
Fast Foreground Object Detection Methods
Designed for Ultra High Definition Videos

UHD映像のための前景物体検出の高速化

February 2017

Axel BEAUGENDRE

ボジャンドル アクセル

Fast Foreground Object Detection Methods
Designed for Ultra High Definition Videos

UHD映像のための前景物体検出の高速化

February 2017

Waseda University

Graduate School of Fundamental Science and Engineering

Axel BEAUGENDRE

ボジャンドル アクセル

Abstract

Foreground detection is one of the most popular topics in computer vision in the past decades.

The main objective is the extract foreground objects from the background scene. Foreground

objects can be defined as all objects of interest such as humans or cars for example in ap-

plications such as video surveillance or automatic cars. In the past, multiple categories of

methods have been developed like the background subtraction, the temporal difference or the

optical flow. The topic remains very challenging even for known methods like the Gaussian

Mixture Model (GMM)(C.Stauffer, ICCV 1999) due to issues such as change of illumination,

stationary objects, complex background or moving background parts (trees, grass, etc.). The

background subtraction method is the most efficient method for fixed scenes. The background

model is subtracted from the current frame to extract the foreground objects into a foreground

mask. To be used in applications such as tracking system, it is required to extract all con-

nected components into a list of foreground object boundaries through a labelling process.

To have an efficient system, it is necessary to detect as few false positives (FP) as possible.

The Ultra High Definition (UHD) is the next standard of video resolution. There are two

main resolutions: the 4K UHD (3840× 2160) and the 8K UHD (7680× 4320). This increase

of pixel number compared to standard definition videos comes with three new challenges in

addition to the existing ones. First, the computational time for the foreground detection is

exploding and can take about 10 days to process a 4K video of 10 seconds long by methods

like the Adaptive Gaussian Mixture Model (AGMM) (Zivkovic, PRL, 2006) with an Intel

Quadcore i7@2.83GHz CPU (Beaugendre, ITC-CSCC 2016). Such methods designed for SD

are clearly unfit for UHD. With a higher resolution, it is easier to detect small movements

from the background like moving leaves, but it increases the number of FP. Finally, UHD

cameras can capture tiny objects or objects located very far. Their size can represent 0.01%

of the image size. Therefore, down-scaling the image before detecting foreground objects is

not a suitable approach since small objects would be missed.

i

This dissertation presents three works to reduce the processing time of UHD videos and

more particularly of the foreground detection process with the aim of making it much faster

than existing software approaches. They revolve around the principle of using the results from

the previous frames to improve the quality and the speed of their process. The Real-Time

Refinement Method for Moving Object Detectors (RTRM) is a real-time filtering method,

independent from the resolution, which reduces greatly the number of false positives and im-

proves greatly the detection rate. The goal of the Adaptive Block-Propagative Background

Subtraction (ABPBGS) is the processing time reduction by focusing on objects to skips un-

necessary areas while still being able to detect very small objects. Last, the Mixed Block

Background Modelling (MBBM) reduces greatly the computation time of the update of a

UHD background model.

Chapter 1 [Introduction] first introduces the field and the applications. Then several

background subtraction methods will be presented. After that, the differences and issues

of SD and UHD will be addressed. Finally, an introduction of our major contributions will

conclude the chapter.

Chapter 2 [Real-Time Refinement Method for Moving Object Detectors] (RTRM)

introduces a resolution free moving object processing layer which reduces the number of

false positives and miss detections from the results of existing foreground detection methods.

Tracking methods such as the Particle Filters (PF) (Ye, CMSP. 2012) (Tang, ICCS 2010)

or the Kalman Filter (Zhao, IEEE TPAMI., 2004) are mainly based on visual appearance

(color, contour, etc.) which requires too much resources to track objects in real-time on UHD

videos. The RTRM uses the position in the previous frame of the OOI to filter the detected

objects and remove unnecessary objects while keeping the interesting ones. Also in the case

of occlusions, fusions of objects can happen. The fused object will be split into as many new

objects as the number of OOI overlapping it. Then the new objects are moved for a better

space occupancy of the fused object. With one detected object per OOI, the matching can be

done by a Hungarian algorithm (Gross, ICWN 2003) on the distance between objects and the

previous position of the OOI. The RTRM has been tested on our HD videos and one 8K UHD

from NHK sources with the CLEAR metrics (Kasturi, IEEE TPAMI. 2009) which defines the

N-MOD/TA (Normalized Multiple Object Detection/Tracking Accuracy, best score=1) and

the N-MODP (Normalized Multiple Object Detection/Tracking Precision, between 0 and 1).

ii

On the 8K video, the proposed RTRM reduces the FP from 2634 to 0. As a consequence, the

RTRM greatly improves all the results compared to the SBGS: -41.2→0.98 for the N-MODA,

-42.9→0.92 for the N-MOTA and 0.10→0.50 (+400%) for the N-MO(D/T)P. The RTRM

average speed is 4.2 × 10�4 s and the tracking average speed is 2.7 × 10�5 s which makes it

suitable for real-time applications.

Chapter 3 [Adaptive Block-Propagative Background Subtraction] (ABPBGS)

presents a novel foreground detection method solution which aims to reduce the number

of FP and computational time of UHD sequences by skipping parts which do not contain

foreground objects. Current methods such as the Pixel Based Adaptive Segmenter (PBAS)

(Hofmann, CVPRW 2012) or the AGMM, process the full frame in any circumstances. The

Region-based Moving Object Detection (Berjon, ICCE 2014) uses random blocks in addition

to ROI blocks to detect foreground objects. However, in their method, the objects have a size

and shape requirement. The proposed ABPBGS is a detection method which starting from

a seed block, propagates itself from block to block as long as a part of an object has been

detected. The ABPBGS is able to detect a full object from a single block and independently

from the shape or size of the object. This proposal skips unnecessary areas and even though

it can detect enormous objects, it is especially suitable and efficient if the objects of interest

are much smaller than the video resolution. The ABPBGS has been tested on a publicly

available custom dataset with five various scenes (different size of objects, background noise,

etc.) in 4K and a scene in 8K UHD. Compared to the PBAS, the best state-of-the-art method

from Sobral’s survey (CVIU 2014), the ABPBGS reduced a lot the processing time per pixel

3.78×10�6→2.33×10�8 s/p (-99.38%). For the 8K sequence, the average memory usage of the

ABPBGS is greatly diminished compared to the PBAS 11 GB→450 MB (-96%) by skipping

most parts of the image. The pixel-based detection quality metrics show that the ABPBGS

reduces the FP and FN with an average precision (between 0 and 1) improved 0.327→0.495

(+51%) as well as a better recall score 0.275→0.384 (+39%). Using the F-Measure, Simi-

larity and SSIM measures (between 0 and 1) the ABPBGS achieves a better average quality

score 0.493→0.572 (+16%) compared to the PBAS and 0.482→0.572 (+19%) compared to

the AGMM.

Chapter 4 [Mixed Block Background Modelling for Foreground Detection in

UHD videos] (MBBM) presents an amelioration of the ABPBGS by including a background

iii

modelling method solely designed for very big resolutions. Whether recent background mod-

elling methods are block-based (Deng, ICASSP 2008) or pixel-based (Yao, CVPR 2007), they

still process all the image and require the use of multiple parameter kernels for each block

or even pixel. Their high complexity and memory requirement make them unfit for UHD

videos. The novelty of the MBBM lies in the reduction of the background model computa-

tion time by updating very small parts (blocks) instead of the full image at once. To keep

the homogeneity of the model, two blocks per region are selected by a mixed selection: one

through a linear order selection and one by a pseudo random selection. Then the background

model parts corresponding to the selected blocks are updated through a Gaussian average

(Wren, IEEE TPAMI, 1997). Finally, the MBBM includes the ABPBGS background sub-

traction method to extract foreground objects. Twelve UHD 4K scenes from 4 categories

(small objects, big objects, monitoring, stationary objects/illumination) have been used to

test and compare the MBBM with the state-of-the-art methods and the proposed ABPBGS.

The MBBM has a better precision rate (between 0 and 1) than the ABPBGS 0.466→0.585

(+26%), the PBAS 0.401→0.585 (+46%) or the AGMM 0.313→0.585 (+87%). The MBBM

can handle the various challenges with an average score of 0.597 using the F-Measure, Sim-

ilarity and SSIM measures (between 0 and 1). The MBBM clearly outperforms the other

methods: ABPBGS 0.536(+11%), PBAS 0.548(+9%), AGMM 0.489(+22%). Even though

the MBBM updates the background model, its processing time per pixel is lower compared to

the ABPBGS 3.37×10�8→3.18×10�8 s/p (-5.6%) or to the PBAS 3.77×10�6→3.18×10�8 s/p

(-99.16%). A last tracking test on an 8K video using the MBBM combined with the RTRM

resulted in an average total speed of 156 ms/frame (6.46 fps) with a N-MODA of 0.99 and a

N-MOTA of 0.98.

Chapter 5 [Conclusions] finally concludes this dissertation by summarizing the different

proposals and discussing the future work.

iv

Acknowledgements

This thesis is the work of not just one person but of a multitude of people who helped or

supported me. I would like to acknowledge all of you here.

First of all, I would like to express my deepest thanks to my supervisor Professor Jiro

Katto for his council and help.

I would like to thank Professor Satoshi Goto without who nothing would have been possi-

ble. You are the one who gave me the opportunity to come and realize a dream of mine. Your

patience, motivation, enthusiasm, knowledge and guidance helped me during all my PhD and

your advices, both in research and in life, were greatly appreciated.

I would also like to thank Professor Takeshi Yoshimura for accepting me in his laboratory

after the retirement of Professor Goto and for guiding me through the final stage of my Ph.D.

I would also like to thank Professor Shinji Kimura and Professor Nozomu Togawa for

their precious advices and insightful comments which helped me greatly for improving my

dissertation and for all the guidance through my research.

My thanks to Professor Yves Lepage for his conversation and advices during my stay in

Waseda University of IPS.

My next thoughts go to my parents and my family who believed in me and who always

supported me through good and very difficult times. Even though we were separated by 14

000 km I could always feel your support, trust and love.

I would like to thank my girlfriend Susana da Cruz Neves who has been the greatest sup-

port I could dream of during the writing of this present dissertation. Thanks to you I could

focus on my work and your support was an oasis of hope during the difficult times.

A thought for my friend Ella Blanquet who always supported me and helped me many

vii

times the past years.

I would also like to thank all the people from Professor Goto’s laboratory. To Ms Izumi

who has been of a great help during all my PhD. To Professor Daijiang Zhou, Dr. Jinjia Zhou

and Professor Xin Jin for their inspiring works and advices. To Dr. Minghui Wang who his

kindness, advices and care in my daily life. To Dr. Jiu Xu, Dr Wenxin Yu, Dr. Jiang Ning,

Dr Xinwei Xue for working together and giving me advices on the image processing field.

Special thanks to Ms Chenyuan Zhang for her kindness, happiness and for her collaboration

and assistance in multiple projects. To all of the students who have been in the laboratory

for their welcome, for communicating with me and for including me even though I could not

speak chinese.

Last, I would like to thank all the people I met and interact with like Mrs Tamaki, Mr

Benny Lee

Finally I thank the ”Ambiant Soc Global COE Program of Waseda University” of the

Ministry of Education, Culture, Sports, Science and Technology, Japan, Core Research for

Evolution Science and Technology (CREST) for supporting my research.

viii

Contents

List of Figures xv

List of Tables xxiii

1 Introduction 1

1.1 Video understanding and Foreground Object Detection 1

1.2 Foreground Detection in Applications . 2

1.3 Background Subtraction . 3

1.4 From SD to UHD and more . 7

1.5 Problems . 10

1.5.1 Noise sensibility and False Positives 10

1.5.2 Time and memory consumption . 11

1.5.3 Down-scaling . 13

1.5.4 Objectives of the solutions . 13

1.6 Contributions . 14

1.6.1 Real-Time Refinement Method for Moving Object Detectors 15

1.6.2 Adaptive Block-Propagative Background Subtraction System for UHD

Videos . 16

1.6.3 Mixed Block Background Modelling for Foreground Detection in UHD

videos . 16

2 Real-Time Refinement Method for Moving Object Detectors 19

2.1 Introduction . 19

xi

CONTENTS

2.1.1 Foreground object detection . 20

2.1.2 Multi-objects tracking systems . 21

2.2 Moving Objects . 22

2.3 Object refinement . 23

2.3.1 Blob filter and Occlusion Detection . 24

2.3.2 Keep Blob . 26

2.3.3 Occlusion handling: splitting of the fused blobs 27

2.4 Blob matching . 32

2.5 Experimental Results . 33

2.5.1 Noise Removal . 33

2.5.2 Occlusions . 34

2.5.3 Resolution-free system example: UHD sequence 35

2.5.4 Tracking performances . 37

2.6 Conclusion . 42

3 Adaptive Block-Propagative Background Subtraction System for UHD Videos 45

3.1 Introduction . 45

3.2 Adaptive Block-Propagative Background Subtraction 46

3.2.1 Propagation and Dynamic Block Size 47

3.2.2 Detection Propagation . 50

3.3 Experimental Results . 51

3.4 Discussion . 59

3.4.1 Full frame refresh . 59

3.4.2 Background update . 60

3.4.3 Position of the seed and adapted content 62

3.4.4 Face detection application . 62

3.5 Conclusion . 64

4 Mixed Block Background Modelling for Foreground Detection in UHD

videos 71

xii

CONTENTS

4.1 Introduction . 71

4.2 System overview . 73

4.3 Background Subtraction . 80

4.4 Experimental results . 81

4.4.1 Quality comparisons . 82

4.4.2 Visual comparisons . 86

4.4.3 Speed and memory comparisons . 88

4.4.4 Example of 8K tracking . 92

4.5 Conclusion . 95

5 Conclusion 101

5.1 Summary of the different works . 101

5.2 Discussion and Future . 103

Bibliography 105

List of Publications 113

Appendix A Dataset 117

A.1 Introduction . 117

A.2 8K Videos . 118

A.2.1 Field . 118

A.3 4K Videos . 119

A.3.1 Street1 . 119

A.3.2 Street2 . 120

A.3.3 Corridor . 121

A.3.4 Screws . 122

A.3.5 Crossing . 123

A.3.6 Circle . 124

A.3.7 Illu . 125

A.3.8 80percent . 126

xiii

CONTENTS

A.3.9 Laser . 127

A.3.10 Parking . 128

A.3.11 Parking2 . 129

A.4 Other videos . 130

A.4.1 Single . 130

A.4.2 Crossing2 . 131

Appendix B Quality Metrics 133

B.1 Object Metrics . 133

B.2 Pixel Metrics . 135

xiv

List of Figures

1.1 Example of applications which can directly use background subtraction results

as an input. 3

1.2 Two examples of tracking applications which can use moving objects as a fea-

ture. The particle filter can use moving objects to measure faster the weight of

each particle depending on the distance and the overlapping they have to them.

In a multi-view application, it is possible to obtain a 3 dimensional estimation

of the position of moving objects thus reducing greatly the number of regions

to track in. 4

1.3 Background subtraction process step by step. 5

1.4 Background subtraction flowchart including the background modelling. 6

1.5 There are two output results after a background subtraction. In the middle

the raw unprocessed foreground mask; on the right the rectangle boundaries

(or blob) of the detected object extracted from the foreground mask by a label

process. 6

1.6 Representation of the different resolutions from 270p to 8K UHD 8

1.7 Blocks of 50×50 pixels from the same image at different scales from 270p to

8K UHD. 9

xv

LIST OF FIGURES

1.8 Comparison of object sizes and resolutions. In the 4K image on top (downscaled

for this screen), the object is so small compared to the size of the total image

that is seems almost invisible. On the bottom, comparison of the image taken

from the BMC dataset and the ROI of the 4K image represented at the same

scale, side by side. 10

1.9 Detection result in 270p (at the top) and in 8K (at the bottom). The back-

ground noise does not appear in the 270p scale while it is very perceptible in

8K . 11

1.10 Compared to the size of the original 4K image, the object of interest occupies

around 0.012% of the total area. 13

1.11 Quality comparison of similar ROI at different scales. The shape of the object

of interest is totally unrecognizable in the 270p scale while it is distinctively

visible at the original scale (4K). 14

2.1 Example of a moving object. In both definitions of a moving object, 4 integers

are enough to characterize it. 23

2.2 General system layout. The RTRM is an additional layer between the detection

and the tracking systems thus making it compatible with various detection

methods. 24

2.3 First pass of the occlusion handling process. New blobs (in red and blue) are

created from the trackers which are on the original blob (in grey). 28

2.4 Example of the second pass of the occlusion handling process with two and

three trackers inside the original blob before division. 31

2.5 Single person tracking with moving background, visual comparison of two dif-

ferent detection algorithms, by a static background subtraction (top row) and

by the codebook method (bottom row). 34

2.6 Single person tracking with moving background, comparison of the speed and

object count for two different detection algorithms, a static background sub-

traction and by the codebook method. 35

xvi

LIST OF FIGURES

2.7 Occlusion Handling Process. From top to bottom: raw moving object detection

(2.7a, cr4, cr7), after proposed RTRM (2.7d, 2.7e, 2.7f), tracking result (2.7g,

2.7h, 2.7i). 36

2.8 Example of the RTRM for an 8K UHD sequence (Nebuta Festival, NHK).

From top to bottom: frames 0, 80, 270 and 350. On the left the blobs from

the original background subtraction detection method (2.8a, 2.8d, 2.8g, 2.8j),

in the middle the blobs after RTRM (2.8b, 2.8e, 2.8h, 2.8k), on the right the

tracking result associated (2.8c, 2.8f, 2.8i, 2.8l). We can observe the efficiency

of the RTRM which removes the noise left and also splits the fused blob (2.8g)

into two new blobs (2.8h). 37

2.9 Comparison of speed (top row) and number of objects (bottom row) for three

different resolutions of the same sequence (Nebuta Festival, NHK) (from left to

right, respectively 8k, 4k and 1080p). Working at object level and not at pixel

level after the detection process shows that even though the detection speed

(in purple) is different, the RTRM speed (in green) and the tracking speed (in

red) are about the same. The difference in number of objects is mainly due to

a lot of small noisy blobs from background parts which are not detected in the

smallest resolution. 38

2.10 Comparison of the detection and tracking accuracy average values for each

method with and without the proposal. 40

2.11 Comparison of the precision average values for each method with and without

the proposal. 41

2.12 The difference of size between the GT in blue and the detected blob (in yellow

and purple) leads to a low precision while the accuracy is still very good. This

is explained by an inaccurate detection system. 42

3.1 Example of the usefulness of the method. Most of the frame is unprocessed

saving more than 99.9% of the full area. 47

xvii

LIST OF FIGURES

3.2 Block detection flowchart. The current block iteration stops if the block has

already been processed and it does not propagate further if no blob is on a

border. 48

3.3 Three examples of the propagation of the ABPBGS. On top the process step by

step; in the middle the ABPBGS used to process a snake which has a complex

shape; on the bottom the ABPBGS used to detect a very big object. 52

3.4 8K UHD and 4K UHD dataset used for the testing. 53

3.5 Bar graph of the A-Score. The graph shows the result of the ABPBGS pro-

cessing 4K images in blue compared to the state-of-the-art methods processing

270p (in nuances of red). 55

3.6 Average speed and processed areas comparison of some frames from Street1

sequence between ABPBGS and BPBGS. From left to right: cropped original

image, ABPBGS, BPBGS 16x9, BPBGS 96x54. Fastest times in green, slowest

times in red. Grey areas are unprocessed. 57

3.7 Comparison of the average processing time per pixel and A-Score. 59

3.8 Comparison of the memory consumption depending on the resolution used,

from 270p to 8K UHD. Except for the ABPBGS (in red), the results for res-

olutions above 1080p are estimations of the consumption from the 20-50 first

frames since the algorithms were unreasonably slow to process the full sequence. 60

3.9 Speed comparison depending on the position of the seed block (in red). On the

top the seed has been set at an extremity of the snake while on the bottom the

seed has been implanted in the middle. Unprocessed areas are in gray. 61

3.10 First frames in which a face has been detected using two different resolutions

on the Street1 4K sequence. On the left a down-sampled video to 270p, on the

right the original 4K. By using the original 4K image, a face could be detected

1250 frames earlier than by using the 270p resolution. 63

3.11 Evolution of the speed of the face detection process on a 4K UHD sequence

with the use of the ABPBGS beforehand (red) and without (blue). 63

xviii

LIST OF FIGURES

3.12 Foreground mask obtained from the different BGS algorithms for the Corridor

sequence. Color map: TP-white, TN-black, FP-red, FN-green. 65

3.13 Foreground mask obtained from the different BGS algorithms for the Street1

sequence. Color map: TP-white, TN-black, FP-red, FN-green. 66

3.14 Foreground mask obtained from the different BGS algorithms for the Street2

sequence. Color map: TP-white, TN-black, FP-red, FN-green. 67

3.15 Foreground mask obtained from the different BGS algorithms for the Screws

sequence. Color map: TP-white, TN-black, FP-red, FN-green. 68

3.16 Foreground mask obtained from the different BGS algorithms for the Crossing

sequence. Color map: TP-white, TN-black, FP-red, FN-green. 69

3.17 Foreground mask obtained from the different BGS algorithms for the Field

sequence. Color map: TP-white, TN-black, FP-red, FN-green. 70

4.1 The Mega-Blocks (in red) contain several Sub-Blocks themselves containing

pixels. Each time the background model is updated, one random Sub-Block

(in black) per Mega-Block is chosen to update a part of the background model. 74

4.2 Mixed order block selection and background update. 76

4.3 Influence of the learning parameter ρ on the background modeling. The higher

the rate is, the more temporal differences between adjacent blocks can be visible. 78

4.4 Representation of the preview map at frame 0 and frame 20 with 16 × 9 MB

and 10× 10 SB/MB. The intensity of the white pixels represent the time when

the selected blocks have been updated. 80

4.5 Comparison of the foreground masks of the parking sequence. Up: original

image, ABPBGS, proposed MBBM; Bottom: ZivkovicAGMM, PratiMedio,

CWren. In yellow circle figure the areas where stationary objects have ap-

peared/left and where the light changed as well. In the blue circles figure areas

where bushes and trees are moving with the wind. Red: FP; Green: FN;

White; TP; Black: TN. 86

xix

LIST OF FIGURES

4.6 Comparison of the processing time per pixel and the average global quality

score of the proposed MBBM to the state-of-the-art methods on each category

of video. 89

4.5 Comparison of the processing time per pixel and the average global quality

score of the proposed MBBM to the state-of-the-art methods on each category

of video. 90

4.6 Comparison of the memory consumption depending on the resolution used,

from 270p to 8K UHD. Except for the ABPBGS based methods (in orange and

red), the results for resolutions above 1080p are estimations of the consumption

from the 20-50 first frames since the algorithms were unreasonably slow to

process the full sequence. 93

4.7 Example of the RTRM for an 8K UHD sequence (Nebuta Festival, NHK) by

the MBBM foreground detection method. 94

4.8 Object count and Speed for the MBBM . 94

4.9 Visual comparisons of the proposed method to the state-of-the-art methods

on videos for the Small Objects category. From top to bottom: Original 4K

image/ROI, ground truth image, proposed MBBM, ABPBGS, BPBGS, PBAS,

MultiLayer, ZivkovicAGMM, AdaptiveMedian, PratiMediod, WrenGA, Adap-

tiveSelectiveBGLearning, IndependentMultimodal. Color legend: Black-TN,

White-TP, Red-FP, Green-FN. 97

4.10 Visual comparisons of the proposed method to the state-of-the-art methods on

videos for the Big Objects category. From top to bottom: Original 4K im-

age/ROI, ground truth image, proposed MBBM, ABPBGS, BPBGS, PBAS,

MultiLayer, ZivkovicAGMM, AdaptiveMedian, PratiMediod, WrenGA, Adap-

tiveSelectiveBGLearning, IndependentMultimodal. Color legend: Black-TN,

White-TP, Red-FP, Green-FN. 98

xx

LIST OF FIGURES

4.11 Visual comparisons of the proposed method to the state-of-the-art methods

on videos for the Monitoring category. From top to bottom: Original 4K im-

age/ROI, ground truth image, proposed MBBM, ABPBGS, BPBGS, PBAS,

MultiLayer, ZivkovicAGMM, AdaptiveMedian, PratiMediod, WrenGA, Adap-

tiveSelectiveBGLearning, IndependentMultimodal. Color legend: Black-TN,

White-TP, Red-FP, Green-FN. 99

4.12 Visual comparisons of the proposed method to the state-of-the-art methods on

videos for the Illumination category. From top to bottom: Original 4K im-

age/ROI, ground truth image, proposed MBBM, ABPBGS, BPBGS, PBAS,

MultiLayer, ZivkovicAGMM, AdaptiveMedian, PratiMediod, WrenGA, Adap-

tiveSelectiveBGLearning, IndependentMultimodal. Color legend: Black-TN,

White-TP, Red-FP, Green-FN. 100

xxi

LIST OF FIGURES

xxii

List of Tables

1.1 Pixel count comparison for the different resolutions from QVGA to 8K UHD. 9

1.2 Average speed per frame and estimated time to the 12 4K videos of the dataset

based on the parking2 sequence. The total length of the dataset is about 50

minutes long. 12

2.1 Tracking performances of the difference sequences tested with the proposed

method (w/ proposal) and without (w/o). Best results in bold. 36

2.2 Tracking performances of two different detection methods with the proposed

method and without (w/o). Best results in bold. 39

2.3 Average speed performances (in fps). Best results in bold. 39

3.1 Quality comparison of the ABPBGS with state-of-art methods. Best scores

are in bold. 54

4.1 Quality comparison of the different methods. Best scores are in bold. 84

4.2 Average speed per frame and estimated time to the 12 4K videos of the dataset

based on the parking2 sequence. The normal length of the dataset is about 50

min. long. Only methods which include a background modelling are compared. 91

4.3 Comparison of tracking performances of the MBBM and the BGS, both used

with the RTRM. Best results in bold. 94

4.4 Comparison of the average speed performances for the BGS and the MBBM

on the 8K sequence (in fps). 95

xxiii

LIST OF TABLES

xxiv

Chapter 1

Introduction

1.1 Video understanding and Foreground Object Detection

Image understanding is a very big part of the computer vision field. It consists of extracting

and analyzing the content in images. The task is very complex to reach the level of what

a human being is capable of. Indeed, an image is the capture of the world under the form

of matrices of numbers and understanding an image is being able to translate back those

matrices into clear and understandable information for other applications. An extension of

the image understanding is the video understanding which includes the notion of temporality

and events. Most of image and video understandings are transposed from the human brain

functioning to an artificial process. For example, an image is the digital transposition of

what the brain perceives through the eyes. For human beings, moving objects tend to get

more attention, objects with distinguishable colors are more easily recognizable or we can

sort objects by their shape.

