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Abstract

People have always wanted better visual experiences. From Ultra High Definition
Television (UHDTYV), 3D video to Virtual Reality (VR), the pursuit of overwhelming
visual experiences is unlimited. For such visual experience, the higher resolution and
frame rate are important. For instance, the 8K UHD (7680*4320 resolution) with 120
frames per second (fps) is considered for the video application of the next decade. It is
reported the sports broadcasting and the perfect VR require even higher resolution and
frame rate, which sets technical challenges, such as the huge data volume and high
processing throughput (frame resolution * frame rate).

Such huge data are impossible to store or transfer without encoding. The video data
to encode have two types, the pixels and measurements (linear combinations of pixels).
Pixels are generated from traditional CMOS image sensor, and measurements from
Compressed Sensing (CS) based CMOS image sensor. The pixel encoding has a long
history since 1968. High Efficient Video Coding (HEVC) is the most advanced one
achieving a high compression ratio at the expense of high computational complexity
contributed by the new features. Hence, designing high performance VLSI architecture
to support UHD video application are challenging and necessary. Among all
components in HEVC, the VLSI architecture of Intra prediction and Sample Adaptive
Offset (SAO) are chosen. Since they are the most different components in function
comparing with H.264. The different requires new and efficient VLSI architecture to
support the UHD video encoding. They are discussed and proposed in Chapter 2 and 3
respectively.

As the resolution and frame rate increase, the traditional image sensor has power
consumption problem and higher frame rate is hard to achieve. These problems could
be solved by new type of image sensor using CS. It could recover the whole image by
capturing only few measurements in the image sensor. Capturing much less data instead
of every pixel, the power consumption in the image sensor could be reduced, hence it
provides a promising future for the increasing resolution and frame rate in video
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application. Measurements coming from CS image sensor still required encoding
before the transfer. However, measurements don’t have the obvious spatial similarity
that provides spaces for intra prediction in HEVC. To better encode the measurements,
the intra prediction algorithm and VLSI architecture for CS is explored in Chapter 4
and 5.

VLSI architecture supporting high parallel degree (amount of pixels/measurements
process per cycle) is necessary to processing the huge data. However, the higher parallel
degree results into larger circuit area thus reducing the performance (Throughput /
circuit area). This dissertation mainly targets on the high-performance VLSI
architecture of HEVC SAO Estimation, intra prediction for encoder and its extension
in Compressed Sensing, by using the proposed concept “reduced video data”. Only by
taking the necessary video data, including pixels and measurements, it is possible to
reduce the parallel degree in hardware while keeping the performance during the data
processing. The summary of each chapter is introduced as follows.

Chapter 1 [Introduction] introduces the big picture of video acquisition process,
including the traditional imaging and the CS imaging. Next, HEVC intra prediction and
SAOQO are introduced. Furthermore, the motivation to explore the intra prediction in CS
is introduced. At last, proposed concepts of this dissertation are shown.

Chapter 2 [VLSI architecture of HEVC Intra prediction using reduced
loaded-pixels] presents the high-performance VLSI architecture for HEVC intra
prediction. Intra prediction uses neighboring pixels from different directions to predict
pixels of a block (4x4~32x32). As the block size increases from 16 to 32 in HEVC, it
takes 3x more neighboring pixels for prediction. Instead of loading all neighboring
pixels as previous work, only the necessary pixels are loaded. This proposed idea
reduces the two-third of reference pixels, thus reducing the area and increasing the
throughput. It is achieved by LUT (Look Up Table) generated by software to tell which
pixels are demanded in each prediction mode and location. Another proposal is the
Hybrid Block Reordering and Data Forwarding, minimizing the idle time and

eliminating the dependency between blocks by creating three Data Forwarding paths.
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It achieves the hardware utilization of 94%. The proposed VLSI architecture has a gate
count of 217.8K, and is able to support 4320p@ 120fps HEVC intra prediction.
Chapter 3 [Dual-clock VLSI architecture of HEVC Sample Adaptive Offset
Estimation] presents a high-performance VLSI design for SAO estimation. SAO is a
process to find out optimal offsets to reduce ringing noises in an image. It consists of
two steps, Statistics Collection (SC) and Parameter Decision (PD), each of them has
totally different nature in calculation. SC has huge but simple calculations while PD
has few but complex calculations. After studying such nature, it is discovered that
reducing pixels to process per clock cycle in SC significantly reduces the area. Thus, a
dual-clock architecture is proposed, where SC works under high frequency and PD
under low frequency, so that SC could process few pixels each cycle. Such proposal
reduces the overall area by 56%. To further improve the area and power efficiency,
algorithm-architecture co-optimizations are applied including a coarse range selection
(CRS) and an accumulator bit width reduction (ABR). CRS shrinks the range of fine
processed bands for the band offset estimation. ABR further reduces the area by
narrowing the accumulators of SC. They together achieve another 25% area reduction.
The proposed VLSI design is capable of processing 8K@1201fps encoding. It occupies
51K logic gates, only one-third of the circuit area of the state-of-the-art design.
Chapter 4 [Algorithm and VLSI architecture of intra prediction in
Compressed Sensing using reduced measurements| presents a measurement intra
prediction framework. Instead of using all measurements for prediction, measurements
for prediction are reduced to two. These two measurements embed the block boundary
information of closest area. They are obtained by modifying two rows in the random
0/1 measurement matrix. Furthermore, a low-cost VLSI architecture is implemented for
the proposed framework, by substituting the matrix multiplication with shared adders
and shifters. The experimental results show that our proposed framework can compress
the measurements and increase coding efficiency, with 34.9% BD-rate reduction
compared to the direct output of CS-based sensors. The VLSI architecture of the

proposed framework is 9.1K in area, and achieves the 83% reduction in size of memory
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bandwidth and storage for the line buffer. This could significantly reduce both the
energy consumption and bandwidth in communication of wireless camera systems.

Chapter 5 [Row-Operation-Based Intra prediction under Approximate-DCT
measurement matrices and its VLSI Architecture implementation] presents the
row-operation to perform the intra prediction on the proposed approximate-DCT
measurement matrices. Deterministic measurements matrices derived from
approximated-DCT are proposed, significantly increasing the coding efficiency
comparing with the random binary matrix in Chapter 4. However, the intra prediction
using two measurements in the last chapter could not work on proposed matrices.
Instead of using all measurements for prediction, the row-operation using three
measurements are proposed. It achieves intra prediction as Chapter 4, without
modifying the measurement matrix. Lastly, the VLSI architecture design for the intra
prediction is proposed. Experiment results show the proposed matrix improve the
coding efficiency by BD-PSNR increase of 4.2 dB. The proposed row operations
increase the coding efficiency by 0.24 dB BD-PSNR. The VLSI architecture is only 4.3
K gates in area and 0.3 mW in power consumption, which is only half of the area and
the power consumption in previous work.

Chapter 6 [Conclusions and future work] concludes the contributions of this

dissertation. The solved and remaining problems are left for the future works.
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Introduction

1. Introduction

1.1 Ultra-High Definition video application and video coding.

People have always wanted better visual experiences. From Ultra High Definition
Television (UHDTYV), 3D video to Virtual Reality (VR), the pursuit of overwhelming
visual experiences is unlimited. For such visual experience, the higher resolution and
frame rate are important. For instance, the 8K UHD (7680*4320 resolution) with 120
frames per second (fps) is considered for the video application of the next decade. It is
reported the sports broadcasting and the perfect VR require even higher resolution and
frame rate, which sets technical challenges, such as the huge data volume and high
processing throughput (frame resolution * frame rate).

Such huge data are impossible to store or transfer without encoding. Video contents
to encode have two types, the pixel and the measurement (linear combinations of pixels).
Pixels are generated from traditional CMOS image sensor (CIS), and measurements
from Compressed Sensing (CS) based CMOS image sensor. For the pixel, CIS senses
the analog pixels one by one and converts them into digital ones; the encoder encodes
pixels into much smaller bit stream, by encoding methods such as JPEG [47],
H.264/MPEG- 4 [48], DVC [49], and HEVC / H.265 [7] and transmits the bit stream
to the decoder. This is the traditional procedure: Capture - Compress = Transmit, as

shown in Fig. 1.

Analog HEVC

Pixels

. Pixel
Lieht —_——— A/D - — — > B
g Convert Encoder Decoder —P. Y b

Fig. 1 Traditional image acquisition procedure

With the advent of a recently proposed sampling theory, Compressed Sensing (CS)
1



Introduction

[51], the capturing and compression can be performed in CIS simultaneously. Such
image sensors are called CS-based CIS (CS-CIS). In CS-CIS, an image is acquired by
sampling a significantly reduced number of measurements (the linear combination of
pixels), instead of sampling every pixel. The encoder takes measurements as input and
compress them into smaller bit stream, and transmit to the decoder, as shown in Fig. 2.
This technique could reduce the throughput of Analog-to-Digital (A/D) conversion,
since the number of conversion is reduced by sampling the measurement instead of
pixel. The reduction in throughput has the potential to reduce power consumption and
increase the frame rate [52], which has been shown in the recently emerging CS-CIS

systems [53][54][55].

Compressed Sensing

[mm——————————— Analog ~— ~ ~ ~ T '| Measurements

l EA Measurement
. | .
:nght R | A/D & _ 3| Encoder Decoder [ Jit AE<
Converter | N
| e

Compressed Sensing
CMOS Image Sensor (CS-CIS)[1-3]

Fig. 2 Compressed Sensing procedure

For traditional image acquisition, its merit is that pixel encoding could achieve a
high compression ratio, as HEVC, the latest, the most advanced and the most complex
video coding standard, achieving the compression ratio up to 1/200 as shown in Table
1, which is 50% coding efficiency increase comparing with the previous video coding
standard, H.264. Compared with storing and transferring the raw video data, it could
solve the huge data amount issues in storage and transferring. Furthermore, another
merit is that the compression method is easier to design, since the spatial and temporal
similarity could be obviously exploited. The demerit is that, however, it has high
computation complexity and gives challenges in VLSI implementation, resulting into
difficulties to achieve high throughput and low hardware-cost. Another demerit is that,

the throughput and the power consumption of ADC dominates the power consumption
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in the CIS with the increase of the resolution and frame rate [54][53] [55].

Table 1 Comparison of compression ratio.

MPEG-2 1995 1/50
H.264 2003 1/100
HEVC 2013 1/200

Target: TV broadcasting in Japan in 2020 BHEVC mH264 mMEPG2 W Raw
8K (UHD) [ 63Gbps!!

ak (unp) e
Current TV broadcasting
1920 x 1080 L ‘ in Japan
1280x 720 |

Bitrates

0 200 400 600 800 1000 1200 1400 (Mbps)

Fig. 3 Video data volume under different resolution and compression methods

For CS acquisition, the merit is obvious because it could greatly reduce the
throughput and its power consumption of image acquisition in camera, which is very
potentially suitable for the increasing throughput in mobile video application. The
reduced throughput of ADC could reduce the power consumption of CIS and increase
the possibility to achieve higher frame rate. Since the output of CS-CIS is measurement
instead of pixel. However, measurements generated in CS is not possible to encode by
the traditional video coding, which is one of the demerits. Hence, the current existing
encoding methods are developing and do not have an ideal coding efficiency.

The comparison of two image acquisition framework is shown in Fig. 4. On one
hand, the traditional image acquisition framework with traditional video encoding,
HEVC, achieves a significant compression ratio, at the expense of extremely high
computational complexity. On the other hand, the CS framework could reduce the data
volume of A/D conversion, but its output is not applicable to traditional video coding.

Hence it has lots of spaces to develop new and better video encoding methods
3
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applicable to CS.
Il sampling ] Transfer
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Fig. 4 Comparison of data volume of two frameworks in CMOS Image Sensor
and encoder.

1.2 HEVC encoding

To transmit such a huge data throughput in the communication channel, deep
compression from the latest video coding technology, High Efficiency Video Coding
(H.265/HEVC) [7][20], plays a crucial role. The implementation of the corresponding
video codecs, however, is challenged by the multiplication of the ultra-high definition
requirement and an increased complexity per pixel. Compared to the previous
H.264/AVC standard [21], H.265/HEVC doubles coding efficiency by employing a
number of new coding tools.

The encoding of HEVC is to compress sequences of images into the bit stream. It
includes the following components. First, the transform and quantization, as shown in
the yellow component in Fig. 5. It has been proposed in [1] and [2] that the image
energy compaction exists through transform, such as Discrete Cosine Transform (DCT)
or Hadamard Transform, such that most of the energy are concentrated in the low
frequency components. Since human’s eyes are more perceptive to the low frequency
components and not sensitive to the high frequency components, the image data are
compressed by preserving the low frequency components with a higher accuracy while
the high frequency components with a lower accuracy.

Second, it was further proposed in [3] that the data could be further compressed by

exploiting the spatial and temporal data redundancy, such as the inter prediction and
4
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intra prediction shown in Fig. 5. Hence, the residuals instead of the original pixels are
taken as the input of the transform and quantization. Because of data loss introduced by
the quantization, the reconstructed pixels in the decoder get different from the original
pixels in the encoder. To guarantee a successful reconstruction, the same reconstruction
path as the one in the decoder is built in the encoder.

Third, image artifacts are generated by the quantization. The De-Blocking Filter
(DBF) proposed in [4] and [5] are used for removing the blocking artifacts existing on
the boundary of blocks. The Sample Adaptive Offset (SAO) Estimation, and SAO Filter
proposed in [22] is used for removing the artifacts existing on the edge region of an
image. At last, all the data and signals are coded into bit stream by an entropy coder,

Context-based Adaptive Binary Arithmetic Coder (CABAC).

Pixels To Freq. Entropy
Input data Prediction domain coding
e CABAC
= . Output
bitstream
o
Intra Prediction Image
Quality

SAO

Fig. 5 HEVC encoding

1.3 Motivation on Intra prediction and SAO

The components introduced above are mostly inherited from the previous video
coding standard. Their history and development are shown in Fig. 6. The VLSI
architecture design for these components has been proposed and improved in the past,
and many components are well designed in the previous standard. The coding efficiency
of HEVC is improved by new features being added in each component, at the expense
of higher computational complexity. Some components have big changes while some
have not. Among all the components, Intra and SAO consist of the major changes. Intra

prediction consists of most of the new features comparing with H.264. SAO is a new
5
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coding tool that does not exist in the previous standard, H.264. Because of the new
functions, the increase of computational complexity in intra prediction and SAO as well
as their huge difference from the previous standard, there’re many challenges for

designing the high-performance VLSI architecture supporting the UHD video

application.
Transform & Intra Deblocking Filter SAO
Quantization Inter CABAC
® @ @ ®
1960s 1970s 2003 (H.264) 2013 (HEVC)

Fig. 6 The history and development of video coding tools existed in HEVC

Intra prediction contributes to 22%-36% bitrate saving comparing with H.264 by
introducing new changes at the expense of the increased computational complexity,
which is reflected in three aspects. First, more block sizes are used in intra prediction
of H.265. Second, more intra prediction modes in each size of block are utilized. Finally,
more filtering methods that depend on the prediction modes and sizes of prediction
blocks are used. These changes increase the difficulty to achieve the high-performance

architecture.

1.4 Motivation of applying HEVC Intra prediction to

Compressed Sensing

Motivation
Mature and strong

Pixel coding by HEVC

fi'f")

&Jﬂ ]
Gifted L | Implant idea Future
L.L‘\ Develop potential

Measurements coding in
Compressed Sensing

Fig. 7 Motivation of applying HEVC intra prediction to Compressed Sensing

As the resolution and frame rate increase, the traditional image sensor has a power

consumption problem and higher frame rate is hard to be achieved. Even the HEVC has
6




Introduction

high coding efficiency, it could not reduce the power and frame rate problem in image
sensor. Because image sensor is necessary for video to be displayed, such problems
would influence the further development of video application with higher resolution
and higher frame-rate. With the advent of CS theory, these problems could be solved
by a new type of image sensor using CS. It could recover the whole image by capturing
only few measurements in the image sensor. Capturing much less data instead of every
pixel, the power consumption in the image sensor could be reduced, hence it provides
a promising future for the increasing resolution and frame rate in video application.
However, HEVC does not work on measurements in CS. To make the CS image sensor
could be widely used in UHD video application, effective encoding algorithm and VLSI
architecture applicable to CS is necessary.

The encoding framework of CS is shown in Fig. 8. Since the input of the encoder
is measurements generated by the CS-CIS, the encoding procedure begins from taking
measurements block by block as input. Instead of transferring the original
measurements, the optimal residuals are chosen and transferred to the quantization. Due
to the quantization error, the reconstructed measurements are not the same as the
original one. To guarantee the functional consistency in decoder and encoder, the
reconstruction loop also exists, as shown in the light green part. The framework of

measurement encoding is similar to the one in Fig. 5, and it is also much simpler.

Measurements

Input data
i. H Entropy
if |!' Coding

Output
bitstream

Intra Prediction

Fig. 8 Measurement encoding
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1.5 Proposed concept and target of this dissertation

VLSI architecture supporting high parallel degree is necessary to real-time
processing the UHD video data. This dissertation mainly targets on the high-
performance VLSI architecture of HEVC SAO Estimation, intra prediction and its
exploration in Compressed Sensing. Increasing the parallel degree in VLSI could meet
the high throughput requirement, while sacrificing the hardware cost.

The concept “reduced video data” is proposed. Only by taking the necessary video
data, including pixels and measurements, it becomes possible to reduce the parallel
degree in hardware while keeping the performance during the data processing. The
VLSI architecture of HEVC Intra prediction and Sample Adaptive Offset (SAO)
Estimation for 8K@120fps video encoding are discussed and proposed in Chapters 2
and 3. In intra prediction, the “reduced-loaded-pixels” is proposed. Only the necessary
pixels for prediction is loaded from memory, instead of all pixels to load as previous
work. In SAO estimation, the optimal clock frequency is discovered, so that the optimal
number of pixels processed per cycle in Statistics Collection could be achieved. The
dual-clock VLSI architecture work on Statistics Collection and Parameter Decision
separately to make the calculation in both stage efficient, so that the hardware cost for
calculation is reduced. The exploration of HEVC intra prediction to CS is discussed in
Chapters 4 and 5. The proposed algorithm find-out the possibility to reduce the number
of measurements for intra prediction. The number of measurements is reduced to the
constant number from the scale that is quadratic growth with the block size as previous
work. They only consist of the local information of a block for prediction, instead of
global information for prediction as previous work. It also includes proposed algorithms
to improve the coding efficiency by the proposed measurement matrices and row-
operation on the matrix. The low-cost VLSI supporting 4K@?240fps UHD video

encoding is also proposed. The big map of the dissertation is shown figure below.
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Fig. 9 The big map of the dissertation is shown.

