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Abstract	
In	mobile	cloud	computing,	due	to	the	mobility	of	users	and	uncertainty	

of	task	type,	the	load	on	each	cloudlet	is	changing	over	time.	And	because	of	
the	limited	resources	on	the	cloudlets,	when	a	cloudlet	accepts	too	many	user	
tasks	in	a	short	time,	the	tasks	that	need	to	be	executed	may	exceed	the	load	
of	the	cloudlet.	At	this	time,	some	tasks	may	not	get	the	execution	resources	
and	need	to	wait	for	other	tasks	before	being	executed.	If	these	tasks	wait	too	
long,	it	is	meaningless	for	the	users	to	offload	the	tasks	to	the	cloudlet.	If	the	
cloudlets	are	connected	with	each	other	to	form	a	cloudlet	network,	based	on	
geographical	 location	and	each	cloudlet	can	communicate	and	transfer	data	
with	each	other.	Then	 the	cloudlets	with	a	high	 load	can	 transfer	excessive	
tasks	 to	 the	 cloudlets	 with	 a	 low	 load.	 In	 this	 paper,	 we	 propose	 a	 load	
balancing	framework	in	cloudlet	network	based	on	the	Stackelberg	game	to	
solve	 the	 problem	 of	 load	 unbalancing.	 The	 multi-leader	 multi-follower	
Stackelberg	game	and	reinforcement	learning	are	combined	to	get	an	optimal	
task	transferring	strategy	for	overall	cloudlets	in	the	incomplete	information	
and	 noncooperative	 game.	 Experimental	 results	 show	 that	 our	 proposed	
method	can	approach	the	optimal	solution	with	fewer	iterations.	Compared	
with	the	agent-based	centralized	management	method,	our	proposed	method	
can	 find	 a	 good	 solution	 in	 a	 shorter	 time.	 In	 addition,	 the	 framework	we	
proposed	has	better	 scalability	 and	 can	meet	 the	different	 requirements	of	
different	tasks.	

	
Keywords:	Mobile	 cloud	 computing,	 Load	 balancing,	 Stackelberg	 game,	

Reinforcement	learning,	Cloudlet	
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Chapter	1 

Introduction	

With	the	advent	of	the	mobile	Internet	era,	mobile	devices	are	exploding	every	
year.	 From	autonomous	 cars	 to	humanoid	 robots	 and	 from	 intelligent	personal	
assistants	 to	 smart	 home	 devices,	 the	 world	 around	 us	 is	 undergoing	 a	
fundamental	 change,	 transforming	 the	 way	 we	 live,	 work,	 and	 play	 [9].	 It	 is	
estimated	 that	 by	 2025,	 there	 will	 be	 34.2	 billion	 network	 connected	 devices	
worldwide,	of	which	21.5	billion	will	be	IoT	devices,	as	shown	in	Figure	1.1	[10].	
The	proportion	of	IoT	devices	is	increasing	year	by	year.	

With	 the	 rapid	 emergence	 and	 sharp	 growth	 of	 Internet	 of	 Things	 (IoT),	
enormous	computation	and	communication	requirements	are	induced,	exceeding	
the	capacity	of	current	data	centers	and	mobile	networks,	as	shown	in	Figure	1.2.	
IoT	 has	 lots	 of	 features.	 Such	 as	 mobile,	 numerous,	 power	 limited,	 low	
computational	capability	and	so	on.	

	

	
	
	

	

Figure	 1.1.	 Total	 number	 of	 active	 device	 connection	worldwide	

[10]	

Figure	1.2.	Internet	of	Things	(IoT)	



Waseda	University	
2019	Master's	Thesis	 Fukazawa	Lab.	

 2 

With	 the	 increasing	 number	 of	 mobile	 devices,	 the	 demand	 for	 various	
services	 is	 increasing,	such	as	 face	recognition	and	speech	recognition	software	
and	online	games	[1].	However,	while	the	resource	demands	of	newly	developed	
applications	continue	growing,	the	computing	capacity	of	mobile	devices	remains	
limited	due	to	their	portable	sizes	and	small	battery	capacity.	Cloud	computing	is	
envisioned	as	a	promising	method	to	address	such	a	challenge.	

A	traditional	solution	to	overcome	the	resource	poverty	of	mobile	devices	is	
to	offload	the	complex	tasks	to	the	clouds	with	rich	computing	resource.	A	mobile	
device	 can	 reduce	 its	 workload	 and	 prolong	 its	 battery	 life	 by	 offloading	 its	
computation-intensive	tasks	to	a	remote	cloud	for	execution	[11],	[12],	as	shown	
in	Figure	1.3.	

	

	
	
Many	cloud	service	providers	 like	Amazon,	Google	and	Microsoft	have	built	

many	cloud	computing	centers	and	provided	the	users	with	various	services	for	
variety	of	computational	tasks.	The	huge	storage	and	computational	capability	at	
the	cloud	servers	of	cloud	computing	centers	enables	them	to	quickly	execute	the	
computational	 tasks	 offloaded	 by	 the	 mobile	 devices.	 Many	 of	 these	 tasks	 if	
performed	locally	on	the	mobile	devices	may	take	hours	to	be	executed,	which	not	
only	 occupies	 local	 computational	 resources,	 but	 also	 decreases	 the	 mobile	
devices'	battery	life.	

