URL-based Phishing Detection using Entropy of Non-Alphanumeric Characters

A Thesis Submitted to the Department of Computer Science and Communications Engineering, the Graduate School of Fundamental Science and Engineering of Waseda University in Partial Fulfillment of the Requirements for the Degree of Master of Engineering

Submission Date: July 22nd, 2019

Eint Sandi Aung (5117FG17-5)
Advisor: Prof. Hayato Yamana
Research guidance: Research on Parallel and Distributed Architecture
ABSTRACT

Cyber phishing is a theft of personal information in which phishers, also known as attackers, lure users to surrender sensitive data such as credentials, credit card and bank account information, financial details, and other behavioral data. The ones who commit such crimes are called ‘Phishers’ or ‘Attackers.’ Phishers act as if they are reliable sources to lure users to gain access/control to their system. Phishing detection is becoming a crucial research area, attracting increased focus as the number of phishing attacks grows, since e-commerce and internet transactions are growing rapidly.

Furthermore, because phishers are innovating various techniques, phishing detection has become a primary concern of developers. Moreover, as long as phishers are innovating their schemes, researchers have no way except to tackle every possible detection technique. Detection mechanisms come along with a vast variety of techniques since no one can be sure which techniques phishers are trying to come up with. Therefore, it is still an interesting yet challenging issue.

We focus on URL (Uniform Resource Locator) -based phishing detection techniques since URL is a significant criterion in preventing phishing attacks without accessing to webpage directly. Hypothesis is that phishers create fake websites with less content information on the webpage as possible – showing only a few words in the webpage. When phishers rarely show content information in a webpage, we cannot retrieve enough features from the webpage by using detection approaches such as content and visual similarity-based. To overcome the limitation of those approaches, we focus on URL-based detection since we can extract features by analyzing URLs only, without accessing to the webpage.

Since previous works extract features of specific special characters, we assume that non-alphanumeric (NAN) characters distribution highly impact phishing URLs. Our contribution is to propose a new feature called entropy of NAN characters and compare with the previously used features, which are from previous researches. To be noted, those previous features are not from only one specific work but are applied on several works. We also emphasize on features engineering because selecting features (NAN characters in our work) affects the most on performance. As it is difficult to gather exactly same datasets used by previous works, we work on our datasets and compare with our contributed feature. We work on two datasets (balanced and imbalanced) and perform feature selection and hyperparameter tuning. We achieved 96% of ROC_AUC with balanced dataset and 89% with imbalanced dataset, which outperforms 87% in balanced and 84% in imbalanced datasets, respectively. Then, we summarize our findings and suggestions for better outcome of phishing detection.
LIST OF CONTENTS

ABSTRACT .................................................................................................................. i
LIST OF CONTENTS ....................................................................................................... ii
LIST OF FIGURES ........................................................................................................ iv
LIST OF TABLES ............................................................................................................ v
CHAPTER 1 ....................................................................................................................... 1
INTRODUCTION ............................................................................................................. 1
1.1. What is Phishing? ..................................................................................................... 1
1.2. Overview of URL-based Phishing Techniques ....................................................... 1
1.3. Problem Statement ................................................................................................. 1
1.4. Motivation ............................................................................................................... 2
1.5. Contribution ............................................................................................................ 2
1.6. Thesis Organization ............................................................................................... 3
CHAPTER 2 ....................................................................................................................... 4
RELATED WORK ............................................................................................................. 4
2.1. Overview of Phishing Detection Architecture ....................................................... 4
2.2. Whitelist-based approach ...................................................................................... 4
2.3. Blacklist-based approach ...................................................................................... 5
2.4. Content-based/Heuristic-based approach .............................................................. 6
2.5. Visual Similarity-based approach ......................................................................... 6
2.6. URL-based approach ............................................................................................. 7
2.7. Other approaches .................................................................................................. 7
CHAPTER 3 ....................................................................................................................... 11
METHODOLOGY .......................................................................................................... 11
3.1. Our URL-based Detection System ....................................................................... 11
3.2. Proposed Feature – Entropy ............................................................................... 11
3.3. Machine Learning ................................................................................................. 12
3.3.1. Supervised Learning ......................................................................................... 13
3.4. Machine Learning Techniques as Building Blocks ............................................. 13
3.4.1. Naïve Bayes ...................................................................................................... 13
3.4.2. Support Vector Machine ................................................................................. 13
3.4.3. Random Forest ............................................................................................... 14
3.5. Feature Selection and Hyperparameter Tuning .................................................... 14
CHAPTER 4 ....................................................................................................................... 16
DATASETS, FEATURE SELECTION AND EXTRACTION ........................................ 16
4.1. Datasets ............................................................................................................. 16
4.1.1. Datasets Nature .............................................................................................. 16
4.2. Validate Active URLs for legitimate sites ......................................................... 16
4.3. Non-Alpha Numeric (NAN) Character Selection ............................................. 16
4.4. Features Description and Extraction .................................................................. 17
4.4.1. Feature Description ......................................................................................... 17
4.4.2. Feature Extraction .......................................................................................... 17
CHAPTER 5 ............................................................................................................... 20
EXPERIMENTAL EVALUATION AND SUMMARY ............................................. 20
5.1. Evaluation Metrics .............................................................................................. 20
5.2. Feature Selection ............................................................................................... 21
5.3. Experiment with Balanced and Imbalanced Datasets ......................................... 21
5.4. Comparison between Previous and Current Evaluations with Hyperparameter
    Tuning ..................................................................................................................... 22
5.5. Comparison between Feature Sets based on Frequency Probability and
    Entropy .................................................................................................................... 25
5.6. Summary and Discussion ................................................................................... 26
CHAPTER 6 ............................................................................................................... 27
CONCLUSIONS ........................................................................................................ 27
ACKNOWLEDGEMENTS ......................................................................................... 28
REFERENCES .......................................................................................................... 29
PUBLICATION .......................................................................................................... 33
APPENDIX ................................................................................................................ 34
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Email spoofing and Fake Website</td>
<td>4</td>
</tr>
<tr>
<td>2.2. Phishing Detection Schemes</td>
<td>4</td>
</tr>
<tr>
<td>2.3. Whitelist-based detection</td>
<td>5</td>
</tr>
<tr>
<td>2.4. Blacklist-based detection</td>
<td>5</td>
</tr>
<tr>
<td>2.5. Content-based detection</td>
<td>6</td>
</tr>
<tr>
<td>2.6. Visual similarity-based detection</td>
<td>7</td>
</tr>
<tr>
<td>3.1. URL-based Phishing</td>
<td>11</td>
</tr>
<tr>
<td>3.2. URL-based Detection System</td>
<td>11</td>
</tr>
<tr>
<td>5.1. Feature Importance Score</td>
<td>21</td>
</tr>
<tr>
<td>5.2. Experimental Evaluation on balanced and imbalanced dataset</td>
<td>23</td>
</tr>
<tr>
<td>A.1. Xml file sample of legitimate dataset</td>
<td>34</td>
</tr>
<tr>
<td>A.2. Csv file sample of phishing dataset</td>
<td>34</td>
</tr>
</tbody>
</table>
# LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Some of the Approaches and its Limitations</td>
<td>7</td>
</tr>
<tr>
<td>2.2. Comparison of Existing URL-based Phishing Detection</td>
<td>9</td>
</tr>
<tr>
<td>4.1. Datasets Nature</td>
<td>16</td>
</tr>
<tr>
<td>4.2. Data Sources</td>
<td>16</td>
</tr>
<tr>
<td>4.3. List of NAN Character</td>
<td>17</td>
</tr>
<tr>
<td>4.4. Feature Description</td>
<td>17</td>
</tr>
<tr>
<td>5.1. Evaluation Results for three Classifiers on balanced and imbalanced datasets using previous and entropy features</td>
<td>22</td>
</tr>
<tr>
<td>5.2. Comparison of with and without entropy</td>
<td>22</td>
</tr>
<tr>
<td>5.3. Comparison between Previous and Current Evaluations after Hyperparameter Tuning</td>
<td>24</td>
</tr>
<tr>
<td>5.4. Comparison between Feature Set1 (Percentage of NAN) and Feature Set2 (Entropy of NAN)</td>
<td>25</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Cyber phishing is no longer an unfamiliar topic since the Internet became an essential daily basis. People can do almost everything staying at home and sitting in front of their PCs – from groceries shopping to health support services. It was reported that the number of internet users significantly increased from nearly 0.15 billion in 1998 to 4.32 billion in 2018, which is a growth of approximately 30 times [1]. This indicates that people strongly depend on internet on daily basis. At the same time, enormous amount of information makes some people allured to steal information to access to a system and committing crimes. To analyze the reason of crimes, phishers commit not only for money, but for fame, acknowledgement or out of curiosity. Thus, phishing detection draw attention from researchers.

1.1. What is Phishing?

Phishing is a cyber threat in which attackers take advantage of users by mimicking legitimate authentic websites in order to steal sensitive information such as passwords and bank statements. Phishing is performed through different mediums: internet, short message service and voice. Their targeted vectors can be email, instant messaging, smishing (short message phishing), vishing (voice phishing) and websites [2]. In our research, phishing refers to web phishing through the Internet. Although phishing can be protected against by: (1) user awareness, and (2) technology-based approaches, the former cannot be completely trusted since it relies on humans—not all of whom are aware of phishing.

