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SUMMARY 

In our study, we present research work on classification of ships using one of the Deep 

Learning algorithms for port security. Based on recent analysis of findings on recent 

researches, the method which was suiteable for our objective was Faster Region Convolution 

Neural Network (Faster R-CNN) which we used it to classify various types of ships found in 

port environment. Faster R-CNN method for classification outperforms many other methods 

especially for the purpose of automatic classification in a maritime environment. The choice 

of this method was arrived at after detailed analyisis of other state of the art object 

classification models including the analysis of Faster R-CNN model itself on other types of 

data. Previously Faster R-CNN had been applied on the classification of other distinct objects 

different from  ships.  

In our approach the classification process was crried out with two experiments using ship 

images of at least 500 pixels on the shortest side for the purpose of uniformity. Otherwise the 

approach could take any size of image since its functionality is a scale invariant type of model. 

The first experiment was  useful in determining the appropriate number of images which 

could give consistent results on correct classification of ships. It also revealed a positive 

correlation  relationship between the number of images and the  precision scores scores of 

the model. In the second part of the experiment, we used the method to classify the 9 types 

of ships, whih are the target group of ships in the study.  

From the results, it is evident that our approach achieved a higher mean precision value  

which outperforms other approaches which have been used in marine vessel classifications. 

Apart from the high precision rates, our approach is quite fast on run time per image 

compared to Fast R-CNN and CNN methods. In fact, the speed is 25 and 250 times faster 

than Fast R-CNN and CNN respectively. This may be considered a better classification 

system for ships which do not need two way communication like the case of  Automatic 

Identification System. AIS is a the primarytool for maritime safety for the vessels near the 

coasts. The AIS equipment is attached on compliant ships and it continuously transmit 

information about vessel including its, identity, position, course and speed. This system is 
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only applicable only to compliant vessels  By incorporating Faster R-CNN with the AIS may 

be a suitable method for automatic classification of ships.  

This study has been achieved through various stages which have been presented in form of 

five chapters. In the beginning various literature was reviewed to identify the research gap 

and underline the existing challenges facing ship classification methods.  In order to arrive 

at the appropriate approach, the detailed functionalities of the various state of the art methods 

were critically examined. This was done by examining the architectural designs and doing 

quality comparison. Based on the results obtained in our approach, the future prospects in the 

reseach is illustrated by a conceptual framework of Faster R-CNN-AIS identification system. 

Key Words: Deep learning; Region Proposal Network; Convolution Neural Network; 

Object Classification; Average Precision; Automatic Identification System. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

1.1.1 Trending issues on Maritime safety and efficiency  

Monitoring of ships in a marine environment has become an increasingly serious 

phenomenon among coastal countries in the world. These countries have been taking steps 

to improve surveillance and control activities of marine vessels and ports with the aim of 

solving security and efficiency problems. Maritime shipping activities depend heavily on 

safety at the sea, ports and voyage routes and has been classified by International Maritime 

Organization (IMO) as the riskiest industry in the world.  

In this case, it has become a general concern to various stakeholders to enhance the culture 

of safety and ease of operations within the maritime transportation industry and shipping 

organizations. The safety requirement in sea transport is attracting more new approaches to 

solve the emerging threats of piracy, illegal fishing, human trafficking, pollution and 

terrorism. In recent times, there are numerous incidences reported on piracy along the horn 

of Africa, near the coastlines of embattled country of Somalia which has affected import and 

export businesses in east and central parts of Africa through Kenyan ports. 

1.1.2 Global view on Port security 

Concerns on improving security and efficiency on ports across the world have led to various 

inputs through research and modification of ship monitoring systems. Most of the recent 

developments have resulted from various maritime conventions and safety regulations with 

a global perspective. A few examples of these recommendations include International 

Convention for Safety of Life at Sea (SOLAS), International Convention for Prevention of 

Pollution of Ships (MARPOL), International Regulations for Preventing Collisions at Sea 

(COLREG), International Convention on Load Lines (LOADLINE), The International 
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Management Code for the Safe Operation of Ships and Pollution Prevention (ISM code), and 

The International Ship and Port Facility Security Code (ISPS code).  

Based on these international conventions, recent researches have shifted focus to 

understanding ship image-based security systems using ship images. This is critical to 

modern maritime issues surrounding prediction of threats. Ports have been widening in size 

and the complexity of maritime scenes caused by many vessel activities, waves, small vessel 

size, and occlusions. For instance, the United States of America is served by 360 commercial 

ports and is facing real threats in form of smuggled contraband, Water Borne Improvised 

Explosive Devices (WBIED), and other disruptive actions [1].  

 

In a port environment, ships are monitored from a control area by security personnel. These 

officers are tasked to keep watch and to recognize situation of ship channels during voyage 

of own vessels as well as the situation of other ships’ behaviors. Understanding ships’ 

behaviors is therefore a fundamental requirement for enhancing security in port environment. 

However, it is insufficient to rely on human on watchtowers as it will be constrained by two 

factors. First, human is incapable of making clear observation around the vessels especially 

from the rare beams of ships. Secondly, human watch relies on visibility. These are the 

reasons why various technological approaches about detecting, recognizing and classification 

are employed in a marine environment.  

 

1.1.3 Overview of Automatic Identification System (AIS) 

For a long time, Automatic Identification System (AIS) and radar have been the most typical 

approaches used in monitoring ships with the primary reason of ensuring safety in port and 

the entire marine navigations by ships. AIS can accurately classify the behavior of compliant 

ships of which they have AIS installed in them. The International Maritime Organization, 

long-established that not all ships are installed with the AIS. This means that the ships 

without AIS installed in them are difficult to identify, and monitoring of their activities and 

other suspicious behaviors is a challenge.  
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It is envisaged that in the future the AIS will acquire new capabilities in vessel tracking tools 

and technology and is expected to give marine transport industry real time solutions to the 

many maritime issues. The incorporation of newer technologies may lead to moving the sea 

transport beyond the “only compliant” ships where there is manual aggregation and analysis 

of data for identification insights and intelligent gatherings. AIS can achieve highly 

dependable results to the marine transport industry questions surrounding ship monitoring 

and port traffic management. In this case, incorporation of new technologies for ship 

classification should improve its operation in providing real time classification potentials. 

The new applications can bring efficiency in port operations while providing continuous 

visibility of port and ship activities which in the long run cut management costs and improve 

on security decisions.  