With	the	advent	of	the	mobile	Internet	era	and	the	increase	in	mobile	devices,	
there	 is	 more	 and	 more	 researches	 [17]-[21]	 on	 mobile	 cloud	 computing.	 In	
addition	to	the	lack	of	computing	resources,	users	are	constantly	moving.	Because	
the	 mobile	 device	 is	 connected	 to	 the	 cloud	 through	 a	 wireless	 network,	 this	
connection	 is	not	stable	and	will	be	disconnected	at	any	 time	due	 to	 the	user's	
movement,	resulting	in	interruption	of	data	transmission	and	getting	no	results.	
So	user	mobility	is	also	an	important	issue	in	mobile	cloud	computing.	

In	order	to	solve	the	problems	of	mobility	and	resource	limitation,	researches	
on	resource	allocation	in	mobile	cloud	computing	are	becoming	more	and	more	
[13]	–	[16],	[18].	Mobile	cloud	computing	is	that	mobile	devices	take	use	of	the	
resources	 of	 remote	 cloud	 to	 execute	 complex	 tasks	 in	 order	 to	 have	 a	 shorter	

Figure	1.3.	Cloud	Computing	System	
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execution	time	and	decrease	the	energy	consumption	of	mobile	devices.	Because	
there	is	a	long	distance	between	the	mobile	device	and	the	remote	cloud,	the	user	
may	have	a	high	communication	 latency.	Cloudlet	 is	a	solution	 to	overcome	the	
problem	of	high	communication	latency	between	remote	cloud	and	mobile	devices,	
which	is	deployed	in	different	areas	and	close	to	users.	

In	recent	years,	researches	on	cloudlets	are	becoming	more	and	more	[13]-
[16].	Cloudlet	is	a	small	cloud	distributed	in	different	areas	and	is	much	closer	to	
users	compared	to	remote	cloud.	Each	cloudlet	covers	one	area,	provides	relatively	
powerful	computing	power	to	perform	tasks	or	provide	some	services	to	users.	
However,	the	cloudlet	has	limited	coverage	range,	because	the	user	communicates	
to	cloudlet	with	the	wireless	network,	as	shown	in	Figure	1.4.	

	

	
	
	
Cloudlet	is	a	reliable	solution	to	solve	the	problems	of	resource	limitations	of	

mobile	 devices	 and	 high	 communication	 latency	 [18].	 A	 cloudlet	 is	 a	 trusted,	
resource-rich,	Internet-connected	computer	or	a	cluster	of	computers,	which	can	
be	utilized	by	mobile	devices	via	a	high-speed	wireless	local	area	network	(WLAN)	
[2].	

Here	are	two	examples	to	show	the	broad	promising	application	of	cloudlet.	
Face	recognition	and	real-time	video	decoding	are	both	widely	used	complex	tasks	
in	our	smart	phones.	Executing	these	tasks	in	cloudlets	instead	of	mobile	devices	
can	have	less	execution	time	and	less	power	consumption,	as	shown	in	Figure	1.5.	
And	executing	real-time	video	decoding	task	in	cloudlets	instead	of	remote	cloud	
can	have	less	communication	time	and	provide	the	users	with	real-time	gaming	
experience,	as	shown	in	Figure	1.6.	

Figure	1.4.	Cloudlet-based	Mobile	Cloud	Computing	
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Due	 to	 the	mobility	of	users	and	uncertainty	of	 task	 type,	 the	 load	on	each	

cloudlet	 is	 changing	 over	 time.	 And	 because	 of	 the	 limited	 resources	 on	 the	
cloudlets,	when	a	cloudlet	accepts	too	many	user	tasks	in	a	short	time,	the	tasks	
that	need	to	be	executed	may	exceed	the	load	of	the	cloudlet.	At	this	time,	some	
tasks	may	not	get	the	execution	resource	and	need	to	be	waited	for	other	tasks	
before	being	executed.	If	these	tasks	wait	too	long,	it	is	meaningless	for	the	users	
to	 offload	 the	 tasks	 to	 the	 cloudlet.	 The	 tasks	 executed	 locally	 may	 have	 less	
execution	time	(includes	waiting	time).	

There	are	some	researches	about	the	load	balancing	in	cloudlet	network	[24]	
–	 [28].	 They	 assume	 that	 cloudlets	 are	 connected	 to	 each	 other	 and	 can	
communicate	 and	 transfer	data.	 They	use	 a	 central	 cloudlet	manager	 to	 gather	
information	 of	 cloudlets	 and	 tasks	 and	 based	 on	 the	 gathered	 information	 to	
calculate	 the	optimal	 task	 transferring	strategy	with	 the	minimal	 task	response	
time.	However,	the	running	time	of	their	methods	will	increase	dramatically	as	the	
number	 of	 cloudlets	 increases.	 We	 think	 that	 the	 objective	 of	 minimal	 task	
response	time	is	not	sufficient	for	various	types	of	tasks.	