The foreground object detection is the process of extracting in an image all objects which

do not belong to the background. The task is easy for a human mind but it is very challeng-

ing to emulate it in an artificial process. Background subtraction, optical flow or temporal

difference methods are different techniques which can be applied to detect foreground objects

(also called moving objects) in a video. They can result in two kinds of output: a pixel-level

1

CHAPTER 1. INTRODUCTION

foreground mask which is a visual state of the foreground or an object-level output with a

set of object contours. Those outputs are still very raw but they are nonetheless valuable for

their interaction with other systems which usually require to process all or a large area of the

image.

1.2 Foreground Detection in Applications

The detection of foreground objects is only a means to the end, the foreground mask or the

detected objects are meant to be use in other systems. Indeed, the moving objects can be used

as region of interest (ROI) to focus the next processes on a much smaller area. Basically, all

applications which require to know what is moving in the field of view is a target application.

The most common applications which have a usage of such objects are tracking-based appli-

cations such as remote, video-surveillance [1], traffic monitoring [2] or people tracking. More

specific detection systems like augmented reality systems, human detection or face detection

can also benefit from the foreground detection. For example, Zeljkovic [3] presented a per-

sonal access control system based on moving object detection and face recognition. Berjon [4]

presented an augmented reality system based on moving object detection. Those are examples

of particular use of foreground detection but the main use are the tracking based applications.

Most of the application want to focus their interest on a specific target for identification or

tracking [5, 6, 7]. Human detectors or face detectors look for a reduction of field of research.

Even though some of the moving objects do not contain a human being or a face, the search

window is restricted to the most probable zone.

Another field which is using more and more image and video processing is the medical area.

Indeed, advance medical science has been using computer vision to help detect anomalies and

search for treatments. An example of that is the work of Chao et al. [8] who used computer

vision to track drosophila specimens.

This motivation of using moving objects to reduce the processed area is even bigger when

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Example of applications which can directly use background subtraction results as
an input.

the input source has a high resolution and the detection method complex. Depending on the

application compromises have to be made and the level of quality required for the detection

is different. A face detection system will be satisfied even if the shape of the objects detected

does not perfectly fit the reality. On the contrary, a tracking system or a human detection

application would benefit greatly of having the right shape for all moving objects in the scene.

1.3 Background Subtraction

There are multiple approaches to do foreground detection, also called moving object detection.

They can be categorized in three categories: background subtraction, temporal difference of

frames and optical flow [9, 10, 11]. In this dissertation, we will focus more on the background

subtraction methods which are very suitable for static environments. The general principle

(1.3) based on the Static Background Subtraction method is very simple: considering a known

background image, the foreground is obtained by subtracting it to the current frame. All the

differences detected should represent all the objects which are not part of the original scene.

However, due to numerous reasons such as optic noise, compression artifacts, illumination

3

CHAPTER 1. INTRODUCTION

(a) Particle Filter Tracking (dataset from NEC)

(b) Multi-View Projection from de-
tection blobs

(c) Multi-View Tracking (dataset
from PETS2009)

Figure 1.2: Two examples of tracking applications which can use moving objects as a feature.
The particle filter can use moving objects to measure faster the weight of each particle de-
pending on the distance and the overlapping they have to them. In a multi-view application,
it is possible to obtain a 3 dimensional estimation of the position of moving objects thus
reducing greatly the number of regions to track in.

differences or simply parts of the background which are moving, it is necessary to further

filter the subtracted image.

The first filter is known as the Threshold filter. All pixels which have value above the

threshold value T will be set to white (255) and black (0) in the opposite case. The adjacent

foreground pixels do now form connected components also called blobs. Follows morphologi-

4

CHAPTER 1. INTRODUCTION

Figure 1.3: Background subtraction process step by step.

cal operations (erosion, dilatation, open, close) to fill small holes in the structures or remove

noise. The last operation will label all the blobs. By doing so, all connected components will

have their boundaries computed and extracted with a distinctive index label to identify each

one of them. This operation is one of the costliest in terms of time consumption depending

on the number of blobs detected. The result of such label will result of a set of contours,

usually rectangles for their simplicity. Figure 1.5 presents a simple example of a background

subtraction outputs.

The static background subtraction method is the simplest and also the fastest due to

its simplicity and to the fact that the background model is not updated. All more complex

method which would update the background would therefore be slower. In real applications,

many factors make the background subtraction hard to do. All the little differences between

the current frame and the background will be as many potential noise pieces and as many

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Background subtraction flowchart including the background modelling.

fragments. Blob fragments happen when a part of an object is perceived as background thus

splitting the object into small parts. A change in the illumination, some tree’s leaves or

a moving electric cable are only examples of the many sources of incorrect detections. A

slightly different approach based on successive frame difference, called Frame Difference, can

deal better with tiny changes between two frames, however it may fail if the object stops

moving.

(a) Original image (b) Foreground mask (c) Result Blob

Figure 1.5: There are two output results after a background subtraction. In the middle the
raw unprocessed foreground mask; on the right the rectangle boundaries (or blob) of the
detected object extracted from the foreground mask by a label process.

Strictly speaking, the differences between background subtraction methods do not lie

much in the subtraction itself but mainly in the background modelling [12, 13]. Figure

1.4 presents the flowchart of a background subtraction system which includes a recursive

background modelling. A model of the background can be computed on the go by calculating

the weighted mean of the successive images as in [14]. This way the background is updated

frame after frame. The drawback of this approach is that, in regions containing foreground

6

CHAPTER 1. INTRODUCTION

elements, the background will be updated by using both background pixels and the foreground

pixels [15].

Some approaches are statistical background modelling methods. This category includes the

single Gaussian model and the multiple Gaussian model. The single Gaussian model can be

reduced to a subtraction of each frame by a background image and verifies if the difference

is bigger or smaller than the threshold. This method can fit for application where only small

modifications happen to the background. The multiple Gaussian model also called Mixture

of Gaussian (MOG) or Gaussian Mixture Model (GMM) [16] is the extension of the first

method by using more than one Gaussian distribution. Its main use is image segmentation

so for detection purposes, each component of the model can represent a different aspect of

the background such as the colors.

Background subtraction can also be achieved by a lot of other approaches. For example, fuzzy

theory can be applied to background modelling [17].

Using neural networks [18] is another approach for background modelling but it requires one

neural map per pixel which makes it very expensive if the dimensions of the background are

high.

Modelling a background can require a lot of resources depending on its complexity and

its consumption can become a dramatic issue in the case where the resolution of the input

images gets very big.

1.4 From SD to UHD and more

The video hardware for display and capture has greatly improved in the last years and we

now see the new generation of displays and camera on the market. This new generation is the

Ultra High Definition Television (UHDTV) [19, 20, 21] coming with the capacity to capture

[22, 23] and to display [24]. The UHD resolution succeeds to the High Definition (HD) which

has succeeded to the Standard Definition (SD) previously. The HD includes resolutions of

1280×720 pixels and 1920×1080. For noun simplifications, we will consider all definitions and

resolution below the HD, such as VGA (640×480) or QVGA (320×240) as SD.

7

CHAPTER 1. INTRODUCTION

The UHD has two resolutions: 3840×2160 pixels called 4K UHDV and 7680×4320 called

8K UHD. As of today, most of the researches on the topic of UHD have been mainly focused

on encoding/decoding matters [25, 26] and the rare computer vision works also focus on image

quality [27]. The UHD datasets available [28, 29] are the proof of that since the sequences

are all about image quality.

Figure 1.6: Representation of the different resolutions from 270p to 8K UHD

Few UHD dataset are available and most of them are not suitable to foreground detection

purposes [28][29]. Indeed, those datasets contain movie-like videos in which objects are rather

big and the image quality is exceptional. The level of detail of the videos used for foreground

detection is on the contrary usually quite low. Until now, the majority of researches on fore-

ground detection are based on Standard Definition (SD) videos as the various dataset can

testify [30, 31, 32, 33]. Images contain a rather limited amount of information defined by the

hardware it had been captured from. The resolution and definition are important factors for

a better understanding and work better by pair. Figure 1.7 show blocks of the same size but

from images of different resolutions. With a very high definition, objects require a lot more

pixels to be comprehensible. This is why a small image with a good definition is better than

a bigger image with a low definition. For this reason, it seems interesting to decrease the size

of an image by down-scaling it to get a higher important pixel density.

For the same object-size/image-size proportions, a higher resolution implies a higher pixel

density for the objects. Therefore, objects which are made of very few pixels in SD are defined

8

CHAPTER 1. INTRODUCTION

Table 1.1: Pixel count comparison for the different resolutions from QVGA to 8K UHD.

Resolution Name Resolution Pixel count Ratio to 8K
QVGA 320×240 76800 1/432
270p 480×270 129600 1/256
VGA 640×480 307200 1/108
HD 720p 1280×720 921600 1/36
HD 1080p 1920×1080 2073600 1/16
4K UHD 3840×2160 8294400 1/4
8K UHD 7680×4320 33177600 1

by hundreds or thousands of pixels in UHD. This characteristic opens a whole new kind of

videos in which there can be very small objects compared to the video resolution. Figure 1.8

presents an example of the new possibilities of UHD videos. When compared to an image

taken from the BMC dataset [31], the ROI seems of normal size and the object of interest

appears quite big, but it is in fact just a tiny piece of the original image.

(a) 270p (b) 1080p (c) 4K (d) 8K

Figure 1.7: Blocks of 50×50 pixels from the same image at different scales from 270p to 8K
UHD.

Such an increase of the field of view can have many applications such as videos captured

by satellites, videos of sparse microscopic life or any kind of videos which would contain very

tiny or far objects.

We believe it is important to tackle as soon as possible UHD processing since even bigger

resolutions are already on their way like the 250 Mega-pixel (19,580 × 12,600 pixels) CMOS

sensor unveiled by Canon (http://www.canon.com/news/2015/sep07e.html).

9

CHAPTER 1. INTRODUCTION

(a) 4K image

(b) Image from BMC dataset (320×240 px) (c) ROI of 4K image (320×240 px)

Figure 1.8: Comparison of object sizes and resolutions. In the 4K image on top (downscaled
for this screen), the object is so small compared to the size of the total image that is seems
almost invisible. On the bottom, comparison of the image taken from the BMC dataset and
the ROI of the 4K image represented at the same scale, side by side.

1.5 Problems

1.5.1 Noise sensibility and False Positives

In UHD videos, all the scene benefits from the increase in definition, from the foreground to the

background. In SD videos, the background noise is relatively small and only big movements

can be captured/detected. In UHD videos, the movement being bigger, it becomes more

10

CHAPTER 1. INTRODUCTION

easily detectable by foreground detectors thus creating false positives. Figure 1.9 shows the

difference between the processing of an 8K UHD video and its down-scale equivalent at 270p.

There is almost no false positive in the SD scale but the UHD scale contains a lot of them. We

can easily think of morphological operation such as closing and opening to reduce the noise.

The task of removing the noise through such operations is manageable in single images, it is

not easily achievable automatically in a video where the size of the noise changes every frame.

(a) 270p

(b) 8K

Figure 1.9: Detection result in 270p (at the top) and in 8K (at the bottom). The background
noise does not appear in the 270p scale while it is very perceptible in 8K

1.5.2 Time and memory consumption

For a real application, it is necessary to be able to process the video in a reasonable amount

of time (¿5fps). The problem is that current methods are too slow to process UHD videos.

Indeed, they have been designed for SD sources with the use of more and more powerful hard-

11

CHAPTER 1. INTRODUCTION

ware. Therefore, with UHD and especially with 8K UHD, we multiply by 108 the amount of

work to process compared to VGA. State-of-the-art methods such as the Pixel Based Adap-

tive Segmenter (PBAS) [34] can take more than 14600 s to process a single 8K frame, from

the loading of the frame to the extraction of the detected objects by a labelling function.

Table 1.2 shows a comparison of the total time estimated to process 12 4K UHD videos of

a total length of 50 minutes. The fastest of the state-of-the-art method requires at least 23

weeks while the slowest is estimated at almost 8 years of continuous process. One could argue

that 50 minutes of videos is big, but on the contrary, it represents only a fraction of the total

length of video captured each day by video surveillance cameras. Therefore, for a method

to be a potential solution for UHD computer vision, it is necessary that it does not require

more than 10 times the length of the input video. Very recent works [35] [7] started to look

for a way to speed up the detection process using spatio-temporal approach works with the

use of Graphic Processing Units. Even so, they could only achieve 40fps for a 288 × 352

pixels video and the memory requirement is also quite high. Hardware optimizations cannot

always compensate the slowness of software approaches and the more complex the method,

the bigger is the gap that the hardware will have to fill. Also, it is important to realize that

the foreground detection is an intermediate step in a bigger system, and the computing power

cannot all be allocated on a single task.

Table 1.2: Average speed per frame and estimated time to the 12 4K videos of the dataset
based on the parking2 sequence. The total length of the dataset is about 50 minutes long.

Method Time/frame (s) Total Time (s)

PBAS 130.56 38.56 weeks

MultiLayer 3738.43 21.18 years

ZivkovicAGMM 1363.01 7.72 years

AdaptiveMedian 77.99 23.04 weeks

PratiMediod 292.40 1.66 years

WrenGA 1072.27 6.07 years

AdaptiveSelectiveBGLearning 299.83 1.70 years

IndependentMultimodal 4.02 1.19 weeks

The difference between the size of the image and the size of the objects of interest can

have a big influence of the detection speed. If the case does not occur much with SD videos,

it is a very big issue with UHD videos. Indeed, it is very questionable to process the entire

12

CHAPTER 1. INTRODUCTION

frame if only a small part contains a moving object. Figure 1.10 shows an example of an

image in which the object of interest is much smaller than the full frame. Knowing that a

frame requires to goes through multiple processes from the color conversion to the label of the

detected objects, it is unreasonable to process the full image for few tiny objects. Not only

it requires much more time to process but it also requires a much higher amount of memory

than necessary.

(a) 4K image (b) Object of Interest
(23×70)

Figure 1.10: Compared to the size of the original 4K image, the object of interest occupies
around 0.012% of the total area.

1.5.3 Down-scaling

Last but not least, down-scaling seems to be the way to go, but against preconceptions it is in

fact not necessary an asset. We have seen previously that down-scaling was leading to fewer

false positives but it can also make small objects of interest very tiny (composed with even

less pixels to define them) or even make them disappear (Figure 1.11). There are scenarios

which make it necessary to process at the original scale so small objects can be detected

thanks to the higher resolution.

1.5.4 Objectives of the solutions

The ideal solutions of foreground detection methods for UHD sequences should focus on three

axis: the reduction of false positives; the ability to detect all object of interest, including

13

CHAPTER 1. INTRODUCTION

(a) ROI from 270p down-scaled version (b) ROI from original image

Figure 1.11: Quality comparison of similar ROI at different scales. The shape of the object
of interest is totally unrecognizable in the 270p scale while it is distinctively visible at the
original scale (4K).

small objects; and the reduction of the processing time of foreground detection. Reducing the

amount of noise will have two effects, improving the detection quality and reducing the time

to label the objects. Being able to detect all the objects of interest is another key to better

detection results but also correct tracking. Finally, a fast detection is a requirement for all

systems which are based on foreground detection. A method which would take minutes or

hours to process a single frame has very few real applications.

1.6 Contributions

In order to reach the objectives, the different works presented in this thesis are based on

two principles: reusing the results from the previous frames and trying to process just the

necessary by focusing on areas which contain the objects of interest. In this dissertation, we

present four works related to foreground detection with the specificity to be designed for UHD

sequences with two main objectives. The first goal is to increase the quality of the detected

foreground objects so they could be used more efficiently by different applications such as

tracking or face detection. This is the goal of the first contribution Real-Time Refinement

Method for Moving Object Detectors. The second is to reduce the time consumption of fore-

ground detectors while processing UHD videos. This is the subject of the other two research

proposals Adaptive Block-Propagative Background Subtraction System for UHD Videos and

14

CHAPTER 1. INTRODUCTION

Mixed Block Background Modelling for Foreground Detection in UHD videos. If the main

interest is obviously a much greater speed, it cannot be done at the expense of the detection

quality.

1.6.1 Real-Time Refinement Method for Moving Object Detectors

The first contribution is the Real-Time Refinement Method for Moving Object Detectors

(RTRM), a resolution free moving object filter which refines the moving object detection

results obtained after a foreground detection. Its aim is to improve the detection quality

through, among other things, the reduction of the number of false positives. The RTRM uses

the position in the previous frame of the trackers to filter the detected objects and remove

unnecessary objects while keeping the interesting ones. In the case of occlusions, fusions of

objects can happen. The fused object will be split into as many new objects as the number of

trackers overlapping it. Then the new objects are moved for a better space occupancy of the

fused object. With one detected object per tracker, the matching can be done by a Hungarian

algorithm on the distance between objects and the previous position of the tracker.

The RTRM has been tested on our HD sequences and one 8K UHD sequence from the

NHK Nebuta festival. The results show a great reduction of the background noise, espe-

cially for the 8K sequence with 100% less false positives with the RTRM (2634→0). The

experiments also show that the number of objects after the RTRM matches the number of

trackers under conditions such as moving background, occlusion between two trackers, or

both. As a consequence, the RTRM greatly improves all the results compared to the SBGS:

-41.2→0.98 for the N-MODA, -42.9→0.92 for the N-MOTA and 0.10→0.50 (+400%) for the

N-MO(D/T)P. The RTRM average speed is 4.2 × 10−4 s and the tracking average speed is

2.7× 10−5 s which makes it suitable for real-time applications.

15

CHAPTER 1. INTRODUCTION

1.6.2 Adaptive Block-Propagative Background Subtraction System for UHD

Videos

The second contribution is a foreground detector named Adapting Block-Propagative Back-

ground Subtraction (ABPBGS). The main idea is to skip all areas in the image in which there

are no moving objects. This is particularly interesting for UHD when the objects of interest

represent less than 0.013% of the total area. The novelty of this work leads in the detection

which will detect and spread along the object as long as it detects a part of it. A block his-

tory map guaranties that each block is processed only once. It is a virtual grid containing the

position of every block already and currently processed. Moreover, the detection loads and

processes only small blocks saving computational time and memory usage. The propagation

can also be parallelized to increase even more its speed.

Compared to the best state-of-the-art method, the PBAS, the ABPBGS reduced a lot

the processing time per pixel 3.78×10−6→2.33×10−8 s/p (-99.38%). For the 8K sequence,

the average memory usage of the ABPBGS is greatly diminished compared to the PBAS 11

GB→450 MB (-96%) by skipping most parts of the image. The pixel-based detection quality

metrics show that the ABPBGS reduces the FP and FN with an average precision (between

0 and 1) improved 0.327→0.495 (+51%) as well as a better recall score 0.275→0.384 (+39%).

Using the F-Measure, Similarity and SSIM measures (between 0 and 1) the ABPBGS achieves

a better average quality score 0.493→0.572 (+16%) compared to the PBAS and 0.482→0.572

(+19%) compared to the AGMM.

1.6.3 Mixed Block Background Modelling for Foreground Detection in

UHD videos

The last contribution is the Mixed Block Background Modelling (MBBM), a method solely

designed for UHD videos. The novelty of the MBBM lies in the reduction of the computing

time by updating very small parts (blocks) of the background model instead of the full image

at once. To keep the homogeneity of the model, two blocks per region MB are selected by a

16

CHAPTER 1. INTRODUCTION

mixed selection: one through a linear order selection and one by a pseudo random selection.

Then the background model parts corresponding to the selected blocks are updated. The

MBBM is an amelioration of the ABPBGS in order to deal with various and difficult situa-

tions such as changes of illumination or stationary objects.

The tests effectuated on 12 videos show that the MBBM is a major improvement of the

ABPBGS. The MBBM has a better precision rate (between 0 and 1) than the ABPBGS

0.466→0.585 (+26%), the PBAS 0.401→0.585 (+46%) or the AGMM 0.313→0.585 (+87%).

