)

⇔ C1(1 + δ − ρ1ρ2) ≤ C2(1 + δ + ρ2) (5.31)

Equation (5.31) is always true for C1 ≤ C2.
To find the limiting condition for optimality of Schedules g and l, the equations for

T g and T l are compared. From (5.27) and (5.18),

T g ≤ T l ⇔ C1C2

C1ρ1 + C2
(1 + δ)(1 + ρ1) ≤

C1C2

C1rl1 + C2rl2
(1 + δ + rl1)r

l
2

⇔ (1 + rl1)(r
l
2 − ρ2)

C1rl1 + C2
≤ (1 + δ + rl1)r

l
2

C1rl1 + C2rl2

⇔ −C1r
l
1(1 + rl1)ρ2 + C2r

l
2(1 + rl1)(r

l
2 − ρ2) ≤ C1r

l
1δr
l
2 + C2r

l
2(1 + δ + rl1)

73

⇔ C2r
l
2

(
(1 + rl1)(r

l
2 − ρ2)− (1 + δ + rl1)

)
≤ C1r

l
1

(
δrl2 + (1 + rl1)ρ2

)
Using (5.13),

⇔ C2r
l
2

(
(1 + ρ1)(1 + δ)− (1 + δ + ρ1)

)
≤ C1ρ1

(
δrl2 + (1 + ρ1)ρ2

)
⇔ C2r

l
2δρ1 ≤ C1ρ1(δrl2 + ρ2 + ρ1ρ2)

Using (5.14),

⇔ δC2(1 + δ + ρ2) ≤ C1

(
δ(1 + δ + ρ2) + ρ2 + ρ1ρ2

)
⇔ C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
(5.32)

5.6 OPTIMAL SCHEDULE IN TWO-SLAVE SYSTEM

A few lemmas to determine the optimal schedule for a two-slave system are now
stated.

Lemma 5.1. It is always advantageous to distribute the load to both the processors, rather than
execute it on the individual processors (for the system model under consideration).

Proof. From (5.8), (5.9), (5.20), (5.21), (5.30), and (5.31), it can be concluded that:

1. δC2 ≤ C1(1 + δ + ρ1) ⇒ T f ≤ T 1

2. C1 ≤ C2 ⇒ T f ≤ T 2

3. E1 ≥ 0 ⇒ T l ≤ T 1

4. C1 ≤ C2 ⇒ T l ≤ T 2

5. δC2 ≤ C1(1 + δ + ρ1) ⇒ T g ≤ T 1

6. C1 ≤ C2 ⇒ T g ≤ T 2

By assumption, C1 ≤ C2. Hence, from points 2, 4, and 6 above, execution time of
Schedules f , l, and g is always smaller than T 2.

By definition,E1 > 0. From points 1, 3, and 5 above, as long as δC2 ≤ C1(1+ δ+ ρ1),
execution time of Schedules f , l, and g is less than T 1.

74

Finally, if δC2 > C1(1 + δ + ρ1), then T f and T g are greater than T 1, but since T l is
always less than T 1, load can be distributed in Schedule l to reduce the processing time.

Thus, it is always advantageous to distribute load to two processors instead of one
under the system model under consideration.

Lemma 5.1 is important because it helps SPORT determine the number of participants
in a general schedule. Details are given in Sect. 6.3.

From Lemma 5.1, if δC2 ≤ C1(1 + δ + ρ1), then any of the Schedules f , g, or l could
be optimal. The limiting condition between Schedule f and Schedule g is stated in the
following lemma.

Lemma 5.2 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate
the presence of idle time in the FIFO schedule (i.e. Schedule g).

Proof. If the values of δ, E , and C, are such that they necessitate the presence of idle time
in a FIFO schedule, then the schedule can be reduced to Schedule g as shown in Fig. 5.5.

In that case, idle time in processor p2 occurs only when αg2E2 ≤ δαg1C1. From (5.29),
this condition reduces to ρ1ρ2 ≤ δ.

The simplicity of the condition to detect the presence of idle time in the FIFO sched-
ule is both pleasing and surprising, and has been derived for the first time ever. Further
confirmation of this condition is obtained in Sect. 5.7.

The following theorem can now be stated.

Theorem 5.1 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can
be found as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.

2. If δC2 ≤ C1(1 + δ+ ρ1), and both (5.29) and (5.32) hold, then Schedule g is optimal. Else
if (5.32) does not hold, then Schedule l is optimal.

3. If δC2 ≤ C1(1+ δ+ρ1), (5.29) does not hold, and condition (5.22) holds, then Schedule f
is optimal. Else if (5.22) does not hold, then Schedule l is optimal.

Proof. The proof follows directly from Lemmas 5.1 and 5.2, and (5.22) and (5.32).

All the conditions use only the data provided in the definition of the problem, with
the exception of (5.22) which requires the computation of T f .

It can be argued that the optimal schedule can be determined by directly computing
the values of T f , T l, and T g using (5.7), (5.18), and (5.27) respectively. While this fact
cannot be denied, it defeats the ultimate purpose of this research, which is to identify

75

...p0
.E0

..p1
.E1

.l1
.C1

..p2
.E2

.l2
.C2

.Eqv.

..p0
.E0

..p1:2

.E1:2

.l1:2

.C1:2

Figure 5.6 The concept of equivalent processor for theheterogeneous two-slave system.
The two processors p1 and p2 are replaced by an equivalent virtual processor p1:2. The two
network links l1 and l2 are replaced by an equivalent virtual link l1:2. As far as the master
p0 is concerned, there is no difference in the time it takes for the equivalent processor to
execute a task.

relationships between the system parameters that influence the optimality of different
schedules.

Another very interesting insight into the problem is provided by (5.22). The value
C1C2/(C2−C1) forms a limiting condition between the optimality of Schedules f and l.
It can be seen that as long as T f is smaller than this value, it is also smaller than T l.

As the network links become homogeneous, the difference (C2−C1) becomes small,
and Schedule f is likely to be optimal because T f would be less than the large value
C1C2/(C2 − C1). On the other hand, as the network links become heterogeneous, the
value C1C2/(C2 − C1) becomes small, and Schedule l would tend to be optimal because
T f can easily exceed this small value.

Rosenberg reached a similar conclusion with the help of simulations [77]. However
this condition is analytically derived for the first time in DLT literature.

Once the optimal schedule (i.e., σ∗a and σ∗c) is known, it is simple to calculate the opti-
mal load distribution α∗ using the equations in Sects. 5.3, 5.4, and 5.5.

The optimal solution to DLSRCHETS, (σ∗a, σ
∗
c , α
∗), for a system with two slave pro-

cessors is a function of the system parameters and the application under consideration,
because of which, no particular sequence of allocation and collection can be defined a
priori as the optimal sequence. The optimal solution can only be determined once all the
parameters become known.

5.7 THE CONCEPT OF EQUIVALENT PROCESSOR

To extend the above result to the general case withm slave processors, the concept of
an equivalent processor is introduced. Consider the system in Fig. 5.6. The processors p1 and

76

p2 are replaced by a single equivalent processor p1:2 with computation parameter E1:2,
connected to the root by an equivalent link l1:2 with communication parameterC1:2. The
resulting system is called the equivalent system and the resulting schedule is known as the
equivalent schedule. The values of the parameters for the three equivalent schedules are
defined below.

If the initial load distribution is α = {α1, α2}, and the processing time is T , then the
equivalent system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.

• The processing time is unchanged and equal to T .

• The time spent in load distribution and result collection is unchanged, i.e., for all
three schedules,

– α1:2C1:2 = α1C1 + α2C2, and

– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval be-
tween the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E
f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2E
l
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2E
g
1:2 = 0.

5.8 EQUIVALENT PROCESSOR FOR SCHEDULE f

In Fig. 5.7, the top half shows Schedule f for the two processors in the original system,
while the bottom half shows the corresponding equivalent Schedule f for the equivalent
processor. In the equivalent Schedule f , the total communication time remains the same
as the original two processors. The equivalent computation time is equal to the interval
between the end of allocation to p2 and the start of result collection from p1.

To derive the equation for equivalent processor of Schedule f , algebraicmanipulation
of (5.7) gives

T f1:2 =
C1C2

C1r
f
1 + C2r

f
2

(
rf1 + rf2 + δrf1 + δrf2 + rf1 r

f
2 − r

f
1 − δr

f
2 + δ − δ

)

=
C1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2

+
δC1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2

+
C1C2

(
(rf1 − δ)(r

f
2 − 1)− δ

)
C1r
f
1 + C2r

f
2

77

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.T f

. .Original Schedule f

.p1:2
.α1:2C1:2

.α1:2E1:2

.δα1:2C1:2

.T f1:2

. .Equivalent Schedule f

Figure 5.7 Equivalent processor in Schedule f . The total communication time remains
the same as the original two processors. The equivalent computation time is equal to the
interval between the end of allocation to p2 and the start of result collection from p1.

=
C1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2

+
C1C2(ρ1ρ2 − δ)
C1r
f
1 + C2r

f
2

+
δC1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2

(5.33)

5.9 EQUIVALENT PROCESSOR FOR SCHEDULE l

Fig. 5.8 shows the timing diagram for equivalent Schedule l. As for Schedule f , the up-
per half shows the original schedule and the lower half shows the equivalent schedule. In
the equivalent Schedule l, the total communication time remains the same as the original
two processors. The equivalent computation time is equal to the computation time of p2.

To derive the equation for equivalent processor for Schedule l, algebraicmanipulation
of (5.19) gives

T l1:2 =
C1C2

C1r
f
1 + C2r

f
2 + δ(C2 − C1)

(
rf1 + rf2 + δrf1 + δrf2 + rf1 r

f
2 − r

f
1 − δr

f
2 + δ

)
=

C1C2(r
f
1 + rf2)

C1r
f
1 + C2r

f
2 + δ(C2 − C1)

+
C1C2(r

f
1 − δ)(r

f
2 − 1)

C1r
f
1 + C2r

f
2 + δ(C2 − C1)

+
δC1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2 + δ(C2 − C1)

78

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T l

.p2 .α2C2

.α1:2E1:2

.δα2C2

. .Original Schedule l

.p1:2 .α1:2C1:2

.α1:2E1:2

.δα1:2C1:2

.T l1:2

. .Equivalent Schedule l

Figure 5.8 Equivalent processor in Schedule l. The total communication time remains
the same as the original two processors. The equivalent computation time is equal to the
computation time of p2.

Using (5.15), (5.16), and (5.17),

=
C1C2(rl1 + rl2)
C1rl1 + C2rl2

+
C1C2ρ1ρ2

C1rl1 + C2rl2
+
δC1C2(rl1 + rl2)
C1rl1 + C2rl2

(5.34)

5.10 EQUIVALENT PROCESSOR FOR SCHEDULE g

Fig. 5.9 shows the timing diagram for equivalent Schedule g. In the equivalent Sched-
ule g, the total communication time remains the same as the original two processors. The
equivalent computation time is equal to zero as the result collection begins immediately
after the allocation phase ends.

From (5.27), the processing time of Schedule g can be written as

T g1:2 =
C1C2(1 + ρ1)
C1ρ1 + C2

+
δC1C2(1 + ρ1)
C1ρ1 + C2

(5.35)

5.11 THE EQUIVALENT PROCESSOR THEOREM

This leads to the following theorem:

79

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.T g

. .Original Schedule g

.p1:2
.α1:2C1:2 .δα1:2C1:2

.T g1:2

. .Equivalent Schedule g

.x2

Figure 5.9 Equivalent processor in Schedule g. The total communication time remains
the same as the original two processors. The equivalent computation time is equal to zero
as the result collection begins immediately after the allocation phase ends.

Theorem 5.2 (Equivalent Processor Theorem). In a heterogeneous systemH withm = 2,
the two slave processors p1 and p2 can be replaced without affecting the processing time T , by
a single (virtual) equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that
C1 ≤ C1:2 ≤ C2 andE1:2 ≤ E1, E2.

Proof. From (5.33), the processing time of Schedule f can be written as,

T f = α1:2C
f
1:2 + α1:2E

f
1:2 + δα1:2C

f
1:2

where

α1:2 = αf1 + αf2 = 1

Cf1:2 =
C1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2

(5.36)

Ef1:2 =
C1C2(ρ1ρ2 − δ)
C1r
f
1 + C2r

f
2

(5.37)

Similarly, from (5.34), the processing time of Schedule l can be written as,

T l = α1:2C
l
1:2 + α1:2E

l
1:2 + δα1:2C

l
1:2

80

where

α1:2 = αl1 + αl2 = 1

C l1:2 =
C1C2(rl1 + rl2)
C1rl1 + C2rl2

(5.38)

El1:2 =
C1C2ρ1ρ2

C1rl1 + C2rl2
(5.39)

From (5.35), the processing time of Schedule g can be written as

T g = α1:2C
g
1:2 + α1:2E

g
1:2 + δα1:2C

g
1:2

where,

α1:2 = αg1 + αg2 = 1

Cg1:2 =
C1C2(1 + ρ1)
C1ρ1 + C2

(5.40)

Eg1:2 = 0 (5.41)

It can be easily verified that these representations satisfy the properties of equivalent
processor mentioned above.