Modernization and expansion of ports is heading towards proactive approaches rather than 

reactive ways to ship incident management by taking advantage of integration of AIS data 

with newer approaches. Previously, AIS data were very limited to incident response 

worldwide where only real-time vessel positions could provide immediate visibility to key 

vessel information. AIS and newer classification capabilities are becoming an integral part 

of real time plans and continuous applications which could transform port security systems.  

1.1.4 Research trends 

There are efforts made in the past through research as an attempt to address the technology 

gap in ship monitoring and surveillance. Here discussed are a few of them which highlights 

the research trend in this field.  

 

Xuefeng et. al. [2] proposed to use ship behavior recognition algorithm based on video 

analysis, and verified it with a ship-borne video. Their analysis is based on the behavior of 

ship’s silhouette by considering its size and shape with respect to time. They drew a 

conclusion that if the size of the observed ship’s silhouette changed and the shape did not 

change, then the focused ship was headed towards the observer. At this point, their conclusion 

was that the observer treated the approaching ship as a threat and therefore needed to signal 
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a warning. However, in this approach, they reported a difficulty in meeting their algorithm 

thresholds which included time interval, field angle of camera, size of unit pixels and the 

resolution constrains.  Jiang el. al. [3] presented a novel method for ship classification by 

using Synthetic Aperture Radar (SAR) image to distinguish ships based on superstructure 

scattering features. Their approach comprised of three independent steps which included: 

ship isolation from the sea, parametric vector estimation and categorization using a support 

vector machine. The approach tested the classification by using RadarSat-2 images while the 

ground truth information was obtained from the AIS. The results of the approach showed that 

accuracy was up higher than the previous state of the earth approaches. 

 

Alex-Net Deep Convolution Neural Networks have been used to classify marine vessel 

images with different configurations [4]. This was done by measuring the top-1 and top-5 

accuracy rates. It involved tuning specific range of vessels which depended on commodity 

hardware and size of images. This method used a dataset of 130,000 images of maritime 

vessels and labelled 35 classes. The method registered 80.39% and 95.43% accuracy rates 

for top-1 and top-5 accuracy rates respectively. In the case of Faster Region Convolutional 

Neural Network (Faster R-CNN), the ground truth of image source with a varied lighting 

conditions do not have adverse effect on performance. 

 

1.1.5 Research Gap 

Ships activity analysis and identification requires detailed understanding of ship location, 

movement, and identification system capabilities. To obtain these attributes, there is a need 

to consider feature based systems which can be used to detect, recognize, and track vessels. 

Many approaches that have been used previously, have limitations in automatic 

classifications since most rely on two-way transmission of data. Most problems relate to the 

limited use of Automatic Identification System (AIS) data which can only be utilized on 

compliant ship. It is therefore preferable to consider ways which can address such limitations. 

The continuous security threats in marine environment has triggered many ideas in tackling 

ship monitoring and surveillance issues.  
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The gaps in the state of the earth approaches are majorly on automatic classifications, the 

speed of detection and the average precision values. 

 

Our study uses the Faster R-CNN method for ship classification for port security, a method 

which has been found to have higher performance both in accuracy and runtime comparisons. 

A comprehensive Faster R-CNN method is an efficient, accurate, and consistent in 

performance method using Region Proposal Networks (RPNs) in region proposal generation.  

It is nearly a cost-free method because it operates by sharing convolutional features with the 

detection networks [5]. In addition, the learned RPN improves the region proposal quality 

and hence the improved accuracy on object detection accuracy. Our aim is to obtain 

automatic classification of different types of ship in a port environment. 



1.2 Research Objective 

This study is influenced by the achievements in object detection approaches based on the rapidly 

growing field of Deep Learning. Many of these have been attempting to achieve high performance in 

accuracy, speed, efficiency and become more robust. The highly-cluttered scenes in marine 

environment are triggering further progress in this sphere of identification and classification of vessels. 

There is growth in the amount of data and evolving technologies that are dealt with in automatic 

classification fields. In our study, we focus on understanding the dynamics surrounding ship 

classification approaches with the view of contributing towards security solutions in ports and marine 

industry. In this section, we discuss our research objectives and a preview of methodology used in 

carrying out the experiments. 

In our research, we first highlighted the situations in marine environments including ship monitoring 

systems, port security system and the challenges faced in marine transport. We highlighted the security 

incidences brought about by the failures in the identification systems in place. We also highlighted   

emerging new types of incidences which have been shared globally through the International Maritime 

Organization (IMO) over time. This clarifies the real problems affecting the ports of ships are the key 

components.  

The study covered on research trends related to ship detection, identification and classification with 

consideration of past, recent, current and to point out the prospects in emerging research contributions. 

This was a fundamental step to reveal the research gap which would then inform on the decision to take 

on choosing an appropriate approach. Upon understanding of other approaches, their strengths and 

weaknesses were vital in deciding on our methodology to obtain improved results. 

For the study to be realistic in operations, clear understanding of neural network approaches had to be 

done. In this study, therefore, the progressive development of Deep Neural Networks from single layer 

network to Deep Convolution Neural Network was done to ensure assess the capabilities of many 

approaches and to compare with our method.  

Having realized the research gap, the purpose of research therefore focused on ship classification using 

Faster Region Convolution Neural Network (Faster R-CNN) for port security. The main objectives were 

as follows: 

1. To classify classes of ships using Faster R-CNN for port security 

2. To compare performance of Faster R-CNN with other approaches in ship classification 

3. To identify area of improvement in future research on ship classification for port security 
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1.3 Thesis Organization 

The study thesis has been organized into five chapters of introduction in Chapter 1 and research trends 

in Chapter 2. Details of our approach is presented in Chapter 3 while experimentation and results 

discussions are presented in Chapter 4. Based on discussions of the experiment results, conclusions and 

recommendations are provided in Chapter 5. The last sections include references and academic 

achievements of the author. The details of the thesis organization are discussed as follows; 

In Chapter 1, introduction of the study is elaborated to include existing information related to the study 

objectives, existing application of AIS and its challenges, trending researches on ship classification and 

identifying research gaps that exist in the literature. First, information concerning marine transport have 

been highlighted based on global emerging issues. The information provides a clear understanding of 

issues of port security and its impacts on coastal countries which depend on ports for trade. A highlight 

of major conventions is made to reveal the ever-changing needs in providing proper ship monitoring 

system for ship monitoring. 