The MBBM can handle the various challenges with an average score of 0.597 using the F-

Measure, Similarity and SSIM measures (between 0 and 1). The MBBM clearly outperforms

the other methods: ABPBGS 0.536(+11%), PBAS 0.548(+9%), AGMM 0.489(+22%). Even

though the MBBM updates the background model, its processing time per pixel is lower com-

pared to the ABPBGS 3.37×10−8→3.18×10−8 s/p (-5.6%) or to the PBAS 3.77×10−6→3.18×10−8

s/p (-99.16%). A last tracking test on an 8K video using the MBBM combined with the RTRM

resulted in an average total speed of 156 ms/frame (6.46 fps) with a N-MODA of 0.99 and a

N-MOTA of 0.98.

17

CHAPTER 1. INTRODUCTION

18

Chapter 2

Real-Time Refinement Method for

Moving Object Detectors †

2.1 Introduction

In the introduction chapter we have seen that foreground object detection is one of the most

studied topics in computer vision and that it consists of the extraction of all moving objects

or people from the environment.

Until now most of the existing moving object detection methods [9, 10, 11, 16, 36, 37, 38]

have been focused on quality rather than speed. This choice can be a real issue if there is a

need for real-time applications especially if the input video resolution is high. Simple but fast

approaches suffer from their inaccuracy notably during occlusions. This lack of accuracy is

the main reason why moving object is not the main feature of most tracking systems. False

positive, fusion or fragments are as many reasons why tracking systems prefer to rely on ap-

pearance for matching. However, appearance-based features are extremely slow to compute,

problem which is gets even worse with the increase of the size of the objects of interest.

The motivation for this present chapter is to improve the quality of the foreground de-

tection so the extracted objects could be used directly for tracking. We propose here a new

†This chapter is adapted from the work published in [J5]

19

CHAPTER 2. REAL-TIME REFINEMENT METHOD

top-down refinement method for moving object detection systems. This extra layer between

the detection process and the tracking process is able to remove remaining background noise

and brings one answer to occlusions by splitting the fused objects using the tracking results

from previous iterations as a new source of information. The major novelties of this proposed

method are as follow:

1. We propose a fast refinement method (RTRM) adaptable to any existing foreground

detection method as long as they produce objects.

2. The use of tracking results to categorize objects from the original detection depending

on the number of trackers on the moving objects. No tracker will lead to the removal of

those objects, one tracker will keep the object and associate it to the tracker, last two

or more trackers will start the occlusion handling process which splits the original blob

into multiple new blobs.

3. By having at all time the same number of blob as active trackers, the tracking problem

can be reduced to a well known assignment problem. Moreover, the tracking process

exclusively uses moving objects, thus freeing the tracking process from any video reso-

lution dependencies and making possible real-time tracking for UHD video sequences.

The rest of the chapter is organized as follow: the rest of section 2.1 further introduces moving

object detection methods and tracking systems. The different properties of moving objects

will be the subject of section 2.2. Then section 2.3 and 2.4 present our refinement system

in details as well as the tracking system associated. In Section 2.5 we present the different

experiments and discussions. Finally, section 2.6 concludes this chapter.

2.1.1 Foreground object detection

Early works use the average of gray or color of background pixels to define the background

[39] but they could not handle multiple backgrounds. In 1999 the popular Gaussian Mixture

Model (GMM) has been proposed by Stauffer and Grimson [16] to address some of the issues.

20

CHAPTER 2. REAL-TIME REFINEMENT METHOD

In 2005, a non-parametric algorithm for background subtraction also known as the codebook

method has been introduced by Kim et al. [40], and in 2011 Xu [41] proposed a block-based

with Oriented-Gradient Feature version of the codebook model. In [42] a fast object detection

method based on a likelihood background model has been proposed. More recently, Liu et al.

[43] introduced a generalized expectation maximization framework that uses bottom-up cues

with top-down information for foreground object detection. Some surveys and evaluations of

the background subtraction methods are available in [36, 37, 38].

Since those methods only focus on the detection, most of them however, are unable to

deal with occlusions between targets when two moving objects are too close and fuse into a

single object. In this chapter we chose to use, as main moving object detection, the most

basic background subtraction approach which is the fastest but is also supposed to be the

least accurate one, in order to show the different assets of our refinement method.

2.1.2 Multi-objects tracking systems

Through the years, powerful tracking systems have been developed such as Kalman Filters or

Particle Filters [16, 44, 45]. Their complexity however is very high and they usually require

a large number of samples to be efficient [46].

In [47] and [48], the assignment of the detected object positions to predict the position of all

targets is done by the Hungarian algorithm, but once again the state estimation is performed

by a Kalman filter-based algorithm. In all of those existing solutions, the approaches are

based on pixel values and appearance making those methods very dependent of the resolution

of the video.

The tracking method we decided to adopt is a pure object-based assignment algorithm.

No other information than the moving objects is required and the blob-tracker assignment is

based on their proximity. Although this method seems too simplistic it is also a great way

to observe the efficiency of the refinement process since the tracking is only based on the

accuracy of the refined moving objects.

21

CHAPTER 2. REAL-TIME REFINEMENT METHOD

2.2 Moving Objects

For tracking purposes, extracting moving objects seems to be evident and a necessity. For this

reasons moving objects appear among the first researches of computer vision. Knowing where

things moved in an image is a good asset in a tracking system, since the areas containing

moving objects can be focused on and the rest can be avoided thus saving resources. A mov-

ing object is defined by four variables, either a couple of coordinates pt1(x1, y1) pt2(x2, y2) for

the corners (top-left and bottom right corners traditionally) or the coordinate of the center

c(xc, yc, w, h) (or top-left corner) and the width and height of the object.

Aside from the simplicity of its representation, a moving object can locally be the only

resource needed to track a target. Indeed, if there is only one moving object at proximity of a

targets estimated position then the likelihood of this moving object to match the target is very

high. Locally using only moving objects for tracking can then skip any unneeded comparison

process and directly associate the blob and the tracker. However, moving objects suffer from

two major drawbacks. First of all there is no distinction between background movements

and movements from objects. A moving tree and a moving target will be detected without

distinction and the size and shape of the blobs cannot be used to sort the noise from the

targets. The second drawback is the fusion effect. When two or more moving objects are

too close from each other, their bounding boxes are fused into a bigger blob. Because of this

effect, occlusions between targets create less blobs than targets and the noise from moving

background can also merge with real targets making blobs not only bigger than the targets

but the fact that there are not centered on the targets anymore makes them also less accurate.

Because of all the drawbacks, tracking systems still require additional appearance infor-

mation. Indeed this visual information is related to the size of the objects so an increase

of the size of the object would slow down the tracking system. The purpose of this work is

to increase the accuracy of the moving object results through an efficient noise removal and

occlusion handling process.

22

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Figure 2.1: Example of a moving object. In both definitions of a moving object, 4 integers
are enough to characterize it.

2.3 Object refinement

In the present chapter, we propose a refinement layer between the detection process and the

tracking process. This layer has the function to enhance the results of the detection part

by making a link with the tracking system. Indeed, since the positions of all targets are

known from previous tracking, they can be used directly in the detection process to sort the

interesting blobs, which represent one target or more, from the uninteresting ones (or noisy

blobs) which are every other moving part. In the moving object detection, the background

can bring a lot of noise. Indeed, moving trees for example are a high source of noisy moving

objects and it is quite difficult to erase all that noise automatically. The other aim for the

RTRM, in addition to the noise removal, is to deal with occlusions which can happen when

two or more targets get close and the detection cannot separate them.

23

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Figure 2.2: General system layout. The RTRM is an additional layer between the detection
and the tracking systems thus making it compatible with various detection methods.

The RTRM algorithm is based on the use of previous iterations tracking results to have

an estimation about the positions of all targets in the scene. But first and in order to remove

and split blobs efficiently, targets must not be fragmented after the original object extraction.

Since we want to remove only useless blobs, we do not want to remove blobs which represent a

part of a target. By merging all blobs at a distance from each other less than εm, the number

of fragments greatly reduced if not totally. The value of εm is a constant value which depends

on the average size of the objects of interest.

2.3.1 Blob filter and Occlusion Detection

The first task of the object refinement is the filtering of the blobs which correspond to false

positives. From a tracking point of view, false positives can be defined as blobs which do not

correspond to any of the targets. Therefore, a blob which does not overlap any tracker will

be considered as one and need to be removed from the list.

In the system at a frame t, there are Nt active trackers and Nb blobs from the original

detection method. Knowing the number of blobs and trackers is not enough to say if the

blobs are good or not. Indeed, it can happen that Nt = Nb and have Nt − 1 false positive

blobs and a unique blob containing the Nt targets. That is a reason why it is important to

verify if each blob can correspond to an object of interest or not. Therefore the presence of

trackers on the blobs is checked by counting their number Cb inside each blob according to

24

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Algorithm 1. The estimated position Testm(x, y) for a tracker is determined by its position in

the last frame and by its speed according to the previous iterations: Testm(x, y) =

x+ ẋ

y + ẏ

.

A tracker is on a blobs if Ti ∩Bj 6= ∅.

When the verification is effectuated for a pair blob-tracker four situations can occur. First,

in the case where no tracker is on a blob then this blob is very probably a noise and it is

erased. The second scenario is when only one tracker is on a blob. Since no other tracker

shares the blob, the tracker can be linked to this blob. The third case appears when the

trackers has already been linked to a previous blob. That situation occurs when a tracker is

overlapping two or more blobs, therefore a choice is needed and if the current blob is closer

to the estimated position of the tracker, then it is linked to the tracker and the previous link

is destroyed.

At the end of this first selection, for trackers which are not on any blob we reach the

last possible situation. There is still a chance that the target moved very quickly or that the

detection has produced smaller blobs. To take that chance, an enlarged search is performed.

The enlargement search consists of an artificial increase of the size of the tracker and a search

of blobs which could meet this enlarged tracker.

If some trackers are not on any blob this could either mean the target stays still (this can

happen depending on the way the original detection is done), or the target has left the scene.

In this situation, a new blob is created as a clone of the tracker and the appearance countdown

starts. If this countdown reaches 0 the tracker is considered as inactive and removed from

the list.

The selection done, only blobs which are susceptible to match targets are kept, all the

other blobs are removed. Two possible cases only are possible for each blob (see Algorithm

2): it covers only one tracker or it covers two or more trackers, it represents then the fusion of

different targets. In the first situation, the blob is kept and is associated to the tracker on it;

in the second situation the algorithm detects an occlusion and the blob needs to be separated

into new blobs, one for each tracker on the blob.

25

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Algorithm 1 Blob selection

1: Input: Trackers {Ti, i = 1, . . . , Nt} , Blobs {Bj , j = 1, . . . , Nb};
2: 1st Pass : Normal selection
3: for all Ti do
4: if Ti is on the image then
5: for all Bj do
6: if Ti ∩Bj 6= ∅ then
7: if Ti is already on a blob Bk then
8: if ∆(Ti, Bk) < ∆(Ti, Bj) then
9: Remove Ti from the tracker list of Bj and add it to Bk.

10: else if Ti is not on a blob yet then
11: Add Ti to the tracker list of Bj

12: end if
13: end if
14: end if
15: end for
16: end if
17: end for
18: 2nd Pass : Extend search
19: for all Ti do
20: if Ti is not on a blob then
21: for all Bj do
22: Get Bmin as ∆(Ti, Bmin) = min(∆(Ti, Bj)) & ∆(Ti, Bmin) < ε
23: Increase search area A for Ti
24: if (Ti ∪A) ∩Bmin 6= ∅ then
25: Add Ti to the tracker list of Bmin

26: end if
27: end for
28: end if
29: end for

2.3.2 Keep Blob

In the case where only one tracker has been affected to a blob, the system considers that

the blob is locally the only logical match for the tracker. Therefore, the tracker can already

be updated with the new characteristics of the blob. The most common situation that can

happen is that the tracker’s size and the detected blob have similar size. In this situation the

tracker Tp is simply updated with the properties of the blob Bp (see Eqn. 2.1).

26

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Algorithm 2 Refinement

1: Input: Trackers {Ti, i = 1, . . . , Nt} , Selected Blobs {Ml, l = 1, . . . , Nm; Nm ≤ Nt};
2: for all Ml do
3: if Ml 3 Tk, Tk ∈ T then
4: Associate Tk and Ml ; Store Ml

5: else if Ml 3 Tk...k′ , Tk...k′ ∈ T ; |Tk...k′ | = Ntr then
6: Split Ml into Ntr new blobs
7: end if
8: end for

Tp[x, y, w, h] = Bp[x, y, w, h] (2.1)

If the size is too different however, this means that the target’s shape has changed a lot

from the previous frame, or more likely that some part of the background has been fused with

a target. In this particular case, each property (x, y, w, h) of the blob is compared to the

tracker’s respective property and if the distance d between them is such as d > γ, γ being the

respective distance threshold, then for x (respectively for y, w and h):

Tp(x) =


Bp(x) if d < γ

Tp(x) otherwise

(2.2)

2.3.3 Occlusion handling: splitting of the fused blobs

Occlusions of blobs are the main issues for moving object detection systems because the

detection of close objects or overlapping objects will result in a unique blob containing multiple

targets. The objective of the splitting process is to create the same number of blobs as the

number of target inside this unique blob.

Fused blobs are the worst situation since we have to split the fused blob into new blobs

to match as much as possible the reality of the situation but with very limited data. The

27

CHAPTER 2. REAL-TIME REFINEMENT METHOD

splitting process is divided into two parts: the first pass creates new blobs as copies of the

trackers inside the blob M and position them inside it. The second pass focuses on the spatial

optimization of the original blob, and moves the new blobs previously created to fit M as

much as possible. The splitting process is detailed in Algorithm 3.

First pass

At this stage the original blob M has now to be divided into Ntr new blobs, one for each

tracker on the blob. The estimated positions of all trackers have been computed previously

during the blob selection step. Those estimated positions are the start for the creation of

the new blobs. We can create new blobs, exact copies of the trackers in size but with their

estimated position for the current frame.

(a) Possible positions of a new
blob created (in red) by the first
pass of the division process.

(b) First a new blob will be created as a copy of the
trackers. Then, each blob which is stepping outside
from the object being divided are moved inside it.

Figure 2.3: First pass of the occlusion handling process. New blobs (in red and blue) are
created from the trackers which are on the original blob (in grey).

Then, all those new blobs have to fit into the shape of the original blob M to optimize its

occupancy. For each borderDb ofM , if the distance ∆i,b fromBi’s border to the corresponding

border Db is positive, the blob goes over the border of M and need to be shifted to fit inside

M . The shift length is simply equal to the distance to the border ∆i,b, only if the size on the

axis of the border of the new blob B is not greater than the size of M . In that particular

scenario, the new blob’s size is reduced to the size of M and then shifted on the corresponding

axis. In the case where the distance is negative, it means the blob is already inside M and

28

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Algorithm 3 Splitting Process

1: Input: Trackers {Ti, i = 1, . . . , Ntr} , Original blob M , Borders of M Dbottom, Dtop, Dleft, Dright;
2: 1st Pass : New blobs creation and prepositioning
3: for all Ti do
4: Create new blob Bi as copy of Ti

5: end for
6: for all Bj do
7: for all borders Dbottom, Dtop, Dleft, Dright do
8: Calculate distance ∆i,b to D
9: if ∆i,b ≥ 0 then

10: if wBi > wM (hBi > hM respectively for the vertical axis) then
11: Shift horizontally (resp. vertically) and resize Bi to fit in M .
12: Link Bi to D.
13: else
14: Shift horizontally (resp. vertically) Bi to fit the border D of M .
15: Link Bi to D.
16: end if
17: end if
18: end for
19: end for
20: 2nd Pass : Re-positioning
21: if no blob is linked to any border D then
22: Get Bk ∈ B such as ∆c

k,Dbottom
= min(∆c

i,Dbottom
)

23: Shift and link Bk to Dbottom if ∆k,Dbottom < εv
24: Get Bk′ ∈ B\Bk such as ∆c

k′,Dtop
= min(∆c

i,Dtop
)

25: Shift and link Bk′ to Dtop if ∆k′,Dtop < εv
26: Get Bk′′ ∈ B such as ∆c

k′′,Dleft
= min(∆c

i,Dleft
)

27: Shift and link Bk′′ to Dleft if ∆k′′,Dleft
< εh

28: Get Bk′′′ ∈ B\Bk′′ such as ∆c
k′′′,Dright

= min(∆c
i,Dright

)
29: Shift and link Bk′′′ to Dright if ∆k′′′,Dright

< εh
30: else . Some blobs are already linked
31: if Dbottom is not linked then
32: if Dtop has 2+ links then
33: Get Bk ∈ B such as ∆k,Dbottom = min(∆i,Dbottom)
34: Shift and link Bk to Dbottom if ∆k,Dbottom < εv
35: else if Dtop has 1 link with a blob Bk then
36: Get Bk′ ∈ B\Bk such as ∆c

k′,Dbottom
= min(∆c

i,Dbottom
)

37: Shift and link Bk′ to Dbottom if ∆k′,Dbottom
< εv

38: else
39: Get Bk ∈ B such as ∆c

k,Dbottom
= min(∆c

i,Dbottom
)

40: Shift and link Bk to Dbottom if ∆k,Dbottom < εv
41: end if
42: end if
43: if Dtop is not linked then
44: if Dbottom has 2+ links then
45: Get Bk ∈ B such as ∆k,Dtop = min(∆i,Dtop)
46: Shift and link Bk to Dtop if ∆k,Dbottom < εv
47: elseDbottom has 1 link with a blob Bk

48: . At this point the is always at least a link for Dbottom

49: Get Bk′ ∈ B\Bk such as ∆c
k′,Dtop

= min(∆c
i,Dtop

)
50: Shift and link Bk′ to Dtop if ∆k′,Dbottom

< εv
51: end if
52: end if
53: . Dleft and Dright have a similar approach

54: end if

29

CHAPTER 2. REAL-TIME REFINEMENT METHOD

does not need to be moved yet.

This first pass done, there are Ntr new blobs inside the original blob M and all of them

are also occupying the insides of M . For each blob Bi which shares a common border with

M , a link lbi is created. Those links will be useful in the second step of the process to set

priorities in order to re-position the blobs.

Second pass

The purpose of the second pass is to optimize the space occupancy of original blob M with

the new blobs recently created from estimated positions of the trackers. This optimization is

necessary for the two main situations which can occur during an occlusion: the meeting and

the separation. During the meeting, the moving object resulting is getting smaller and smaller

and can, in a case of total occlusion, has the shape of a single target but still containing more

than one target. The separation is the opposite effect, the blob is getting bigger and bigger

until the total separation of the targets. The restriction of this method is that it is designed

for relatively short occlusion and for a small number of object fused. Therefore, it is not made

for tracking of crowds.

For the meeting scenario, the first pass is perfectly able to deal with it since the new

blobs are forced to fit into the fused blob. However, the separation scenario requires a special

attention in order to avoid the degeneracy of the system. Indeed, the blobs should fit as much

as possible the area given by the original blob, thus they have to be repositioned if necessary.

This repositioning algorithm works by borders’ couple (bottom-top, left right) and it is based

on the distance ∆c
i,b from the center of the blobs to the borders b ∈ Dbottom, Dtop, Dleft, Dright

and ∆i,b the distance border to border.

The algorithm is quite simple: if there are no link lbi then the blobs can be chosen freely

according to the distance of their center ∆c
i,b to the respective borders. The closest blob

is shifted to fit the current border by ∆i,b if ∆c
i,b < ε(v, h), εv,h being a moving threshold

depending on the average size of a target. After each shift, a link is created so the blob which

just got moved does not move anymore (at least on the same axis).

30

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Figure 2.4: Example of the second pass of the occlusion handling process with two and three
trackers inside the original blob before division.

In the case where some links have already been made, then the borders, starting from the

bottom, are checked for any link as well as the opposite border. The objective is to move

only the closest blob to the border at the one condition that this blob Bk is not necessary

for the opposite border. Indeed, it would mean that Bk was already the best solution for

the opposite border so trying to move it on the opposite border would be contradictory. An

opposite border with two or more blobs linked to it can give one of its blobs to the border

currently processed since it will still have a link. In the case where there is only one link,

the linked blob Bk cannot move, so the closest blob has to be chosen from the rest of the

remaining blobs.

The original blob M is finally removed at the end of the occlusion handling process since it

has been replaced by the new blobs Bi. Figure 2.4 shows two examples of the blobs’ states

during the splitting process with respectively 2 and 3 trackers fused in a single blob.

31

CHAPTER 2. REAL-TIME REFINEMENT METHOD

2.4 Blob matching

In order to show the efficiency and interests of the RTRM, the tracking system used in this

work is a classic assignment problem where blobs and trackers have to be associated by pair

according to a matching score. There are in fact two ways to associate blobs and trackers. The

first one is directly through the refinement process when a blob is linked to a single tracker.

Since the blob is locally the only possible option for the tracker, this last one and the blob

are assigned together. The second option for assignment occurs when fused blobs have been

divided into new blobs. In this configuration, we use an heuristic assignment algorithm [49]:

the pair with the highest score is associated first. Since it is the purpose of this work to have

as many blobs as active trackers, the number of elements of all sets is equal (Nt = Nb = N ;

Nt trackers, Nb blobs), simplifying greatly the assignment process. In our case we used as

matching scores the invert of the Euclidean distance between the blobs and the trackers as

follow:

sp(t, b) =
1

δp(t, b)
(2.3)

with

δp(t, b) =
√

(xt − xb)2 + (yt − yb)2 (2.4)

The fact that there are a small number of candidates for all trackers, the processing time

is far less than any other tracking system. Indeed, unlike complex methods like particle filters

which require a large number of samples, usually hundreds or thousands, using a very low

number of objects as possible candidates makes the tracking process almost instantaneous.

The heuristic algorithm for the blob-tracker pair matching performs in O(N2log(N)) with

N << 100, making it way faster than any probabilistic methods and even faster than the

optimized Hungarian algorithm which performs in O(N3).

32

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Once the optimized pairs have been computed, the trackers are updated with the prop-

erties of the blob they have been associated to. Thus, their coordinates and size are set to

the one of the blob and the trackers speed is updated as well for future iterations following

equation 2.1

2.5 Experimental Results

The proposed refinement technique has been tested on a custom dataset in order to emphasize

its different assets. The parameters for the experiments are as follow: εv = 1 εh = 0.2, the

elements’ size for the morphological operations of the background subtraction are {17, 13,

11}, {29, 17, 15}, {23, 15, 13}, {150, 100, 75} for respectively the blur, open, close and

the merging distance, and the distance threshold γ = 0.3 The computer used is a Quadcore

i7@2.83GHz with 2 Go of RAM.

2.5.1 Noise Removal

The first experiment is a Full HD sequence (1920× 1080 pixel) from our database goto lab 01

(single) in which a single target moves in front of moving trees (Figure 2.5). Two detection

methods, the static background subtraction (Figure 2.5a) and the codebook method from [41]

(Figure 2.5d) have been compared with and without the use of the proposed refinement. We

can notice the presence of background noise due to the moving trees. It usually is a problem

as we can see in Figure 2.5d where a big blob is resulting from the fusion of the target and the

noise. In the background subtraction case, there are many noise blobs which are independent.

Those are simply removed by the RTRM as there are no tracker on them. The effect of the

moving background is dealt differently by the two detectors, creation of fragments for the

background subtraction (Figure 2.5c) and fusion of target and noise for the codebook (Figure

2.5f). Even though the detection methods provide different results, we can observe that the

results are very similar in tracking (Figures 2.5c and 2.5f), speed (Figures 2.6c and 2.6d) or

number of objects after refinement (Figures 2.6a and 2.6b).