Figure	1.5.	Face	recognition	application	

Figure	1.6.	Real-time	online	video	game	
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We	assume	that	cloudlets	are	interconnected	based	on	geographic	location	to	
form	a	big	cloudlet	network,	as	shown	in	Figure	4.1.	The	cloudlets	with	a	high	load	
can	transfer	excessive	tasks	to	the	cloudlets	with	a	low	load.	The	former	cloudlet	
is	defined	as	task	server,	the	latter	is	defined	as	resource	server.	 	

Considering	the	resource	scheduling	from	the	perspective	of	the	supply	and	
demand	relationship	between	the	resource	server	and	the	task	server	can	improve	
the	 resource	 utilization	 of	 the	 overall	 cloudlet	 network	 and	 decrease	 the	 task	
execution	 time	 and	 computing	 cost,	 and	 ultimately	 improve	 the	 user's	 task	
offloading	experience.	

In	 this	 paper,	 in	 order	 to	 avoid	 using	 the	 central	 cloudlet	 manager	 and	
decrease	the	communication	volume	and	algorithm	running	time,	we	will	use	the	
incomplete	information	and	noncooperative	game	theory	to	solve	the	problem	of	
load	unbalancing	in	cloudlet	network.	Stackelberg	game	is	one	of	the	most	famous	
and	useful	game	theories.	In	our	scenario,	the	resource	server	and	task	server	are	
modeled	 as	 a	 multi-leader	 and	 multi-follower	 Stackelberg	 game	 in	 cloudlet	
network,	and	then	the	existence	of	the	task	server	Nash	equilibrium	point	under	
the	condition	of	resource	server	price	determination	is	proved.	Finally,	the	optimal	
pricing	of	the	resource	server	and	the	optimal	task	transferring	strategy	of	task	
server	are	solved	by	the	proposed	method.	

The	contributions	of	this	paper	are	described	as	follows:	
� A	 task	 load	 balancing	 framework	 based	 on	 the	 Stackelberg	 Game	 in	

cloudlet	network	is	proposed	to	solve	the	problem	of	load	imbalance.	The	
load	between	the	idle	cloudlets	and	the	high-load	cloudlets	is	transferred	
to	 solve	 the	 problem	 of	 task	 queuing	 caused	 by	 excessive	 load	 on	 the	
cloudlets.	

� The	 multi-leader	 multi-follower	 Stackelberg	 game	 and	 reinforcement	
learning	 are	 combined	 to	 get	 an	 optimal	 task	 transferring	 strategy	 for	
overall	cloudlets	in	the	incomplete	information	and	noncooperative	game.	
The	players	cannot	know	the	transfer	strategies	of	all	other	players,	and	it	
costs	 some	 time	 and	 energies	 to	 get	 that	 information.	 In	 our	 method,	
players	adjust	the	selection	probability	only	based	on	their	own	rewards.	

� Based	 on	 Stackelberg	 game,	 the	 followers	 learn	 the	 reward	 each	 time	
through	reinforcement	learning	and	changes	the	selection	probability	of	
the	leaders.	

� In	 calculating	 the	 reward	 of	 a	 task,	 the	 type	 of	 the	 task	 is	 taken	 into	
account,	such	as	time-sensitive	and	computation-sensitive.	The	tasks	that	
are	different	 in	 types	may	have	different	 time	sensitivity	and	objective.	
Compared	 with	 computation-sensitive	 tasks,	 time-sensitive	 tasks	 are	
more	 concerned	 about	 the	 execution	 time.	 In	 contrast,	 computation-
sensitive	tasks	are	more	concerned	about	the	fee	paid	to	the	cloudlets	for	
task	execution.	
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Chapter	2	

Related	work	

In	 this	 chapter,	 we	 will	 introduce	 some	 researches	 in	 mobile	 cloud	
computing	(MCC)	and	some	researches	about	resource	allocation	in	Cloudlet.	We	
will	also	introduce	some	researches	about	Stackelberg	game	and	reinforcement	
learning,	which	will	be	used	in	our	proposed	method.	

2.1 Mobile	Cloud	Computing	

In	[19],	Z.	Kuang	et	al,	propose	an	agent-based	MCC	framework	to	enable	the	
device	to	receive	offloading	results	faster	by	making	offloading	decision	on	the	
agent.	Moreover,	 to	 get	 an	 offloading	 strategy,	 they	 formulate	 the	problem	of	
maximizing	 energy	 savings	 among	multiple	users	under	 the	 completion	 time	
and	 bandwidth	 constraints,	 and	 they	 propose	 a	Dynamic	 Programming	After	
Filtering	algorithm	to	solve	the	optimization	problem.	However,	this	paper	only	
considers	 the	 remote	 cloud	 resource,	 so	 the	 users	 may	 have	 a	 higher	
communication	delay.	

