
A Middleware Infrastracture for Building Mixed Reality Applications
in Ubiquitous Computing Environments

Eiji TOKUNAGA Andrej van der Zee
Makoto KURAHASHI Masahiro NEMOTO

Tatsuo NAKAJIMA
Department of Information and Computer Science, Waseda University

3-4-1 Okubo Shinjuku Tokyo 169-8555, JAPAN
TEL&FAX:+81-3-5286-3185

{eitoku,andrej,mik,nemoto,tatsuo}@dcl.info.waseda.ac.jp

Abstract

Mixed reality is one of the most important techniques
to achieve the vision of ubiquitous computing. Tradi-
tional middleware for mixed reality provide high level ab-
straction to hide complex algorithms for analyzing video
images, but applications programmers still need to take
into account distribution and automatic reconfiguration
when developing mixed reality applications for ubiquitous
computing.

Our middleware infrastructure hides all the complex-
ities to build mixed reality applications for ubiquitous
computing. Therefore, the development does not require
advanced skills for ubiquitous computing. The paper de-
scribes the design and implementation of our infrastruc-
ture, and presents some scenarios and the current status
showing its effectiveness.

1 Introduction

Mixed reality[3] is a promising technique for real-
izing the enhancement of our real world by superim-
posing computer generated graphics on video images.
The technique is important in ubiquitous computing
environments[1, 20, 25, 27] to enhance our real world by
using information in cyber spaces. However, in ubiqui-
tous computing environments, application programmers
need to deal with ultra heterogeneity to support various
devices and environments, and handling continuous me-
dia such as audio and video is very hard. Also, they need
to take into account complex issues such as distribution
and dynamic reconfiguration that increase development
cost of continuous media ubiquitous computing applica-
tions. To solve the problem, it is important to provide
a middleware infrastructure to hide the complexities to
make it easy to develop the applications.

This paper describes the design and implementation
of a software infrastructure for building mixed reality ap-
plications in ubiquitous computing environments. Tra-
ditional toolkits for mixed reality provide high level ab-
straction that makes it easy to build mixed reality appli-
cations, but application programmers still need to take
into account distribution and automatic reconfiguration
that make the development of applications very hard.
The high level abstraction provided by our software in-
frastructure hides these complex issues from application
programmers. Therefore, the cost to develop mixed re-
ality applications will be reduced dramatically by using
our software infrastructure. Although our paper focuses
on how our system is used to build mixed reality appli-
cations for ubiquitous computing, our middleware can
also be used to build many other ubiquitous computing
applications that deal with continuous media.

The remainder of this paper is structured as follows.
In Section 2, we describe related work and compare our
framework characteristics with existing middleware. In

Section 3, we show the design issues of our infrastruc-
ture. Section 4 presents the design and implementation
of our middleware for distributed mixed reality. Section
5 presents two scenarios that show the effectiveness of
our approach. In Section 6, we describe the current sta-
tus of our system. In Section 7, we discuss strengths
and weaknesses of our current design. We conclude the
paper in Section 8.

2 Related Work

ARToolkit[2] is a software library that allows us to de-
velop mixed reality applications easily. It provides sev-
eral functions to detect square formed visual markers in a
video frame and superimpose OpenGL based 3D Object
on the markers in the video frame. ARToolkit is quite
useful for Mixed Reality prototyping, but it does not
provide distributed programming framework and hetero-
geneous device adaptation. We implemented continuous
media components for mixed reality by reusing programs
provided by the ARToolkit. Therefore, we can utilize
most of ARToolkit functions in our distributed multime-
dia programming model and dynamic adaptation frame-
work.

DWARF[4] is a component based framework for dis-
tributed mixed reality applications using CORBA. Our
system also use CORBA for communication infrastruc-
ture. In this aspect, our framework is very similar to
DWARF. However, our system is different from DWARF
since our system offers automatic reconfiguration to de-
velop mixed reality applications suitable for ubiquitous
computing. It is very essential part of our framework be-
cause dynamic adaptation according to application con-
text is one of the main issues in ubiquitous computing.

The VuSystem[16] is a framework for compute-
intensive multimedia applications. It is divided into an
in-band partition and an out-of-band partition. The
out-of-band partition is written in Tcl and controls
the in-band media processing modules written in C++.
Compute-intensive means that computers perform anal-
ysis on multimedia data, and can take actions based on
the findings. In our framework, we intend to use visual
marker information contained within video frames more
extensively. A visual marker might contain any kind of
information.

Infopipes[15] proposes an abstraction for building dis-
tributed multimedia streaming applications. Compo-
nents such as sources, sinks, buffers, and filters are de-
fined, and multimedia applications are built by connect-
ing them. In our framework, we explicitly specify the
connection among components like Infopipes, but the
connections are dynamically changed according to the
current situation.

Fault Tolerant CORBA specification[23] allows us to
create a replicated object to make a service highly re-
liable. In the specification, when we adopt the pri-

1

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

mary/backup scheme, one of the replicated objects actu-
ally receive a request. The primary replica is specified in
an object reference that is passed to a client. When the
object reference becomes invalid, the reference to the pri-
mary replica is returned by using the location forward
mechanism in the IIOP protocol. The scheme is very
similar to our automatic reconfiguration support.

A programmable network[5] allows us to change the
functionalities of the network according to the charac-
teristics of each applications. Each entity in a pro-
grammable network, like a router, has a programmable
interface designed to change the functionalities. In our
approach, an application can configure each continuous
media component according to the characteristics of the
application. The capability is similar to a programmable
network.

The LocALE[18] framework provides a simple man-
agement interface for controlling the life cycle of CORBA
distributed objects. It extends mobility support to the
CORBA life cycle management mechanism. Objects can
be moved to anywhere in a location domain by the ex-
plicit request from a client. On the other hand, our
framework provides implicit stream reconfiguration by
specifying reconfiguration policy.