33

CHAPTER 2. REAL-TIME REFINEMENT METHOD

The comparison of the two graphs show that the number of objects after original detection

process is not the same through the entire sequence but the proposed RTRM succeeds in

keeping the number of objects the same as the number of active trackers proving it is efficient

with different detection methods.

(a) (b) (c)

(d) Original detection (e) After RTRM (f) Tracking result

Figure 2.5: Single person tracking with moving background, visual comparison of two different
detection algorithms, by a static background subtraction (top row) and by the codebook
method (bottom row).

2.5.2 Occlusions

The second experiment is another sequence from our database goto lab 02(crossing2) (Figure

2.7). In this 1280×720 video two people are crossing producing a total occlusion at one point

of the sequence. During a total occlusion, there is a lack of information since one target is

hidden by the other one. Therefore, the separation can be delicate. When the two targets are

getting far from each other, the fused blob’s size is increasing. The fact that the occluding

handling process forces the blobs to spread as much as possible in the original blob creates the

opportunity, when the targets become really separated, to position the trackers in a better

place so they can track back once the targets are fully separated. The occlusion handling

process splits blobs containing two or more blobs (Figure 2.7b) into new blobs (Figure 2.7e)

then the tracking continues based on the speed and position of the objects (Figures 2.7g to

2.7i).

34

CHAPTER 2. REAL-TIME REFINEMENT METHOD

(a) Object count : SBGS (b) Object count : CB

(c) Speed : SBGS (d) Speed : CB

Figure 2.6: Single person tracking with moving background, comparison of the speed and
object count for two different detection algorithms, a static background subtraction and by
the codebook method.

2.5.3 Resolution-free system example: UHD sequence

The last experiment presents the advantages of using simple objects instead of pixel-based

models to define the objects of interest. We tested our method with Nebuta UHD sequence

(frames 13200-13643) from JCT-VC [19]. As presented before in this chapter, working with

objects frees us from resolution dependency once the moving object detection is done. There

is absolutely no reference to the size of the video during the refinement or the tracking process.

Therefore, the refinement and tracking process speed results of the same sequence at different

resolutions show an average speed approximately the same. Only the detection process is

different because it is necessary at that point to scan all the pixel thus lowering the speed

for very high resolutions. If the global system cannot really be called real-time because of

the slowness of the detection, these results prove that this method is nonetheless an online

35

CHAPTER 2. REAL-TIME REFINEMENT METHOD

(a) (b) (c)

(d) (e) (f)

(g) Frame 2168 (h) Frame 2377 (i) Frame 2440

Figure 2.7: Occlusion Handling Process. From top to bottom: raw moving object detection
(2.7a, cr4, cr7), after proposed RTRM (2.7d, 2.7e, 2.7f), tracking result (2.7g, 2.7h, 2.7i).

solution which has a lot of potential for more complex UHD tracking systems.

Table 2.1: Tracking performances of the difference sequences tested with the proposed method
(w/ proposal) and without (w/o). Best results in bold.

Sequence RTRM Occl. MODP MOTP MODA MOTA IDS miss FP

goto lab 01
w/o - 0.35 0.35 -0.10 -0.10 0 0 368

w/ proposal 0 0.41 0.41 0.86 0.86 0 0 4

goto lab 02
w/o - 0.08 0.08 -13.9 -16.8 851 0 1655

w/ proposal 213 0.35 0.35 0.94 0.91 60 8 0

field 8K
w/o - 0.10 0.10 -41.2 -42.9 53 0 2634

w/ proposal 53 0.50 0.50 0.98 0.92 19 10 0

field 4K
w/o - 0.08 0.08 -32 -33.9 72 0 2080

w/ proposal 153 0.38 0.38 0.98 0.93 13 10 0

field 1080p
w/o - 0.13 0.13 -13.9 -15.4 43 0 889

w/ proposal 10 0.22 0.22 0.98 0.94 8 10 0

36

CHAPTER 2. REAL-TIME REFINEMENT METHOD

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) Org. blobs (k) Refn. (l) Track.

Figure 2.8: Example of the RTRM for an 8K UHD sequence (Nebuta Festival, NHK). From
top to bottom: frames 0, 80, 270 and 350. On the left the blobs from the original background
subtraction detection method (2.8a, 2.8d, 2.8g, 2.8j), in the middle the blobs after RTRM
(2.8b, 2.8e, 2.8h, 2.8k), on the right the tracking result associated (2.8c, 2.8f, 2.8i, 2.8l). We
can observe the efficiency of the RTRM which removes the noise left and also splits the fused
blob (2.8g) into two new blobs (2.8h).

2.5.4 Tracking performances

In this part we will show the tracking performances of the RTRM process that we introduced

in this chapter. We used the CLEAR metrics [50] to evaluate the performances of this com-

bination of algorithms and tested the sequences with and without the RTRM to observe its

efficiency. The N-MODP and N-MOTP are respectively the Normalized Moving Object

Detection Precision and Normalized Moving Object Tracking Precision while the N-MODA

37

CHAPTER 2. REAL-TIME REFINEMENT METHOD

(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Comparison of speed (top row) and number of objects (bottom row) for three
different resolutions of the same sequence (Nebuta Festival, NHK) (from left to right, respec-
tively 8k, 4k and 1080p). Working at object level and not at pixel level after the detection
process shows that even though the detection speed (in purple) is different, the RTRM speed
(in green) and the tracking speed (in red) are about the same. The difference in number
of objects is mainly due to a lot of small noisy blobs from background parts which are not
detected in the smallest resolution.

and the N-MOTA stand for Normalized Moving Object Detection Accuracy and Normalized

Moving Object Tracking Accuracy. In the following tables, they will simply appear as MODA,

38

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Table 2.2: Tracking performances of two different detection methods with the proposed
method and without (w/o). Best results in bold.

Sequence RTRM Method Occl. MODP MOTP MODA MOTA IDS miss FP

goto lab 01

w/o
BSG - 0.35 0.35 -0.10 -0.10 0 0 368

CB [41] - 0.60 0.60 -0.08 -0.08 0 0 307

with BSG 0 0.41 0.41 0.86 0.86 0 0 4

proposal CB [41] 0 0.40 0.40 0.91 0.91 0 0 2

goto lab 02

w/o
BSG - 0.08 0.08 -13.9 -16.8 851 0 1655

CB [41] - 0.14 0.14 -15.4 -15.5 682 0 1532

with BSG 213 0.35 0.35 0.94 0.91 60 8 0

proposal CB [41] 197 0.43 0.43 0.88 0.87 20 13 0

field 1080p

w/o
BSG - 0.13 0.13 -13.9 -15.4 43 0 889

CB [41] - 0.22 0.22 -13.4 -13.4 67 0 833

with BSG 10 0.22 0.22 0.98 0.94 8 10 0

proposal CB [41] 6 0.62 0.62 0.95 0.93 6 10 0

Table 2.3: Average speed performances (in fps). Best results in bold.

Sequence Size Occl. Detect. (fps) Refin.(fps) Track.(fps) Total(fps)

goto lab 01(single) 1920× 1080 0 1.72 2925 54480 1.72

goto lab 02(crossing2) 1280× 720 213 3.38 2041 23405 3.38

field 8K 7680× 4320 53 0.057 2223 35594 0.057

field 4K 3840× 2160 153 0.25 2319 35124 0.25

field 1080p 1920× 1080 10 1.90 2485 35974 1.90

MODP, MOTA, MOTP. The precision is calculated in function of the common area between

the mapped object and the ground truth object while the accuracy only takes into account

the number of miss detection (miss), the number of false positive (FP) and also the number

of ID switches (IDS) for the tracking. The number of occlusions (Occl.) in the video is

also mentioned. Finally, the use or not of the RTRM algorithm is mentioned to compare its

direct effectiveness. Precisions and accuracies are rates (for reference, the tracking accuracy

is perfect if MOTA = 1) and best results are presented in bold.

The first thing we can observe in Table 2.1 is the impossibility to use directly the moving

objects as an only feature for tracking as shown by the very poor results. The only sequence

where the system could eventually work is goto lab 01 which contains only one target and

few moving objects detected thus increasing the chances for a correct tracking.

We can continue in that even though the original moving object is really simple and fails

39

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Figure 2.10: Comparison of the detection and tracking accuracy average values for each
method with and without the proposal.

by itself, after our RTRM method, the accuracy for all sequences is very high. Not only this

proves the efficiency of the removal effect of the RTRM but also that tracking with moving

objects only is feasible. Without any background noise, only object representing targets are

left so the association ground-truth objects to detected objects is simplified. The MODP

and MOTP are identical for a simple reason: the tracking is only based on moving objects

therefore there is no distinction between the two object thus making the precision calculation

the same. If the precision results are very low, it is mainly because of the low precision of the

background subtraction method which tends to create smaller objects than the ground truth

as we can see in Figure 2.12.

The Table 2.2 presents the comparison of two different moving object detection meth-

ods with and without the RTRM layer in order to show the effectiveness of the layer itself.

The two methods compared are the background subtraction and the codebook from [41]. To

compare the two methods we limited the tests to the HD sequences since the codebook code

did not support higher resolutions. Figure 2.10 shows the average accuracy score with and

without the use of the RTRM layer. Figure 2.11 presents the average values for the precision

of the SBGS and CB with and without the RTRM. We can observe that the best results are

all achieved by the use of the RTRM. The accuracy values for both methods are high and

quite similar in the case the RTRM is used. It represents an improvement of 10.23 to 11.67

40

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Figure 2.11: Comparison of the precision average values for each method with and without
the proposal.

pts for the MODA The codebook is more precise than the background subtraction method.

The Table 2.3 shows the average speed performances of the different parts. The first

remarkable thing is that the speeds for the RTRM or the tracking are not only very high

but also very similar in every video. The tracking speed is only function of the number of

targets as there is the same number of blobs to associate as targets. In the goal to reach real

time tracking, a big number of targets would not have a significant impact on the tracking

speed. The RTRM speed depends on the number of blobs detected, the number of trackers

and the number of occlusions. Having an important number of blobs after the moving object

detection is not a problem. For most of them they are noisy blobs which are removed directly

during the first checking pass. However, having more targets implies higher chances to have

occlusions and thus more fused blobs to split resulting in a drop of the speed depending on

the number of objects in the blob to split.

The calculation of the speed has been made so it takes into account the number of objects

in each frame thus removing extravagant speeds when there is no object to track in the video.

Those very high speeds are reachable because of the use of moving objects only. Indeed,

with less than ten objects, instead of hundreds, the tracking is almost instantaneous and the

41

CHAPTER 2. REAL-TIME REFINEMENT METHOD

Figure 2.12: The difference of size between the GT in blue and the detected blob (in yellow
and purple) leads to a low precision while the accuracy is still very good. This is explained
by an inaccurate detection system.

RTRM speed is not bad either. With an average higher than 2000 fps the RTRM proves

its capacity to be adapted to any system without much impact on the speed of the system

it is integrated in. Last but not least we can observe that the total speed is related to the

detection process which is the bottleneck of this system even though we chose a very simple

and quick detection method.

2.6 Conclusion

This chapter has shown that moving objects results can be improved to the point where

they are sufficient for an efficient and fast tracking not only in simple situations but also in

moderately complex ones like total occlusions and crossings.

Since the raw blobs from state-of-the-art detecting methods are not accurate enough, a

refinement process is necessary to sort blobs. For that purpose, we used previous tracking

results to bring additional information on the situation. At each frame, the trackers provide

the number of target and their shape, position and speed. Knowing this is enough for the

RTRM to determine the future of each raw blob. In the case where there is no tracker on

42

CHAPTER 2. REAL-TIME REFINEMENT METHOD

them, they are removed, if there is only one tracker then the blob is kept and associated to

that tracker. In the last case where multiple trackers are on the same blob, this one is divided

into the number of trackers on it and the position of the new blobs is ruled to fit a probable

situation depending on their position, speed and size. The tracking system associated is

a direct association between blob candidates and trackers depending on the distance score

between them. This association is only possible because the RTRM creates at all time as

many blobs as there are active trackers on the scene.

We showed from the results that even with the simplest and not really accurate detection

and tracking systems, our method was very efficient. The average accuracy goes from -10 to

0.90 and the precision is also increased with a highest value of 0.48 for the codebook using

the RTRM compared to 0.32 if we don’t use it. The results finally show that the simplicity

of the objects allows doing a super fast tracking (> 37000 fps) even in UHD sequences at

the price of a refinement process which speed is also much higher than the detection process

itself.

We also have seen that the foreground detection was the bottleneck of such system. Indeed,

with 0.0057 fps in average for the fastest foreground detection method, it is unthinkable to be

applied in any real application. A new and much faster foreground detection method must

be developed to process UHD videos.

43

CHAPTER 2. REAL-TIME REFINEMENT METHOD

44

Chapter 3

Adaptive Block-Propagative

Background Subtraction System for

UHD Videos ††

3.1 Introduction

We have seen in the previous chapter that foreground detection was a bottleneck for UHD

processing. Without a method fast enough, there cannot be any real application using UHD

videos.

There are numerous foreground object detection methods, the most famous and/or recent

have been compared in the very recent literature [51, 52]. The panel of methods compared is

exhaustive: basic methods based on mean and variance over time [53, 54], statistical methods

based on a Gaussian distribution [55], statistical methods using a mixture of Gaussians [16,

56, 57, 58], statistical methods using appearance-based features such as color and textures

[59], non-parametric methods [34] or methods based on eigen-values and eigen-vectors [60].

There have been attempts to use region blocks to detect foreground such as in [61] and [62]

††This chapter is adapted from the work published in [J2]

45

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

but only in [7] we can see a use of blocks to process a smaller part of the image. They process

some blocks at random and increase the number of local blocks around the areas in which

foreground has been detected. Those methods have all in common that they all focused on

improving the quality of the detection without really taking into account the processing time

it would require. For that reason their complexity has increased more and more using more

and more memory. This kind of approach was possible because the resolution of the input

videos tested was very small so the impact of such complex methods was not very visible.

Since the objective is to achieve the detection of foreground objects in UHD videos, such

matters have a huge importance.

We propose in this chapter an extension of the Block-Propagative Background Subtraction

(BPBGS) [63] which is a block per block detection with a fixed size of the blocks. The novelty

of the Adaptive Block-Propagative Background Subtraction (ABPBGS) is its ability to detect

objects according to their shape and size by dynamically updating the size of the blocks

depending on the size of the detected objects. The objective of this method is to reduce the

processed area by focusing on the parts where objects have been detected in the previous

frame. Starting from a part of an object, the detection will propagate to adjacent blocks as

long as a part of the object is detected on the corresponding borders. This way a great part

of the computing resources can be saved by avoiding processing uninteresting areas and the

detection will follow the shape of the object. This chapter is organized as follow: Section

3.2 will describe the method itself. We will compare our ABPBGS to the state-of-the art

methods in section 3.3. Section 3.4.4 presents a direct application of the ABPBGS, section

3.4 and section 3.5 close this chapter.

3.2 Adaptive Block-Propagative Background Subtraction

In outdoor video surveillance scenes, the objects of interest are quite often very small. Indeed,

the cameras are set in a way so they can capture a great field of view. With UHD, the field

of view can be increased a lot and as a consequence, the objects of interest can appear even

smaller compared to the total size of the image. We have seen in the introduction chapter

46

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

that the down-scale of the image would only result in the loss of the objects, but the process

of the whole frame would be a waste of resources especially considering the ratio between the

size of the objects and the size of the image. The Adaptive Block Propagative Background

Subtraction is our answer to this matter. Figure 3.1 presents a perfect example of this type

of situation where the object of interest is much small than the total size of the image. Figure

3.2 presents the flowchart of the ABPBGS.

(a) Original image

(b) Detection result

Figure 3.1: Example of the usefulness of the method. Most of the frame is unprocessed saving
more than 99.9% of the full area.

3.2.1 Propagation and Dynamic Block Size

The purpose of the proposed ABPBGS is to reduce the processed area to the strict minimum.

Ideally the detection of each foreground object should be restricted to their contour but it is

hardly possible without prior knowledge of the current state. If we consider that at a time

t-1 foreground objects have been detected as a consequence their position is known. If we

also consider that the movement of the objects of interest between two consecutive frames is

47

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

limited, it is very likely that at time t a part of the object can be detected at the position

where it was detected at time t-1. Based on this idea and instead of scanning the whole frame,

the proposed ABPBGS processes object after object, block after block. It starts with the de-

tection of a single block: the seed block. This seed block will set the starting position for the

rest of the detection for the current object. Then the detection will spread to neighbouring

blocks as long as a part of the current object is detected in the current block.

Figure 3.2: Block detection flowchart. The current block iteration stops if the block has
already been processed and it does not propagate further if no blob is on a border.

Objects can have various shapes and sizes through time. Therefore, the size of the blocks

must be adapted to the detected content. A method such as the BPBGS which has a block

48

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

size fixed at the beginning of the process is unable to be efficient in all the situations if the

objects’ dimensions’ change. The ABPBGS has evolutive parameters to adapt the block size

and morphological kernels to the size of the detected objects. The blocks are based on a

temporary block History Map which is built at each frame i to avoid processing twice the

same block. The shape and size of objects may change so the number of blocks Wi × Hi

composing the map and their size wi×hi must be updated as well. The blocks cannot be too

small, in which case the propagation gets slowed down, nor too big otherwise the proposed

method loses its purpose of processing as few parts as possible. The width wi (and respectively

the height hi) is defined by:

wi = min

(
wMAX ,max

(
wMIN ,

max(Oi
n(wn))

Nparts

))
, (3.1)

where wMIN and wMAX are respectively the minimum and maximum size values for a

block, wn the width of the nth object Oi
n detected at frame i − 1 and Nparts the number of

blocks it would take to go through an object horizontally or vertically. Nparts = 3 or 4 is

enough for small objects (a tenth of the image’s height or less). For very large objects, the

propagation will more efficiently follow their shape by using small blocks rather than by using

big blocks. Therefore, the size of the blocks is limited by wMAX ×hMAX which values should

be much smaller than the image’s dimensions wimg × himg. The number of blocks Wi ×Hi

is determined by the size of the grid blocks:

Wi =
Img(w)

wi
, Hi =

Img(h)

hi
. (3.2)

Then the position of the seed block Bs(xb, yb) is set. Considering plain objects, the most

suitable position for a good spreading is their center On(xc, yc). The coordinates on the block

grid are set by:

xb =

⌊
xc
wi

⌋
× wi, yb =

⌊
yc
hi

⌋
× hi. (3.3)

49

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

Once the grid is established, the detection of the first seed block can start. It is a simple

ROI-based detection but instead of using the region of interest from the previously detected

objects, the region R(xb, yb) is defined by the current block position and size. From the

original frame only the block part is extracted and processed and after the memory for that

block is released, keeping the memory usage at a minimum. The process consists of a static

frame background subtraction followed by a threshold and morphological operations (open

and close). A label of connected components ends the process. Since the block is rather small

comparing to the size of the image, the label process is done quickly. When all the blocks

necessary to detect the current object are processed, all the blobs extracted are merged to

form the object’s new boundaries.

The ABPBGS is based on the previous iteration detected objects to reduce the field of

research for the current frame. To not miss objects and to avoid having too much discrepan-

cies, a foreground detection using the full frame is required every ∆r frames. The rest of the

time, the ABPBGS loops on itself as shown in Figure 3.2. The value of ∆r will determine

the refreshing period at which a full scan of the frame will check for appearing objects. Its

value should be dependent of the frame-rate (fmr) of the video. Refreshing too often would

be a waste of resources since the state of the scene would not have change much since the last

update. In the case of a too low value on the contrary, object could have been miss detected

for a long time. Empirical tests have shown that ∆r = 2/3× fmr was a suitable value for our

purpose.

3.2.2 Detection Propagation

The principle of the propagation is very simple: after the foreground detection in a block,

if a foreground object has been detected on a border, the next block corresponding to that

border will be the subject of another detection. The process repeat itself until no more part

of the current object is detected.

There are three conditions for the propagation to happen. The first condition is that there are

50

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

connected components adjacent to one or more borders to the current block. The presence of

foreground pixels on a border indicates that the object has been truncated and that another

part is on the other side of the border in the adjacent block. The second condition is that this

next block should not be the father -block which would have already propagated itself to the

current block. Finally, we must avoid processing any block twice so we must check that next

block has not been already processed anytime in the past for this frame. The history map

is a virtual grid which keeps track of the blocks being or already processed. A simple and

graphical way to keep track of already processed blocks and to verify if a block can be process

of not, is to set, at the position of the processed block, 4 pixels to a non-zero value, one for

each border (top, bottom, left, right). The position of those pixels is set to the middle of each

border of the block being memorized/verified so the comparison can be as fast as the pixel

access. In the case of a propagation other than based on Γ4, for example a Γ8 propagation

where the propagation would be done through the corners, the history map would have to be

adapted with the indication of the corner propagations.

If one of those propagation conditions is not verified, the detection does not continue

further. The detection for the current object stops when the detection no longer propagates

itself. Figure 3.3 presents two examples of the propagation, one showing the propagation

step by step and the other the final result of the ABPBGS on an object of complex shape.

The gray areas are the unprocessed zones. They did not even have been extracted from the

current frame for any process. The propagation is neither limited by the size nor the shape

of the detected objects and will continue as long as a part of the objects can be detected

(Figures 3.3b and 3.3c).

3.3 Experimental Results

In order to test the full potential of our ABPBGS, we captured 5 sequences [64] in 4K@60fps

(4K video with a framerate of 60fps) and we added the field sequence from the nebuta festival

3.4. We created the Ground Truth information (GT) for all the sequences. Chapter A presents

the dataset with visuals and more details.

51

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) Example of block-propagation iterations from
the seed block up-left to the final result bottom-
right.

(b) Example on a more complex shape, a snake. The
red rectangle is the seed block. Unprocessed areas
are in gray.

(c) Example on a very large object. There are no
limits to the propagation detection. Unprocessed
areas are in gray.

Figure 3.3: Three examples of the propagation of the ABPBGS. On top the process step by
step; in the middle the ABPBGS used to process a snake which has a complex shape; on the
bottom the ABPBGS used to detect a very big object.

52

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

The videos contain various situations with objects of different size, from less than 0.1% of

the image size to height of the image (Corridor, Street1, Street2). The difference between

those videos is the complexity of the background: Street1 has a clear setting when Street2 has

a complex background and Corridor is rather dark. Some videos (Crossing, Field) contain

strong background movements such as moving grass or trees which are a very common issue

in video surveillance.

The parameters used are as follow: ∆r = 40, T = 30, Nparts = 3. We developed in C++

with the OpenCV library (http://opencv.org) and OpenMP 2.0 (http://www.openmp.org),

the computer used is a Quadcore i7@2.83GHz with 16 Go of RAM.

(a) Corridor (b) Street1 (c) Street2

(d) Screws (e) Crossing (f) Field

Figure 3.4: 8K UHD and 4K UHD dataset used for the testing.

From the 29 state-of-art algorithms presented in [52] and available in the BGSLibrary

[51] for OpenCV, we selected the best 9 according to our experiments. The 9 methods have

been selected if they appeared at least one time in the top 5 in at least one sequence. Those

methods are: PBAS [34], DPZivkovicAGMMBGS [58], MultiLayerBGS [59], DPAdaptive-

MedianBGS [53], AdaptiveSelectiveBGLearning, DPWrenGABGS [55], DPPratiMediodBGS

[54], IndependentMultimodalBGS [65], DPEigenbackgroundBGS [60]. Their respective pa-

rameters have been set as described in [52].