The chapter also gives a brief description on the use of AIS in monitoring of ships and its limitations 

on successful implementation on all kinds of ships. Here, we track its application over time and 

possibilities of enriching its performance with integration of newer approaches. The diminishing 

capacity of AIS is revealed and linked to advancement in port operations due to modernization in most 

countries. A few researches related to improving the functionality of the existing system, the AIS, are 

also presented to give a direction in which newer technologies may be leading to. This also helps to 

identify the existing research gaps and challenges that triggered the decision of using our approach of 

Faster R-CNN method for ship classification. The study approach is then aligned to information 

provided in the introduction. 

In Chapter 2, research trends on image classification models are discussed with review of past, recent, 

and current researches being focused. In the beginning, an elaboration of object recognition models is 

presented to understand their operations, relationships and their properties. This begins with the 

overview of Artificial Neural Networks (ANN) followed by Convolutional Neural Networks and finally 

Recurrent Convolutional Neural Networks. Introductory note on Deep Convolutional Networks is 

briefly mentioned since much of the information is provided while describing our study approach of 

Faster R-CNN in Chapter 3. This chapter also provides information on machine learning and Deep 

Learning models that have been used in classification of ships which forms the basis of performance 

comparison with our approach. 
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Thesis provides detailed information of our approach of Faster R-CNN in Chapter 3 with focus on its 

development from the Fast Region Convolutional Neural Networks with incorporation of region 

proposal. A comparison is made on between other models in the same chapter with mention of its 

successes on various datasets (mostly of distinct images) with different attributes from ship images. 

In Chapter 4, the methodology used in carrying out the experiment is discussed. This includes analysis 

of performances of various models on ship classification over the recent years and predicted the future 

potential of Deep Learning approaches in better classification of ships. Description of datasets used and 

preprocessing are also elaborated. The step by step experimentation is highlighted and results provided 

in form of tables and figures. Description of respective results data is also given to explain the nature 

of the results. 

Summary of the experiment findings are provided in Chapter 5 where conclusions and 

recommendations from the research findings are made. Conclusions are provided to reveal the strong 

and weak points of our research and to recommend on future research work. In addition, a conceptual 

framework of Faster RCNN/AIS identification model is presented as a futuristic prospects of our study. 
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CHAPTER 2 

RESEARCH TRENDS 

2.1 Concept overview of Artificial Neural Networks (ANN) 

Object detection, identification and classification models have developed more profoundly with the 

emergence of Deep Learning approaches. The development of neural networks has inspired many 

researchers which started with the interests in the neural processes and neurons of a human being. 

Scientists describe human beings as self-intelligent based on these neural processes. This human feature 

formed a baseline in the introduction of neural networks in machine learning models. The neural 

networks in machine learning consist of series of neurons and nodes, which are interconnected to 

perform some processes resulting in an output. The connection between neurons are weighted, based 

on the intended function and learned for a collection of data including images, characters and even facial 

features of humans and other creatures. 

In this section, we present various classification systems based on the neural network models. To begin 

with, we discuss the architecture of Artificial Neural Networks and their properties. There are several 

classification systems based on ANN which have been developed over years. Some of them include 

Probabilistic Neural Network, Hamming Neural Network and Morphological Neural Network. The 

details of these networks are discussed and illustrated in this section. Much information on these models 

have been provided based on previous researches in [6], [7], [8], [9], [10] and [11]. 

2.1.1 Probabilistic Neural Network (PNN) 

Probabilistic Neural Network (PNN) is one of the first single layer networks which performs well in 

data classification than the old state of the earth models. The classification method for this network 

follows the rule of Bayes maximum a posteriori classification scheme and the Parzen kernel PDF 

estimation model. Its architecture is made of four layers as shown in Fig. 1 below. The input pattern 

vectors, of L dimensions are received as input layer 𝐗 and are normalized. This means that every input 

pattern vector may belong to one of the c classes. The 𝐰 layer possess the number of weights which 

store components of the reference patterns. The neurons wcn, where each belongs to one of the ωc 

classes (1 ≤ c ≤ C), computes a kernel function of its reference patterns, and is stored in weights of 

𝐰 and the present input, in accordance with the formula; 

wcn(𝐱) = K (
𝐱−𝐱cn

hc
), for 1 ≤ c ≤ C, and 1 ≤ l ≤ Nc,                                                                         (1) 

Where  xcn represents the n-th prototype pattern from an c -th class of ωc, 
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hc Represents a parameter that controls the effective width of the kernel for the respective class hence 

acting as a zone of influence. 

The Nc represents the number of available prototypes for the respective classes. 

The outputs of the neurons from the layer 𝐰 are then fed into summation layer, which is composed of 

C neurons. For respective outputs, each follows the Eq. (2) which is the Parzen method for non-

parametric density estimation. 

gc(𝐱) = αc ∑ K (
𝐱−𝐱cn

hc
)

Nc
n=1 ,                                                                                                                  (2) 

Where αc represents a scaling parameter. Gaussian kernel is selected for K which leads to the function; 

gc(x) =
1

Nc
∑ e

−
∥x−xcn∥2

2σ2Nc
n=1 ,                                                                                                                 (3) 

In this Eq. (3), the same parameter σ is substituted for hc  for all the classes, and the common 

multiplicative constant is omitted. Therefore, one neuron of the summation layer with all its preceding 

neurons composes the Kernel PDF estimation path, specific to a given class. The final layer ῼ selects 

one gc(x), which gives the maximal response. Its index j indicates the class to which the input pattern 

has been classified by the network; 

ωc′ = arg max(gc(x))     1 ≤ c ≤ C              (4) 

The whole network realizes the mean average precision (MAP) classification rule which follows the 

maximum membership strategy. 

This approach has been widely used in computer vision problems for instance in gesture recognition 

and tracking. Input images are first projected to low dimensional space, then used to train the algorithm. 

The classification is based on affine moment invariants which allow moderate affine variations of the 

input images of pictograms. Table 1 shows the summary of the properties of PNN method. 