1.2. Overview of URL-based Phishing Techniques

URL-based phishing attacks are mainly performed by embedding sensitive words or characters in a link that:
• Mimic similar but misspelled words.
• Contain special characters for redirecting.
• Use shortened URLs.
• Use sensitive keywords which seem reliable.
• Add a malicious file in the link and so on.

1.3. Problem Statement

Anti-Phishing Working Group (APWG) [3] addressed that the total number of unique phishing websites detected is approximately 785,000 in 2018, which is a significant number in the area. They also said that use of web page redirects to hide actual phishing sites to make victims misunderstand as legitimate sites has increased. When potential victims click on the links, they are redirected to phishing sites via several numbers of intermediate sites. Then, phishers request for credential information or install malware in the victims’ computer. “This obfuscation technique is an effort by the phishers to hide the phishing URL – most notably from detection via web server log referrer field monitoring,” said Stefanie Ellis, Anti-Fraud Product Marketing Manager at MarkMonitor [4].

Moreover, according to PhishLabs [5], HTTPS phishing sites became popular in the past two years ago. At the end of 2016, there were less than 5% of phishing sites found on HTTPS infrastructure. Later in Q4 of 2017, it raised up to 33%. Phishers target users’ poor awareness of green lock _, acting as if it is secured. Actually, the
green lock only shows that it uses SSL certificates, but not the security of the site. In addition, phishers mimic websites which are similar to legitimate ones, without providing much information on the content, which are later analyzed by researchers for detection purpose. They hide suspicious information as less as possible to lure users.

To sum up, we can conclude the problem statement as follow:
- Users being tricked by URLs based on users’ lack of knowledge
- Showing information of a webpage’s content as less as possible

1.4. Motivation

Regarding the problem statements mentioned above, we need a detection scheme which 1) alerts users before clicking the link and 2) classifies phishing or not by analyzing URLs, before accessing their content themselves. Thus, we assume that detecting phishing URLs can be effective even in which there is no or less content information on a webpage, compared to other approaches such as content and visual similarity-based. According to [3, 5], we notice that phishers have an increasing interest in URL-based attacks to gather sensitive information. Moreover, URL-based phishing detection can reduce unnecessary access to the phishing page, compared to other approaches such as blacklisted websites used in google safe browsing, content and visual similarity. Thus, although there are a wide range of phishing detection schemes such as blacklist-based detection, whitelist-based detection, content-based detection and visual similarity-based detection, we emphasize URL-based phishing detection in our research. Previous URL-based phishing detection such as [7, 8] have used feature such as URL length, which could be manipulated by phishers and also bias to the dataset when we do not have path information of a URL for legitimate websites – Alexa’s top 1M dataset provide domain names only, and Alexa ranking – free hosting services (000webhost.com) ranked high in Alexa which are also used by phishers. [7] performed feature extraction of specific special characters (such as ‘.’ ‘-’ ‘=’ ‘_’ ‘?’ ‘/’). Thus, we assume that distribution of NAN characters effects on phishing detection and propose entropy calculation of NAN as an important feature.

1.5. Contribution

Because of the problems of Alexa-ranking feature and URL length feature, in our work, we do not deploy these features. According to [7, 8], we assume that participation of NAN characters greatly affects phishing detection because phishers create fake URLs with NAN characters such as:
1) extra unnecessary dots,
2) ‘//’ to redirect to a completely different domain,
3) ‘-‘ in the domain to mimic similar, yet different website
4) unnecessary symbols

However, instead of directly using the frequencies of NAN characters found in URL, we propose a new feature to compute distribution of special characters. Our contribution is to propose a new feature called entropy of non-alphanumeric characters (NAN) for phishing detection only by analyzing their URLs.

Although we know that 12 features in total in our system is not sufficient in the real-world system, our objective is to confirm how effective our proposed entropy of NAN is in the system. We contribute a new feature which is useful in URL-based phishing detection whenever less or no information is available in phishing websites.
1.6. Thesis Organization

Our thesis is organized as introduction in chapter 1 with its problem statement and motivation. Related work including phishing detection architecture in chapter 2, and then in chapter 3, we present our phishing detection system, machine learning methods as building blocks, feature selection method applied in our work. Then, we describe the dataset we work on and feature selection and extraction with detailed explanation in chapter 4 and later, our experimental evaluations and summary on chapter 5. Finally, we conclude our thesis in chapter 6.
CHAPTER 2
RELATED WORK

2.1. Overview of Phishing Detection Architecture

Although there are various medium and vector to be categorized for phishing – internet as medium, email or instant messaging as vector and social engineering as technical approach [2], we can mainly classify the attacks into two according to social engineering perspective [6]: fake websites (Figure. 2.1 (a) – compromised domain) and email spoofing (Figure. 2.1 (b) – via email).

![Figure 2.1. Email Spoofing (a) Fake Website (b)]

We survey phishing detection approaches for better understand how it works. Phishing detection schemes are categorized differently in various papers[9,10,11,12]. Thus, we categorize them in general as shown in Figure 2.2.

![Figure 2.2. Phishing Detection Schemes]

To explain briefly, whitelist and blacklist schemes use its periodically updated database. Whitelist saves login information and alerts users if abnormal login happens while the latter check if current URL is in periodically updated blacklisted data (e.g. Google Safe Browsing). Content based detection comes with several techniques such as text mining (e.g. keyword extraction and search engine), html and JavaScript analysis (e.g. login form or iframe detection) and so on. Meanwhile, visual similarity scheme solely extracts signatures of webpages for detection. URL-based detection consists of mining keywords in URL for target domain, domain-based detection or hybrid detection (keywords extraction from domain and content).

2.2. Whitelist-based approach

Kang et al. [13] proposed an approach based on white-listed sites in 2007. They performed a URL similarity check to distinguish phishing sites from otherwise for local pharming– changing host file in the local computer and a mechanism comparing with Domain Name System (DNS) query to overcome DNS pharming attacks which is DNS record of the URL has been spoofed – i.e. problem for relying on DNS from previous
works. Although whitelist-based methods seem effective for phishing detection, there is a limitation on obtaining all legitimate sites on the web. An abundant list of reliable websites is necessary for a robust system with high accuracy; otherwise, false positive rates increase due to a lack of white-listed websites information, which is practically impossible to collect all legitimate sites in the world.

In 2008, Cao et al. [14] also presented an automated individual whitelist approach (AIWL), in which the system maintains a user’s previous login and warns when unfamiliar access has occurred. They proposed trusted Login User Interfaces (LUIs) features. It stored legitimate website list where users submitted sensitive information. Their system alarms users whenever sensitive information is sent to any webpage that are not in their list. However, AIWL warns an alert whenever any information is sent to any other page in the list although the page is genuine.

![Figure 2.3. Whitelist-based detection](image)

**2.3. Blacklist-based approach**

Web browsers – such as Google Safe Browsing [15] – defend against phishing attacks by updating a list of black-listed sites. It uses user application to verify whether a given URL is blacklisted. Currently, it implements two blacklist services ‘goog-phish-shavar’ (phishing) and ‘googmalware-shavar’ (malware).

In 2008, Sharifi et al. [16] proposed a new blacklist generator technique to solve the common issues of maintaining an up-to-date list.

PhishNet [17] also predicts phishing attacks based on a blacklist scheme. It solves the problem of exact matching. It uses five heuristics – top level domain, IP address, directory structure, query string and brand name – for combinations of blacklists to predict new phishing sites. Although it cannot detect zero hour phishing sites – newly created phishing sites, it achieves 95% true positive rate and 3% false positive (FP) rate over large datasets.

Generally, blacklist approach has lower FP rate than heuristic approaches.

![Figure 2.4. Blacklist-based detection](image)

Since blacklist-based system relies on third-party services (like Google) for searching domain name to compare top results, it results in poor performance. Furthermore, blacklist approaches encounter the major issue of zero hour phishing attacks because newly created phishing sites are not in the list, although services such as Google Safe Browsing use periodically updated blacklist. Google Safe Browsing [15] also fails to detect phishing if blacklisted domain’s IP address is changed. PhishNet[17] has a problem that if a URL is a slightly changed version of blacklisted one, it remains undetected.
2.4. Content-based/Heuristic-based approach

SpoofGuard [18] is a browser plug-in for Internet Explorer (IE) using a set of heuristics for anomalies detection in a webpage. It checks if the given URL is similar to whitelisted URLs and also detects if a hidden attribute – text attribute is different from actual one, is present. It cannot detect if URLs are not defined properly according to its rules.

PhishGuard [19] – also a browser plug-in – performs detection based on HTTP authentication. It sends same user ID, but different random passwords. If the response is HTTP 200, it detects as phishing. PhishGuard [19] leads to credential theft if the websites reply unauthorized.

Zhang et al. [20] presented a novel approach, so-called CANTINA in 2007. Their work is based on Term Frequency – Inverse Document Frequency (TF-IDF) information retrieval algorithm used to detect phishing websites. CANTINA alone resulted in a high false positive rate due to limitations on the number of search engine results. It caught 97% phishing sites with 6% false positive rates, which is not optimal. Thus, they used several heuristics to reduce the false positive rate and improve accuracy. Their approach achieved a better outcome compared to popular anti-phishing toolbars, achieving 90% of phishing sites detected with only 1% false positive rate.

In 2011, Xiang et al. [21] further improved CANTINA, calling it CANTINA+, which is regarded as the most comprehensive feature-rich approach in content-based phishing detection. It achieved a better 0.4% false positive rate with 10% training phish and over 92% true positive rate on unique testing phish.