For Schedule f , l, and g,

α1:2C1:2 = α1C1 + α2C2, (5.42)
α1 = 1− α2, (5.43)

and

α1:2 = 1. (5.44)

Using (5.43) and (5.44) in (5.42), the equivalent communication parameter can be written
as

C1:2 = C1 + α2(C2 − C1). (5.45)

Since by definition, 0 ≤ α2 ≤ 1, it immediately follows that C1 ≤ C1:2 ≤ C2.
Similarly, from the definition of equivalent system,

Ef1:2 = α1E1 − α2C2

81

= α2E2 − δα1C1 (5.46)

and

El1:2 = α2E2

= α1E1 − α2C2(1 + δ). (5.47)

Since 0 ≤ α1, α2 ≤ 1, it follows from (5.46) and (5.47) that Ef1:2 ≤ E1, E2 and El1:2 ≤
E1, E2.

From (5.41),Eg1:2 = 0 implies thatEg1:2 ≤ E1, E2, since by definition,E1, E2 > 0.

The equivalent processor enables replacement of two processors by a single processor
with communication parameter with a value that lies between the values of communica-
tion parameters of the original two links. Because of this property, if the processors are
arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time
sequentially starting from the fastest two, then the resultant equivalent processor does
not disturb the order of the sequence. This property is exploited in the SPORT algorithm,
which is described in the next chapter.

The equivalent processor for Schedule f provides additional confirmation of the con-
dition for the presence of idle time in a FIFO schedule i.e. use of Schedule g (5.29). It is
known that idle time can exist in a FIFO schedule only when the intervening time inter-
val y = 0. According to the definition of equivalent processor, this interval corresponds
to the equivalent computation capacity Ef1:2. From (5.37), this value becomes zero only
when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist in the FIFO schedule.

5.12 EXTENDING THE EQUIVALENT PROCESSOR CONCEPT

Consider the heterogeneous systemHwithm processors. Two special case situations
arise if one wishes to know:

• If load is distributed to them processors in a FIFO schedule, will it have idle time?

• Can load be allocated to all processors in a FIFO schedule?

• If load is distributed to the m processors in a LIFO schedule, will it be faster than
distributing it in a FIFO schedule?

Of course one wishes to know the answers without explicitly calculating the processing
times and load distributions. Using the equivalent processor concept, these questions can
be answered by simple calculations on the system parameters itself.

82

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.

.pm .αmCm
.αmEm

.δαmCm
.T

. .Original FIFO schedule

.p1:m
.α1:mC1:m

.α1:mE1:m

.δα1:mC1:m

.T1:m

. .Equivalent FIFO schedule

Figure 5.10 General FIFO schedule and its equivalent processor. The total communica-
tion time remains the same as the originalmprocessors. The equivalent computation time
is equal to the interval between the end of the allocation phase to pm and the start of the
result collection phase of p1.

The closed-form formulae for the FIFO and LIFO schedules and their equivalent pro-
cessors are first derived in brief.

5.12.1 The General FIFO Schedule

The closed-form formulae for load fractions of the general FIFO schedule can be ob-
tained in any standard text onDLS. They are reproducedhere for the sake of completeness,
and so that they can be used in the formulae for the general FIFO equivalent processor.

From Fig. 5.10, for k = 1, . . . ,m− 1,

αkEk + δαkCk = αk+1Ck+1 + αk+1Ek+1

Which can be written as

αk = fk αk+1 k = 1, . . . ,m− 1 (5.48)

83

where

fk =
(
Ck+1 + Ek+1

Ek + δCk

)
k = 1, . . . ,m− 1 (5.49)

Let fm = 1. From the normalization equation (3.12),

m∑
j=1

αj = 1 (5.50)

The recursive equations (5.48) can be solved by expressingαk (k = 1, . . . ,m−1) in terms
of αm as

αk =

 m∏
j=k

fj

αm k = 1, . . . ,m− 1 (5.51)

From (5.50) and (5.51), and using the fact that fm = 1,

αm =
1∑m

i=1

∏m
j=i fj

(5.52)

Using (5.52) in (5.51),

αk =
∏m
j=k fj∑m

i=1

∏m
j=i fj

k = 1, . . . ,m− 1 (5.53)

The processing time is,

T f1:m =
m∑
k=1

αkCk + αmEm + δαmCm (5.54)

From (5.52) and (5.53),

T f1:m =

∑m
k=1

(∏m
j=k fj

)
Ck +Em + δCm∑m

i=1

∏m
j=i fj

(5.55)

5.12.2 General FIFO Equivalent Processor

The set of processors p1, . . . , pm in figure 5.10 can be replaced by a single equivalent
processor denoted by p1:mwith parameterE1:m connected to themaster by an equivalent
link denoted by l1:m with parameter C1:m. The equivalent system satisfies the following
properties.

84

If the initial load distributionα = {α1, . . . , αm} is such that the total processing time
is T , then

• The processing time of the equivalent systemwith the new load distributionα1:m is
also T . The equivalent system now has one slave processor and the load processed
by the equivalent processor is α1:m = α1 + · · ·+ αm.

• The total delay in communicating the load fractions α1, . . . , αm from the master
and the result fractions δα1, . . . , δαm to themaster is the same as the delay in com-
municating the load α1:m and δα1:m in the equivalent system.

• The time taken by the equivalent processor to compute the loadα1:m is equal to the
difference between the point when processor p1 starts to send its result data to the
master and the point at which processor pm completes reception of its input load
fraction.

From the conditions imposed on the equivalent system,

α1:m =
m∑
k=1

αk =
(m∑
i=1

m∏
j=i

fj
)
αm = 1 (5.56)

and

α1:mC
f
1:m =

m∑
k=1

αkCk (5.57)

Using (5.51) and (5.56) in (5.57),

Cf1:m =

∑m
k=1

(∏m
j=k fj

)
Ck∑m

i=1

∏m
j=i fj

(5.58)

Now, by definition,

α1:mE
f
1:m = αmEm −

m−1∑
k=1

δαkCk (5.59)

Again using (5.56) and (5.58) in (5.59)

Ef1:m =
Em − δ

∑m−1
k=1

(∏m
j=k fj

)
Ck∑m

i=1

∏m
j=i fj

(5.60)

To find the rangeof values forCf1:m andEf1:m, it is assumed that theprocessors p1, . . . , pm−1

are representedby their equivalent processorp1:m−1 withparametersCf1:m−1 andEf1:m−1,

85

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.T

.p2 .α2C2

.α2E2

.δα2C2

.

.pm .αmCm
.αmEm

.δαmCm

. .Original LIFO schedule

.p1:m
.α1:mC1:m

.α1:mE1:m

.δα1:mC1:m

.T1:m

. .Equivalent LIFO schedule

Figure 5.11 General LIFO schedule and its equivalent processor. The total communica-
tion time remains the same as the originalmprocessors. The equivalent computation time
is equal to the computation time of processor pm.

the values of which are given by equations (5.58) and (5.60) respectively. By setting p1 ≡
p1:m−1 and p2 ≡ pm in Theorem 5.2, if follows that,

Cf1:m−1 ≤ C
f
1:m ≤ Cm (5.61)

and

Ef1:m ≤ E1, . . . , Em (5.62)

5.12.3 The General LIFO Schedule

The closed-form equations for load fractions for the general LIFO schedule are now
derived. The derivation is based on similar lines as that for FIFO.

From Fig. 5.11, for k = 1, . . . ,m− 1,

αkEk = αk+1Ck+1 + αk+1Ek+1 + δαk+1Ck+1

86

or,

αk = fk αk+1 k = 1, . . . ,m− 1 (5.63)

where

fk =
(
Ck+1 + Ek+1 + δCk+1

Ek

)
(5.64)

and fm = 1. Proceeding similar to FIFO,

αm =
1∑m

i=1

∏m
j=i fj

(5.65)

and

αk =
∏m
j=k fj∑m

i=1

∏m
j=i fj

k = 1, . . . ,m− 1 (5.66)

The processing time is given as,

T l1:m = α1C1 + α1E1 + δα1C1

=
∏m
j=2 fj(C1 + E1 + δC1)

1 +
∑m−1
i=1

∏m
j=i fj

(5.67)

5.12.4 General LIFO Equivalent Processor

The conditions for equivalent processor for the LIFO schedule are similar to that of
FIFO except for the fact that the time taken by the equivalent processor to compute the
load α1:m is equal to the time taken by processor pm to compute its load fraction, αm
(refer figure 5.11). Similar to equations for FIFO schedule, it can be derived,

α1:m =
m∑
k=1

αk =
(m−1∑
i=1

m∏
j=i

fj
)
αm = 1 (5.68)

C l1:m =

∑m
k=1

(∏m
j=k fj

)
Ck∑m

i=1

∏m
j=i fj

(5.69)

Now, by definition,

α1:mE
l
1:m = αmEm (5.70)

87

Using (5.68) in (5.70)

El1:m =
Em∑m

i=1

∏m
j=i fj

(5.71)

Further, by proceeding in a similar way as schedule FIFO and using Theorem 5.2, it can be
shown that

C l1:m−1 ≤ C l1:m ≤ Cm (5.72)

and

El1:m < E1, . . . , Em (5.73)

5.12.5 Results Using General Equivalent Processor

Using the derivations above, the questions posed at the beginning of Section 5.12 can
be answered.

Whether LIFO or FIFO is faster for a heterogeneous systemH withm processors can
easily be computed using (5.55) and (5.67).

Lemma 5.3. ρf1:m−1ρm < δ is a necessary and sufficient condition to indicate the presence of idle
time in a general optimal FIFO schedule withm slave processors, where ρf1:m−1 is the equivalent
network parameter for the firstm− 1 processors in the allocation sequence.

Proof. The conditions for optimality (5.22) or (5.23) and for the existence of idle time (5.29)
can be easily extended to the general FIFO and LIFO schedules with an arbitrary number
of processors using the equivalent processor concept. The conditions place no restriction
on the processors that can be compared, and so one or both the processors may be virtual
(equivalent) processors.

It is known that idle time in an optimal FIFO schedule can always be transferred to
the last processor in the allocations sequence, i.e., the processor with the slowest com-
munication link. This means that the first m − 1 processors in case of a system with m
processors have no idle time irrespective of whether idle time exists or not. Thus if these
processors are collected together and represented by their equivalent parametersCf1:m−1

andEf1:m−1, then the condition for presence of idle time (5.29) reduces to simply checking
if

ρf1:m−1ρm < δ. (5.74)

88

When (5.74) is satisfied with an equality, the computation time of pm is exactly equal to
the result collection time of p1:m−1. The intervening time interval between the end of load
allocation of p1:m−1 and the start of result collection of pm is still zero.

An interesting and important corollary results from Lemma 5.3. It enables to deter-
mine the number of processors to use in a general FIFO schedule as well as the SPORT
algorithm.

Corollary 5.1. In a heterogeneous systemHwithm slave processors, assume that the processors
p1, . . . , pm are arranged such thatC1 ≤ C2 ≤ . . . ≤ Cm. Then load is allocated to processors k
and above, k ∈ {1, . . . ,m}, if and only if ρ1:k−2ρk−1 > δ.

Proof. Scan the processors from left to right, i.e., from the one with the fastest commu-
nication link to the slowest. Let pk, k ∈ {1, . . . ,m} be the first processor to satisfy the
condition (5.74) with either an equality or inequality, i.e. ρ1:k−1ρk ≤ δ.

It is known that when condition (5.74) is satisfiedwith either an equality or inequality,
the intervening time interval y between the end of the allocation sequence and the start
of result collection is zero. Thismeans that processors pk+1 and above cannot be allocated
load in the FIFO sequence.

Thus, equivalently, load is allocated to processor k and above, k ∈ {1, . . . ,m}, if and
only if the condition ρf1:k−2ρk−1 > δ it true.

This condition is valid irrespective of whether the equivalent processor is obtained by
combining processors in a FIFO schedule, or a LIFO schedule, or a combination of both.

5.13 SUMMARY

This is arguably the most important chapter in the thesis, because it lays the founda-
tion of the two-slave system that forms the basis for the SPORT algorithm. Several impor-
tant concepts were introduced in this chapter, namely,

• The three types of possible optimal schedules in a two-slave system and the related
derivations. With two slaves, it would seem natural to have four possible proces-
sor orderings. While the number of orderings is four, there are in fact six possible
schedules — two of FIFO type, two of LIFO type, and two of FIFO type with idle time.
Out of these six only three (one of each type) are possibly optimal because they are
just images of each other. The three schedules were explored and formulae for the
load fractions and processing times were derived.

• Derivation of optimal schedule for two processors using simple if-then clauses and
closed-form equations. It is one of the objectives of this research to find relation-

89

ships between systemparameters and theoptimal schedule. Thus the optimal sched-
ule is determined by a series of if-then clauses that use processor computation and
communication parameters only.

• The condition for optimality of the LIFO and FIFO schedules in a two-slave system.
LIFO and FIFO type of schedules are the simplest possible for divisible load schedul-
ingwith result collection. A conditionwas derived to checkwhichof the two is faster
for a two-slave system. The result shows that this is independent of the computation
speeds of the processors as well as the application under consideration, i.e., the size
of result data as indicated by δ. Whether LIFO (resp. FIFO) is faster for a two-slave
system depends only on the communication speeds of the processor links.

• The condition for the existence of idle time in a FIFO schedule. The simplicity of this
condition is very appealing. It neatly shows a relationship between the computation
and communication speeds of the two processors and the value of δ. Since 0 ≤ δ ≤
1, at least one of the network parameters (ρk) should be less than one for idle time
to exist in a schedule. That is, idle time may exist when the communication speed
is lower than the computation speed of the processors.

• Equivalent processor for LIFO andFIFO schedules and relatedderivations. The equiv-
alent processor enables the combination of two processors into a single virtual pro-
cessor. When applied repeatedly to a system, the communication and computation
capacity of the system can be easily summarized. Because of this summarization,
when constructing a piecewise solution, at each step (iteration):

(a) the optimal schedule has to be determined for only two processors, and
(b) the possible collection sequence permutations are limited to only two.