In	[18],	W.	Li	et	al,	provide	an	overview	of	the	mechanisms	and	open	issues	
for	mobility-augmented	service	provisioning	in	MCC.	They	introduce	three	key	
mechanisms	 with	 respect	 to	 mobility	 augmentation,	 heterogeneous	 network	
convergence	and	mobile	service	provisioning.	Moreover,	they	discuss	the	open	
challenges	to	reveal	the	future	direction	of	MCC.	This	paper	explores	a	key	factor	
in	mobile	cloud	computing:	mobility,	and	points	out	some	challenges	and	issues	
that	 can	 guide	 some	 research	 directions.	 Although	 this	 paper	 presents	 some	
feasible	solutions	to	mobility,	they	do	not	conduct	the	experiment	to	verify	their	
proposal.	

In	 [17],	 by	 using	 stochastic	 geometry,	 H.	 Lee	 et	 al,	 analyze	 the	 outage	
probability	of	task	offloading	in	the	MCC	system	with	only	remote	cloud	servers	
and	that	in	the	heterogeneous	MCC	with	both	remote	cloud	servers	and	cloudlets.	
The	 analysis	 provides	 useful	 information,	 i.e.,	 how	 the	 varying	 system	
parameters	affect	the	outage	probability.	They	show	that	the	use	of	cloudlets	is	
a	promising	solution	to	overcome	this	limitation.	However,	a	tradeoff	exists	in	
using	cloudlets	due	to	their	deployment	and	operation	costs.	Thus,	to	address	
this	tradeoff,	they	also	study	the	optimal	cloudlet	deployment	to	maximize	the	
cloud	service	provider’s	profit	while	guaranteeing	maximum	outage	probability	
requirements.	This	paper	proves	the	usefulness	of	cloudlet	and	studies	how	to	
deploy	the	cloudlets	in	a	region.	

In	[20],	S.	Ahn	et	al,	newly	model	computation	offloading	competition	when	
multiple	 clients	 compete	 with	 each	 other	 so	 as	 to	 reduce	 energy	 cost	 and	
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improve	 computational	 performance.	 They	 design	 an	 energy-oriented	 task	
scheduling	scheme,	which	aims	to	maximize	the	welfare	of	clients	in	terms	of	
energy	efficiency.	Under	this	proposed	job	scheduling,	as	a	joint	consideration	
of	the	destination	and	client	sides,	competition	behavior	among	multiple	clients	
for	 optimal	 computation	 offloading	 is	 modeled	 and	 analyzed	 as	 a	 non-
cooperative	 game	 by	 considering	 a	 trade-off	 between	 different	 types	 of	
destinations.	 Based	 on	 this	 game-theoretical	 analysis,	 they	 propose	 a	 novel	
energy-oriented	 weight	 assignment	 scheme	 in	 the	 mobile	 terminal	 side	 to	
maximize	mobile	terminal	energy	efficiency.	

In	 [21],	C.	Tang	et	al,	model	 the	 task	 scheduling	problem	at	 the	end-user	
mobile	 device	 as	 an	 energy	 consumption	 optimization	problem,	while	 taking	
into	 account	 task	 dependency,	 data	 transmission	 and	 other	 constraint	
conditions	such	as	task	deadline	and	cost.	They	further	present	several	heuristic	
algorithms	 to	 solve	 it.	 A	 series	 of	 simulation	 experiments	 are	 conducted	 to	
evaluate	 the	 performance	 of	 the	 algorithms	 and	 the	 results	 show	 that	 their	
proposed	 algorithms	 outperform	 the	 state-of-the-art	 algorithms	 in	 energy	
efficiency	as	well	as	response	time.	

In	 [29],	 H.	 Cao	 et	 al,	 investigate	 the	 problem	 of	 multiuser	 computation	
offloading	for	cloudlet-based	mobile	cloud	computing	in	a	multichannel	wireless	
contention	 environment.	 The	 studied	 system	 is	 fully	 distributed	 so	 that	 each	
mobile	 device	 user	 can	 make	 the	 offloading	 decisions	 based	 only	 on	 its	
individual	information,	and	without	information	exchange.	They	first	formulate	
this	 multiuser	 computation	 offloading	 decision	 making	 problem	 as	 a	
noncooperative	game.	After	analyzing	the	structural	property	of	the	formulated	
game,	they	show	that	it	 is	an	exact	potential	game,	and	has	at	 least	one	pure-
strategy	Nash	equilibrium	point	(NEP).	To	achieve	the	NEPs	in	a	fully	distributed	
environment,	 they	propose	a	 fully	distributed	computation	offloading	(FDCO)	
algorithm	 based	 on	 machine	 learning	 technology.	 They	 only	 emphasize	 the	
performance	 and	 effectiveness	 of	 their	 method,	 do	 not	 mention	 that	 the	
strategies	they	get	are	good	or	bad.	