Since both CANTINA and CANTINA use search engines and third-party services, DNS compromising became a challenging threat.

Moghimi et al. [22] in 2016 proposed a rule-based method to detect phishing internet banking by extracting two feature sets from the content of webpage; page resource access protocol feature set and page resource identity feature set. They used approximate string matching algorithms to determine the relationship between the content and the URL of a webpage. They achieved accuracy of 99.14% TP and 0.86% FN. However, their system completely depends on the webpage content. If phishers use efforts and redesign the page, then it will lead to high FP rate. Moreover, their features are extracted by tracing DOM. Thus, if phishers use flash media or image of legitimate webpage instead, they cannot classify correctly.

Similar works can be found in [23-25].

![Content-based](image)

**Figure 2.5. Content-based detection**

2.5. Visual Similarity-based approach

Wenyin et al. [26] proposed a simple visual-similarity-based approach in 2005. Their system performed phishing detection on three levels of similarity matrices; (i) block level similarity, (ii) layout-similarity and (iii) overall-style similarity. However, the most representative work on visual similarity was later presented by Fu et al. [27] in 2006 using the Earth Mover Distance (EMD). EMD was used to calculate the signatures of two images for visual similarity. Their method performed well in accuracy with 89% true positive and 0.71% false positive rates. The significant workload
required to process two images has a performance drawback compared to other approaches.

Chen et al. [28] introduced a heuristic anti-phishing system to model perceptual similarity. They employed a logistic regression algorithm for normalizing page content features. Although the proposed method achieved 100% true positive rate, it had 0.74% false positive rate, which is higher than [27]. There are many similar works based on visual similarity including [29-39].

![Visual Similarity-based detection](image)

**Figure 2.6. Visual similarity-based detection**

### 2.6. URL-based approach

Aburrous et al. [40] proposed an intelligent phishing detection system for e-banking using fuzzy data mining in 2010. The experiment was performed based on fuzzy logic with data mining algorithms. They showed how effective URL-based approaches are for phishing detection.

Yuan et al. [8] in 2018 proposed to extract features from URLs and webpage links. Their work is based on hybrid approach (consist of both URL-based features and content-based features). However, they performed statistical (such as mean, median between features) based on URLs along with lexical features (such as title and textual content). They achieved 98.3% of TP and 2.6% of FP, however, the datasets are relatively small i.e. 3305 legitimate and 2892 phishing websites are used. Furthermore, they used URL length feature and Alexa ranking feature, in which URL length feature can be manipulated by phishers and Alexa ranking feature ranks free hosting domain such as 000webhost.com, which are commonly used by phishers.

In general, although URL-based schemes perform well without knowing content information of webpage, they highly depend on feature extraction. Furthermore, performance can vary depending on which features we apply. Thus, selecting features matters in URL-based detection.

Overall, URL-based methods perform faster than any other approaches, including content and visual similarity-based approaches. More importantly, they work well on zero hour phishing attacks, which are becoming a major concern in modern anti-phishing society. In upcoming sections, we further discuss details of URL-based detection.

### 2.7. Other approaches

A variety of alternative techniques are used by researchers in phishing detection. Such techniques include heuristic [41], hybrid [42], machine learning [43], DNS-based and others [44]. Additionally, several surveys regarding different schemes are performed by researchers [45-46].

We listed some of the phishing detection approaches and limitations in Table 2.1.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Solution</th>
<th>Pros</th>
<th>Limitation/Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>WhiteList (AILW)[14]</td>
<td>Maintain own individual whitelist</td>
<td>Perform well on detection (LUI authentication) by storing entire LUI</td>
<td>Warn whenever any information is sent to any other trusted page, that are not in the whitelist since AILW maintains previous successful LUI of websites</td>
</tr>
</tbody>
</table>
| Login User Interface (LUI) not in the whitelist is submitted. | information rather than only URL.  
- Efficiently defend pharming attacks by alerting users when legitimate IP address is maliciously changed (Anti-Pharming, which cannot be detected by SpoofGuard [18]) | Difficult to defend against local machine Trojan Horse and viruses since whole AIWL is installed in local PC |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BlackList (google safe browsing) [15]</td>
<td>Block if URL is in blacklist</td>
<td>Cannot detect zero-day attack and when IP is changed</td>
</tr>
<tr>
<td>Content/Heuristic (PhishGuard)[19]</td>
<td>Identify phishing website by submitting random credentials in a login process before submitting actual credentials.</td>
<td>Can detect phishing websites with two possibilities: 1) Always respond with authentication failure, 2) Always respond with authentication access, based on the fact that phishing sites only store the credentials for future use and do not verify them.</td>
</tr>
<tr>
<td>Content/Heuristic (PhishGuard)[19]</td>
<td>Can detect phishing websites with two possibilities: 1) Always respond with authentication failure, 2) Always respond with authentication access, based on the fact that phishing sites only store the credentials for future use and do not verify them.</td>
<td>Credential theft if unauthorized access is replied in case of getting http 401 response in submission of correct credentials after several 401 responses. E.g. http 401 have two meanings: 1) Wrong password error, 2) Website indicates/alerts failed authentication in default.</td>
</tr>
<tr>
<td>Visual Similarity [35]</td>
<td>Detect phishing by finding similarities between phishing and legitimate websites based on text attributes, hidden image and overall visual appearance</td>
<td>Cannot distinguish if text is replaced with image of same appearance</td>
</tr>
<tr>
<td>Visual Similarity [35]</td>
<td>Integrate visual similarity detection with open source tool AntiPhish [47] to overcome the problem of reuse of legitimate credentials warns as suspicious in [47]</td>
<td>Alexa rank feature gives phishing domain in high rank (e.g. 000webhost.com)</td>
</tr>
</tbody>
</table>
| URL [8] | Statistical [mean, median etc.] and lexical [title, text content] features are used | Work regardless of webpages in different languages.  
- Work well on zero-hour phishing attack |
<table>
<thead>
<tr>
<th>PAPER</th>
<th>PERFORMANCE</th>
<th>DATASET</th>
<th>DATASET SOURCE</th>
<th>DATASET SIZE</th>
<th>DATASET TYPE</th>
<th>URL FEATURES</th>
<th>ALGORITHMS</th>
<th>YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>[48]</td>
<td></td>
<td></td>
<td>VIRUSTOTAL</td>
<td>16M</td>
<td>IMBALANCED</td>
<td>PRIMARY DOMAIN FEATURE, PATH FEATURE, FILE EXTENSION FEATURE (*3)</td>
<td>CNN</td>
<td>2017</td>
</tr>
<tr>
<td>[49]</td>
<td>99.09</td>
<td></td>
<td>ALEXA+ PAYMENT</td>
<td>1600+ 66+</td>
<td>1528+ 613</td>
<td>NO. OF DOTS, SPECIAL SYMBOLS, URL LENGTH, SPECIAL WORDS, POSITION OF TLD, HTTP COUNT, BRAND NAME, DATA URI (*8)</td>
<td>RF</td>
<td>2017</td>
</tr>
<tr>
<td>[50]</td>
<td>98.76</td>
<td></td>
<td>COMMON CRAWL</td>
<td>1M</td>
<td>BALANCED</td>
<td>PATH LENGTH, URL ENTROPY, LENGTH RATIO, '@' AND '.' COUNT, PUNCTUATION COUNT, TLDS COUNT, IP ADDRESS, SUSPICIOUS WORDS COUNT, EUCLIDEAN DISTANCE, KOLMOGOROV-SMIRNOV STATISTIC (*10)</td>
<td>RF</td>
<td>2017</td>
</tr>
<tr>
<td>[51]</td>
<td>95.80</td>
<td></td>
<td>ALEXA+ SEARCH ENGINE</td>
<td>500+ 500</td>
<td>BALANCED</td>
<td>URL SIZE, NO. OF HYPHENS, NO. OF DOTS, NO. OF NUMERIC CHARACTERS, IP ADDRESS, SIMILARITY INDEX (LEVENSHTEIN, JAROWINKLER, NORMALIZED LEVENSHTEIN, LONGEST COMMON SUBSEQUENCE, QGRAM, HAMMING) (*6)</td>
<td>NB BAYES SVM</td>
<td>2018</td>
</tr>
<tr>
<td>[52]</td>
<td>95.00</td>
<td></td>
<td>PHISHTANK</td>
<td>16516+ 37,667</td>
<td>SLIGHTLY IMBALANCED</td>
<td>IP ADDRESS, REDIRECTION OF PAGE USING &quot;<del>&quot;, ADDING PREFIX OR SUFFIX SEPARATED BY &quot;</del>&quot;, SUBDOMAIN AND MULTISUBDOMAIN, URLS HAVING @ SYMBOL (*6)</td>
<td>IG RANKER METHOD</td>
<td>2018</td>
</tr>
<tr>
<td>[53]</td>
<td>99.70</td>
<td>0.40</td>
<td>DIGG58.COM+ GITHUB</td>
<td>16800+ 17572+ 9408+ 82101</td>
<td>IMBALANCED</td>
<td>NO. USAGE OF DOMAIN NAME, URL LENGTH, DOMAIN SEPARATED BY &quot;~&quot;, MULTIPLE SUBDOMAINS, USAGE OF &quot;@&quot; SYMBOL</td>
<td>RF MLP BSMOTE2 RMR ADASYN</td>
<td>2018</td>
</tr>
<tr>
<td>[54]</td>
<td>70.10-EBAY 71.01-PAYPAL</td>
<td></td>
<td>EBAY+ PAYPAL+ BANK OF AMERICA + SORIO ET AL.</td>
<td>8529+ 9690+ 4610+ 6562</td>
<td>IMBALANCED</td>
<td>NO. USAGE OF DOMAIN NAME, URL LENGTH, DOMAIN SEPARATED BY &quot;~&quot;, MULTIPLE SUBDOMAINS, USAGE OF &quot;@&quot; SYMBOL</td>
<td>SVM BSMOTE2 ADASYN</td>
<td>2018</td>
</tr>
<tr>
<td>DOI</td>
<td>Similicity</td>
<td>No. of features</td>
<td>Dataset</td>
<td>Features</td>
<td>Methodology</td>
<td>Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.10-BOA 97.65-SORIO</td>
<td>ET AL.</td>
<td>NO. OF TLD IN THE PATH, NO. OF SUSPICIOUS WORDS, NO. OF PUNCTUATION SYMBOLS USED, DIGITS IN DOMAIN, ENTROPY, KULLBACK-LEIBLER DIVERGENCE, NO. OF &quot;-&quot; IN PATH, VOWEL/CONSONANT RATIO, DIGIT/LETTER RATIO, USAGE OF BRAND NAMES, LONG HOSTNAMES, SHORT HOSTNAMES, NO. OF &quot;:&quot; IN HOSTNAME (*18)</td>
<td>70.10</td>
<td>SEARCH ENGINE+ COMMON CRAWL+ TWITTER STREAM API</td>
<td>PHISHTANK</td>
<td>456300</td>
<td>FEATURES FROM [11][48]</td>
<td>ANN LSTM</td>
</tr>
<tr>
<td>55</td>
<td>96.89</td>
<td></td>
<td>[55]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>99.44</td>
<td></td>
<td>[7]</td>
<td>ALEXA</td>
<td>PHISHTANK + MALWARE DOMAIN LIST+ SPAM DOMAIN LIST JWSPAMSPY</td>
<td>26041 26041</td>
<td>BALANCED 117 STATIC AND DYNAMIC FEATURES</td>
<td>J48 SIMPLE CART RF RT ADTREE REPTREE MAJORITY VOTING</td>
</tr>
<tr>
<td>8</td>
<td>97.70 98.30 2.60</td>
<td></td>
<td>[8]</td>
<td>ALEXA+ NETWORK SECURITY CHALLENGE</td>
<td>PHISHTANK</td>
<td>3305 2892</td>
<td>IP ADDRESS, SUSPICIOUS CHARACTERS, NETWORK PROTOCOL, ALEXA RANKING, LENGTH OF ENTIRE URL, LENGTH OF HOSTNAME, LENGTH OF MAIN DOMAIN NAME, NO. OF DOTS IN HOSTNAME, NO. OF DOTS IN URL PATH, URL TOKEN COUNT, HOSTNAME TOKEN COUNT, SEARCH ENGINE RESULT (*12)</td>
<td>KNN LR RF DT GBDT XGBST DF</td>
</tr>
</tbody>
</table>
CHAPTER 3
METHODDOLOGY