This in turn enables a huge reduction in the computation complexity of an iterative
solution because the number of possibilities is constant.

• The extension of the equivalent processor concept to an arbitrary number of pro-
cessors and its applications. The LIFO and FIFO solutions are special cases where the
equivalent processor concept can be extended to an arbitrary number of processors.
In case of a general schedule this is not always possible. Closed form equations were
derived for the LIFO and FIFO case and it was shown how some of the results such
as the condition for idle time in a two-slave system can be extended to a general
system withm processors. As a corollary to the condition for idle time, the method
to determine the number of processors to allocate load was derived.

In the next chapter all these concepts finally coalesce into the SPORT algorithm.

90

C H A P T E R 6

T H E S P O R T A L G O R I T HM

6.1 INTRODUCTION

From the analysis in previous chapters, some desirable characteristics of an algorithm
to solve DLSRCHETS are:

• Along with the allocation and collection sequences the algorithm should find:

(a) the number of processors to use for computation (i.e. the number of partici-
pants), and

(b) the load fractions to be allocated to the participants.

• As far as possible this should be done without solving a linear program, because
solving a linear program is time consuming.

• The algorithm should limit the number of possible allocation and collection se-
quences to a few, potentially close to optimal permutations.

• The algorithm should be robust to system heterogeneity; it should provide good
schedules for both homogeneous and heterogeneous types of systems.

The SPORT algorithm proposed in this chapter fulfills all of these requirements. For
example,

• SPORT uses Theorem 5.1 to determine the optimal schedule for two processors.

• SPORT reduces two processors into single virtual processor using Theorem 5.2.

• Lemma 5.2 and Corollary 5.1 are used to find the number of participants in SPORT.

• SPORT determines the load fractions using a simple binary tree traversal.

91

• The allocation sequence is maintained in the order of decreasing communicaiton
bandwidth as recommended by previous research results [1, 9, 16–18, 22, 24, 27, 28,
56, 59].

• The collection sequence is limited to two possible permutations in each iteration.

• Because SPORT builds a piecewise optimal schedule, it is able to adapt to changes in
system parameters over a wide range of values.

The chapter is organized as follows. Section 6.2 details the proposed algorithm and
Sections 6.3 and 6.4 give the explanation of the algorithm and discuss about the com-
putation complexity. SPORT is tested using simulations over a wide range of system and
application parameters in Sections 6.5 and 6.6. Finally, Section 6.7 summarizes the results
presented in this chapter.

6.2 PROPOSED ALGORITHM

The proposed SPORT algorithm is as follows.

Algorithm 2 (SPORT).

1: arrange p1, . . . , pm such thatC1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 tom do

4: C1←C1:k−1,E1←E1:k−1,C2←Ck ,E2←Ek

5: if δC2 > C1(1 + δ + ρ1) then

6: /* T l < T f , T g , use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: ifC2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

92

13: /* T g < T l, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* T l < T g , use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2

C2 − C1
then

23: /* T f < T l, use Schedule f */

24: call schedule_fifo

25: else

26: /* T l < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

αk ←

αk ·
∏n
j=2 α1:j if k = 1

αk ·
∏n
j=k α1:j if k = 2, . . . , n

34: T ← C1:n + E1:n + δ C1:n

93

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ←
C2

C1ρ1 + C2

2: αk ←
C1ρ1

C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ←
C1C2(1 + ρ1)
C1ρ1 + C2

8: E1:k ← 0

9: numberOfProcessorsUsed← k

10: return

procedure schedule_lifo

1: rl1 ← ρ1

2: rl2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2r
l
2

C1rl1 + C2rl2

4: αk ←
C1r
l
1

C1rl1 + C2rl2

5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl1 + rl2)
C1rl1 + C2rl2

94

10: E1:k ←
C1C2ρ1ρ2

C1rl1 + C2rl2

11: numberOfProcessorsUsed← k

12: return

procedure schedule_fifo

1: rf1 ← δ + ρ1

2: rf2 ← 1 + ρ2

3: α1:k−1 ←
C2r
f
2

C1r
f
1 + C2r

f
2

4: αk ←
C1r
f
1

C1r
f
1 + C2r

f
2

5: /* Update sequences for FIFO */

6: σa ← {σa, k}

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + rf2)

C1r
f
1 + C2r

f
2

10: E1:k ←
C1C2(ρ1ρ2 − δ)
C1r
f
1 + C2r

f
2

11: numberOfProcessorsUsed← k

12: return

The working of the algorithm is explained in the next section.

6.3 ALGORITHM EXPLANATION

At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two
processors with the fastest communication links are selected. The optimal schedule and
load distribution for the two processors are found according to Theorem 5.1. If Schedule f
or l is found optimal, then the two processors are replaced by their equivalent processor.
In either case, since C1 ≤ C1:2 ≤ C2, the ordering of the processors does not change. In

95

...p1:n

..p1:n−1

..

..p1:3

..p1:2

..p1 ..p2

..p3

..p4

..pn−1

..pn

Figure 6.1 Thebuilding of SPORT solution. At each step only twoprocessors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 5.1.

the subsequent iteration, the equivalent processor and the processor with the next fastest
communication link are selected and the steps are repeated until either all processors are
used up, or Schedule g is found to be optimal. If Schedule g is found to be optimal in any
iteration, then the algorithm exits after finding the load distribution for that iteration.

Example 6.1. An example of how the SPORT algorithm works for a network withm = 3
is given in Fig. 6.2. In Fig. 6.2, Schedule l is found to be optimal for processors p1 and p2,
and Schedule f is optimal for their equivalent processor p1:2 and the processor p3. The
resulting timing diagrams are as shown.

Now assume that this network has several more processors. Since SPORT adds pro-
cessors one by one to the set of participants, Lemma 5.1 implies that the addition should
be greedy, i.e. as many processors as possible should be used to minimize the processing
time. If in the third iteration, Schedule g is found to be optimal for the processors p1:3 and
p4, then in that case, the intervening time interval between the end of load allocation to
p4 and the start of result collection from p2 would be zero. Since additional processors
are always inserted (allocated load) within this interval, it would not be possible to al-
locate load to any more processors, and the algorithm exits. Thus Schedule g forms the
logical termination criterion for the algorithm unless all processors in the network are
used. When Schedule g is found to be the optimal schedule, all remaining processors are

96

.
.Time

.p1 .α1C1

.α1E1

.δα1C1

.p2 .α2C2

.α2E2

.δα2C2

.p3 .α3C3

.α3E3

.δα3C3

.T

. .This is the actual schedule

.p1:2 .α1:2C1:2

.α1:2E1:2

.δα1:2C1:2

.p3 .α3C3

.α3E3

.δα3C3

.T

. .This is how it appears to p3

.p1:3 .α1:3C1:3

.α1:3E1:3

.δα1:3C1:3

.T

. .This is the final equivalent schedule

Figure 6.2 An example of SPORT algorithm for three processors. Schedule l is optimal
for p1 and p2, and schedule f is optimal for their equivalent processor p1:2 and p3. p3 sees
only p1:2. The final equivalent processor p1:3 determines the makespan T .

allocated zero load, and their index in the allocation and collection sequence is assigned
zero value.

The computation of the allocation and collection sequences is straightforward. The al-
location sequence σa is maintained in the order of decreasing communication link band-
width of the processors. Irrespective of the schedule found optimal in iteration k, k is
always appended to σa. The collection sequence σc is constructed in the following man-
ner:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the

97

...α1:n

..α1:n−1

..

..α1:3

..α1:2

..α1 ..α2

..α3

..α4

..αn−1

..αn

.*

.*

.*

.*

.*

.Traverse the binary tree from the
root to the leaves, and take prod-
ucts of the values to compute load
fractions. For example,
α1 = α1:n · α1:n−1 · · ·α1:2 · α′1

Figure 6.3 Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is
multiplied by the product term in (6.1) to get the final value of α1. This is equivalent to
traversing the binary tree from the root to the leaf nodes and taking the product of all
nodes (values) encountered. This calculation can be implemented inO(m) time by start-
ing with αm and storing the intermediate values.

search for the optimal schedule. As shown in Fig. 6.3, the algorithm creates a one-sided
binary tree of load fractions. If the number of processors participating in the computation
is n, 2 ≤ n ≤ m, the root node of the binary tree is α1:n and the leaf nodes represent
the final load fractions allocated to the processors. The value of the root node need not
be calculated as it is equal to one. The individual load fractions, αk, are initially assigned
value α′k (say), and then updated at the end as:

αk =

α
′
k ·
∏n
j=2 α1:j if k = 1

α′k ·
∏n
j=k α1:j if k = 2, . . . , n

(6.1)

This is equivalent to traversing the binary tree from the root to each leaf node and taking
the product of the nodes encountered (see Fig. 6.3). This calculation can be easily imple-
mented in O(m) time by starting with the computation of αn, and storing the values of
the product terms (i.e.∏α1:j) for each processor and then using that value for the next
processor.

Once the sequences (σa, σc) and load distribution α are found, calculating the pro-
cessing time is straightforward. The processing time is simply the sum of the (equivalent)

98

parameters of the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.

6.4 COMPLEXITY AND DISCUSSION

In SPORT, defining the allocation sequenceby sorting the values ofCk requiresO(m logm)
time, while finding the collection sequence and load distribution requires O(m) time in
the worst case. Thus, if sorted values of Ck are given, then the overall complexity of the
algorithm is polynomial inm and is equal toO(m).

The equivalent processor method works because:

• The equivalent processor maintains the positions of the processors in the alloca-
tion sequence in order of decreasing communication bandwidth (increasing value
of communication parameter).

• Two processors in each iteration are kept immediately successive in the final order-
ing.

• All equations are linear. So irrespective of the final time interval T , the respective
positions and load fractions are not changed.

It follows that if overheads are considered (i.e. computation and communication costs are
affine functions of the size of data) in the system model, then the equivalent processor
method may not work. However most applications of DLS where result collection is im-
portant, involve transfers of large volumes of data, and overheads can be safely ignored.

As noted earlier in Sect. 5.6, when result collection phase is considered alongwith het-
erogeneous networks, at this stage at least, it is not possible to a priori define any single
sequence as the optimum sequence for allocation or collection. Nor is it possible to de-
termine a criterion for the optimal number of processors to be used in the computation.
The number of processors used and the optimal sequences depend on the communication
and computation parameters of the processors and the application under consideration
(δ). Because of this, it is also not possible to derive closed-form equations for the load
fractions or the total processing time.

SPORT does not guarantee a globally optimal solution to the DLSRCHETS problem as
seen in Example 6.2. However, since the solution (SPORT) is built on locally optimal values
by considering two processors at a time, the error as compared to the global optimum is
reduced to some degree.

Example 6.2. If C = {10, 20, 30}, E = {5, 15, 25}, and δ = 0.5, the globally optimal
solution is σ∗a = {1, 2, 3}, σ∗c = {2, 3, 1}, and α∗ = {0.88, 0.08, 0.04}, while the solution
found by SPORT is σa = {1, 2, 3}, σc = {3, 2, 1}, and α = {0.88, 0.1, 0.02}.

99

Finding the conditions for the minimization of the error is a part of the future work.
The performance of SPORT is rigorously tested by performing several sets of simulations
with different ranges for Ek, Ck, and δ. The details of the simulations are given in the
following sections.

6.5 SIMULATION SET A

The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC,
and ITERLP. Preliminary simulations for other heuristic algorithms, viz. FIFO, LIFO, FI-
FOE, LIFOE, and SUMCE, revealed large errors in favor of SPORT, and it was decided not to
pursue them further. These algorithms have already been explained in Section 4.7.1.

To explore the effects of system parameter values on the performance of the algo-
rithms, several sets of simulations were carried out:

Set A1 — Homogeneous Communication Speeds, Homogeneous Computation Speeds

Set A2 — Homogeneous Communication Speeds, Heterogeneous Computation Speeds

Set A3 — Heterogeneous Communication Speeds, Homogeneous Computation Speeds

Set A4 — Heterogeneous Communication Speeds, Heterogeneous Computation Speeds

To generate data values for the above sets, the simulation method has to be changed
as compared to that used to test ITERLP. Two types of intervals are used to sample data
from —main and sub-intervals:

• The intervals Ic = [Cmin, Cmax] and Ie = [Emin, Emax] given in Table 6.1 are used
as the main intervals. This table is the same as Table 4.3 but is reproduced here for
reference and completeness.

• The main intervals are divided into m equal-sized, contiguous, non-overlapping
subintervals Ic1, . . . , Icm and Ie1, . . . , Iem, eachof size (Cmax−Cmin)/m and (Emax−
Emin)/m respectively as shown in Fig. 6.4.

• Depending on the simulation set, themain and sub-intervals are uniformly sampled
to generate the communication and computation parameters. Sampling the sub-
intervals in this manner not only generates a homogeneous system, but also it is
possible to compare a “fast” and (comparatively) “slow” homogeneous system.

The sampling method for each set is described separately in its respective section be-
low. All plots are to log-scale to magnify the values close to zero. Not all plots are shown
on account of space considerations.

100

Table 6.1 Parameter values used for SPORT simulation sets A and B. There are 25 cases
with different values of unit communication and computation times. Depending on the
sub-set of simulation set A, the intervals are further divided into sub-intervals as ex-
plained in the main text. These are uniformly sampled to generate the sets C and E .