The summary of each chapter is introduced as follows.

Chapter 2 [VLSI architecture of HEVC Intra prediction using reduced
loaded-pixels] presents the high-performance VLSI architecture for HEVC intra
prediction. Intra prediction uses neighboring pixels from different directions to predict
pixels of a block (4x4~32x32). As the block size increases from 16 to 32 in HEVC, it
takes 3x more neighboring pixels for prediction. Instead of loading all neighboring
pixels as previous work, only the necessary pixels are loaded. This proposed idea
reduces the two-third of reference pixels, thus reducing the area and increasing the
throughput. It is achieved by LUT generated by software to tell which pixels are
demanded in each prediction mode and location. Another proposal is the Hybrid Block
Reordering and Data Forwarding, minimizing the idle time and eliminating the
dependency between blocks by creating three Data Forwarding paths. It achieves the
hardware utilization of 94%. The proposed VLSI architecture has a gate count of
217.8K, and is able to support 4320p@120fps HEVC intra prediction.

Chapter 3 [Dual-clock VLSI architecture of HEVC Sample Adaptive Offset

Estimation] presents a high-performance VLSI design for SAO estimation. Its consists
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of two processes, statistics collection (SC) and parameter decision (PD), each of which
demands difference frequency. After investigating the optimal frequency, a dual-clock
architecture is proposed to deal with SC and PD with different speed of clocks. Such a
strategy reduces the overall area by 56%. To further improve the area and power
efficiency, algorithm-architecture co-optimizations are applied including a coarse range
selection (CRS) and an accumulator bit width reduction (ABR). CRS shrinks the range
of fine processed bands for the band offset estimation. ABR further reduces the area by
narrowing the accumulators of SC. They together achieve another 25% area reduction.
The proposed VLSI design is capable of processing 8K@1201fps encoding. It occupies
51K logic gates, only one-third of the circuit area of the state-of-the-art design.

Chapter 4 [Algorithm and VLSI architecture of intra prediction in
Compressed Sensing using reduced measurements] presents a measurement-domain
intra prediction framework. Instead of using all measurements for prediction,
measurements for prediction are reduced to two. These two measurements embed the
block boundary information of closest area. They are obtained by modifying two rows
in the random 0/1 measurement matrix. Furthermore, a low-cost VLSI architecture is
implemented for the proposed framework, by substituting the matrix multiplication
with shared adders and shifters. The experimental results show that our proposed
framework can compress the measurements and increase coding efficiency, with 34.9%
BD-rate reduction compared to the direct output of CS-based sensors. The VLSI
architecture of the proposed framework is 9.1K in area, and achieves the 83% reduction
in size of memory bandwidth and storage for the line buffer. This could significantly
reduce both the energy consumption and bandwidth in communication of wireless
camera systems.

Chapter 5 [Row-Operation-Based Intra prediction under Approximate-DCT
measurement matrices and its VLSI Architecture implementation] presents the
row-operation to perform the intra prediction on the proposed approximate-DCT
measurement matrices. Deterministic measurements matrices derived from

approximated-DCT are proposed, significantly increasing the coding efficiency
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comparing with the random binary matrix in Chapter 4. However, the intra prediction
using two measurements in the last chapter could not work on proposed matrices.
Instead of using all measurements for prediction, the row-operation using three
measurements are proposed. It achieves intra prediction as Chapter 4, without
modifying the measurement matrix. Lastly, the VLSI architecture design for the intra
prediction is proposed. Experiment results show the proposed matrix improve the
coding efficiency by BD-PSNR increase of 4.2 dB. The proposed row operations
increase the coding efficiency by 0.24 dB BD-PSNR. The VLSI architecture is only 4.3
K gates in area and 0.3 mW in power consumption, which is only half of the area and
the power consumption in previous work.

Chapter 6 [Conclusions and future work] concludes the contributions of this

dissertation. The solved and remaining problems are left for the future works.
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VLSI Architecture of Intra-Prediction and SAO Estimation in HEVC and
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2. VLSI architecture of HEVC Intra prediction using

reduced loaded-pixels

2.1 Introduction

H.265/High Efficiency Video Coding (HEVC) [1]-[7] is the most recent video
coding standard, developed by Joint Collaborative Team on Video Coding (JCT-
VC).With the same video quality, 40-50% bit rate reduction is achieved com- pared
with H.264/AVC (Advanced Video Coding) standard [8]. Intra prediction plays an
important role in H.265, saving about 22-36% of the bitrate. On one hand, intra
prediction in H.265 is still based on blocks, and uses neighboring samples’ values to
calculate the values of the new blocks, which is similar to H.264. On the other hand,
new changes are introduced in intra prediction of H.265. These new features help
achieve higher coding efficiency at the expense of an increased computational
complexity, which is reflected in three aspects. First, more block sizes are used in intra
prediction of H.265. Second, more intra prediction modes in each size of block are
utilized. Finally, more filtering methods that depend on the prediction modes and sizes
of prediction blocks are used.

To support the real-time application of a higher resolution video, the system needs
to process data faster. To achieve real-time application of 8K UHD video in intra
prediction, the system needs to support 16x throughput comparing with HD video
processing, and 4x comparing with 4K UHD video processing. Overall, more data have
to be processed within a certain time.

Several hardware designs have been proposed for H.265/HEVC intra prediction.
Li in [10] exploited an efficient uniform architecture for 4x4 blocks. This work is the
first VLSI design try in intra prediction of HEVC. Huang in [11] proposed a memory-
hierarchical and mode-adaptive architecture for 4K Ultra HD HEVC, which has a low

circuit area. Jung [12] proposed an architecture for intra samples prediction; however,

13



VLSI architecture of HEVC Intra prediction using reduced loaded-pixels

this architecture does not include key functions such as reconstruction or substitution.
In [13], Palomino proposed an architecture that employs less-multiplier pipelines to
increase the throughput and support all Prediction Units (PU) sizes. The architecture
proposed by Liu in [14] applied a post-order traversal to the quad-tree structure
targeting to reduce the internal buffers in the encoder. It supports all modes and all PU
sizes for the 1080p@30fps HEVC encoder. In [15], Zhou reclassified the prediction
modes to reduce the number of reference registers for full HD encoding. Among earlier
implementations for H.264 intra prediction, He in [16] proposed the MB/block level
co-reordering scheme to avoid data dependency. Amongst cited works, [11] and [12]
investigate the decoder’s design, while [13][14][15] and [16] investigate the encoder’s
design. These works did not solve the 8K video application issue.

The design of the architecture of the intra prediction engine depends on how the
reference samples for prediction are fetched and how they are processed. A
conventional way to deal with this problem in H.264 or HEVC is to fetch all the
reference samples for processing a Transform Unit (TU) and store them in registers in
advance. This method has been employed in many previous studies, [11][13][14][15].
The advantage of this method is the reduction of the number of accesses to the external
memory system (on-chip/off- chip memory). However, it has two drawbacks. First and
most important, prediction is done by selecting reference samples among these registers,
and with the increase of registers, multiplexing would be more complex; thus, further
increasing the critical path delay and circuit area. Since the critical path ought to be
short enough to support a high performance for 8K UHD, this drawback would be a
critical problem for 8K application. Furthermore, many registers to store all the
reference samples in the preparation stage is required. For instance, for a 32x32 TU, as
there are 32 samples in each for the left, top, and top-right neighboring samples, a
minimum of number of 99 eight-bit registers are required. The large number of registers
would increase the area of circuit. These two drawbacks make us design our architecture
based on a different strategy from previous work. The details are shown in latter part.

To design intra prediction architecture for the 8K UHD H.265 application, we face
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two key challenges that did not exist in previous work [11]. The first challenge is the
computational complexity in H.265 intra prediction shown in two aspects. First, a large
number of reference pixels (up to 99 pixels) have to be loaded for prediction, which is
four times more than that in H.264. The number of registers for storage increases the
size and complexity of the circuit, causing performance reduction. Moreover, many
modes and filtering methods have to be supported. The latter places more restrictions
on loading reference pixels, making the system harder to design and implement.

The second challenge is that 8K@120fps UHD real time application requires an
architecture that allows a high throughput. However, in intra prediction, the dependency
between the processed and unprocessed TU obstructs the system from achieving a high
throughput.

The proposed architecture is based on our main idea, divide-and-conquer strategy.
The system does not have to fetch all reference samples before prediction, because all
of them cannot be used immediately. By fetching a small required part for prediction
first, and keeping fetching the others successively, we could enhance the performance
and reduce the circuit area. This paper expands on our previous work in [17], and shows
a more complete design. Main contributions of this paper are outlined as follows:

® [ proposed the first technique, look-up table (LUT) based Reference Sample

Fetching Scheme (LUT-RSFS), based on the divide-and-conquer strategy. It
reduces the number of fetched reference samples in worst case from 99 to 13,
such that the performance is improved and the circuit area is reduced.

® [ proposed the second technique, Hybrid Block Re-ordering and Data

Forwarding (HBRDF). The 4x4 block level reordering solves the dependency
problem among 16x16, 32x32 TU. Three paths are created for Data
Forwarding, to eliminate the dependency of 4x4 and 8§x8 TU. Finally, a high
throughput and hardware utilization of 94% are achieved.

The rest of the paper is organized as follows. First, Section 2.2 introduces the new
features for H.265 intra prediction. Then, Section 2.3 describes the data flow of our

proposal, and its details. Section 2.4 discusses the implementation results and finally
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Section 2.5 concludes the paper.

2.2 Introduction to Intra Prediction in HEVC / H.265

Intra prediction is an important part in the video coding standard. It refers to the
neighboring samples of previous coded blocks to reduce spatial redundancy. There are
three types of blocks, Coding Unit (CU), PU and TU in H.265. When a frame is coded,
it is divided into CUs and each root CU can be recursively divided into or four smaller
CUs. Each leaf CU will be processed by PUs and TUs. PU ranges from 4x4 to 64x64,
while TU from 4x4 to 32x32. If a CU is encoded in intra mode, each TU corresponds
to an intra prediction block with the corresponding PU’s prediction mode. Therefore,
the block’s size is from 4x4 to 32x32, and 35 prediction modes exist for intra prediction.
Moreover, various reference sample filtering and substitution methods are added to

intra prediction in H.265, which do not exist in the case of H.264/AVC.

2.2.1 Reference sample preparation

Before predicting a TU, a part of the neighboring samples (left, left-bottom, top-
left, top, and top-right regions) are loaded. These regions may be located out of the
frame, in other slices or tiles, or in the blocks that are not yet reconstructed. In such
cases, they are marked as unavailable for intra prediction. In addition, when the
constrained intra prediction is enabled, the neighboring inter-predicted blocks are also
marked as unavailable for intra prediction. At that time, the nearest available
neighboring sample from the unavailable ones is used as a substitute.

When the TU's size is larger than 4x4, its neighboring reference samples are filtered
before being used for prediction. There are two types of filtering in H.265 intra
prediction: three-tap finite impulse response (FIR) filtering and bilinear filtering. The

bilinear filtering is used in 32x32 TU, when discontinuity is detected.
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2.2.2 Intra Sample Prediction

I classify thirty-five intra prediction modes into three classes: angular modes, DC
mode, and Planar mode. Each of them has a formula, which are stated below.

® For the angular modes, each predicted sample is calculated according to the
equation:
pred.= (32 —w) xreflal] + wxrefla + 1] + 16) >> 5 (1)
For angular modes, 2 to 10, and 26 to 34, consecutive neighboring reference
samples are used for prediction. However, for angular modes 11 to 25, some
discontinuous reference samples are used in the extended part.

® For the DC mode, the average of the top and left reference samples' value (dcVal)
is used as the value for the whole PU.
To remove discontinuities along block boundaries, the boundary samples are
filtered in the DC mode, and in the angular mode 10 (horizontal) and 26 (vertical)
when the luma Transform Block (TB) size is less than 32. The samples in the first
column, first row and the top-left pixel are replaced by a two-tap FIR filter, fed by
their adjacent reference sample and their original value.

® For the Planar mode, an order-2 plane prediction mode of H.264 is used. It is
defined as the average of two linear predictions, as shown in (4), where N is the

size of the TU, while x,y=0, . . ., N-1.

P)Xy = (N —y) *Reo + ¥ * Ronyr ()
Piy = (N — x)* Rpy + X * Rygqp (3)
Py = (P,Xy + P,Ey + N) >> (log2(N) + 1) 4)

2.3 Proposed VLSI Architecture

This section is divided into four subsections. Subsection 2.3.1 provides an
overview of our proposed architecture and the data flow in the architecture. Subsections

2.3.2-2.3.4 discuss the details of techniques used in the architecture according to the
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data flow.

2.3.1 Overview

The inputs of the system are the intra prediction mode, size of TB, residuals of TB
and its coordinates, xTb and yTb. The outputs are the reconstructed pixels.

The data flows within the system and the architecture are shown in 0. The entire
process is executed in pipeline and includes four steps. These steps correspond to
the stages R, D, P and W. First, in the R stage, the ad- dress and reference pixels’
position based on the prediction mode and coordinates of Tb are generated. Second, in
the D stage, reference pixels are fetched from the memory and reference pixel

substitution is proceeded before storage in registers. Third, in the P stage, reference
pixels are filtered then used for prediction and reconstruction of the pixels based on 4x4
block. Finally, in the W stage, reconstructed pixels are written back to the memory. The
following are highlighted: LUT-RSFS (R stage), 4x4 Prediction Block (P stage), and
HBRDF (W stage).

Table 2 The selection of reference samples and SRAM banks, given (X,Y)=(0,3), and
16x16 TU (Bold text represents the samples for filtering)

Prediction mode Reference samples selected SRAM banks
by LUT-RSPG
23 left:14,13,12,11,10,9,7,6,5,0; top-left(TL); 0,4,5,6,7,TL
top:0,1;

top-left(TL); top:0,1;

28 top:1,2,3,4,5,6,7,8 0,1,2
Planar left:15,14,13,12,11,10;TL; top:0,1,2,3,4 0,1,3,4,5TL
t0p:0,1,2,3,4
DC Left: 11,12,13,14,15,16 3,4,5
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Fig. 10 The architecture of the intra prediction
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Fig. 11 An example to show how RSFS work.
Given prediction mode is 23, (X,Y)=(0,3). The reference samples update, 4x4 block
processing order and arrangement of 8 cyclic banks are also shown.

2.3.2 LUT-RSFG

Reference sample fetching is an important issue in intra pre- diction architecture.

It has a great impact on the system performance. As previously mentioned, we propose

a new reference samples fetching scheme. The main idea is to break a TU into smaller

parts before processing, so that less reference samples are fetched each time. The new

scheme reduces the maximum number of fetched reference pixels from 99 (as used in

[11]) to 13, improving performances and utilizing hardware resources. The scheme

includes two parts: The LUT based Reference Sample Position Generator (LUT-RSPG)

and the 8 Cyclic Static Random Access Memory (SRAM) banks. In the follows, we

present our scheme first and use an example, combining the Table 2 and Fig. 11.
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2.3.2.1 LUT-RSPG

Reference samples are fetched, smoothed, and then used for prediction. Reference
sample fetching gets complicated in H.265 with the increased TU’s size, prediction
modes, and smoothing methods. Angular prediction modes 11 to 25 need some
discontinuous reference samples and planar mode needs additional top-right and
bottom-left samples for prediction. Moreover, for smoothing, some additional samples
are also required.

I develop the RSPG based on LUT for reference samples fetching. As shown in 0,
given the size of TU, prediction mode, and coordinates X,Y of 4x4 blocks in TU, RSPG
indicates which reference samples are needed for prediction. The position of reference
samples can be found in the LUT by getting the indices and the flag that indicates the
type of reference samples—top, left, or top-left. The second column in Table 2 The
selection of reference samples and SRAM banks, given (X,Y)=(0,3), and 16x16 TU
(Bold text represents the samples for filtering) illustrates the reference samples to fetch
in some given prediction modes, and the bold number represents the samples used for
filtering. I use LUT to substitute complex computation in hardware, such as the
combination of multiplications and additions, so that a lower cost in hardware and
higher performance can be achieved. Since the LUT used for the fetching scheme has
numerous items, we used software to automatically generate the LUT. By modifying
the HEVC Test Model (HM), we record the relative locations of reference samples and
the corresponding memory banks, for all 4x4 positions under each of all prediction

modes.

2.3.2.2 8 Cyclic SRAM banks

After LUT-RSPG decides which reference samples to be fetched, we must ensure
that at any time the required reference samples can be fetched from the memory in one
clock cycle. Since an SRAM bank allows the reading of only one of its cell’s data by a
specific address per cycle, collisions may occur if some reference samples to be used
are stored in the same SRAM bank but in a different cell. For instance, in 0, the top

samples 0-3 in bank 0 and left samples 28-31 in bank 0 cannot be fetched in one clock
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cycle.

To avoid collisions, we developed 8 Cyclic SRAM Banks in order to store the
reference samples. “Cyclic” and “8 banks” are two key points. The arrangement of
reference samples stored in SRAM banks is shown in 0. The cyclic order guarantees
that any neighboring 32 samples can be fetched at the same cycle. Especially, for
prediction modes 11 to 25, the top reference samples 0—4 and the left reference samples
0-12 have to be fetched simultaneously. In this case, data in bank 4 5 6 7 and in bank 0
1 is fetched in one cycle. “Cyclic” is designed to solve this problem.

The number of SRAM banks is another issue to discuss. [ want the smallest number
of banks, provided that no collisions occur, because a larger number of SRAM banks
makes the chip’s area and power consumption larger. Further, the number of banks
would be more adequate as a power of two for high performance; this is because the
ad- dress can then be calculated by shift and the add operation, instead of division. For
our work, we found that 8 is the most suitable number of SRAM banks.

After detailing the LUT-RSPG and 8 Cyclic SRAM banks, we use an example to
show how the Parallel Reference Sample Fetching Scheme works. The graph and data
can be referred in 0 and Table 2 The selection of reference samples and SRAM banks,
given (X,Y)=(0,3), and 16x16 TU (Bold text represents the samples for filtering),
respectively. For instance, when the TU’s size is 16x16, prediction mode is 23, and
current processing 4x4 block (X==0, Y==3) is located in bottom-left corner inside the
16x16 TU, then the smoothed reference samples required are left 13,10,6, 3, top-left
samples, top 0. As two-tap [1 2 1] FIR filtering is needed in 16x16 TUs, the neighboring
left and right samples of 12, 13 and 14 need to be fetched from the SRAMs. Thus, at
this cycle, reference samples in SRAM banks 4, 5, 6, 7, Top-left, and 0 are used.