In this section, we first present overview of URL-based detection system in section 3.1 and then describe our proposed feature – entropy for Non-Alpha Numeric (NAN) characters in section 3.2. Then, we mention about binary classification for two classes of legitimate and phishing in our work in section 3.3 and the machine learning techniques which we use as building blocks in 3.4. We conclude this section with feature engineering and hyperparameter tuning that are used in preprocessing stage and classification stage.

3.1. Our URL-based Detection System

![Feature Extraction Diagram]

3.2. Proposed Feature – Entropy

We know that in URL-based detection, performance greatly depends on the types of features and the number of features because we can access URLs alone in detection. We use 12 features in total, in which 10 out of 12 are previously used features in various
papers called “old features” and 2 of them are our new applied features called “new features”. The reason of choosing the features is that accessing to the webpage is not required to perform feature extraction. However, our objective is to confirm how effective our entropy feature of NAN is. The key idea for our contribution of computing entropy on NAN is to find out how they are distributed on each URL. This is because previous works [7, 8] extract frequencies of specific special characters such as “-”, “/”, “.”, “_” (NAN characters in our work) in each URL, and our hypothesis is that the number of times phishers use special characters are greater than that of times legitimate websites use.

Thus, instead of measuring frequencies of specific special characters and representing as several features, we compute entropy to measure the frequentist probability distribution between phishing and legitimate websites and represent as single feature. For example: instead of measuring Number of “.” as a feature $F1$, Number of “-” as feature $F2$, Number of “@” as $F3$ and representing a vector for a URL as $[F1,F2,F3]$, we compute entropy of NAN characters as feature $F1$ representing the vector as $[F1]$ where $F1=\text{entropy}(\text{frequentist probability distribution of NAN characters})$. Since the presence of special characters in phishing and legitimate websites are different, we assume that measuring their distribution results a precise value for a better classification. We use entropy because it is a measure of disorder (as well as a measure of purity) and it is computed based on frequentist probability distribution. High level of disorder means low level of purity – if probabilities between special characters are not much different (i.e. 4/7 and 3/7), it has high entropy or low level of purity. Otherwise, low entropy or high purity.

We define entropy of NAN characters as follows:

$$\text{Entropy} = -\sum_{i \in T} (P_i \log P_i)$$ (3.1)

where, $i$ = the $i^{th}$ NAN character in T i.e., $T(i)$
$T =$ {list of NAN characters}
$P_i =$ the frequentist probability of the $i^{th}$ NAN character

To be noted, we use logarithmic base 2 in calculation.

A high entropy is considered a high level of disorder (i.e. low level of purity). For example: Assume we have 5 different NAN characters {“-”, “.”, “_”, “@”, “&”} whose appearance probabilities are same as 0.2, then we have $-\sum_{i=1}^{5}(0.2\log 0.2) = (-2.321928)$. Note: Entropy is generally measured between 0 and 1, however, depending on the number of elements in dataset, entropy can be greater than 1. But, it means the same.

We consider that NAN characters play a huge impact on classification of phishing detection. Thus, we use entropy to find out how each NAN characters are equally distributed on each URL after feature selection of those characters are performed. Entropy feature is applied after important features of NAN characters are selected. We consider probability distribution of NAN characters found in each URL, not distribution over entire datasets.

### 3.3. Machine Learning

Machine Learning is an automated learning in which we make computers process a program itself from past knowledge available without the need of external help. It learns the past experience by itself and converts it to knowledge. In machine learning, input is the training data while output is the knowledge it learned from the previous experience. We need machine learning when the tasks we want to perform are complex
and we need a well-fitted program that adapts to the input which varies in time. We can categorize machine learning into supervised and unsupervised learning in general although it has other categories such as semi-supervised and reinforcement learning.

3.3.1. Supervised Learning

Supervised learning is a learning which already has a ground truth to check if a result is correctly predicted. In supervised learning, each training data has its label (i.e. ground truth/class) and all of them are fully labelled. Supervised learning can solve two problems, which are classification and regression. Regression is used for problems in which output values are numerical or continuous, for example, stock price prediction. However, classification is applied for prediction in which output values are categorical or discrete, for example, spam detection. In phishing detection area, we apply classification to analyze if the URL vector belongs to phishing or legitimate and output a discrete result. In our case, we apply binary classification, phishing (-1) and legitimate(1).

3.3.1.1. Binary Classification

Binary classification is also a type of supervised learning. It identifies a given data into one of two classes. Binary classification is commonly applied in problems such as whether a patient has a certain disease, or if a student passes exam. In our research, we apply binary classification since we only consider two labels for the input URL: phishing and legitimate. Some of the commonly used methods in binary classification are Logistic Regression, random forest (RF), Bayesian (which can be naïve bayes NB or gaussian naïve bayes GNB, support vector machine (SVM), Neural Networks and Decision Trees.

3.4. Machine Learning Techniques as Building Blocks

We first apply three algorithms such as NB, SVM and RF in our research to find out which algorithm fits well. To be noted that we use machine learning techniques as building blocks. We listed them as follows.

3.4.1. Naïve Bayes

Naïve Bayes (NB) is a simple yet effective classifier used in numerous applications. In NB classifier in our case, we define conditional probability of our feature vector $P(x|y)$ as follows:

$$P(y = -1|x) = \frac{P(x|y=-1)}{P(x|y=-1)+P(x|y=1)}$$ (3.2)

Where, $x$ = a feature vector
$y \in \{1,-1\}$ = class label of either a phishing(-1) or legitimate website(1)
$P (x|y)$ = the conditional probability of a feature vector given its label.

3.4.2. Support Vector Machine

Support Vector Machine (SVM) is a discriminative classifier defined by the optimal separating hyperplane between labels. SVM outputs an optimal hyperplane by dividing a line between class labels in two dimensional space. Here, since we don’t have linearly separable training data in the real-world, kernel trick is necessary. It maps non-linearly separable data into higher dimensional space, such that, an optimal hyperplane can be found to separate samples. In our work, we deploy SVM classifier from sklearn by applying our extracted feature vectors with respected class labels (phishing -1 and legitimate 1).
3.4.3. Random Forest

Random forests (RF) is built with random attribute selection using bagging. RF employ a divide and conquer approach (ensemble mechanism) for improving performance. In RF, the mechanism combines various random subsets of trees. The overall result is calculated based on the average, or weighted average, of the individual results. RF improves the problem of overfitting of the decision trees. We use RF not only for classification with hyperparameter tuning but also for feature selection.