2.2 Resource	Allocation	in	Cloudlet	

In	 [13],	 X.	 Ma	 et	 al,	 research	 how	 to	 optimize	 the	 processing	 delay	 and	
energy	consumption	of	computing	tasks.	This	paper	proves	that	there	is	a	Nash	
equilibrium	point,	that	is,	all	tasks	are	offloaded	to	the	most	reasonable	cloudlets,	
and	the	processing	delay	and	energy	consumption	of	all	tasks	are	minimal,	and	
therefore	no	task	needs	to	be	moved.	This	paper	does	not	take	into	account	the	
user's	mobility,	that	is,	when	a	user	moves	from	the	coverage	area	of	one	cloudlet	
to	the	coverage	area	of	another	cloudlet.	 	

In	 [14],	 Md.	 Whaiduzzaman	 et	 al,	 point	 that	 the	 limited	 resources	 of	
cloudlets	 can	 become	 heavily	 loaded	 during	 peak	 utilization,	 so	 available	
computational	capacity	decreases	per	user	and	at	times	mobile	devices	find	no	
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execution	 time	 benefit	 for	 using	 the	 cloudlet.	 They	 propose	 a	Mobile	 Device	
based	Cloudlet	Resource	Enhancement	(MobiCoRE)	method,	which	can	ensure	
that	the	mobile	devices	always	have	time	benefit	for	its	tasks.	

In	[15],	M.	Jia	et	al,	study	cloudlet	placement	and	mobile	user	allocation	to	
the	cloudlets	in	a	wireless	metropolitan	area	network	(WMAN).	They	devise	an	
algorithm	for	the	problem,	which	enables	the	placement	of	the	cloudlets	at	user	
dense	regions	of	the	WMAN,	and	assigns	mobile	users	to	the	placed	cloudlets	
while	 balancing	 their	 workload.	 They	 also	 conduct	 experiments	 through	
simulation.	 The	 simulation	 results	 indicate	 that	 the	 performance	 of	 the	
proposed	algorithm	is	very	promising.	

In	[16],	S.	Rashidi	et	al,	point	that	to	accommodate	to	exponential	growth	of	
requests,	user	requests	should	be	distributed	to	different	cloudlets	according	to	
the	latest	network	and	server	status.	Therefore,	finding	the	best	place	to	offload	
is	vital	to	both	functionality	and	performance	of	the	system.	They	propose	an	
adaptive	 neuro-fuzzy	 inference	 system	 to	 achieve	 the	 accurate	 and	 timely	
parameters	of	network	and	servers'	status	effectively.	

2.3 Load	Balancing	in	Cloudlet	Network	

The	load	balancing	problem	occurs	in	task	offloading	where	a	power-limited	
cloudlet	needs	help	from	other	ones	[24].	[25]	points	out	in	HetNet,	User	devices	
tend	to	connect	to	the	high-power	cloudlet,	leading	to	the	overloading	issue.	

In	[26],	D.	Yao	et	al,	establish	a	five-tuple	characterized	task	model	to	capture	
the	response	time	of	offloaded	tasks	and	formulate	the	task	allocation	problem	
as	an	integer	linear	problem	(ILP)	under	certain	conditions.	Furthermore,	they	
propose	 a	 two-step	 appointment-driven	 strategy	 to	 solve	 this	 problem	 with	
minimal	 task	response	time.	Specifically,	a	modified	genetic	algorithm	(GA)	 is	
adopted	to	coordinate	the	load	of	the	nodes.	

In	[27],	V.	Chamola	et	al,	consider	a	network	of	connected	cloudlets	which	
provide	service	to	the	mobile	devices	in	a	given	area.	They	address	the	issue	of	
task	 assignment	 in	 such	 a	 scenario	 (i.e.	 which	 cloudlet	 serves	 which	mobile	
device)	 aimed	 towards	 improving	 the	 quality	 of	 service	 experienced	 by	 the	
mobile	devices	in	terms	of	minimizing	the	latency.	They	use	a	central	cloudlet	
manager	 collect	 information	 and	 make	 load	 balancing	 strategy	 for	 cloudlet	
network,	which	may	have	a	large	communication	volume	for	the	manager	and	
cost	a	large	amount	of	time	to	get	the	strategy,	when	the	number	of	cloudlets	is	
huge.	

In	 [28],	 M.	 Jia	 et	 al,	 investigate	 how	 to	 balance	 the	 workload	 between	
multiple	 cloudlets	 in	 a	 network	 to	 optimize	mobile	 application	 performance.	
They	first	introduce	a	system	model	to	capture	the	response	times	of	offloaded	
tasks,	 and	 formulate	a	novel	optimization	problem,	 that	 is	 to	 find	an	optimal	
redirection	of	 tasks	between	cloudlets	such	that	 the	maximum	of	 the	average	
response	 time	 of	 tasks	 at	 cloudlets	 is	 minimized.	 They	 then	 propose	 a	 fast,	
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scalable	 algorithm	 for	 the	 problem.	 In	 this	 paper,	 they	minimize	 the	 average	
response	 time,	 which	 is	 important	 for	 time-sensitive	 tasks.	 However,	 for	
computation-sensitive	 tasks,	 they	 care	 more	 about	 the	 fee	 paid	 for	 cloudlet	
provider.	It	is	not	sufficient	to	pursue	only	the	minimum	response	time.	