Table 1 Properties of PNN 

Merits Demerits 

1. Fast in training 

2. Bayes optical classifier 

3. Parallel structure 

1. Slow in response 

2. High memory requirements 

3. No easy simple method for σ selection 
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2.1.2 Hamming Neural Network (HNN) 

The second model of artificial neural networks is Hamming Neural Network (HNN) which allows 

classification of patterns whose features can be measured with hamming distance.  This approach was 

first proposed by [6]. This method directly realizes the one-nearest neighbor classification rule. Its 

structure is as shown in Fig. 2 below; 

Input x Binary Distance 

Layer W  

MAXNET layer 

(Winner-takes-all) M 

Output (One-of-C) 
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The Hamming Neural Network contains four auto associative versions and five hetero-associative layers 

of neurons. It has larger pattern capacity than the probabilistic neural network. It is also faster in training 

and recognition than PNN. It classifies test pattern represented by a feature vector x into one of the C 

classes. It consists of setting row matrix  W with the following prototype patterns; 

wi = Xi                                                                                                                                                                      (5) 

Where; 

 1 ≤ i ≤ C is the number of prototype pattern Xi. Each has a length of length L , 

 wi is the ith row of the matrix  W, of dimension C × L.  

The computation time is linear with the size and the number of input patterns C. MAXNET selects a 

winning neuron indicating the class input pattern. MAXNET is initialized by assigning negative values 

to the square matrix M of dimensions C × C except of the main diagonal which is 1.0 since it implies 

self-excitation of a neuron. The values used to initialize M is determined by  

mkl = {
  −

1

C−1
+ ξkl, for k ≠ 1

1, for k = l
                                                                                                                           (6) 

Where; 

 1 ≤ k, l ≤ C, C > 1, ξ is a sufficiently a small random value for which | ξ| ≪ 1 (C − 1).  ⁄ However its 

modification, assigns the same value ξk to all mkl for k ≠ 1. This is explained in the equation: 

mkl = mk = {
  −

1

C−t
+ ξkl, for k ≠ l

1, for k = l
                                                                                                       (7) 

This computation transforms the values of M to be near-Optimal in terms of the network convergence. 

The complexity for the general case is of order O(C log(LC)) for general case and for the unique 

prototype vector is  O(C log(L)). The unique prototype vector therefore becomes the nearest to the input 

pattern. The advantage of this modification is significant reduction in memory as the matrix M reduces 

to a vector of length C. However, the most efficient and convergent solution consists of setting equal 

weights for all neurons in the MAXNET layer as follows 

mkl = mk = {
  −

1

C−t
+ ξkl, for k ≠ l

1, for k = l
                                                                                                     (8) 
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The  t element is a time step in the classification process. The mk values must be modified in each stage 

from which the convergence is achieved in p − 1 − r, for r > 1 indicates several nearest prototypes 

stored in W. By choosing the two models, it will influence the speed of convergence of the classification 

stage which is determined by the type of stored prototypes. The run-time stage neurons of the distance 

layer, the binary hamming distance between the input patterns x and the prototype patterns already 

stored in W is computed as in Eq. (9) below. 

hi(x, W) = 1 −
1

L
DH(x, Wi)                                                                                                                   (9) 

Where 1 ≤ i ≤ C, bi ∈ [0,1]  is a value of an i th neuron in this layer, DH(x, Wi) ∈ {0,1, … , L}  is a 

Hamming distance between the input patterns x and ith stored prototype pattern, Wi. Usually all feature 

vectors are assumed to have coefficients from the set {−1, +1} then reduces to  

hi(x, W) =
1

2
(

Wix

L
+ 1) =

1

2
(

1

L
∑ Wir

L
r=1 xr + 1)                                                                                (10) 

For the input vectors with values from the set {0,1} the hamming distance can then be determined as  

hi(x, W) = 1 −
Wix

L
= 1 −

1

L
∑ Wir

L
r=1 xr                                                                                             (11) 

Extension the allowable values from the binary set {−1, +1} to the ternary {−1,0, +1} where value 0 

indicates an additional state whose role is to express certain condition of “don’t know” state. During the 

classification, the MAXNET layer performs recursive computations to select a winner neuron in 

accordance with the scheme 

si[t + 1] = θ(∑ mij
L
j=1 sj[t]) = si[t] + ∑ mij

L
j=1,i≠j sj[t]                                                                     (12) 

Where, si[t] is an output of the ith neuron in MAXNET at the iteration step t, while θ denotes a function 

which suppresses all negative values to 0 as follows; 

θ (x) = {
x, x > 0
0, x ≤ 0

                                                                                                                               (13) 

This means that the output of a neuron from this layer goes beyond 0 its signal si is also set to 0. The 

role of iterative process is to proceed until only one neuron has a value different from 0. Hence, this 

neuron is a winner of the process and its index indicates the determined class of the input pattern. The 

properties of Hamming Neural Network are summarized in the Table 2 below: 
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Table 2 Properties of HNN 

Advantages  Disadvantages 

1. Fast training  

2. Fast response 

3. High Capacity 

1. Binary input 

2. Only Binary distance (Hamming) 

3. Iterative process 

 

2.1.3 Morphological Neural Network 

Morphological Neural Network (MNN) consists of a group of neural networks which exhibit many 

desirable properties such as high capacity, resistance to the erosive and dilative type of noise, as well 

as ability to respond by just one step process. These properties make it more popular than HNN and 

PNN on pattern classification community, especially on real-time systems. Its establishment was to the 

need for very fast neural solutions. The basic concepts of MNN utilizes the mathematical lattice theory. 

The Fig. 3 shows the MNN model which operates in respect to the Eq. (14) below. 

yk = θ(pk ⋁ rik(rik + wik)L
i=1 )                                                                                                           (14) 

Where rik is a pre-synaptic response which transfers excitatory (rik = +1), or inhibitory (rik = −1), 

incitation of an ith neuron, pk is the post-synaptic response of a kth neuron to the total input signal, ∨ 

denotes a max product, and finally θ is a saturation function. The MNN model structure is illustrated in 

the Fig. 3.  

In [7], MNN structure was modelled for classification of road sign recognition. In this version of MNN, 

a set of N input/output pairs are given as (xi, yi),……… (xN, yN). In this case, x is the linear version of 

an image of a sign and y is a binary version of a pattern’s class. The input X, therefore, contains a 

binarized pictogram of a tracked sign. This robustness of MNN model made binarization and sampling 

possible to be carried out in accordance to classes if pictograms which is useful in image processing. 