3.5. Feature Selection and Hyperparameter Tuning

In the feature engineering field of phishing detection, researchers apply several features depending on their detection techniques. As our research focuses on URL solely, it is crucial to decide which features are applied.

3.5.1. Feature Selection

Irrelevant or partially relevant features may bring negative effect on performance of a model. The data features which are used to train machine learning models have a great influence on the performance. Feature selection is the very first and most important step of model designing. Feature selection can reduce overfitting and improve accuracy. Thus, we consider feature selection is essential before applying our entropy contribution. As for our case, we assume feature selection as identifying negatively affected NAN characters on the dataset and removing them before applying entropy of NAN as a feature. Thus, we perform selection in order to drop unnecessary NAN characters, which have less or no contribution over model’s performance.

3.5.1.1. Feature Importance

We perform feature selection from feature importance scores among 21 NAN characters, in which our feature vector contains frequencies of each NAN character in a URL with its class label. We get feature importance scores for each feature from feature importance property of RF model. Since feature importance is an inbuilt class among decision tree based classifiers, we use RF Classifier to extract the top 10 NAN characters from the dataset. The higher the score is, the more important or relevant the feature is towards the output.

3.5.2. Hyperparameter Tuning with Random Forest

Grid Search takes in as many hyperparameters as we want. However, we are considering n_estimators, bootstrap, cv and criterion. It tries possible combination of the hyperparameters with cross-validation we apply. It is a good way to determine the best hyperparameters values to use although it is time consuming. Hyperparameter is a parameter of the model which is predefined before starting the learning process. Although different models have different hyperparameters set, we use RF classifier for hyperparameter tuning.

- **n_estimators**: It specifies the number of trees in the forest of the model. The default value for this parameter is 100 in version 0.22. 100 different decision trees will be constructed in RF. However, we set n_estimators in range from 100 to 200 with increase of 10 in each time, and 300 to 700 with increase of 100 in each time.

- **bootstrap**: we specify whether bootstrap samples are used when building trees. It has True and False values.

- **criterion**: It is a function to measure the quality of a split. For Gini impurity, ‘gini’ criterion and Information Gain ‘entropy’ are used.
cross-validation (CV) : We apply K-Fold cross-validation which is the most common method. We set 10 folds CV in our tuning.
CHAPTER 4
DATASETS, FEATURE SELECTION AND EXTRACTION

In our work, we discuss about the preprocessing of Non-alphanumeric (NAN) features. We also work on both balanced and imbalanced dataset. Here, balanced dataset means for which class distribution are equal and imbalanced for inequal class distribution. To be noted that we consider two classes; phishing and legitimate. Our hypothesis in this work is that the number of phishing data cannot be compared to that of legitimate websites in the real world, and we cannot guarantee the same effect on classification of phishing with balanced and imbalanced dataset. In this section, we mention about datasets in section 4.1, and preprocessing and NAN selection in 4.2 and 4.3. In the last section of chapter 4, we describe feature descriptions and extractions in details.

4.1. Datasets

In our system, we collect phishing data from PhishTank [57] and legitimate data from DMOZ [58] (aka Curl). We use two datasets, which are balanced and imbalanced on RF, to find out the best-fitted algorithm among SVM, Gaussian NB and RF without adjusting anything. Then, we apply the two datasets along with hyperparameter tuning with RF.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Legitimate</td>
<td>Phishing</td>
</tr>
<tr>
<td>D1</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>D2</td>
<td>95,754</td>
<td>10,473</td>
</tr>
</tbody>
</table>

We collected phishing data from April 6th to April 8th 2019. For imbalanced dataset, the ratio of the number of legitimate sites to that of phishing sites is nearly 9:1. We perform our experiments on different datasets (balanced and imbalanced) to verify whether the performance of the proposed feature depends on the dataset size. Our idea is that in the real-world, we cannot expect that the number of legitimate sites and that of phishing sites are same. Thus, we also use imbalanced data to verify whether our proposed entropy still works on class imbalanced data. We illustrate the nature of our datasets in the Appendix.

4.2. Validate Active URLs for legitimate sites

Active check: We collect only active legitimate datasets. We check if they are still valid. We assume link is valid if we get HTTP response from requested link. We perform validation to ensure that the datasets we work on are up-to-date. As for phishing, we apply latest updated URLs as possible.

4.3. Non-Alpha Numeric (NAN) Character Selection

NAN character selection: We perform feature selection with its importance according to their feature importance. We perform the selection for two times, one for balanced dataset D1 and other for imbalanced dataset D2, because later, we compare experimental evaluation in both D1 and D2. In both selections, we split the dataset to 70% train and 30% test then perform the feature selections with training datasets, D1-
train for balanced and D2-train for imbalanced, respectively. Our hypothesis is that we do not know what kind of characters phishers are going to use and we do not want to define them randomly. Thus, it is better to use NAN characters selection before we apply entropy calculations for phishing detection.

<table>
<thead>
<tr>
<th>NAN CHARACTER</th>
<th>SYMBOL</th>
<th>NAN CHARACTER</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASH</td>
<td>#</td>
<td>PERCENT</td>
<td>%</td>
</tr>
<tr>
<td>DASH</td>
<td>-</td>
<td>UNDERSCORE</td>
<td>_</td>
</tr>
<tr>
<td>DOLLAR SIGN</td>
<td>$</td>
<td>QUESTION</td>
<td>?</td>
</tr>
<tr>
<td>ASTERISK SIGN</td>
<td>*</td>
<td>COMMA</td>
<td>,</td>
</tr>
<tr>
<td>LEFT PARENTHESIS</td>
<td>(,{</td>
<td>EQUAL</td>
<td>=</td>
</tr>
<tr>
<td>RIGHT PARENTHESIS</td>
<td>),}</td>
<td>AMPERSAND</td>
<td>&amp;</td>
</tr>
<tr>
<td>SEMICOLON</td>
<td>;</td>
<td>TIDE</td>
<td>~</td>
</tr>
<tr>
<td>COLON</td>
<td>:</td>
<td>PERIOD</td>
<td>.</td>
</tr>
<tr>
<td>APOSTROPHE</td>
<td>*</td>
<td>PLUS</td>
<td>+</td>
</tr>
<tr>
<td>SLASH</td>
<td>/</td>
<td>AT SIGN</td>
<td>@</td>
</tr>
<tr>
<td>EXCLAMATION</td>
<td>!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 4.4. Features Description and Extraction

We extract feature vectors in order to apply classification. Features can be binary or nonbinary values. We describe previously proposed features by various papers as “old features”, otherwise, “new features” in section 4.4.2. Previously used features mean the features applied by previous papers, not our proposed features. We listed feature description in section 4.4.1 and extractions in section 4.4.2.

#### 4.4.1. Feature Description

We consider 12 different features in our work described as follows (Table 4.4).

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>FEATURE NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>IP ADDRESS</td>
<td>CHECK IP ADDRESS IN DOMAIN[53,7,8,22]</td>
</tr>
<tr>
<td>F2</td>
<td>EXE</td>
<td>CHECK EXE FILE IN URL[7]</td>
</tr>
<tr>
<td>F3</td>
<td>SENSITIVE WORDS</td>
<td>CHECK SENSITIVE WORDS IN URL[53,7]</td>
</tr>
<tr>
<td>F4</td>
<td>// REDIRECT</td>
<td>CHECK // IN URL DOMAIN AND PATH[59]</td>
</tr>
<tr>
<td>F5</td>
<td>INTERNAL LINK</td>
<td>CHECK INTERNAL LINK (WWW/HTTP) IN URL DOMAIN AND PATH[7]</td>
</tr>
<tr>
<td>F6</td>
<td>AGE OF DOMAIN</td>
<td>CHECK DOMAIN AGE (~12 MONTHS)[7]</td>
</tr>
<tr>
<td>F7</td>
<td>PORT NUMBER</td>
<td>CHECK PORT NUMBER[8]</td>
</tr>
<tr>
<td>F8</td>
<td>- sign</td>
<td>COUNT NUMBER OF '-' SIGN IN URL[7,8]</td>
</tr>
<tr>
<td>F9</td>
<td>@ sign</td>
<td>COUNT NUMBER OF '@' SIGN IN URL[7,8]</td>
</tr>
<tr>
<td>F10</td>
<td>. sign</td>
<td>COUNT NUMBER OF '.' SIGN IN URL[7,8]</td>
</tr>
<tr>
<td>F11</td>
<td>ENTROPY</td>
<td>CALCULATE ENTROPY OF NAN CHARACTERS</td>
</tr>
<tr>
<td>F12</td>
<td>FREE HOST</td>
<td>CHECK DOMAIN USING FREE HOST SERVICES</td>
</tr>
</tbody>
</table>

#### 4.4.2. Feature Extraction

We extract features according to the following rules. We split features into two categories; old features and new features.

##### 4.4.2.1. Old Features

**F1 – IP address (binary):** check if URL contains an IP address. Return -1 if found, otherwise, return 1. Our hypothesis is that phishers use IP address instead of domain name to direct users to a phishing page to confuse users since they do not know where
the current link with IP address belongs to when they click it. (for example, http://67.205.147.248/ofit/index.php?produto=722415036).