3 Design Issues

3.1 Mixed Reality

Mixed reality1 is a technology concerned with super-
imposing computer generated graphics into video images
capturing the real-world. Several mixed reality applica-
tions have been developed and proved the effectiveness
of the technology [3]. For example, a surgeon trainee
can use the technique to visualize instructions during an
operation[12], or a mechanic can use it as a tool for the
maintenance and repair of complex machinery[7]. Also,
NaviCam[26] has shown that the technology can be used
for building many ubiquitous computing applications to
enhance our daily life.

Developing mixed reality applications is not easy be-
cause of complex algorithms needed for the analysis of
video streams and the generation of graphical images.
Middleware like ARToolkit[2] and DWARF[4] have been
developed to reduce the effort of programmers, but they
do not satisfy the requirements for building mixed real-
ity applications for ubiquitous computing, as described
in the next section.

3.2 Requirements for Mixed Reality for
Ubiquitous Computing

Developing mixed reality applications for ubiquitous
computing, the programmer is faced with complexities
inherent to ubiquitous computing environments. Exist-
ing mixed reality toolkits such as the ARToolkit[2] are
not designed for such environments, and do not address
these complexities. We found that the following two re-
quirements must be satisfied for building mixed reality
applications in ubiquitous computing environments.

High-Level abstraction to hide heterogeneity:
Ubiquitous computing environments consist of various
types of computers and networks. Networks may con-
tain a mix of resource-constrained and specialized com-
puters. Some computers may not be appropriate for
processing heavy computation like video analysis. For
example, cellular phones and PDAs are not appropriate
for heavy computations, but they might want to uti-
lize mixed reality features. Also, in ubiquitous com-
puting environments, we need to use various types of

1 Some researchers use the term augmented reality rather then
mixed reality.

devices. For example, continuous media applications
for ubiquitous computing should take into account vari-
ous types of cameras, displays, microphones, and speak-
ers. Therefore, application programmers may develop
a different application program for each platform and
device. A middleware providing high-level abstraction
to hide such differences from application programmers
is necessary[19, 21] in order to reduce the development
costs.

Automatic reconfiguration to cope with an envi-
ronmental changes: In ubiquitous computing en-
vironments, there will be many cameras and displays
everywhere, we believe that a middleware infrastructure
should provide a mechanism to support dynamic configu-
ration to change machines executing components accord-
ing to the current situation. Mixed reality applications
in such environments should be able to select the most
suitable device according to our current situation. For
example, a user may want to see a video stream captured
by a camera nearest to him on his cellular phone’s dis-
play. However, implementing automatic reconfiguration
in an application directly is very difficult. An application
programmer does not want to be concerned with such
complexities and therefore we believe that it is desirable
to handle automatic reconfiguration in our framework.

4 Middleware supporting Mixed Reality

In this section, we describe the design and implemen-
tation of MiRAGe (Mixed Reality Area Generator), the
middleware we have developed to support mixed reality
for ubiquitous computing.

4.1 Overview of Architecture

Figure 1: Overview of MiRAGe Architecture

MiRAGe consists of the multimedia framework, the
communication infrastructure and the application com-
poser, as shown in Figure 1. The multimedia framework,
described in Section 4.2, is a CORBA-based component
framework for processing continuous media streams.
The framework defines CORBA interfaces to config-
ure multimedia components and connections among the
components.

Multimedia components supporting mixed reality can
be created from the MR class library. The library con-
tains several classes that are useful to build mixed re-
ality applications. By composing several instances of
the classes, mixed reality multimedia components can be
constructed without taking into account various complex

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

algorithms realizing mixed reality. The MR class library
is described in Section 4.4.

The communication infrastructure based on CORBA,
described in Section 4.3, consists of the situation trader
and OASiS. The situation trader is a CORBA service
that supports automatic reconfiguration, and is collo-
cated with an application program. Its role is to manage
the configuration of connections among multimedia com-
ponents when the current situation is changed. OASiS
is a context information database that gathers context
information such as location information about objects
from sensors. Also, in our framework, OASiS behaves
like as a Naming and Trading service to store objects ref-
erences. The situation trader communicates with OASiS
to detect changes in the current situation.

Finally, the application composer, written by an ap-
plication programmer, coordinates an entire application.
A programmer needs to create several multimedia com-
ponents and connect these components. Also, he speci-
fies a policy on how to reconfigure these components to
reflect situation changes. By using our framework, the
programmer does not need to be concerned with detailed
algorithms for processing media streams because these
algorithms can be encapsulated in existing reusable mul-
timedia components. Also, distribution is hidden by our
CORBA-based communication infrastructure, and auto-
matic reconfiguration is hidden by the situation trader
service. Therefore, developing mixed reality applications
becomes dramatically easy by using our framework.

MiRAGe satisfies the requirements described in the
previous section in the following way.

High-Level Abstraction: MiRAGe provides a mul-
timedia framework for constructing mixed reality com-
ponents in an easy way. Complex programs like de-
tecting visual markers and drawing 3D objects are en-
capsulated in respective multimedia components. Also,
detailed characteristics about respective devices are en-
capslated in components that offer common interface.
All components offer an identical CORBA interface for
standardized inter-component access. In our framework,
a complex distributed and automatically reconfigurable
mixed reality application can be developed by writ-
ing the application composer program that composes
reusable multimedia components.

System-Level Automatic Reconfiguration: In
the MiRAGe framework, the communication infrastruc-
ture is designed as a CORBA compliant system that
supports automatic reconfiguration. The infrastructure
supports user mobility by automatically updating ob-
ject references and reconfiguring media streams. Also,
the infrastructure allows us to select the most suitable
component to process media streams automatically and
to reconnect the component, according to the character-
istics of each computer platform and the situation of a
user by specifying policies. However, an application pro-
gram needs not to take into account how an application
changes the configuration due to the current situation’s
changes by using our middleware infrastructure.

4.2 Multimedia Framework

The main building blocks in our multimedia frame-
work are software entities that internally and externally
stream multimedia data in order to accomplish a cer-
tain task. We call them multimedia components. In this
section, we describe the components in more detail and
provide programs to illustrate how a developer can con-
figure the multimedia components.