The properties for MNN are summarized in Table 3 below; 
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Fig. 3 Architecture for Morphological Neural Network 

The max product ∨ for two matrices Apq and  Bqr is a matrix Cpr, with elements Cij is defined as  

Cij = ⋁ (aik + bkj)
q
k=1                                                                                                                          (15) 

and similarly, the min operator ∧ is defined as 

Cij =  ⋀ (aik + bkj)
q
k=1                                                                                                                        (16) 

Table 3 Properties of MNN 

Advantages Disadvantages 

1. Fast running 

2. Fast response 

3. High capacity 

4. Associative Memory resistant too 

5.  The morphological noise 

1. Lattice based (requires order relation on 

data) 

x2 

xL 

x1 

∨
pk

                     

θ 

 

r1k 

r2k 

rLk 

y 
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2.2 Concept Overview of Convolution Neural Networks (CNNs) 

Many Researches related to computer vision using Deep Learning have achieved better results 

compared to artificial neural networks. Some of the outstanding features in Deep Convolution Neural 

Network approaches include non-utilization of manual features of target data. That means Deep 

Learning has capability in extracting and hence learning features with high independence. Compared to 

Artificial Neural Network, these approaches contains many layers with nonlinear processing units of 

which each layer transform inputs from the previous layer leading to formation of hierarchical data. 

This implies that high level features are more abstract than lower level features.  

Basically, CNNs have two types of layers: convolutional layers and pooling layers. The convolutional 

layer takes feature maps of the previous layer as inputs which are processed as 2-dimensinal convolution 

and learnable filters. The next layer receives them as stack of new feature maps. Thus, is expressed 

mathematically in [12] as 

 Xn = f(∑ Wn
m ∗ Xm + bnm ),                                                                                                               (17) 

Where Xn represents nth feature maps, Wn
m are the filters which operate on convolution process. bn 

shows value that corresponds to each feature map. In CNNs the convolutional layers only allow neurons 

to connect with a local region of input hence reducing the number of parameters in the model. This 

makes CNN to accept lager dimensional inputs which is not the case in ordinary neural networks. These 

processes are well illustrated in [8] the CNN model architecture. In this model, the convolutional layer 

is preceded by the pooling layer which summarizes the neighboring feature detectors thereby reducing 

the number of features for the next layer. This is achieved by taking the optimal values of a neighboring 

feature patch and passed to the next layer. This is a unique feature for CNNs which allows the creation 

of Deep Neural Network, by stacking multiple layers and alternated between convolutional and pooling 

layers. Fig. 4 shows the CNN model before it is linked with multiple layer perceptron for classification. 
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Fig. 4 CNN architecture model before linking with multiple layers 

 

2.3 Recurrent Neural Network (RNNs) 

In Recurrent Neural Networks, the time component is introduced. It acts like feedforward neural 

networks alongside feedback loops through time. In this case, the neurons activate other neurons which 

fire at a later point in time. This time component and robust structure enables the network to use the 

available inputs as well as other inputs encountered earlier. RNNs are attributed to better results on 

speech recognition, language translation, and connected handwriting recognition but are difficult to 

train as compared to other recognition models. A symbol structure of RNN is illustrated in Fig, 5. 

Based on the various models in Deep Learning, there are many important concepts which has attracted 

more researches on the use of machine learning approaches. The research development trends started 

with simple single layer models and now we have multiple neurons to neural network architectures 

which are being applied in more complex problems like classification of ships. 
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Fig. 5 Symbolic structure of Recursive Neural Network [8] 

 

2.4 Previous researches on ship classification 

About a decade ago, modern approaches for ship detection, identification and classification began to 

emerge alongside with growth in space related researches. The work of [12] relied on the remote sensing 

data with vessel position data to detect ships from space. However, classification of ships remained 

difficult according to prospects then. The main limitation was because of weather on sensors and their 

approach was less suitable for wide area surveillance. Their study revealed that, the satellite radar 

imagery provided limited amount of information on ships and the traffic conditions. Therefore, 

classification of vessels was very limited making even identification nearly impossible. However, their 

approach suggested that satellite imagery could be successfully used in combination of other methods. 

Ship recognition using optical sensors and database of previously obtained ship images was elaborated 

in [13]. They describe a criterion of recognizing ships using SIFT features with consideration of 

cluttered backgrounds in maritime environments. The approach used local features which were 

extracted from optical imagery for automatic ship classification in port surveillance. Local features were 

found to be tolerant on cluttered scene. The SIFT technique seemed to be reliable for better classification 

results when proper local interest points are detected and good feature matching is provided. It 

contributed a lot in incorporating multiple views of target ships from the image database and in 

verification of geometric relationships of the matched features. In comparison with other methods, SIFT 
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achieved excellent recognition rates but could not solve real time problems as compared to modern 

methods like Deep Learning methods. 

Port surveillance has attracted researchers into focusing on detection, identification and classification 

of marine vessels which vary greatly from each other depending on size, shape, vessels activity and 

transition data.  IMO is the specialized agency under United Nations with responsibility for the safety 

and security of shipping and prevention of marine pollution. International shipping plays a big role in 

global trading and the world relies on safe, secure and efficient shipping industry. It is the important 

factor that has triggered many researchers to focus in ship monitoring and surveillance technologies. In 

this section, we present various works related to our study that are baseline for improving performance 

of various approaches. 

The difficulties faced in protecting sea surface and busy ports, the work of [14] presented a state of the 

art solution for ship intrusion detection using image processing and Support Vector Machine (SVM). 

The aim of their contribution was to detect ships, which crossed over designated spaces. CFAR 

algorithm  [15] was applied to improve fast R-CNN in SAR ship detection task. The role of the Fast R-

CNN was to obtain classification scores and refined bounding boxes from region proposals and feature 

maps. This approach however could not detect small sized targets hence leading to a low detection rate. 

Data augmentation was a constraint factor for consideration to realize better performance. 

An attempt was carried out to automatically detect ships based on S-CNN method with proposals 

designed from a combination of ship model and an improved saliency detection method  [16]. Models 

with “V” ship head and “║” ship body were used to localize the ship proposals from the line segments 

of test images. The proposals are fed to the trained CNN for efficient detection which proved suitable 

for better application on remote sensing images with different kinds of ships. This resulted in 91.1% 

and 97.9% recall performance for in-shore and off-shore ships respectively, while, 95.9% and 99.1 % 

precision rates respectively. In this regard, Deep Learning still is an appropriate method for detection, 

however S-CNN may not produce better results on classification due to problems affecting space images 

like weather as well as being slower in detection rate. 