Although the main purpose of this work is to process UHD video, the comparison could

not be done exclusively on 4K UHD scale. Indeed, we have seen in the introduction chapter

53

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

that the state-of-art methods are very slow to process UHD videos. For example, the PBAS

takes an estimated 14706 s to process one frame of the 8K sequence. It represents more than

4 hours to process a single frame and it would require too long to compute the results for

all videos for each state-of-the-art method. For this reason we will compare detection quality

metrics of the ABPBGS in both 4K and 270p scale to the state-of-art methods running on

a 270p down-scaled version. It is important to notice that only the results of the proposed

ABPBGS on 4K videos represent the real interest of this work as it has been solely developed

for UHD processing.

Table 3.1: Quality comparison of the ABPBGS with state-of-art methods. Best scores are in
bold.

Method ID Size Recall Pre. Sim. F-Meas. SSIM A-Score Speed(fps)

ABPBGS (Proposal)
4K 0.384 0.495 0.317 0.407 0.991 0.572 5.18

270p 0.339 0.430 0.358 0.276 0.993 0.550 35.58

BPBGS 4K 0.376 0.461 0.367 0.284 0.974 0.542 5.06
PBAS [34] 270p 0.276 0.327 0.230 0.275 0.974 0.493 2.04
DPZivkovicAGMM [58] 270p 0.566 0.310 0.243 0.308 0.894 0.482 13.93
MultiLayer [59] 270p 0.244 0.333 0.197 0.251 0.982 0.477 2.85
DPAdaptiveMedian [53] 270p 0.348 0.363 0.166 0.234 0.953 0.451 20.56
AdaptiveSelectiveBGLearning 270p 0.399 0.268 0.187 0.241 0.914 0.447 14.02
DPWrenGA [55] 270p 0.510 0.245 0.171 0.234 0.913 0.439 12.35
DPPratiMediod [54] 270p 0.425 0.266 0.164 0.227 0.924 0.438 3.68
IndependentMulti. [65] 270p 0.529 0.186 0.163 0.219 0.932 0.438 2.04
DPEigenBGS [60] 270p 0.802 0.146 0.139 0.179 0.746 0.355 3.28

Static quality metrics are used to compare the different methods: the recall which repre-

sents the correct detection, the precision (Pre.) which represents the influence of the back-

ground noise and three similarity scores similarity (Sim.), F-Measure and Structural Simi-

larity (SSIM)[66]. The Peak Signal to Noise Ratio (PSNR) is also mentioned. In addition to

the static metrics presented in section B.2 we also compute a global score A–Score as:

A–Score =
Similarity + F–Measure+ SSIM

3
. (3.4)

Table 3.1 shows a comparison of the average scores of all the methods. The similarity and

F-Measure scores are the mean of the similarity and F-Measure scores for each video. The

54

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

recall metric shows the ability to detect the objects of interest but does not take into account

the number of false positives (noise from moving background or illumination variation). This

is why even though the Eigenbackground method achieves recall score of 0.802, it is last on

the average ranking because it is unable to deal efficiently with background noise. Indeed, in

sequences in which objects are small or those which contain a lot of background movement,

the ratio of potential false positives and objects of interest is very high. The precision shows

the capacity of a method to be able to handle background noise and since the objects are much

smaller than the size of the image, the precision has a much bigger impact on the final results

than the recall score. Compared to the best of the state-of-the-art method, the PBAS, our

ABPBGS not only performs the best on the precision rate 0.327→0.495 (+51%) but also on

recall rate with 0.275→0.384 (+39%). We can finally observe that the ABPBGS obtains the

best results compare to all other methods with an score of A–Score 0.572 at 4K. In comparison

that is 16% to 61% better than the state-of-art methods: 0.493→0.572 (+16%) compared to

the PBAS (ranked 1st among the state-of-the-art methods), 0.482→0.572 (+19%) compared

to the ZivkovicAGMM (ranked 2nd) and 0.477→0.572 (+20%) compared to the MultiLayer

(randked 3rd).

Figure 3.5: Bar graph of the A-Score. The graph shows the result of the ABPBGS processing
4K images in blue compared to the state-of-the-art methods processing 270p (in nuances of
red).

The reason for this gap in scores is very visible in Figure 3.5 which compares the A–Score

55

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

of the ABPBGS 4K to the other methods for each sequence. In the sequences where the

object of interest is very small most of the time, the proposed ABPBGS shows better quality

results because it is among the few method to be able to detect the small objects but also to

keep the number of false positives very low as we can see in Figures 3.12, 3.13 and 3.14. In

scene containing moving background parts such as grass or leaves from trees (Figures 3.13 and

3.17), the propagation aspect of the ABPBGS shows anti-false positive properties. Indeed,

even though some background part get detected, since those are only temporary movements,

few frames later the propagation will propagate less and less on those areas thus detecting

less and less false positives. In Figure 3.17, we can observe three groups of behaviors among

the different methods: those which can deal with the background noise (ABPBGS, PBAS

and MultiLayer), the method which is completely overwhelmed (DPEigenBackground) and

finally those which are not able to erase most of the noise. If the PBAS seems more efficient

to erase the noise, the shape obtained by the detection from the ABPBGS fits better the real

state of the ground truth. Also, even if some noise is detected in one frame, the propagation

process is more likely to detect less and less noise than adding more and more. Most of the

noise detected in the ABPBGS come from the surroundings of the object of interest (Figures

3.13 and 3.17).

Figure 3.6 shows the differences between the BPBGS and the ABPBGS on the street1

sequence. This sequence shows the main interest of adapting the block size to the detected

content. Indeed, we can observe that, with the same block size, the BPBGS is not as effi-

cient when the size of the content varies. Small blocks work better with small objects and

big blocks with big objects. The ABPBGS which main interest is to be able to adapt its

block size to the content shows that it is much faster that the BPBGS 16x9 in detecting

tiny objects 0.083s→0.066s (-26%) (Figures 3.6c) and 0.25s→0.18s (-28%) (Figures 3.6g). On

another side, the results of the BPBGS 96x54 show that constantly using small blocks can be

an asset for tiny objects but becomes a drawback on larger objects as the number of blocks

to process gets higher and the cost of the propagation becomes an issue. In that case, using

bigger blocks is more efficient: 1.16s→0.82s (-29%). Small blocks may also be too small to

56

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) Frm.
2330

(b) 96x54
0.066s

(c) 0.083s (d) 0.066s

(e) Frm.
3999

(f) 48x18
0.18s

(g) 0.25s (h) 0.15s

(i) Frm.
4281

(j) 32x9
0.46s

(k) 0.47s (l) 0.50s

(m) Frm.
4392

(n) 16x9
0.82s

(o) 0.82s (p) 1.16s

Figure 3.6: Average speed and processed areas comparison of some frames from Street1 se-
quence between ABPBGS and BPBGS. From left to right: cropped original image, ABPBGS,
BPBGS 16x9, BPBGS 96x54. Fastest times in green, slowest times in red. Grey areas are
unprocessed.

reach all fragments thus missing some parts like the missing arms in Figures 3.6l and 3.6p.

The last and probably biggest issue of using small blocks for the detection of big objects is

the number of propagation required. Not only each propagation is done in a fixed amount

of time but also each propagation is another call on the stack of the program. With the

multiplication of the blocks to propagate to there is a risk to exceed the capacity of the stack

57

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

resulting in an stack overflow and a crash of the program. On average, the ABPBGS quality

score is an improvement of the BPBGS 0.542→0.572 (+6%).

The speed calculations in Table 3.1 and Figure 3.7 include the label of the connected

components. We have made this choice for two reasons. First we consider that the fore-

ground detection is complete only after the extraction of the moving objects and not just

the foreground mask. Second, including the label in the speed calculation is a way to pe-

nalize methods which create very fragmented objects. Table 3.1 presents the computational

speeds measured in frames per second (fps) and Figure 3.7 relates both the speed and the

average score with the processing time per pixel and the A-Score. Using the processing time

per pixel allow us to compare all the methods on the same ground even though they do not

process at the same scale the videos. Indeed, with an average speed of 5.18 fps, the proposed

ABPBGS is about 154% better than the PBAS (2.04 fps) if we consider the speed in frames

per seconds. However, considering the processing time per pixel, the ABPBGS is, in fact,

much faster than the PBAS 3.78×10−6→2.33×10−8 px/s (-16343%). Moreover, with 13.98

fps, the ZivkovicAGMM seems much faster than our proposed ABPBGS but taken back to

the processing time per pixel it is in fact much slower 5.54×10−7→2.33×10−8 px/s(-2309%).

Figure 3.7also shows that proposed ABPBGS performs better than the non-adaptive version

the BPBGS. The ABPBGS is indeed about 37% faster (3.71×10−8→2.33×10−8 px/s). The

270p version of the ABPBGS performs generally faster than any other method, but the pro-

cessing time per pixel actually shows that it requires more time per pixel than the 4K scale

2.33×10−8→2.17×10−7 (+831%). This shows that the ABPBGS is best to process ultra high

resolution rather than SD videos. This is explained by the propagation time which is notice-

able when processing SD videos and becomes less and less observable when processing very

big images.

Figure 3.8 compares the memory consumption depending on the scale used. The ABPBGS

processes block by block as if they were independent images and in addition to that only

58

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

Figure 3.7: Comparison of the average processing time per pixel and A-Score.

the blocks surrounding the object of interest are processed. The state-of-the-art methods,

however, compute the full frame and require to store and compute a lot more data. We can

observe that starting from 1080p, the ABPBGS is very interesting to save memory but at 8K,

the difference is enormous with a ratio of 24. Indeed, the memory usage for the ABPBGS is

about 450 MB and the memory consumption for the PBAS is about 11 GB.

3.4 Discussion

3.4.1 Full frame refresh

The first point of discussion is about the refreshing. The principle asset and interest is that

the detection is spread from a point of an object until it is fully detected. There are two

consequences to this. The refreshing which is done by processing the full frame, is a necessary

step. Indeed, without any refresh of the detection on other parts of the image, then we would

not detect any object which would have appeared at another place than the ones close to

existing objects. An approach similar to [7] in which some regions are check randomly, would

be interesting. The size of the region would have to be set correctly and it might also be an

59

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

Figure 3.8: Comparison of the memory consumption depending on the resolution used, from
270p to 8K UHD. Except for the ABPBGS (in red), the results for resolutions above 1080p
are estimations of the consumption from the 20-50 first frames since the algorithms were
unreasonably slow to process the full sequence.

issue if too many of those are required to detect small objects.

3.4.2 Background update

Another point of improvement is the update of the background. The update of the background

is very time consuming and goes directly against the purpose of not processing uninteresting

areas. Indeed, in methods which adapt the background, the pixels detected as background are

used for the update. All those pixels belong to areas the ABPBGS tries to avoid processing.

There is a possibility of updating the background which lies in the refreshing step. Since the

refresh process requires to deal with the full frame, a background update could be effectuated.

However, this kind of approach is not much different from the existing methods and the main

drawback is the increase of the memory usage and processing time. In the next chapter, a

60

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) Seed on the tail of the snake: 83 ms.

(b) Seed in the middle of the snake: 49 ms.

Figure 3.9: Speed comparison depending on the position of the seed block (in red). On the
top the seed has been set at an extremity of the snake while on the bottom the seed has been
implanted in the middle. Unprocessed areas are in gray.

background modelling method adapted for UHD processing will be presented.

61

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

3.4.3 Position of the seed and adapted content

The next point is the position of the seed. The ABPBGS propagates itself via independent

block detections. For this reason, the position of the seed can have a great influence on the

detection speed as seen in Figure 3.9. When the seed is placed in the center of the object,

the detection speed is much faster than if the seed is placed at an extremity. For objects

which occupy the center of their boundary box, it is not an issue but it can be for objects for

which the center of the boundary box like the snake. The propagation can be optimized if

the seed is positioned at a place where a part of the object is sure to be detected and where

the propagation time would be minimal.

The last point is the size and number of objects. The main purpose of this work is to skip

the processing of all unnecessary area. However, if the objects cover all the image then this

proposal would be inefficient since no part could be skipped. Therefore, videos which content

is exclusively objects taking all the image are not suitable for a propagative method like the

ABPBGS

3.4.4 Face detection application

In Chapter 2 we have seen that a moving object detector could be coupled with a tracking

system. Here we will present another direct application with a face detection. The first

experiment is very simple. We detect faces in the sequence Street1 at two different scales, one

at 270p, the other at 4K. In the video, the man starts from far and he is coming closer and

closer. Therefore, it is possible to calculate the minimum size in which a face can be detected

by checking when a face is detected for the first time.

Figure 3.10 shows that in 270p the first frame in which a face has been detected is the

4266th frame on a total of 4439. When processed at 4K, a face can be detected on frame

3016. When we compare the two images, we can clearly see that the objects’ size is beyond

comparison. This experiment is another example of the use of UHD videos to detect very

62

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) (270p) frame #4266/4439 (b) (4K) frame #3016/4439

Figure 3.10: First frames in which a face has been detected using two different resolutions on
the Street1 4K sequence. On the left a down-sampled video to 270p, on the right the original
4K. By using the original 4K image, a face could be detected 1250 frames earlier than by
using the 270p resolution.

Figure 3.11: Evolution of the speed of the face detection process on a 4K UHD sequence with
the use of the ABPBGS beforehand (red) and without (blue).

small objects. Figure 3.11 presents a comparison of the face detection speed with and without

using the ABPBGS. Without, the face detection performs at a constant speed (10s/frame),

proof that it processes the full frame. By using the ABPBGS, the face detection is about 23

times faster on average.

63

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

3.5 Conclusion

We presented in this chapter a novel foreground detection methods which follows the shape of

the objects to process just the necessary area. This Adaptive Block-Propagative Background

Subtraction or ABPBGS has shown the best results with a global score of 0.572 for an average

processing time per pixel of 2.33×10−8 (about 5.18 fps in average for 4K videos). Moreover,

the memory usage is very low, with only 450 MB used to process an 8K UHD sequence while

the best state-of-the-art methods require 11 GB.

Further improvement is possible and necessary by improving the background modelling

so it could adapt to variation of illumination. Another axis of improvement is to develop an

alternative to the full frame process to detect new objects.

64

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) ROI (b) Ground Truth (c) ABPBGS 4K

(d) ABPBGS 270p (e) BPBGS 4K (f) PBAS 270p (g)
DPZivkovicAGMM-
BGS 270p

(h) MultiLayerBGS
270p

(i) DPAdaptiveMedi-
anBGS 270p

(j) DPPratiMediod
270p

(k) DPWren 270p (l) AdaptiveSe-
lectiveBGLearn.
270p

(m) Independent-
Multim. 270p

(n) EigenBGS 270p

Figure 3.12: Foreground mask obtained from the different BGS algorithms for the Corridor
sequence. Color map: TP-white, TN-black, FP-red, FN-green.

65

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) ROI (b) Ground Truth (c) ABPBGS 4K

(d) ABPBGS 270p (e) BPBGS 4K (f) PBAS 270p (g)
DPZivkovicAGMM-
BGS 270p

(h) MultiLayerBGS
270p

(i) DPAdaptiveMedi-
anBGS 270p

(j) DPPratiMediod
270p

(k) DPWren 270p (l) AdaptiveSe-
lectiveBGLearn.
270p

(m) Independent-
Multim. 270p

(n) EigenBGS 270p

Figure 3.13: Foreground mask obtained from the different BGS algorithms for the Street1
sequence. Color map: TP-white, TN-black, FP-red, FN-green.

66

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) ROI (b) Ground Truth (c) ABPBGS 4K

(d) BPBGS 4K (e) PBAS 270p (f)
DPZivkovicAGMM-
BGS 270p

(g) MultiLayerBGS
270p

(h) DPAdaptiveMe-
dianBGS 270p

(i) DPPratiMediod
270p

(j) DPWren 270p (k) AdaptiveS-
electiveBack-
groundLearning
270p

(l) IndependentMul-
tim. 270p

(m) EigenBGS 270p

Figure 3.14: Foreground mask obtained from the different BGS algorithms for the Street2
sequence. Color map: TP-white, TN-black, FP-red, FN-green.

67

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) Original (b) Ground Truth

(c) ABPBGS 4K (d) ABPBGS 270p (e) BBPBGS 4K

(f) PBAS 270p (g) DPZivkovicAGMMBGS
270p

(h) MultiLayerBGS 270p

(i) DPAdaptiveMedianBGS
270p

(j) DPPratiMediod 270p (k) DPWren 270p

(l) AdaptiveSelectiveBack-
groundLearning 270p

(m) IndependentMultim. 270p (n) EigenBGS 270p

Figure 3.15: Foreground mask obtained from the different BGS algorithms for the Screws
sequence. Color map: TP-white, TN-black, FP-red, FN-green.

68

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) ROI (b) Ground Truth (c) ABPBGS 4K

(d) ABPBGS 4K (e) PBAS 270p (f)
DPZivkovicAGMM-
BGS 270p

(g) MultiLayerBGS
270p

(h) DPAdaptiveMe-
dianBGS 270p

(i) DPPratiMediod
270p

(j) DPWren 270p (k) AdaptiveS-
electiveBack-
groundLearning
270p

(l) IndependentMul-
tim 270p

(m) EigenBGS 270p

Figure 3.16: Foreground mask obtained from the different BGS algorithms for the Crossing
sequence. Color map: TP-white, TN-black, FP-red, FN-green.

69

CHAPTER 3. ADAPTIVE BLOCK-PROPAGATIVE BGS

(a) ROI (b) Ground Truth (c) ABPBGS 8K

(d) ABPBGS 270p (e) BPBGS 8K (f) PBAS 270p (g)
DPZivkovicAGMM-
BGS 270p

(h) MultiLayerBGS
270p

(i) DPAdaptiveMedi-
anBGS 270p

(j) DPPratiMediod
270p

(k) DPWren 270p (l) AdaptiveS-
electiveBack-
groundLearning
270p

(m) Independent-
Multim. 270p

(n) EigenBGS 270p

Figure 3.17: Foreground mask obtained from the different BGS algorithms for the Field
sequence. Color map: TP-white, TN-black, FP-red, FN-green.

70

Chapter 4

Mixed Block Background Modelling

for Foreground Detection in UHD

videos †††

4.1 Introduction

As a following to the conclusion of the previous chapter, modelling the background is the next

necessary focus in order to handle more various situations. A foreground detector system has

to be able to deal with modifications of the background scene such as long staying objects and

variations of illumination. Adapting the background model to those modifications can require

a lot of resources in time and memory. Indeed, the modelling can be done by taking into

account multiple previous frames and/or by using a cluster of parameters for the whole frame,

for each block of pixels or even for each pixel. State-of-the-art methods have been designed for

SD videos as most of the focus was on the improvement of the detection quality rather than

on the detection speed. As a result, very efficient but complex methods have been created

and the average requirements in memory and time has also increased. With UHD videos,

†††This chapter is adapted from the work published in [J1]

71

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

those requirements become the bottleneck of the state-of-the-art methods [34][59][58] and it

is now necessary to employ algorithms which take the processing speed into account. Indeed,

those methods can take months to process a single 10s video sequence at 4K UHD [67] which

makes them unfit for UHD foreground detection. We have seen in the previous chapter that

block-based methods designed for UHD videos with the Adaptive Block Propagative Back-

ground Subtraction (ABPBGS) [J2] but that method lacks a background modelling function.

Among the existing background modelling methods figure statistical methods using one Gaus-

sian [55] or multiple Gaussians [16], [56], [57], [58]. More recently spatio-temporal methods

based on the mean and variance [53], [54] as well as non-parametric methods [34] or even based

on colors and textures [59] have been developed. All those methods as well as block-based

methods [68] [69] have in common the fact that all the blocks and pixels are processed every

frame. The second similarity among them is that they require a cluster of parameters for

each pixel or each block. Updating those parameters at each frame makes the computational

time even larger.

The objective of this work is to quickly detect foreground objects from a 4K UHD input

video. To achieve this goal, we propose to improve the existing ABPBGS by adding a new

background modelling which novelty lies in two points:

• Using small blocks as Region of Interest (ROI) to reduce the total amount of image

processed at each frame by updating a very small number of blocks instead of the whole

image. This will allow the update parts to process in real time.

• A homogeneous update by using a partition in Mega-Blocks of the background model

and a mixed linear and pseudo random selection of blocks to avoid updating the same

parts in consecutive frames. This will ensure that the update is well spread on the whole

image and that there are very limited differences between adjacent blocks.

The mandatory condition for this method to be effective is to have reduced differences between

consecutive frames. Therefore, the input videos must have a framerate high enough (≥60 fps)

and the speed of the light variation must be must slower than the speed of the moving objects

of interest.

72

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

This chapter is organized as follow: Section 4.2 presents the proposed method in details.

Section 4.4 show the different results by comparing the proposed method to the state-of-the-

art methods. Finally, section 4.5 closes this chapter.

4.2 System overview

The main principle of the MBBM is to update little by little the background model as it

would require too much resources to process every pixels in the frame at once. To reduce the

temporal differences among blocks as much as possible, only sequences with a high framerate

(≥60 fps) in which the light variations happen gradually are considered. In order to obtain a

uniformed model, we consider Mega-Blocks (MB) and Sub-Blocks (SB) defined as in Figure

4.1. The image of size width and height contains a total nb mb w×nb mb h MB, themselves

containing mb size w ×mb size h SB (Figure 4.1). The size of those SB is defined by the

following equation:

sb size w =
width

nb mb w ×mb size w
, sb size h =

height

nb mb w ×mb size w
. (4.1)

The number of SB defines the updating speed as two blocks will be updated at each time

t. Unlike other works using blocks [68], [69], the proposed work does not process all the blocks

but only two for each Mega-Block, one by linear order selection and one by pseudo random

selection.

For each mega-block, a sub-block is selected at random by a uniformed random id gen-

erator. The id SM is made from the sub block coordinates inside its mega-block as SM ∈

([0;mb size w[; [0;mb size h[). The randomness is necessary in order to not have systemati-

cally a temporal difference in the update between two adjacent blocks. Indeed, if the update

was done from top left block to bottom right, then there would always be

Even though the selection is random we want to make sure that every block is processed

73

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.1: The Mega-Blocks (in red) contain several Sub-Blocks themselves containing pixels.
Each time the background model is updated, one random Sub-Block (in black) per Mega-
Block is chosen to update a part of the background model.

74

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

at least once in a while. To decrease the chances of a block which has already been picked

recently, we use a preview map which is an greyscale image of size nb sb w × nb sb h defined

as:

nb sb w = nb mb w ×mb size w, nb sb h = nb mb h×mb size h. (4.2)

Each pixel of the map represents one of the sub-blocks. If the pixel value of the selected

SB is lower than a threshold value τ , the block can be updated. If the value is higher, then

a new block id is generated until we find a correct block. Once the chosen SB have been

processed, the value of their corresponding pixel on the preview map is set to 255 and all the

other pixels on the map have their value lowered by α. This forces a quicker rotation in the

choice of the parts to update.

Linear block selection

First of all, one SB per MB is selected through a linear order. Indeed, a linear order brings

some stability to the background modelling which lacked in [70] as it ensures that after a

maximum of Tu frames, all blocks from the model would have been updated at least once.