4.2.1 Multimedia Components

A multimedia component consists of a CORBA interface
and one or more multimedia objects. For example, Figure
1 shows three connected components: One component
that contains a camera source object for capturing video
images, one component that contains the MRDetector
and MRRenderer filter objects for implementing mixed
reality functionality as described in Section 4.4, and one
component that contains a display sink object for show-
ing the mixed reality video images.

In a typical component configuration, video or au-
dio data are transmitted between multimedia objects,
possibly contained by different multimedia components,
running on remote machines. Through the CORBA
verb—MConnIface— interface, as described in the next
subsection, connections can be created in order to con-
trol the streaming direction of data items between mul-
timedia objects. Multimedia components register them-
selves at the CORBA Naming Service under a user-
specified name.

4.2.2 CORBA Interface

A component can be remotely accessed through one of
three CORBA interfaces: MCompIface, MConnIface and
MServIface.

The MCompIface interface is added to the component
to provide a single object reference through which refer-
ences can be obtained to other CORBA interfaces. The
benefits of adding such an interface is to give clients ac-
cess to all inter-component functionality through a single
reference. In addition, the MCompIface interface pro-
vides functions to query individual objects and the com-
ponent as a whole. The MCompIface interface is identical
to all components.

The MConnIface interface provides methods to es-
tablish connections between objects, possibly contained
by different multimedia components, running on remote
sites. More specific, the interface provides functions to
create sockets for inter-component streaming, updating
the streaming information managed by individual mul-
timedia objects, and to start and stop streams. The
MConnIface interface is also identical to all components.

The MServIface interface provides methods for con-
trolling specific multimedia objects within a multimedia
component. Clients may find it useful to query and/or
change the state of a multimedia object. For example, a
client may want to query a display object for the resolu-
tions it supports and may want to change the resolution
to its needs. The MServIface interface varies from com-
ponent to component, depending on the internal multi-
media objects it contains.

The interfaces are part of the module IFACE and are
written in CORBA IDL. Here follows a snapshot of the
module2 :

module IFACE
{

interface MConnIface
{

ObjectId createServerSocket(out SocketInfo info)
ObjectId createClientSocket(in SocketInfo info)

void addStreamInfo(in ObjectId nTargetId, in StreamInfo info)

void startStream(in ObjectId nTargetId, in StreamId nStreamId)
void stopStream(in ObjectId nTargetId, in StreamId nStreamId)

};

interface MCompIface
{

MConnIface getConnIface();
MServIface getServIface();

boolean isInput(in ObjectId nTargetId)
boolean isOutput(in ObjectId nTargetId)

DataType getDataType(in ObjectId nTargetId)
};

2 The Services interface is not included since it varies for dif-
ferent component configurations. Also, detailed definitions about
data types and exceptions are omitted.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

};

4.2.3 Multimedia Objects

In our approach, the central focus is the stream of data
from data producers to data consumers through zero or
more data manipulators similar to VuSystem[16]. Data
producers typically are interfaces to video or audio cap-
ture hardware or media storage hardware. In our frame-
work we call them sources. Data manipulators perform
operations on the media data that runs through them.
Data manipulators get their data from sources or other
data manipulators and stream the modified data to a
consumer or another manipulator. In our framework we
call them filters. Data consumers are multimedia objects
that eventually process the data. Data consumers typ-
ically interface to media playback devices or to media
storage devices. In our framework we call them sinks.

More concrete, our framework provides the abstract
classes MSource, MFilter and MSink3 . Developers ex-
tend the classes and override the appropriate hook-
methods to implement functionality. Multimedia objects
need only to be developed once and can be reused in any
component.

The multimedia framework defines two special-
ized classes of multimedia objects for handling inter-
component data streaming, namely MClientSocket and
MServerSocket. Socket objects can be created and con-
nected through the appropriate function calls defined in
the CORBA MConnIface interface.

4.2.4 Streams

A typical mixed reality component might contain a filter
object that adds digital images to video frames at speci-
fied positions within the frames. Different client compo-
nents may want to use the service at the same time by
sending video frames to the component and afterwards
receiving it for playback. This implies that different data
items streamed through filter objects within multime-
dia components might have different destinations. Solely
setting up direct connections between objects does not
satisfy the above described scenario. If each client would
be connected to the filter object as a destination, how
does the filter object know which data is to be send to
which destination?

To solve the above issue we do not use direct connec-
tions between multimedia objects. Rather, we assign a
unique stream identifier to each stream and use stream
tables managed by output objects to hold stream direc-
tion information. Source objects add a stream identifier
to each data item they produce, identifying the stream
the data is part of.

The stream table managed in the outport of each out-
put object store tuples of type [StreamId, ObjectId].
The stream identifier sent with each data item is used
for finding the target multimedia object. If found, the
data is send to the inport of the target object and put
in the appropriate buffer, also identified by its stream
identifier.

Our framework defines a MStream class that acts as a
facade for the primitive low-level CORBA MConnIface
interface functions. It provides easy means for the devel-
oper to set up a distributed stream between multimedia
objects. The interface defines methods for setting the
source and sink object of a stream and adding one or
more filters. In addition, methods are added to start
and stop a media stream.

In order to identify a multimedia object within
a component, the framework assigns a unique ob-
ject identifier to each object after it is added to
the component. Universally, we use a tuple of type

3 The M preceding the class names indicate that they are part
of the framework and stands for multimedia.

[MCompIface, ObjectId] to denote one specific object.
Such universal identifiers are used by MStream objects
to compose a stream.