2.4 Resource	Allocation	with	Stackelberg	Game	

Stackelberg	games	[8]	consist	of	a	hierarchical	structure	with	a	leader	and	
followers.	In	a	Stackelberg	game,	the	leader	first	sets	a	price	which	is	charged	to	
the	followers,	then	the	followers	react	to	the	charged	price	and	compete	with	
each	 other.	 The	 entire	 Stackelberg	 game	 process	 consists	 of	 two	 phases:	 the	
leader	 decision	 phase	 and	 the	 follower	 decision	 phase	 and	 three	 elements:	
player,	strategy	and	payoff.	

In	 [22],	 B.	 Liu	 et	 al,	 research	 the	 resource	 allocation	 problem	 in	 threat	
defense	 for	 the	 resource-constrained	 IoT	 system,	 and	 propose	 a	 Stackelberg	
dynamic	 game	 model	 to	 get	 the	 optimal	 allocated	 resources	 for	 both	 the	
defender	 and	 attackers.	 The	 proposed	 Stackelberg	 dynamic	 game	 model	 is	
composed	by	one	defender	and	many	attackers.	Given	the	objective	functions	of	
the	defender	and	attackers,	they	analyze	both	the	open-loop	Nash	equilibrium	
and	feedback	Nash	equilibrium	for	the	defender	and	attackers.	Then	both	the	
defender	and	attackers	can	control	their	available	resources	based	on	the	Nash	
equilibrium	solutions	of	the	dynamic	game.	Numerical	simulation	results	show	
that	correctness	and	effeteness	of	the	proposed	model.	The	Stackelberg	game	
used	by	them	is	a	tradition	and	simple	game	with	a	leader	and	many	followers.	

In	 [3],	 the	 purpose	 of	 this	 paper	 is	 to	 improve	 the	 efficiency	 of	 resource	
allocation.	J.	Wang	et	al,	can	get	the	resource	allocation	quickly	with	multi-leader	
multi-follower	Stackelberg	game	and	Q-learning.	However,	in	the	scenario	of	this	
paper,	the	reward	of	a	player	is	not	affected	by	the	other	player.	Because	there	is	
no	resource	competition,	a	player's	strategy	will	not	be	affected	by	other	players'	
strategies.	As	long	as	they	find	the	best	strategy	for	each	player,	they	can	find	the	
best	strategy	for	the	overall	players.	Because	a	player's	behavior	can	correspond	
to	a	stable	reward,	this	paper	can	use	Q-learning	to	record	behavior	and	state.	

In	 [4],	 due	 to	 limited	 computing	 resource,	 S.	 Guo	 et	 al,	 research	 how	 to	
improve	 efficiency	 of	 resource	 allocation	 is	 a	 challenge.	 In	 this	 paper,	 they	
propose	a	hierarchical	architecture	in	Smart	Home	with	mobile	edge	computing,	
providing	low-latency	services	and	promoting	edge	process	for	smart	devices.	
Based	on	that,	a	Stackelberg	Game	is	designed	in	order	to	allocate	computing	
resource	 to	 devices	 efficiently.	 Then,	 one-to-many	matching	 is	 established	 to	
handle	 resource	 allocation	 problems.	 The	 game	 in	 this	 paper	 is	 an	 original	
Stackelberg	game,	which	consists	of	one	 leader,	many	 followers.	A	 leader	can	
easily	know	the	strategies	and	rewards	of	all	followers,	making	it	easy	to	get	the	
optimal	 strategy.	Although	 there	 is	 resource	competition,	each	 time	 the	same	
devices	 compete	 for	 the	 same	 resource.	 In	 our	 scenario,	 each	 time	 different	
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players	compete	for	different	resources.	
In	 [5],	 considering	 the	 competing	 characteristics	 of	 multi-tenant	

environments	 in	 cloud	 computing,	 W.	 Wei	 et	 al,	 propose	 a	 cloud	 resource	
allocation	model	based	on	an	imperfect	information	Stackelberg	game	(CSAM-
IISG)	using	a	hidden	Markov	model	(HMM)	in	a	cloud	computing	environment.	
Based	on	 the	unit	prices	of	different	 types	of	resources,	a	 resource	allocation	
model	 is	proposed	 to	guarantee	optimal	gains	 for	 the	 infrastructure	 supplier.	
The	players	use	other	competitors'	historical	information	to	predict	their	bids,	
so	 the	 players	 need	 to	 communicate	 and	 transfer	 information	 with	 other.	
Although	 players	 only	 need	 to	 know	 the	 information	 of	 the	 surrounding	
competitors,	it	takes	some	time	and	energies	to	collect	information	and	calculate	
bids.	The	objective	of	this	paper	is	maximizing	the	profits	of	service	providers	
(leader),	which	may	be	unfair	to	the	followers.	

2.5 Reinforcement	Learning	

Reinforcement	 learning	(RL)	 [23]	 is	 an	 area	 of	machine	
learning	concerned	 with	 how	software	 agents	ought	 to	 take	actions	in	 an	
environment	 in	 order	 to	 maximize	 some	 notion	 of	 cumulative	 reward.	
Reinforcement	 learning	 is	 one	 of	 three	 basic	 machine	 learning	 paradigms,	
alongside	supervised	learning	and	unsupervised	learning.	