Top and left reference samples’ memory deployment is shown in Table 3. Top and
Left reference samples share the same 8 banks (For each bank, 252 words x 32 bits);
while the top-left samples uses one bank (2048 words x 8 bits). Each of the eight banks
is divided two parts, Top (line buffer, C, E) and Left (B, D, B’ and D’). Each parts is

divided into several regions, allocated to different addresses.
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There are two types of operation—read and write. Reading occurs at each clock
cycle; while writing occurs when current processing 4x4 block locates on the right or
bottom boundary of a TU. At this time, the rightmost and bottommost reconstructed
samples are written into memory for the prediction of neighboring TU. The address for
reading and writing is decided by the coordinates of the TU. For in- stance, it reads
from line buffer if the TU is located on top- most of a Coding Tree Unit (CTU). Besides,
we use Ping- Pong buffering to prevent the data to be read, from being covered by the

newly written data. That’s why we divide the memory into several regions.

Table 3 SRAM Deployment for top, left and top-left luma samples

Storage . Bit
Name Region Addr. Pcs. Bytes
type depth
Line
0-239
buffer
Top & Left

C&E 240-243 32 8 8064

B&D 244-247
SRAM

B’&D’ 248-251

Top-left 0-2047 8 1 2048

Total 10112
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Fig. 13 The structure of one PE, designed for Planar, DC and angular predictions.

2.3.3 4x4 Block Based Prediction

First, this section presents the reason of using 4x4 blocks. Then, the details and the
originality of the 4x4 blocks usage are exposed.
To achieve 8K, 4320p@1201fps, we have to satisfy (5), where frepresents the clock

frequency of the system (cycles/second) and n is the number of pixels processed by the
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system per cycle.
7680 x 4320 * 120 = f * n (5)

For a practical system, we aim at decreasing f in order to reduce relatively the
power consumption. For a system processing at 16 pixels per cycle, when luma/chroma
samples are processed in parallel, the required clock frequency is 238 MHz. If the
system processes 32 pixels per cycle, the required clock frequency is 119 MHz

If our system process 32 pixels per cycle, half of the processing units are wasted,
since the minimum TU size is 4%4. For the 16-pixels-per-cycle’s processing block, it
could be 4x4 square block, the 8x2, or 16x1 rectangle blocks. I found 4x4 block is the
best. Because it requires the least numbers of reference samples in worst cases. I use
prediction mode 30 as an example, as shown in 0. Further- more, 4x4 blocks can
enhance the utilization of the hardware resources, since all sizes of TU can be divided
into one or more 4x4 blocks.

The 4x4 prediction block we proposed consists of 16 Prediction Elements (PE).
Each of it processes one sample per cycle. The inputs of each PE inside the 4x4 block
are prediction mode, weight, and reference index. The detailed design of each PE is
shown in 0. I generate 2 LUTs to get the weight and reference index instead of using
formula to calculate in hardware, in order to reduce the path delay. In each predictor,
there are 4 multipliers, 10 adders, and 5 multiplexers. For the predictor in first row and
column, 4 additional adders and 2 multiplexers are required for filtering by each
predictor. “a” is the output of angular prediction mode; “d” is the output of Planar; “e”
and “b” are the output for boundary samples smoothing in DC mode and horizontal,
vertical modes correspondingly, when TU is 4x4 to 16x16. The hardware used for
boundary samples smoothing are only in the first row and first column in the prediction
block. It should be noted that, from our synthesis result, we find that the data path is
0.3 ns shorter if Planar mode and angular mode do not share one multiplier. Thus we
have the planar and angular modes not share one multiplier to achieve a higher

performance.
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Fig. 14 Dependency problem in blocks
(a) Stall of 3 cycles to solve the dependency problem in a 4x4 TU
(b) Use of Data Forwarding to solve the dependency problem in 4, 8 TU

R1: Read reference samples for PB1.
D1: Get data from SRAM and reference sample substitution for PBI.
P1: Calculate predicted samples and add residuals.
W1: Write back the result.
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Fig. 15 Three dependency cases in 4x4 TUs and 8x8 TUs

2.3.4 Hybrid Block Reordering and Data Forwarding

This section exposes the data dependency issue in intra prediction of 8K
application and shows how our proposed solution, called Hybrid Block Reordering and
Data Forwarding, solves this problem.

As we know, prediction needs the neighboring TU’s reconstructed pixels as
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reference pixels, which are stored in the memory. This need illustrates the data
dependency between TUs. The latter issue occurs when the TU needs the reference
pixels, not yet stored in the memory. However, at low system throughput, such as
4K @30fps in [11], this problem does not occur. Because more cycles are required to
process a TU, when neighboring pixels are needed, they are already stored in the
memory.

I will show how Block Reordering and Data Forwarding jointly solve the data
dependency problem. Block Reordering is applied to 832 TUs. Because an 8, 16, and
a 32 TU can be divided into 4, 16 and 64 4x4 blocks, respectively, we can arrange the
process order such that the pixels that will be used as reference pixels are processed and
stored into the memory earlier. I begin with the right-bottom 4x4 block, process from
right to left, from down to up, and end on the top-left block. The processing order is
illustrated by curve in 0. This method can solve the dependency problem if the
previous TU is 16x16 or 32x32. If the previous TU is 8x8 or 4x4, we need to use the
following method below, called Data Forwarding.

Data Forwarding is widely used in hardware design. The idea in our design
considers using some registers to temporally store the reconstructed pixels with
dependency, and when these pixels are needed, we control the reference samples to be
fetched from these registers, instead of from the memory. The novelty is how to apply
this technique to solve the dependency problem, especially to determine whether the
reference pixels should be fetched from the registers or from the memory.

There are three types of dependency in this work. The first one is that P2 depends
on P1,in 0 (a). Since the 4x4 prediction block processes a 4x4 TU in a cycle. As shown
in 0 (b), PB1 is processed at cycle n+2 at the P1 stage, and PB2 in Z-order is processed
at cycle n+3 at the P2 stage. At cycle n+3, PB2 may need the reference samples located
in PB1, while the result of PB1 cannot yet be used by PB2 since it is being written back
to the SRAM. If such reference samples are read from the SRAM and used by PB2,
then the obtained results are erroneous because the reference samples fetched from the

SRAMs are not the expected reconstructed samples of PB2. To solve this problem, we
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build the Data Forwarding path ‘a’, shown in 0 (b), to send forward the result of P stage
to the registers at cycle n+2, and at cycle n+3, the following TU reads the reference
samples from the corresponding registers, instead of waiting for the predicted samples
to be written into the SRAMs.

The second type is that D2 depends on P1, in 0 (a). When PBy , writes back the
reconstructed samples in W), stage while PBy,, use the data to do substitution in the
Dy, stage. For this type, we build the Data Forwarding path ‘b’. The last type is that
R2 depends on W1, in 5(a). For 1IR1IW SRAMs, the reading address and writing
address cannot be the same when writing and reading operations happen at the same
cycle. Reading has to wait until writing finishes. When PBy try to write back the
reconstructed samples in W), stage while PBy,; reads the same data from the same
address, the error occurs. To solve it, we build the Data Forwarding path ‘Type 3°,
shown in 0 (b). It keep writing and does not read. When it needs data, it reads from path
‘¢’ directly.

Overall, Three Data Forwarding paths, one from stage P, to P ; (path a), one
from stage P to Dy,, (path b) and one from stage Wy to Dy,, (path c), are built to
eliminate three types of dependency respectively. I use 0 to shows how the dependency
occur in the 4x4 TUs and 8x8 TUs. For instance, the PBs in TUpmay use the results
of PB; in TUj, and the PB;3; in TU;; may use the results of PBy; in TUjp; as
reference samples. This is the second types illustrated above, which is marked by blue
dash line.

As shown in 5(a), we know the stalling of pipeline for three cycles could eliminate
the dependency, at the expense of throughput. In our technique, no stall occurs in our
method, such that the throughput is significantly increased. Even though Data
Forwarding can solve the dependency problem of all other sizes besides 4x4 and 8x8,
we do not apply it elsewhere. Because data forwarding makes the pipeline design and
implementation more complicated and the critical delay becomes longer. Furthermore,
since the processing order inside a TU is not restricted, then alternatively we can use

processing reordering to solve this problem. This method is easier compared to Data
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Forwarding.

2.4 Implementation Results

The proposed architecture is designed in Verilog, and synthesized in SMIC 40 nm
standard-cell libraries. The layout is shown in 0. Before the layout, the delay of the
critical path is 3.65ns, and after the layout, it is 3.8ns. If the luma and chroma modules
work in parallel, the throughput’s requirement, 4320p@1201ps, can be achieved when
system’s frequency reaches 260MHz. For 16x16 and 32x32, one and four additional
cycles are required for data preparation respectively. Since an overhead of 1/17 of the
total processing time used for data preparation, it’s required to achieve the target by
reaching 238*17/16=253MHz in the worst case. Hence, including the time for data
preparation, the through- put is 16*(16/17) = 15.1 pixels/cycle or 22.5 samples/cycle in
4:2:0 format. A 4/8/16/32/64 PU can be processed in 1/4/17/68/272 cycles, as given in

Table 4.
Table 4 Worst throughput cases and processing speeds
N Substitution & Perdition |Throughput (Samples/|Time to complete a TU
filtering (Cycles) (Cycles) Cycle) (Cycles)

4 0 16

8 0 4 16 4
16 1 16 151 17
32 4 64 15.1 68
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Fig. 16 Layout of the proposed intra architecture.

The luma module (10-bit) with a core size of 0.36mm? and chip-area utilization of

80%. The location of each module are marked, while the SRAMs for neighboring
pixels and line-buffer are shown in white regions.
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Table 5 Comparison of H.265/HEVC intra prediction architectures for video

application
Proposed architecture | Huang’[6] 2013 | Jung’[7] 2013
Platform 40 nm 40 nm 130 nm
Bit depth 8-bit 10-bit 8-bit 8-bit
Area (gates) 212K 252K 27K 41K*
SRAM 430B 538B 612B N/A
Line buffer 20KB 25KB 16KB** N/A
Pred. Mode All
PU sizes All
Specification 4320p, 120fps 2160p, 30fps N/A
@260MHz @200MHz N/A
Min. Tp 22.5 2 8
(samples/cycle)
Norm.TP 0.103 0.090 0.074 0.198
(samples/cycle/k- gate)
Norm. rea Complexity (gates) | 212K 252K 304K N/A***

By taking the line buffer into account, the size of the on-chip memory used for
either 8-bit luma samples or chroma samples is 10K, as shown in Table 2. Thus, the
overall size is 20 KB.

The comparison with other works is shown in Table 5. As many key functions are
not included in [12], the comparison with it is not actually fair. Compared with [11], the
throughput of our design is 16x higher, with logic area only 7.85x more. In our design,
the normalized throughput is 0.103, and the normalized area complexity is 212K, com-
pared with 0.074 and 304K in [11], respectively. Thus, a higher normalized throughput
or a lower normalized area complexity is achieved by the proposed design. The
improvement comes mainly from two aspects.

System’s high throughput is achieved by following aspects: First, by breaking a
TU into smaller blocks, we reduce the number of reference samples fetched and

multiplexed for prediction. Second, we separate the multi- pliers for the prediction of
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the Planar mode and angular modes. These first two aspects make data path shorter in
order to achieve a higher performance. Third, we develop LUT-RSFS to arrange a tight
schedule for reference samples preparation and prediction, 16/17 (approximately 94%)
of cycles are utilized for intra prediction. Finally, we use Block Reordering and Data
Forwarding to get rid of the data dependency, so that the system can operate under high
throughput.

Besides aiming at a high throughput, we also aim at reducing the circuit area. First,
as mentioned above, we break TU into small blocks and devised LUT-RSFS to fetch
reference samples precisely. They reduced number of the reference samples fetched for
prediction in the worst case, from 99 to 13 reference samples, so that the complexity of
the control circuit for selecting the reference samples is decreased, and the area of
relevant circuit can also be reduced. Second, we select 4x4 block as a prediction unit.
Since it is adaptive to all TU sizes, hardware resource is saved. Finally, more reference
samples can be reused by the 4x4 block and more neighboring predicted samples share

probably the same reference samples, so that the area of circuit gets further reduced.

2.5 Summary

In this paper, we have presented an 8-bit/10-bit adaptive intra prediction hardware
architecture for H.265 4320p@120fps application. Based on the divide-and-conquer
strategy, we proposed two techniques. Using the LUT-RSFS, required reference
samples are fetched from the SRAMs at each cycle with low complexity and small
circuit area. By exploiting Block Reordering and Hybrid Data Forwarding, we have
minimized the idle time and eliminated the dependency between TUs in order to
increase the throughput. Hardware utilization of 94% is achieved and only 272 cycles
are used to process a 64x64 block in worst case. The demerit of the proposal is that the
bandwidth of SRAM in increased, as multiple loadings of reference samples are
required for a block larger than 4x4. This would be a problem to solve in the future

work.
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3. Dual-clock VLSI architecture of HEVC Sample Adaptive

Offset Estimation

3.1 Introduction

Compared to the previous H.264/AVC standard [21], H.265/HEVC doubles coding
efficiency by employing a number of new coding tools. Especially, an Sample Adaptive
Offset (SAO) component is newly introduced as one of the in-loop filters (ILF) ,which
contributes to up to 18% BD-rate reduction [22]. In H.264/AVC, Deblocking Filter
(DBF) [23] is the only ILF. Its VLSI implementation has been discussed in many
previous works [24] [25][26] [27]. In H.265/HEVC, DBF [28] has been simplified [29]
[301[31]1[32][33][34] and SAO dominates the complexity of ILF especially in a video
encoder. Several previous works discussed SAO’s implementation. Joo, et al. [35] [36]
proposed to utilize the intra prediction mode to predict the Edge Offset (EO) type, so
that the number of EO types could be reduced to save the encoding time. Choi et al.,
[37] evaluated several algorithm-level improvements for SAO. Gao et al., [38]
developed a low complexity SAO algorithm based on class combination, band offset
(BO) pre-decision and merge separation category. Rediess et al., discussed the
architectures of statistics collection and parameter decision, two main components of
SAO, in [39] and [40], respectively. Mody et al., [41] designed an SAO estimation
architecture supporting 4K@601fps encoding. Zhu et al. [42] [43] developed a fast SAO
estimation algorithm its VLSI architecture supporting 8K encoding. The complete
implementations of SAO estimation [41] and [42] [43] both require relatively large
circuit area, which still has plenty room for improvement.

This work aims at designing an efficient VLSI architecture of SAO estimation in
H.265/HEVC. To achieve high area efficiency, we propose three techniques:

® Dual-clock SAO architecture: The highly heterogeneous data flow of statistics
collection (SC) and parameter decision (PD) in SAO causes each part to require a

completely different preference in working frequency. Such a different preference
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is the main obstacle for an efficient implementation. This technique addresses

heterogeneous data flow by separately driving SC and PD at a high- and a low-

speed clocks, respectively, so that each part could be integrated together efficiently.

It reduce the overall area by 56%, from 156K to 68K gates.

® Coarse range selection for BO (CRS): Based on the analysis of band distributions
in each Coding Tree Block (CTB), and on hardware resources for finding best
bands, this technique estimates the range of bands before SC with an accuracy of

60-80% and shrinks the range of fine processed bands 32 to 8 to reduce the circuit

area.

® Accumulator bit width reduction (ABR): By exploiting the mutual exclusion
relationship among categories/bands existed in the accumulation process in SC,
this technique carries out an early termination to accumulators reaching a threshold,
to further reduce their circuit area.

The proposed VLSI implementation employing the above techniques occupies 51K
logic gates, which is only one-third of circuit size of [42], at the same throughput and
comparable coding efficiency. With a high-speed clock of 1.3 GHz and a low- speed
clock of 217 MHz, 8K@120fps SAO real-time encoding can be achieved.

Rec. Neighboring Information
Count r———————-— 1

4x4 pixels [/ cycle T
P /ey S ldiles | [24/48] “»| Parameter | Parameter
Org. Collection Sum Decision Sets

2x2 pixels / cycle [24/48]

A\ A 4

Fig. 17 The overview of SAO.
Details of the proposed statistics collection engine and parameter decision engine are
in Fig. 22 and Fig. 23, respectively.

The rest of paper is organized as follows. Section 3.2 gives an introduction to SAO
in H.265, its data flow and several hardware friendly approaches for the design. Section
3.3 analyzes the data flow of SAO, the key challenge and introduces the first proposed
technique. Section 3.4 A analyzes the characteristics of BO and introduces our second

proposed technique utilizing those characteristics. Section 3.4.1 explains how mutual
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exclusion among categories/bands generate inefficiency in hardware utilization, and
give our third proposed technique. Section 0 shows implementing results and gives
some analysis on the performance of the proposed design, followed by the conclusion

in Section 3.6.

3.2 SAO algorithm

SAO aims at reducing the distortion of the reconstructed pictures, by adaptively
adding offsets to the reconstructed samples at both encoder and decoder. The SAO
parameters, i.e. how the offsets should be generated and applied, are signaled at the
Coding Tree Unit (CTU) level. The offset to be applied depends on the classification of
the target sample. There are two kinds of classifiers: Edge Offset (EO) and Band Offset
(BO). The sample classification of EO depends on the comparison between the current
sample and its neighboring ones, while the sample classification of BO depends on the
value of current sample itself. The optimal classifier and offsets for each CTU is found
during the encoding process, called SAO estimation, which comprises the SC and PD
phases, as shown in Fig. 17. In SC, the BO and EO classifiers classify each
reconstructed sample in a CTU into different bands and categories, respectively. The
classification statistics of the current CTU are collected. In PD, based on the statistics
and the neighboring (left and upper) SAO parameters, the optimal parameter sets
achieving the lowest rate-distortion cost are found. The parameter sets include the SAO

mode, types and offsets, as shown in Table 6.
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Table 6 Output (parameter sets) of SAO.
Luma and chroma share the same set of parameters in gray parts. Cb and Cr always
share the same mode and type.

SAO Mode SAO Type SAO Offset Type Auxinfo
OFF: 0 N/A N/A
EOCO0:0
EO090: 1 N/A
New Mode: 1 EO 135:2 Offset [0:3]
EO 45:3
BO: 4 0-28
Merge Upper: 0
Merge: 2 Follow merged CTU
Merge Left: 1

3.2.1 Statistics Collection

For EO, the category of each sample is decided according to its relationship with
neighboring samples, following 4 patterns, the horizontal (EO 0), the vertical (EO 90)
and two diagonal (EO 45 and EO 135) directions, as shown in Fig. 18. A sample that

falls into none of these categories is classified into category 0.

D I

> I
>

Sample value

|
|
I |
b a ¢ b a ¢ b o >
a ¢ b’ ’—/‘I ! : a ¢ b
Category 1 T : | : : Category 4
b Lo
Category 2 Category 3

Fig. 18 EO patterns and categories.
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0 Sample value 255
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Band: 14 17

Fig. 19 Thirty-two Bands division.
The value of an 8-bit sample (dynamic range (0 to 2BitDepth—1)) is evenly
divided into 32 bands. The best consecutive four bands are chosen as candidates, e.g,
Band 14 to 17.

For BO, the band of a sample is decided according to the value range it falls in.
The entire dynamic range (0 to 2BitDepth—1) is evenly divided into 32 bands, as shown
in Fig. 19. An 8-bit sample is classified into band K if it ranges from 8K to 8K+7. Based
on the statistics collected within a CTB, the best consecutive four bands and their

corresponding offsets are chosen as candidates to compare with the EO patterns.
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Fig. 20 An example to illustrate the statistics collection process.

SAcc and CAcc are abbreviations for accumulators of Sum and Count. E.g. BO
classification is performed to the 2x2 reconstruction samples (0X93,0x96,0x9b,0x99).
Since the first two samples belong to band 12, the differences (Org.-Rec.) belong to
band 12 are summed up. The SAcc and CAcc of band 12 add to 4 and 2, respectively.
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3.2.2 Parameter Decision

The purpose of PD is to decide the parameters for the current CTU, based on the
statistics collected in SC. The parameters include the SAO mode, SAO type, auxiliary
in- formation and four offsets. The possible outputs are listed in Table 6. The set of
parameters with lowest rate-distortion (RD) cost is chosen as the one to be coded. RD
cost is defined as:

Cost = D + A * rate (6)
,where rate is the number of bits to code the parameters and A is the Lagrange multiplier.
Distortion between the original and reconstructed samples modified by SAO can be

described by the following equation:

Dpost = z (Org(c) - recpost(c))z

cECTB
2
=Z (org(c) — (recpre(c) + offset)) (7
CECTB
where the offset is calculated by the Sum and Count from SC
offset = — (8)
Count.

By evaluating all the bands, EO patterns, and the merge candidates, the parameter
sets with minimum cost are chosen as the final decision. The comparison of distortions
can be simplified by eliminating the org and rec in D and D, as the following

equations. The details can be referred in [22]

6D = Dpost — Dpre = Count * of fset? — 2 x of fset x Sum 9

3.2.3 Hardware friendly SAO

To improve the algorithm’s friendliness to hardware implementation, a previous
work [42] made modifications to the original SAO algorithm in the HM reference

software, as listed in the Table 7 from Mods 1 to 4.
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Table 7 Comparison of modifications made on the HM-16.0

No Name HM-16.0 ICIP [25] Props.
Number of iteration ) ) ) )
1 At most 7 iteration No iteration
for offsets
Evaluation method ) )
2 RD-Cost Distortion
for best band
3 Rate CABAC constant probability model[25]
Normalization of RD- | The RD-cost of New RDO
4 The RD-cost of Merge mode
cost mode
The range of
5 ) [-1023,1023] [-7,7] [-15,15]
difference
Samples unused in SC . . .
6 . Region A Region AUB Region AUC
(Fig. 21)

7 Number of bands 32 32 8
Accumulator

8 Accumulator bit terminates

width reduction

when reaching a
threshold
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_ 64x64 CTB -

Fig. 21 Samples not used in statistics collection, referring to No.6 in Table 7

In this work, we further apply Mods 5 to 8. Mods 5 enlarges the range of difference
between original samples and reconstructed samples for a higher precision. Mods 6
utilizes the top and left boundary samples for statistics collection to increase calculation
accuracy. As Mod 7 we proposed a technique to estimate the most probably selected
bands in a CTB and to reduce the searching space for the best bands from 32 to 8 bands,
the detail of which is explained in Section 3.4.1. As Mod 8 we propose a bit width

reduction technique for the accumulators, with details given in Section 3.4.2.

3.3 Dual-clock Architecture

3.3.1 Heterogeneous data flows of SC and PD

The main obstacle to an efficient SAO implementation comes from the highly
heterogeneous data flows of SC and PD. The SC for each EO or BO classifier comprises
many simple iterations. On the other hand, PD involves significantly less iterations (56
or less for each CTU) with each of them being much more complex.

The system throughput (TP) can be regarded as the product of clock frequency
(freq) and parallelism (N) in the number of samples processed per clock cycle:

Throughput = freq.x N (10)

The enhancement of TP can come from the increase of either freq.or N. The
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serial characteristics of SC and the large number of iterations involved, however, make
SC inefficient to be parallelized. As shown in the gray part in Fig. 22 and Fig. 23, the
hardware components of these parts have an quadratic growth in area with the
increase of N. Detailed quantitative analysis will be given in next subsection. In the
meanwhile, the function of SC decides that a short critical path can be achieved,
thus a high frequency is preferred. However, a high working frequency is not preferred
in PD, because 1) it does not need many clock cycles to perform the limited number
of iterations involved for each CTU and 2) each iteration involves the complex
computation that results in a long critical path. The big difference in preference to
the selection of working frequencies, thus becomes the key challenge for integrating

SC and PD efficiently.

3.3.2 The optimal clock frequency of SC

There are many possible combinations of N and freq to support a certain
throughput. For instance, N = 16 is used in [42] and [41]. However, there are factors,
area and timing, that constrain the choice of N. I list the hardware usage in the crucial
modules with N equal to 1, 2, 4, 8, 16 and 32, as shown in III. I explain how area and
clock frequency constrain the N and show the optimal frequency as the following.

1) Analysis of area: The modules listed in Table 8 (marked in gray in the Fig. 22)
dominate the area consumption when compared with other modules in SC. For these
modules, area increases at a growing rate with the increase of N. The increase in area
mainly comes from the quadratic growth in quantity of function units (FUs) of EO/BO
modules, listed in the second row (EO/BO module) in Table 8. Since BO and EO are

similar in architecture, we use EO as an example.
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I
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Fig. 22 The architecture of 2x2 statistics collection engine.
The details of dark gray part in Fig. 17. SAcc,CAcc are abbreviations for the
accumulators of Sum and Count.

When N = 1, this sample must belong to one of the five categories. By checking
the category that this sample belongs to, the corresponding accumulators for Sum and
Count (SAcc and CAcc as in Fig. 22) operate. When N = 2, there are two cases for the
second sample “B”, that B belongs to the same category as A, or not. For the former
case, the corresponding SAcc unit increments by the sum of two differences and CAcc
increments by two; for the latter case, operation for each sample is the same as the case
when N = 1. It could be noticed that the addition of difference of latter samples depends
on the result of former ones, because the samples with the same category or band are
accumulated together. Considering whether the rest N — 1 samples have the same
category with the first sample or not, 2N —1 branches exist and N — 1 adders as well as

multiplexers are required. Similarly, when we consider rest N — 2 samples with the
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second sample, 2N —2 branches exist and N — 2 adders as well as multiplexers are
required. Thus we can conclude that N (N—1)/2 adders, multiplexers and comparators
are totally required for each EO/BO module at N times of parallelism.

Besides, the number of inputs necessarily multiplexed to each accumulator also
grow with the increase of N. As shown in Fig. 22, there are four inputs (sA to sD) for
each accumulator when N = 4. Furthermore, the larger data width of each adder also
increases the area consumption. The data are shown in the third row (SAccs/CAccs) of
Table 8.

2) Analysis of timing: Though the above analysis reveals that the high area
efficiency benefits from a smaller N, a smaller N means a higher freq is required to
sustain the target TP. However, the maximum frequency is constrained since there is a
loop in SAcc and CAcc, as shown in Fig. 22 (II). The path delay, mainly generated by
the adder, has a lower bound irrelevant to N. Besides, the path delay in a loop cannot
be reduced by pipelining. Thus the achievable clock frequency has an upper bound, or
N has a lower bound given a target TP.

3) The optimal clock frequency: To support 8K@1201ps, the TP required equals
to 7680 * 4320 * 120 * 1.5. From (8) and Fig. 24, we know the required system
frequency, 5.2 GHz and 2.6 GHz, are higher than the maximum system frequency (1.5
GHz to 1.6 GHz) when N equals to 1 and 2 respectively. The maximum frequency
should always be larger than the frequency required to guarantee a positive slack. Thus
N equal to 4 is the optimal choice among the candidates with positive slack, since a

smaller N is more area efficient. Thus the corresponding optimal frequency is 1.3 GHz.
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Table 8 Relationship between the consumption of hardware resource of crucial
modules and the increase of N from 1 to 32. (*: when applying proposals in section
3.4, this figure is 48, else it is 96.)

Module . Compl
FUs Data width . #of FU (1|2 | 4 8 |16 | 32
Name exity
Adder 5 bits
EO/BO , 2.5N(N-
MUX 3 bits O(N2) 0 |5 [30 |140 600 2480
module 1)
Comparator 4 bits
Max
Adder (15bits,5bit+lo
gN) Fig. 6 (II) | O(1) 48 48
SAccs
/CAccs. | Comparator 10~15 bits
MUX 2 bits O(N) |48(N-1)* |0 |48 |144 (336 [720 |1488
Adder 3 bits O(N) 2N 2 |4 |8 |16 |32 | 64
Category
Classifier
Comparator 8 bits O(N) 7N 7 |14 |28 |56 [112 (224

3.3.3 Other feasible models for parallel SC

1) Multiple sets of accumulators: This model uses N sets of accumulators that
work independently and have a final accumulation stage. It gives an O(N) hardware
complexity without affecting critical path, but needs (M-1) extra sets of accumulators.
The hardware consumption of SAccs/CAccs in Table 8§ increases to O(M) from O(1).
The experiment result shows Accs. of one category occupy 0.55K gates@650MHz.
Thus, at least extra 13K gates are required, even with only 2 sets of accumulators. The
proposed model is thus more efficient than the M-set accumulator model as long as N
is less than 32.

2) Serial: This model uses 1 set of registers but N sets of multiplexers and adders

connected in series. It gives an O(KN) hardware complexity, where K = 48 (4 EO
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pattern * 4 categories/EO pattern + 32 bands). Since each category or band need one
string of adders and MUXs connected in series. When N is small, K becomes the main
influence on the area. From our analysis, this linear model is worse than our chosen
model when N is not greater than 16.

Overall, compared with the above two models, the model with N=4 that we choose

is the most area efficient for SC.

I I
I
set= eighboring
| Off Neighbori |
| > Sum / Count CTU Info. I
X |
New RDO Merge
| mode v Offset i Mode o |
| MUX vox /!
| ' I !
I Dist.= Offset*Offset*Count — Offset*Sum*2 I
I
7 I
I Dist_accu = read I
| Dist_accu + dist |
I v |
| Cost = Dist.+L*Rate » Costs[5] |
| parameters l l write write |
| Decision Compare Cost | Best Parameter Set (» | Mem.| |« I
Low frequenc
VIIV quency |
 v/41/6offrea o _ J

Fig. 23 The proposed architecture of parameter decision Engine.
The details of light gray part in Fig. 17.
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Fig. 24 The relationship among parallelism (N), area and frequency in SC.
Under the process of SMIC 40nm, bars represents the approximate number of
NAND gates required by the modules listed in Table 8. The dashed line represents the
min. frequency required and the solid line represents the max frequency could be
achieved with various N.

3.3.4 The optimal frequency in PD

The best parameter sets for each CTB are decided among 4 EO patterns (4
categories in each), 32 bands, and 2 merge categories (4 offsets to be evaluated in each
category). Intuitively, it generates a cost for an EO category or a BO band per cycle,
and a cost for each merge candidate every 4 cycles. This process is pipelined in three
stages. Totally it takes 16 + 32 + 4 + 4 + 4 = 60 cycles for processing the PD of each
CTB. Since the result (sum, count) of SC stored in registers are used by PD, the clock
frequency of PD should be above a lower bound as the following equation:

Freqpp = NCpp * Nerp * Nerame (11)

NCpp is the numbers of cycles to finish PD, N.rp is the numbers of CTB in a
frame and Nf,qpme is the number of frames encoded in a second.

The Freqpp is enough to support the required throughput with 3 pipeline stages
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when it is only 1/6 or 1/4 of Freqsc (1.3GHz). Their area are 21K and 25K,
respectively. When Freqpp is 1/2 of gsc , 5 pipeline stages are required. Its area is
30.4K gates, with the area overhead being 45%. It’s very difficult to increase the
frequency of PD to further match the frequency of SC, because the calculation of Offset,
Dist. and Cost in PD, as shown in Fig. 23, consists of complicated multiplexing, and

multiplication, which is challenging for the deep pipeline.

3.3.5 Proposed architecture

Based on the analysis above, we propose a dual-clock architecture, where a high
speed clock drives SC and a low speed clock drives PD, so that the features of each part
could be exploited. The frequency of the high-speed clock is 1.3 GHz and the frequency
of the low-speed clock is 1/4 or 1/6 of clkpign—speeqa- Both of them are derived by

clkpqse- The relationship of frequency between them is shown below.

Clkhigh—speed = clkpgse (12)
__ Clkpgse __ clkpgse
clkiow-speea = M floor(NCsc/NCpp) (13)

In our work, M is four without CRS (to be presented in Section 3.4) or six with CRS.

For SC, it takes 905, 240 and 240 high-speed clock cycles to process a Luma, Cb
and Cr CTB in serial, respectively. NCsq is equal to 240, since the minimum number
of cycles used in SC is decided by the Cb/Cr channel. For PD, it takes 60 low- speed
clock cycles to find the best parameter candidates for each channel. The resulting M is
4. With CRS, M increases to 6, since the number of clock cycles for finding the best set
of candidates (N Cpp) decreases from 60 to 36 with the number of bands decreased from
32to 8.

The processing schedule for SC and PD is shown in Fig. 25. SC and PD are
processed in pipeline stage sl and s2, in two different clock domains respectively. The
data in s1 are kept unchanged for at least M (4 or 6) cycles, so that the data in s1 could
be caught by the rising edge of low-speed clock, and be transferred to s2 before they

are updated for another new CTB in s1 during this period.
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It is noted that two clocks have a frequency relationship of a dividends M and are
derived by clkp4se. The rising edges of each clock are periodically aligned in delta time,
making it unnecessary to have the extra data synchronization. Compared to using two
completely independent clocks, it eliminates the hardware expense for an additional

phase-locked loops (PLL).

sl = -
- Freqsc =13 GHz 35Cycles  g7oCycles I} 210 Cycles
1 [ t

////%/ A. Freqpp = 1Z of Freqsc ‘ Luma
4

B. Freqpp = T of Freqsc

Luma ]

e

; 64 Cycles
Luma Pre_Cb Cb | 40 Cycles [

|

! ’

Cross domain

EO BO Merge Compare
Data transfer )
————————————————————— A. 16 Cycles 32 Cycles 8Cycles 8Cycles
30 Cycles B. 16 Cycles 8 Cycles 8 Cycles 8 Cycles

Fig. 25 The schedule of CTB processed in pipeline in two clock domains.
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Fig. 26 The number of samples distributed in each band within a CTB.
(E.g, A normal CTB of video sequence of Racehorse 832x480)
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Fig. 27 The distribution of number of bands in a CTB in various sequences.
Video sequences: BQTerrace, BasketballDrill and BlowingBubbles. They are
evaluated with Quantization Parameter (QP) of 22, 27, 32, 37 and have the maximum,

medium and minimum BD-rate degradation, respectively, as shown in the 3rd column
of Table 10.

3.4 Algorithm-Architecture Co-optimization

3.4.1 Coarse Range Selection

The exhaustive search among 32 bands to find the best bands consumes two-third
(32/48) of hardware resources of the design, while the hardware for EO dominates the
rest one-third.

If we could design a hardware friendly scheme that coarsely select the sample value
ranges in each CTB to reduce the search range from 32 bands to a small number before
SC, the overall resource for collecting BO statistics can be decreased. The selected

range would better cover as many samples within a CTU as possible, so that the band
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characteristics of a CTU could be mainly preserved. As mentioned in Section 3.1, a BO
pre-decision was proposed in [38]. The BO pre-decision scheme searches among all 32
bands to find the best one, which is software oriented and aims at speeding up the band
decision process. However, it is the impracticable for hardware implementation since
the limitation in SRAM bandwidth causes that lots of cycles are taken to fetch the
samples in a CTU for pre-decision.

From Fig. 26 we observe that most of the sample values are distributed in several
bands, and distribution of the chroma samples are even more concentrated. I further
collect the statistics of the number of bands used in each CTB in video sequences, so
as to know how large a range of bands is enough to efficiently classify most of samples
in a CTB. The distribution of number of bands used in a CTB is shown in Fig. 27.
Results show that 82% of CTBs have at least 90% of their samples concentrated in no
more than 8 bands. The distribution is more concentrated when the video sequence
becomes larger, since each CTB tends to contain less textures. Such results indicate that
the use of 8 bands to collect the statistics could guarantee most of samples to be
classified.

I thus propose the CRS for BO based on most likely band estimation. It reduces
both the searching space for the best bands and the relevant hardware resource for BO
from 32 to 8. Before the start of statistics collection, we define a coarse selection stage,
which contains 16 cycles for a CTB. During this stage the system makes an estimation
on the bands distribution and finds the center of distribution. In each cycle of this stage,
a window of 2x2 reconstructed samples scans 16 locations evenly distributed in a CTB.
The average of the samples in the window are calculated and accumulated. In the last
cycle of the pre-estimation stage, a final average value is calculated. The band
belonging to this value is regarded as the one in the center of sample distribution within
the current CTB. The left 3 bands and right 4 bands of it are considered as the reduced
8 band candidates, as shown in Fig. 28. The four consecutive bands with minimum cost
from them will be selected in PD. For the pixels outside the 8 ranges, the SC does not

collect the statistics of them, which could reduce the coding efficiency. But the
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reduction is very limited, with average 0.2% BD-rate increase in each configuration.
The experiment result shows that this proposed technique has the top-1 prediction

(the proposed best band is the same as the best one from original HM) rate is about

60%, and the top-3 prediction rate is about 80%. More results about the performance

of this proposed scheme evaluated in BD-Rate are shown in next section.
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Fig. 28 The process of reduced BO candidates searching.

Step 1 : Scan the 16 evenly distributed windows (2x2 reconstructed samples) one
bye one, calculate the average value of the samples in the window, and accumulate the
average value.

Step 2 : Estimate the average value within the current CTB. Avg.= (Sum + 8) >
4,
Step 3 : Candidate bands range from (Avg.>> 3) — 3to (Avg.>» 3) + 4.

3.4.2 Accumulator bit width reduction (ABR)

As shown in Fig. 22, there are 24 or 48 SAccs and CAccs (with or without CRS)
in SC. Theoretically, each CAcc could increment to the maximum value, 4096 (64x64)
for each CTB. Since a sample is classified into only one of the bands/categories,
however, the classification is mutual exclusive with each other. In most cases, the final
value of CAcc is about several hundreds.

I thus propose to replace the maximum value of CAcc by a smaller threshold, so as
to reduce the bit width of CAcc and SAcc. Once the value in CAcc reaches a threshold,
the accumulations in CAcc and the corresponding SAcc are terminated. The data width
reduction of function units in CAcc and SAcc depends on the threshold.
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I compare the effect of BD-rate reduction among three thresholds, 1024, 2048 and
4096. The experiment result shows that there’s no observable coding efficiency loss for
any them. In fact, we found a threshold of 1024 could still preserve 97% of statistics.
The statistics loss has little influence on the coding efficiency.

By setting a threshold of 1024, we could reduce the data width in each CAcc as

well as SAcc, contributing area reduction by 5K gates, 10% of the entire area.
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Table 9 The BD rate comparison of algorithms under LowDelay Main P (LDP)

configuration (Anchor : HM-16.0, SAO off, CTB:64%x64)

. . Proposed Proposed
Video Sequences in ICIP14 . .
SAO_ON without with
common test [25]
CRS or ABR CRS or ABR
Traffic -8.1% -8.2% -8.2% -8.2%
Class A PeopleOnStreet -6.0% -6.5% -6.4% -6.4%
4Kx2K Nebuta -7.6% -8.8% -8.5% -8.4%
SteamLocomotive -16.0% -17.6% -17.6% -17.7%
Kimono -7.0% -7.8% -7.7% -7.7%
Class B ParkScene -8.1% -8.0% -8.0% -8.2%
ass
1080 Cactus -11.2% -11.6% -11.8% -11.6%
P BasketballDrive 8.4% | -8.6% 8.5% -8.8%
BQTerrace -17.1% -18.2% -18.2% -18.1%
BasketballDrill -8.6% -9.1% -9.2% -8.3%
Class C BQMall -8.1% -8.2% -8.3% -8.4%
WVGA PartyScene -4.9% -4.9% -5.0% -5.0%
RaceHorses -8.8% -9.0% -9.0% -9.0%
BasketballPass -4.6% -4.8% -4.6% -4.7%
Class D BQSquare -4.4% -4.4% -4.4% -3.7%
WQVGA BlowingBubbles -4.2% -4.3% -4.3% -4.3%
RaceHorses -6.1% -6.1% -6.0% -6.2%
Class E FourPeople -9.2% -9.6% -9.6% -9.5%
220 Johnny -12.3% -12.4% -12.4% -13.1%
P KristenAndSara -11.2% -12.2% -12.1% -12.0%
BasketballDrillText -9.2% -9.5% -9.6% -8.3%
Class F ChinaSpeed -9.7% -10.9% -10.8% -8.0%
SlideEditing -4.2% -2.5% -2.3% -1.3%
SlideShow -7.1% -7.8% -8.0% -5.5%
Class A -9.5% -10.3% -10.2% -10.2%
Class B -10.4% -10.8% -10.8% -10.9%
ol Class C -7.6% -7.8% -7.9% -7.7%
ass
Class D -4.8% -4.9% -4.8% -4.7%
Summary
Class E -10.9% -11.4% -11.4% -11.5%
Class F -7.6% -7.7% -7.7% -5.8%
All -8.4% -8.8% -8.4% -8.4%
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Table 10 The BD rate comparison of proposed algorithm with CRS and ABR under
different configuration, All Intra(AI),Random Access(RA), and LowDelay main(LD)
(Anchor : HM-16.0, SAO on, CTB :64x64)

Video Sequences in common
Al RA LD
test

Traffic 0.2% 0.2% 0.2%

Class A PeopleOnStreet 0.2% -0.1% -0.2%
4Kx2K Nebuta 0.2% -1.0% -1.2%
SteamLocomotive -0.2% -0.4% -0.8%

Kimono 0.2% 0.1% 0.0%

Class B ParkScene 0.2% 0.2% 0.0%
1080 Cactus 0.3% 0.1% 0.1%
P BasketballDrive 0.4% 0.1% -0.1%
BQTerrace -0.1% -0.1% -0.4%

BasketballDrill 0.7% 0.6% 0.6%

Class C BQMall 0.3% 0.1% -0.0%
WVGA PartyScene 0.1% 0.1% -0.0%
RaceHorses 0.2% 0.0% -0.2%

BasketballPass 0.4% 0.1% -0.0%

Class D BQSquare 0.1% 0.6% -0.1%
WQVGA BlowingBubbles 0.1% 0.1% -0.1%
RaceHorses 0.2% 0.1% -0.2%

FourPeople 0.2% 0.3% 0.0%

Class E

720 Johnny 0.5% 0.5% 0.2%
P KristenAndSara 0.4% 0.5% 0.0%
BasketballDrill Text 0.6% 0.7% 1.8%

Class F ChinaSpeed 0.9% 1.3% 1.8%
SlideEditing 0.5% 1.5% 2.7%

SlideShow 0.6% 1.0% 1.7%

Class A 0.1% -0.3% -0.5%

Class B 0.2% 0.1% -0.1%

Class Class C 0.3% 0.2% 0.1%
Summar Class D 0.2% 0.2% 0.0%
y Class E 0.4% 0.4% 0.1%

Class F 0.7% 1.1% 2.0%
All 0.3% 0.3% 0.3%
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Table 11 Comparison of synthesis result with the previous works

This work ICIP’14 [25] ISCAS [24]
Process 40nm 65nm 28nm
Area (gates) 51K 156.3K 300K
SRAM 1.14KB 1.08KB N/A
4320p, 4320p, 2160p,
TP (pixels/s) for encoding P P P
120fps 120fps 60fps
Cycles to finish 64x64 CTB:SC 905 384 1600
Cycles to finish 64x64 40 64 N/A
CTB:PD
SC: PD: SC & PD:
Clock Freq. (MHz) SC & PD: 378
1300 217 200
Norm. TP
117.1K 38.2K 2.8K
(samples/(gates*s))

Table 12 Comparison of the proposals with and without CRS and ABR

Proposed without Proposed with
CRS or ABR CRS or ABR

SC modules 43K 30K

Area (gates) PD modules 25K 21K

Total 68K 51K

SC modules 870 905

Cycles to finish 64x64 CTB
PD modules 64 40
SRAM 1.14KB

TP (pixels/s) for encoding

4320p, 120fps
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3.5 Experimental Results

The proposed AD design has been implemented on RTL in SystemVerilog. Logic
synthesis and physical design have been conducted with Synopsys Design Compiler
and Cadence SoC Encounter, respectively, in SMIC 40nm CMOS standard cell library.
For verification, input data and expected outputs were generated from HM 16.0
software model as stimulus and reference for the hardware design. The layout is shown
in Fig. 29. The high speed clock domain can work under the required frequency of 1.3
GHz. I evaluate the power consumption for the video sequence of BasketballDrill with
QP=37 and under the low delay, main, P slices only (LDP) configuration. The power of
our design is 48 mW when high speed clock equals to 1.3 GHz.

To evaluate the coding efficiency of the proposed SAO, two groups of tests are
conducted over the common test condition [44]. The first group of tests evaluate the
following five algorithms, including the HM-16.0 default setting with SAO turned off
(anchor) and turned on, algorithm in [42], the proposed algorithm without and with
CRS as well as ABR. This group is evaluated under LDP configuration. Since the effect
of SAO is the most obvious [22] under this condition. The result is shown in Table 10.
The second group of tests evaluate the following two algorithms, the HM-16.0 default
setting with SAO turned on (anchor) and the proposed algorithm with CRS and ABR.
This group is evaluated under three configurations, All Intra (Al), Random Access (RA)
and low delay (LD). The result is shown in Table 11.

Comparing with the proposed design with [42] in Table 12 and Table 10, we know
that our proposed design achieves a reduction by 69% from [42] with no coding
efficiency loss in BD-Rate. Compared with the result the anchor in Table 11 under
various configuration, our proposed algorithm has 0.3% coding efficiency loss in BD-
Rate. This is achieved by the following techniques.

First, the parallelism of SC is reduced from 16 in [42] to 4 in this work, under the
requirement of meeting throughput of 8K@1201ps. As is illustrated in Section 3.3, the
cost of increasing the paralleling factor N is large in SC of SAO. The paralleling factor

of 4 1s much more area efficient than the factor of 16. Thus, our work reduce the circuit
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area by 67%, from 156.3K to 68K, based on the same specification and algorithm
setting.

Second, we found that the CRS for BO nearly has no observable loss in coding
efficiency in terms of BD-rate. Both the data shown in Fig. 27 and the top-3 prediction
rate of 80% reveal that the range selected by our scheme cover most of samples in a
CTU. The cost of best three bands are so close that even though the best is missed by
our scheme, there are 2nd and 3rd best to compensate the statistics loss. The differences
on BD-Rate performance among the best, 2nd and 3rd best bands are small. The
proposed algorithm-architecture co-optimizations can further reduce the circuit area by
25%, from 68K to 51K, as shown in Table 9. The reduction in area is contributed by the
following aspects. 1) CRS decrease the overall SAcc and CAcc in SC decrease by 50%,
from 48 to 24. The registers used for storing offsets also decrease by 50%, from 48x3
to 24x3. It achieves a 13 K area reduction, with an area overhead of 2K in the pre-
decision step. 2) CRS also reduces the number of cycles for PD from 60 cycles to 36
cycles, so that a looser time constraint for PD, increased from 2.8 ns to 4.8 ns, further
reduces the circuit area by 3K. 3) ABR helps to reduce the data width in each CAcc and
SAcc, contributing 5K gates reduction with BD-rate increase of 0.1% and 0.2% in LD
and LDP configuration respectively.

When synthesized in the same Fujitsu e-Shuttle 65nm process as in [42], our design
has a logic gate count of 59.6K, with 35.5K and 24.1K for SC and PD, respectively. I
give a brief comparison on power consumption by analyzing the area, frequency and
switching factor. The area-frequency product of our work is 35.5K*1.3G +
24.1K*0.217G = 51.3P, 20% lower than that of [42]: 156K*0.4G = 64.4P. Moreover,
the high- parallelism SC of [42] involves the updating of more accumulator registers
per clock cycle, resulting in a higher switching factor. As a result, our design is more
energy efficient than [42] with reduction in both area-frequency product and switching
factor.

I have also implemented an N=8, 650MHz version to study the area and power

consumption, which turns out to be 60.5K and 32mW, respectively. The N=8 version
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therefore is 20% larger in area, but 33% more efficient in power. The latter is mainly
from the fact that a looser timing constraint compared to the N=4, 1.3GHz configuration
now allows the synthesizer to use slower (and therefore smaller and less power
consuming) logic cells. Moreover, we roughly implemented and estimated that the
N=16 version is twice in area compared with the N=8 version, where an even looser
timing constraint does not influence results much. Overall, the design of N larger than
8 does not show higher efficiency in energy despite being significantly larger in area.
The N=4 version is more efficient in area, while the N=8 version is more efficient in

power. Both can be taken into considerations for applications.

SRAM e e —

Fig. 29 Layout of the proposed SAO architecture.

A core size of 1.73 mm?and chip-area utilization of 73%. Before the layout,
the delay of the critical path is 0.66 ns, and after the layout, it is 0.76 ns. The
location of PD and SC is marked, while the SRAMSs for line buffer are marked in
white.
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3.6 Summary

SAO is a new in-loop filter in H.265 video coding standard. Many researches have
been trying to improve its performance and area efficiency of hardware design. This
paper presents an efficient VLSI design of SAO estimation in H.265. I first introduce
SAO and analyze its data flow. Then we proposed the dual-clock architecture to address
the heterogeneous data flows of SC and PD, by separately driving SC and PD at a high-
speed clock and a low-speed clock, respectively. Two clock frequencies with a
relationship of dividends M eliminates the extra hardware and implementation expense.
Moreover, the algorithm-architecture co-optimizations, CRS and ABR further reduce
the circuit area without observable loss in coding efficiency. The proposed architecture
occupies 51 K logic gates. With a high-speed clock of 1.3 GHz and a low-speed clock
of 217 MHz, 8K@120fps SAO real-time encoding can be achieved. The demerit of the

proposal is that the local heat problem would exist due to the high frequency clock.
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4. Algorithm and VLSI architecture of intra prediction in

Compressed Sensing using reduced measurements

4.1 Introduction

The Internet of Things (IoT) or Machine-to-Machine (M2M) network has been
widely discussed in recent years and is regarded as the next wave of the information
technology revolution [46]. Sensors, as the troops of 10T, are the on-the- ground pieces
of hardware that monitor processes, collect and transmit data. Among the various types
of sensors, image sensors are those collecting and processing the largest amount of data.
In M2M networks, massive deployments of wireless camera systems (image sensor
nodes) are required. Since they are highly battery-constrained devices, low power
consumption is a fundamental concern. Conventionally, a wireless camera system
comprises three main components: the CMOS image sensor (CIS), the compressor, and
the transmitter. Images are acquired by the CIS, which converts the illumination of light
into a digital signal pixel-by-pixel. The digital signals are compressed by the
compression unit using encoding algorithms, such as JPEG [47], H.264/MPEG- 4 [48],
DVC [49], and H.265 [7], before they are transferred to the channel. This is the
traditional procedure: Capture — Compress —Transmit, as shown in Fig. 30 (a).

With the advent of a recently proposed sampling theory, Compressed Sensing (CS)
[51], the capturing and compression can be performed in CIS simultaneously. Such
image sensors are called CS-based CIS (CS-CIS). In CS-CIS, an image is acquired by
sampling a significantly reduced number of measurements (the linear combination of
pixels), in- stead of by sampling every pixel, and therefore this technique could reduce
the throughput of Analog-to-Digital (A/D) conversion, as shown in Fig. 30 (b). This
reduction in throughput has the potential to reduce power consumption and increase the
frame rate [52], which has been shown in the recently emerging CS-CIS systems
[53][54][55]. Since the output of CS- CIS are measurements instead of pixels, however,

the spatially adjacent correlation in the pixel-domain is corrupted during the generation
60



Algorithm and VLSI architecture of intra prediction in Compressed Sensing using
reduced measurements

of measurements. Hence, traditional intra coding methods cannot be applied to CS-CIS.
A direct reconstruction of pixels from the measurements prior to the encoder does not
work either, owing to the high complexity and power consumption of reconstruction
[51]. Therefore, a direct measurement-domain compression method with low
complexity is desirable. It also ought to be compatible with the CS-CIS, which uses a
binary or ternary random matrix as measurement matrix.

Several previous works have studied exploiting the spatial redundancy in the
measurement-domain for image compression. In [56], measurements in previous blocks
were directly subtracted and used for prediction. Nevertheless, it only partly utilizes the
horizontal correlation. In [57] [58], the intra prediction occurs by the measurement-
wise subtraction from the neighboring measurements, similar to pixel-wise subtraction
inter prediction. In these works, however, the measurements for prediction contain
irrelevant information, such as the nonadjacent pixels, so that the pre- diction precision
decreases. In [59], a local structural measurement matrix providing more precise
prediction is proposed for the measurement-domain prediction by extracting the local
features within a block. However, it has high computational complexity for a brute-
force search among all the local predictor candidates, and it requires a floating point
measurement matrix that cannot be applied to the image sensor. Another issue in [57]
[58] [59] is that they require all the measurements of a block for prediction. It requires
a large memory bandwidth to fetch / load the data, as well as a large memory storage
used for line buffer to store all the measurements of neighboring blocks, which would
be a problem for a power-limited and a storage-limited wireless camera system. Overall,
the previous works were not designed oriented to CS-CIS, which is required to generate
simple (binary or ternary) coefficients for image compressive sampling.

In this paper, which is an extension of our previous work [60], we propose a
measurement-domain-based intra prediction coding framework as well as its VLSI
implementation, containing the following features:

1) A higher compression ratio achieved: By structuring two rows in the random

binary measurement matrix, the average values of the neighboring block’s row and
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column are embedded into two measurements, such that they could be extracted during
the intra coding process to perform more precise prediction.

2) Low-complexity framework compatible with CS-CIS: It is based on
compressively sensed images that take the measurement rather than pixels as input to
the encoder, such that the recovery of pixels from measurements is avoided. Moreover,
two artificially structured rows retain the binary property of the random matrix, which
is crucial for the compressive sampling in CS-CIS.

3) Low hardware cost: The proposed prediction algorithm makes the intra
prediction hardware-friendly. The matrix multiplication could simply be substituted by
the shared adder and shift operation. Furthermore, it reduces the size of neighboring
information fetched / loaded for pre- diction, which significantly reduces the memory
band- width and storage for the line buffer.

Experimental results demonstrate that the VLSI architecture of our proposed
framework is 9.1K gates in area and includes 12 KB dual-port SRAM memory. It could
support the 4320p@240fps real-time encoding. Compared to the direct output of CS-
based sensors, our proposed framework could compress the measurements and increase
coding efficiency with 34.9% BD-rate reduction. Compared to the previous work [57],
this work increases coding efficiency with 7.7% BD-rate reduction and saves 83% size
of memory bandwidth and storage for line buffer and left neighboring buffer. It can
significantly reduce both the energy consumption and bandwidth in communication.

The rest of this paper is organized as follows. Section 4.2 gives an introduction to
compressed sensing. Section 4.3 presents the proposed framework of measurement-
domain intra prediction. Section 4.4 presents the VLSI implementation of the proposed
framework. Section 4.5 shows the implementation results and gives some analysis on
the performance of the proposed algorithm and architecture, followed by the conclusion

in Section 4.6.

62



Algorithm and VLSI architecture of intra prediction in Compressed Sensing using
reduced measurements

i Analog Digital
. ixel ixel
Lig ht Z#—p— — A/D | PIE »| Compressor |— — — »| Transmitter
Converter
(a)
________________________ - Digital
: i Analog | measurement
: measurement I
| Light I N o A/D -+ ————— = »| Transmitter
| Converter I
L - - = J
CS-CIS Proposed
Measurement-domain
(b) Compression

Fig. 30 Data flow of imaging
(a) Data flow of traditional imaging: Capture —Compress —Transmit. (b) Data
flow of compressive imaging: Capture —Compress —Transmit. (The red part shows
where this work is in the data flow).
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Fig. 31 Brief architecture of CS-CIS.
e.g. As the architecture in [9], each block is 4x4, including 16 pixels and the
sampling rate is 1/4. ®1 to ®4 are four rows of the matrix ©.
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4.2 Compressed Sensing (CS)

4.2.1 Concept of CS:

The CS theory [51] asserts that only a few measurements are enough to recover the
signals, as long as the signals are sparse in some transform domain. Suppose the image
signal X = [x;...X, ]Tcan also be represented in the transform domain ¥, as

X = W¥S (14)
where S = [s;...s, | is the signal represented in ¥ transform domain and ¥ is an
n X n transform matrix. The signal X is said to be k-sparse if it has only k non-zero
coefficients.