4.2.5 Component Configuration

In our framework, we use a component abstraction that
hides much of the details that deal with CORBA and
streaming. By extending the abstraction, a developer
can configure a component. More specific, a developer
specializes the MComponent class provided by the frame-
work. In its constructor it typically creates multimedia
objects, possibly creates a stream and finally adds the
objects to the container component. a program for the
example component in Figure 2 might look something
like this:

Figure 2: Example Component

MyComponent::MyComponent():
MComponent()

{
m_pCamera = new Camera;
m_pSwapper = new RBSwapper;
m_pDisplay = new Display;

addObject(m_pCamera);
addObject(m_pSwapper);
addObject(m_pDisplay);

}

MCompIface pComponent = MNaming::resolve(‘‘Some_Name’’);

MStream stream(MStream::NORMAL);
stream.setSource(pComponent, 1);
stream.addFilter(pComponent, 2);
stream.setSink(pComponent, 3);
stream.start();

The above illustrative code retrieves a CORBA object
reference from the Naming Service registered under the
name Some_Name and assumes such a reference exists.
Next, a stream with normal priority is set up between the
participating multimedia objects4 . After the stream is
started, data is streamed from the camera to the display
object through the red-blue swapper.

4.3 Communication Infrastructure

Our CORBA-based communication infrastructure
consists of two subsystems, namely the situation trader
and OASiS, as described in Section 3.1. Complex is-
sues about automatic reconfiguration are handled by the
situation trader and therefor hidden from the applica-
tion programmer. A configuration manager, owned by
the situation trader, manages stream reconfiguration by
updating connections between multimedia objects. The
situation trader is linked into the application program.

In our framework, a proxy object in an application
composer refers to an Adaptive Pseudo Object or APO,
managed by the situation trader. Each APO is managed
by exactly one Pseudo Object Manager or POM that
is responsible for the replacement of object references
by receiving a notification message from OASiS upon
situation change.

4.3.1 Automatic Invocation Forwarding

In our system, an application programmer uses a POM
to access multimedia components. Each POM manages
one APO, a CORBA object that has the same inter-
face as its target multimedia object. The APO forwards

4 In the example we assume the object identifiers are known in
advance.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

client invocations to the most appropriate target com-
ponent. The application programmer can specify a re-
configuration policy with a POM to control the reconfig-
uration strategy. Upon startup, a POM retrieves an ini-
tial IOR from OASiS. OASiS finds the most appropriate
object reference from its context information database
according to the registered reconfiguration policy and
updates the reference upon situation change.

Figure 3 shows how dynamic invocation forwarding
works, and the following describes the depicted sequence
in more detail.

Figure 3: Automatic Invocation Forwarding

An application registers a reconfiguration policy with
a POM (1). The POM passes the policy to OASiS (2).
OASiS returns an initial IOR that is appropriate for the
current situation (3). The POM passes the IOR to its
APO (4). The application requests the activation of the
APO (5). The application invokes a method on the APO
(6). The APO returns a LOCATION FORWARD mes-
sage containing the IOR in the POM (7). The applica-
tion resends the previously issued request by using the
enclosed IOR (8). When the current situation changes,
OASiS notifies a new IOR that is appropriate for the
new situation (9). The POM updates the received IOR
in the APO (10). Then, the POM reverts the current
object reference, and the object reference of a new target
object is retrieved by using a LOCATION FORWARD
message again (11). Thus, a client invocation is for-
warded transparently according to the new situation(12,
13, 14).

4.3.2 Situation Trader Service:

Figure 4 shows the relation between the situation trader
and the continuous media framework. As described in
the overview, the situation trader is a CORBA service
that manages the reconfiguration of multimedia compo-
nents. This subsection presents in detail how the situa-
tion trader works.

The following sample C++ code illustrates how an
application program might look like:

CORBA::Object_var obj =
orb->resolve_initial_reference("SituationTraderService"); //(1)

STrader::SituationTraderFactory_var factory =
STrader::SituationTraderFactory_narrow(obj);

STrader::POManager_var camera_pom =
factory->createPOManager("IFACE::MCompIface:1.0"); //......(2)

STrader::POManager_var display_pom =
factory->createPOManager("IFACE::MCompIface:1.0");

STrader::ConfigurationManager_var com =
factory->createConfigurationManager();

STrader::ReconfigurationPolicy camera_policy;
STrader::ReconfigurationPolicy display_policy;

camera_policy.locationScope = "Distributed Computing Laboratory"
camera_policy.locationTarget = "Eiji TOKUNAGA"
camera_policy.locationContext = "nearest"
camera_policy.serviceType = "Camera"(3)

display_policy.locationScope = "Distributed Computing Laboratory"
display_policy.locationTarget = "Andrej van der Zee"
display_policy.locationContext = "nearest"

Figure 4: Situation Trader Service

display_policy.serviceType = "Display"

camera_pom->setPolicy(camera_policy); //......(4)
display_pom->setPolicy(display_policy);

IFACE::MCompIface_ptr camera_apo =
camera_pom->activateAPObject();

IFACE::MCompIface_ptr display_apo =
display_pom->activateAPObject();

MStream stream(MStream::NORMAL);
stream.setSource(camera_apo, 1);
stream.setSink(display_apo, 1);

StreamAdapter_i* adapter_i = new StreamAdapter_i(stream); //......(5)
STrader::ConfigurationAdapter_ptr adapter = adapter_i->_this();

com->setAdapter(adapter); //......(6)
com->addPOManager(camera_pom); //......(7)
com->addPOManager(display_pom);

// Start streaming.
stream.start();

As shown in Figure 4, the situation trader con-
sists of a situation trader factory, a configuration
manager and several POMs. The object refer-
ence to the situation trader is retrieved by invoking
the resolve_initial_reference method provided by
CORBA (line 1).

The situation trader factory is used for creating
POMs and the configuration manager (line 2). The
method createPOManager expects as parameter the ID
of the target object that specifies the object’s type, and
returns a reference to the POM that manages the APO.

A reconfiguration policy needs to be set for each POM
(line 4). The policy is passed to OASiS through the
POM, and OASiS selects the most appropriate target
object according to the policy.