Case Ck ∈ Ek ∈ Case Ck ∈ Ek ∈
1 [1,10] [1,10] 14 [10,100] [1,100]
2 [1,10] [10,100] 15 [10,100] [10,1000]
3 [1,10] [100,1000] 16 [10,1000] [1,10]
4 [1,10] [1,100] 17 [10,1000] [10,100]
5 [1,10] [10,1000] 18 [10,1000] [100,1000]
6 [1,100] [1,10] 19 [10,1000] [1,100]
7 [1,100] [10,100] 20 [10,1000] [10,1000]
8 [1,100] [100,1000] 21 [100,1000] [1,10]
9 [1,100] [1,100] 22 [100,1000] [10,100]
10 [1,100] [10,1000] 23 [100,1000] [100,1000]
11 [10,100] [1,10] 24 [100,1000] [1,100]
12 [10,100] [10,100] 25 [100,1000] [10,1000]
13 [10,100] [100,1000]

6.5.1 Set A1 — C homogeneous, E homogeneous

This set was carried out using the procedure below.

1. Let i = 1, . . . , 25 represent the 25 cases in Table 6.1 above.

2. For each case i,m2 sub-cases can be defined by taking the Cartesian product of the
sets of sub-intervals:

{Ic1, . . . , Icm} × {Ie1, . . . , Iem} = {[Ic1, Ie1], [Ic1, Ie2], . . . , [Icm, Iem]}

Let j = 1, . . . ,m2 represent the sub-cases in each case i.

3. Let v = 1, 2, 3, 4 represent the variants SPORT, ITERLP, LIFOC, and FIFOC.

4. For each case i, sub-case j, k = 1, . . . , 100 simulation runs are carried out. In each
run, the corresponding sub-intervals are uniformly sampled to generate the values
of C and E .

5. In each run, the optimal processing time T ijko and the variant processing time T ijkv
are found.

6. Percentage error from optimal is calculated as:

101

. .fast .slow
.fast

.slow

.Ic1 .Ic2 .Icm

.Ie1

.Ie2

.Iem

.Cmin .Cmax

.Emin

.Emax

Figure 6.4 The main and sub-intervals used for Simulation Set A. The main intervals
are Ic = [Cmin, Cmax] and Ie = [Emin, Emax] given in Table 6.1. The division into and
sampling of sub-intervals enables the creation of fairly homogeneous sets C and E . Sam-
pling the sub-intervals close to the origin gives fast processors and network links, that get
slower away from the origin. Sampling the main intervals generates heterogeneous sets
C and E .

∆T ijkv =
T ijkv − T ijko
T ijko

∗ 100% i = 1, . . . , 25, j = 1, . . . ,m2,

k = 1, . . . , 100, v = 1, . . . , 4 (6.2)

7. Mean percent error from optimal is:

∆T ijv =
1

100

100∑
k=1

∆T ijkv i = 1, . . . , 25, j = 1, . . . ,m2, v = 1, . . . , 4

8. The cases in Table 6.1 are defined with intervals differing in both interval width
(ratio) as well as the absolute values of the communication and computation pa-
rameters. To aggregate the performance obtained over all the intervals, the error
values of the individual sub-cases should be averaged over the 25 cases in Table 6.1
to give the final mean percent error for each sub-case. For each variant, the mean
percent error is averaged over the 25 cases to give:

⟨∆T ⟩jv =
1
25

25∑
i=1

∆T ijv j = 1, . . . ,m2, v = 1, . . . , 4

102

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10 12 14 16

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Sub-Case Number

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.5 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A1 form = 4,
δ = 0.2. SPORT performs almost exactly the same as FIFOC, with error between 0.1% and
0.01% ≈ 0. ITERLP performance is even better, while LIFOC has comparatively large error.
This figure appears in [47].

9. The values of ⟨∆T ⟩jv are used for plotting and comparison of performance of the
different variant algorithms.

10. This set is performed form = 4, 5 and δ = 0.2, 0.5, 0.8

11. Sub-case number 1 corresponds to fast communication and computation speeds
while sub-case numbers 16 (for m = 4) and 25 (for m = 25) correspond to slow
communication and computation speeds.

12. Intermediate cases represent combinations of slow and fast communication and
computation speeds.

These values of ⟨∆T ⟩jv are plotted in Figs. 6.5 and 6.6 for (m, δ)pairs (4, 0.2) and (5,0.8)
respectively.

Because the network links are homogeneous, FIFOC is expected to perform well. It is
observed that SPORT performs almost exactly the same as FIFOC, with error between 0.1%
and 0.01% ≈ 0. ITERLP performance is even better, while LIFOC has comparatively large
error, and the error increases with increase in value of δ.

6.5.2 Set A2 — C homogeneous, E heterogeneous

Similar to Set A1, m sub-intervals Ic1, . . . , Icm are used for the communication pa-
rameters, but the computation parameters are generated by sampling the interval Ie =
[Emin, Emax]. This createsm sub-cases with intervals {(Ic1, Ie), . . . , (Icm, Ie)}, such that

103

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Sub-Case Number

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.6 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A1 form = 5,
δ = 0.8. SPORT performs almost exactly the same as FIFOC, with error between 0.1% and
0.01% ≈ 0. ITERLP performance is even better, while LIFOC has comparatively large error,
and the error increases with increase in value of δ. This figure appears in [47].

in each sub-case, the communication parameters are homogeneous, but the computation
parameters are heterogeneous. The procedure used in this set is enumerated below

1. This set is performed form = 4, 5 and δ = 0.2, 0.5, 0.8.

2. There are j = 1, . . . ,m sub-cases with intervals {(Ic1, Ie), . . . , (Icm, Ie)}, for each
case i, where Ie = [Emin, Emax].

3. The values of ∆T ijkv , ∆T ijv , and ⟨∆T ⟩jv are calculated as in Set A1, with the only
difference that the value of j ranges over 1, . . . ,m instead of 1, . . . ,m2 as in Set A1.

4. The values of ⟨∆T ⟩jv are plotted for the different algorithms.

5. Sub-case 1 represents fast communication speed while sub-cases 4 (form = 4) and
5 (form = 5) represent slow communication speeds.

6. Computation speeds of the processors are heterogeneous.

Figs. 6.7 and 6.8 show the plots for (m, δ) pairs (4, 0.5) and (5,0.2) respectively.
Again it is observed that as long as thenetwork links arehomogeneous, SPORT, ITERLP,

and FIFOC are insensitive to the heterogeneity in the computation speed of the processors
with average error between 0.1% to 0.001%≈ 0. On the other hand, errors in LIFOC persist
and increase with δ.

104

 0.01

 0.1

 1

 10

 1 2 3 4

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Sub-Case Number

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.7 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A2 form = 4,
δ = 0.5. SPORT, ITERLP, and FIFOC error is between 0.1% to 0.001% ≈ 0. On the other
hand, errors in LIFOC persist. This figure appears in [47].

 0.001

 0.01

 0.1

 1

 10

 1 2 3 4 5

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Sub-Case Number

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.8 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A2 form = 5,
δ = 0.2. SPORT, ITERLP, and FIFOC error is between 0.1% to 0.001% ≈ 0. On the other
hand, errors in LIFOC persist and increase with δ. This figure appears in [47].

6.5.3 Set A3 — C heterogeneous, E homogeneous

This is the complement of Set A2, and the intervals {(Ic, Ie1), . . . , (Ic, Iem)} form the
m sub-cases, where Ic = [Cmin, Cmax], such that the computation parameters are homo-
geneous and the communication parameters are heterogeneous.

1. This set is performed form = 4, 5 and δ = 0.2, 0.5, 0.8.

2. There are j = 1, . . . ,m sub-cases {(Ic, Ie1), . . . , (Ic, Iem)} for each case i, where

105

 0.01

 0.1

 1

 10

 1 2 3 4

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Sub-Case Number

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.9 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A3 form = 4,
δ = 0.8. FIFOC has large error while SPORT continues to have low error values around
0.1% along with LIFOC and ITERLP. This figure appears in [47].

Ic = [Cmin, Cmax].

3. The values of ∆T ijkv , ∆T ijv , and ⟨∆T ⟩jv are calculated as in Set A2.

4. The values of ⟨∆T ⟩jv are plotted.

5. Sub-case 1 represents fast computation speed while sub-cases 4 (form = 4) and 5
(form = 5) represent slow computation speeds.

6. Communication speeds of the network links are heterogeneous.

The plots for (m, δ) pairs (4, 0.8) and (5, 0.5) are shown in Figs. 6.9 and 6.10 respec-
tively.

This simulation set clearly shows the adaptiveness of SPORT. FIFOC, which had almost
zero error in the previous two sets, now has large error as compared to the optimal sched-
ule. SPORT however, continues to have low error values around 0.1% alongwith LIFOC and
ITERLP.

6.5.4 Set A4 — C heterogeneous, E heterogeneous

Similar to the previous sets, the sub-intervals Ic1, . . . , Icm and Ie1, . . . , Iem for each
case are found. Each sub-interval is sampled once to generate a total of m values each
for the communication and computation parameters. The values undergo a random per-
mutation first before being assigned to the processors. Sampling the sub-intervals in this

106

 0.01

 0.1

 1

 10

 1 2 3 4 5

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Sub-Case Number

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.10 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A3 form = 5,
δ = 0.5. FIFOC has large error while SPORT continues to have low error values around
0.1% along with LIFOC and ITERLP. This figure appears in [47].

manner minimizes the possibility of two processors being allocated similar communica-
tion or computation parameters and generates a truly heterogeneous system. There are
no sub-cases here.

1. This set is performed form = 4, 5 and δ = 0.2, 0.5, 0.8.

2. There are no sub-cases. Ic and Ie are sampled directly.

3. The mean error from optimal is found as:

∆T iv =
1

100

100∑
k=1

∆T ikv i = 1, . . . , 25, v = 1, . . . , 4

4. The final error values for each variant ⟨∆T ⟩v are calculated by averaging over the
25 cases in Table 6.1 as

⟨∆T ⟩v =
1
25

25∑
i=1

∆T iv v = 1, . . . , 4

5. The values of ⟨∆T ⟩v at different values of δ are plotted.

6. There is no differentiation between slow and fast speeds as the system is completely
heterogeneous.

The values of ⟨∆T v⟩ for δ = 0.2, 0.5, 0.8 at m = 4 and 5 are shown in Figs. 6.11
and 6.12 respectively.

107

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Delta

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.11 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A4 form = 4.
The percent error of FIFOC increases with the increase in δ, but there is a reduction in the
error of the other three variants. This figure appears in [47].

 0.01

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 P

e
rc

e
n
t
E

rr
o
r

Delta

SPORT
ITERLP
LIFOC
FIFOC

Figure 6.12 Average percent error with respect to optimal, ⟨∆T ⟩, in Set A4 form = 5.
The percent error of FIFOC increases with the increase in δ, but there is a reduction in the
error of the other three variants. This figure appears in [47].

SPORT, LIFOC, and ITERLP are seen adapt to the heterogeneity in the processor com-
putation and network link speeds. The percent error of FIFOC increases with the increase
in δ, but there is a reduction in the error of the other three variants.

6.5.5 Simulation Result Analysis

Though not strictly applicable, some trends can be identified:

• In set A1, for the same value of δ, errors for “fast” homogeneous systems are higher

108

Table 6.2 Minimum statistics for SPORT simulation set A. In sets A1 and A2, the mini-
mum errors in LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC.
In sets A3 and A4, FIFOC error is 2 to 3 orders of magnitude higher than the other three
algorithms.

Set m
δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

A1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

A2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

A3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

A4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Set m
δ = 0.8

SPORT ITERLP LIFOC FIFOC

A1 4 3.58e-02 1.78e-02 1.16e+00 3.66e-02
5 1.67e-02 9.13e-03 8.47e-01 1.67e-02

A2 4 3.59e-02 2.06e-02 1.22e+00 3.71e-02
5 2.01e-02 1.69e-02 1.06e+00 2.02e-02

A3 4 2.01e-02 4.01e-02 2.01e-02 7.11e+00
5 5.14e-02 4.98e-03 5.14e-02 7.42e+00

A4 4 6.15e-02 4.01e-03 6.15e-02 5.58e+00
5 9.43e-11 0.00e+00 7.05e-11 6.38e-01

than “slow” homogeneous systems.

• In sets A2 and A3, for the same value of δ, errors for the “fast” and heterogeneous
systems are higher than the “slow” and heterogeneous systems.

• In sets A1, A2, and A3, where either one or both of the variables are homogeneous,
the average error increases with increase in δ. However, in set A4, error reduces
with δ, for the better performing algorithms.

Theminimumandmaximummean error values of each algorithm are tabulated in Ta-
bles 6.2 and 6.3. Scientific notation is used to enable a quick comparison of the algorithms
in terms of orders of magnitude. It can be observed that overall in sets A1 and A2, the mini-
mumandmaximumerrors in LIFOC are 2 orders ofmagnitude higher than SPORT, ITERLP,
and FIFOC. On the other hand in sets A3 and A4, FIFOC error is 2 to 3 orders of magnitude
higher than the other three algorithms.

The extensive simulations carried out in Set A clearly show that:

109

Table 6.3 Maximum statistics for SPORT simulation set A. In sets A1 and A2, the max-
imum errors in LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC.
In sets A3 and A4, FIFOC error is 2 to 3 orders of magnitude higher than the other three
algorithms.