The	paper	[6]	presents	a	method	to	achieve	the	service	discovery	process	
using	the	principles	of	multilevel	matching	based	on	multi-level	specifications	
and	 customization	 based	 on	 reinforcement	 learning	 techniques.	 In	 this	
method,	 services	 are	 selected	 dynamically	 using	 an	 on-line	 performance-
based	reinforcement	feedback.	 	

One	of	the	earliest	models	of	reinforcement	learning	is	called	a	learning	
automaton	[7]	where	the	agent	attempts	to	 learn	the	optimal	action	from	a	
finite	 set	 using	 reward/penalty	 reinforcement	 from	 a	 stationary	
teacher/environment	 with	 unknown	 reward	 probabilities.	 The	 learning	
problem	is	formulated	as	updating	the	agent's	action	probabilities	on	the	basis	
of	trials	consisting	of	an	action	performed	and	the	reinforcement	received	[6].	

A	 popular	 model-free	 algorithm	 is	 the	 so-called	 !"# (Linear	 Reward-
Inaction)	algorithm	described	by	

$%(k	+	1)	=	 $%(k)	+	αr(k)(1	−	 $%(k))	
$&(k	+	1)	=	 $&(k)	−	αr(k)$&(k)	

where	 $%(k)	is	the	agent's	probability	of	choosing	action	ai	at	trial	k	,	ai	is	
the	action	chosen	at	trial	k	,	r(k)	is	the	reinforcement	received	(with	r(k)	=	0	
signifying	penalty,	and	r(k)	=	1	signifying	reward)	,	and	α	>	0	is	the	learning	
step-size	[6].	
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Chapter	3	

Problem	Definition	

3.1 Scenario	Definition	

In	one	area,	there	is	a	cloudlet	network	composed	of	many	cloudlets.	Users	
are	using	mobile	devices	and	are	constantly	moving.	Users	are	sending	tasks	to	
nearby	cloudlets	for	cloud	computing	at	all	times.	The	types	of	user	offloaded	
tasks	 are	 various,	 there	 are	 time-sensitive	 tasks	 and	 computation-sensitive	
tasks.	Due	to	the	uncertainty	of	user	mobility	and	task	types,	the	load	on	each	
cloudlet	is	constantly	changing.	If	a	cloudlet	suddenly	receives	many	users'	task	
offloading	 requests,	 then	 these	 tasks	 may	 exceed	 the	 load	 capacity	 of	 the	
cloudlet,	and	the	excess	tasks	will	not	be	executed,	or	wait	for	other	tasks	to	
complete	before	being	executed.	And	at	 the	 same	 time,	 some	cloudlets	may	
only	 accept	 fewer	 task	 execution	 requests,	 then	 there	 will	 be	 excessive	
computing	resources	on	these	cloudlets	that	are	not	being	used.	Because	these	
cloudlets	 are	 interconnected,	 if	 tasks	 on	 heavily	 loaded	 cloudlets	 are	
transferred	 to	 lightly	 loaded	 cloudlets	 for	 execution,	 the	 resources	 of	 the	
cloudlet	network	will	be	fully	utilized,	and	the	response	time	of	these	tasks	will	
be	reduced.	

In	our	scenario,	if	we	use	an	agent	to	manage	and	collect	the	information	
of	all	cloudlets,	 it	will	generate	 lots	of	communication	data	and	calculation,	
which	will	result	in	high	latency.	And	there	are	lot	of	researches	using	a	central	
cloudlet	 manager	 to	 solve	 the	 problem	 of	 load	 unbalancing	 in	 cloudlet	
network	[26],	[27],	[28].	For	the	central	cloudlet	manager,	if	there	are	a	large	
amount	of	cloudlets	 in	the	network,	 it	will	have	a	 lot	of	drawbacks,	such	as	
large	communication	volume,	large	algorithm	running	time,	poor	scalability	
and	so	on.	

So	in	our	scenario,	we	don't	want	to	use	the	central	method	to	solve	this	
problem.	 For	 less	 communication	 volume,	 we	 set	 the	 cloudlet	 can	 only	
communicate	 with	 the	 surrounding	 and	 connected	 cloudlets.	 So	 for	 one	
cloudlet,	the	communication	volume	is	related	to	the	connection	number	of	
cloudlets.	 Because	 the	 cloudlets	 compete	 computing	 resources	with	 others	
and	don't	know	all	the	information	of	others,	so	it's	an	incomplete	information	
game.	 We	 will	 use	 the	 Stackelberg	 game	 to	 solve	 the	 problem	 of	 load	
unbalancing.	