In the current design, a reconfiguration policy has
three location parameters, locationScope, locationTarget
and locationContext (line 3). LocationScope denotes
the scope for selecting a suitable multimedia compo-
nent. When a POM passes the policy to OASiS, OASiS
searches a target multimedia component in the speci-
fied scope. LocationTarget specifies a physical object
used to represent the current situation. LocationCon-
text specifies the relation between a target multimedia
component and the physical object specified by location-
Target. LocationTarget might be a person’s name or a
device’s name. Currently, locationContext can specify
”nearest” and ”exact”. ”Nearest” means that the near-
est multimedia component to a physical object specified
by locationTarget should be selected. For example, if
locationContext is ”nearest” and locationTarget is ”Eiji
TOKUNAGA”, this pair means ”nearest to Eiji TOKU-
NAGA”. ”Exact” means that a multimedia component
that resides with a physical object specified by location-
Target should be selected. We are considering to define
more policies in the future version of our framework.

Several POMs can be added to the configuration man-
ager. The configuration manager retrieves the APOs

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

from its registered POMs and controls automatic recon-
figuration of the APOs. A stream adapter needs to be
set for the configuration manager for automatic stream
reconfiguration (line 6). When one of POMs is updated
by OASiS, the stream adapter reconfigures connections
between multimedia components in order to reflect sit-
uation change (line 5 to 7). Stream reconfiguration is
explained in more detail in the next subsection.

4.3.3 Stream Reconfiguration

A stream adapter controls the MStream object described
in Section 4.2. Upon situation change, a callback handler
in the stream adapter is invoked in order to reconfigure
affected streams through its MStream object.

Figure 5: Stream Reconfiguration

Figure 5 depicts how connections among multimedia
objects are changed in order to reconfigure an existing
stream. In the figure, the camera object streams media
data to the display object through the red-blue swapper
rbs1. When current situation changes and the red-blue
swapper rbs2 becomes the most appropriate object, the
callback handler for the stream adapter is invoked pass-
ing the old and the new POM, that is rbs1 and rbs2.
The callback handler updates the MStream object and
restarts the stream.

More concrete, the MStream object controlled by the
stream adapter stops the old stream by removing its
stream identifier from its source object. Next, the
old reference is replaced by the new one. Finally, the
newly configured MStream object is restarted. Inter-
nally, restarting is done by setting up the appropriate
TCP connections between remote components, updat-
ing the stream information of the participating objects
and adding a new unique stream identifier to the source
object.

4.4 Mixed Reality Components

The MR class library, as shown in Figure 6, is part of
the MiRAGe framework. The library defines multimedia
mixed reality objects for detecting visual markers in video
frames and superimposing graphical images on visual
markers in video frames. These mixed realtity multime-
dia objects are for a large part implemented using the
ARToolkit. Application programmer can build mixed re-
ality applications by configuring multimedia components
with the mixed reality objects and stream data between
them. In addition, the library defines data classes for the
video frames that are streamed through the MR objects.

MRFilter is a subclass of MFilter and is used
as a base class for all mixed reality classes. The
class MVideoData encapsulates raw video data. The
MRVideoData class is a specialization MVideoData and
contains a MRMarkerInfo object for storing information
about visual markers in its video frame. Since differ-
ent types of markers will be available in our framework,

Figure 6: Mixed Reality Class Library

the format of marker information must be defined in a
uniform way.

The class MRDetector is a mixed realty class and in-
herits from MRFilter. The class expects a MVideoData
object as input and detects video markers in the
MVideoData object. The class creates a MRVideoData
object and adds information about detected markers
in the video frame. The MRVideoData object is send
as output. The class ARTkDetector is a subclass of
MRDetector that implements the marker detection al-
gorithm using the ARToolkit.

The MRRenderer class is another mixed reality
class derived from MRFilter. The class expects an
MRVideoData as input and superimposes graphical im-
ages at positions specified in the MRMarkerInfo ob-
ject. The superimposed image is send as output. The
OpenGLRenderer is a specialization of MRRenderer and
superimposes graphical images generated by OpenGL.

The MRSensor class is a specialization of MFilter
and sends the current marker information to OASiS
for the detection of the location of a physical object.
ARTkSensor inherits from MRSensor and uses the AR-
Toolkit for its implementation.

Figure 7: An Example MR Application

Figure 7 illustrates how mixed reality components can
be configured and connected in an application. In the
example, a visual marker attached to a person is cap-
tured and superimposed by information about this per-
sons profile before display.

In detail, the camera object sends MVideoData ob-
jects, representing the captured video frames, to the vi-
sual marker detector object. The detector object adds
information about visual tags to a MRVideodata object
and sends it to the superimposer object. The superim-
poser object substitutes digital images for visual markers
and sends the superimposed video frames to the display
object.

If a powerful computer is available, the two filter com-
ponents for detection and superimposing can be merged
into one component. Our framework can create multi-
media components that are suitable for respective plat-
forms.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

5 Sample Scenarios

This section describes two scenarios showing the ef-
fectiveness of MiRAGe. In the first scenario, we describe
a follow-me application that dynamically changes cam-
era and display devices according to user location. In
the second scenario, we describe how mobile mixed real-
ity can be used on less powerful devices such as PDAs
and cellular phones.

5.1 A Follow-Me Application

In this section, we consider an application that re-
ceives a video stream from a camera and displays it on
the nearest display to the user. As shown in Figure 8,
there are two continuous media components. The first
one is a camera component, and the second one is a
display component. The two components are connected
by an application composer. However, the actual dis-
play component is changed according to user location.
An application composer holds a POM managing sev-
eral display objects and changes the target reference of
an APO to a display nearest to the user. A configu-
ration manager reconfigures a stream when the current
situation is changed.

Figure 8: A Follow-me Application

When the user moves, a location sensor detects the
movement of the user. As a result, OASiS is notified by
the location sensor (1). OASiS notifies an IOR of the
nearest display to the POM, then the POM changes the
target reference in the APO (2). Therefore, a method
invocation is forwarded to the nearest display compo-
nent (3). In this case, when a callback handler in the
configuration manager is invoked, the configuration of
the stream is changed (4).

5.2 Mobile Mixed Reality

In a typical mobile mixed reality application, our real-
world is augmented with virtual information. For ex-
ample, a door of a classroom might have a visual tag
attached to it. If a PDA or a cellular phone, equipped
with a camera and an application program for capturing
visual tags, the tags are superimposed by a schedule of
today’s lecture.