Set m
δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

A1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

A2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

A3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

A4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

Set m
δ = 0.8

SPORT ITERLP LIFOC FIFOC

A1 4 2.57e-01 1.13e-01 3.39e+00 3.08e-01
5 4.10e-01 2.19e-01 3.17e+00 4.37e-01

A2 4 2.44e-01 1.10e-01 2.91e+00 2.79e-01
5 2.72e-01 1.27e-01 2.84e+00 2.89e-01

A3 4 2.57e-01 2.85e-01 2.57e-01 8.53e+00
5 2.55e-01 4.37e-01 2.55e-01 9.22e+00

A4 4 1.56e-01 6.26e-01 1.56e-01 1.64e+01
5 1.36e+00 2.04e+00 1.36e+00 1.63e+01

• If network links are homogeneous, then LIFOC performance is affected for both ho-
mogeneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both
homogeneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in net-
work links and computation speeds, but since SPORT does not use a single prede-
fined sequence of allocation and collection, it is able to better adapt to the changing
system conditions.

• ITERLP performance is somewhat better than SPORT, but is expensive to compute.
SPORT generates similar schedules at a fraction of the cost.

110

6.6 SIMULATION SET B

To evaluate the performance of the algorithms with the increase in number of nodes,
the processing time of SPORT was compared with only FIFOC and LIFOC. This is because,
OPT and ITERLP cannot be practically carried out beyondm = 5 andm = 10 respectively.
In this simulation set, the algorithms are tested to compare their performance for large
number of processors because P2P systems, and volunteer and grid computing platforms
can potentially have hundreds of nodes.

6.6.1 Simulation Method

Using the procedure used in simulation Set A4, 100 simulation runs were carried out
for SPORT, LIFOC, and FIFOC, at m = 10, 50, 100, . . . , 300, 350, and δ = 0.2, 0.5, 0.8 for
each of the 25 cases listed in Table 6.1.∆Tv , for each variant v (LIFOC := 1 and FIFOC := 2)
was found as:

∆Tv =
Tv − TSPORT
TSPORT

∗ 100% v = 1, 2

Mean error, ∆T iv , for each case i = 1, . . . , 25 in Table 6.1 was calculated by averaging
∆T ikv , k = 1, . . . , 100, over the 100 simulation runs and plotted.

6.6.2 Simulation Results and Analysis

Figure 6.13 shows the plots for ∆T iv atm = 10, δ = 0.2, 0.5, 0.8. First of all, FIFOC is
seen to always have a positive error with respect to SPORT. This is to be expected since
the system is heterogeneous. The value of error increases with increase in the value of δ.

Secondly, LIFOC has a negative error with respect to SPORT for several cases at δ =
0.2, i.e. the processing timeof LIFOC is smaller than SPORT. This is also to be expected since
LIFOC uses all available processors and every processor added reduces the processing time
by some amount. This ends up distributing very tiny load fractions (smaller than 1×10−6)
to a large number of tail-end processors. As the value of δ increases, the error between
LIFOC and SPORT becomes insignificant.

This patternof results is repeated even forhigher values ofm as canbe seen in Figs. 6.14
and 6.15 for m = 100 and 300 respectively. It can be observed that as the number of
processors increases, FIFOC performance in case numbers 11–15 and 21–25 becomes al-
most equal to that of SPORT. These ranges correspond to the intervals Ic = [10, 100] and
Ic = [100, 1000] respectively, i.e., a ratio ofCmin : Cmax = 1 : 10. Because of themethod-
ology used to perform the simulations, with a large number of processors, the values of
Ck tend to become similar to each other. Consequently, (C2−C1) in (5.22) becomes small,

111

-2

-1

 0

 1

 2

 3

 4

 5

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

∆T at δ = 0.2 ∆T at δ = 0.5

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

∆T at δ = 0.8

Figure 6.13 Mean percent error with respect to SPORT,∆T , in simulation set B, atm =
10. FIFOC always have a positive error and value of error increases with increase in the
value of δ. LIFOC has a negative error with respect to SPORT for several cases at δ = 0.2.
As the value of δ increases, the error between LIFOC and SPORT becomes insignificant.
This figure appears in [47].

and Schedule f always tends to be optimal for each pair of processors being compared.
If Schedule f is optimal for all processors in SPORT, the resulting σa and σc are the same
as FIFOC. However, surprisingly, cases 1–5, with Ic = [1, 10] do not show this trend. This
leads us to hypothesize, that the performance of the algorithms not only depends on the
range (ratio) of parameters but also on the absolute values of the parameters. This belief is
reinforced by the fact that in case numbers 21–25, LIFOC also has comparable performance
to SPORT, especially at higher values of δ andm.

Consider Table 6.4 that gives the minimum error of LIFOC with respect to SPORT, the
case numberwhen it occurs, alongwith themean error of LIFOC averaged over all 25 cases
(i.e., ⟨∆T v⟩ in set A4) for different values of δ and m. The minimum error for LIFOC is
−5.76% form = 100, δ = 0.8, case number 2, but the minimum average error is−2.12%
form = 300, δ = 0.5. It can be observed that the average error values at δ = 0.5 are all

112

-3

-2

-1

 0

 1

 2

 3

 4

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

∆T at δ = 0.2 ∆T at δ = 0.5

-10

-5

 0

 5

 10

 15

 20

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

∆T at δ = 0.8

Figure 6.14 Mean percent error with respect to SPORT,∆T , in simulation set B, atm =
100. FIFOC always have a positive error, but the error is reduced in some cases. The value
of error increases with increase δ. LIFOC has a larger negative error with respect to SPORT
for several cases at δ = 0.2. As the value of δ increases, the error between LIFOC and SPORT
becomes insignificant. This figure appears in [47].

smaller than those at δ = 0.2, while the average error values at δ = 0.8 are again greater
than those at δ = 0.5 (except form = 250). We hypothesize that initially as δ increases,
the error increases, but as δ → 1, i.e., size of result data approaches the size of allocated
load, performance of SPORT and LIFOC becomes similar. This is supported by the results
of set A4, where the ⟨∆T v⟩ of SPORT and LIFOC is almost equal for δ = 0.8 (see Figs. 6.11
and 6.12).

6.6.3 Discussion on Performance of LIFOC and SPORT

There is a significant downside to LIFOC because of its property to use all available
processors — the time required to compute the optimal solution (wall-clock time) is al-
most two orders ofmagnitude greater than that of SPORT as seen in Table 6.5 and Fig. 6.16.
These values were obtained separately from the simulations above by averaging the wall-

113

-3

-2

-1

 0

 1

 2

 3

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

-6

-4

-2

 0

 2

 4

 6

 8

 10

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

∆T at δ = 0.2 ∆T at δ = 0.5

-10

-5

 0

 5

 10

 15

 20

 5 10 15 20 25

M
e

a
n

 P
e

rc
e

n
t

E
rr

o
r

w
.r

.t
 S

P
O

R
T

Case Number

LIFOC

FIFOC

∆T at δ = 0.8

Figure 6.15 Mean percent error with respect to SPORT,∆T , in simulation set B, atm =
300. FIFOC error is reduced in several cases, but the value of error increases with increase
δ. LIFOC has a larger negative error with respect to SPORT for most cases at δ = 0.2. As
the value of δ increases, the error between LIFOC and SPORT becomes insignificant. This
figure appears in [47].

clock time over 100 runs for Ic = [10, 100], Ie = [50, 500], and δ = 0.5. The results
show that though both SPORT and LIFOC are O(m) algorithms given a set of processors
sorted by decreasing communication bandwidth, clearly SPORT is the better performing
algorithm, with the best cost-performance ratio for large values ofm. The values for FI-
FOC are almost four orders of magnitude larger than SPORT — too large to even warrant
consideration.

The other disadvantage of LIFOC is that the chain of multiplications involved in the
calculation of load fractions quickly leads to underflow because the numbers involved
are tiny fractions and multiplying them results in smaller and smaller numbers until the
floating point system cannot handle them anymore. Because of this, for m > 150, it is
difficult to get valid results for LIFOC in a large number of cases. For example, for m =
250, 300, 350, LIFOC returned underflow errors in 24, 32 and 32 runs respectively out of

114

Table 6.4 Statistics for LIFOC in simulation set B. The minimum error for LIFOC is
−5.76% form = 100, δ = 0.8, case number 2, but the minimum average error is−2.12%
form = 300, δ = 0.5.

m
δ = 0.2 δ = 0.5 δ = 0.8

case min avg case min avg case min avg
10 12 -1.64 -0.39 23 -2.44 -0.50 1 -1.04 -0.24
50 8 -2.41 -0.88 2 -4.39 -1.47 4 -3.72 -1.33
100 8 -2.56 -0.79 2 -4.08 -1.66 2 -5.76 -1.49
150 8 -2.56 -0.78 8 -4.16 -2.01 2 -5.37 -1.68
200 8 -2.57 -0.82 5 -4.25 -2.06 13 -4.55 -1.77
250 8 -2.55 -0.77 17 -4.28 -1.36 17 -4.01 -1.85
300 8 -2.54 -0.88 3 -4.57 -2.12 5 -4.47 -1.70
350 8 -2.52 -0.83 3 -4.63 -2.04 5 -4.53 -1.67

Table 6.5 Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two
orders of magnitude faster than LIFOC and almost four orders of magnitude faster than
FIFOC.

m
SPORT LIFOC FIFOC
(s) (s) (s)

50 0.00025 0.00427 0.1190
100 0.00056 0.00687 0.4690
150 0.00063 0.01038 1.3190
200 0.00071 0.01409 2.8740
250 0.00077 0.01743 5.3990
300 0.00084 0.02112 9.1100
350 0.00092 0.02509 14.046
400 0.00099 0.02951 20.419
450 0.00107 0.03458 28.482
500 0.00114 0.04018 37.497

the 100 simulation runs carried out. In MATLAB™, this causes a NaN (Not a Number) to
be returned, and the load fractions cannot be calculated. Of course this is not a limita-
tion of the algorithm itself, nevertheless it is an important practical consideration during
implementation.

6.7 SUMMARY

This chapter introduced the SPORT algorithm as a good solution to the DLSRCHETS
problem. The basic idea behind SPORT is very simple — to use two processors at a time
and build a piecewise locally optimal schedule. However it is not very straightforward to

115

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 50 100 150 200 250 300 350 400 450 500

R
e
q
u
ir
e
d
 C

o
m

p
u
ta

ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

Number of Processors

SPORT
LIFOC
FIFOC

Figure 6.16 Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two
orders of magnitude faster than LIFOC and almost four orders of magnitude faster than
FIFOC. This figure appears in [47].

be able to do this, and several tools are necessary that were designed over the preceding
chapters in this thesis.

The comprehensive simulation testing of the performance of the algorithms is un-
doubtedly the highlight of this chapter. SPORT performance was proved to be robust to
heterogeneity, number of participants, and value of δ. Moreover, this superior perfor-
mance is obtained at a fraction of the computation time of other algorithms.

116

C H A P T E R 7

C O N C L U S I O N

In this thesis, the DLSRCHETS problem for the scheduling of divisible loads on hetero-
geneousmaster-slave systems and considering the result collection phasewas formulated
and analyzed. Two new polynomial-time algorithms were proposed and tested. Several
new intermediate results were obtained during the work on these algorithms. This final
chapter summarizes the various points covered in the thesis and presents several ideas
for future work.

7.1 SUMMARY OF THE THESIS

This work considers the most general form of DLSRCHETS. No assumptions are made
regarding the number of slaves that are allocated load, both the network and computation
speeds of the slaves are considered to be heterogeneous, and idle time can be present in
the schedule if it reduces the makespan.

The theoretical basis of DLSRCHETS was first established, and it was defined in terms
of a linear program for analysis. The optimal schedule for a systemwith two slaveswas ex-
tensively explored because the proposed algorithms are built on it. Two new polynomial-
time algorithms, namely ITERLP (ITERative Linear Programming) and SPORT (System Pa-
rameters based Optimized Result Transfer) were proposed as solutions to DLSRCHETS.
The performance of traditional and new algorithms was compared using a large number
of simulations and the proposed algorithms were shown to have superior performance.

The features and performance of the algorithms are summarized in Table 7.1. The
brute force approach finds the optimal solution, but is impractical as it is computationally
much to expensive. ITERLP generates near-optimal schedules, and allows comparison of
other heuristic algorithms when it is impossible to find the optimal solution. SPORT is
extremely fast, with an error that is slightly more than ITERLP. Practically, SPORT offers
the best cost-performance ratio.

117

Table 7.1 A summary of algorithm features and performance. Brute force finds the op-
timal solution, but is impractical. ITERLP generates near-optimal schedules, but is still
computationally expensive. SPORT is extremely fast, with an error that is slightly more
than ITERLP.

Algorithm Features Complexity Performance

Brute force Impractical, optimal O
(
(m!)2

) LP 6 proc.⇒ 80 min
7 proc.⇒ 70 hrs

ITERLP Expensive,
near-optimal, adapts
to heterogeneity

O(m3) LP 65 proc.⇒ 80 min
100 proc.⇒ 15 hrs
max error = 0.8%

SPORT Fast, near-optimal,
adapts to

heterogeneity

O(m logm) 500 proc.⇒ 1 ms
max error = 1.5%

Several new and unique contributions resulted from the work on this thesis:

The Allocation Precedence Lemma The allocation precedence condition states that, the
master distributes load to all participating slaves first, before receiving any results. The alloca-
tion precedence lemma proves that in the general case considered in this thesis, there
always exists an optimal schedule that satisfies the allocation precedence condition. This
is necessary to limit the range of optimal solutions to DLSRCHETS to a finite number.