Figure 4.2 and Algorithm 4 present the process in details. From a frame t to the next frame

t+ 1, the position index of the current SB idSBw,h is saved. Since the process of all Mega Block

follow the same process, we can store only a single position index for all SB. Once the selection

of the SB is done, the corresponding parts of the current frame and the background model

are loaded and the region of the background corresponding is then updated. The update

equation processes each pixel µt of the background model region at time t considering the

corresponding pixel in the current frame Iit and the learning rate ρ:

75

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.2: Mixed order block selection and background update.

76

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Algorithm 4 Mixed Block Background Modelling process

1: Input: Input image It, preview map image P, Background image B, MegaBlocks MB;
SubBlocks SB; index Current LinearSubBlock idSB(x, y)

2: Linear Block Selection:
3: for all MB do
4: Get the next index of SB to process idSB(x, y)
5: Load the corresponding SB from the input image and the background image
6: Update the values of block pixels : µit = ρIit + (1− ρ)µit−1
7: for all Selected SB do
8: P (idx, idy) = 255
9: end for

10: end for
11: Pseudo Random Block Selection:
12: for all MB do
13: repeat
14: Generate random SB index id(x, y)
15: until pixel value P (idx, idy) > τ
16: Load the corresponding SB from the input image and the background image
17: Update the values of block pixels : µit = ρIit + (1− ρ)µit−1
18: end for
19: for all Selected SB do
20: Gaussian blur r = 2 on the border pixels of the SB in the background model B
21: P (idx, idy) = 255
22: end for
23: for all pixels from the preview map P(x,y) do
24: P (x, y) = P (x, y)− α
25: end for

µit =ρIit + (1− ρ)µit−1. (4.3)

The value of ρ corresponds to the learning rate usually indicated in other literature and the

common value used is ρ = 0.1. In the case of a low learning rate (ρ ≤ 0.1), the new elements

of the scene are incorporate slowly as all the blocks get updated. In the case a higher learning

rate (>0.1) is used, temporal differences between blocks start to appear (Figure 4.3). Those

differences are to be avoided at all cost since they break the homogeneity of the background

model. That is the reason why there is a condition on the speed of the light variation. Indeed,

in the cases of a sudden light modification a higher should be required but it would assuredly

77

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

(a) ρ = 0.1 (b) ρ = 0.2

(c) ρ = 0.5 (d) ρ = 0.7

Figure 4.3: Influence of the learning parameter ρ on the background modeling. The higher
the rate is, the more temporal differences between adjacent blocks can be visible.

break the homogeneity of the model. The number of blocks per MB Tu also influences the

speed of the update as well as the number nb sb selec of selected SB per MB modify the

number of pixels to update at each frame. In other words, the higher Tu is the longer it

will take to update the model but if more SB are selected per MB, then more parts of the

background get updated. It becomes a trade-off between the total area processed at each

frame and the update frequency. If too many blocks are processed, then the situation will be

similar to a full background modelling.

Random block selection

Processing blocks exclusively through a linear order has a latent drawback. Indeed, the last

block updated would always be right next to a block which has not been updated for Tu

frames thus creating a moving temporal band. By adding a pseudo random selection after

the linear selection, a second block per Mega Block can be updated as well in order to main-

tain a homogeneous background model (Figure 4.2, Algorithm 4).

78

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

A pre-selection is done by a uniformed random generation of block ID Sid(x, y) for each

MB. The ID Sid(x, y) is generated from the sub block coordinates inside its mega-block as:

Sid(x, y) ∈ ([0;mb size w[; [0;mb size h[) . (4.4)

Then, an eligibility verification on the pre-selected block is done by checking on the pre-

view map the pixel corresponding to the generated block id. The block is eligible (selectable

for an update) only if the pixel has a value below the threshold τ which defines the minimum

time before a block can be re-updated. In the case the block is not eligible, another block ID

is generated and checked until an eligible block is found. The preview map is an observable

tool to easily check which block have been updated recently. It consists of a nb sb w×nb sb h

grey scale image which pixels correspond to each one of the Sub-Blocks. A pixel value is set to

255 right after that the corresponding block has been updated. At the end of the modelling,

all pixels of the preview map get their value decreased by a fixed value α to simulate the time

passing. The higher α is, the faster blocks will be considered as old.

Figure 4.4 shows the different behaviors of the selection order on the preview map between

strictly linear, strictly pseudo random and the proposed mixed order. By itself, the random

selection suffers from the drawback of pure randomness, there would be no guaranty that all

blocks get updated in a limited number of frames. It would thus create temporal differences

between adjacent blocks. Using both linear and random order preserves the homogeneity of

the background model.

Finally, the selected blocks are updated and in order to reduce possible border effects from

the block updating, a Gaussian blur is effectuated on the border between the selected blocks

and their direct neighbours.

79

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.4: Representation of the preview map at frame 0 and frame 20 with 16× 9 MB and
10×10 SB/MB. The intensity of the white pixels represent the time when the selected blocks
have been updated.

4.3 Background Subtraction

The background subtraction part is done by the Adaptive Block Propagative Background

Subtraction (ABPBGS) seen in the previous chapter. The background model is then updated

after each object detection with the MBBM. We have seen in the previous chapter how

efficient the ABPBGS was to not only deal with various size objects but also to handle

background noise in 4K UHD videos. is a very efficient background subtraction method for

ultra high definition videos since it processes only parts where objects of interest are located

independently of their size or shape.

Even though both MBBM and the ABPBGS divide the image in blocks to process a smaller

part of the frame, their respective block numbers and size are not related in any way. The

80

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

two process are totally independent from each other. The principal reason for this is that

the blocks of the ABPBGS can change their size and shape through time depending on the

foreground object detected while the number and dimensions of the Mega-Blocks and Sub-

Blocks of the MBBM is fixed from the beginning. It can for example lead to a full frame

detection which is the situation we want to avoid as much as possible.

4.4 Experimental results

Our proposed MBBM has been tested with our custom 4K dataset [64] composed of 12 4K

videos of various length, from 10 seconds to 40 minutes with a framerate of 60 fps. The total

dataset represents a total of about 50 minutes and 178631 frames. The dataset is organized

in 4 categories: Small Objects (street1, street2, corridor, laser), Big Objects (screws, circle,

80percent), Monitoring (crossing, field) and Illumination (illu, parking, parking2). The Small

Objects and Big Objects focus on respectively very tiny object (down to 0.01% of the image)

and very big objects (up to the full size of the image). The Monitoring contains various situ-

ations as we could expect from surveillance videos and finally Illumination puts the accent on

videos containing big modifications of the illumination and also contains stationary objects.

Most of the comparisons have been done with methods presented in [52] and available in the

BGSLibrary [51]. We selected 8 methods : PBAS [34], ZivkovicAGMM [58], MultiLayerBGS

[59], DPAdaptiveMedian [53], AdaptiveSelectiveBGLearning, DPWrenGA [55], DPPratiMe-

diod [54] and the IndependentMultimodal [65].

The PC used is a Quadcore i7@2.83GHz with 16 GB of RAM and the parameters of our

methods are n mb w = 16, n mb h = 9, mb size w = 15, mb size h = 15, ρ = 0.1, α = 10.

Results from [67] showed that the background modelling part could be done at an average

speed of 76.9 fps which means that the total speed of the detection would depend mainly on

the foreground detection algorithm.

81

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

4.4.1 Quality comparisons

The goal of this present work is to process UHD videos and it has been solely designed for

that scale. Therefore, it is necessary to present the true results of our proposed method on

the 4K scale. Processing all the videos at the original 4K scale for each one of the state-of-art

method would have required years of non-stop process making a direct comparison at the

4K scale impractical [67]. Therefore, the quality metrics for those state-of-the-art methods

are based on their performances on 270p versions of the dataset. Despite the fact that the

proposed method is for UHD videos only, we present the results of both 4K and 270p for the

proposed MBBM.

Table 4.1 gathers all the quality comparisons sorted by category of video: Small Objects,

Big Objects, Monitoring, Illumination and finally General which is the mean of the scores

for all 12 videos. The comparisons are based on the Recall, the Precision, the F-Measure,

the Similarity, the SSIM (Structural SIMilarity) introduced in [66] and finally the A-Score as

defined in [J2]. The Recall, Precision, F-Measure and Similarity are based on the count of

the number of foreground pixels classified as foreground also called True Positive (TP), the

number of background pixels classified as background or True Negative (TN), the number

of False Positive (FP) which are background pixels classified as foreground and the number

of foreground pixels classified as background or False Negative (FN). The recall represents

the capability to detect correctly parts of the objects of interest as foreground. However,

the calculation (Recall = TP/(TP + FN)) cannot be trusted alone as it does not take into

account the number of false positives. Same with the Precision (= TP/(TP + FP)) which

indicates if a method is able to avoid detecting background noises from background move-

ment or modification of illumination. The F-Measure (= 2(̇Rec.Ṗ rec.)/(Rec. + Prec.)) and

the Similarity (= TP/(TP +FN +FP)) are measures which take into account both aspects.

Finally, the A-Score represents the general ability to correctly detect objects.

82

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Small objects category

For small objects, the proposed MBBM takes a clear lead compared to the other methods.

Indeed, it is vital to avoid detecting background noises to be able to distinguish small objects.

With a precision of 0.613, the MBBM is better than the ABPBGS (+23%) and much higher

than the other state-of-the-art methods (+61% to +402%). Its F-Measure score is also the

best with 0.441 which is between +46% to +521% better than the usual state-of-the-art

methods which show here that they are clearly not suitable to detect very tiny objects and

at the same time the limitation of using very small definition for foreground detection. The

A-Score of the MBBM for the Small Objects category is about 0.589 which is between +4%

to +64% better than all the other methods. The Precision of the 270p scale of the MBBM

shows the main interest of using the original scale instead of downscaling. With 0.283, the

precision of the 270p scale drops by -54% compared to the 4K scale.

Big objects category

The category Big Objects is here only to show that the method can deal with all sorts of

content, from tiny objects to objects taking all the image. As expected, the objects being

very big, state-of-the-art methods have less trouble to detect them. Therefore, the scores are

much closer. With an A-Score of 0.590, the MBBM is about +4% to +21% better than the

rest.

Monitoring category

The Monitoring category contains videos with multiple objects and some background move-

ments. For this type of video, we can observe that there seems to be two groups of methods

as half of them have A-Scores above 0.6 and the rest is below 0.5. With a score of 0.652,

the MBBM is the second best method after the PBAS (0.679). What makes the difference

between the two groups is their ability to avoid detecting the background movement. Indeed,

the top half methods have precision measures about the double compared to the bottom

83

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Table 4.1: Quality comparison of the different methods. Best scores are in bold.

Cate. Method ID Size Recall Pre. F-Meas. Sim. SSIM A-Score fps

S
m
a
ll
O
b
je
ct
s

MBBM (Proposal) 4K 0.385 0.613 0.441 0.329 0.997 0.589 4.02
MBBM 270p 0.325 0.283 0.279 0.207 0.967 0.484 55.52
ABPBGS [J2] 4K 0.371 0.498 0.401 0.299 0.995 0.565 5.23
BPBGS [63] 4K 0.341 0.491 0.372 0.280 0.970 0.541 5.31
PBAS [34] 270p 0.223 0.122 0.133 0.096 0.984 0.404 1.80
MultiLayer [59] 270p 0.070 0.125 0.071 0.050 0.993 0.371 2.71
ZivkovicAGMM [58] 270p 0.571 0.303 0.332 0.253 0.979 0.522 13.30
AdaptiveMedian [53] 270p 0.315 0.374 0.250 0.179 0.985 0.471 17.26
PratiMediod [54] 270p 0.407 0.289 0.266 0.192 0.986 0.481 4.42
WrenGA [55] 270p 0.538 0.227 0.249 0.175 0.981 0.468 11.90
AdaptiveSelectiveBGLearning 270p 0.186 0.123 0.084 0.063 0.928 0.358 17.77
IndependentMultimodal [65] 270p 0.385 0.103 0.129 0.089 0.984 0.401 3.16

B
ig

O
b
je
ct
s

MBBM (Proposal) 4K 0.483 0.552 0.506 0.412 0.853 0.590 2.30
MBBM 270p 0.495 0.524 0.498 0.409 0.821 0.576 20.47
ABPBGS [J2] 4K 0.448 0.522 0.472 0.387 0.778 0.546 2.78
BPBGS [63] 4K 0.443 0.515 0.466 0.382 0.777 0.542 2.39
PBAS [34] 270p 0.473 0.544 0.460 0.387 0.798 0.548 1.68
MultiLayer [59] 270p 0.308 0.568 0.367 0.284 0.822 0.491 2.61
ZivkovicAGMM [58] 270p 0.540 0.520 0.499 0.416 0.793 0.569 6.40
AdaptiveMedian [53] 270p 0.327 0.593 0.395 0.296 0.842 0.511 9.97
PratiMediod [54] 270p 0.403 0.456 0.380 0.289 0.796 0.488 2.54
WrenGA [55] 270p 0.471 0.455 0.421 0.333 0.803 0.519 5.10
AdaptiveSelectiveBGLearning 270p 0.530 0.501 0.489 0.399 0.800 0.563 16.58
IndependentMultimodal [65] 270p 0.557 0.416 0.421 0.332 0.747 0.500 0.44

M
o
n
it
o
ri
n
g

MBBM (Proposal) 4K 0.518 0.562 0.529 0.434 0.992 0.652 4.51
MBBM 270p 0.462 0.548 0.492 0.408 0.981 0.627 73.15
ABPBGS [J2] 4K 0.466 0.606 0.515 0.423 0.995 0.644 4.59
BPBGS [63] 4K 0.406 0.629 0.485 0.389 0.993 0.622 3.35
PBAS [34] 270p 0.575 0.584 0.568 0.483 0.985 0.679 2.04
MultiLayer [59] 270p 0.472 0.520 0.472 0.372 0.987 0.610 3.12
ZivkovicAGMM [58] 270p 0.682 0.241 0.280 0.225 0.755 0.420 6.42
AdaptiveMedian [53] 270p 0.518 0.313 0.279 0.204 0.915 0.466 14.69
PratiMediod [54] 270p 0.659 0.240 0.276 0.217 0.828 0.441 2.46
WrenGA [55] 270p 0.672 0.217 0.263 0.202 0.803 0.423 6.18
AdaptiveSelectiveBGLearning 270p 0.620 0.304 0.320 0.252 0.915 0.495 8.56
IndependentMultimodal [65] 270p 0.660 0.139 0.197 0.135 0.862 0.398 2.03

Il
lu
m
in
a
ti
o
n

MBBM (Proposal) 4K 0.398 0.595 0.430 0.317 0.959 0.536 4.48
MBBM 270p 0.474 0.445 0.379 0.284 0.866 0.510 34.09
ABPBGS [J2] 4K 0.348 0.276 0.215 0.146 0.891 0.417 1.13
BPBGS [63] 4K 0.372 0.259 0.175 0.115 0.804 0.365 1.18
PBAS [34] 270p 0.622 0.510 0.543 0.450 0.960 0.651 2.74
MultiLayer [59] 270p 0.566 0.620 0.571 0.489 0.967 0.676 3.67
ZivkovicAGMM [58] 270p 0.563 0.165 0.189 0.123 0.917 0.410 2.73
AdaptiveMedian [53] 270p 0.429 0.229 0.224 0.143 0.951 0.439 16.56
PratiMediod [54] 270p 0.578 0.179 0.170 0.105 0.941 0.405 3.64
WrenGA [55] 270p 0.634 0.118 0.146 0.091 0.893 0.377 1.83
AdaptiveSelectiveBGLearning 270p 0.481 0.227 0.248 0.174 0.890 0.474 15.53
IndependentMultimodal [65] 270p 0.702 0.085 0.115 0.077 0.820 0.337 0.65

G
en

er
a
l

MBBM (Proposal) 4K 0.435 0.585 0.469 0.364 0.950 0.597 3.78
MBBM 270p 0.429 0.431 0.396 0.311 0.907 0.538 44.34
ABPBGS [J2] 4K 0.400 0.466 0.391 0.304 0.915 0.536 3.57
BPBGS [63] 4K 0.379 0.466 0.375 0.290 0.906 0.529 2.35
PBAS [34] 270p 0.444 0.401 0.390 0.322 0.932 0.548 2.05
MultiLayer [59] 270p 0.320 0.425 0.337 0.272 0.943 0.517 2.99
ZivkovicAGMM [58] 270p 0.580 0.313 0.330 0.257 0.880 0.489 7.79
AdaptiveMedian [53] 270p 0.380 0.382 0.285 0.203 0.929 0.472 14.83
PratiMediod [54] 270p 0.491 0.295 0.272 0.199 0.901 0.457 3.43
WrenGA [55] 270p 0.568 0.255 0.269 0.198 0.885 0.451 6.73
AdaptiveSelectiveBGLearning 270p 0.459 0.276 0.278 0.213 0.893 0.461 15.85
IndependentMultimodal [65] 270p 0.553 0.183 0.210 0.155 0.863 0.409 1.66

84

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

methods.

Illumination category

The Illumination set of videos presents cases where the changes of light have great influence

on the appearance of the background and where stationary objects require to be incorporated

to the background model. Only methods which are able to handle light variations and the

appearance or disappearance of stationary objects show decent scores. With a score of 0.536,

the MBBM is clearly among them as only the PBAS (0.651) and the MultiLayer (0.676)

present better results. This is expected as they both are which have been designed for that

purpose. We can also observe with this category the real difference with the ABPBGS as the

MBBM is able to handle the variation of light when the ABPBGS is not capable of doing

it. The precision of the MBBM is much higher than the ABPBGS 0.276→0.595 (+116%) as

well as its average score 0.417→0.536 (+29%). Unsurprisingly, the 270p scale of the MBBM

performs better than the ABPBGS and the BPBGS as it can deal with the stationary objects

and the slow light variation but it does not match the precision of the 4K MBBM (-25%) due

to the fact that with bigger blocks (compared to the image size) it is easier for the detection

propagation to catch background noise.

Conclusion

Finally, the General part of the table presents the scores for the full dataset. With an A-

Score of 0.597, the MBBM is +9% to +46% better than the state-of-the-art methods. The

remarkable part is its precision score. Indeed, with a precision of 0.585, the MBBM is +26%

better than the ABPBGS and +46% better than the PBAS (0.401→0.585). This result shows

that with 4K there are contents which are undetectable by some state-of-the-art methods.

Even though those methods are very accurate in general for medium size or big objects, they

become unfit for tiny objects as they confuse them with small background noise. Also, the

MBBM has the best F-Measure score and is about +20% better than both ABPBGS and

PBAS (respectively 0.391→0.469 and 0.390→0.469). These results show that the MBBM is

85

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.5: Comparison of the foreground masks of the parking sequence. Up: original image,
ABPBGS, proposed MBBM; Bottom: ZivkovicAGMM, PratiMedio, CWren. In yellow circle
figure the areas where stationary objects have appeared/left and where the light changed as
well. In the blue circles figure areas where bushes and trees are moving with the wind. Red:
FP; Green: FN; White; TP; Black: TN.

able to handle various cases from the detection of tiny objects to big object taking the whole

image and under more difficult but rather common situation such as illumination variation

stationary objects. Even though the MultiLayer and especially the PBAS are the most ef-

ficient methods on some categories of videos, they show their weakness when the content is

not adapted to downscaling. The MBBM performs better on average than them because it

is able to deal with more various situations.

4.4.2 Visual comparisons

Figures 4.9, 4.10, 4.11 and 4.12 present a sample of the foreground detection results of the

different methods for the four categories.

On videos which focus on small objects (Figure 4.9), methods like the proposed MBBM or

86

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

the ABPBGS show their superiority over the other methods. Methods such as the PBAS or

the MultiLayer which have show some of the best results in average are completely lost when

they have to detect tiny objects. Indeed, their strong ability to remove background noise

becomes a drawback in such situations because the objects of interest get removed along with

the false positives. On the contrary, methods able to detect the objects are usually unable to

do with precision as a lot of background noise get detected as well.

The two groups of results for the Monitoring category is clearly shown in Figure 4.11. In-

deed, we can observe that in half of the methods, a huge amount of false positives is detected,

the moving grass being wrongly detected as foreground. The other half which includes the

MBBM are able to reduce the amount of false positive. Moreover, the contours of the objects

of interest are better defined with the MBBM on 4K than it is with methods using the 270p

scale.

On the Big Object category, all methods perform very similarly as expected. Two methods

though, MultiLayer and AdaptiveMedian, distinguish themselves by their ability to remove

the shadows (Figure 4.10). Very big objects are not a problem for a propagative method like

the MBBM but it is nonetheless not advisable to use such methods on videos where objects

take all the frame. Indeed, the main interest of those methods is to reduce the processing

time by processing as few parts of the image as possible so if all the image requires to be

processed such methods are not appropriate.

The parking sequence, illustrated by Figure 4.12, shows the whole purpose of the present

method compared to the ABPBGS. Figure 4.5 shows in more detail the differences between

the MBBM, the ABPBGS and some of the state-of-the-art methods. With the ability of han-

dling both stationary objects and modification of the illumination, the proposed MBBM does

not wrongly detect the stationary cars nor the reflection of the light on the windshields (yellow

circles). Notice that the state-of-the-art methods can also correctly adapt the background on

those areas since almost no false positive appear in the yellow circle at the position of the

light reflection and stationary cars. However, those methods suffer from different issues which

are the shaking bushes and the leaves from the trees (blue circle and rectangle). Therefore,

the main difference between the state-of-the-art methods and the proposed MBBM is not

87

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

related to illumination handling but with temporary background noise which those methods

are unable to process correctly. Methods with strong background noise removal like the PBAS

and the MultiLayer show here their real strength.

In the Illumination category, the illu sequence shows the limitations of the proposed method.

It is probably the most difficult case we can face. Indeed, the object of interest comes at the

same speed as the light changes which makes it very difficult to separate the object from the

background. In normal situations, the speed of the object is much higher than the variation of

light. This case shows that the background model cannot be updated correctly when consec-

utive frames are very different to each other. The temporal difference between blocks disturb

the detection and the system fails to detect correctly the foreground from the background.

Almost no method can handle this sequence correctly. Even the MultiLayer which has almost

no FP show that very few parts of the object can be detected correctly, most of it being

considered as missed detection. The only method which is actually showing decent results is

the PratiMedio which is efficient to handle low intensity shadows.

4.4.3 Speed and memory comparisons

Table 4.2 presents a comparison of the time per frame required to process the full dataset

between the MBBM and an estimation of the detection time for the full 12 4K video dataset.

The estimation has been made from the average time necessary to process at least the first

20 frames of the parking short sequence with the exception of the MBBM which is based on

the full process of the videos. We can observe that methods which have not been designed

with the purpose of processing UHD videos have estimated time way too big for practical use.

Indeed, the fastest method, the Independent Multimodal requires about 1.19 weeks to process

the whole dataset. The other methods take from 23.04 weeks for the Adaptive Median to

21.18 years for the MultiLayer. Results from [67] showed that the background modelling part

could be done at an average speed of 76.9 fps which means that the total speed of the detec-

tion would depend mainly on the foreground detection algorithm. However, we can observe

88

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.6: Comparison of the processing time per pixel and the average global quality score
of the proposed MBBM to the state-of-the-art methods on each category of video.

89

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.5: Comparison of the processing time per pixel and the average global quality score
of the proposed MBBM to the state-of-the-art methods on each category of video.

90

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

here the huge improvement of the MBBM compared to the ABPBGS which would use a full

frame processing as it is about 9 times faster (2.23days → 5.81 hours). Last, the MBBM

is the only method which is less than 10 times slower than the total length of the dataset.