We assume that in the future our environment will
deploy many mixed reality servers. In the example, the
nearest server stores information about today’s lecture
schedule and provides a service for detecting visual tags
and superimposing them by the information about the
schedule, as depicted in Figure 9.

Other mixed reality servers, located on a street, might
contain information about what shops or restaurants can
be found on the street and until how late they are open.

To build the application, an application composer
uses components for capturing video data, detecting
visual markers, superimposing information on video
frames and displaying them. The application composer
contacts a situation trader service to retrieve a reference
to a POM managing references to the nearest mixed re-
ality server to a user. When he moves, a location sensor

Figure 9: Moblie Mixed Reality

component notifies sensed location information to OA-
SiS, and OASiS notifies the situation trader to replace
the current object reference to the reference of the near-
est mixed reality server. In this way, the nearest mixed
reality server can be selected dynamically according to
his location, but the automatic reconfiguration is hidden
from an application programmer.

6 Current Status

In our current prototype, we are using C++ and om-
niORB [17] for our CORBA-based communication in-
frastructure. OmniORB is open source and very effi-
cient. In our design of continuous media components,
respective multimedia objects run in separate threads.
Therefore, a fully multi-threaded CORBA compliant
ORB is required.

We describe the evaluation to show the effectiveness
of our approach in this section. Also, we show an actual
implementation of a sample scenario described in the
previous section and present some discussions about the
current prototype implementation.

6.1 Evaluation of Distributed Mixed Real-
ity

The section presents the evaluation showing the effec-
tiveness of automatic reconfiguation supported by Mi-
RAGe. The result shows the impact to delegate heavy
computation to a powerful server.

The picture shown in Figure 10 presents an evalua-
tion environment of distributed mixed reality. The lap-
top computer on the right side has PentiumIII 866MHz
processor and 256MBytes memory. The left one is a
high performance server computer which has Pentium4
1.9GHz processor and 512MBytes memory. Our infras-
tructure is currently running on Linux. These computers
are connected by the 100Base-T Ethernet. A user with
the laptop computer can watch superimposed video im-
ages on its screen.

Figure 10: Three Cases of MR Stream

To evaluate the merit of distribution in our compo-
nent based approach, we compared the performance in

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

Figure 11: Processing Time for 2000 Frames

three cases shown in Figure 10. The graph in Figure 13
shows the time required to display 2000 superimposed
video frames on the laptop’s display when a data source
generates 30 video frames per second. In the evaluation,
“none” means that a captured video image by the server
is rendered by the server without mixed reality process-
ing, “server” means that mixed reality processing runs
on the server, and “laptop”means that mixed reality pro-
cessing runs on the laptop. The result shows that the
processing time to analyze video images and to superim-
pose a graphic image on them on the laptop computer
is dramatically increased according to the data size. On
the other hand, when using a powerful server to execute
mixed reality processing, the heavy computation does
not affect the performance seriously. Therefore, our ap-
proach that delegates heavy computation to a powerful
server near a user will improve the performance of mixed
reality applications significantly.

In the evaluation, we have adopted a high bandwidth
network, but when we use low bandwidth networks, we
can add a component to decrease the quality of video
streams to reduce the bandwidth before transmitting
the video streams to the low bandwidth networks. How-
ever, we may use high handwidth networking adopting
UWB(Ultra Wide Band) technologies even by small mo-
bile devices in the near future.

6.2 Moblie Mixed Reality Prototype

Figure 12: Mobile Mixed Reality Prototype

Figure 12 is a picture showing a prototype of a mo-
bile mixed reality application. The PDA, that the per-
son in the picture has in his hand, is a Compaq iPAQ
H3800 with a wireless LAN card and a TOSHIBA 2GB
PCCARD hard disk. We attached a RFID tag to this
PDA for detecting its location. The refrigerator on the
right side is a TOSHIBA IT refrigerator named Femin-

ity. The refrigerator is equipped with sensors that let us
know how many bottles are inside.

The following a simplified program for the mobile
mixed reality prototype.

camera_policy.locationScope = "Laboratory"
camera_policy.locationTarget = "Feminity"
camera_policy.locationContext = "nearest"
camera_policy.serviceType = "Camera"

filter_policy.locationScope = "Laboratory"
filter_policy.locationTarget = "Feminity"
filter_policy.locationContext = "nearest"
filter_policy.serviceType = "MRFilter"

display_policy.locationScope = "Laboratory"
display_policy.locationTarget = "Feminity"
display_policy.locationContext = "nearest"
display_policy.serviceType = "Display"

camera_pom->setPolicy(camera_policy);
filter_pom->setPolicy(filter_policy);
display_pom->setPolicy(display_policy);

MStream stream(MStream::NORMAL);
stream.setSource(camera_apo, 1);
stream.addFilter(filter_apo, 1);
stream.addFilter(filter_apo, 2);
stream.setSink(display_apo, 1);

Stream_i* adapter_i = new StreamAdapter_i(stream);
STrader::ConfigurationAdapter_ptr adapter = adapter_i->_this();

com->setAdapter(adapter);
com->addPOManager(camera_pom);
com->addPOManager(filter_pom);
com->addPOManager(display_pom);

stream.start();

In this scenario, when a user comes near the refriger-
ator, the RFID reader recognizes the RFID tag attached
to the PDA. Then, the RFID reader sends the tag in-
formation to OASiS. OASiS recognizes the situation’s
change, and notifies the IOR of a display service running
on the PDA to the mobile mixed reality application that
shows video frames on the nearest display service to the
refrigerator.

In this case, a mixed reality component that detects
visual tags and superimposes digital images on video
frames is running on a powerful machine not shown in
the picture. In the example, the mixed reality compo-
nent retrieves the number of bottles from the refrigerator
and superimposes a graphical image showing this num-
ber.