The Idle Time Theorem A proof is given for the Idle Time Theorem, which states that,
there exists an optimal solution for DLSRCHETS in which, irrespective of whether load is allocated
to all available slaves, at most one of the slaves allocated load has idle time, and that the idle time
exists only when the result collection begins immediately after the completion of load distribution.
This is one of the principal contributions of this thesis. First, because it shows that in some
cases insertion of idle time can be beneficial, and second, because it enables the definition
of a constraint on the number of processors to be used in the SPORT algorithm.

The ITERLP Algorithm The new ITERLP (ITERative Linear Programming) algorithm is
proposed and found to be near-optimal after rigorous testing. The ITERLP algorithm does
not necessarily use all processors (slaves) and determines the number of processors to
be used by repeatedly solving a number of linear programs. The complexity of ITERLP
is polynomial in the number of slaves (m) and requires solving O(m3) linear programs
in the worst case. Though the algorithm is computationally too expensive to be used for
a large number of slaves, nevertheless it can be used as a benchmark to compare other
heuristic algorithms when obtaining the optimal solution is impractical.

118

Condition for Idle Time The idle time theorem proves that under some conditions, idle
time may be present in a single processor, but does not specify when the idle time will
be present, i.e., under what conditions of the processor communication and computation
speeds does it occur. For the first time in DLT, the condition to identify the presence of idle
time in a FIFO schedule for two slaves is derived. It has already been proved that there can
never be idle time in a LIFO schedule. What is surprising is the simplicity of the condition,
and how it is related not only to the communication and computation speeds, but also
to the particular divisible load under consideration, specifically to the ratio of size of the
result data to the size of input data.

Condition for Optimality The identification of the limiting condition for the optimality
of the FIFO and LIFO schedules for two processors is a significant addition to DLT. This
condition shows that even though the presence of idle time depends on the divisible load
under consideration, whether LIFO or FIFO is optimal in a two-slave system depends only
on the communication speeds of the two processors, and the computation speeds do not
matter. This condition supports the conclusions drawn by Rosenberg [77] regarding the
performance of LIFO and FIFO.

The concept of equivalent processor The equivalent processor conceptwasusedbyBharad-
waj et al. [24] to prove a number of results in traditional DLT. It is introduced here for the
first time in divisible load scheduling for heterogeneous systems with result collection.
The equivalent processor is used to summarize the total processing capacity of a pair of
slaves. It enables derivation of a piecewise locally optimal solution to DLSRCHETS by com-
bining two processors into one (virtual) processor at a time.

The SPORT Algorithm The polynomial-time heuristic algorithm SPORT (System Param-
eters based Optimized Result Transfer) is another principal contribution of this thesis.
The algorithm gives near-optimal solutions to DLSRCHETS and is robust to system het-
erogeneity. The SPORT algorithm does not necessarily use all processors and determines
the number of processors to be used based on the system parameters (computation and
communication capacities). SPORT simultaneously finds the sequence of load allocation
and result collection, and the load fractions to be allocated to the processors. Given m
processors sorted in the order of decreasing network link bandwidth, the complexity of
SPORT is of the order O(m), which is a huge improvement over ITERLP. It is rigorously
tested using simulations and its performance is found to be only slightly worse than that
of ITERLP.

This work has added to the body of knowledge on divisible load scheduling, and the
concepts and results herein have been published in two international journal papers, one
major international refereed conference paper, and several domestic conference papers.

119

7.2 IDEAS FOR FUTURE WORK

Future work can proceed in the following main directions:

1. Theoretical analysis of complexity and other optimality results

2. Extensions to the current system model

3. Modifying the nature of DLSRCHETS itself

4. Development of applications and physical testing

Each of these is considered separately below.

7.2.1 Theoretical Analysis

The complexity of DLSRCHETS is still an open issue. It makes for an interesting re-
search topic. Is it at all possible that DLSRCHETS can be solved in polynomial time? Does
imposition of some additional constraints make it tractable? What are those conditions?

7.2.2 Extending the System Model

This area has a large number of possibilities for future work. Scheduling purists may
consider the system model used in this thesis to be quite simplistic.

As future work, the conditions (constraints on values of Ek and Ck), that minimize
the error need to be found. An interesting area would be the investigation of the effect of
affine cost models, processor deadlines and release times. Another important area would
be to extend the results to multi-installment delivery and multi-level processor trees.

7.2.3 Modification of DLSRCHETS

Just someof theways inwhichDLSRCHETSmaybemodified are listed below. Primarily
the nature of DLSRCHETS is changed by consideration of:

• Stochasticity (dynamism) and uncertainty in the system parameters

• Non-clairvoyance, non-omniscience of the master

• Node (slave) turnover (failure)

• Slave sharing

• Multiple jobs on one master

• Multiple masters

120

• Multiple jobs on several masters

• Decentralization of scheduling decision (P2P model)

• QoS requirements

• Buffer, bandwidth, and computation constraints on slaves

Each of these modifications is a research topic in itself and as can be seen, there are
plenty of research opportunities.

7.2.4 Application Development

All the testing in this thesis has been carried out using simulations. It will be interest-
ing to see how the algorithms perform in practice. New and different applications apart
from the number of possible scientific applications mentioned in the introduction, need
to be developed that use the results in this thesis. This may require development of new
libraries and middleware to support the computation models considered.

121

R E F E R E N C E S

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing of bags of tasks in het-
erogeneous clusters. In SPAA ’03: Proceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, pages 1–10, New York, NY, USA, 2003. ACM. ISBN
1-58113-661-7. doi: http://doi.acm.org/10.1145/777412.777414.

[2] D. P. Anderson. BOINC: A system for public-resource computing and storage. In 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, Nov. 2004. URL
http://boinc.berkeley.edu/grid_paper_04.pdf.

[3] D. P. Anderson and G. Fedak. The computational and storage potential of volun-
teer computing. In IEEE/ACM International Symposium on Cluster Computing and the
Grid, Singapore, May 2006. URL http://boinc.berkeley.edu/boinc_papers/internet/
paper.pdf.

[4] D. P. Anderson and J. McLeod VII. Local scheduling for volunteer computing. In
Workshop on Large-Scale, Volatile Desktop Grids (PCGrid 2007) held in conjunction with the
IEEE Intl. Parallel and Distributed Processing Symposium (IPDPS), Long Beach, CA, Mar.
2007. URL http://boinc.berkeley.edu/boinc_papers/sched/paper.pdf.

[5] D. P. Anderson, E. Korpela, and R. Walton. High-performance task distribution
for volunteer computing. In First IEEE Intl. Conf. on e-Science and Grid Technologies,
Melbourne, Dec. 2005. URL http://boinc.berkeley.edu/boinc_papers/server_perf/
server_perf.pdf.

[6] K. R. Baker. Introduction to Sequencing and Scheduling. John Wiley & Sons, New York,
USA, 1974.

[7] E. Bampis, J.-C. Konig, and D. Trystram. Optimal parallel execution of complete bi-
nary trees and grids into most popular interconnection networks. Theoretical Com-
puter Science, 147(1-2):1–18, Aug. 1995.

[8] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Schedul-
ing strategies for master-slave tasking on heterogeneous processor platforms. IEEE
Trans. Parallel Distrib. Syst., 15(4):1–12, Apr. 2004.

[9] G. D. Barlas. Collection-aware optimum sequencing of operations and closed-form
solutions for the distribution of a divisible load on arbitrary processor trees. IEEE
Trans. Parallel Distrib. Syst., 9(5):429–441, May 1998.

123

[10] J. Basney, M. Livny, and T. Tannenbaum. High throuhgput Monte Carlo. In 9th
SIAM Conference on Parallel Processing for Scientific Computing, Mar. 1999. URL http:
//citeseer.ist.psu.edu/basney99high.html.

[11] S. Bataineh and B. Al-Asir. An efficient scheduling algorithm for divisible and indi-
visible tasks in loosely coupledmultiprocessor systems. Software Engineering Journal,
9(1):13–18, Jan. 1994.

[12] S. Bataineh and T. G. Robertazzi. Performance limits for processors with divisible
jobs. IEEE Trans. Aerosp. Electron. Syst., 33(4):1189–1198, Oct. 1997.

[13] S. Bataineh, T.-Y. Hsiung, and T. G. Robertazzi. Closed form solutions for bus and
tree networks of processors load sharing a divisible job. IEEE Trans. Comput., 43(10):
1184–1196, Oct. 1994.

[14] O. Beaumont, A. Legrand, and Y. Robert. Optimal algorithms for scheduling divis-
ible loads on heterogeneous systems. In IEEE International Parallel and Distributed
Processing Symposium, (IPDPS) 2003, Nice Acropolis Convention Center, Nice, France,
Apr. 2003.

[15] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling divisible
loads on star and tree networks: Results and open problems. IEEE Trans. Parallel
Distrib. Syst., 16(3):207–218, Mar. 2005.

[16] O. Beaumont, L. Marchal, V. Rehn, and Y. Robert. FIFO scheduling of divisible loads
with returnmessages under the one-port model. Research Report 2005-52, LIP, ENS
Lyon, France, Oct. 2005.

[17] O. Beaumont, L. Marchal, and Y. Robert. Scheduling divisible loads with returnmes-
sages on heterogeneous master-worker platforms. Research Report 2005-21, LIP,
ENS Lyon, France, May 2005.

[18] O. Beaumont, L. Marchal, V. Rehn, and Y. Robert. FIFO scheduling of divisible loads
with return messages under the one port model. In Proc. Heterogeneous Computing
Workshop HCW’06, Apr. 2006.

[19] G. Berti, S. Benkner, J. W. Fenner, J. Fingberg, G. Lonsdale, S. E. Middleton, and
M. Surridge. Medical simulation services via the grid. In Proc. HealthGrid Workshop
2003, Lyon, France, Jan. 2003.

[20] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997. ISBN 1-886529-19-1.

[21] V. Bharadwaj and N. Viswanadham. Suboptimal solutions using integer approxi-
mation techniques for scheduling divisible loads on distributed bus networks. IEEE
Trans. Syst., Man, Cybern. A, 30(6):680–691, Nov. 2000.

[22] V. Bharadwaj, D. Ghose, and V. Mani. Optimal sequencing and arrangement in dis-
tributed single-level tree networks with communication delays. IEEE Trans. Parallel
Distrib. Syst., 5(9):968–976, Sept. 1994.

124

[23] V. Bharadwaj, D. Ghose, and V. Mani. Multi-installment load distribution in tree
networks with delays. IEEE Trans. Aerosp. Electron. Syst., 31(2):555–567, Apr. 1995.

[24] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling Divisible Loads in
Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos, CA, 1996.

[25] V. Bharadwaj, X. Li, and C. C. Ko. Efficient partitioning and scheduling of computer
vision and image processing data on bus networks using divisible load analysis. Im-
age and Vision Computing, 18(1):919–938, Jan. 2000.

[26] V. Bharadwaj, X. Li, and C. C. Ko. On the influence of start-up costs in scheduling
divisible loads on bus networks. IEEE Trans. Parallel Distrib. Syst., 11(12):1288–1305,
Dec. 2000.

[27] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisible Load Theory: A newparadigm
for load scheduling in distributed systems. Cluster Computing, 6(1):7–17, Jan. 2003.

[28] J. Blazewicz and M. Drozdowski. Distributed processing of divisible jobs with com-
munication startup costs. Discrete Applied Mathematics, 76(1-3):21–41, June 1997.

[29] J. Blazewicz,M. Drozdowski, B. Soniewicki, andR.Walkowiak. Two-dimensional cut-
ting problem: basic complexity results and algorithms for irregular shapes. Founda-
tions of Control Engineering, 14(4):137–160, 1989.

[30] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Scheduling Computer
and Manufacturing Processes. Springer-Verlag Telos, New York, USA, second edition,
2001.

[31] A. Bonhomme and L. Prylli. Performance evaluation of a distributed video storage
system. In Proc. IEEE IPDPS’02, pages 126–135, Fort Lauderdale, FL, USA, Apr. 2002.

[32] R. H. Bush, G. D. Power, and C. E. Towne. WIND: The production flow solver of the
NPARC alliance. In 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan.
1998. AIAAPaper 98-0935. URLhttp://www.grc.nasa.gov/WWW/winddocs/aiaa98/
aiaa-98-0935.html.

[33] H. Casanova and L. Marchal. A network model for simulation of grid application.
Technical Report 4596, LIP, ENS Lyon, France, Oct. 2002.

[34] Y.-C. Cheng and T. G. Robertazzi. Distributed computation for a tree network with
communication delays. IEEE Trans. Aerosp. Electron. Syst., 26(3):511–516, May 1990.

[35] V. Chvátal. Linear Programming. W. H. Freeman, 1983. ISBN 0716715872.

[36] N. Comino andV. L. Narasimhan. A novel data distribution technique for host-client
type parallel applications. IEEE Trans. Parallel Distrib. Syst., 13(2):97–110, Feb. 2002.

[37] G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press, Princeton,
NJ, 1963.

125

[38] T. DeWitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, and D. Suther-
land. ReMoS: A resource monitoring system for network-aware applications. Tech-
nical Report CMU-CS-97-194, School of Computer Science, Carnegie Mellon Univer-
sity, 1997. URL http://citeseer.ist.psu.edu/dewitt97remos.html.

[39] M. Drozdowski. Selected Problems of Scheduling Tasks in Multiprocessor Computer Sys-
tems. Politechnika Poznanska, Book No. 321, Poznan, Poland, 1997.

[40] J. Edward Grady Coffman, editor. Computer and Job-Shop Scheduling Theory. John
Wiley & Sons, New York, USA, 1976.

[41] J. Edward Grady Coffman and P. J. Denning. Operating Systems Theory. Prentice-Hall,
Englewood Cliffs, N.J., USA, 1973.

[42] I. Foster. Globus toolkit version 4: Software for service-oriented systems. In IFIP In-
ternational Conference on Network and Parallel Computing, number 3779 in LNCS, pages
2–13. Springer-Verlag, 2006.

[43] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Inter-
national Journal of Supercomputer Applications and High Performance Computing, 11(2):
115–128, Aug. 1997.

[44] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organizations. International Journal of High Performance Computing Applications,
15(3):200–222, Aug. 2001.

[45] A. Galstyan, K. Czajkowski, and K. Lerman. Resource Allocation in the Grid Using
Reinforcement Learning. In Intl. Jt. Conf. on Autonomous Agents andMultiagent Systems,
volume 3, pages 1314–1315, 2004.

[46] A. Ghatpande, O. Beaumont, H. Nakazato, and H. Watanabe. Divisible load schedul-
ing with result collection on heterogeneous systems. In Proc. Heterogeneous Comput-
ing Workshop (HCW 2008) held in the IEEE Intl. Parallel and Distributed Processing Sysmpo-
sium (IPDPS 2008), Miami, FL., Apr. 2008.

[47] A. Ghatpande, H. Nakazato, O. Beaumont, and H. Watanabe. SPORT: An algorithm
for divisible load scheduling with result collection on heterogeneous systems. IEICE
Transactions on Communications, E91-B(8), Aug. 2008 (forthcoming).

[48] D. Ghose andH. J. Kim. Load partitioning and trade-off study for largematrix-vector
computations in multicast bus networks with communication delays. Journal of Par-
allel and Distributed Computing, 55(1):32–59, Nov. 1998.

[49] D. Ghose and V. Mani. Distributed computation with communication delays:
Asymptotic performance analysis. Journal of Parallel and Distributed Computing, 23
(3):293–305, Dec. 1994.

[50] GRIDSTART Initiative. GRIDSTART homepage. http://www.gridstart.org/index.
shtml, June 2004.

126

[51] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Wide area computing: Re-
source sharing on a large scale. IEEE Trans. Comput., 32(5):29–37, May 1999.

[52] E. Haddad. Optimal load sharing in dynamically heterogeneous systems. In Proc. IEEE
Symposium on Parallel and Distributed Processing 1995, pages 346–353, San Antonio, TX,
USA, Oct. 1995.

[53] W. A. Halang and K. Ramamritham. Real-time programming. In W. A. Halang and
K. Ramamritham, editors, Proc. ILFAC/IFIP Workshop on Real-Time Programming, At-
lanta, Georgia,USA, May 1991.

[54] J. T. Hung and T. G. Robertazzi. Scalable scheduling for clusters and grids using cut
through switching. Intl. J. of Computers and their Applications, 26(3):147–156, 2004.

[55] N. Karmarkar. A new polynomial time algorithm for linear programming. Combina-
torica, 4:373–395, 1984.

[56] H. J. Kim, G. Jee, and J. G. Lee. Optimal load distribution for tree network processors.
IEEE Trans. Aerosp. Electron. Syst., 32(2):607–612, Apr. 1996.

[57] K. Konstantinides, R. T. Kaneshiro, and J. R. Tani. Task allocation and scheduling
models formultiprocessor digital signal processing. IEEE Trans. Acoust., Speech, Signal
Processing, 38(12):2151–2161, Dec. 1990.

[58] D. Kranzlmuller, G. Kurka, P. Heinzlreiter, and J. Volkert. Optimizations in the grid
visualization kernel. In Proc. IEEE IPDPS’02, pages 129–135, Fort Lauderdale, FL, USA,
Apr. 2002.

[59] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante. Autonomous protocols for
bandwidth-centric scheduling of independent-task applications. IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2003, Apr. 2003.

[60] V. Kumar, K. Ramesh, and V. N. Rao. Parallel best-first search of state-space graphs:
A summary of results. In National Conference on Artificial Intelligence, pages 122–127,
1988. URL http://citeseer.ist.psu.edu/kumar88parallel.html.

[61] J. Landin. An Introduction to Algebraic Structures. Dover Publications, 1989. ISBN
0486659402.

[62] C.-H. Lee and K. G. Shin. Optimal task assignment in homogeneous networks. IEEE
Trans. Parallel Distrib. Syst., 8(2):119–129, Feb. 1997.

[63] X. Li, V. Bharadwaj, and C. C. Ko. Divisible load scheduling on single-level tree net-
works with buffer constraints. IEEE Trans. Aerosp. Electron. Syst., 36(4):1298– 1308,
Oct. 2000.

[64] B. Lowekamp, N. Miller, T. Gross, P. Steenkiste, J. Subhlok, and D. Sutherland. A
resource query interface for network-aware applications. Cluster Computing, 2(2):
139–151, 1999. URL http://citeseer.ist.psu.edu/lowekamp99resource.html.

127

[65] V. Mani and D. Ghose. Distributed computation in linear networks: Closed-form
solutions. IEEE Trans. Aerosp. Electron. Syst., 30(2):471–483, Apr. 1994.

[66] M. W. Mutka. Estimating capacity for sharing in a privately owned workstation
environment. IEEE Trans. Software Eng., 18(4):319–328, Apr. 1992.

[67] T. D. Nguyen, C. Peery, and J. Zahorjan. DDDDRRaW: A prototype toolkit for dis-
tributed real-time rendering on commodity clusters. In IEEE International Parallel
and Distributed Processing Symposium, (IPDPS) 2001, San Francisco, CA, USA, Apr. 2001.

[68] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct
networks. IEEE Trans. Comput., 26(2):62–76, Feb. 1993.

[69] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Dover Publications, 2nd edition, 1998. ISBN 978-0486402581.

[70] D. A. L. Piriyakumar and C. S. R. Murthy. Distributed computation for a hypercube
network of sensor-driven processors with communication delays including setup
time. IEEE Trans. Syst., Man, Cybern. A, 28(3):245–251, Mar. 1998.

[71] G. N. S. Prasanna and B. R. Musicus. Generalized multiprocessor scheduling for di-
rected acyclic graphs. In Proc. IEEE Supercomputing 1994, pages 237–246, Washington,
DC, USA, Nov. 1994.

[72] T. V. Raman. Cloud computing and equal access for all. In W4A ’08: Proceedings of
the 2008 international cross-disciplinary conference on Web accessibility (W4A), pages 1–4,
New York, NY, USA, 2008. ACM. ISBN 978-1-60558-153-8. doi: http://doi.acm.org/
10.1145/1368044.1368046.

[73] T. Robertazzi. Divisible (partitionable) load scheduling research, Feb. 2008. URL
http://www.ece.sunysb.edu/~tom/dlt.html#THEORY.

[74] T. G. Robertazzi. Processor equivalence for daisy chain load sharing processors. IEEE
Trans. Aerosp. Electron. Syst., 29(4):1216–1221, Oct. 1993.

[75] T. G. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer, 36(5):63–68,
May 2003.

[76] M. Romberg. The UNICORE architecture: Seamless access to distributed resources.
In Proc. IEEE International Symposium on High Performance Distributed Computing HPDC
1999, page 44, Redondo Beach, CA , USA, Aug. 1999.

[77] A. Rosenberg. Sharing partitionable workload in heterogeneous NOWs: Greedier
is not better. In IEEE International Conference on Cluster Computing, pages 124–131,
Newport Beach, CA, Oct. 2001.

[78] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, New
York, 1986.

[79] K. Schwan and H. Zhou. Dynamic scheduling of hard real-time tasks and real-time
threads. IEEE Trans. Software Eng., 18(8):736–748, Aug. 1992.

128

[80] F. J. Seinstra, D. Koelma, and J.-M. Geusebroek. A software architecture for user
transparent parallel image processing. Parallel Computing, 28(7-8):967–993, Aug.
2002.

[81] T. Shepard and J. A. M. Gagne. A pre-run-time scheduling algorithm for hard real-
time systems. IEEE Trans. Software Eng., 17(7):669–677, July 1991.

[82] D. F. Sittig, D. Foulser, N. Carriero, G. McCorkle, and P. L. Miller. A parallel comput-
ing approach to genetic sequence comparison: the master-worker paradigm with
interworker communication. In Computers and Biomedical Research, volume 24, pages
152–169, 1991.

[83] V. J. R. Smith. UET scheduling with unit interprocessor communication selays. Dis-
crete Applied Mathematics, 18(1):55–71, Sept. 1987.

[84] J. Sohn and T. G. Robertazzi. Optimal divisible job load sharing for bus networks.
IEEE Trans. Aerosp. Electron. Syst., 32(1):34–40, Jan. 1996.

[85] J. Sohn, T. G. Robertazzi, and S. Luryi. Optimizing computing costs using divisible
load analysis. IEEE Trans. Parallel Distrib. Syst., 9(3):225–234, Mar. 1998.

[86] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo. Implications of classical
scheduling results for real-time systems. IEEE Computer, 28(6):16–25, June 1995.

[87] L. A. Steen, editor. Mathematics Today: Twelve Informal Essays. Springer-Verlag, New
York, USA, 1978.

[88] A. S. Tanenbaum. Operating Systems : Design and Implementation. Prentice-Hall, En-
glewood Cliffs, N.J., USA, 1987.

[89] R. Taniguchi, Y. Makiyama, N. Tsuruta, S. Yonemoto, and D. Arita. Software plat-
form for parallel image processing and computer vision. In Proc. SPIE Parallel and
Distributed Methods for Image Processing, volume 3166, pages 2–10, July 1997.

[90] I. Taylor, M. Shields, I. Wang, and R. Philip. Distributed P2P computing within Tri-
ana: A galaxy visualization test case. In IEEE International Parallel and Distributed Pro-
cessing Symposium, (IPDPS) 2003, Nice Acropolis Convention Center, Nice, France, Apr.
2003.

[91] Y.M. Teo, S. C. Low, S. C. Tay, and J. P. Gozali. Distributed geo-rectification of satellite
images using grid computing. In IEEE International Parallel and Distributed Processing
Symposium, (IPDPS) 2003, Nice Acropolis Convention Center, Nice, France, Apr. 2003.

[92] R. Thakur and W. Gropp. Open Issues in MPI Implementation, volume 4697 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2007. URL http://www.
springerlink.com/content/vx57711552l1262t/.

[93] The BOINCProject. BOINCproject list. http://boinc.berkeley.edu/wiki/Project_list,
June 2008.

129

[94] R. J. Vanderbei. Linear Programming: Foundations and Extensions, volume 37 of Interna-
tional Series in Operations Research & Management. Kluwer Academic Publishers, 2nd
edition, 2001. URL http://www.princeton.edu/~rvdb/LPbook/online.html.

[95] D. Weber, M. Spezialetti, and H. Barada. VidNet: Distributed processing en-
vironment for computer generated animation. Software — Practice & Experi-
ence, 26(2):237–250, 1996. ISSN 0038-0644. doi: http://dx.doi.org/10.1002/(SICI)
1097-024X(199602)26:2<237::AID-SPE13>3.3.CO;2-7.

[96] A. Weiss. Computing in the clouds. netWorker, 11(4):16–25, 2007. ISSN 1091-3556.
doi: http://doi.acm.org/10.1145/1327512.1327513.

[97] L. A.Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization. Wiley, 1999.
ISBN 978-0-471-35943-2.

[98] R. Wolski. Forecasting network performance to support dynamic scheduling using
the network weather service. In Proc. IEEE International Symposium on High Perfor-
mance Distributed Computing HPDC 1997, pages 316–325, Portland, OR, USA, May 1997.

[99] R. Wolski. The network weather service: A distributed resource performance fore-
casting service for metacomputing. Technical Report CS98-599, University of Cali-
fornia, San Diego, CA, USA, Oct. 1998.

[100] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU availability of time-shared
UNIX systems on the computational grid. In Proc. IEEE International Symposium on
High Performance Distributed ComputingHPDC 1999, pages 105–112, Redondo Beach, CA,
USA, Aug. 1999.

[101] J. Xu. Multiprocessor scheduling of processors with release times, deadlines, prece-
dence, and exclusion relations. IEEE Trans. Software Eng., 19(2):139–154, Feb. 1993.

[102] J. Xu and D. L. Parnas. On satisfying timing constraints in hard-real-time systems.
IEEE Trans. Software Eng., 19(1):70–84, Jan. 1993.

[103] D. Yu and T. G. Robertazzi. Scalable scheduling in parallel processors. In Proc. Con-
ference on Information Sciences and Systems, Princeton, NJ, Mar. 2002.

[104] D. Yu and T. G. Robertazzi. Divisible load scheduling for grid computing. In Proc.
International Conference on Parallel and Distributed Computing Systems (PDCS 2003), vol-
ume 1, Los Angeles, CA, USA, Nov. 2003.

130

L I S T O F P U B L I C A T I O N S

REFEREED JOURNALS AND TRANSACTIONS

⃝ A. Ghatpande, H. Nakazato, O. Beaumont, and H. Watanabe. Analysis of divisible
load scheduling with result collection on heterogeneous systems. IEICE Transactions
on Communications, E91-B(7):2234–2243, July 2008.

INTERNATIONAL CONFERENCES

⃝ A. Ghatpande, O. Beaumont, H. Nakazato, and H. Watanabe. Divisible load schedul-
ing with result collection on heterogeneous systems. In Proc. Heterogeneous Comput-
ing Workshop (HCW 2008) held in the IEEE Intl. Parallel and Distributed Processing Sysmpo-
sium (IPDPS 2008), Miami, FL., Apr. 2008.