**F2 – exe (binary):** check if URL contains exe file. Return -1 if found, otherwise, return 1. Hypothesis is that phishers use exe files to run malware on background process.

**F3 – sensitive word (binary):** check if URL contains sensitive words[50] such as “confirm”, “account”, “banking”, “secure”, “login”, “signin” etc. Return -1 if found, otherwise, return 1. Hypothesis is that most of the phishers use those keywords to lure victims as if the site is legitimate.

**F4 – // redirect (binary):** check if a path of URL contains “//” to redirect users to phishing page. Return -1 if found, otherwise, return 1. Hypothesis is that “//” is mainly used for redirection by ignoring the left side of URL. (for example, http://redirect.company.com/http://externalsite.com/page)

**F5 – internal link (binary):** check if a path of URL contains another link. Return -1 if found, otherwise, return 1. Hypothesis is that phishers add internal URL in a main URL. (for example,http://www.linkebuy.com.br/linkebuy/parceiro?protocol=http&url=www.google.com)

**F6 – age of domain (binary):** check if the age of domain is less than 12 months. We check ‘whois’ property of the domain and get the creation date of the domain if we can successfully access to that domain. We check the creation date of the domain is less than 12 months of the current accessed date. Return -1 if true, otherwise 1. Hypothesis is that phishing links do not exist for a long time and phishers mostly use newly created links.

**F7 – port number (nonbinary):** check which port number is used. If it is 443 (HTTPS), then return 1. If 80 (HTTP), then 0, otherwise -1. Hypothesis is that previously phishers rarely use HTTPS. However, in 2017 PhishLab report[5], they started using HTTPS. Thus, we differentiate HTTPS with others.

**F8 – ‘-‘ dash count (nonbinary):** count frequencies of ‘-‘ sign in a URL. Return frequencies of ‘-‘ in each URL. Hypothesis is that phishers mimic as legitimate websites by adding ‘-‘ in URL.

**F9 – ‘@’ at count (nonbinary):** count frequencies of ‘@’ sign in a URL. Return frequencies of ‘@’ in each URL. Hypothesis is that when we analyze our phishing datasets, phishers more often use ‘@’ in URL, especially in URL query value than legitimate websites. (for example, http://shunmas.com/sj/index.php?email=2@2.com).

**F10 – ‘.’ Dot count (nonbinary):** count frequencies of ‘.’ Sign in a URL. Return frequencies of ‘.’ in each URL. Hypothesis is that phishers either use more sub domains than legitimate websites, or unnecessary ‘.’ in URL path. (for example, https://www.ssproduction.com.pk/pages/verify.php?ga=2.38170595.17086121.1551095253-653443608.1551095253&mail=laurent@tacer.biz.).

### 4.4.2.2. New Features

**F11 – entropy of NAN characters (nonbinary):** Based on NAN character selection, we perform entropy computation. It is calculated per each URL. Hypothesis is that NAN characters are crucial in phishing detection since phishers use them to generate new links. Moreover, we use entropy to know how those NAN characters are distributed over each URL link.

**F12 – free host (binary):** check if URL uses free hosting domain (for example: 000webhost.com is mostly found in our phishing datasets). We surveyed manually about free hosting domain present in our phishing datasets and found several phishing domains with 000webhostapp.com. Any user can create a website with a domain name of 000webhostapp.com after signing up at free hosting service 000webhost.com. We
use free hosting services surveyed in [60] which are used by phishers, in 2012. Although it is not updated anymore, 000webhost is still popular and currently used among phishers. Hypothesis is that phishers mainly use free hosting URLs. Hosting service, such as 000webhost, ranks high in Alexa.com, however, they are mostly used by phishers. Thus, we target URLs from free hosting. Return -1 if true, otherwise, return 1.
CHAPTER 5
EXPERIMENTAL EVALUATION AND SUMMARY

We first describe evaluation metrics in section 5.1, and later we explain about feature selection in section 5.2. Section 5.3 and 5.4 present about our experimental evaluation results in details. Finally, we provide summary of our work and discussion in section 5.5.

5.1. Evaluation Metrics

Here, \( N \) represents the total number of websites and \( F \) represents the number of phishing websites and \( L \) represents the number of legitimate websites. \( N \) is the number of websites.

\[
F \rightarrow F = \text{Phishing websites are correctly classified as phishing websites} \\
F \rightarrow L = \text{Phishing websites are incorrectly classified as legitimate websites} \\
L \rightarrow L = \text{Legitimate websites are correctly classified as legitimate websites} \\
L \rightarrow F = \text{Legitimate websites are incorrectly classified as phishing websites} \\
N_{F \rightarrow F} = \text{the number of correctly classified phishing websites} \\
N_{F \rightarrow L} = \text{the number of phishing websites that are incorrectly classified as legitimate websites} \\
N_{L \rightarrow L} = \text{the number of correctly classified legitimate websites} \\
N_{L \rightarrow F} = \text{the number of legitimate websites that are incorrectly classified as phishing websites} \\
N_F = N_{F \rightarrow F} + N_{F \rightarrow L} = \text{the total number of phishing websites} \\
N_L = N_{L \rightarrow L} + N_{L \rightarrow F} = \text{the total number of phishing websites} \\
N_T = N_{L \rightarrow L} + N_{L \rightarrow F} + N_{F \rightarrow F} + N_{F \rightarrow L} = \text{the total number of websites}
\]

- **True positive rate (TPR):** the ratio of the number of correctly classified phishing websites \( (N_{F \rightarrow F}) \) to the total number of phishing attacks \( (N_{F \rightarrow F} + N_{F \rightarrow L}) \) as shown in Equation (5.1).

- **False positive rate (FPR):** the ratio of the number of legitimate websites that are incorrectly detected as phishing attacks \( (N_{F \rightarrow F} + N_{F \rightarrow L}) \) to the total number of all existing legitimate websites \( (N_{L \rightarrow L} + N_{L \rightarrow F}) \) as shown in Equation (5.2).

- **True negative rate (TNR):** the ratio of the number of correctly classified legitimate websites \( (N_{L \rightarrow L}) \) to the total number of legitimate websites \( (N_{L \rightarrow L} + N_{L \rightarrow F}) \) as shown in Equation (5.3).

- **False negative rate (FNR):** the ratio of the number of phishing websites that are incorrectly classified as legitimate \( (N_{F \rightarrow L}) \) to the total number of phishing websites \( (N_{F \rightarrow F} + N_{F \rightarrow L}) \) as shown in Equation (5.4).

- **Precision (Prec):** the ratio of correctly detected phishing websites \( (N_{F \rightarrow F}) \) to the total number of websites detected as phishing \( (N_{L \rightarrow F} + N_{F \rightarrow F}) \) as shown in (5.5).

- **Recall (R):** equivalent to TP rate as shown in Equation (5.6).

- **Accuracy (ACC):** the ratio of the sum of correctly classified phishing and legitimate websites \( (N_{L \rightarrow L} + N_{F \rightarrow F}) \) to the total number of websites \( (N_{L \rightarrow L} + N_{L \rightarrow F} + N_{F \rightarrow F} + N_{F \rightarrow L}) \) as shown in Equation (5.7).

\[
TPR = \frac{N_{F \rightarrow F}}{N_{F \rightarrow F} + N_{F \rightarrow L}} \quad (5.1)
\]
\[
FPR = \frac{N_{L \rightarrow F}}{N_{L \rightarrow L} + N_{L \rightarrow F}} \quad (5.2)
\]
\[
TNR = \frac{N_{L \rightarrow L}}{N_{L \rightarrow L} + N_{L \rightarrow F}} \quad (5.3)
\]
\[
FNR = \frac{N_{F \rightarrow L}}{N_{F \rightarrow L} + N_{F \rightarrow F}} \quad (5.4)
\]
\[
P = \frac{N_{F \rightarrow F}}{N_{L \rightarrow F} + N_{F \rightarrow F}} \quad (5.5)
\]
\[
R = TPR \quad (5.6)
\]
\[
ACC = \frac{N_{L \rightarrow L} + N_{F \rightarrow F}}{N_{L \rightarrow L} + N_{L \rightarrow F} + N_{F \rightarrow F} + N_{F \rightarrow L}} \quad (5.7)
\]

5.2. Feature Selection

We perform feature selection for two times using feature importance on Random Forest (RF). On both datasets, we extract 21 NAN characters from each URL if presence. Then, we perform feature selection based on feature importance. Figure 5.1 shows the importance of features. We then select the top 10 features as an input to entropy. After feature selection of NAN, we input top 10 features to compute entropy scores of a URL in feature extraction.

![Visualizing Important Features](image)

Figure 5.1. Feature Importance Score

5.3. Experiment with Balanced and Imbalanced Datasets

After we selected NAN characters as mentioned above, we extract the 12 features described in Table 4.4. Then, we first perform classifications with three classifiers: Gaussian naïve bayes (GNB), support vector machine (SVM) and RF without adjusting any parameters to choose the best fit model. In Table 5.1, we show previous features (Prev) along with our proposed feature (entropy of NAN – Entropy). Note that those previous features are applied in different works, not just in a single one. We compare
experimental evaluation with or without entropy. Precision, recall, ACC and ROC_AUC are presented in percentage (%). RF outperforms two other classifiers on both balanced and imbalanced datasets with 89.43% and 72.64% of ROC_AUC score (Receiver Operating Characteristics) respectively. We measure the ROC_AUC score instead of accuracy since the class of highly imbalanced data tends to be biased.