Currently, a cellular phone in Japan has a camera,
and the next version of the cellular phone will adopt so-
phisticated operating systems such as Linux, and provide
a wireless LAN support. We believe that our middleware
infurastructure can be used on the cellular phone to offer
new services.

7 Discussions

We believe that our design is very effective. Espe-
cially, the automatic reconfiguration of an application to
reflect a situation change seems very promising. How-
ever, in our approach, a number of issues still need to be
addressed. In this section, we will discuss strengths and
weaknesses of our current design.

7.1 Reconfiguration Policy

In our approach, an application programmer needs to
specify reconfiguration policies to reflect application be-
havior to his or her desire. Most infrastructure software
for ubiquitous computing adopt a different approach.
For example, the Context Toolkit[6] offers a mechanism

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

to deliver events upon situation change, making the de-
velopment of context-aware applications more difficult.
In our approach, we choose to hide as much detail as
possible from the programmer in order to reduce the de-
velopment costs of ubiquitous computing applications.

Some policies are very difficult to implement, how-
ever. For example, assume a location policy that always
chooses a nearest service to user location. The presence
of a wall between a user and a server inflicts complica-
tions regarding to implementation. Clearly, the nearest
server might not be the most suitable one. We need to in-
vestigate a way to specify a policy that does not depend
on sensor technologies to monitor situation information.

We are currently in the process of extending stream
reconfiguration abstraction. We will adapt TOAST[8]
like hierarchical concept of stream binding for recursive
dynamic reconfiguration. In this concept, an applica-
tion programmer needs to specify reconfiguration poli-
cies for stream objects as binding object. For example,
she can specify that the continuous media stream must
choose a camera device nearest to the user and a fil-
ter service nearest to the user. Then, the stream object
dynamically creates lower layer binding objects reflect-
ing specific location-aware technologies such as RFID,
Wireless LAN, Supersonic and Vision-Based Tracking.
In this case, the binding object of the camera device is
Vision-Based Tracking and the another one can choose
any binding objects. We believe such a hierarchical bind-
ing abstraction can provide appropriate high-level ab-
straction and flexibility.

7.2 ID Recognition-Based Interaction

Using our framework, we have implemented a vision-
based direct interaction application like u-Photo[14] . In
this application, using camera-attached mobile devices,
we can get the graphical user interface of controlling par-
ticular embedded devices, such as remote control GUI of
VCR, through actions of taking images of visual markers
on them. It is easy to take images by the mobile devices
and send them to the remote visual marker recognition
filter due to our framework abstraction. In such a Mixed
Reality application domain, however, applications have
to recognize adding, removing and updating of visual
tags in the capturing images and handle events relevant
to these actions.

The implementation of these functions needs some
programmers’ effort, because our framework does not
provide any abstractions for firing and handling visual
tag recognition events, although we can handle visual
tag recognition processes in our Filter Object. In future
study, we will incorporate a high level event model for
ID recognition and utilization like Papier-Mache[13] into
our framework. The event flow in that model should be
reconfigurate as same style as stream reconfiguration.

7.3 Media Recognition-Based Interaction

Now we have built a simple gesture recognition-based
application on our framework. That recognizes a user’s
hand movement and followly moves the active window on
the user’s nearest X-Window System. In this case, the
application needs to accumulate several video frames and
analyze differences in them. It is easy to select a camera
object to capture the user’s hand movement since it is
dynamically adapted by an automatic reconfiguration
policy specified as ”nearest to user”.

Other development costs rise, however, on the recog-
nition process. Because the gesture recognition process
on the Filter Object must initialize buffers to hold video
frames and manage them, while our framework does not
provide any programming model handling multiple video
frames. There are the same problems in most media
recognition applications, such as speech recognition. We

need to take account of an appropriate programming
model handling multiple subsequences.

7.4 Component State Management

In our framework, we assume that continuous media
components do not have states. Consequently, if multi-
media components are reconfigurated as a result of a sit-
uation change, restoring state information of new target
components is not necessary. However, we found that
components controlling devices might hold some state
information to configure device parameters such as the
resolution of images. Currently, in our approach, the
application composer restores such parameters after re-
ceiving a change-of-situation notification. In this case,
we must describe application specific restoring process
from scratch when building new multimedia components
and application composers. The approach increases the
development cost. The state restoring processes should
be managed automatically.

Using the CORBA Persistent Service[22] and moving
components states according to stream reconfiguration
may be a solution if there are many stable ORBs pro-
viding it, but there are not so many ORBs providing
stable and fully interoperable PSS. Therefore, we plan
to utilize Ice(Internet Communication Engine)[9] instead
of CORBA as our next communication infrastructure
base. Ice provides a next-generation language indepen-
dent object-oriented distributed environment and the
build-in stable persistent state service.

7.5 System Independent Framework

Our framework provides the situation trader service
to reconfigure connections among multimedia compo-
nents automatically. Our approach does not require
to modify CORBA runtime. Thus, it is easy to port
our framework in different CORBA systems and other
object-oriented middleware such as Ice. The next design
extensions described above will be ORB independent as
well.

On the other hand, the current implementation of our
context information database OASiS is rather system
dependent because it combines ORB specific services
such as CORBA Naming Service and CORBA Trad-
ing Service. And it dose not provide system indepen-
dent subscription and notification framework. There-
fore, we need to redesign OASiS as a combination of
publish/subscribe system like EventHeap[11] and con-
text information database including naming service in
system independent way.

We believe XML-based messaging protocol like
XMPP[10] or Macromedia Flash XML Socket is appro-
priate for both of publish/subscribe transaction and reg-
istering naming service. These XML-based messaging
protocols have highly extensibility and system indepen-
dence by XML’s nature. XML-based messaging con-
text information database will be discussed in the future
study.

8 Conclusion

In this paper, we have described our middleware
framework to support mixed reality for ubiquitous com-
puting. We have described design and implementation
of our system, and presented some experiences with our
current prototype system. Our experiences show that
our system is very useful to develop several mixed real-
ity applications for ubiquitous computing.