H. Watanabe, A. Ghatpande, and H. Nakazato. Distributed computing for real-time
video processing. In Proc. 1st International Conference on Ubiquitous Computing (ICUC
2003), pages 207–213, Seoul, Korea, Oct. 2003.

DOMESTIC ACADEMIC MEETINGS

S. Iwasaki, A. Ghatpande, H. Nakazato, H. Kanemitsu, T. Hoshiai, and H. Tominaga.
A study of resource information exchange method on P2P-Grid. Technical Report
NS2007-53, IEICE, Sept. 2007.

K. Kondou, A. Ghatpande, H. Nakazato, H. Kanemitsu, T. Hoshiai, and H. Tominaga.
A study of data transferring for job execution time optimization on P2P-Grid. Tech-
nical Report NS2007-54, IEICE, Sept. 2007.

DOMESTIC CONFERENCES

B. Volodya, A. Ghatpande, and H. Nakazato. Regression based execution time es-
timation for scheduling in distributed computing systems. In Proc. 2007 Forum on
Information Technology (FIT 2007), L-025, Sept. 2007.

A. Ghatpande, H. Nakazato, and H. Watanabe. SPORT: Extended simulation results
for divisible load scheduling on heterogeneous systems. In Proc. 2006 IEICE Society
Conference, BS-15-3, Sept. 2006.

131

A. Ghatpande, H. Nakazato, and H. Watanabe. SPORT: A near-optimal solution to
divisible load scheduling on heterogeneous systems. In Proc. 2005 IEICE Society Con-
ference, BS-9-4, Sept. 2005.

A. Ghatpande, H. Nakazato, and H. Watanabe. Distributed video encoding on het-
erogeneous processor trees. In Proc. 19th Picture Coding Symposium of Japan (PCSJ 2004),
P-5.11, Nov. 2004.

A. Ghatpande, H. Nakazato, and H. Watanabe. An architecture for distributed video
encoding on the Internet. In Proc. 18th Picture Coding Symposium of Japan (PCSJ 2003),
P-2.02, Nov. 2003.

POSTER PRESENTATIONS

A. Ghatpande and H. Nakazato. Bandwidth measurement in broadband networks
for QoS guarantees. InWabot-House Symposium, Gifu, Japan, Nov. 2007.

A. Ghatpande and H. Nakazato. Server architecture and HNML for networked home
appliances. InWabot-House Symposium, Gifu, Japan, Nov. 2007.

A. Ghatpande, H. Nakazato, andH.Watanabe. Grid over P2P systems: Issues and con-
cepts. In 2006 Global Information and Telecommunication Research Workshop, Saitama,
Japan, Oct. 2006.

A. Ghatpande, H. Nakazato, and H. Watanabe. Distributed computing on P2P sys-
tems. In Spring Symposium of the 21st Century COE Productive ICT Academia Program,
Tokyo, Japan, Mar. 2006.

A. Ghatpande, H. Nakazato, and H. Watanabe. Adaptive load scheduling using au-
tonomous learning agents. In 2005 Global Information and Telecommunication Research
Workshop, Saitama, Japan, Nov. 2005.

A. Ghatpande, H. Nakazato, and H. Watanabe. Wide area distributed computing. In
2004 Global Information and Telecommunication ResearchWorkshop, Saitama, Japan, Nov.
2004.

132

A C R O N YM S A N D A B B R E V I A T I O N S

AFS All slaves Finish Simultaneously
CFD Computational Fluid Dynamics
COTS Cheap, Off-The-Shelf (hardware)
CPU Central Processing Unit
DLS Divisible Load Scheduling
DLSRCHETS DLS with Result Collection on HETerogeneous Systems
DLT Divisible Load Theory
FIFO First In, First Out
FIFOC First In, First Out, processors sorted by Communication time
FIFOE First In, First Out, processors sorted by Execution time
GIS Grid Information Service
ITERLP ITERative Linear Programming
LHS Left Hand Side (of an equation)
LIFO Last In, First Out
LIFOC Last In, First Out, processors sorted by Communication time
LIFOE Last In, First Out, processors sorted by Execution time
LP Linear Program or Linear programming Problem
MPI Message Passing Interface
NaN Not a Number (MATLAB™artifact)
NWS Network Weather Service
OPT OPTimal solution using brute force
OS Operating System
P2P Peer-to-Peer (computing, systems)
QoS Quality of Service
RAM Random Access Memory
ReMoS Resource Monitoring System
RHS Right Hand Side (of an equation)
SPORT System Parameters based Optimized Result Transfer
SUMCE Processor sorting by SUM of Communication and Execution time

133

L I S T O F S YM B O L S

σ−1
a The inverse permutation of σa. It indicates the position of processor pi in the al-

location sequence.

σ−1
c The inverse permutation of σc. It indicates the position of processor pi in the col-

lection sequence.

α The set of load fractions allocated to the slave processors; also known as a load
distribution.

α∗ The optimal load distribution.

α1, . . . , αm Them elements ofα that represent the load fractions allocated to p1, . . . , pm.

α∗1, . . . , α
∗
m The m elements of α∗ that represent the optimal load fractions to the pro-

cessors p1, . . . , pm.

αf1 The load fraction allocated to p1 in a two processor schedule of type f .

αg1 The load fraction allocated to p1 in a two processor schedule of type g.

αl1 The load fraction allocated to p1 in a two processor schedule of type l.

αf2 The load fraction allocated to p2 in a two processor schedule of type f .

αg2 The load fraction allocated to p2 in a two processor schedule of type g.

αl2 The load fraction allocated to p2 in a two processor schedule of type l.

αk:r The load fraction allocated to the equivalent processor pk:r.

∆TVAR The percentage deviation from the optimal processing time for a variant algo-
rithmwith processing time of TVAR for the same instance of the DLSRCHETS prob-
lem.

δ The (constant) ratio of the size of output result data to the size of input allocated
data for a job J .

135

J The divisible load (job) to be processed onH.

Λk The set of all k-subsets of a set.

⟨∆TVAR⟩ The mean deviation from optimal for a variant algorithm calculated by averag-
ing ∆TVAR over all simulation runs.

H Heterogeneous master-slave system withm+ 1 processors andm network links.

≺a A total order on T that represents the allocation sequence of the tasks.

≺∗a The optimal order on the set of tasks T .

≺+
a The minimal element of≺a, i.e., the first task in the allocation sequence.

≺−a The maximal element of≺a, i.e., the last task in the allocation sequence.

≺c A total order onR that represents the collection sequence of the results.

≺∗c The optimal order on the set of resultsR.

≺+
c The minimal element of≺c, i.e., the first task in the collection sequence.

≺−c The maximal element of≺c, i.e., the last task in the collection sequence.

4a The immediate predecessor or successor relation on T . If i 4a j, then task i is
the immediate predecessor of task j in ≺a. Equivalently, task j is the immediate
successor of task i in≺a.

4c The immediate predecessor or successor relation on R. If i 4c j, then task i is
the immediate predecessor of task j in ≺c. Equivalently, task j is the immediate
successor of task i in≺c.

R The set of real numbers.

R+ The set of positive real numbers.

R+
0 The set of nonnegative real numbers.

Rd d dimensional Euclidean space.

ρk:r The network parameter of the equivalent processor pk:r.

ρfk:r The network parameter of the equivalent processor pk:r in a general FIFO sched-
ule.

136

ρk The network parameter for a processor pk. It is equal to the ratio of the processor’s
unit computation speed to its unit communication speed.

S A schedule for the DLSRCHETS problem.

C The set of unit communication times of the slave processors.

E The set of unit computation times of the slave processors.

L The set ofm network links inH.

P The set ofm+ 1 processors inH.

R The set of results that are collected from the processors p1, . . . , pm.

σa A permutation of orderm that represents the allocation sequence.

σ∗a The optimal load allocation sequence.

Σka The set of candidate allocation sequences fork processors in the ITERLP algorithm.

σc A permutation of orderm that represents the collection sequence.

σ∗c The optimal result collection sequence.

Σkc The set of candidate collection sequences fork processors in the ITERLP algorithm.(n
k

) The binomial coefficient representing the number of ways of obtaining an un-
ordered subset of k elements from a set of n elements.

0 The null vector. The dimensions are context dependent.

a The d dimensional column vector whose elements are row coefficients of the con-
straint matrixA, i.e.,A = (a⊤1 , . . . ,a

⊤
n)⊤.

b The d dimensional right hand side column vector of constants in a linear program-
ming problem.

c The d dimensional column vector of coefficients of the objective function in a lin-
ear programming problem.

x The d dimensional column vector of decision variables in a linear programming
problem.

A The n×d dimensional coefficient or constraint matrix of the linear programming
problem..

137

u⊤ The transpose of any vector u.

ζ Theobjective function to be optimized (eithermaximized orminimized) in a linear
programming problem.

Bi≺a The set of task i and the tasks before i (predecessors of i) in≺a.

Bi≺c The set of task i and the tasks before i (predecessors of i) in≺c.

C Message transmission rate between two nodes.

C1, . . . , Cm Them elements of C that represent unit communication times of l1, . . . , lm.

Cf1:2 The unit communication time for the equivalent processor p1:2 in a two processor
schedule f .

Cg1:2 The unit communication time for the equivalent processor p1:2 in a two processor
schedule g.

C l1:2 The unit communication time for the equivalent processor p1:2 in a two processor
schedule l.

Ck:r The unit communication time for the equivalent processor pk:r.

Cfk:r The unit communication time for the equivalent processor pk:r in a general FIFO
schedule.

C lk:r The unit communication time for the equivalent processor pk:r in a general LIFO
schedule.

D The distance between two nodes in number of hops.

d Dimension of a linear programming problem; the number of decision variables in
the problem.

E1, . . . , Em Them elements of E that represent unit computation times of p1, . . . , pm.

Ef1:2 The unit computation time for the equivalent processor p1:2 in a two processor
schedule f .

Eg1:2 The unit computation time for the equivalent processor p1:2 in a two processor
schedule g.

El1:2 The unit computation time for the equivalent processor p1:2 in a two processor
schedule l.

138

Ek:r The unit computation time for the equivalent processor pk:r.

Efk:r The unit computation time for the equivalent processor pk:r in a general FIFO
schedule.

Elk:r The unit computation time for the equivalent processor pk:r in a general LIFO
schedule.

f A permutation. It is represented by listing its values as {f1, . . . , fn}.

f−1 The inverse permutationof permutation f . It is represented as{f−1(1), . . . , f−1(n)}.

F i≺a The set of task i and the followers (successors) of task i in≺a.

F i≺c The set of task i and the followers (successors) of task i in≺c.

Ic The span of the set C for simulations.

Ie The span of the set E for simulations.

K The index set of slave processors inH.

L Message length being transmitted between two nodes.

l1, . . . , lm Them elements of L that represent the network links inH.

m The number of available slaves inH.

n The number of constraints in a linear programming problem. Also the number of
slave processors allocated non-zero load (clarified by context).

p The number of processors allocated non-zero load in the optimal solution, i.e., the
number of participating processors or participants.

p0 The master processor inH.

p0, . . . , pm Them+ 1 elements of P that represent the processors inH.

p1, . . . , pm Them slave processors inH.

pk:r The equivalent processor for processors pk, . . . , pr.

r Result collection start time function. Transmission of result data from pi to p0
begins at time ri in a schedule S .

S Message start-up time before data transmission between two nodes.

139

Sn The symmetric group of degreen, i.e., the group of all permutations onn symbols.

T The total processing time for a jobJ from the pointwhen themaster first initiates
the allocation of tasks, to the point when themaster completes reception of all the
results.

t Task allocation start time function. Transmission of load fraction to pi from p0
begins at time ti in a schedule S .

T 1 The total processing time if the entire load is allocated to processor p1 only.

T 2 The total processing time if the entire load is allocated to processor p2 only.

T f The total processing time of a two processor schedule of type f .

T g The total processing time of a two processor schedule of type g.

T l The total processing time of a two processor schedule of type l.

tsendi The time at which processor pi starts sending its result data to the master in a
feasible schedule.

t
stop
i The time at which processor pi stops execution of its load fraction in a feasible

schedule.

T f1:2 The total processing time for the equivalent processor p1:2 in schedule f .

T g1:2 The total processing time for the equivalent processor p1:2 in schedule g.

T g1:2 The total processing time for the equivalent processor p1:2 in schedule g.

T l1:2 The total processing time for the equivalent processor p1:2 in schedule l.

tcomm The total communication time of a data message between two nodes.

TOPT The optimal processing time for an instance of the DLSRCHETS problem. In simu-
lations, this value is obtained by solving linear programs.

TVAR The processing time of a variant algorithm used for comparison in simulations.

texeci The time atwhichprocessor pi completes reception of its data and starts execution
in a feasible schedule.

trecvi The time atwhichprocessor pi starts receiving is data in a feasible schedule (equiv-
alent to ti in S).

140

Tk:r The total processing time of the equivalent processor pk:r.

T fk:r The total processing time of the equivalent processor pk:r in a general FIFO sched-
ule.

T lk:r The total processing time of the equivalent processor pk:r in a general LIFO sched-
ule.

U The commutation time per switch in a network.

xi The idle time in a processor pi.

y The intervening time interval between the end of allocation phase of the last pro-
cessor in the allocation sequence and the start of result collection from the first
processor in the collection sequence.

nPk The number of ways of obtaining an ordered subset of k elements from a set of n
elements.

T The set of tasks corresponding to them load fractions.

141