Table 5.1. Evaluation Results for three Classifiers on balanced and imbalanced datasets using previous and entropy features

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Datasets</th>
<th>Features</th>
<th>Prec</th>
<th>R</th>
<th>TPR</th>
<th>FPR</th>
<th>FNR</th>
<th>TNR</th>
<th>ACC</th>
<th>ROC_AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.94</td>
<td>0.67</td>
<td>0.66</td>
<td>0.34</td>
<td>0.33</td>
<td>0.66</td>
<td>93.08</td>
<td>66.28</td>
</tr>
<tr>
<td></td>
<td>Balanced</td>
<td>Prev+Entropy</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.20</td>
<td>0.20</td>
<td>0.80</td>
<td>79.63</td>
<td>79.56</td>
</tr>
<tr>
<td>GNB</td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.95</td>
<td>0.64</td>
<td>0.64</td>
<td>0.36</td>
<td>0.36</td>
<td>0.64</td>
<td>92.74</td>
<td>64.20</td>
</tr>
<tr>
<td></td>
<td>Balanced</td>
<td>Prev+Entropy</td>
<td>0.81</td>
<td>0.72</td>
<td>0.72</td>
<td>0.28</td>
<td>0.28</td>
<td>0.72</td>
<td>71.33</td>
<td>71.91</td>
</tr>
<tr>
<td>RF</td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.92</td>
<td>0.73</td>
<td>0.73</td>
<td>0.27</td>
<td>0.27</td>
<td>0.73</td>
<td>94.02</td>
<td>72.64</td>
</tr>
<tr>
<td></td>
<td>Balanced</td>
<td>Prev+Entropy</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.11</td>
<td>0.11</td>
<td>0.89</td>
<td>89.41</td>
<td>89.43</td>
</tr>
</tbody>
</table>

Table 5.2. Comparison of Without (Prev) and With (Prev+Entropy) entropy

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Datasets</th>
<th>Features</th>
<th>Prec</th>
<th>R</th>
<th>TPR</th>
<th>FPR</th>
<th>FNR</th>
<th>TNR</th>
<th>ACC</th>
<th>ROC_AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.94</td>
<td>0.66</td>
<td>0.66</td>
<td>0.34</td>
<td>0.33</td>
<td>0.66</td>
<td>93.08</td>
<td>66.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prev</td>
<td>0.94</td>
<td>0.65</td>
<td>0.65</td>
<td>0.34</td>
<td>0.34</td>
<td>0.65</td>
<td>92.98</td>
<td>65.29</td>
</tr>
<tr>
<td></td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.20</td>
<td>0.20</td>
<td>0.80</td>
<td>79.63</td>
<td>79.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prev</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.20</td>
<td>0.20</td>
<td>0.80</td>
<td>79.50</td>
<td>79.75</td>
</tr>
<tr>
<td>GNB</td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.94</td>
<td>0.64</td>
<td>0.64</td>
<td>0.36</td>
<td>0.36</td>
<td>0.64</td>
<td>92.65</td>
<td>64.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prev</td>
<td>0.81</td>
<td>0.72</td>
<td>0.72</td>
<td>0.28</td>
<td>0.28</td>
<td>0.72</td>
<td>71.33</td>
<td>71.91</td>
</tr>
<tr>
<td></td>
<td>Imbalanced</td>
<td>Prev+Entropy</td>
<td>0.92</td>
<td>0.73</td>
<td>0.73</td>
<td>0.27</td>
<td>0.27</td>
<td>0.73</td>
<td>94.02</td>
<td>72.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prev</td>
<td>0.90</td>
<td>0.66</td>
<td>0.66</td>
<td>0.34</td>
<td>0.34</td>
<td>0.66</td>
<td>93.22</td>
<td>66.31</td>
</tr>
<tr>
<td></td>
<td>Balanced</td>
<td>Prev+Entropy</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.11</td>
<td>0.11</td>
<td>0.89</td>
<td>89.41</td>
<td>89.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prev</td>
<td>0.82</td>
<td>0.80</td>
<td>0.80</td>
<td>0.11</td>
<td>0.11</td>
<td>0.89</td>
<td>79.50</td>
<td>79.49</td>
</tr>
</tbody>
</table>

Then we compare the evaluation results of ROC_AUC with and without our proposed entropy feature in Table 5.2. As RF outperforms the two other classifiers, we focus only on RF for more hyperparameter tuning. To be noted that, our results are measured based on testing datasets of 10-fold cross validation. In the above Table 5.2, we measured experimental evaluations based on 10-fold cross validations without using hyperparameter tuning to select a better model. However, in the following section 5.4, we perfume hyper-parameter tuning with RF.

5.4. Comparison between Previous and Current Evaluations with Hyperparameter Tuning

As for hyperparameter tuning, we tune parameters on RF as described below. We performed GridSearchCV for parameter tuning to generate a better outcome. GridSearchCV evaluates all combinations we define along with cross validation.

```python
param_grid = {'n_estimators': [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700],
              'criterion': ['gini', 'entropy'],
              'bootstrap': [True, False]}
```

Number of combinations = 16*2*2 = 64

CV = 10-Fold
We show the comparison results of with and without proposed entropy of NAN characters in Table 5.3. To note that, we refit Grid Search with ROC_AUC for a fair classification to avoid bias. The evaluation results mentioned in the table are measured only for testing datasets after 10-fold cross validation. The following Figure 5.2 shows our experimental results after hyperparameter tuning.

**Pseudo Code:**
```python
clf = RandomForestClassifier()
skf = StratifiedKFold(n_splits=10)
param_grid =
    {'n_estimators': [100,110,120,130,140,150,160,170,180,190,200,300,400,500,600,700],
    'criterion': ['gini', 'entropy'],
    'bootstrap': [true, false] }
grid_search = GridSearchCV(clf, param_grid, scoring=scorers, refit=refit_score,cv=skf, return_train_score=true, n_jobs=-1)
```

![Figure 5.2. Experimental Evaluation of ROC_AUC on balanced and imbalanced datasets](image)

In GridSearchCV, all the combinations we defined are performed with 10-fold cross validation on RF classifier. We have 10 splits (split0-split9) of testing data per each combination (64 in total) and we measure mean ROC_AUC, F1, ACC of all the splits. Thus, our final experimental evaluation is achieved by the best mean test scores of all the combinations.
Table 5.3. Comparison between Previous and Current Evaluations after Hyperparameter Tuning

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Features</th>
<th>Hyper Parameter Tuning (RF)</th>
<th>Scorers</th>
<th>Refit By</th>
<th>Best Parameter</th>
<th>Prc*</th>
<th>R*</th>
<th>TPR*</th>
<th>FPR*</th>
<th>FNR*</th>
<th>TNR*</th>
<th>ACC*</th>
<th>ROC_AUC*</th>
<th>F1*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced</td>
<td>( \text{Prev+Entropy} )</td>
<td>( [100,110,120,130,140,150,160,170,180,190,200,300,400,500,600,700] )</td>
<td>( ['\text{gini}', '\text{entropy}', ] )</td>
<td>[True, False]</td>
<td>Precision Recall ACC ROC_AUC F1</td>
<td>ROC_AUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( \text{Prev} )</td>
<td></td>
<td></td>
<td></td>
<td>'bootstrap': True, 'criterion': 'gini', 'n_estimators': 500</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.10</td>
<td>0.10</td>
<td>0.90</td>
<td>89.82</td>
<td>96.20</td>
<td>89.82</td>
</tr>
<tr>
<td></td>
<td>( \text{Prev+Entropy} )</td>
<td>( [100,110,120,130,140,150,160,170,180,190,200,300,400,500,600,700] )</td>
<td>( ['\text{gini}', '\text{entropy}', ] )</td>
<td>[True, False]</td>
<td>Precision Recall ACC ROC_AUC F1</td>
<td>ROC_AUC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>( \text{Prev} )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.83</td>
<td>0.80</td>
<td>0.81</td>
<td>0.19</td>
<td>0.19</td>
<td>0.81</td>
<td>80.68</td>
<td>87.51</td>
<td>80.28</td>
</tr>
<tr>
<td>Imbalanced</td>
<td>( \text{Prev+Entropy} )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>'bootstrap': True, 'criterion': 'gini', 'n_estimators': 500</td>
<td>0.94</td>
<td>0.94</td>
<td>0.74</td>
<td>0.26</td>
<td>0.26</td>
<td>0.74</td>
<td>94.05</td>
<td>89.31</td>
</tr>
<tr>
<td></td>
<td>( \text{Prev} )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>'bootstrap': True, 'criterion': 'gini', 'n_estimators': 500</td>
<td>0.93</td>
<td>0.93</td>
<td>0.66</td>
<td>0.35</td>
<td>0.35</td>
<td>0.66</td>
<td>92.94</td>
<td>84.31</td>
</tr>
</tbody>
</table>

As we mentioned before, our ROC_AUC score shows better performance with parameter tuning and results in ROC_AUC score of 89.31% with our contributed feature ‘entropy’ while the performance without entropy results 84.31% on imbalanced datasets. Moreover, it also works well on balanced datasets generating 96.20% of ROC_AUC with entropy winning over 87.51% without it.