Surveillance is a paramount problem for harbor protection, border control and security of various 

commercial facilities. It is particularly challenging to protect the vast near coast sea surface and busy 

harbor areas from intrusions of unauthorized marine vessels, such as trespassing boats and ships. In 

their project, they presented a state-of-the-art solution for ship intrusion detection using image 

processing and Support Vector Machine (SVM). The main aim was to detect the ships, which cross over 

the border and secured industrial spaces. Using the interworking mechanisms of these two techniques, 
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we can detect the intruding ship from the constantly changing sea environment. SVM can be used as a 

machine learning to train the system by exposing it to different seashore environments. Hence, it can be 

used as a real-time security system at seashore areas. The approach was an integration of machine 

learning with intrusion detection system to teach the system to learn the highly-clustered environment. 

This contribution obtained high accuracy on detection on intruder vessels but could not classify the 

target ship images. 
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CHAPTER 3 

METHODOLOGY 

3.1 Proposed Method 

Faster R-CNN is an advancement of Fast R-CNN [17] object detection model. The advancement into 

the model resulted from of previous research focusing on solving emerging challenges in computer 

vision. Faster R-CNN is a unique Deep Learning model which makes use of the successes in the region 

proposal methods of selective search and the Region Convolution Neural Networks. The Region 

Proposal Networks (RPNs) are very slow as compared to the faster R-CNN. However, the RPN which 

shares the convolutional layers plays a big role in Faster R-CNN as it makes the model a nearly cost 

free with the computational speed and a test time of about 3-13ms. The RPN also makes Faster R-CNN 

to support any scale in image dataset hence making it scale invariant. Compared to the state of the art 

models, Faster R-CNN seems to produce excellent results with minimal testing times and with high 

accuracy rates. A summary of its capabilities compared to other models is illustrated in the table below. 

Table 4 Comparison of R-CNN, Fast R-CNN and Faster R-CNN 

 R-CNN Fast R-CNN Faster R-CNN 

Testing time per image (Seconds) ~50 ~2 ~0.2 

Speed capacity 1 × ~25 × ~250 × 

Mean average precision (mAP) using VOC 2007 ≤ 0.66 ≤ 0.669 ≥ 0.66 

 

To understand the operation of Faster R-CNN, it is useful to follow its development from the state of 

the art methods and then visualize its potentials in classification of ships. In this section, we discuss the 

architectural relationship between R-CNN, Fast R-CNN and the unified network of the two defining the 

operating principles of Faster R-CNN. 

3.1.1 Region Convolutional Neural Network (R-CNN) 

In R-CNN, the sequence of input images with region proposals are fed to and run by CNN. The proposed 

regions are referred to as those containing target object with high probability. These regions are 

provided by extra proposals like the selective search [18]. For a typical input image, it usually has 

approximately 2000 region proposals. This is a huge number and it makes the R-CNN computationally 

expensive due to its huge complexity. It therefore requires a long time of detection per image. From 

various applications, it has shown that it takes approximately 50 seconds of computation per input image. 
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3.1.2 Fast Region Convolutional Neural Network (Fast R-CNN) 

The basic principle of operation in R-CNN differs from that of Fast R-CNN because of the sequence of 

the processes used in completing the task of object classification. For R-CNN it starts with running the 

region proposals with CNN.  This first step is done only once then followed by the calculation of Region 

of Interest (RoI). The reason for RoI calculation is to estimate the location of the region proposals. 

Generally Convolutional Neural Networks have the convolutional layer, activation layer and the max 

pooling layer. The specifications of the Convolutional Neural Network are important since it determines 

the location from the input image and in the output of CNN. The operational difference of fast R-CNN 

and faster R-CNN is that, Faster R-CNN does not need external proposals anymore.  

3.1.3 R-CNN and Fast R- as a unified network of Faster R-CNN 
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Fig. 6 Faster R-CNN as a single, unified network for objection detection 
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In Faster R-CNN architecture, both the Convolutional Neural Network and Fast R-CNN act as a unified 

network. This involves the introduction of Region Proposal Network (RPN) which lets the unified 

network to locate where to look. The symbolic expression of this unified network is shown in Fig. 6 

above. It is a two-module system where a deep fully convolutional network proposes regions while the 

second module is a Fast R-CNN [17] detector which uses proposed regions. The role of RPN is to decide 

where the second module of the system will look for in the Region of Interest.  

In this model, the role of Region Proposal Network has been explained in detail by [5] with a symbolic 

model shown in the Fig. 7 below. Since RPN takes any size of images as input, it makes the model to 

be scale invariant. The RPN is designed to output a set of rectangular object proposals with respective 

probability object scores as shown. 

 

 

 

Fig. 7 RPN framework and examples detection using RPN (from [5]) 

Advantages of Faster R-CNN, include the computational capacity, speed, accuracy and reliability of 

performance, which enables it to be suitable for our study on classification of ships for port security.  

3.1.4 Training of Faster R-CNN 

Technically, training of Faster R-CNN depends on the arrangement in the network itself which is makes 

it a four-stage process. From the process sequence followed, the RPN should be the first network to 
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train. This is done by initializing with pre-trained models of ImageNet. The detector network (Fast R-

CNN) is the second stage of training. This is done by the proposal generated by the first training in RPN. 

This is followed by fine tuning the unified layers to RPN after being initialized in step 2. The last 

training involves fixing convolutional layers and fine tuning of full convolutional layers of fast R-CNN.  

The overall training of faster R-CNN depends on some properties as explained in [9]. These properties 

include: 

a.) Weighting values initializations using Gaussian equations 

b.) Learning rates which should be decreasing in the subsequent batches  

c.) Learning update scheme and 

d.) The weight decay which is explained in Eq. (18) below 

L =
1

L
∑ Lii + λR(W) + λ ∑ ∑ Wk,l

2
lk                                                                                          (18) 

Where, L, the weight decay, is the objective function, 

1

L
∑ Lii  represents data loss, and 

λR(W) denotes the regularization loss. 