In the future, we like to continue to improve our
middleware framework, and to develop attractive mixed
reality applications such as game, navigation, and en-
hanced communication applications. Currently, our sys-
tem is running on Linux, and we like to exploit real-time

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

capabilities provided by Linux to process video streams
in a timely fashion. Also, we are interested to take into
account to use a device proposed in [24] since the de-
vice can augment the real world without a display by
projecting computer generated graphics on real objects
directly.

References

[1] G.D. Abowd, E.D. Mynatt, “Charting Past,
Present, and Future Research in Ubiquitous Com-
puting”, ACM Transaction on Computer-Human In-
teraction, 2000.

[2] ARToolkit,
http://www.hitl.washington.edu/people/
grof/SharedSpace/Download/ARToolKitPC.htm.

[3] R.T. Azuma, “A Survey of Augmented Reality”,
Presence: Teleoperators and Virtual Environments
Vol.6, No.4, 1997.

[4] Martin Bauer, Bernd Bruegge, et al.: Design of
a Component-Based Augmented Reality Framework,
The Second IEEE and ACM International Sympo-
sium on Augmented Reality, 2001.

[5] Andrew T. Campbell, Herman G. De Meer, Michael
E. Kounavis, Kazuho Miki, John B. Vicente, Daniel
Villela, “A Survey of Programmable Networks”,
ACM SIGCOMM Computer Communications Re-
view, Vol.29, No.2, 1999.

[6] A.K.Dey, G.D.Abowd, D.Salber, “A Conceptual
Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications”,
Human-Computer Interaction, Vol.16, No.2-4, 2001.

[7] Steven Feiner, Blair MacIntyre, and Doree selig-
mann. “Knowledge-based Augmented Reality”,
Communications of the ACM 36, 7 (July 1993) ,
52-62

[8] Fitzpatrick, T., Gallop, J., Blair, G.S., Cooper, C.,
Coulson, G., Duce, D., Johnson, I., “Design and
Implementation of TOAST: An Adaptive Multime-
dia Middleware Platform”, Proceedings of IDMS’01,
Lancaster, UK, September 2001.

[9] Michi Henning, “A New Approach to Object-
Oriented Middleware,” IEEE Internet Computing,
January-February 2004, pp 66-75

[10] IETF Internet-Draft “Extensible Messaging and
Presence Protocol (XMPP): Instant Messaging and
Presence,” http://www.ietf.org/internet-
drafts/draft-ietf-xmpp-im-22.txt

[11] Brad Johanson and Armando Fox, “Extend-
ing tuplespaces for coordination in interactive
workspaces”, Journal of Systems and Software, v.69
n.3, p.243-266, 15 January 2004

[12] Anantha R. Kancherla, Jannick P. Rolland, Donna
L. Wright, and Grigore Burdea. “A Novel Virtual
Reality Tool for Teaching Dynamic 3D Anatomy”,
Proceedings of Computer Vision, Virtual Reality,
and Robotics in Medcine ’95 (CVRMed ’95) April
1995.

[13] Scott Klemmer, “Papier-Mache: Toolkit support
for tangible interaction,” in proceedings of The 16th
Annual ACM Symposium on User Interface Soft-
ware and Technology: UIST 2003 Doctoral Consor-
tium.

[14] N. Kohtake, T. Iwamoto, G. Suzuki , S. Aoki, D.
Maruyama, T. Kouda, K. Takashio, H. Tokuda, “u-
Photo: A Snapshot-based Interaction Technique for
Ubiquitous Embedded Information,” Second Inter-
national Conference on Pervasive Computing (PER-
VASIVE2004), Advances in Pervasive Computing,
2004

[15] R.Koster, A.P. Black, J.Huang, J.Walpole, and
C.Pu, “Thread Transparency in Information Flow
Middleware”, In Proceedings of the IFIP/ACM In-
ternational Conference on Distributed Systems Plat-
forms, 2001.

[16] Christopher J. Lindblad, David L. Tennenhouse:
The VuSystem: A Programming System for
Compute-Intensive Multimedia, In Proceedings of
ACM International Conference on Multimedia 1994.

[17] S Lo, S Pope, “The Implementation of a High Per-
formance ORB over Multiple Network Transports”,
In Proceedings of Middleware 98, 1998.

[18] Diego Lopez de Ipina and Sai-Lai Lo, “LocALE: a
Location-Aware Lifecycle Environment for Ubiqui-
tous Computing”, In Proceedings of the 15th IEEE
International Conference on Information Network-
ing (ICOIN-15), 2001.

[19] T.Nakajima, “System Software for Audio and Vi-
sual Networked Home Appliances on Commod-
ity Operating Systems”, In Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms, 2001.

[20] T.Nakajima, H.Ishikawa, E.Tokunaga, F. Stajano,
“Technology Challenges for Building Internet-Scale
Ubiquitous Computing”, In Proceedings of the
Seventh IEEE International Workshop on Object-
oriented Real-time Dependable Systems, 2002.

[21] T.Nakajima, “Experiences with Building Middle-
ware for Audio and Visual Netwoked Home Appli-
ances on Commodity Software”, ACM Multimedia
2002.

[22] OMG, “CORBAServices Specification,”
http://www.omg.org/technology/documents/corba
services spec catalog.htm

[23] OMG, “Final Adopted Specification for Fault Tol-
erant CORBA”, OMG Technical Committee Doc-
ument ptc/00-04-04, Object Management Group
(March 2000).

[24] C.Pinhanez, “The Everywhere Display Projector:
A Device to Create Ubiquitous Graphical Inter-
faces”, In Proceedings of Ubicomp’01, 2001.

[25] K.Raatikainen, H.B.Christensen,
T.Nakajima, “Applications Requirements for Mid-
dleware for Mobile and Pervasive Systems”, Mobile
Computing and Communications Review, Octorber,
2002.

[26] Jun Rekimoto, “Augmented Interaction: Interact-
ing with the real world through a computer” , HCI
International, 1995.

[27] M. Weiser, “The Computer for the 21st Century”,
Scientific American, Vol. 265, No.3, 1991.

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE

	footer1:

