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Summary 
   This thesis summarizes the research project conducted during the second year of my master 

program together with Prof. Kawaguchi. The research is partially supported by Institute of Real Estate 

Studies, Waseda University. Our ultimate objective is to create a widely-accepted Automated Valuation 

Model (AVM) for all the properties in Japan. As a primitive trial for the research project, we conducted 

empirical research on the data of five districts in Tokyo, studied the roles played by spatial variables 

in Tokyo residential rental market and constructed two AVMs based on different methods- OLS and 

Ordinary Kriging- in this thesis. We have the following contributions: First, we construct a unique 

micro-level dataset resembling the famous Boston Housing Price dataset (Harrison & Rubinfeld, 1978) 

with Japanese unique housing attributes. Second, we study the spatial variables, latitude, longitude 

and distance to Tokyo Station and find these three variables are crucial in determining the housing 

rents and capturing the roles of space in residential rental market in Tokyo. Third but not least, by 

providing our AVMs to public, we can to some extend alleviate information asymmetry in real estate 

market. This thesis is a summary of current research progress as our research projects haven’t ended 

at this moment.   
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Automated Valuation Model: An Application in Japanese 

Rental Market 

 

Abstract 

Researchers in real estate and practitioners in mass appraisal industry have developed 

Automated Valuation Models (AVMs) for estimating housing prices in different housing 

markets. However, few of them develop AVMs in rental market. By constructing a unique 

micro-level housing rental dataset, we build two residential rental AVMs for five districts 

in Tokyo using two different methods -OLS and Ordinary Kriging- in this study. The 

accuracy metrics from our training and test sets illustrate ambiguous preferences of which 

method performs better in terms of R-square and RMSE. Besides, we investigate the roles 

of spatial variables based on our baseline hedonic regression models. Spatial variables -

latitudes, longitudes and distances to Tokyo Station- are crucial in determining the 

housing rents in Tokyo residential market. In addition, we conduct Kriging Error 

Decomposition analysis based on relative likelihood ratios and find that Ordinary Kriging 

method, despite its simplicity in interpolation of spatial data, may lead to information 

losses in modeling the rental functions as the method omits important housing attributes. 
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1. Introduction 

As technology advances, the Automated Valuation Model (shorted as AVM hereinafter) is attracting 

increasingly attention among researchers in real estate and practitioners in mass appraisal industry. We 

quote the definition from International Association of Assessing Officers (shorted as IAAO 

hereinafter) for AVM: 

An automated valuation model (AVM) is a mathematically based computer software program that 

produces an estimate of market value based on market analysis of location, market conditions, and 

real estate characteristics from information that was previously and separately collected. The 

distinguishing feature of an AVM is that it is an estimate of market value produced through 

mathematical modeling. Credibility of an AVM is dependent on the data used and the skills of the 

modeler producing the AVM.  

The origin of the AVM research may date back to late 1980s where most of the researchers and 

practitioners use traditional models such as cost approach, income approach, comparable sales method 

as well as income approach as theoretic basis to build their AVMs or to conduct mass appraisal analysis. 

During that period, the multiple regression analysis (MRA) or the hedonic regression technics are 

widely used in their research (Appraisal Foundation 2003, 46–56, 180–187; IAAO 1990; D’Agostino 

& Stephens 1986). After IAAO set a standard for AVM in the industry in 2003, the AVM is officially 

distinguished from traditional appraisal method in which an appraiser physically inspects properties 

and relies more on experience and judgement to analyze the data and develop an estimate of market 

value. Not until 1990s with the availability of various statistics packages, have a substantial number 

of empirical works in related to mass appraisals and predictions of housing price been conducted. It is 

from then, in our understanding, AVM is being recognized as an important independent research field 

in real estate economics and appraisal society.  

Existing literatures in this new field are heavily centered in building house-price-related AVMs 
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(Ibrahim, Cheng, & Eng, 2005; García, Gámez, & Alfaro, 2008), while existing literature has seldom 

endeavored to construct rental AVM despite few have investigated and compared different 

methodologies which have been utilized on modeling the functions of housing rent (Brunauer et al., 

2009; Djurdjevic et al.,2009; Löchl & Axhausen 2010; Seya, Tsutsumi, Yoshida, & Kawaguchi, 2011). 

The reasons, from our perspectives, which lead to the blank in this rent-related field may lie in the 

following facts. First, it is difficult to collect rental data since such information is often exclusively 

owned by big-brand housing brokerages. Without high-quality data to analyze, there’s little space for 

researchers to conduct empirical studies. Second, the fact that no consensus has ever been reached in 

academia of how to construct a standardized model for modeling housing rents makes benchmarking 

a related study difficult which in turn disperses research interests among researchers.   

Despite this blank in rental market research, there’s an urgent need from the public that real estate 

market should be more transparent since real estate markets exhibit strong evidence that information 

asymmetry results in biased behaviors among market participants (Garmaise, & Moskowitz, 2003). 

Therefore, one of our objectives in this study is to alleviate information asymmetry by constructing an 

AVM where the rental of any room in our study areas could be estimated based on our models. Market 

participants and the general public can refer to AVM-based information before they make decisions.  

We select Japan as our study area because of the stability of rental prices after bubble burst (Deng, 

Guo, & Shimizu, 2017), which provides a temporal-controlled environment for testing cross-sectional 

data.1 Japan is a stable developed country which suffered from housing bubbles and bubble burst. 

However, its housing rents remain almost unchanged after 2008, it is estimated the average of 

appreciation rate in Tokyo is only 0.7% between 2008 and 2013 (Statistics Bureau, 2013). The asking 

rents, in Japan, could also be interpreted as a proxy for the real transactional rents as landlords seldom 

altered their rents after posting the ads on brokerages (Seya, Tsutsumi, Yoshida, & Kawaguchi, 2011).   

                                                   
1 In this study, we can only use cross-sectional data due to limitations in data-collecting process.  
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Practically, we construct a micro-level dataset which includes both micro-level attributes of 

individual houses and geographical coordinates resembling famous Boston Housing Price dataset 

(Harrison & Rubinfeld, 1978). Our dataset is unique and abundant in terms of the attributes of houses 

and geographic representativeness, which could be extended to a panel dataset if necessary.  

We investigate the roles of spatial variables in Japanese rental markets. It is found that latitudes 

and longitudes in our sample areas are extremely crucial in determining the housing rents. The distance 

to Tokyo Station can explain part of variations in housing rents but cannot capture the spatial effects 

completely in our hedonic pricing models. Other structure variables exhibit similar characteristics as 

many hedonic pricing literatures summarized by Sirmans, Macpherson and Zietz (2005). We also build 

AVM based on both OLS and Ordinary Kriging Method, an interpolation method in geostatistics, 

which only takes geographic coordinates as inputs while could be used to estimate unknown rents. 

Our AVMs exhibit spatial heterogeneity across different regions in both OLS-based AVM and Kriging-

based AVM. 

We also compare the accuracy metrics of two different approaches -hedonic regression models 

(OLS) and Ordinary Kriging- in modeling AVM. The results indicate OLS performs better than 

Ordinary Kriging in 4 districts out of 5 in our sample. The failure to model rental function in Minato 

district warns us that simple methodology should be used with caution when constructing AVM. And 

splitting whole sample into training set and test set is almost mandatory to obtain appropriate 

interpretation. 

This study has the following contributions. First, to our best knowledge, we are among the first 

to develop the AVM in rental market and the first few to investigate the roles of space in Japanese 

rental market. This fills the gap between the Japanese AVM research field and the leading AVM 

research in the world. Second, the AVMs that we have develop provide an important database for 

researchers and practitioners including appraisers, bankers, portfolio managers, government as well as 
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the public. Third but not least, it is often cited in many papers (Cocco, 2000; Floroiu & Pelsser, 2012) 

that real estate market is incomplete, and information is not as fully transparent as stock market. By 

providing an open-source AVM to the public, we can to some extend alleviate the Information 

Asymmetry in real estate market which will lead to a more efficient market in future. In addition, our 

research is useful to provide more precise estimated imputed rents for owner-occupied dwellings in 

the Japanese System of National Accounts. 

The rest of the thesis is arranged as follows. Section 2 reviews existing literatures which use 

different methodologies to model housing price (rent) functions. Section 3 introduces data 

constructions and estimation methods. Section 4 shows the results and discussions. Section 5 

concludes our findings and contributions.  

 

2. Literature Review 

In terms of methodologies that researchers use to develop AVMs, existing papers can be divided into 

roughly three mainstreams—regression-based methods, AI-based methods (Zurada, Levitan, & Guan, 

2011) and geostatistic-based methods. Regression-based methods can be further split into traditional 

assessment based on multiple regression analysis (MRA) methods or hedonic methods (Adair & 

Mcgreal, 1988; Mark & Goldberg, 1988; Do & Grudnitski, 1992; Garrod & Willis, 1992; Ibrahim et 

al., 2005), spatial regression methods in consideration of spatial autocorrelation (Anselin 1990; 

Kelejian & Robinson 1998) and spatial heterogeneity (Fotheringham et al., 2010; Fotheringham et al., 

2015), and semiparametric model (Robinson 1988; Anglin & Gençay 1996; Clapp, Kim, & Gelfand, 

2002; Fan & Gijbels, 2003) and non-parametric model (Pameter, Handerson, & Kumbhakar, 2007; 

Mcmillen & Redfearn, 2010). AI-based methods including famous Neural-Network(NN) based 

methods (Do & Grudnitski, 1992; Tay & Ho, 1992; Worzala et al., 1995; McCluskey et al., 1996; 

McCluskey & Borst, 1997; Rossini, 1999; Limsombunchai, 2004; García et al., 2008; Peterson & 

Flanagan, 2009; Mccluskey et al., 2012), and Fuzzy Logic (Byrne, 1995; Bagnoli & Smith, 1998; 
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Gonzalez & Formoso, 2006; Guan, Zurada, & Levitan, 2008) are becoming hotspots in the past two 

decades. And the popularity raised from keywords like ‘Big Data’, ‘Machine Learning’ among mass 

media and public makes such research field a cross-discipline of computer science and real estate 

economics. In contrast with AI-Method, Geostatistics, a branch of statistics which is widely used in 

spatial datasets, developed by South Africa engineering Krige (1951) and is used for predict 

probability distributions of ore grades for mining operations. However, it is not until recently, 

geostatistics-based method is applied in real estate research (Kuntz & Helbich, 2014).    

Despite intensive research available with different approaches especially in model specifications, 

no widely-accepted consensus had ever been reached in academia in terms of how to construct AVM. 

Crone and Voith (1992) did an overall comparison of five regression models: three parametric and two 

non-parametric methods. They argue that parametric methods can yield higher accuracy, mean 

absolute error in this case, than non-parametric methods. In contrast, Brunauer, Lang and 

Wechselberger (2009) drew an opposite conclusion in their paper that additive mixed regression 

models (AMM), non-parametric methods, are shown superior results in contrast to parametric method. 

The inconsistency of which method performs better appears in the works of AI-based method as well. 

McCluskey et al. (2012) summarize predictive performance of several works where comparisons 

between NN methods and hedonic regression are made. However, they find that there is no clear 

explanations and evidence of why, in most of time, NN methods would have better predictive 

performances. In early work of Worzala et al. (1995), they argue the results of NN methods will vary 

depending on packages of software and the long run times of the same package. 

The pros and cons of different methods are summarized as following: Hedonic price model and 

MRA model is easy to estimate, and coefficients are easy to interpret. But naïve OLS model cannot 

deal with non-linearity and all spatial problems. Spatial econometrics developed by (Anselin, 1990; 

Kelejian & Robinson, 1998) can deal with spatial autocorrelation by adding a pre-specified spatial 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Ore_grade
https://en.wikipedia.org/wiki/Mining
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matrix into the regression equations. Empirical works suggest that, if setting spatial weights correctly, 

predicting power could increase if compared with non-spatial regressions. However, as Geniaux and 

Martinetti (2017) argue in their paper, few literatures focus on how to address issues such as spatial 

heterogeneity, spatial autocorrelation, non-linearity and time invariance simultaneously. Geostatistics, 

which requires only geographical coordinates, is an easy-to-implement interpolation method. However, 

the kriging process, which excludes other possible explanatory variables may suffer information loss 

compared with regression methods and AI methods.  

Non-linearity methodologies such as local polynomial regression or additive hedonic regression 

can allow researchers to evaluate data without assuming the functional form in advance between 

dependent variables and independent variables. By modelling non-parametrically through P-splines, 

non-linearity and time-invariant effects could be partially wiped out (Brunauer et al., 2009). But many 

of theoretic properties are difficult to understand and the computation requires a larger time as 

covariates increase (Opsomer & Ruppert, 1997). 

Up to now, most of research focus on real estate housing price, few have investigated to construct 

AVM in rentals given the fact that rental markets are attached equal importance. Existing literatures 

which set predictive variable as rental or rental related data include the following: Djurdjevic et al. 

(2008) test hedonic model in Swiss market and find that their multilevel model has better predictive 

performance than segmented OLS models. Löchl and Axhausen (2010) compared 4 models by using 

Swiss asking rental data from a publicly available web site. They find that GWR model which intends 

to solve the spatial heterogeneity, though not perfectly and still suffered from spatial autocorrelation, 

can provide better predictive accuracy than OLS and SAR models. Seya, Tsutsumi, Yoshida and 

Kawaguchi (2010) are the first to investigate empirical comparisons among spatial econometrics, 

spatial statistics (kriging) and semiparametric models. Their works provide us an intuition of how 

suitable Japanese data are for testing rental functions. Vienna paper, however, focuses on more on 
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dealing with non-linearity and models time-trend through P-splines non-parametrically (Brunauer et 

al., 2009). These literatures provide us some sorts of benchmark to conduct empirical research. 

However, as far as we are concerned, no existing literature so far has modeled the housing rents by 

geostatistics, therefore our study is quite experimental and may require a number of tests and trials to 

obtain optimal results.   

 

3. Data and Methodology  

3.1. Dataset Constructions 

We construct a unique dataset for analysis from two different sources. One dataset that we use 

throughout this thesis is “asking-rent” dataset constructed from one of the largest Japanese real estate 

brokerage company- “Athome”. This dataset is composed of asking rents for residential houses whose 

owners put their ads on Websites through “Athome”, and micro-level housing attributes of the 

underlying houses for rent.  

Since our interests are focused on constructing AVM for rental markets, which, from our 

perspectives, involves empirical analysis based on geographical data, we therefore obtain an additional 

“point” dataset to complement “asking-rent” dataset by adding the geographical coordinates of each 

house – latitudes and longitudes - into each single piece of data. The “point” dataset provided by 

Zenrin Corporation can fulfill our tasks in that this dataset collects geographical coordinates of all the 

residential buildings in a specified area, say, the whole residential houses in one specific district. The 

“point” dataset is updated until July 2017 and therefore it is suitable for our analysis.  

We merge the “point” dataset with “asking-rent” dataset in the following way: First, for each 

piece of data in “asking-rent” dataset, we query the address from “point” dataset to match the address 

of “asking-rent” dataset.2 Second, within a subsample of the same block, we match the floor number 

                                                   
2 Since the address in “asking-rent” dataset is incomplete, we can only match the address of two datasets 

in block level. We then obtain a subsample of “point” dataset in the same block.    
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of the buildings in two datasets. Third, within the same block and the underlying building with the 

same floor number, we use the python package “fuzzywuzzy” to match the names of the buildings in 

two datasets.3 We get “one-to-one” matching results and select the matched data whose fuzzy ratio is 

larger than 80. After data cleaning process, the final dataset resembles famous Boston Housing Price 

dataset (Harrison & Rubinfeld, 1978) where both micro-level of housing attributes and geographical 

coordinates are available for analysis.  

For the purposes of data visualization, we obtain the mapping data and GIS-related data from 

Geospatial Information Authority of Japan. The mapping data includes base-map, road-map, and 

topographic map of district-level in Japan. Figure 1 shows the geographic plot of our final sample data. 

[Insert Figure 1] 

 

3.2. Variables Description 

We obtain 10892 pieces of data from the period of Jan 2018 to March 2018 within five districts in 

Tokyo.4 We have 24 variables for each piece of data in our final dataset. The dependent variables are, 

Unitrent and Logunitrent representing rent per square meter and logarithm of rent per square meter, 

respectively. The numerical attributes for each piece of data are named and defined as the following: 

latitude and longitude of the house, Latitude and Longitude; floor area of the house for rent, Floorarea; 

number of rooms, Room; number of living rooms, Living; number of kitchens, Kitchen; number of 

storage room, Storage; number of dinner room, Dinner, management fee, ManagementFee; deposit 

fee, Shikikin; gratuity fee, Reikin; security money, Hosyoukin ; floor number of the house, Floornum; 

                                                   
3  The package “fuzzywuzzy” is a string matching toolbox in python using Levenshtein Distance to 

calculate the differences between sequences. It can output a ratio indicating similarity between two strings. 

A quick example is, if we put two sentences "fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear" into the 

fuzz.ratio function of “fuzzywuzzy” package, the output ratio is 91. The code for matching the name of the 

buildings is available upon request. 
4 In this study, we test the data of five districts in Tokyo which are Shinjuku, Minato, Sumida, Koutou, 

Setagaya. Our final dataset is cross-sectional since we delete the duplicated observations. Within our 

collection period, the values of the attributes and the rent for each underlying house are consistent in our 

data-cleaning process and there are no two different values for the same attributes of each underlying house.  

https://en.wikipedia.org/wiki/Levenshtein_distance
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total floor of the building where the underlying house lies in, Totalfloor; distance in kilometers to 

Tokyo Station, DistToTokyo; the time (in minutes) to walk to nearest station, Accessibility; the age of 

the building, Age; and the floor number of the house relative to the total floor of the underlying 

building, RelativeFloor. Dummy variables in our dataset are DummyPark, DummyBikepark and 

DummyMaterial, indicating whether the house has a car-parking lot, bike-parking lot and material 

used for construction is concrete.5 We also construct district dummy variables for each district and in 

total we have five dummy variables: DummyShinjuku, DummyKoutou, DummyMinato, 

DummySumida, and DummySetagaya. We also include one categorical variable in our dataset. 

Orientation is a variable indicating the positioning of a house in relation to seasonal variations in the 

sun's path. In our dataset, there are eight different directions which indicate the different positioning 

of a house. Based on previous survey literatures (Malpezzi, 2003; Sirmans, Macpherson & Zietz, 

2005), we use the following terminologies to describe different types of variables: 

· (Dummy) Structural Variables: Floorarea, Room, Living, Kitchen, Storage, Dinner, 

ManagementFee, Shikikin, Reikin, Hosyoukin, Floornum, TotalFloor, RelativeFloor, Accessibility, 

Age, DummyPark, DummyBikepark and DummyMaterial. 

· Spatial Variables: Latitude, Longitude and DistToTokyo. 

· District Dummy Variables: DummyShinjuku, DummyKoutou, DummyMinato, DummySumida, 

and DummySetagaya. 

 

3.3. Train-Test Splitting and Hypothetical Dataset  

We separate the full dataset into training set and test set. By using the functions from scikit-learn, we 

split the full dataset randomly based on an 80% to 20% split ratio.6 The small-size sample data – 

                                                   
5 The materials used for construction are roughly divided into two types – concrete and wood- in Japan. 

According to Statistics Japan Residential House and Land survey conducted in 2013, among 52.1 million 

houses in Japan 21.99 million (42.2%) are concrete-made houses, while this number for wooden houses is 

30.11 million (57.8%). 
6 Scikit-learn is a python package for machine-learning. The function used to split train test data is 

https://www.researchgate.net/scientific-contributions/81296453_Stephen_Malpezzi?_sg=_t5yp_cCu3AryhEcFiZ9P0tytpwrnP4xmPnbLK5_AIdvKxZoOIY4vjBddAjJxjtXTH0WQQI.mAS5QKBPHLfhyqXqcMUn_OasyPPAS-TTJqzJ4mEYj9EAZC10iwOvGd2aSywxg2kU4YUCamDWgQyAlLHgE22Efw
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approximately 10000 pieces in total – makes us determine 80% to 20% split ratio as our benchmark 

which enables us to obtain enough observations to perform accuracy test on test set. 

For the purposes of predicting the rental price for all the properties within a specific area based 

on regression models, it is required that the attributes of unknown properties as the inputs of our AVM. 

However, actual house-specific data cannot be obtained since “point” dataset only has the building-

level attributes but not house-level attributes. We, therefore, construct a hypothetical dataset based on 

“asking-rent” dataset and “point” dataset. For each piece of data in “point” dataset, we average the 

attributes of ten nearest-neighbors from “asking-rent” dataset based on their great circle distances and 

assign the mean value of these attributes, except for latitude and longitude, as the hypothetical values 

for the attributes of each single piece of data. We must admit here that these hypothetical data are only 

used for calculation of regression-based AVM since they are smoothed hypothetical data which cannot 

represent the true values. 

 

3.4. Model Specifications and Methodologies 

3.4.1. Hedonic Pricing Model 

The origin of hedonic model can be traced back to late 1930s when Court (1939) first developed a 

hedonic pricing index for the automobile industry. However, it was not until late 1960s and early 1970s 

after Lancaster (1966) developed a utility-generating microeconomic theory and Rosen (1974) 

constructed an equilibrium hedonic pricing model based on buyer and seller choices that researchers 

started to conduct empirical studies for estimating the functions of housing price. The Hedonic Pricing 

Model views the value of a house is contributed by the satisfaction that users gain from each separate 

attribute of the house. Due to its straightforward interpretation and simplicity in calculation, the 

Hedonic Pricing Model attracts attention from people in real estate appraisal as well. However, in real 

                                                   
sklearn.model_selection.train_test_split.  
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estate appraisal, the terminology used for Hedonic Regression Model is “Multiple Regression Analysis” 

though the statistics tool -OLS- that both economists and appraisers is the same. Despite inconsistency 

between two different research areas, the basic regression equation is summarized by Sirmans, 

Macpherson and Zietz (2005) and generally takes the following form: 

 

Price=F (Physical Characteristics, Other Factors) 

 

Where the Physical Characteristics are typically, the physical attributes of a house, and Other Factors 

are the external factors which may, affect the housing price such as level of income within the area, 

GDP per capita, crime rate and so forth.  

Following previous hedonic rental literature (Djurdjevic et al., 2008; Löchl & Axhausen, 2010; 

Seya, Tsutsumi, Yoshida & Kawaguchi 2010), we construct the hedonic regression model as our 

baseline regression and could be written as follows: 

                                                                          ln 𝑃 = α + 𝛽𝑋 + 𝜀                                                                    (1) 

Where ln P is the logarithm of a vector of asking rents (N×1, where N is the number of observations), 

α is the constant,  𝛽 is a vector of coefficients (N×1) and 𝑋 is a matrix of house attributes (N×K, 

where K is the number of attributes). In our baseline hedonic regression models, we regress logarthmns 

asking rent per square meter, Logunitrent on both structural variables, and spatial variables. Structural 

variables are Floorarea, Room, Living, Kitchen, Storage, Dinner, ManagementFee, Shikikin, Reikin, 

Hosyoukin, TotalFloor, Accessibility, Age, RelativeFloor, DummyPark, DummyBikepark, and 

DummyMaterial, representing the structural characteristics of each house. Spatial variables are 

Latitude, Longitude, capturing the geographical location of each house. In addition to the baseline 

regression, we also include the DistToTokyo and district dummy variables in our regression to test what 

kind of roles can spatial variables play in determining the rental prices. 
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3.4.2. Ordinary Kriging 

3.4.2.1. Theories and Assumptions of Ordinary Kriging  

Ordinary kriging is used to estimate the unknown true values of points where there are no observable 

sample available. The values of unknow points are estimated by linear combinations (weights) of the 

values of known-value points. By constructing a fitted covariance function or a semi-variogram 

function, the variance of the error, which is the difference between the true values and estimated values 

of unknow-value points, can be minimized conditioning on the following assumptions: First, the 

weights for calculating the unknown-value points should be added up to 1. Second, the variance of the 

values of both known and unknown points should be the same within the study area. Third, for 

interpolating the values of unknow-value points, the covariance between any pair of the points should 

decrease as the distance of the pair increases. In mathematics, the ordinary kriging problem can be 

written as: 

                                                                  min 𝜎̂𝑉0

2 = Var(𝑉̂0 − 𝑉0)                                                                (2)                              

                                                           Subject to 𝑉̂0 = ∑  𝑤𝑖𝑉𝑖

𝑛

𝑖=1

                                                                  (3) 

                                                                                  ∑ 𝑤𝑖 = 1

𝑛

𝑖=1

                                                                      (4) 

Where 𝑉̂0 is the estimated value of the unknown-value point, 𝑉0 is the true value of the unknown-

value point, 𝑉𝑖 is the value of observed sample i, 𝑤𝑖 is the weight of value-observed sample i used 

to calculate the estimated value of unknown value point.  

By rearranging equation (2) with covariance expressions, equation (2) can be written as: 

                                                        𝜎̂𝑉0

2 = 𝜎̂2 + ∑ ∑ 𝑤𝑖𝑤𝑗𝐶̂𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

− 2 ∑ 𝑤𝑖𝐶̂𝑖0

𝑛

𝑖=1

                                         (5) 

Where 𝜎̂2 is the variance of the values of all points, 𝐶̂𝑖𝑗 is the estimated covariance between point i 

and j, 𝐶̂𝑖0 is the covariance between point i and unknow-value point 0. 

By adding Lagrange Parameter,2μ ∑ 𝑤𝑖 − 1𝑛
𝑖=1  to the right-hand side of equation (5), and taking 



14 

 

partial derivatives with respect to the weights, we can obtain the n equations with regards to n weights 

and μ . Together with the constrain of equation (4), the ordinary kriging system (Isaaks & 

Srivastava,1989) can be written as the following n+1 equations: 

                                                      ∑ 𝑤𝑗

𝑛

𝑗=1

𝐶̂𝑖𝑗 + 𝜇 = 𝐶̂𝑖0            ∀ 𝑖 = 1,2, … , 𝑛                                              (6) 

                                                                           ∑ 𝑤𝑖

𝑛

𝑖=1

= 1                                                                                  (7) 

This system of equations (Isaaks & Srivastava,1989) could be written in matrix notation as: 

𝐂                  ×                𝐰     =         𝐃 

                       




















=









































1011

1

1

ˆ

ˆ

ˆˆ

ˆˆ

0

101

1

111

C

C

w

w

CC

CC

nnnnn

n













                    (8) 

 

Solving the above matrix problem, we can obtain the solutions for the weights written in matrix 

notation as: 

                                                                  𝐰   =  𝐂−𝟏   ×      𝐃                                                                          (9) 

So far, we have obtained the solutions for calculating the weights, however, we still need the 

function for calculating the covariance between points of unknow-value and the sample. Following 

the (Isaaks & Srivastava,1989) we define semi-variogram as follows: 

                                           γ(h) =
1

2
𝐸[(𝑉𝑖 − 𝑉𝑗)2],    ‖𝑖(𝑥𝑖 , 𝑦𝑖) − 𝑗(𝑥𝑗 , 𝑦𝑗) = ℎ‖                                   (10) 

where semi-variogram, γ(h)  is a function of distance h, which is calculated by certain kind of 

distance between point i and point j, typically great circle distance measured by latitude and longitude.  

If we follow our assumptions that the estimated variance of the values of both known and 

unknown points should be the same, we can rearrange the equation (10) as follows: 

                                                            γ(h) = 𝜎̂2 − 𝐶(ℎ),    𝐶(ℎ) = 𝐶̂𝑖𝑗                                                       (11) 
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where 𝜎̂2 is the estimated variance of the values of both known and unknown points, 𝐶(ℎ) is the 

covariance between point i and point j where the distance h is calculated by the distance function in 

equation (10).  

In many geostatistics books and literature (Isaaks & Srivastava,1989; Cressie, 1993; Smith, 2016), 

the equation (11) which is derived from equation (10) is often written in the following: 

                                                                        γ(h) = 𝜎2 − 𝐶(ℎ)                                                                   (12) 

                                            𝐶(ℎ) = Cov(𝑉𝑖 , 𝑉𝑗),    ‖𝑖(𝑥𝑖, 𝑦𝑖) − 𝑗(𝑥𝑗 , 𝑦𝑗) = ℎ‖                                        (13) 

In geostatistics, equation (12) is often called as “Theoretical Semi-variogram” and usually takes 

a variety of different functions including spherical function, gaussian function, exponential function, 

power function, linear function and so forth (Isaaks & Srivastava,1989; Cressie, 1993; Liu & 

Maghsoodloo, 2009; Smith, 2016). Figure 2 is an illustration of semi-variogram and co-variogram of 

spherical model which is often used in literature as a standard model for empirical testing (Cressie, 

1993; Chica-Olmo, 1995; Basu & Thibodeau, 1998; Gillen, et al, 2001; Kuntz & Helbich, 2014). The 

semi-variogram function for spherical model can be written as: 

                                     𝛾(ℎ; 𝑎, 𝑠, 𝑟) = {
𝑎 + (𝑠 − 𝑎) (

3ℎ

2𝑟
−

ℎ3

2𝑟3
) , 0 ≤ ℎ ≤ 𝑟

𝑠 ,                                ℎ > 𝑟

                                        (14) 

Where ℎ is the distance, 𝑎 is the nugget, 𝑠 is the sill and 𝑟 is the range. 

[Insert figure 2] 

Following the methods of Schabenberger & Gotway (2004), Kuntz & Helbich (2014) and Smith 

(2016), we set the empirical semi-variogram as: 

                                                      𝛾̂(ℎ𝑘) =
1

2𝑁(ℎ𝑘)
∑ [𝑉̂(𝑆𝑖) − 𝑉̂(𝑆𝑗)]2 

𝑆𝑖,𝑆𝑗𝜖𝑁(ℎ𝑘)
                               (15) 

Where 𝑁(ℎ𝑘) is the number of pairs for interval ℎ𝑘, 𝑘 = 1,2,3, … 𝑛. k is the number of lags (or bins) 

for determining the number of intervals in empirical semi-variogram. ℎ𝑘 is the lag distance by taking 

the average of distances of all pairs within the lag k. The  𝛾̂(ℎ𝑘) is determined by taking the average 
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of squared-difference pairs, [𝑉̂(𝑆𝑖) − 𝑉̂(𝑆𝑗)]2 

 

3.4.2.2 Empirical fitting strategies 

For empirical fitting strategies, we choose weighted least squares method proposed by Cressie (1991), 

Kuntz & Helbich (2014) and Smith (2016) and the general weighted problem can be written as: 

                                                      𝑚𝑖𝑛(r,s,a) ∑ 𝑊𝑘[𝛾̂(ℎ𝑘) − 𝛾(ℎ𝑘; 𝑎, 𝑠, 𝑟)

𝑛

𝑘=1

]2                                             (16) 

By putting more weights on those bins which have more observations and less weights on bins 

with less observations, we can write the weights 𝑊𝑘 as follows: 

                                                          𝑊𝑘 =
𝑁(ℎ𝑘)

𝛾(ℎ𝑘; 𝑎, 𝑠, 𝑟)
,        𝑘 = 1,2,3 … 𝑛                                              (17) 

After we obtain the best fitted parameters 𝑎̂, 𝑠̂, 𝑟̂ , we then get back to equation (8) where 

covariance between any unknow-value point and value-observed sample can be calculated by 

𝛾(ℎ; 𝑎̂, 𝑠̂, 𝑟̂). Since the parameter of lags, 𝑘 is a parameter pre-specified by researchers, in this thesis, 

we use the grid search algorithm to find the best lag 𝑘̂ which produces the highest accuracy metrics 

when using our training set.7  

 

3.5. Estimation Metrics for Model Accuracy 

We use two regression metrics -Coefficient of Determination (R-Squared) and Root Mean Squared 

Error (RMSE) for estimating our model accuracies. The two metrics are defined as: 

                                                                    𝑅2 = 1 −
∑ (𝑌̂𝑖 − 𝑌𝑖)𝑛

𝑖=1

∑ (𝑌̂𝑖 − 𝑌̅𝑖)𝑛
𝑖=1

                                                              (18) 

                                                                  RMSE = √
∑ (𝑌̂𝑖 − 𝑌𝑖)2𝑛

𝑖=1

𝑛
                                                            (19) 

                                                   
7 Scikit-learn provides grid search algorithms where you can specify parameters as input and return you a 

score based on different accuracy metrics such as R-Squared, Mean Squared Error and so forth.  
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Where 𝑌̂𝑖 is the predicted values for observation i, 𝑌𝑖 is the true value for observation i, n is the 

number of the observations in the model.  

As criticized by Alexander, Tropsha and Winkler (2015), other accuracy measurements should be 

reported since R-Squared sometimes can lead to inappropriate interpretation of model fitness.8 We, 

therefore, following many AVM and model-fitting-related literatures (Limsombunc Gan, & Lee, 2004; 

Ibrahim, Cheng, & Eng, 2005; McCluskey et al., 2012; Bency et al., 2017), include Root Mean 

Squared Error as alternative accuracy metric other than R-Squared.  

 

3.6. Kriging Error Decomposition 

To further investigate the how Ordinary Kriging can lose or increase information compared with 

simple OLS baseline regressions, we propose a Kriging Error Decomposition Methodology to detect 

the information loss when excluding housing attributes using Ordinary Kriging method. By using the 

test set, we run two regressions for each district with the same dependent variables but with two 

different independent variables -observed Logunitrent and simulated LogKriged.9 We can obtain the 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) for both regression 

models. Following the previous works (Akaike, 1983; Burnham, & Anderson, 2010), we calculate the 

differences of AIC between two models and apply the relative likelihood function to our models which 

could be written as: 

                                                                          ℒ(𝑔𝑖|𝑥) ∝ 𝑒
(−

1
2

∆𝑖)
                                                                   (20) 

Where ℒ(𝑔𝑖|𝑥)  is the relative likelihood of a given model i to a benchmark model, ∝  means 

proportional to and ∆𝑖 represents the difference of the AIC between two models. Such likelihoods 

show the relative strength of evidence for each model (Burnham, & Anderson, 2010). 

                                                   
8 Many statistics softwares including R, statsmodels in Python and excel report a different R-Square ratio 

based on the following formula:  𝑅2 = 1 −
∑ (𝑌̂𝑖−𝑌𝑖)𝑛

𝑖=1

∑ (𝑌̂𝑖−0)𝑛
𝑖=1

.  

9 LogKriged is the logarithm of rents per square meter calculated by the Ordinary Kriging model. 
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4. Results and Discussions 

4.1. Summary Statistics 

Table I summarizes the statistics for the variables in our whole sample data except for variable 

Orientation since it is a categorical variable. To illustrate our sample representativeness, we follow 

Djurdjevic et al. (2008) and summarize geographic representativity in Table II. Table II reports the 

geographic differences between our “point” dataset and sample dataset. Table II illustrates that 

Setagaya district is under-represented in our sample compared with “point” dataset while Minato 

district is over-represented. The discrepancy in sample representativeness between the “point” dataset 

and sample dataset may arise from the fact that Setagaya district has more single-family and owner-

occupied houses than Minato district which are all included in “point” dataset but never appear in 

sample dataset. Our sample data is overall sufficiently representative for the rental market in these five 

districts. 

[Insert Table I] 

[Insert Table II] 

Figure 3 illustrates the kernel distributions of Unitrent for five different districts. Among these 

five districts, Minato district has the highest Unitrent compared with other four districts.  

[Insert Figure 3] 

 

4.2. Results and Interpretations 

4.2.1. Regression Results 

Table III reports OLS results of five rental hedonic models for different districts in Tokyo. In Table III, 

we regress logarithms of asking-rent per square meter, Logunitrent on structure variables: Floorarea 

(in logarithm), Room, Living, Kitchen, Storage, Dinner, ManagementFee, Shikikin, Hosyoukin, Reikin, 
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TotalFloor, Accessibility, Age, and RelativeFloor; dummy structural variables: DummyMaterial, 

DummyPark, and DummyBikePark; and spatial variables: Latitude and Longitude (Details of variable 

constructions are discussed in Section 3). Column (1) to Column (5) illustrate regression results for 

different districts. Consistent with the results of previous studies summarized by Sirmans, Macpherson 

and Zietz (2005) and rental-related hedonic pricing model literature (Djurdjevic et al, 2008; Seya 2011), 

the coefficients of Age in our regression models are all negative and significant at 1% level across all 

the districts. Among other (dummy) variables, the coefficients of structural variables such as Room, 

Living, Storage, Dinner are positively significant in some districts but exhibit no significance in some 

districts as well. These internal features of houses in our sample area resemble similar characteristics 

of previous studies where the coefficients of these structural variables exhibit ambiguous signs and 

levels of significance (Sirmans, Macpherson & Zietz, 2005). In terms of fee-related variables, the 

coefficients of ManagementFee, Hosyoukin and Reikin are inconsistent across different districts while 

the coefficients of Shikikin (amount of deposit) are all positive within our sample areas. These finding 

are intuitive as higher deposits are generally associated with higher total rent and these effects also 

exist with Logunitrent, rent per square meter as well. The coefficients of Floorarea, are all negative 

and significant at 1% across all the districts. These findings are also consistent with our intuitions that 

the rent per square meter should be negatively correlated with the floor area of a house. Since our 

approach is to model the rent per square meter instead of total rent, our findings are inconsistent with 

previous studies, most of which regressing total rents or prices on different housing attributes (Sirmans, 

Macpherson & Zietz, 2005). Perhaps the most interesting findings, which may probably only be 

observed in Japan, are that both Totalfloor and RelativeFloor show positively significant coefficients 

in our baseline regression implying that buildings with higher total floor numbers and the houses with 

higher floor numbers in the building will have larger unit rents. These findings are intuitive in that 

tenants could gain more satisfactions from broader viewshed and therefore higher rent will be 
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requested when living in a skyscraper compared with living in a low-rise building.  

The external feature variables -DummyPark and DummyBikePark- have different characters in 

our regression models where DummyPark exhibits strong and positive correlation with Logunitrent 

while the coefficients of DummyBikePark are almost not significant across different districts. Spatial 

variables, Latitude and Longitude, which capture the relative position on space are all significant 

across five study districts. Our findings are showing evidence against previous study in Japan 

(Shimizu,2014) in that both latitude and longitude in our model are significant while the results of 

Shimizu (2014) illustrate that only latitude matters in his hedonic pricing model.  

As an interpretation of our spatial variables in baseline regression results, we illustrate the 

geographical plot of our sample data including the point of Tokyo Station in Figure 4. The coefficients 

of latitude and longitude in our baseline regression results, except for the latitude of Minato district, 

are indicating that the rents per square meter are related to the relative positions to Tokyo station. Take 

the coefficients of Shinjuku as an example. If our assumption that the relative positions to Tokyo 

Station matter in determining the housing rents holds, the coefficient of latitude in Shinjuku regression 

model should be negative while the coefficient of longitude should be positive since Shinjuku district 

is located at upper left (Northwest) relative to Tokyo Station. Table IV compares the empirical signs 

of coefficients of latitude and longitude from regression models and hypothetical signs of the 

coefficients if our assumption holds true.  

[Insert Figure 4] 

[Insert Table IV] 

To test how the distance to Tokyo Station can affect the housing rent in these five districts, we 

add the variable DistToTokyo to our baseline results. Table V shows that after adding the structural 

variable DistToTokyo, coefficients of some of the spatial variables in our 5 study districts, Latitude and 

Longitude are becoming not significant in contrast with baseline regression results as reported in Table 
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III. However, on the other hand, the coefficients for DistToTokyo are all negatively significant except 

for Shinjuku district indicating that the distance to Tokyo Station explains some variations of rent per 

square meter in our study districts. However, this variable, DistToTokyo, alone cannot fully explain the 

true spatial effects between the rents and the model since the coefficients of latitude and longitude 

exhibit ambiguous level of significance. One possible reason that the coefficient of DistToTokyo is not 

significant may result from the fact that Shinjuku Station is possible another functional-equivalent 

point for Shinjuku district as it is the transportation center and commercial center especially for the 

west part of Tokyo. The Shinjuku Station may alleviate the needs for accessibility to Tokyo Station 

which possibly weakens the level of significance of the variable DistToTokyo.  

[Insert Table V] 

We further documented regression results in Table VI adding district dummies in our regression 

equations. We regress Logunitrent on the same structural variables, spatial variables as used in Table 

V but adding district dummies into regression models. After adding district dummies and testing the 

whole training set, as shown in Table VI Column (1), the coefficients for latitude and longitude are 

still significant at 1% level and the coefficient of distance to Tokyo Station is still negatively significant. 

Spatial variables: Latitude, Longitude and DistToTokyo are all capturing the effects of space in this 

model. In addition, the coefficients of district dummies indicate the price level of different districts. 

From Column (1) and the Row of DummyMinato in Table VI, if a house is located at Minato district, 

it would probably have the highest rent per square meter compared with a similar house in other four 

districts. The results are consistent with the summary statistics in Section 4.1 

[Insert Table VI] 

 

4.2.2. Discussions of OLS Methodology 

As discussed in Section 2, hedonic pricing model (OLS) is often criticized by a variety of researchers 
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and academicians since the method assumes many unrealistic assumptions which can never hold true 

when fitting real data. In our case, the Tobler’s first law of geography "Everything is related to 

everything else, but near things are more related than distant things." (Tobler, 1970) will be violated 

if we use OLS method as it assumes homoskedasticity in error terms while spatial-related data usually 

suffer from spatial autocorrelation (Anselin, 1990; Basile et al., 2014). However, the reason we choose 

to report OLS results in this thesis is to investigate our research questions that what roles can spatial 

variables play in rental market and provide evidence of how important geographic coordinates are in 

determining the housing rents. The results of naïve OLS could provide insights of what kinds of other 

methodologies which may yield more appropriate results should be used for modeling a more precise 

AVM.  

 

4.3. Ordinary Kriging Results and Discussions 

4.3.1. Ordinary Kriging Results 

As discussed in detail in Section 2 and Section 3.4, Ordinary Kriging is a statistic tool often used 

by geologists to predict the values of coordinated points where the true values are unknown. Therefore, 

we only take the variables of latitudes, longitudes and the corresponding rents per square meter out of 

our training sample to build Ordinary Kriging models. Since the Ordinary Kriging models are sensitive 

to their parameters -sill, nugget, range and lags- in our spherical models, we select the best-fitted 

model for each district based on the following procedures:  

·○1 Run a for loop on the number of lags k 

·○2 Calculate the fitted parameters based on equation (16) and equation (17) for empirical semi-

variograms: 𝑠̂ (sill), 𝑟̂ (range) and 𝑎̂ (nugget) 

·○3 Execute the Ordinary Kriging Systems based on training set and test set, separately 

·○4 Check the accuracy metrics of both training set and test set 
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·○5 Check whether the predicted values are clustered or not10 

·○6 Select the appropriate models based on comprehensive fitness according to procedure ○4  and 

○5  

The selections of the number of loops to run in terms of lags k are quite subjective and difficult 

to determine. In our case, we set loop number as 1000 for one time to search the best-fitted model. 

Fortunately, except for Koutou district, we figure out the optimal models for the other four districts 

within one loop. Table VII shows the best-fitted parameters for Ordinary Kriging models of five 

different districts. From Figure 5 to Figure 9 illustrate the semi-variogram plots for these five districts 

as well. From these semi-variogram figures, we find the parameters for varied a lot across different 

districts. These findings provide the evidence that strong spatial heterogeneity exist in rent prices 

across these five districts. Our findings are consistent with previous studies in real estate that housing-

related data exhibit spatial heterogeneity (Anselin,2003; Goodman & Thibodeau, 2003; Khalid, 2015). 

The model fitness for different districts are distinctive as the parameters are varied.  

[Insert Table VII] 

[Insert Figure 5] 

[Insert Figure 6] 

[Insert Figure 7] 

[Insert Figure 8] 

[Insert Figure 9] 

4.3.2. Ordinary Kriging Versus OLS 

                                                   
10 The defects of using spherical semi-variogram for ordinary kriging is that the value of 𝑟̂ (range) is very 

important in determining the correctness of model fitting. If the range 𝑟 is too small, most of the values of 

semi-variogram will be s rather than 𝑎 + (𝑠 − 𝑎) (
3ℎ

2𝑟
−

ℎ3

2𝑟3). This will lead to a terrible situation where 

matrix 𝐂 and 𝐃 from equation (8) would be the same for most of distance (h), consequently, resulting in 

the kriged values clustered in one specific value. To monitor the parameter tuning process, we print the 

mode of the kriged values both on training set and test set in our program to detect the problems of too 

small range. 
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Table VIII reports the accuracy metrics from both methods - Ordinary Kriging and OLS - for different 

districts. Both training set and test set are included in Table VIII. Ordinary Kriging Method yields 

higher accuracy in training set than test set indicating potential overfitting problems while OLS yields 

similar accuracy in both training set and test set. Comparing both methods, OLS performs better in 

test set for Shinjuku district, Koutou District, Sumida district and Setagaya district but fails to capture 

the relationship between attributes of house and housing rents in Minato district. On the other hand, 

Ordinary Kriging method which only takes geographic coordinates as model inputs, can explain 50% 

to 70% variations for output, in our case, rent per square meter. Our findings suggest both methods 

could be used for predictions while it is difficult to identify which method is superior to the other. 

[Insert Table VIII] 

4.3.3. Decomposition of Kriging Error 

Table IX reports the Kriging Error Decomposition regression results of five districts in our sample. 

The odd columns illustrate the regression results which logarithm of rents per square meter, 

Logunitrent is the independent variable. The even columns use the kriged values calculated by 

Ordinary Kriging models in Section 4.3, LogKriged, as the independent variable. The AICs and BICs 

of even columns are all higher than those of odd columns which indicate that Ordinary Kriging models 

would lead to information loss since they omit important micro-level housing attributes. As shown in 

Table X, we compute the difference of AIC between the two models and relative likelihood from 

equation (20) for five districts. Small relative likelihood ratios (all smaller than 0.001) suggest that the 

even models where the independent variables are LogKriged are unlikely to minimize information as 

the odd models where the independent variables are Logunitrent.  

[Insert Table IX] 

[Insert Table X] 

4.4. AVM Constructions 

4.4.1. OLS-based AVM 
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Figure 9 illustrates the OLS-based AVM. This map shows the rent per square meter of any building in 

five districts of Tokyo. The colors of heatmap indicate the values of rent per square meter, which are 

simulated by baseline OLS regression models in Table III. The data used for predictions is our 

hypothetical data (details of construction are in Section 3.3).  

[Insert Figure 10] 

 

4.4.2. Kriging-based AVM 

Figure 10 illustrates the Kriging-based AVM. This map is the same as the map in Figure 9 except for 

the values of rent per square meter are calculated by Ordinary Kriging method. The difference between 

the calculation processes of Ordinary Kriging and OLS is that only geographic coordinates are selected 

as inputs for Ordinary Kriging model while OLS requires exact the same housing attributes as inputs 

as the models in Table III. Compared with the map in Figure 9, the map in Figure 10 exhibits stronger 

effects of spatial heterogeneity in some of the districts -especially in Koutou district and Shinjuku 

district. However, on the other hand, two methods yield similar heatmaps in Minato district where 

rents per square meter are clustered at relatively high values. Overall, there are no apparent 

discrepancies in terms of general trends between two methods. To illustrate more precisely of our 

AVMs, we show details of Minato district in Figure 12.   

[Insert Figure 11] 

[Insert Figure 12] 

 

5. Conclusion 

By constructing a unique micro-level housing rental dataset from two different datasets, we build two 

different AVMs for five districts in Tokyo based on two different methods and compare the accuracy 

metrics of these two methods. Strong spatial heterogeneities across different districts have been 
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detected from both OLS-based and Kriging-based AVMs.  

We investigate simple hedonic pricing models in rental market of our study areas- five districts in 

Tokyo. Structural variables such as age of the house, number of rooms, whether the house has a parking 

lot and so forth exhibit similar characteristics as previous studies. However, inconsistent with existing 

literatures spatial variables such as latitude, longitude and distance to Tokyo station, show explanatory 

power in determining housing rents in our study areas. In our baseline hedonic regressions, the 

coefficients of latitude and longitude are all significant across different districts. However, if adding 

the distance to Tokyo station to our baseline regression results, the marginal impact on rent per square 

from latitude and longitude would decrease while the distance to Tokyo station is negatively correlated 

with housing rents. These results indicate both geographical coordinates and distance to Tokyo station 

could marginally capture roles of space and spatial variables are of great importance to determine the 

housing rents. 

Furthermore, we conduct Kriging Error Decomposition analysis based on relative likelihood ratios 

to investigate how much information loss would be if using Ordinary Kriging method instead of OLS 

to estimate the housing rents of our test set. Our results indicate that Ordinary Kriging method will 

lead to information loss since this method omits important housing attributes which could possible 

contain rental-determinable information. 
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Tables 

Table I. Summary Statistics for Whole Sample 

This table summarizes the statistics of variables (without locational dummy variables) in our dataset. 

All the variables are in raw form without any transformation. 

Statistic N Mean St. Dev. Min Max 

Unitrent 10,892 3,376.051 757.306 1,556.050 10,873.940 

Floorarea 10,892 33.296 18.314 5.300 266.190 

Room 10,892 1.253 0.553 1 5 

Living 10,892 0.228 0.419 0 1 

Kitchen 10,892 0.851 0.356 0 1 

Storage 10,892 0.015 0.123 0 1 

Dinner 10,892 0.367 0.482 0 1 

ManagementFee 10,892 5,779.604 4,260.972 0 40,000 

Shikikin 10,892 108,725.500 136,599.000 0 3,000,000 

Hosyoukin 10,892 2,576.331 18,583.400 0 460,000 

Reikin 10,892 85,551.590 80,153.490 0 2,200,000 

Totalfloor 10,892 7.136 5.676 2 56 

Floornum 10,892 4.052 3.592 1 50 

Accessibility 10,892 14.389 253.879 1 21,104 

MaterialDummy 10,892 0.895 0.307 0 1 

Age 10,892 18.835 12.016 -0.077 77.137 

Dummypark 10,892 0.367 0.482 0 1 

Dummybikepark 10,892 0.356 0.479 0 1 

Relativefloor 10,892 0.617 0.267 0.054 1.000 

Longitude 10,892 139.729 0.074 139.584 139.845 

Latitude 10,892 35.673 0.030 35.594 35.737 

DisttoTokyo 10,892 7.252 3.918 1.908 16.963 
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Table II. Geographic Representativeness 

This table shows the representativeness of our sample dataset and point dataset where the latter 

contains all the residential buildings within one district. 

District Point Dataset (N) Point Dataset in% Sample (N) Sample in% 

Shinjuku 41123 13.9% 1904 17.5% 

Koutou 39651 13.4% 2110 19.4% 

Minato 18066 6.1% 1513 13.9% 

Sumida 38450 13.0% 1936 17.8% 

Setagaya 159279 53.7% 3429 31.5% 
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Table III. Baseline Hedonic Regression Results 

This table reports the baseline hedonic regression results of five districts. We regress logarithms of rent per square meter, Logunitrent, on Spatial Variables: 

Longitude and Latitude, and Structure Variables: Floorarea, Room, Living, Kitchen, Storage, Dinner, ManagementFee, Shikikin, Hosyoukin, Reikin, 

TotalFloor, RelativeFloor, Accessibility, Age, MaterialDummy, DummyPark, and DummyBikePark. The details of variable constructions are discussed in 

Section 3.2. We report Variance Inflation Factor (VIF) for each variable in our five models. The table shows the coefficients and heteroscedasticity 

consistent standard-errors (in parentheses) obtained from five predictive OLS models. The statistics significance at the 10%, 5%, and 1% levels are 

indicated by *, **, and ***. 𝜓 indicates the variable is in logarithm. 

Logunitrent 

 Shinjuku  Koutou  Minato  Sumida  Setagaya  

 (1)  (2)  (3)  (4)  (5)  

 

Longitude 0.732*** VIF -3.715*** VIF -5.146*** VIF -2.248*** VIF 2.535*** VIF 

 (0.159) 1.134 (0.177) 1.514 (0.381) 1.357 (0.299) 1.837 (0.083) 1.373 

Latitude -3.649*** VIF 0.702*** VIF 5.410*** VIF -3.288*** VIF 0.232** VIF 

 (0.262) 1.193 (0.188) 1.371 (0.357) 1.142 (0.256) 1.884 (0.096) 1.187 

Floorarea𝜓 -0.446*** VIF -0.481*** VIF -0.133*** VIF -0.551*** VIF -0.460*** VIF 

 (0.017) 5.116 (0.014) 6.532 (0.027) 5.845 (0.020) 6.597 (0.012) 6.786 

Room 0.055*** VIF -0.005 VIF 0.092*** VIF 0.035*** VIF 0.030*** VIF 

 (0.010) 2.030 (0.007) 3.160 (0.015) 2.183 (0.010) 2.983 (0.006) 2.708 

Living 0.103*** VIF 0.040*** VIF 0.033* VIF 0.081*** VIF 0.042*** VIF 

 (0.011) 2.759 (0.009) 2.442 (0.020) 5.551 (0.010) 2.361 (0.007) 2.437 
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Kitchen -0.026*** VIF -0.026*** VIF 0.004 VIF 0.001 VIF -0.003 VIF 

 (0.007) 1.278 (0.007) 1.179 (0.010) 1.489 (0.007) 1.137 (0.006) 1.231 

Storage 0.032 VIF 0.080** VIF -0.031 VIF 0.038** VIF 0.011 VIF 

 (0.020) 1.066 (0.033) 1.103 (0.032) 1.103 (0.015) 1.101 (0.013) 1.028 

Dinner 0.060*** VIF 0.052*** VIF -0.040** VIF 0.075*** VIF 0.039*** VIF 

 (0.010) 3.056 (0.009) 3.285 (0.019) 5.636 (0.009) 3.566 (0.008) 3.289 

ManagementFee -0.006 VIF -0.005 VIF -0.045*** VIF -0.024*** VIF 0.005 VIF 

 (0.008) 1.535 (0.007) 1.623 (0.010) 1.111 (0.009) 1.803 (0.007) 1.515 

Shikikin 0.004*** VIF 0.005*** VIF 0.001*** VIF 0.002*** VIF 0.006*** VIF 

 (0.0004) 2.283 (0.001) 2.253 (0.0003) 1.864 (0.0005) 1.927 (0.0004) 1.942 

Hosyoukin 0.003*** VIF 0.002*** VIF -0.003*** VIF -0.0003 VIF 0.005*** VIF 

 (0.001) 1.125 (0.001) 1.156 (0.001) 1.049 (0.001) 1.138 (0.002) 1.060 

Reikin 0.001** VIF 0.003*** VIF -0.0001 VIF 0.003*** VIF 0.004*** VIF 

 (0.001) 1.731 (0.0004) 1.568 (0.001) 1.341 (0.001) 1.546 (0.0004) 1.445 

TotalFloor 0.008*** VIF 0.006*** VIF 0.003*** VIF 0.010*** VIF 0.014*** VIF 

 (0.001) 1.514 (0.001) 1.571 (0.001) 1.570 (0.001) 1.549 (0.001) 1.464 

RelativeFloor 0.046*** VIF 0.029*** VIF 0.064*** VIF 0.050*** VIF 0.025*** VIF 

 (0.010) 1.072 (0.008) 1.072 (0.015) 1.066 (0.009) 1.108 (0.007) 1.096 

Accessibility -0.001 VIF -0.0002*** VIF -0.003*** VIF -0.004*** VIF -0.00001*** VIF 

 (0.001) 1.059 (0.0001) 1.015 (0.001) 1.057 (0.001) 1.086 (0.00000) 1.011 
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Age -0.006*** VIF -0.006*** VIF -0.008*** VIF -0.007*** VIF -0.005*** VIF 

 (0.0003) 1.571 (0.0003) 1.859 (0.0004) 1.318 (0.0003) 1.855 (0.0002) 1.322 

MaterialDummy 0.043*** VIF 0.020 VIF 0.029 VIF 0.035** VIF 0.033*** VIF 

 (0.012) 1.315 (0.018) 1.080 (0.106) 1.032 (0.015) 1.206 (0.005) 1.359 

DummyPark 0.022*** VIF 0.015*** VIF 0.035*** VIF 0.019*** VIF 0.008** VIF 

 (0.006) 1.121 (0.004) 1.066 (0.008) 1.176 (0.004) 1.066 (0.004) 1.176 

DummyBikepark 0.0002 VIF 0.004 VIF -0.0002 VIF 0.011** VIF -0.002 VIF 

 (0.005) 1.044 (0.004) 1.027 (0.008) 1.125 (0.005) 1.065 (0.004) 1.097 

Constant 37.535  503.993***  534.955***  441.436***  -352.795***  

 (26.252)  (22.383)  (53.099)  (37.533)  (13.233)  

           

N 1,507  1,715  1,187  1,576  2,728  

R2 0.688  0.835  0.514  0.806  0.746  

Adjusted R2 0.684  0.833  0.506  0.803  0.744  

Residual Std. 

Error 

0.098 (df = 

1487) 

 
0.079 (df = 1695) 

 0.126 (df = 

1167) 

 0.083 (df = 

1556) 

 0.095 (df = 

2708) 

 

F Statistic 
172.391*** (df 

= 19; 1487) 

 451.624*** (df = 

19; 1695) 

 64.951*** (df 

= 19; 1167) 

 339.914*** (df 

= 19; 1556) 

 417.648*** (df 

= 19; 2708) 
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Table IV. The Signs of Coefficients  

This table shows the empirical signs of coefficients of Longitude and Latitude and hypothetical signs 

of coefficients if our assumption in Section 4.2.1 holds true. The red sign in OLS column means the 

empirical sign of corresponding coefficient is opposite to the hypothetical sign.  

 Shinjuku Koutou Minato Sumida Setagaya 

 Hypo OLS Hypo OLS Hypo OLS Hypo OLS Hypo OLS 

Longitude + + - - + - - - + + 

Latitude - - + + + + - - + + 

 

 

Table V. OLS Results with Distance to Tokyo Station 

This table reports the regression results when adding the distance to Tokyo station, DistToTokyo to 

baseline hedonic regression models as in Table III. Structure Variables are those structure variables 

which are included in baseline hedonic regressions but are not reported here. The table shows the 

coefficients and heteroscedasticity consistent standard-errors (in parentheses) obtained from five 

predictive OLS models. The statistics significance at the 10%, 5%, and 1% levels are indicated by *, 

**, and ***. 

 Logunitrent 

 Shinjuku Koutou Minato Sumida Setagaya 

 (1) (2) (3) (4) (5) 

Longitude -0.269 -1.011* -8.519*** 6.790*** 1.402** 

 (2.116) (0.583) (1.054) (2.483) (0.569) 

Latitude -3.135*** 0.198 0.082 3.879** -0.352 

 (1.117) (0.198) (1.522) (1.969) (0.293) 

DisttoTokyo -0.012 -0.029*** -0.065*** -0.117*** -0.013** 

 (0.026) (0.006) (0.018) (0.032) (0.006) 

Structural 

Variables 
Yes Yes Yes Yes Yes 

Constant 159.154 144.021* 1,196.540*** -1,077.481*** -173.577* 

 (257.490) (78.048) (197.565) (415.846) (89.509) 

N 1,507 1,715 1,187 1,576 2,728 
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R2 0.688 0.837 0.521 0.808 0.746 

Adjusted R2 0.684 0.835 0.513 0.805 0.744 

Residual Std. 

Error 

0.098 (df = 

1486) 

0.079 (df = 

1694) 

0.125 (df = 

1166) 

0.083 (df = 

1555) 

0.095 (df = 

2707) 

F Statistic 
163.698*** (df 

= 20; 1486) 

436.001*** (df 

= 20; 1694) 

63.411*** (df = 

20; 1166) 

326.587*** (df 

= 20; 1555) 

397.491*** 

(df = 20; 2707) 

 

 

Table VI. OLS Results with District-Dummy Variable 

This table reports regression results with district dummy variables. Details of variable construction 

are discussed in Section 3.2. The table shows the coefficients and heteroscedasticity consistent 

standard-errors (in parentheses) obtained from five predictive OLS models. The statistics significance 

at the 10%, 5%, and 1% levels are indicated by *, **, and ***. 𝜓 indicates the variable is in 

logarithm. 

 Logunitrent 

 (1) (2) (3) (4) (5) 

Longitude -0.839*** Yes Yes Yes Yes 

 (0.078)     

Latitude -0.932*** Yes Yes Yes Yes 

 (0.082)     

DisttoTokyo -0.038*** Yes Yes Yes Yes 

 (0.001)     

Floorarea𝜓 -0.385*** Yes Yes Yes Yes 

 (0.007)     

Room 0.027*** Yes Yes Yes Yes 

 (0.003)     

Living 0.062*** Yes Yes Yes Yes 

 (0.005)     

Kitchen -0.020*** Yes Yes Yes Yes 

 (0.004)     

Storage 0.012 Yes Yes Yes Yes 
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 (0.010)     

Dinner 0.020*** Yes Yes Yes Yes 

 (0.004)     

Managementfee -0.008** Yes Yes Yes Yes 

 (0.003)     

Shikikin 0.004*** Yes Yes Yes Yes 

 (0.0001)     

Hosyoukin 0.002*** Yes Yes Yes Yes 

 (0.001)     

Reikin 0.002*** Yes Yes Yes Yes 

 (0.0002)     

TotalFloor 0.004*** Yes Yes Yes Yes 

 (0.0003)     

RelativeFloor 0.031*** Yes Yes Yes Yes 

 (0.005)     

Accessibility -0.00001* Yes Yes Yes Yes 

 (0.00000)     

Age -0.006*** Yes Yes Yes Yes 

 (0.0001)     

MaterialDummy 0.044*** Yes Yes Yes Yes 

 (0.004)     