3.2 Experimentation 

3.2.1 Datasets pre-processing 

The aim of our study is to classify various classes of ships using the faster R-CNN method and with 

focus on improving performance than the previous methods on ship classification. Our dataset therefore 

constitutes of images of ships obtained from shipspotting.com [19]. As described in the unified network 

structure of the Faster R-CNN model, all images are re-scaled such that the shorter side was ≥ 500 

pixels for the purpose of uniformity, since the approach is scale invariant. All the images are checked 

individually to ascertain their attributes in readiness for training. This leads to the determination of 

specific models of ship images as illustrated in Fig. 11. Some ship images are not considered for training 

as they had extremely abstract shapes despite belonging to specific class and model. 

To establish the most suitable quality dataset we first, investigate the effect of the number of images on 

performance after training through the Faster R-CNN method. As a preliminary experiment, a few 

classes (four) of ship types are sampled for classification by Faster R-CNN method. Images of ships 

used for the preliminary classification begin with a few, then the number is increased subsequently 

while checking the acuracy rates and consistency of the approach. The aim of this preliminary 
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experiment is to determine the effect of number of training images on the performance of the approach 

and also to determine the appropriate number of training images with steady Averge Precision (A.P.) 

values. Upon the determination of saturation level, the appropriate number of images are then used in 

the classification process of the target nine classes of ships.  

The performance of our approach is evaluated based on run time, precision and ability to classify ships 

on near real-time situation with considerations of the highly cluttered marine environment. A 

comparison with related state of the art approaches is made in order to highlights the strengths 

weakeness and possible improvemet methods in the future. The success of our study would be an 

important contribution in automatic classification of ships for improvig security and efficiency in port 

and other marine environments. 
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CHAPTER 4 

EXPERIMENT RESULTS AND DISCUSSION 

4.1 Analysis on Recent Developments in Object detection approaches 

In our study, we began by analysing the performance trends of the recent developments on object 

classification approaches which include Faster Region Convolution Network model.  From the analysis, 

it is evident that the efforts being made to solve image classification problems are experiencing a 

positive progress in the recent times. The state of the art approaches have been aiming to achieve better 

peformance in term of accuracy, learning rates, speed and reliability of models. There is a tendency on 

accuracy improvement and reliability on application of Deep Learning approaches on image 

classification. The results of the analysis is illustrated in Fig. 8 below. 

 

Fig. 8 Object Recognition development using learning  

Form the graph in Fig. 8 above, the analysis assumes that the approaches used before the year 2007 had 

lower precisicion values while newer models eastablished after 2016 would have better performance. 

In our study, the analysis results on the performance of deep learning approaches in [18], [7], [9], [17], 
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[5], [11]  and [10] for older object detection approaches (before Deep Learning) are considered. The 

data used for this analysis is based on selected results of old models and those using deep convolutiin 

network models  from the year 2006 upto the year 2016. From the analysis, Faster R-CNN appeared to 

be the most suitable for ship classification particularly because it is attributed to high accuracy and 

recall. 

4.2 Experiment 1 

The first aim in our experimentation is to investigate the effect of the number of training images on the 

mean Average Precision (mAP) values of our approach when applied on classification of ships. In this 

case, the number of images which are suitable for training are selected sequencially while checking on 

the performance of the approach. Saturation of AP values in output is a key determinant of the respective 

number of ship images to be used per class. The samples of the ship images used are shown in Fig. 9. 

For the preliminary experiment, 4 types of ships (Cargo, Tanker, Fishing Vessel and Military) are 

classified using Faster R-CNN. The choice of these 4 types of ship images is based on representation 

rule for large verses small, shape difference and functionalities of each type. We started with training a 

100 images for each of the 4 classes then increase sequencially upto 400 images at every 50 images. 

The results of mean average precision  are shown in Fig. 10. The results indicate that there exists a 

strong positive correlation between the number of images used in training and the AP values.  The AP  

values in our approach tend to improve with increase in number of images, and saturates at  around 400 

images. 

Since the average precision values tend  to saturate when the number of images per class are 400,  this 

number is then selected for use in our experiment 2.  The target is to classify nine classes of ships which 

are common in a port environment.  
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a. Cargo 

It is the most common class of ships along 

maritime trade routes and in major ports across the 

world 

 
 

b. Fishing Vessel 

Fishing Vessel is common along the routes of 

other ships and mostly has varied modification 

features (additions by users to its original shape) 

 

c. Tanker 

Tanker is generally bigger in size than most many 

other kinds of ship 

 

6. Military ship 

It has unique shape protruding upwards which 

makes it unique in all other types 

 

 

Fig. 9 Samples of images used in Preliminary experiment 
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Fig. 10 Change in mAP values with the number of training images 

4.3 Experiment 2 

In the second experiment, 400 images from each of the 9 classes are chosen for training and another 

400 for testing  with the intention of classifying the target ship images using Faster R-CNN method. 

All images used are obtained from shipspotting.com [19] and are pre-processed by resizing to have the 

shortest side with 500 pixel for the purpose of uniformity and to avoid risks in poor results based on 

bised image sizes. However, our aproach of faster R-CNN is scale invariant and this risk woud still be 

minimal. The mean average precision value over all class predictions is used as  metric messure of 

performance. In addition, run time per image and number of iterations are noted for the purpose of 

cofirming the performance of the method.  Details on average precisions scores for each class of ship 

images and the overal performance are shown in Table 5. 
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4.3.1 Sample of Images Used in training and testing for 9 classes 

Class Images used in Training Images used in testing 

a.) Fishing Vessel: 

Mostly altered in 

phisical features due 

to modification of 

users 

  

b.) Tanker: Generally 

large in size and with 

limited variations in 

shape. 

  

c.) Submarine: The 

protruting part in the 

middle makes it 

unique from other 

ships. 
  

d.) Tug: Mostly found 

along side other 

bigger ships and are 

gerelly small in size. 

 

  



32 

 

e.) Vehicle Carrier: 

Nearly identical in 

shape 

  

f.) Rescue: Almost 

similar to Tug but 

more features   

  

g.) Ferry: Mostly fully 

floatin unlike other 

ships 

  

h.) Destroyer Ship: The 

provision of 

comprehensive 

communication 

structures makes it 

different from other 

types of ships 

  

Fig. 11 Samples of used in training and testing for 9 classes 
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Table 5 Average precision scores for each of 9 class and the overall mean   

Class (IMO Standard Names) Train Images Test Images AP 

Container Ship 400 400 0.9091 

Fishing Vessel 400 400 0.7659 

Tanker 400 400 0.942 

Submarine 400 400 0.8896 

Tug 400 400 0.8165 

Vehicle Carrier 400 400 0.9091 

Rescue Ship 400 400 0.8862 

Ferry 400 400 0.9091 

Destroyer Ship 400 400 0.9069 

Mean AP   0.8774 

 

There is the minimal variation of AP values on individual classes except for fishing vessels which 

registered lowest score of  AP  (0.7659). The AP for Tanker ship is the highest with the score of 0.942. 