I would like to recover signals X = [x;...X, |7 from m « n linear and non-
adaptive measurements Y = [y; ...y, |7, which are taken from the random projection
as

Y = X (15)
where @ is an m x n measurement matrix. I know that the system is under-determined

since m < n. The CS theory asserts that the signal S’ can be recovered with high

probability using only m = cklog(ﬁ) measurements for some constant C, by solving

the L1-norm minimization problem (3)
min ||S']]; s.tY = 0’ (16)

where ©® = ®W and the measurement matrix @ must be in- coherent with transform
matrix W to preserve the Restricted isometry property (RIP) [51]. The CS theory shows
that ® can even be a random 1/—1 or 0/1 matrix, while ¥ could be a discrete cosine
transform (DCT), discrete wavelet transform (DWT), contourlet transform and so forth.

The problem (16) can be solved by basis pursuit [51]. To a noise environment, (16)
can be extended to Y' = ©S’ + Z, where Z represents the noise. It could be solved by
basis pursuit denoising [51]. After the recovery of S’, the signal X' can thus be

calculated by (14).
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Fig. 32 Process of CS-based image sensing, encoding, and decoding.
The proposed work is indicated by the white box.

4.2.2 Process of CS image sensing:

In the CIS, the A/D conversion is the dominant source of power consumption [54].
The advent of CS theory promises that the recovery can be achieved from the
significantly reduced number of captured measurements, hence reducing the A/D
conversions for the measurements and their related power consumption.

Fig. 31 shows the principle of CS-CIS. The luminance is sensed by the pixel array.
Analog pixel signals are summed up to yield measurements, which are then digitalized
by the A/D converters. Note that the generation of measurements is controlled by the
elements in the measurement matrix. Therefore, a simple enough binary (0/1 or —1/1)
or ternary (—1/0/1) matrix is used in CS-CIS to simplify the measurement calculation
so that the complex and energy-consuming analog multiplier could be avoided in the
implementation. Moreover, considering the infeasibility and scalability of the image
sensor implementation and the complexity of image recovery, the pixel array is divided

into blocks to perform the sampling [54] [55].
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Fig. 34 Proposed artificially structured rows.
(a) N x N block being processed. (b) Mechanism of a structural random binary
(0/1) matrix. The last N pixels are summed up by multiplying the 1st row. Every Nt
pixel is summed up by multiplying the 2nd row.
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4.3 Proposed Coding Framework Based on Measurement-

Domain Intra Prediction

4.3.1 Proposed framework

As shown in Fig. 32, for each block: 1) The analog signals of n pixels are acquired
by the pixel array inside the sensor, X = [X; ...X, ]7. The measurements are calculated
through (15) in the analog domain and digitalized into Y = [y; ...y, |7 . 2) Intra
prediction is performed on measurements before the quantization, entropy coding, and
transmission. 3) The bit stream obtained from the channel is decoded, dequantized, and
then reconstructed into measurements. 4) The reconstructed signal X' is recovered
from the decoded measurements Y’ by solving (16).

In the pixel domain, adjacent pixel values are similar. This property is exploited by
the traditional intra prediction, in which the adjacent pixels in neighboring blocks are
used as predictors. Pixels with shorter distance tend to be better predictors. In the
measurement domain, however, measurements within a block have no similarity with
each other, making it difficult to apply the traditional intra prediction. In spatially
directional predictive coding (SDPC) [57], the predicted measurements are selected
from one of the four designed prediction modes. However, the measurements selected
as the predictors are a combination of all the pixels (nearby and far away) within a
neighboring block, resulting in a long prediction distance (and therefore low prediction
accuracy) on average. Thus, we propose a prediction algorithm by only picking the
nearby pixels for prediction to increase the coding efficiency.

Inspired by traditional intra prediction [61], we propose to use the boundary
information (bottom row of upper block and the right-most column of left block) as
predictor candidates, as shown in Fig. 33. A structural random 0/1 measurement matrix

is proposed to extract the boundary information to generate the measurement predictor

Y,

b »sothat Y. =Y — Y, smaller with a more concentrated value distribution than Y.
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4.3.2 Structural measurement matrix

A random 0/1 measurement matrix is used in the CS-CIS [54] [55], because of its
hardware friendliness in implementation. I propose to structure the first two rows of the
random 0/1 m X n measurement matrix. In the first row, the last N values are set to 1’s,
while the rest are set to 0’s. In the second row, every Nt values are set to 1’s, while
the rest are set to 0’s. When the signal X projects to the structural random measurement
matrix, the first two measurements have special meaning in the projection. The
measurement y; represents the sum of pixel values in the bottom row of a block and
the measurement y, represents the sum of pixel values in the right-most column, as
shown in Fig. 34 (b). Though two rows are artificially structured, it could be regarded
as one of the random cases. The experimental results show that it could preserve the

RIP without affecting the reconstruction of image quality.

4.3.3 Measurement-domain intra prediction

From the first measurement of the upper block y; up and block size N, the average

pixel value of the bottom row (BR) in the upper block, Aveg Rup € R, can be easily
obtained by the shift operation in hardware. Similarly, the average pixel value of the
right-most column (RC) of the left block Aveg¢,, canbe obtained from y, . Since the

BR in the upper block and the RC in the left block are the most adjacent pixels to the

block being processed, they have similar values to this block in the pixel domain. By

projecting AveBRup and Avegc,, to the measurement matrix, the corresponding two

measurements generated would be close to the original measurements and thus could

be regarded as measurement predictor candidates. The average values Aveg Rup and

Avegc,, are transformed into measurements Y, and Y, by multiplying the

measurement matrix @ as the follows:
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Xup = [aveBRup...aveBRup]T (17)
Yup = ®Xyp (18)
Xie = [aveRCle...aveRCle]T (19)
Ve = @Xe (20)

where Xy, X;. € R™!. It is noted that the calculation of (18) and (20) has a low
computational complexity. Since the measurement matrix @ is known and fixed, it
could be achieved by shift operation and addition. The original measurements Y can be
treated as the sum of a constant value (e.g. 128) and residuals.
Yo = ®[C...C]T (21)
By comparing the sum and difference (SAD) of the original measurements Y and
measurements in the three modes, Y,;,Y, and Y., the measurements with the
minimum SAD are chosen as predicted measurements Yp.
p = argminmoae SAD(Y, Ymoae ) (22)
Y, =Y-Y, (23)
After the prediction, the residual Y, is calculated, before being scalar-quantized as
follows. The quantized residuals are entropy-coded before being transferred to the

channel.

YQr =Y > Qstep (24)
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Fig. 35 VLSI architecture for the proposed measurement-domain intra prediction
framework.
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equations in Section 4.3.2. The matrix multiplication is simplified into the shift-add
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12
14
12
13

12
11
13
12
13

S

|
ICDr—lr—tCDn—H—H—H—H—H—AQQ‘
— e e = O = O = OO
— e (O e OO e O
—_—_—_ OO~ aS
e e el e e el el
el el el el i —
OO~ OO~ mOD
——_ o= OO
O————O—=Ccoee
—O = = OO
e e N
— e e = (O = = (O
—_—0 e e O e e e OO
.'—O'_’_'_"_"_‘O'_'O'-"‘,

—— e O OO — =
—O— O OO O -

Fig. 36 Example of random binary matrix of N = 4.
Proposed artificially structured rows are the first two rows in bold. The number of
1’s in each row is shown next to the matrix.

4.4 VLSI implementation of the proposed intra coding

framework

The proposed measurement-domain intra prediction framework above is
implemented into VLSI architecture, as shown in Fig. 35. The system takes the
measurements of block size N =4 [55] as input, with sample rate (SR) of 0.25, 0.5, and
0.75. Hence, the supported numbers of measurements m as input are 4, 8, and 12,

respectively. The output is the quantized residuals Yj,.. A4 x 4 block is processed every
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cycle. It is noted that the low complexity of the proposed coding framework allow the
hardware be achieved at low cost, as shown in the following two aspects.
First, it could reduce the logic gates used in the calculation, since the multiplication
in (18), (20), and (27) could be simplified into the shift and add operation. Taking a
block size N = 4 and number of measurements m = 12 as an example, the matrix is
shown in Fig. 36. The calculation of the two key measurements y;,y, could be
achieved by a shift operation. The rest of the rows contain other constant numbers of
I’s, such as 7, 11, 12, 13, and 14. Since they are fixed in a matrix for any CS-CIS and
all the elements of X in (17) or (19) are the same, the matrix multiplication in (18) or
(20) could be efficiently implemented by shared adders, as in the structure in the right-
hand dashed box of Fig. 35. Though the variation of @ in different CS-CIS requires the
shared adders structure above to be designed specifically, the underlying idea of the
shift-add operation could be uniformly applied.
Furthermore, the proposed framework could reduce the size of memory bandwidth
and storage for the neighboring information. In the previous works, such as [57] [58],
all the measurements of the upper block and left block are required to be stored for the
prediction. The number of measurements in a block grows quadratically with N and
linearly with sample rate (SR), as (25). The number of measurements overall to be
stored M grows linearly with the frame size, block size, and sample rate, as (26).
Mg, = N? x SR (25)
M = Miynepus-+ Mierepuy.
= Numgpy X Mgy + Mpy
= width X N X SR + N2 X SR (26)
The proposed prediction, requiring two measurements for each block (M' = 2),

could significantly reduce the number of measurements to be stored to M'.

I l; I} 2width
M = MlineBuf. + MleftBuf. = N + 2 (27)

The comparison is depicted in Fig. 37. As shown in (a), the measurements stored for
prediction are inversely proportional to the block size, since the number of block is

getting less while only two measurements are required in each block for prediction.
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Meanwhile, as shown in (b), the measurements stored grow linearly with the size of the
block in [57]. Since the data width of each measurement ranges from 12 bits to 18 bits
when block size ranging from 4 to 32, this proposed prediction could significantly

reduce the size of memory bandwidth and storage.
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(b)
Fig. 37 Comparison of the number of measurements stored in the memory for intra
prediction.
When SR ranging from 0.25 to 0.75. (a) This work. (b) SDPC [57].

4.5 Experimental results

The comparison is made among three algorithms, constant prediction (CP) as in
[54] [55], SDPC [57] and our proposed algorithm. It is noted that the random binary

[0/1] matrix is used as the measurement matrix in the first two methods. Based on this
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matrix, we modified the first two rows as we proposed in Section 4.3. Since the LSMM
[59] does not apply the random [0/1] matrix, it is excluded in the comparison. Fourteen
grayscale test images of size 512x512 are evaluated. The reconstruction algorithm is
L1 primal- dual (PD) interior—point [51] with DCT.

First, the mean square error (MSE) is evaluated. The results with N=4 and N =16
are shown in the left three columns and right three columns, respectively, in Fig. 38.
The MSE of each processing block in the proposed method is smaller and closer to zero
compared with SDPC and CP. Moreover, the reduction in MSE between Prop. and CP
is more significant for N = 4 than that for N = 16. Second, the bit rate is evaluated by
entropy and the coding efficiency is evaluated by BD-PSNR [62], with the same method
as in [57]. The BD-PSNR curves of four images are plotted in Fig. 39.

The results of coding efficiency of all images are shown in Table 13. Compared
with CP, our proposed algorithm increases the coding efficiency by 2.33, 1.35, and 1.56
dB in BD-PSNR when N = 4, 8, and 16, respectively, equivalent to 46.6%, 27%, and
31.2% BD-rate reduction. Compared with SDPC, it also achieves increases in coding
efficiency by 0.43, 0.44, and 0.29 dB in BD-PSNR when N =4, 8, and 16 respectively,
equivalent to 8.6%, 8.8%, and 5.8% BD-rate reduction. In accordance with the
reduction in MSE, the reduction in bit rate shows that the small block has a higher
compression ratio than the large block.

Since the measurement matrix is randomly generated, the occurrence of 1’s in the
measurement matrix has a great influence on the reconstruction quality. I find the
optimal image quality can be achieved when occurrences of 1’s are 74%, 23%, 4.305%,
and 0.74% when N= 4, 8, 16, and 32, respectively. Moreover, we have tried other
reconstruction algorithms, such as Total Variation minimization [51], which can also
recover the image with similar image quality compared to the L1-PD algorithm.
Furthermore, the visual quality comparison is shown in Fig. 40. There is no image
quality degradation from the proposed algorithm. Meanwhile, it achieves bit rate
reductions of 3% and 32% compared with SDPC and CP, respectively.

The performance of the proposed hardware is shown in Table 16. The total area is
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9.1K, which includes 5.1K for SAD modules, 3.7K for intra prediction, and 0.3K for
the finite state machine. For frame sizes of 4320 x 2160, the size of memory is 12 KB,
growing linearly with the frame size. Since this is the first VLSI architecture for the
measurement- domain intra prediction, there is no previous work to compare with. I
roughly estimate that the SDPC would require 10.5K in area with 73.8KB SRAM,
because the SDPC would require twice as many logic gates for SAD modules, six times
as much memory to store the measurements and as much memory bandwidth to support

the same throughput.
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Fig. 38 Comparison of MSE of residuals in each block among three algorithms.
With N =4, 16 SR = 0.5, and Qg =4 of lena (top row), barbara (middle row),

and mandrill (bottom row)

Table 13 (a) BD-PSNR (BD-Rate) comparison.
(Anchor is CP, with Qg € [0,6] and N=4. Reconstruction algorithm is L1-PD with

75



Algorithm and VLSI architecture of intra prediction in Compressed Sensing using

reduced measurements

DCT)

BD-PSNR (BD-Rate)

N=4
SR=0.75 SR=0.50 SR=0.25

Test Images Prop SDPC Prop SDPC Prop SDPC
Lena 6.116 5.581 2.699 2.043 0.469 0.825
Barbara 2.989 3.324 1.116 1.041 0.078 0.426
Mandrill 2.588 2.690 0.953 0.727 0.989 0.331
Peppers 2.452 1.684 1.445 0.321 0.032 0.122
house 6.937 6.015 4.779 1.547 0.086 0.443
F16 5.210 4.762 2.818 1.742 0.935 0.722
goldhill 5.516 5.197 2.485 1.739 0.752 0.841
pentagon 2.663 2.231 1.309 0.803 0.611 0.412
boat 4.163 3.786 2.035 1.243 0.467 0.534
bike 1.512 1.509 0.855 0.329 0.303 0.143
sailboat 3.772 3.447 1.907 1.011 0.769 0.444
milkdrop 8.761 8.173 4.081 2.493 1.133 1.588
elaine 6.185 5.656 3.160 2.232 1.330 1.051
Aver. 4.528 4.158 2.280 1.329 0.612 0.606

Prop SDPC

Aver. in all sample rate

2.4733 (-33%)

2.0310 (-26%)
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Table 14 (b) BD-PSNR (BD-Rate) comparison.
(Anchor is CP, with Qgtep € [0,6] and N=8. Reconstruction algorithm is L1-PD with
DCT)

BD-PSNR (BD-Rate)

N=8
SR=0.75 SR=0.50 SR=0.25

Test Images Prop SDPC Prop SDPC Prop SDPC
Lena 2.806 2.384 1.181 0.555 0.941 0.161
Barbara 1.916 1.679 0.799 0.378 0.511 0.107
Mandrill 1.098 1.372 0.709 0.336 0.328 0.093
Peppers 1.460 0.907 0.590 0.190 0.888 0.056
house 6.713 6.420 2.403 1.589 1.445 0.432
F16 2.807 2.339 1.107 0.532 0.730 0.162
goldhill 2.731 2.196 1.105 0.611 0.758 0.207
pentagon 1.163 0.908 0.617 0.290 0.403 0.107
boat 1.976 1.630 0.906 0.408 0.756 0.136
bike 0.882 0.529 0.437 0.125 0.344 0.027
sailboat 1.683 1.385 0.824 0.320 0.652 0.100
milkdrop 4914 4711 1.315 1.166 1.056 0.310
elaine 2.645 2.113 1.154 0.619 0.756 0.232
Aver. 2.523 2.198 1.011 0.548 0.736 0.164

Prop SDPC

Aver. in all sample rate 2.4733 (-28%) 2.0310 (-19%)

77



Algorithm and VLSI architecture of intra prediction in Compressed Sensing using
reduced measurements

Table 15 (c) BD-PSNR (BD-Rate) comparison.
(Anchor is CP, with Qgtep € [0,6] and N= 16. Reconstruction algorithm is L1-PD
with DCT)

BD-PSNR (BD-Rate)

N=16
SR=0.75 SR=0.50 SR=0.25

Test Images Prop SDPC Prop SDPC Prop SDPC
Lena 3.526 2.952 1.143 0.796 0.750 0.221
Barbara 2.493 2.001 0.838 0.555 0.542 0.151
Mandrill 2.295 2.000 0.597 0.464 0.243 0.121
Peppers 2.843 2.432 0.963 0.630 0.696 0.173
house 8.354 8.136 2.902 2.458 1.279 0.656
F16 3.845 3.410 1.130 0.812 0.533 0.213
goldhill 3.110 2.873 1.009 0.854 0.550 0.270
pentagon 1.084 0.781 0.436 0.257 0.305 0.092
boat 2.303 2.026 0.776 0.574 0.490 0.174
bike 0.864 0.757 0.249 0.171 0.150 0.053
sailboat 2.203 1.953 0.667 0.477 0.468 0.117
milkdrop 6.279 6.286 1.931 1.810 0.876 0.440
elaine 2.872 2.478 1.067 0.774 0.788 0.259
Aver. 3.236 2.930 1.054 0.818 0.590 0.226

Prop SDPC

Aver. in all sample rate 1.6269 (-49%) 1.3245 (-41%)

Table 16 Performance of the architecture.

Process SMIC40nm
Area (Gates) 9.1K
Specification 4320p@240fps
Freq. (MHz) 200
SRAM 12 KB
Throughput (samples/Cycle) 16
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PSNR(dB)

PSNR(dB)

PSNR(dB)

PSNR(dB)
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Fig. 39 BD-rate curve of three test images.