DummyPark 0.012*** Yes Yes Yes Yes 

 (0.003)     

DummyBikepark -0.001 Yes Yes Yes Yes 

 (0.003)     

DummyShinjuku -0.089*** 0.112*** -0.033*** 0.116***  

 (0.006) (0.008) (0.009) (0.009)  

DummyKoutou -0.205*** -0.004 -0.149***  -0.116*** 

 (0.008) (0.004) (0.013)  (0.009) 
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DummySetagaya -0.056*** 0.145***  0.149*** 0.033*** 

 (0.009) (0.014)  (0.013) (0.009) 

DummySumida -0.201***  -0.145*** 0.004 -0.112*** 

 (0.009)  (0.014) (0.004) (0.008) 

DummyMinato  0.201*** 0.056*** 0.205*** 0.089*** 

  (0.009) (0.009) (0.008) (0.006) 

Constant 160.183*** 159.981*** 160.126*** 159.977*** 160.094*** 

 (11.556) (11.563) (11.552) (11.563) (11.556) 

N 8,713 8,713 8,713 8,713 8,713 

R2 0.741 0.741 0.741 0.741 0.741 

Adjusted R2 0.741 0.741 0.741 0.741 0.741 

Residual Std. Error 

(df = 8688) 
0.112 0.112 0.112 0.112 0.112 

F Statistic (df = 24; 

8688) 
1,037.418*** 1,037.418*** 1,037.418*** 1,037.418*** 1,037.418*** 

 

Table VII. Parameters of Ordinary Kriging Model for Each District 

This table reports parameters, partial sill, sill, range, nugget and nlags for each district. 

District 𝒔̂ − 𝒂̂ (Partial Sill) 𝒔̂ (Sill) 𝒓̂ (Range) 𝒂̂ (Nugget) 𝐤 (nlags) 

Shinjuku 335369.5 392880.8 0.00002 57511.3 490 

Koutou 324831.1 347837.3 0.00004 23006.2 2047 

Minato 471035.0 585621.2 0.00007 114586.2 623 

Sumida 458277.5 462721.8 0.00075 4444.3 109 

Setagaya 243626.4 295918.0 0.00014 52291.6 715 

 

 

 

 



42 

 

Table VIII. Comparisons of Accuracy Metrics for Ordinary Kriging and OLS 

This table reports the accuracy metrics of different methods for each district. OK represents Ordinary 

Kriging and OLS represents Ordinary Least Squared. R-Squared is defined as equation (18) and 

RMSE is defined as equation (19). Results of both test set and training set are reported. 

District Method 
R-Squared 

(Test) 

RMSE 

(Test) 

R-Squared 

(Training) 

RMSE 

(Training) 

Shinjuku 
OK 33.70% 557.39 93.50% 165.07 

OLS 54.70% 379.83 51.94% 353.25 

Koutou 
OK 64.44% 343.57 91.60% 172.39 

OLS 77.73% 250.63 78.50% 249.43 

Minato 
OK 56.55% 565.57 78.56% 363.66 

OLS -65.52% 690.82 -10.60% 574.09 

Sumida 
OK 63.06% 338.85 83.24% 224.44 

OLS 75.79% 249.14 73.36% 253.78 

Setagaya 
OK 52.95% 392.63 85.83% 213.07 

OLS 62.16% 308.12 63.86% 290.42 
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Table IX. Kriging Error Decomposition Regression Results 

This table reports Kriging Error Decomposition Regression results of five districts. We regress true values of logarithm of rent per square meter, Logunitrent, 

and kriged values of rent per square meter, LogKriged, respectively on Spatial Variables and Structural Variables as baseline regressions. Details of variable 

constructions are discussed in Section 3.2. and Section 3.6. The table reports Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

for each model. 

 Logunitrent LogKriged Logunitrent LogKriged Logunitrent LogKriged Logunitrent LogKriged Logunitrent LogKriged 

 Shinjuku Koutou Minato Sumida Setagaya 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Spatial 

Variables 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Structural 

Variables 
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

AIC -707.7 -579.9 -876.7 -636.8 -343 -327.5 -771 -497.8 -1229.2 -844.2 

BIC -624 -496.2 -793.1 -553.3 -263.5 -248 -689.4 -416.2 -1133.5 -748.6 

N 397 397 395 395 326 326 360 360 701 701 

Adjusted R2 0.727 0.276 0.834 0.667 0.429 0.398 0.821 0.624 0.729 0.567 
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Table X. Relative likelihood Ratios for Five Districts 

This table reports AIC, difference of AIC ∆𝑖 and relative likelihood ratio ℒ(𝑔𝑖|𝑥) for each 

district. The number (in parentheses) is indicating the number of model in Table IX.  

District AIC ∆𝒊 ℒ(𝑔𝑖|𝑥) 

Shinjuku 
(1) -707.7 

127.8 1.77×10-28 
(2) -579.9 

Koutou 
(3) -876.7 

239.9 8.06×10-53 
(4) -636.8 

Minato 
(5) -343 

15.5 4.31×10-4 
(6) -327.5 

Sumida 
(7) -771 

273.2 4.74×10-60 
(8) -497.8 

Setagaya 
(9) -1229.2 

385 2.50×10-84 
(10) -844.2 
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Figures 

 

Figure 1. Geographic Plot of Sample Data. 

Notes: The figure shows the geographic plot of sample data in our final dataset. Each point represents 

the geographic location of one observation. The size of each point represents the relative value (higher 

value, larger size) of rent per square meter of this observation. Different color represents different 

district.  

 

 

 



46 

 

 

Figure 2. Theoretical Semi-Variogram (Left) and Co-Variogram (Right) for spherical model. 

Notes: The figure shows the theoretical Semi-Variogram function and Co-Variogram function with 

parameters nugget (a) equals to 5, sill (s) equals to 35, and range (r) equals to 50.  
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Figure 3. Kernel Distributions of rent per square meter, Unitrent, for five districts. 

Notes: The figure shows Kernel Distributions of rent per square meter for five districts. X-axis 

indicates the Kernel Distribution Probability and y-axis indicates the rent per square meter. Different 

color represents different district. 
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Figure 4. Geographic interpretation of baseline regression results. 

Notes: The figure shows the relative position between each district and Tokyo Station. The size of the circle indicates the relative value of rent per square 

meter (larger circle larger Unitrent).  
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Figure 5. Empirical Semi-Variograms for Shinjuku district. 

Notes: The figure shows fitted empirical Semi-Variograms for Shinjuku district. The red line represents 

actual binned semi-variogram, the black line represents fitted theoretical semi-variogram and the 

dashed blue line represents sill.   
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Figure 6. Empirical Semi-Variograms for Koutou district. 

Notes: The figure shows fitted empirical Semi-Variograms for Koutou district. The red line represents 

actual binned semi-variogram, the black line represents fitted theoretical semi-variogram and the 

dashed blue line represents sill.   
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Figure 7. Empirical Semi-Variograms for Minato district. 

Notes: The figure shows fitted empirical Semi-Variograms for Minato district. The red line represents 

actual binned semi-variogram, the black line represents fitted theoretical semi-variogram and the 

dashed blue line represents sill.   
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Figure 8. Empirical Semi-Variograms for Sumida district. 

Notes: The figure shows fitted empirical Semi-Variograms for Sumida district. The red line represents 

actual binned semi-variogram, the black line represents fitted theoretical semi-variogram and the 

dashed blue line represents sill.   
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Figure 9. Empirical Semi-Variograms for Setagaya district. 

Notes: The figure shows fitted empirical Semi-Variograms for Setagaya district. The red line represents 

actual binned semi-variogram, the black line represents fitted theoretical semi-variogram and the 

dashed blue line represents sill.   
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Figure 10. Automated Valuation Model (AVM) based on OLS for five districts in Tokyo. 

Notes: The figure shows geographic plot of our Automated Valuation Model based on OLS method. All the residential buildings in our “point” dataset are 

plotted as color dots on this figure. The red-blue heatmap captures the relative value of rent per square meter for each dot. The value-range of heat map is 

located at the right of the map. X-axis and y-axis represents longitude and latitude respectively.   
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Figure 11. Automated Valuation Model (AVM) based on Ordinary Kriging for five districts in Tokyo. 

Notes: The figure shows geographic plot of our Automated Valuation Model based on Orinary Kriging method. All the residential buildings in our “point” 

dataset are plotted as color dots on this figure. The red-blue heatmap captures the relative value of rent per square meter for each dot. The value-range of heat 

map is located at the right of the map. X-axis and y-axis represents longitude and latitude respectively.  
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Figure 12. Automated Valuation Model for Minato districts based on OLS (Left) and Ordinary Kriging (Right). 

Notes: The figure shows geographic plot of our Automated Valuation Model based on OLS (Left) and Ordinary Kriging (Right). All the residential buildings 

in our “point” dataset are plotted as color dots on this figure. The red-blue heatmap captures the relative value of rent per square meter for each dot. The value-

range of heat map is located at the right of the map. X-axis and y-axis represents longitude and latitude respectively.  

 