Above that level, we can consider that a method is not suitable for UHD processing.

Table 4.2: Average speed per frame and estimated time to the 12 4K videos of the dataset
based on the parking2 sequence. The normal length of the dataset is about 50 min. long.
Only methods which include a background modelling are compared.

Method Time/frame (s) Total Time (s)

MBBM 0.12 5.81 hours

PBAS 130.56 38.56 weeks

MultiLayer 3738.43 21.18 years

ZivkovicAGMM 1363.01 7.72 years

AdaptiveMedian 77.99 23.04 weeks

PratiMediod 292.40 1.66 years

WrenGA 1072.27 6.07 years

AdaptiveSelectiveBGLearning 299.83 1.70 years

IndependentMultimodal 4.02 1.19 weeks

Figure 4.6 shows the A-Score and the processing time per pixel (PTPP) for each category

of video and the average for all the dataset. The PTPP is used to compare algorithms’ speed

on the same base even if they processed at different scales. In general, the BPBGS-based

methods perform much faster than the other state-of-the-art methods. The proposed MBBM

has a PTPP of 3.18×10−8 s/p. If it is just faster than the ABPBGS 3.37×10−8 s/p (-6%),

it is about a hundred times faster than the best state-of-art method, the PBAS (3.77×10−6

s/p).

The Small Objects category shows higher speed in general but lower A-Scores. The fact that

some objects are missed leads to less objects to extract and thus to a faster detection.

The Big Objects category shows more spread speed but higher scores. Indeed, it is easier

to detect big objects but they can generate a lot of fragments which can possibly slow the

detection.

In the Monitoring category two groups exist if we only consider the score. However, if we

also consider the speed, another emerge with the PBAS and the MultiLayer which perform

very well but quite slower than the other methods.

91

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

This group is even more visible with the Illumination set of videos. Indeed, they appear way

above the other methods on a quality level. The MBBM also distinguishes itself from the

others with a processing time per pixel of 2.69×10−8 s/p. It is much faster than the ABPBGS

1.07×10−7→2.69×10−8 s/p (-74%). Once again, the number of detected objects has a great

influence on the speed of a method. In that case, the ABPBGS suffers from the light variation

thus detects much more false positives which lowers its detection speed.

Besides from the Small Objects category, the 270p scale of the MBBM logically follows the

same behavior as the 4K MBBM. The 4K MBBM is remains faster due to the fact that is

can use tiny blocks (compared to scale) to reduce the process areas.

In figure 4.6 we compared the memory consumption of the MBBM, the ABPBGS and the

three best methods: PBAS, DPZivkovicAGMM and MultiLayer. The state-of-the-art meth-

ods are not able to process the videos at their original scale so the tests have been done on

the first 50 frames. The second thing to mention is that the MultiLayer memory requirements

for the 8K scale is so big that our 16 GB were not enough, the program crashed because of

a lack of memory. For the other state-of-the-art methods, we can observe that the memory

consumption is increasing exponentially with the proportional increase of the dimensions of

the video. In comparison, the MBBM’s memory requirement is very low with a maximum of

about 450 MB for the 8K resolution. Moreover, since the MBBM uses very small temporary

images corresponding to the blocks, it does not add more memory consumption to what the

ABPBGS requires.

4.4.4 Example of 8K tracking

This work has been the result of a long work with the objective to reduce the computational

time of a 8K UHD tracking system so we could get closer to real-time processing than with

state-of-the-art methods. Therefore, we present here a last UHD test with the use of the

MBBM, which evolved from the ABPBGS, and the RTRM together in order to track objects

in the field 8K video. The RTRM and the MBBM have in common that they improve their

92

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.6: Comparison of the memory consumption depending on the resolution used, from
270p to 8K UHD. Except for the ABPBGS based methods (in orange and red), the results
for resolutions above 1080p are estimations of the consumption from the 20-50 first frames
since the algorithms were unreasonably slow to process the full sequence.

results by using the information from the previous frame. Ideally, there are one seed for each

object to detect and they are located on a part of each object. By using the tracking results

of the RTRM as seed point for the MBBM, we get as close to the ideal case as we can get.

Indeed the tracking results are supposed to represent the position and shape of the target. In

this last experiment, we combined both RTRM and MBBM in such a way. In the Table 4.3

we can observe that the MBBM achieves with the RTRM much better results than the BGS

since it improves the precision to reach a N-MOP score of 0.50→0.70 (+40%). It means that

the detected objects have a very similar size compared to the ground truth objects. Figure

4.8a shows the evolution of object count for the sequence. We can see in red that the original

method does not create much extra blobs. The accuracy is also better with almost perfect

scores N-MODA of 0.99 and N-MOTA of 0.98.

Figure 4.7 presents an example of the use of the RTRM with the MBBM on the 8K

Field sequence. The raw detection shows the unprocessed areas in grey as well as the object

boundaries. Unlike other methods, the boundary is quite large because a fusion of objects is

93

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Table 4.3: Comparison of tracking performances of the MBBM and the BGS, both used with
the RTRM. Best results in bold.

Sequence Method Occl. MODP MOTP MODA MOTA IDS miss FP

field 8K
BSG+RTRM 10 0.50 0.50 0.98 0.92 19 10 0

MBBM+RTRM 41 0.70 0.70 0.99 0.99 9 1 0

effectuated automatically during the process of the MBBM. The refinement of the fused blob

gives two correct blobs. The size and shape is not accurate for all frames because the RTRM

forces the dimensions to not change too much between two frames.

(a) Raw detection (b) After RTRM (c) Tracking track

Figure 4.7: Example of the RTRM for an 8K UHD sequence (Nebuta Festival, NHK) by the
MBBM foreground detection method.

(a) Object count (b) Speed

Figure 4.8: Object count and Speed for the MBBM

The most important improvement is the reduction of the processing time required to de-

tect and track objects in the 8K UHD video. Table 4.4 shows a comparison of the BGS and

the MBBM for that sequence. The refinement and tracking speed are very similar since they

are mostly dependent of the number of occlusions. What is very different is the total speed of

94

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

about 6.5 fps for the MBBM. It represents an improvement of about 11232% compared to the

BGS method. It is also a significant progress than the MBBM average speed for 4K scale seen

in Table 4.1 due to the RTRM which insures that all the seeds belong to an object of interest

and not to background noise. Less propagation leads to less false positives which leads to

a faster label process and thus to an even faster detection. All the works presented in the

previous chapters have led to not only better quality results but also a processing speed which

is quite close to real time. The processing of 8K UHD scenes which was very improbable in

Chapter 2 due to a very slow detection part is now possible by using a foreground detection

system designed for such enormous resolution.

Table 4.4: Comparison of the average speed performances for the BGS and the MBBM on
the 8K sequence (in fps).

Sequence Size Method Detect. (fps) Refin.(fps) Track.(fps) Total(fps)

field 8K 7680× 4320
BGS+RTRM 0.057 2223 35594 0.057

MBBM+RTRM 6.459 2486 34942 6.459

4.5 Conclusion

This chapter presented the Mixed Block Background Modelling method which is a fast back-

ground modelling method designed for UHD videos. Instead of updating the full background

model at once, the model is updated through time block per block. This spatiotemporal ap-

proach selects blocks by a linear and a pseudo-random order. The linear order makes sure that

every block will be updated and the pseudo-random order allows more blocks to be updated

in order to keep the homogeneity of the background model. The method is combined with a

foreground detection designed for UHD videos such as the Adaptive Block-Propagative Back-

ground Subtraction method. Experimental results show that despite the relative simplicity

of the proposed MBBM the foreground detection can compete with efficient state-of-the-art

methods with an average A-Score of 0.597. Moreover, the processing time per pixel of the

MBBM is the lowest of all compared methods with an average of 3.18×10−8 s/p. An improve-

95

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

ment of the MBBM is possible but it would require trades-off. It would likely complexify it

and slow it down. Finally, by processing few tiny blocks, the MBBM does not require more

memory than the ABPBGS with an average 450 MB for an 8K video.

96

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.9: Visual com-
parisons of the proposed
method to the state-of-the-art
methods on videos for the
Small Objects category. From
top to bottom: Original 4K
image/ROI, ground truth
image, proposed MBBM,
ABPBGS, BPBGS, PBAS,
MultiLayer, ZivkovicAGMM,
AdaptiveMedian, PratiMe-
diod, WrenGA, AdaptiveS-
electiveBGLearning, Inde-
pendentMultimodal. Color
legend: Black-TN, White-TP,
Red-FP, Green-FN.

97

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.10: Visual com-
parisons of the proposed
method to the state-of-
the-art methods on videos
for the Big Objects cate-
gory. From top to bottom:
Original 4K image/ROI,
ground truth image, pro-
posed MBBM, ABPBGS,
BPBGS, PBAS, Multi-
Layer, ZivkovicAGMM,
AdaptiveMedian, Pra-
tiMediod, WrenGA, Adap-
tiveSelectiveBGLearning,
IndependentMultimodal.
Color legend: Black-
TN, White-TP, Red-FP,
Green-FN.

98

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.11: Vi-
sual comparisons
of the proposed
method to the
state-of-the-art
methods on videos
for the Monitoring
category. From
top to bottom:
Original 4K im-
age/ROI, ground
truth image, pro-
posed MBBM,
ABPBGS, BPBGS,
PBAS, MultiLayer,
ZivkovicAGMM,
AdaptiveMe-
dian, PratiMe-
diod, WrenGA,
AdaptiveSelec-
tiveBGLearning,
IndependentMul-
timodal. Color
legend: Black-TN,
White-TP, Red-FP,
Green-FN.

99

CHAPTER 4. MIXED-BLOCK BACKGROUND MODELLING

Figure 4.12: Visual compar-
isons of the proposed method
to the state-of-the-art methods
on videos for the Illumina-
tion category. From top to
bottom: Original 4K im-
age/ROI, ground truth image,
proposed MBBM, ABPBGS,
BPBGS, PBAS, MultiLayer,
ZivkovicAGMM, AdaptiveMe-
dian, PratiMediod, WrenGA,
AdaptiveSelectiveBGLearn-
ing, IndependentMultimodal.
Color legend: Black-TN,
White-TP, Red-FP, Green-
FN.

100

Chapter 5

Conclusion

5.1 Summary of the different works

The first contribution was the Real-Time Refinement Method for Moving Object Detectors

(RTRM), a resolution free moving object filter which refines the moving object detection

results obtained after a foreground detection. Its aim was to improve the detection quality

through, among other things, the reduction of the number of false positives. The RTRM used

the position in the previous frame of the trackers to filter the detected objects and remove

unnecessary objects while keeping the interesting ones. In the case of occlusions, fusions of

objects can happen. The fused object would be split into as many new objects as the number

of trackers overlapping it. Then the new objects were moved for a better space occupancy

of the fused object. With one detected object per tracker, the matching could be done by a

Hungarian algorithm on the distance between objects and the previous position of the tracker.

The RTRM had been tested on our HD sequences and one 8K UHD sequence from the

NHK Nebuta festival. The results showed a great reduction of the background noise, espe-

cially for the 8K sequence with 100% less false positives with the RTRM (2634→0). The

experiments also showed that the number of objects after the RTRM matches the number

of trackers under conditions such as moving background, occlusion between two trackers, or

both. As a consequence, the RTRM greatly improved all the results compared to the SBGS:

101

CHAPTER 5. CONCLUSION

-41.2→0.98 for the N-MODA, -42.9→0.92 for the N-MOTA and 0.10→0.50 (+400%) for the

N-MO(D/T)P. The RTRM average speed was 4.2 × 10−4 s and the tracking average speed

was 2.7× 10−5 s which made it suitable for real-time applications.

The second contribution was a foreground detector named Adapting Block-Propagative

Background Subtraction (ABPBGS). The main idea was to skip all areas in the image in

which there are no moving object. This is particularly interesting for UHD when the objects

of interest can represent less than 0.012% of the total area. The novelty of this work leads

in the detection which will detect and spread along the object as long as it detects a part

of it. A block history map guaranties that each block is processed only once. It is a virtual

grid containing the position of every block already and currently processed. Moreover, the

detection loads and processes only small blocks saving computational time and memory usage.

The spreading could also be parallelized to increase even more its speed.

Compared to the best state-of-the-art method, the PBAS, the ABPBGS reduced a lot the

processing time per pixel 3.78×10−6→2.33×10−8 s/p (-99.38%). For the 8K sequence, the

average memory usage of the ABPBGS was greatly diminished compared to the PBAS 11

GB→450 MB (-96%) by skipping most parts of the image. The pixel-based detection quality

metrics showed that the ABPBGS reduced the FP and FN with an average precision (between

0 and 1) improved 0.327→0.495 (+51%) as well as a better recall score 0.275→0.384 (+39%).

Using the F-Measure, Similarity and SSIM measures (between 0 and 1) the ABPBGS achieved

a better average quality score 0.493→0.572 (+16%) compared to the PBAS and 0.482→0.572

(+19%) compared to the AGMM.

The last contribution was the Mixed Block Background Modelling (MBBM), a method

solely designed for UHD videos. The novelty of the MBBM lied in the reduction of the

computing time by updating very small parts (blocks) of the background model instead of

the full image at once. To keep the homogeneity of the model, two blocks per region MB

were selected by a mixed selection: one through a linear order selection and one by a pseudo

random selection. Then the background model parts corresponding to the selected blocks

were updated. The MBBM was an amelioration of the ABPBGS in order to deal with various

102

CHAPTER 5. CONCLUSION

and difficult situations such as changes of illumination or stationary objects.

The tests effectuated on 12 videos showed that the MBBM was a major improvement of

the ABPBGS. The MBBM had a better precision rate (between 0 and 1) than the ABPBGS

0.466→0.585 (+26%), the PBAS 0.401→0.585 (+46%) or the AGMM 0.313→0.585 (+87%).

The MBBM could handle the various challenges with an average score of 0.597 using the F-

Measure, Similarity and SSIM measures (between 0 and 1). The MBBM clearly outperformed

the other methods: ABPBGS 0.536(+11%), PBAS 0.548(+9%), AGMM 0.489(+22%). Even

though the MBBM updated the background model, its processing time per pixel was lower

compared to the ABPBGS 3.37×10−8→3.18×10−8 s/p (-5.6%) or to the PBAS 3.77×10−6

→3.18×10−8 s/p (-99.16%). A last tracking test on an 8K video using the MBBM combined

with the RTRM resulted in an average total speed of 156 ms/frame (6.46 fps) with a N-MODA

of 0.99 and a N-MOTA of 0.98.

5.2 Discussion and Future

The objective of this thesis was to improve the foreground detection systems for Ultra High

Definition videos by making them much faster than existing methods while keeping a good

quality in the results. Image understanding on UHD was unprecedented and it is just be-

ginning of this particular topic. There is still a lot to discover about the properties of UHD

videos and the different and new applications they can offer. Our work on the subject was

an introduction on the possibilities both for a different use of UHD sequences and for the

image processing of them. We presented solutions designed for UHD video which are far

more efficient than the existing methods. The accomplishment of those works is a complete

system which runs at 6.46 fps for 8K UHD while achieving better results and lowering the

resources consumption by 24 compared to the state-of-the-arts detectors was the fruit of all

of that. This speed is an incredible improvement, especially if we consider that it had been

done only by using a software approach, meaning that even greater speeds, possibly real-time,

could eventually be achieved with specific hardware optimization and design.

We sincerely believe that the next step to really make the research advance on this topic

103

CHAPTER 5. CONCLUSION

would be to create a complete 4K and 8K dataset. Those datasets could include various

scenarios and scenes all completed with ground truth information, foreground masks and

boundary boxes. An even more complete dataset could also have data for tracking purposes

or face detection in order to become the main reference in the area. Concerning the different

methods proposed, the first improvement should come from the background model which is

vital for harsher situations such as shadows or reflections. Then the ABPBGS could also be

improved with a better block seed selection and a replacement for the full frame detection.

Improving such system to more complex is very tempting but any improvement must be done

without jeopardizing the computational speed nor the memory required.

104

Bibliography

[1] T.P. Chen, H. Haussecker, A. Bovyrin, R. Belenov, K. Rodyushkin, A. Kuranov, and

V. Eruhimov, “Computer vision workload analysis: Case study of video surveillance

systems.,” 2005.

[2] S.-C. Cheung and C. Kamath, “Robust techniques for background subtraction in urban

traffic video,” p. 881892, 2004.

[3] V. Zeljkovic, D. Zhang, V. Valev, Z. Zhang, S. Zhu, and J. Li, “Personal access con-

trol system using moving object detection and face recognition,” in High Performance

Computing Simulation (HPCS), 2014, pp. 662–669.

[4] D. Berjon, C. Cuevas, F. Moran, and N. Garcia, “Moving object detection strategy

for augmented-reality applications in a gpgpu by using cuda,” in Consumer Electronics

(ICCE) 2012 IEEE International Conference on, Jan 2012, pp. 319–320.

[5] S.L. Dockstader and A.M. Tekalp, “Tracking multiple objects in the presence of articulated

and occluded motion,” in Proc. Workshop Human Motion, 2000, pp. 88–95.

[6] S. Ye, Y. Zhao, F. Zheng, and Z. Song, “A multi-features based particle filtering algorithm

for robust and efficient object tracking,” in Multimedia and Signal Processing, 2012, vol.

346, pp. 8–15.

[7] D. Berjon, C. Cuevas, F. Moran, and N. Garcia, “Region-based moving object detection

using spatially conditioned nonparametric models in a gpu,” in International Conference

on Consumer Electronics (ICCE). IEEE, 2014, pp. 359–360.

105

[8] R. Chao, G. Maca-Vzquez, E. Zalama, J. Gmez-Garca-Bermejo, and J-R Pern, “Au-

tomated tracking of drosophila specimens,” Sensors, vol. 15, no. 8, pp. 19369–19392,

2015.

[9] K. Pauwels and M. M. Van Hulle, “Optic flow from unstable sequences through local

velocity constancy maximization,” in Image and Vision Computing (The 17th British

Machine Vision Conference (BMVC 2006)), 2009, vol. 27, pp. 579–587.

[10] P.M. Jodoin and M. Mignotte, “Optical-flow based on an edge-avoidance procedure,”

Computer Vision and Image Understanding, vol. 113, no. 4, pp. 511–531, 2009.

[11] H. Meuel, M. Munderloh, M. Reso, and J. Ostermann, “Optical flow cluster filtering for

roi coding,” in Picture Coding Symposium (PCS), Dec 2013, pp. 129–132.

[12] T. Bouwmans and F. El Bafand B. Vachon, “Background modeling using mixture of

gaussians for foreground detection a survey.,” pp. 219–237, 2008.

[13] Y. Benezeth, P.M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, “Review and

evaluation of commonly-implemented background subtraction algorithms,” pp. 1–4.

[14] Y-K Lai and C.-C.J. Kuo, “Perceptual image compression with wavelet transform,”

in Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE International

Symposium on, May 1998, vol. 4, pp. 29–32.

[15] M. Piccardi, “Background subtraction techniques: a review,” in IEEE International

Conference on Systems, Man and Cybernetics, Oct 2004, vol. 4, pp. 3099–3104.

[16] C. Stauffer and W. Grimson, “Adaptive background mixture models for real-time track-

ing,” IEEE International Conference on Computer Vision and Pattern Recognition, 1999,

vol. 2.

[17] F. El Baf, T. Bouwmans, and B. Vachon, “A fuzzy approach for background subtraction,”

in 15th IEEE International Conference on Image Processing (ICIP)., Oct 2008, pp. 2648–

2651.

106

[18] L. Maddalena and A. Petrosino, “A self-organizing approach to background subtraction

for visual surveillance applications,” IEEE Transactions on Image Processing, vol. 17, no.

7, pp. 1168–1177, 2008.

[19] Y. Shishikui, Y. Fujita, and K. Kubota, “Super hi-vision - the star of the show!,” in

EBU Technical review, 2009.

[20] M. Sugawara and K. Masaoka, “Uhdtv image format for better visual experience,” in

Proceedings of the IEEE. IEEE, 2012, vol. 101, pp. 8–17.

[21] E. Nakasu, “Super hi-vision on the horizon: A future tv system that conveys an enhanced

sense of reality and presence,” Consumer Electronics Magazine, IEEE, vol. 1, no. 2, pp.

2162–2248, 2012.

[22] H. Shimamoto, T. Yamashita, and H. Maruyama M. Kubota, “Advanced camera tech-

nologies for broadcasting,” Micro, IEEE, vol. 31, no. 6, pp. 51–57, 2011.

[23] T. Yamashita and K. Mitani, “8k extremely-high-resolution camera systems,” in Pro-

ceedings of the IEEE. IEEE, 2012, vol. 101, pp. 74–88.

[24] T. Ito, “Future television - super hi-vision and beyond,” in IEEE Asian Solid-State

Circuits Conference. IEEE, 2010.

[25] Dajiang Zhou, Jinjia Zhou, Gang He, and Satoshi Goto, “A 1.59 gpixel/s motion esti-

mation processir with -211 to +211 search range for uhdtv video encoder,” IEEE Journal

of Solid-State Circuits, vol. 49, no. 4, Apr. 2014.

[26] Chen-Han Tsai, Chi-Sun Tang, and Liang-Gee Chen, “A flexible fully harwired cabac

encoder for uhdtv h.264/avc high profile video,” IEEE Transactions on Consumer Elec-

tronics, vol. 58, no. 4, pp. 1329–1337, Nov. 2012.

[27] H. Lee, “Fine grain creation for uhdtv,” in International Conference on Consumer

Electronics (ICCE), 2013, pp. 1–4.

107

[28] J. Le Feuvre, J-M. Thiesse, M. Parmentier, M. Raulet, and C. Daguet, “Ultra high

definition hevc dash data set,” in ACM Multimedia Systems Conference (MMSys), March

2014.

[29] Li Song, Xun Tang, Wei Zhang, Xiaokang Yang, and Pingjian Xia, “The sjtu 4k video se-

quence dataset,” in Quality of Multimedia Experience (QoMEX), 2013 Fifth International

Workshop on, July 2013, pp. 34–35.

[30] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and prac-

tice of background maintenance,” in The Proceedings of the Seventh IEEE International

Conference on Computer Vision (ICCV), 1999, vol. 1, pp. 255–261.

[31] A. Vacavant, T. Chateau, A. Wilhelm, and L. Lequivre, “A benchmark dataset for

foreground/background extraction,” in ACCV Workshop: Background Models Challenge,

November 2012, pp. 291–300.

[32] EC Funded CAVIAR project/IST 2001 37540, “http://homepages.inf.ed.ac.uk/rbf/caviar/,”

.

[33] X. Wang, X. Ma, and E. Grimson, “Unsupervised activity perception in crowded and

complicated scenes using hierarchical bayesian models,” in IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 2009, vol. 31, pp. 539–555.

[34] M. Hofmann, P. Tiefenbacher, and G. Rigoll, “Background segmentation with feed-

back: The pixel-based adaptive segmenter,” in Computer Vision and Pattern Recognition

Workshops (CVPRW), 2012, pp. 38–43.

[35] D. Berjon, C. Cuevas, F. Moran, and N. Garcia, “Gpu-based implementation of an

optimized nonparametric background modeling for real-time moving object detection,”

Consumer Electronics, IEEE Transactions on, vol. 59, no. 2, pp. 361–369, May 2013.

[36] Y. Benezeth, P. Jodoin, B. Emile, H. Laurent, and C. Rosenberger, “Review and evalu-

ation of commonly-implemented background subtraction algorithms,” in Proc. IEEE Int.