Lena (first row), goldhill (second row), mandrill (third row), and pentagon (fourth
row) with N =4 (a), 8 (b), and 16 (c), SR = 0.5, and Qg varying from 0 to 6.
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30.14dB 2.44bpp 30.15dB 4.01bpp

26.22dB 2.87bpp 26.05dB 2.94bpp 26.05dB 3.85bpp

28.03dB 2.64bpp 27.59dB 2.74bpp 27.59dB 3.48bpp

Fig. 40 Visual comparison among Prop., SDPC, and CP (left, middle, right).
Four test images: lena, goldhill, mandrill, and pentagon with N =4 and Qgzep =4.
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4.6 Summary

I proposed a measurements-domain intra prediction framework that is compatible
with CS-based CMOS image sensors and shows low computational complexity. By
artificially structuring two rows of the measurement matrix, the boundary information
of neighboring blocks is embedded for intra prediction. Next, a low-cost VLSI
architecture of the proposed framework was further proposed and implemented, by
substituting the matrix multiplication with shared adders and shifter. The experimental
results demonstrated that the VLSI architecture is 9.1K gates in area, and 12 KB dual-
port SRAM memory. Working at 200 MHz, the architecture could support
4320p@240fps real-time encoding. The proposed framework could compress the
measurements and increase coding efficiency, by 34.9% BD-rate reduction, and save
up to 83% of the memory bandwidth and storage for line buffer and left neighboring
buffer. It could significantly reduce both the energy consumption and the bandwidth in
communication. The demerit of the proposed method is that two proposed predictors
not always have good performance in all textures. The more precise intra predictor

would be a future work.
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5. Row-Operation-Based Intra prediction under
Approximate-DCT measurement matrices and its VLSI

Architecture implementation

5.1 Introduction
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Fig. 41 A brief architecture of a processing block in CS-CIS [71] (Component A in
Fig. 42). Outputs are digital measurements Y.

CMOS image sensor (CIS) has attracted a huge number of researches for the last
decades. As most of the CIS applied in the mobile systems, the power consumption
becomes a main concern. CIS first converts the analog luminance signal acquired into
a digital one pixel by pixel, then compresses the image to reduce the data amount for
the storage or for the further transmission, which is a capture (pixel)=>compress (pixel)
process. With the increase of resolution and frame rate in the recent years, however, the
low-power design becomes a challenge. Since it is found that the Analog-to-Digital

(A/D) conversions followed by the output readout is the main power consumption in
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CMOS image sensor, increases linearly as least in resolution and frame rate. [54] With
the advent of a recently proposed sampling theory, Compressed Sensing (CS) [51], an
image could be acquired by capturing a significantly reduced number of measurements
(the linear combination of pixels), instead of by capturing pixel by pixel. Such image
sensors are called CS-based CIS (CS-CIS). The luminance signals are linearly
combined into a measurement in analog domain, followed by the A/D conversion. Thus,
the throughput of A/D conversion could be reduced, which results into a significant
reduction in power consumption, as shown in the recent CS-CIS [54], [55], [71]. The
output of CS-CIS — measurements are further compressed before the transmission. This
is a capture (measurements) compress (measurements) process. In this measurement-
based process, there’re two issues to concern: how to increase the image quality and
how to reduce the size of measurements. For the image quality, the measurement matrix
plays a major role. It decides how pixels get combined into measurements. The
binary/ternary measurement matrix is frequently used due to its simplicity in
controlling the linear combination, which is achieved by the sum of current in in analog
domain, as shown in Fig. 41. The binary/ternary matrix controls the switches to tell
whether a pixel to be added or subtracted so that measurements are calculated by analog
addition and differential integration [54], [55], [71]. However, the image quality of the
binary/ternary measurement matrix being used is not satisfied, comparing with the
Gaussian matrix. But the Gaussian matrix is not suitable for real implementation,
because floating point elements in the matrix makes linear combinations hard to
implement, requiring complex and energy-consuming analog multiplier. Moreover,
several binary/ ternary measurement matrices proposed in [65] could outperform the
Gaussian matrix a little bit, however, they can only be applied to sparse signals instead
of directly to natural images, which means extra transform in CIS is required. Thus, a
binary/ternary matrix could achieve high image quality is wanted.

To reduce the size of measurements, several previous works exploited the spatial
redundancy to compress measurements. In [56], measurements in previous blocks were

directly subtracted and used for prediction. Nevertheless, it only partly utilizes the
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horizontal correlation. In [57][58], the intra prediction occurs by the measurement-wise
subtraction from the neighboring measurements, similar to pixel-wise subtraction inter
prediction. In these works, however, the measurements for prediction contain irrelevant
information, such as the

nonadjacent pixels, so that the prediction precision decreases. In [59], a local
structural measurement matrix providing more precise prediction is proposed for the
measurement-domain prediction by extracting the local features within a block.
However, it has high computational complexity for a brute-force search among all the
local predictor candidates, and it requires a floating-point measurement matrix that
cannot be applied to the image sensor. Another issue in [57][58][59] is that they require
all the measurements of a block for prediction. It requires a large memory bandwidth
to fetch / load the data, as well as a large memory storage used for line buffer to store
all the measurements of neighboring blocks, which would be a problem for a power-
limited and a storage-limited wireless camera system. In [60][66], an intra prediction
framework for measurement compression is proposed. It requires few memory storage
and bandwidth, however, it needs to modify two rows of a random matrix, which might
be not suitable to all matrices. Overall, these works could improve the coding efficiency,
but the image quality still has spaces to improve.

In this paper, we therefore propose ternary measurement matrices to improve image
quality and measurements compression algorithm as well as VLSI architecture to
reduce the size of measurements. Main contributions of the paper are outlined as
follows.

1) We proposed an algorithm to generate a series of deterministic and ternary

measurement matrices, compatible to the current CS-CIS architecture [54],
[55], [71]. The proposed matrices are derived from approximated DCT and
capable to preserve the energy compact property as DCT. Comparing with
random binary/ternary matrix, the proposed matrices achieve a significant
improvement in image recovery quality and certain degree of bit rate saving.

2) We propose matrix row operations adaptive to the proposed matrix above for
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measurements compression. It is able to generate the intra prediction pattern as
our previous work [60][66], without constructing new rows, so that
measurements could be further compressed without any image quality loss.

3) We implement hardware architecture of the proposed intra prediction for
measurements compression presented above. The proposed matrices could
simplified the architecture resulting into low hardware cost and low power

consumption

5.2 Approximate DCT and Compressed Sensing (CS)

5.2.1 Approximated DCT:

DCT is a tool widely used in image compression due to its strong energy
compaction property. However, it requires fast algorithm to reduce the computational
complexity. Approximate DCT is one of the fast algorithm that offers a close result to
exact DCT with hardware-friendly implementation.

The 2D-DCT of an image R, = CR;CTis approximated by R, = CR;CT where
¢ = SP is an approximate matrix (R,,R;,C,C,S,P € RVN). §=./(PPT)1 is a
diagonal matrix to orthogonalize C. P is a coarse approximate DCT matrix with low-
complexity that can even only consists of ternary numbers as 0/1/-1. Several works

relate to the design of 4/8/16-point approximate DCT in [68],[69],[70]. A 4-point

approximate matrix (N = 4) in [68] is shown as an example.

1 1 1 1
1t 0o o -1

P= 1 -1 -1 1 (28)
0 -1 1 0

5.2.2 Concept of CS:

The CS theory [51] asserts that only a few measurements are enough to recover the

signals, as long as the signals are sparse in some transform domain. Suppose the image
88



Row-Operation-Based Intra prediction under Approximate-DCT measurement matrices
and its VLSI Architecture implementation

signal X = [x;...x, |Tcan also be represented in the transform domain W, as

X = W¥S (29)
where S = [s;...s,]7 is the signal represented in ¥ transform domain and ¥ is an
n x n transform matrix. The signal X is said to be k-sparse if it has only k non-zero
coefficients.

I would like to recover signals X = [X;...X, |7 from m < n linear and non-
adaptive measurements Y = [y; ...y, |7, which are taken from the random projection
as

Y = X (30)
where @ is an m X n measurement matrix. I know that the system is under-determined

since m < n. The CS theory asserts that the signal S’ can be recovered with high

probability using only m = cklog(E) measurements for some constant C, by solving

the L1-norm minimization problem (3)
min [|S'||; s.tY = ©S’ (€2))

where @ = ®W¥ and the measurement matrix @ must be in- coherent with transform
matrix W to preserve the Restricted isometry property (RIP) [51]. The CS theory shows
that @ can even be a random 1/—1 or 0/1 matrix, while W could be a discrete cosine
transform (DCT), discrete wavelet transform (DWT), contourlet transform and so forth.

The problem (31) can be solved by basis pursuit [S1]. To a noise environment, (31)
can be extended to Y' = ©S’ + Z, where Z represents the noise. It could be solved by
basis pursuit denoising [51]. After the recovery of S’, the signal X' can thus be
calculated by (29).
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Fig. 42 The process of CS based image sensing, encoding and decoding.

The proposed measurement matrix is the gray box in component A. The

proposedmeasurementsintrapredictionanditsarchitectureisincomponent
B, C, shown in Fig. 8.

5.2.3 Process of CS image sensing and image reconstruction:

Considering the infeasibility and scalability of the image sensor implementation
and the complexity of image recovery, the pixel array is divided into blocks as Fig. 43
(a) to perform the sampling [54][55]. For each block: 1) The analog signals of n pixels
are acquired by the pixel array inside the sensor, X = [X; ...X,]T. The measurements
are calculated through (30) in the analog domain and digitalized into Y = [y; ...ym,]" .
2) Measurements are predicted, quantized, followed by the entropy coding and the
transmission 3) The bitstream obtained from the channel are dequantized and then
reconstructed into measurements. 4) The reconstructed signal X’ are recovered from the

decoded measurements Y’ by solving (31) and (29). The process is shown in Fig. 42.
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5.3 Proposed measurement matrix

(d)

Fig. 43 (a) An image is separated block by block. (b) A 2D-DCT transform, N=4. The
blue dashed line shows the Z-scan order, ascending frequency response. (¢c) The 1D
representation of (b). (d) An example of N =4, m = 4 measurements are taken in the

Z-scan order..
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5.3.1 The main idea

Because of the energy compact property of DCT, we propose a measurement
matrix @, that performs an approximated DCT to generate the measurements in (30).
Measurements generated by the proposed matrix represent the frequency response of
input signals, unlike the usual case that measurements are linear combination of input
signals randomly taken. As is known, the low-frequency components in an image play
the majority role in the determining the image quality. It gives us an intuition that
measurements representing the lower frequency response would be more important
than the ones representing the higher frequency response, if m <« N? measurements

are taken for image reconstruction.

Given any image signal X € RN *. it could be represented by a 2D matrix X, €

R¥*N or an 1D matrix X; € R¥’*1. To perform the DCT on X, it can be a 2D-DCT

as (32) in Fig. 43 (b), that sequentially performs 1D-DCT twice (vertically and
horizontally), or can be a the projection to @4, as (33) in Fig. 43 (¢) ,such that Y;, Y,
represents the same output.

Y, = PX,PT (32)

Y, = d4X, (33)

where P,Y, € RNV Y, € RV**! and &, € RV *N* | The relationship between

X1,X, and Y}, Y, can be represented by X; = f(X,) and Y; = f(Y,). The function f

denotes a mapping from a 2D matrix M, to a 1D matrix M; , f: MZij - Ml(i—l)N+j'

In matrix Y, in Fig. 43 (b), the low frequency components are on the upper-left
corner and the frequency increases according to the zigzag scan (Z-scan) order (blue
dash line). Taking the lowest 4 frequency components (deep gray to light gray) as
example, their corresponding locations in Y; are shown in Fig. 43 (c). Obviously,
given any frequency component in Y,, the corresponding measurements in Y; can
always be located. Whenever to take m <« N? measurements for image
reconstruction, e.g m =4 in this case, we can find the lowest m frequency
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components in Y, according the Z-scan order, and know which measurements to be
kept in Y; . Since each measurement in Y; is determined by the corresponding row
in @, as the gray area in Fig. 43 (c¢), we know which row to keep or given the number
of measurement m. The final measurement matrix is shown in Fig. 43 (d).

Overall, there are two steps to generate the measurement matrix @, : 1) Calculate
the matrix @, according to (34), where i,j,k,q € [1,N], p is an element of matrix
P. 2) Trim the matrix @, into the matrix @, , by keeping the lowest m frequency
components, which are the first m element in Z-scan order. It is noted that &, is a

ternary matrix, since the element p is ternary number.

Di-1)N+j,(k-1)N+q = PikPjq (34)

5.3.2 Derivation of proposed matrix @,

Suppose there are matrices D,X,E,G,Y € RV, such that G;; = (DX);; and

Y;j = (GE);; = (DXE); ;. According to the definition of matrix multiplication, G; ;
and Y; ; can be expanded as (35) and (36)

N
Gij = z 1di,rxr,j =dij1X1j tdizxy; + -+ dinxy (35)
r=

N
Y,j = z _1gi,rer,j =gi1€1,j + gizez; + -+ ginen,j (36)

r

By observing some of the terms in (8) as follows, we expand (36)
N
gix = Zr:l dipXyq =digx11 + digXas + -+ dinxyn

N
iz = Zr:l dipXyp =digX15 + dipXsp + -+ dinxyn

N
gin = Do ipXey =diiXyy +dioxon + 0+ diyXy
N
Yij= Z 8irerj =Jine1j t gizezj + -+ ginen,;
r=1

= (dig1x11 +dipxyq + -+ dinxyy) + (di,lxl,l +dizxz1 +
et di,NxN,N) + 4+ (digx1 tdipxaq + -+ dinxyn) (37)
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By observing (37), we know each element in Y is a linear combination of x; 1 ... Xy y.

Thus (37) could be simplified into
N
Viy= D (dikeq;)iq (38)
k,q=1
Let matrix X,Y € R¥N**1 represent X;; and Y; jwhere X = f(X) and Y = f(Y).
Suppose
Y = &X (39)
The element y(;_1)y4; is determined by the [(i — 1)N + j1" row of ® and X. For a

given row in @, the element in each column determines the linear combination of X,

which is d; xe, ; in (38). Therefore, (38) could be represented as follows

Y(i—l)N+}' = Z:qzl(¢(i—1)N+j,(k—1)N+q)5f(k—1)N+q (40)
Di-1)N+j,(k-1)N+q = dikeq, (41)
where ¢, represents the element in row a and column b in &. By replacing D, E
with ,PT | (41) becomes (34),and @ dis the proposed matrix we want. By replacing
X,Y with X;,Y;, (39) becomes (33). We show @4, @, generated from (28) as an

example. When m = 4, the 15¢,274 5th 9th rows (bold) are kept.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P 0o 0 -1 1 O O -1 1 O O -1 1 0 0 -1
1 -1 -1 1 I -1 -1 1 1 -1 -1 1 I -1 -1 1
0 -1 1 0o 0 -1 1 0o 0 -1 1 0 0 -1 1 0
1 1 1 P o6 o0 o0 o0 O O O O -1 -1 -1 -1
1l o 0 -1 0 0 O 0 o0 0 0 0 -1 0 0 1
1 -1 -1 1 o o o o0 O 0 0 0 -1 1 1 -1
(I) — |0 -1 1 o o o 0o O o0 O 0 0 0 1 -1 0
d 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 0 0 -1 -1 0 0 1 -1 0 0 1 1 0 0 -l
I -1 -1 1 -1 1 1 -1 -1 1 I -1 1 -1 -1 1
0 -1 1 0 0 1 -1 0 0 I -1 0 0 -1 1 0
0o 0 0 0 -1 -l I -1 1 1 1 1 o 0 0 0
o 0 0 0 -1 0 0 | | o 0 -1 0 0 0 0
o 0 0 0 -1 1 1 -1 1 -1 -1 1 0 0 0 0
o 0 0 0 0 1 -1 0 0 -1 1 o 0 0 0 0] (42)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O, = |1 oo -1 1 0 0 -1 1 0 0 -1 1 0o 0 -1
t 11 1 1 o o o o o0 0 O O -1 -1 -1 -1
P11 1 -1 -1 -1 -1 -1 -1 -1 =11 1 1 1 (43)

5.3.3 The performance comparison

We compare the performance of two methods of trimming the measurement matrix,
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between Z-scan order (measurement index: 1,2,5,9 ...) as Fig. 43 (b) and normal-scan

order (measurement index: 1,2,3,4 ...). From both graphs in Fig. 51, we can find that

green curves occur in the lefter and upper region than the blue curves, showing that Z-

scan order outperforms the N-scan order in different sizes of approximate matrix. The

results verify our intuition that the preference for measurements of lowest m frequency

response improves the image quality.
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Fig. 44 The BD curve comparison between proposed measurement matrix with Z-scan
and N-scan, using two images, mandrill (left) and F16 (right). Sample rate (SR) of
0.25 (first row) and 0.50 (second row) are evaluated. Matrices are generated the
approximate DCT from several previous work (N=4: [68], 8: [69] and 16: [70]). The
marker Circle, Plus and Square represent N=4,8 and 16 respectively. Blue dash line

represents N-scan and green solid line Z-scan
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5.4 Proposed matrix row operation for measurement-based

intra prediction and its VLSI architecture

5.4.1 Existing measurement-based intra prediction

To reduce the data volume for storage and transmission, the measurements are
further compressed. However, measurements, unlike pixels, could not be compressed
by traditional intra coding methods, because the spatially correlation between adjacent
pixels is corrupted during the generation of measurements. Thus, some works for
measurements compression are proposed [57][58][60]. Among these works, [60]

achieved the best coding efficiency of 7% BD-rate reduction.

Upper
block

Upper/

Left block
eft bloc Left/None

Fig. 45 The predictor candidates (Blue: Bottom row of upper block and
red: rightmost column of left block)
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X =Y
4 | r‘gR TRC _ Y1 = SllmBR
& -
_______ ~————
| ———————————— Y2 = Sumgc
| 1=
x | =
Input signal , \ Random binary matrix cp/
X =[x % ... x6]" | o
(a) | (b)

Ld
Fig. 46 A 4 X 4 block as input signal X. The target is to extract the sum of the blue

and red part. (b) In the existing method [60][66], the first two rows in the random
binary matrix are modified as rzg and 7R, to extract the information
(sum of bottom row and sum of rightmost column)

The basic idea of [60][66] is to extract the information of neighboring blocks
(bottom row in upper block and rightmost column in left block) for predicting the
current block, as shown in Fig. 45. Comparing with using pixels for prediction far away,
using pixels nearby could improve the prediction accuracy. Thus, as shown in Fig. 46
(a), local information of a block (the sum of bottom row and sum of rightmost column)
is extracted and stored when processing this block, so that next block could use them
for prediction. To extract these local information, the first two rows of the random
binary matrix are modified as rgz and 1z, are shown in (44) and (45) when block size
N = 4. In rgg, the last N values are set to 1's, while the rest are set to 0's. In 1z, every
Nt values are set to 1's, while the rest are set to 0's.