Container ship, Vehicle Carrier and Ferry also scored highly, each with average precision score of 

0.9091. Another contender for higher score is the Destroyer Ship with average precision value of 0.9069 

while others had AP scores below 0.9. These are Submarine, Rescue Ship and Tag Boat with Average 

precision scores of 0.8896, 0.8862 and 0.8165 respectively. 

Though the classification of Fishing Vessels is the lowest, the value is still high compared to other 

models which cannot score beyond 0.6 of AP. compared to the nature of ship images the Fishing Vessel 

could not have been the best probably because of its physical features.  Most of images of the Fishing 

Vessels  have huge  transformations due to modifiation by users hence the complexity [20]. It envisaged 

that by understanding the complexity on the object features in Fishing Vessels the average precision 
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value may be improved for better classification. The run time per image during classification procesess 

is as expected for the approach compared to its performance on distinct objects like in [5]. For the first 

batches the run tie is approximately 0.3 seconds while in the preceding batches the average run time per 

image is about 0.2 seconds. This suggests that the speed is relatively high than other approaches like 

[4], [3], [16] and [13] 

It is evident that our approach achieved an average mean precision value of 0.8774 which outperforms 

other approaches that have been used in marine vessel classifications. Samples of the results output are  

shown in Fig. 5. The Tanker Ship which is usually phisically big in size scores highly in AP value 

compared to other classes. This may suggest that the physical appearance of a ship can be a factor for 

consideration in ship classification. This high performance by using Faster R-CNN of an average mean 

precision value of 0.8774 is an excellent performance and it confirms that the method can be utilised in 

marine vessel classifications which can addresss the port secrity challenges. The potential of our 

approach may be related to outperm many others and even solve their weak points including the 

folloswing: 

Table 6: Why Faster R-CNN is better than other approaches 

Approach Limitations 

Ship classification based on  super-structure 

features in SAR images[3]                                                 

Difficult in setting up the algorithm threshold 

Maritime vessel images classification using 

Convolution Neural Network[4] 

Slowest with more complex cofigurations of 

network. Accuracy at an average of 0.8 only on 

simple configutrations. 

S-CNN based ship detection[16] Higher recall rate but slowest in training making 

it not applicale on real-time scenario 

Ship recognition usogng optical Imagery[13] The region of of interest is not possible for 

smaller ships. Lower recall capability. 
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4.3.2 Sample images of output results  

 

 

 
  

 

 
 

 

 

 

 

 

 

 

Fig. 12 Sample results for Container Ship 
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Fig. 13 Sample results for Destroyer Ship 
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Fig. 14 Sample results for Ferries 
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Fig. 15 Sample results for Fishing Vessel 
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Fig. 16 Sample results for Rescue Vessel 
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Fig. 17 Sample results for Submarine 
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Fig. 18 Sample results for Tugs 
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Fig. 19 Sample results for Vehicle Carrier 
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Fig. 20 Sample results for Tanker Ship 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.2 Conclusion 

In our study, we present the apllication of Faster R-CNN method for classification of 9 classes of ships 

for the purpose of automatic classification in a maritime environment. The choice of this method is 

arrived at after detailed analyisis of other state of the art object classification models including the 

analysis of Faster R-CNN model on other distinct objects apart from the ships. The classification process 

was done follwing two experiments. In each of the experiments, ship images of at least 500 pixels on 

the shortest side for the purpose of uniformity were used. Otherwise the approach could take any size 

of image since its functionality is a scale invariant type of model. The first experiment is useful in 

determining the appropriate number of images which could give consistent results on correct 

classification of  ships. It is also important consequence that the number of images have a positive 

correlation to the the accuracy scores of the model. In the second part of the experiment, we use the 

method to classify the 9 classes of ships, whih are the target group of ships in the study.  

From the results, it is evident that our approach achieves an average mean precision value of 0.8774 

which outperforms other approaches including [4], [3], [16] and [13] which have been used in marine 

vessel classifications. Apart from the high accuracy rates, our approach is quite fast on run time per 

image compared to Fast R-CNN and CNN methods. In fact, the speed is 25 and 250 times faster than 

Fast R-CNN and CNN respectively. This may be considered a better classification system for ships 

which do not need two way communication like the case of  AIS. By incorporating it with the AIS, it 

may be a suitable method for automatic classification of ships.  

In the case of fishing vessels which had relatively lower score on classification precision, more  

understanding of ship image features may be necessary to correct the poor results. In addition, the 

marine environment backgrounds are highly cluttered and this could be the cause of AP scores less then 

than one or 100% which is an ideal case reference. Our approach can be improved further by utilizing 

the infra-red camera images to address issues of image quality caused by of weather effects and night 

times. This is therefore useful outcome which can be applied in marine technology for port security 

management.  
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5.2 Recommendation 

Based on our research results, the following reccomendations are highlighted for future considerations 

in research; 

1. Mechanisms for obtaining full object features of ships regardless of weather coditions, day and 

night acquisition of ship images and the motion factor in ships should be considered in future 

research 

2. Incorporation of Deep Learning approaches to AIS should be focused in future researches to 

enable real-time classification of ships for automatic identification. 

3. It might be possible to develop an electronic marine highway which can solve challenges facing 

ports and marine environments. 

5.3 Conceptual framework for Faster R-CNN-AIS ship identification system  

Input images 

 

   

 

   

    

 

 

Fig. 21 Faster R-CNN-AIS conceptual model 

The study proposes the integration of Faster R-CNN approach with AIS in order to achieve real time 

identification of both “known” and “unknown” ships. The input may be obtained from both stationary 

cameras and infrared cameras to cater for day and night data. Further research is also recommended to 

solve challenges facing the image qualities due to the highly clustered marine environment. The 

conceptual framework may be utilized in monitoring and controlling maritime traffic around the ports 

hence improving security and efficiency. This is an important baseline for future development of 

electronic highway which is envisaged to solve many problems faced by ports as well as sea transport 

industry.   
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