Conf. Pattern Recognit., 2008, pp. 1–4.

108

[37] D. Parks and S. Fels, “Evaluation of background subtraction algorithms with post-

processing,” in Proc. IEEE Int. Conf. Adv. Video Signal Based Surveill., 2008, pp. 192–

199.

[38] T. Bouwmans, F.E., and B. Vachon, “Statistical background modeling for foreground

detection: A survey,” Handbook of Pattern Recognition and Computer Vision, vol. 4, pp.

181–199, 2010.

[39] T. Horprasert, D. Hardwood, and L. Davis, “A statistical approach for real-time robust

background subtraction and shadow detection,” in IEEE Frame-Rate Appl. Workshop,

1999, pp. 1–19.

[40] K. Kim, T.H. Chalidabhonse, D. Hardwood, and L. Davis, “Real-time foreground seg-

mentation using codebook model,” Elsevier Real-Time Timaging, vol. 11, pp. 167–256,

June 2005.

[41] J. Xu, N. Jiang, and S.Goto, “Block-based codebook model with oriented-gradient

feature for real-time foreground detection,” MMSP, 2011.

[42] H. Ikeda and E. Ishidera, “An object detection method based on a likelihood background

model,” FIT2006, 2006, vol. 3, pp. 175–176.

[43] Z. Liu, K. Huang, and T. Tan, “Foreground object detection using top-down information

based on em framework,” IEEE Trans. Img. Proc., vol. 21, pp. 4204–4217, Sep. 2012.

[44] B. Ristic, S. Arulampalam, and N. Gordon, “Beyond the kalman filter : Particle filters

for tracking applications,” in Artech House Radar Library, 2004.

[45] A. Elgammal, D. Hardwood, and L.Davis, “Nonparametric model for background sub-

traction,” ECCV, 2000, pp. 751–767.

[46] R. Hess and A. Fern, “Discriminatively traned particle filters for complex multi-object

tracking,” in CVPR, 2009.

[47] Q. Wan and Y. Wang, “Multiple moving objects tracking under complex scenes,” in 6th

World Congress on Intelligent Control and Automation, 2006.

109

[48] F. Lutteke, X. Zhang, and J. Franke, “Implementation of the hungarian method for

object tracking on a camera monitored transportation system,” in Robotik, 2012, pp. 1–6.

[49] J. Gross, H. Karl, F. Fitzek, and A. Wolisz, “Comparison of heuristic and optimal

subcarrier assignment algorithms,” in International Conference on Wireless Networks,

2003.

[50] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers, M. Boon-

stra, V. Korzhova, and J. Zhang, “Framework for performance evaluation of face, text and

vehicle detection and tracking in video: Data, metrics and protocol,” IEEE Transaction

on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 319–336, Feb. 2009.

[51] Sobral A., “Bgslibrary: An opencv c++ background subtraction library,” in IX Work-

shop de Viso Computacional (WVC’2013), Rio de Janeiro Brazil, Jun 2013.

[52] Andrews Sobral and Antoine Vacavant, “A comprehensive review of background subtrac-

tion algorithms evaluated with synthetic and real videos,” Computer Vision and Image

Understanding, vol. 122, no. 0, pp. 4 – 21, 2014.

[53] N.J. B. McFarlane and C.P. Schofield, “Segmentation and tracking of piglets in images,”

Mach. Vis. Appl., vol. 8, no. 3, pp. 187–193, 1995.

[54] S. Calderara, R. Melli, A. Prati, and R. Cucchiara, “Reliable background suppression

for complex scenes,” in ACM International Workshop on Video Surveillance and Sensor

Networks, 2006, pp. 211–214.

[55] C. Wren, A.Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: real-time tracking of

the human body,” IEEE Trans. Pattern Ana. Mach. Intell., vol. 19, no. 7, pp. 780–785,

1997.

[56] P. Kaetrakulpong and R.Bowden, “An improved adaptive background mixture model

for realtime tracking with shadow detection,” in European Workshop on Advance Video

Based Surveillance Systems (AVBS), 2001.

110

[57] Z.Zivkovic, “Improved adaptive gaussian mixture model for background subtraction,”

in ICPR, 2004.

[58] Z.Zivkovic and F. van der Heijden, “Efficient adaptive density estimation per image pixel

for the task of background subtraction,” Pattern Recognition Letters, vol. 27, no. 7, pp.

773–780, 2006.

[59] J. Yao and M. Odobez, “Multi-layer background subtraction based on color and texture,”

in IEEE Computer Vision Recognition Conference (CVPR), 2007.

[60] N.M. Oliver, B. Rosario, and A.P. Pentland, “A bayesian computer vision system for

modeling human interactions,” IEEE Trans. Pattern Ana. Mach. Intell., vol. 22, no. 8,

pp. 831–843, 2000.

[61] W. Tsai, , M. Sheu, and C. Lin, “Block-based major color method for foreground object

detection on embedded soc platforms,” Embedded Systems Letters, IEEE, vol. 4, no. 2,

pp. 49–52, 2012.

[62] V. Reddy, C. Sanderson, and B.C. Lovell, “Improved foreground detection via block-

based classifier cascade with probabilistic decision integration,” IEEE Transactions on

Circuits and Systems for Video Technology, vol. 23, no. 1, pp. 1051–8215, 2013.

[63] A. Beaugendre and S. Goto, “Block-propagative background subtraction system for

uhdtv videos,” IPSJ Transaction on Computer Vision and Application, 2015.

[64] Waseda GOTO Lab’s HD and 4K UHDTV Dataset,

“http://www.f.waseda.jp/goto/html/uhdtv dataset.html,” .

[65] D. Bloisi and L. Iocchi, “Independent multimodal background subtraction,” in Pro-

ceedings of the Third International Conference on Computational Modeling of Objects

Presented in Images: Fundamentals Methods and Applications, Rome, Italy, September

2012, pp. 39–44.

111

[66] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “image quality assessment: from

error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp.

600–612, 2004.

[67] A. Beaugendre, S. Goto, and T. Yoshimura, “Fast uhd background modelling with

mixed order block updates,” in International Technical Conference on Circuits/Systems,

Computers and Communications ITC-CSCC, 2016.

[68] Xiaoyu Deng, Jiajun Bu, Zhi Yang, Chun Chen, and Yi Liu, “A block-based background

model for video surveillance,” in IEEE International Conference on Acoustics Speech and

Signal Processing, 2008, pp. 1013–1016.

[69] D. Russell and Shaogang Gong, “A highly efficient block-based dynamic background

model,” 11th IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS), pp. 417–422, 2005.

[70] A. Beaugendre, S. Goto, and T. Yoshimura, “Random block background modelling for

foreground detection in uhd videos,” in IPSJ SIG-CVIM: Computer Vision and Image

Media 200th, 2016.

112

List of Publications

Journal Papers

[J1] A. Beaugendre, S. Goto, and T. Yoshimura, “Real-time uhd background modelling with

mixed selection block updates,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E100-A, no. 2, pp. 1–11, 2017.

[J2] A. Beaugendre, S. Goto, and T. Yoshimura, “Adaptive block-propagative background

subtraction method for uhdtv foreground detection,” IEICE Transactions on Funda-

mentals of Electronics, Communications and Computer Sciences, vol. E98-A, no. 11,

pp. 2307–2314, 2015.

[J3] A. Beaugendre and S. Goto, “Block-propagative background subtraction system for

uhdtv videos,” IPSJ Transaction on Computer Vision and Application, vol. 7, pp.

31–34, 2015.

[J4] A. Beaugendre and S. Goto, “Multi-scale foreground detection system for 8k uhdtv

videos,” IIEEJ Transactions on Image Electronics and Visual Computing, vol. 2, no.

2, pp. 174–182, 2014.

[J5] A. Beaugendre and S. Goto, “Real-time refinement method for foreground objects

detectors using super fast resolution-free tracking system,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences, vol. E97-A, no.

2, pp. 520–529, 2014.

113

[J6] J. Xu, N. Jiang, H. Sun, A. Beaugendre, and S. Goto, “Real-time human detection

based on multi-scale bidirectional local template patterns,” IIEEJ Transactions on

Image Electronics and Visual Computing, vol. 1, no. 1, pp. 28–37, 2013.

International Conference Papers

[C1] A. Beaugendre, S. Goto, and T. Yoshimura, “Near real-time tracking system for 8k uhd

videos,” in International Technical Conference on Circuits/Systems, Computers and

Communications ITC-CSCC, 2016.

[C2] A. Beaugendre, S. Goto, and T. Yoshimura, “Fast uhd background modelling with

mixed order block updates,” in International Technical Conference on Circuits/Systems,

Computers and Communications ITC-CSCC, 2016.

[C3] A. Beaugendre, S. Goto, and T. Yoshimura, “Random block background modelling for

foreground detection in uhd videos,” in IPSJ SIG-CVIM: Computer Vision and Image

Media 200th, 2016.

[C4] A. Beaugendre, C. Zhang, J. Xu, , and S. Goto, “Enhanced moving object detection

using tracking system for video surveillance purposes,” in Visual Communication and

Image Processing (VCIP), 2012.

[C5] C. Zhang, J. Xu, A. Beaugendre, and S. Goto, “A klt-based approach for occlusion

handling in human tracking,” in 29th Picture Coding Symposium (PCS), 2012, pp.

337–340.

[C6] C. Zhang, A. Beaugendre, J. Xu, X. Xue, and S. Goto, “A novel klt-based scale feature

applied for scale adaptation in crowded scenes,” in Asian Conference on Computer

Vision (ACCV), 2012.

114

[C7] J. Xu, A. Beaugendre, and S. Goto, “Real-time human tracking by detection based

on hog and particle filter,” in International Conference on Computer Sciences and

Convergence Information Technology (ICCIT). IEEE, 2011, pp. 193–198.

[C8] A. Beaugendre, H. Miyano, E. Ishidera, and S. Goto, “Human tracking system for

automatic video surveillance with particle filters,” in Asia Pacific Conference on Circuits

and Systems (APCCAS). IEEE, 2010, pp. 152–155.

115

116

Appendix A

Dataset

A.1 Introduction

In this appendix chapter we present the different video sequences used in this thesis. First

of all, the 8K UHD video is part of the NHK Super Hi-Vision presentation videos. The 4K

UHD videos have been manually captured with a SONY 4K Handycam FDR-AX1. Finally,

there are 2 HD videos (1080p and 720p) also manually captured and a multi-view sequence

from the PETS 2009 dataset.

Each video present various difficulties from moving background parts, occlusions, small

size of objects of interest, etc. All the ground truth data (boundary rectangles and/or fore-

ground masks) have been extracted manually.

117

APPENDIX A. DATASET

A.2 8K Videos

A.2.1 Field

Name Field

Source NHK [19]

Size 65.2 GB

Length 00:12

Resolution 7680 × 4320

Number of frames 704

Description of content Five children are running through the stem field from bottom

to top of the scene.

Difficulties The stems of the field move a lot with the wind. It makes it

difficult to distinguish the movement from the object of interest

(children) and the many movements of the background parts

(field).

118

APPENDIX A. DATASET

A.3 4K Videos

A.3.1 Street1

Name Street1

Source Custom video

Size 1.3 GB

Length 01:14

Resolution 3840 × 2160

Number of frames 4440

framerate 60 fps

Description of content One man is coming from afar towards the camera until is passes

it.

Difficulties The main difficulty is the very small size of the object of inter-

est (the man) at the beginning of the video. It represents less

than 0.01% of the size of the image.

119

APPENDIX A. DATASET

A.3.2 Street2

Name Street2

Source Custom video

Size 1.7 GB

Length 01:37

Resolution 3840 × 2160

Number of frames 5799

framerate 60 fps

Description of content One man is coming from afar towards the camera until is passes

it.

Difficulties The background is more complex than the previous video.

There are some slight illumination changes and wind effects.

120

APPENDIX A. DATASET

A.3.3 Corridor

Name Corridor

Source Custom video

Size 2.8 GB

Length 02:47

Resolution 3840 × 2160

Number of frames 9746

framerate 60 fps

Description of content One man is passing the camera from the back to the far end

of the corridor. He enters a room to reappear moments later.

Then, he walk towards to camera and passes it.

Difficulties The lack of luminosity makes it difficult sometimes to distin-

guish the object of interest (the man) clearly. The second dif-

ficulty is the small size of the man when he reaches the far end

of the corridor. Last, the ceiling lamps change the illumination

when the man is getting under them.

121

APPENDIX A. DATASET

A.3.4 Screws

Name Screws

Source Custom video

Size 518 MB

Length 00:30

Resolution 3840 × 2160

Number of frames 1781

framerate 60 fps

Description of content One man is getting in the room and disposes screws at diverse

places then leaves.

Difficulties The main difficulty is to detect the small screws which are

visible only at full scale. The second is the part occlusion

with the chair which splits the object of interest (the man) in

multiple parts.

122

APPENDIX A. DATASET

A.3.5 Crossing

Name Crossing

Source Custom video

Size 1.05 GB

Length 01:04

Resolution 3840 × 2160

Number of frames 3844

framerate 60 fps

Description of content It is a standard street surveillance video in which cars and bus

are circulating.

Difficulties The main difficulty is the small size of the objects and the

occlusions with the background (trees and posts).

123

APPENDIX A. DATASET

A.3.6 Circle

Name Circle

Source Custom video

Size 875 MB

Length 00:53

Resolution 3840 × 2160

Number of frames 3171

framerate 60 fps

Description of content A group of men is meeting and creating a human circle. Then

they move altogether and finish by splitting in different direc-

tions.

Difficulties The strong shadows produced by the group is the main prob-

lem here.

124

APPENDIX A. DATASET

A.3.7 Illu

Name Corridor

Source Custom video

Size 263 MB

Length 00:15

Resolution 3840 × 2160

Number of frames 886

framerate 60 fps

Description of content One man is coming from the right, stops in the center for some

seconds and then leaves on the left.

Difficulties The main obstacle in this video is the sudden illumination

change which happens twice, from dark to bright and then to

dark again.

125

APPENDIX A. DATASET

A.3.8 80percent

Name 80percent

Source Custom video

Size 178 MB

Length 00:10

Resolution 3840 × 2160

Number of frames 610

framerate 60 fps

Description of content A man comes, masks the whole screen and then leaves.

Difficulties No particular difficulty except that the object covers the scene

entirely with his body.

126

APPENDIX A. DATASET

A.3.9 Laser

Name Laser

Source Custom video

Size 246 MB

Length 00:14

Resolution 3840 × 2160

Number of frames 855

framerate 60 fps

Description of content A green laser pointer is projected on a wall and moves quite

quickly.

Difficulties The laser’s size if very tiny which makes it difficult to see. Also

the laser moves quickly changing its shape a lot.

127

APPENDIX A. DATASET

A.3.10 Parking

Name Parking

Source Custom video

Size 43.2 GB

Length 40:37

Resolution 3840 × 2160

Number of frames 146 189

framerate 60 fps

Description of content A standard parking surveillance video in which cars come and

go away.

Difficulties The illumination changes a lot and very often but smoothly.

Many cars cross the scene and some park or leave. The fact

that it is a very long video car also be an issue for very slow

methods and/or those which require a lot of resources.

128

APPENDIX A. DATASET

A.3.11 Parking2

Name Parking2

Source Custom video

Size 62.5 MB

Length 0:10

Resolution 3840 × 2160

Number of frames 606

framerate 60 fps

Description of content A standard parking surveillance video in which cars come and

go away.

Difficulties Similarly to Parking, in this sequence, the illumination changes

slowly while cars pass through. The video is very short on

purpose to easily test other methods.

129

APPENDIX A. DATASET

A.4 Other videos

A.4.1 Single

Name goto lab 01

Source Custom video

Size 2.8 GB

Length 02:47

Resolution 1920 × 1080

Number of frames 9746

framerate 30 fps

Description of content A girl si passing in front a tree during a windy day.

Difficulties The leaves in the background are moving a lot because of the

wind making it difficult to detect only the object of interest.

130

APPENDIX A. DATASET

A.4.2 Crossing2

Name goto lab 02

Source Custom video

Size 2.8 GB

Length 02:47

Resolution 1280 × 720

Number of frames 9746

framerate 30 fps

Description of content Two men are crossing on a plateform. When they cross, one

of them falls ,gets up and leaves.

Difficulties There is a total occlusion between the two objects of interest.

131

APPENDIX A. DATASET

132

Appendix B

Quality Metrics

The foreground detectors can provide two kinds of results: a foreground mask and a list of

blobs. The foreground mask is a pixel level output and it shows all pixels which have been

set to 255 when detected as foreground and 0 when detected as background. The list of blobs

is an object level output which contains all the boundaries of the connected components

detected. The foreground mask is used to compare the visual quality but there is not notion

of object, the content is indifferent. The blobs on the contrary bring the notion of objects,

more complex entities which have a position and a shape. For each one of those type of results

appropriate metrics are required.

B.1 Object Metrics

The evaluation of the accuracy and precision of the foreground objects and of the trackers

can be done by using the CLEAR metrics [50]. The CLEAR metrics consist of a total of four

scores: a pair of accuracy and precision scores, one pair for each detection and tracking. The

accuracy assesses the existence or not and the precision the rightness, if the object/tracker

has a similar shape and size as its ground truth model.

133

APPENDIX B. QUALITY METRICS

Before anything else, the system output objects (foreground object or tracker) must be

associated one-to-one with ground truth objects. With N objects and M ground truth objects,

the association should result in a N × M matrix. However since we require a one-to-one

correspondence, we add fake output objects if N < M or we add fake ground truth objects if

N > M . Having more output objects than ground truth objects means that there are more

detected objects than there are in the reality, we are in a case where there are false positives.

The contrary means that some ground truth objects are missing in the results.

The accuracy score for the detection, also called the Multiple Object Detection Accuracy

(MODA), is based on the count of misses mt and false positives fpt for each frame t. The

normalized score is defined as:

N–MODA = 1−
∑Nframes

t=1 (cm(mt) + cf (fpt))∑Nframes

t=1 N
(t)
G

, (B.1)

with N
(t)
G being the number of ground truth objects in the tth frames. The criticalness

of the number of misses and false positives can be customized through the cost functions

cm() and cf () (both = 1). It is very important to notice that if the sum of misses and false

positives is equal or bigger than the total number of ground truth objects (m+ fp ≥ NG, the

accuracy score can become null or negative.

The tracking accuracy, Multiple Object Tracking Accuracy, follows a similar formula but it

takes an additional parameter into account, ids the number of ID mismatches. Each fusion or

split will be counted as an ID switch. The cost functions include cs = log10 weighted function

to penalize the ID switches.

N–MOTA = 1−
∑Nframes

t=1 (cm(mt) + cf (fpt)) + cs(idst)∑Nframes

t=1 N
(t)
G

. (B.2)

The Moving Object Precision scores, MODP for the detected objects and MOTP for the

134

APPENDIX B. QUALITY METRICS

tracked objects, follow the same formula:

N–MODP =

∑Nframes

t=1

∑Nt
mapped

i=1
|G(t)

i

⋂
D

(t)
i |

|G(t)
i

⋃
D

(t)
i |∑Nframes

t=1 N
(t)
mapped

. (B.3)

The precision is based on the calculation of the overlapping areas between the Ground

Truth objects G(t) and the system output objects D(t) for the frame t. N t
mapped is the number

of object pairs mapped. If no object has been mapped, the precision will be forced to zero

for the frame.

B.2 Pixel Metrics

The evaluation for the foreground mask is based on static quality metrics. Usually the fore-

ground mask is a black and white image, with the pixels detected as background in black and

the pixels detected as foreground in white. The majority of them require to count the number

of foreground pixels classified as foreground also called True Positive (TP), the number of

background pixels classified as background or True Negative (TN), the number of False Posi-

tive (FP) which are background pixels classified as foreground and the number of foreground

pixels classified as background or False Negative (FN). To measure the static quality metrics

we computed different metrics: the Recall or detection rate which focuses on missed detection

or false negative

Recall =
TP

TP + FN
, (B.4)

the positive prediction or Precision (Pre.)

Precision =
TP

TP + FP
(B.5)

135

APPENDIX B. QUALITY METRICS

which takes into account the background noise and incorrect detection or false positive. A

perfect recall score does not necessary mean that the detection is perfect, an foreground mask

with only pixels detected as foreground will obtain the perfect recall score. The same situation

happens with the precision and an mask in which all the pixels set as background. Therefore,

FN and FP as well as recall and precision measures should not be consider separately.

The Similarity measure considers both incorrect and miss detections equally:

Similarity =
TP

TP + FN + FP
. (B.6)

We measured another metric which uses the pixels metrics, the F-score which is the

weighted harmonic mean of Precision and Recall is defined by

F–Measure =
2 ∗ Precision ∗Recall
Precision+Recall

. (B.7)

Additionally we compute the perceptual measure SSIM (Structural SIMilarity) introduced

in [66]:

SSIM(S,G) =
1

n

n∑
i=1

(2µSiµGi + c1)(2coυSiGi + c2)

(µ2Si
+ µ2Gi

+ c1)(σ2Si
+ σ2Gi

+ c2)
, (B.8)

in which σSi , σGi are the standard deviations, µSi , µGi the means and coυSiGi the covari-

ance. The different values used in the literature are c1 = (0.01 × L)2 and c2 = (0.03 × L)2

in which L is the dimension size and L = 255 for gray-scale images. Finally, the Peak

Signal-Noise Ratio (PSNR) is calculated by:

PSNR =
1

n

n∑
i=1

10 log10
m∑m

j=1 ||Si(j)−Gi(j)||2
. (B.9)

136

	List of Figures
	List of Tables
	Introduction
	Video understanding and Foreground Object Detection
	Foreground Detection in Applications
	Background Subtraction
	From SD to UHD and more
	Problems
	Noise sensibility and False Positives
	Time and memory consumption
	Down-scaling
	Objectives of the solutions

	Contributions
	Real-Time Refinement Method for Moving Object Detectors
	Adaptive Block-Propagative Background Subtraction System for UHD Videos
	Mixed Block Background Modelling for Foreground Detection in UHD videos

	Real-Time Refinement Method for Moving Object Detectors
	Introduction
	Foreground object detection
	Multi-objects tracking systems

	Moving Objects
	Object refinement
	Blob filter and Occlusion Detection
	Keep Blob
	Occlusion handling: splitting of the fused blobs

	Blob matching
	Experimental Results
	Noise Removal
	Occlusions
	Resolution-free system example: UHD sequence
	Tracking performances

	Conclusion

	Adaptive Block-Propagative Background Subtraction System for UHD Videos
	Introduction
	Adaptive Block-Propagative Background Subtraction
	Propagation and Dynamic Block Size
	Detection Propagation

	Experimental Results
	Discussion
	Full frame refresh
	Background update
	Position of the seed and adapted content
	Face detection application

	Conclusion

	Mixed Block Background Modelling for Foreground Detection in UHD videos
	Introduction
	System overview
	Background Subtraction
	Experimental results
	Quality comparisons
	Visual comparisons
	Speed and memory comparisons
	Example of 8K tracking

	Conclusion

	Conclusion
	Summary of the different works
	Discussion and Future

	Bibliography
	List of Publications
	Appendix Dataset
	Introduction
	8K Videos
	Field

	4K Videos
	Street1
	Street2
	Corridor
	Screws
	Crossing
	Circle
	Illu
	80percent
	Laser
	Parking
	Parking2

	Other videos
	Single
	Crossing2

	Appendix Quality Metrics
	Object Metrics
	Pixel Metrics