5 =[0000000000001111] (44)

¢ =[0001000100010001] (45)
When input signal X projects on these two modified row (the 1st and 2nd row), the
resulted first two measurements y,,y, would represent the sum of bottom row
(Sumpgg) and sum of rightmost column (Sumg.), which are the key information to be

stored for future prediction.
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5.4.2 Proposed matrix row operation for measurement-based intra

prediction

However, the above approach [60][66] could not be applied to the proposed
matrices in Section 3 without degrading the image quality, because it requires to modify
two rows in the matrix to extract the information. As shown in (42) and (43), each row
in the matrix is special, selected according to the frequency response. Changing a row
could significantly degrades the image quality. Thus, our intuition is to find a way to
extract the information of neighboring blocks as [60][66] without modifying proposed
matrices. Two rows rgg and 1z, are the keys to extract information of the bottom row
and the rightmost column. According to our observation, we propose to use matrix row

operation in the proposed matrices to calculate the target rows, as shown in Fig. 47.

C1r1+‘“+ckrk = I'Br C1y1+‘”+ckyk =SumBR
C1Ty+  + 6T = Irc €1y1 + -+ €;y; = Sumgc
o e | Y1

Proposed ternary matrix @,

X =Y
Fig. 47 The proposed matrix row operation performed on the proposed matrix @, to

generate 1gp and 7. to extract the sum of bottom row and the sum of rightmost
column

Still using N=4 as an example, we generate a proposed matrix ®; with m=6 in Z-

scan order from @, in (42), by taking the 1st, 2nd, 5th, 9th 6th and 3rd rows of &,

as the followings.
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1 1 1 1

1 1 -1 1 0o 0 -1 1 o 0 -1

o, = 11 1 10 o0 o0 o o o0 0o 0 -1 -1 -1 -l

I 11 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
1 0o 0 -1 0 O O O O 0 0 0 -1 0 0 1
1 1 1 1 1 1 - 1 1 -1 -1 1

(46)

We observe that the key row rgp in (44) could be obtained by matrix row operation
from three rows, 7y, 73,7, in the measurement matrix @, as (47).

rn=[1111111111111111]
r;=[111100000000 —1—-1—-1-1]
rn=M1111-1-1-1-1-1-1-1-1-1-1-1-1]
(rp+ry—2%r3) =4 *rpg
rgr = (1 + 14 —2%r13) > 2 (47)
Similarly, from matrix row operation from three rows, ry,7,,7¢ in the measurement
matrix @, the key row rp¢ in (45) could be obtained as (48)
r,=[100—-1100-1100—-1100-1]
re=[1-1-111-1-111-1-111-1-11]
(rn+r16—2%r;) =4 *rpRC
Tpe = (4 +1g—2%15) > 2 (48)
The discover above makes it possible to construct the key rows rgg and rgc without

modifying the proposed measurement matrix ®; . Since each measurement is the

projection of one row in the measurement matrix on the input signal, as mentioned in
Section 4.1, the same matrix row operation performing on the measurements could
obtain the neighboring information (the sum of bottom row and rightmost column) as
the followings.

Sumpr = (y1 +ys —2*y3) > 2 (49)

Sumpe = (Y1 + 16 —2%y,) > 2 (50)
We have verified that the proposed matrix row operation could be applied to other
approximate-DCT measurement matrices deriving from 8/16-point approximate-DCT
matrix [69][70][70]. Since the proposed measurement matrix is determined, which rows
to combine and how to combine to get the rows rggr, rgc could be obtained by offline

calculation.
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5.4.3 Measurement-based intra prediction framework and its VLSI

implementation

After getting the Sumpgp and Sumpg., the process of measurement-based

prediction is the same as the one in [60][66], which could be divided into 4 steps. 1)

Obtain the average of bottom row of upper block, aveBRupand obtain the average of
rightmost column of left block, avegc,, , from Sumgg and Sumpgc, respectively. 2)

Use VegR,,,, » avegc,,and DC (eg. DC=128) to generate the predictor candidates Yy,

Yie, Ypc respectively, by performing the projection to the measurement matrix as (51),

(52).
T
Xup = [aveBRup...aveBRup]
Yip = PeXup (51)
T
Xie = [aveRCle. . aveRCle]
Ve = QX (52)

Ypc = ®[DC ...DC]T
3) Compare the sum and difference (SAD) of the original measurements Y and
predictor candidates Y, , Y., Ypc, find the one with the minimum SAD as the
predictor as (26) and use the original measurements to subtract it to get the residual as
(54).
p = argminganp SAD (Y, Yeanp) (53)
Y, =Y-Y, (54)
4) Quantize the residual by Yy, =Y, > Qytep, followed by the entropy coding.

The VLSI architecture of the above measurement prediction is shown in Fig. 48. It
is to compress measurements from CS-CIS (component A in Fig. 42) and then produces
the quantized residuals Yy, to entropy coder. It takes measurements of the block size
N =4 [55] as input, with sample rate (SR) of 0.25, 0.5, and 0.75 (numbers of

measurements m are 4, 8§ and 12, respectively). A 4 X 4 block is processed every
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cycle. The major difference between [66] and the proposed architecture is that the
matrix multiplication (the blue dash boxes) in this work has a significant lower
hardware cost, because of the property of the proposed matrix ®; and @, in (42) and
(43). It could be observed that, the sum of element in each row of ®; and ®; is zero,
expect for the first row (sum is 16, with sixteen 1's). Because the elements are identical
in Xypand X;, respectively, when &, multiplies the signal X, X, this property
makes all measurements (except for the first one) equal to zeros. Thus, the matrix
multiplication in (51) and (52) has not any computation, except for the first
measurements (equal to 16*aves) requiring shift operation. Thus the matrix
multiplication} nearly has no hardware cost, not even an adder. Besides, the property
also reduces the calculations for the residual in (54), since only the first measurement
needs subtraction, rather than all measurements. Though the proposed matrix row
operation introduces the overhead in the red box at the bottom of Fig. 48, it has a low

hardware cost, consisting of only 4 adders.

. » Intra prediction

4 by {—({‘: e l Fi
12 1 5 mode d

T
Y=[y ¥2 = ¥u]
In r _____
Predicted,
YRES
2>(]
.-
Out +—Yor (53) N xg: avegﬂw ave mﬂ
. . ::-:2
Quantization vy, (49,50) SumBR Sumgr
) ) >>2 |
f\laghborjmg |2y3 Eygl
information

|J-"4

Fig. 48 VLSI architecture (Component B and C in Fig. 42) for the measurement-based
intra prediction with proposed matrix row operation. The dashed boxes are marked by
numbers in parentheses, corresponding to the equations (49)—(54) in Section 4. The
matrix multiplication in the gray solid box could be simplified into the shift operation.
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5.5 Experiment Results
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Fig. 49 The BD curve of lena, barbara, mandrill and F16 (top to bottom) with N=4
and N=8, SR =0.5, with various Q step & [0, 6]. The proposed measurement matrix
in Prop. and Prop.+ are trimmed by Z-scan.

The direct (Dir.) way [54],[55] and MIP [66], which use the random binary matrix
(RBM), are compared with Prop. And Prop.+ in this work. In Dir., measurements are
not compressed by any prediction method. In MIP, measurements are compressed by
intra prediction. We define Prop. as the proposed matrix with Z-scan order in Section
5.3 but without any prediction. We define Prop.+ as the algorithm combining Prop. with
the proposed matrix row operation for measurement intra prediction in Section 5.4.2.
The performance of each method is evaluated under fourteen gray-scale test images
(512 x 512), which are reconstructed by the algorithm, L1 primal-dual (PD) interior-
point [51] with DCT.

First, the mean square error (MSE) is evaluated, as shown in Fig. 51. The results

ofblock size N =4 and N = 8 are in the left three columns and right three columns,
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respectively. The MSE of each processing block in Prop. are smaller and closer to zero
than that in Dir. Prop.+ further decreases the MSE from Prop.. Moreover, the reduction
in MSE between Prop. and Dir. more significant for N = 4 than that for N = 8. Next,
we evaluate the BD-PSNR and BD-curve. Since the occurrence of 1's in the RBM used
in MIP and Dir. influences the reconstruction quality. We find the optimal image quality
can be achieved when occurrences of 1's are 74% when N=4 and 23% when N=8. From
Fig. 49, we find that Prop. could significantly improve the image quality and reduce the
size of measurements comparing with Dir., which is consistent with the result shown in
Fig. 51. Prop.+ could reduce further reduce bit rate without introducing any image
quality loss comparing with Prop. The result in Table 17 shows that Prop. could increase
the BD-PSNR by 4.2 dB at average comparing with Dir., and 2.2 dB comparing with
MIP. Prop.+ could further increase the BD-PSNR by 0.24 dB at average (equivalent to
5% BD-rate reduction) comparing with Prop. Finally, Fig. 50 shows an obvious
improvement in image quality as well as in bit saving in Prop.+ on the left.

The performance of the hardware of Prop.+ (Component B in Fig. 42) and MIP are
compared in Table 18. The total area of Prop.+ is 4.3 K gates, which includes 2.8 K
gates for SAD modules, 1.2 K gates for intra prediction, 0.3 K gates for the finite state
machine and the memory of 1 KB is for storing predictors. The area reduction is
contributed by property of proposed matrix. It makes the matrix multiplication in intra
prediction simpler. Its power consumption is 0.3 mW at 200MHz in typical condition
(1.1V, 25°C). It is omittable (only 1%) comparing with the power consumption of the
current CS-CIS [54][71], (28 mW to 100 mW). The throughput of our design is
processing 12 measurements per cycle (a 4 X 4 block with SR = 0.75 has 12
measurements). The architecture could support 2160p@2401fps.

Because of the proposed measurement matrix and measurement-based intra
prediction, Prop.+ compresses measurements by 88% BD-Rate reduction comparing
with Dir., with extra area of 4.3K gate and power consumption of 0.3 mW from the
architecture. Comparing with MIP, Prop.+ also achieves compression of 49% BD-Rate

reduction. Because we exploited the property of matrix to optimize the architecture, the
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area and power consumption of Prop.+ is 52% and 50% less than MIP, respectively.

PSNR:27.25 dB bits:2.17 bpp PSNR:27.02 bits:3.57 bpp

Fig. 50 The visual quality comparison. Left :Prop.+ Right: Dir.

Prop.
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Fig. 51 Comparison of MSE of residuals in each block among three algorithms, with
N=4and 8, SR=0.5, and Q4. =4 of lena (first row) and mandrill (second row).
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Table 17 BD-PSNR Comparison.
(Anchor is Dir., with Qstep € [0,6], N=4 [13] and N=8 [69]. Reconstruction algorithm is
L1-PD with DCT)

BD-PSNR
Test Images - l\i=4 - - N_= -
Prop.+ Prop. MIP  Prop.+ Prop. MIP  Prop.+ Prop. MIP | Prop.+ Prop. MIP  Prop.+ Prop. MIP  Prop.+ Prop. MIP
Lena 11.58 1075 6.12 573 524 270 092 071 047 | 740 728 28I 370 365 1.I8 154 153 094
Barbara 486 440 299 285 265 112 026 017 008 | 327 319 192 111 109 080 0.02 001 051
Mandrill 7.08 679 259 475 464 095 206 202 099 | 402 398 110 156 155 071 124 123 033
Peppers 747 6.69 245 482 463 144 044 037 003 | 537 528 146 3.04 301 059 158 157 0.89
house 18.37 1586 694 776 651 478 024 0.04 0.09 1479 1447 671 572 553 240 180 174 145
F16 11.56 1085 521 6.6 579 282 148 136 093 | 761 749 281 343 339 111 169 168 0.73
goldhill 10.58 987 552 560 524 248 114 101 075 | 628 619 273 296 292 111 156 155 0.76
entagon 638 6.15 266 347 337 131 124 119 061 346 344 116 191 189 062 124 122 040
oat 875 825 416 519 497 203 061 053 047 | 533 526 198 3.02 300 091 173 172 0.76
bike 468 434 151 298 288 085 076 073 030 | 257 253 088 139 138 044 092 092 0.34
sailboat 8§09 756 377 485 464 191 134 126 077 | 516 509 1.68 295 293 082 164 163 0.65
milkdrop 1598 1468 876 935 858 408 084 045 1.13 | 996 971 491 452 439 132 169 164 1.06
elaine 8§89 811 619 493 443 316 177 154 133 | 578 569 264 320 316 1.15 132 131 0.76
Ver. . . 623 612 252 296 291 1.01 138 136 0.74
Aver. in all Prop.+ Prop. MIP [ Prop.+ Prop. MIP
sample rate 5.28 435 2.47 [ 3.53 3.47 1.42

Table 18 Performance of VLSI architecture.

Prop.+ | MIP [66]
Process SMIC 40nm
Area (NAND Gates) 43K | 9.1K
Specification 2160p @ 2401ps
Freq. (MHz) 200
SRAM 1 KB
Throughput (measurements/Cyc.) 12
Power Consumption 0.3 mW 0.6 mW

5.6 Summary

We proposed an algorithm to generate a series of deterministic and ternary matrices,
which are compatible with the CS-CIS. The proposed matrices are derived from the
approximate DCT, hence preserving the energy compaction property as DCT does. The
proposed measurement matrix significantly improves the coding efficiency by BD-
PSNR increase of 4.2 dB, comparing with the random binary matrix used in the-state-
of-art CS-CIS. We further proposed matrix row operations adaptive to the proposed
matrix to compress measurement by 4.8% BD-rate without any image quality loss.
Lastly, a low-cost and low-power VLSI architecture of the proposed measurements
intra prediction is implemented, with only 4.3 K gates in area, 0.3 mW in power

consumption and supporting 2160p@2401ps.
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6. Conclusions and future work

This dissertation discusses the high-performance VLSI architecture of HEVC SAO
Estimation, intra prediction for encoder and its extension in Compressed Sensing, by
using the proposed concept “reduced video data”. Only by taking the necessary video
data, including pixels and measurements, it is possible to reduce the parallel degree in
hardware while keeping the performance during the data processing. The whole
dissertation is organized into four parts, where the first two parts are intra prediction
and SAO in HEVC, while the third and fourth are the HEVC intra prediction’s
application to CS.

Firstly, in Chapter 2, the high-performance VLSI architecture for HEVC intra
prediction is presented. Intra prediction uses neighboring pixels from different
directions to predict pixels of a block (4x4~32x32). As the block size increases from 16
to 32 in HEVC, it takes 3x more neighboring pixels for prediction. Instead of loading
all neighboring pixels as previous work, only on-demand pixels are loaded. This
proposed idea reduces the two-third of reference pixels, thus reducing the area and
increasing the throughput. It is achieved by LUT generated by software to tell which
pixels are demanded in each prediction mode and location. Another proposal is the
Hybrid Block Reordering and Data Forwarding, minimizing the idle time and
eliminating the dependency between blocks by creating 3 Data Forwarding paths. It
achieves the hardware utilization of 94%. The proposed VLSI architecture has a gate
count of 217.8K, able to support 4320p@ 120fps HEVC intra prediction. The demerit
of the proposal is that the bandwidth of SRAM is increased, as multiple loadings of
reference samples are required for a block larger than 4x4. This would be a problem to
be solved in the future work.

Next, in Chapter 3, the VLSI Architecture for SAO estimation is proposed. SAO
estimation consists of two processes, statistics collection (SC) and parameter decision
(PD), each of which demands different frequency. After investigating the optimal

frequency, a dual-clock architecture is proposed to deal with SC and PD with different

107



Conclusions and future work

speed of clocks. Such a strategy reduces the overall area by 56%. To further improve
the area and power efficiency, algorithm-architecture co-optimizations are applied
including a coarse range selection (CRS) and an accumulator bit width reduction (ABR).
CRS shrinks the range of fine processed bands for the band offset estimation. ABR
further reduces the area by narrowing the accumulators of SC. They together achieve
another 25% area reduction. The proposed VLSI design is capable of processing
8K@1201fps encoding. It occupies 51K logic gates, only one-third of the circuit area of
the state-of-the-art design. The demerit of the proposal is that the local heat problem
would exist due to the high frequency clock.

Furthermore, in Chapter 4, a measurement intra prediction framework and its VLSI
architecture are presented. Instead of using all measurements for prediction,
measurements for prediction are reduced to two. These two measurements embed the
block boundary information of closest area. They are obtained by modifying two rows
in the random 0/1 measurement matrix. Furthermore, a low-cost VLSI architecture is
implemented for the proposed framework, by substituting the matrix multiplication
with shared adders and shifters. The experimental results show that our proposed
framework can compress the measurements and increase coding efficiency, with 34.9%
BD-rate reduction compared to the direct output of CS-based sensors. The VLSI
architecture of the proposed framework is 9.1K in area, and it achieves the 83%
reduction in size of memory bandwidth and storage for the line buffer. This could
significantly reduce both the energy consumption and bandwidth in communication of
wireless camera systems. The demerit of the proposed method is that two proposed
predictors not always have good performance in all textures.

At last, in Chapter 5, a series of deterministic and ternary matrices derived from
approximated-DCT are proposed, which could be used as measurements matrices. They
significantly increase the coding efficiency comparing with the random binary matrix
in previous work. Furthermore, an algorithm using the row-operation to perform the
intra prediction on the approximate-DCT measurement matrices is proposed. Without

modifying the measurement matrix to structure the specific row as previous work in
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Chapter 4, similar effects could be achieved by the row-operation of specific
measurements. Lastly, a low-cost VLSI architecture of measurements compression with
proposed matrix row operations is proposed. Experiment results show the proposed
matrix improve the coding efficiency by BD-PSNR increase of 4.2 dB. The proposed
row operations increase the coding efficiency by 0.24 dB BD-PSNR. The VLSI
architecture is only 4.3 K gates in area and 0.3 mW in power consumption. The demerit
is that some of the row-operations are not available in low sampling rate, because it
relies on the measurements which do not exist in the low sampling rate.

The future work includes the following aspects. First is how to design a more
efficient reference samples loading and storing scheme, that could further reduce
bandwidth of SRAM. Second is how to further explore the possibility to implant the
HEVC intra prediction to CS to further improve its coding efficiency. At last, there’s

lots of spaces for studying the extension of HEVC inter prediction to CS.
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