*Scorings are measured by mean value i.e. mean_test_precision, mean_test_recall and so on because we performed 10-fold cross validation and we showed our results based on test set.
5.5. Comparison between Feature Sets based on Frequency Probability and Entropy

We also measure probability distribution of frequencies of special characters as separate features without using Entropy. As for the experiment, we use the same hyperparameter tuning mentioned in Table 5.3. Then, we compare the evaluation result of ROC_AUC with entropy of NAN shown in the Table 5.4.

Table 5.4. Comparison between Feature Set1 (Percentage of NAN) and Feature Set2 (Entropy of NAN)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Name</th>
<th>Features</th>
<th>No of Features</th>
<th>ROC_AUC</th>
<th>Time (seconds)</th>
<th>Time difference (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balanced D1 Feature Set FS1</td>
<td>IP address, exe, sensitive word, /\ redirect, internal link, age of domain, port number, free hosting Percentage of ('#' count, '@' count, '-' count, '.' count, '$' count, '*' count, '[' count, '(' count, '{' count, ']' count, ')' count, '+' count, ';' count, '~' count, ':' count, ''' count, '/' count, '%' count, '?' count, ',' count, '=' count, '&amp;' count, '!' count, '_' count), total nan count</td>
<td>34</td>
<td>96.2</td>
<td>381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanced D1 Feature Set FS2</td>
<td>IP address, exe, sensitive word, /\ redirect, internal link, age of domain, port number, free hosting Percentage of ('#' count, '@' count, '-' count, '.' count, '$' count, '*' count, '[' count, '(' count, '{' count, ']' count, ')' count, '+' count, ';' count, '~' count, ':' count, ''' count, '/' count, '%' count, '?' count, ',' count, '=' count, '&amp;' count, '!' count, '_' count), total nan count</td>
<td>12</td>
<td>96.2</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imbalanced D2 Feature Set FS1</td>
<td>IP address, exe, sensitive word, /\ redirect, internal link, age of domain, port number, free hosting Percentage of ('#' count, '@' count, '-' count, '.' count, '$' count, '*' count, '[' count, '(' count, '{' count, ']' count, ')' count, '+' count, ';' count, '~' count, ':' count, ''' count, '/' count, '%' count, '?' count, ',' count, '=' count, '&amp;' count, '!' count, '_' count), total nan count</td>
<td>34</td>
<td>90.55</td>
<td>4870</td>
<td>1293</td>
<td></td>
</tr>
<tr>
<td>Imbalanced D2 Feature Set FS2</td>
<td>IP address, exe, sensitive word, /\ redirect, internal link, age of domain, port number, free hosting Percentage of ('#' count, '@' count, '-' count, '.' count, '$' count, '*' count, '[' count, '(' count, '{' count, ']' count, ')' count, '+' count, ';' count, '~' count, ':' count, ''' count, '/' count, '%' count, '?' count, ',' count, '=' count, '&amp;' count, '!' count, '_' count), total nan count</td>
<td>12</td>
<td>89.31</td>
<td>3577</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4. Comparison between Feature Set1 (Percentage of NAN) and Feature Set2 (Entropy of NAN)
To compare with our proposed entropy of NAN characters, we first measure percentage of individual 25 NAN characters and total NAN count. We represent them as 26 features. And we combine them with other 8 features. Thus, we get 34 features in total, called as FS1. In FS2, we have a total of 12 features including entropy. Our experiments show that ROC_AUC results are nearly the same because entropy is also based on the frequentist probability distribution between phishing and legitimate websites. We achieved 90.55% of ROC_AUC for FS1 on imbalanced dataset compared to 89.31% of ROC_AUC with FS2.

However, when we measure processing time of individual feature set on Random Forest model fitting using hyperparameter tuning on imbalanced dataset, FS2 is 1293 seconds (~21 mins) faster than FS1. On balanced dataset, although we achieve same 96.2% of ROC_AUC for FS1 and FS2, FS2 performed 115 seconds (~2 mins) faster than FS1.

5.6. Summary and Discussion

In our research, we observed from perspectives; (i) dataset perspective, and (ii) feature perspective.

From the dataset perspective, we performed the detection on balanced and imbalanced data, in which the majority of data is legitimate sites. Our assumption is that in the real-world, we cannot expect the same or not even close amount of phishing datasets as legitimate ones. Thus, we want to figure out if it works well on imbalanced datasets.

From the feature perspective, we contributed entropy feature for distribution of NAN characters in a URL, which makes our classification have high performance in terms of accuracy.

In addition to these perspectives, we also test on three different classifiers and later perform parameter tuning for a better and robust system. We confirm that with 96.20% of ROC_AUC on balanced and 89.31% on imbalanced datasets, outperforming 87.51% and 84.31% without entropy features respectively.

However, we still have a problem of high FPR. From the feature perspective, we use DMOZ for legitimate dataset, in which, as for the number of subdomains, legitimate websites have fewer or no information at all, while phishing sites do. It makes it difficult to retrieve similar patterns of legitimate URLs, giving high FPR. To address this, we believe it is better to target domain name-based features–instead of entire URL–to extract characteristics of domain name and current page content.
CHAPTER 6
CONCLUSIONS

Cyber phishing is a theft of personal information in which phishers mimic a legitimate website so that users surrender sensitive information. Phishers lure users, as if they are reliable, to access information to break into the victims’ system. Phishing detection becomes a crucial research area as the number of phishing attacks grows along with e-commerce and internet transactions. In our research, we focus on URL (Uniform Resource Locator)-based phishing detection techniques testing our proposed feature’s performance on balanced and imbalanced datasets. We consider the URL to be a significant criterium to prevent the attacks because of the fact that phishers creating fake websites with less information as possible. To overcome problem of retrieving no or less information of a webpage for detection, URL-based approach is a solution. Because we consider that NAN characters distribution highly impact on phishing URLs, we target our proposed feature – entropy of NAN in our work.

In our work, we performed feature selection of NAN. Our contribution is to propose a new entropy feature for NAN characters and compare with the previously used features. We confirmed that our proposed feature outperforms previous features and we also measured performance based on ROC_AUC score for a more robust phishing detection system and our work achieved ROC_AUC score of 89.31% and 96.20% on imbalanced and balanced datasets respectively.

Since attackers always come up with various techniques, detection has become a primary concern of developers. Only with less information of phishing webpage, we focus on URL-based detection. We have a problem of high FPR over 20% since the number of features we used are insufficient. However, our objective is to improve performance if our proposed feature is applied on any URL-based detection system combined with other features. Thus, we performed comparison to show how evaluation changed. We hope that applying our proposed feature brings a small help in any URL-based detection techniques for a better detection system.
ACKNOWLEDGEMENTS

First of all, I would like to give sincere thanks to my research supervisor Professor Hayato Yamana of Department of Computer Science and Communications Engineering, Graduate School of Fundamental Science and Engineering, Waseda University not only for his guidance, but also for giving me way of thinking.

I would like to show my gratitude to the lecturers of Department of Computer Science and Communications Engineering, Waseda University. Thanks to them, I could extend my knowledge, which is crucial for research.

Moreover, I would like to genuinely say thanks to my seniors for giving me such precious advices and never-ending guidelines throughout the whole two years. I should not miss my lab-mates and friends, who support me both physically and mentally.

Nevertheless, thank you mom and dad, and also my lovingly sisters. Thanks to your support, love and care, I did not give up and I have come this far.
REFERENCES


DMOZ, the Directory of Web, available at “http://dmoz-odp.org”.


APPENDIX

- Dataset Nature

We gather legitimate data from DMOZ repository and extract maximum two resource URLs from each Topic. Then, we validate and apply active URLs only on our system.

```xml
<Topic r:id="Top/Arts/Animation">
  <catid>423945</catid>
  <link1 r:resource="http://www.awn.com/"></link1>
  <link r:resource="http://animation.about.com/"></link>
  <link r:resource="http://www.toohnhound.com/"></link>
  <link r:resource="http://www.digitalmediafx.com/Features/animationhistory.html"></link>
  <link r:resource="http://www.animated-divots.net/"></link>
</Topic>
```

Figure A.1. Xml file sample of legitimate dataset

The following figure is the sample dataset that we collected from PhishTank. We gather currently reported phishing URLs to make sure its activity.

```csv
<table>
<thead>
<tr>
<th>phish_id</th>
<th>url</th>
<th>submit_time</th>
<th>verified</th>
<th>verification_time</th>
<th>outcome</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><a href="http://www.name.com/">http://www.name.com/</a></td>
<td>2019-06-20T01:16:00+00:00</td>
<td>yes</td>
<td>2019-06-20T01:16:00+00:00</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
```

Figure A.2. Csv file sample of phishing dataset

- Entropy

Let’s consider non_alphanumeric_characters={’,’,’@’,’$’,’-’}. If the distribution of all elements is similar, its entropy is ~1.0 (can be greater than 1 depending on the number of elements in the datasets)(high entropy=low purity).

Example 1: http://setting444545page-16mb.com (Ignore red part ‘http://’ or ‘www.’)
No of NAN characters : 2 in total (‘-’ = 1 and ‘.’ = 1)

\[ Entropy = -(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1 \]

Example 2: http://setting444545page.main1.16mb.com
(Ignore red part ‘http://’ or ‘www.’)
No of NAN characters : 3 in total (‘.’ = 3)

(probability = 3/3=1.0)

\[ Entropy = -1\log_2 1 = 0 \]

If entropy = 0.0, it is low entropy i.e. high purity.