We	define	that	a	cloudlet	that	will	have	excessive	computing	resources	and	
be	able	to	accept	tasks	from	other	cloudlets	is	called	resource	server.	A	cloudlet	
that	have	more	tasks	than	its	own	load	and	needs	to	reduce	its	tasks	is	called	
task	server.	
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In	an	incomplete	information	Stackelberg	game,	a	task	server	cannot	know	
the	decisions	and	rewards	of	all	task	servers.	Since	the	resources	on	resource	
server	are	limited	and	the	task	server	doesn't	know	the	others'	strategies,	if	
many	task	servers	select	the	same	resource	server,	which	causes	the	tasks	in	
the	resource	server	to	exceed	its	own	load	and	some	tasks	will	not	be	able	to	
obtain	computing	resources,	resulting	in	calculation	failure.	

In	our	scenario,	for	a	task	server,	it	cannot	definitely	know	which	resource	
server	is	best.	Because	of	the	competition	of	resources	and	limited	resources,	
the	cloudlets'	strategies	will	affect	each	other.	So,	the	task	is	distributed	to	the	
same	resource	server	and	may	get	different	rewards.	Our	idea	is	that	each	task	
server	requests	resources	from	surrounding	resource	servers	multiple	times	
and	calculate	the	reward.	If	the	reward	of	a	resource	server	is	the	largest	and	
the	same	reward	can	always	be	obtained,	it	means	that	the	reward	is	the	best	
reward	and	the	resource	server	 is	 the	optimal	 task	 transferring	destination.	
Our	objective	is	that	how	to	get	the	best	rewards	and	find	the	optimal	resource	
servers	for	all	task	servers.	

3.2 Problems	

Here	we	define	two	problems	in	our	scenario:	
1. How	 to	 quickly	 find	 a	 good	 strategy	 of	 all	 cloudlets	 to	 solve	 the	

problem	of	load	unbalancing	in	a	cloudlet	network,	without	using	an	
agent	in	an	incomplete	information	Stackelberg	game?	

We	assume	 that	each	 task	server	can	not	cooperate,	know	each	other's	
strategy	and	 communicate	with	other	 task	 servers,	 but	 can	 change	 its	own	
strategy	according	to	rewards	from	each	resource	server.	The	reward	of	a	task	
server	will	be	affected	by	other	task	servers'	strategies,	so	the	reward	of	a	task	
server	from	the	same	resource	server	is	changing.	For	different	type	of	tasks,	
their	 requirements	are	different.	 In	exiting	 researches	 [26],	 [27],	 [28],	 they	
have	a	unique	objective	for	all	tasks,	such	as	minimal	task	response	time.	We	
want	 to	 propose	 a	method	 to	meet	 the	 different	 requirements	 of	 different	
types	of	tasks.	

2. How	 to	 go	 through	 fewer	 iterations	 and	 strategy	 updates,	 all	 task	
servers	tend	to	adopt	a	stable	strategy,	and	obtain	the	same	reward?	

In	Stackelberg	game,	we	need	some	iterations	and	strategy	updates	to	get	
a	good	task	transferring	strategy.	If	after	multiple	iterations,	each	task	server	
tends	to	choose	a	stable	strategy,	then	this	strategy	may	be	the	best	strategy	
for	all	task	servers.	
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Chapter	4	

System	Model	

In	this	chapter,	we	will	introduce	the	cloudlet	network	model	and	system	
modeling	with	Stackelberg	game	and	definition	in	cloudlet	network.	

4.1 Cloudlet	Network	

	
	
	
	
	
	
	
	
	
	
 
 
 
 
We	 assume	 that	 the	 cloudlets	 are	 connected	 with	 each	 other	 and	 can	

communicate	 and	 transfer	data	with	 each	other	with	dedicated	high-speed	
wired	lines	as	Figure	4.1	shows.	The	cloudlets	are	deployed	in	different	places.	
Each	cloudlet	covers	one	area	and	provides	 task	offloading	services	 for	 the	
users	 in	 this	 area.	 In	 Figure	 4.1,	 the	 blue	 nodes	 represent	 the	 low-load	
cloudlets	and	are	called	as	resource	servers.	The	red	nodes	represent	the	high-
load	 cloudlets	 and	 are	 called	 as	 task	 servers.	 Colored	 arrows	 indicate	 data	
transfer	direction.	The	blue	arrows	represent	that	resource	servers	distribute	
the	resource	information	to	the	surrounding	task	servers.	The	orange	arrows	
represent	 that	 task	 servers	 send	 the	 task	 execution	 requests	 to	 the	
surrounding	 resource	 servers.	 The	 yellow	 arrows	 represent	 that	 resource	
servers	send	the	task	execution	results	to	the	surrounding	task	servers.	

4.2 System	Modeling	with	Stackelberg	Game	

Stackelberg	games	consist	of	a	hierarchical	 structure	with	a	 leader	and	
followers.	In	a	Stackelberg	game,	the	leader	first	sets	a	price	which	is	charged	

Figure	4.1.	Cloudlet	Network	

Task	requests	

Resource	 	
information	

Execution	result	
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to	 the	 followers,	 then	the	 followers	react	 to	 the	charged	price	and	compete	
with	each	other.	In	a	Stackelberg	game,	one	player	(the	"leader")	moves	first,	
and	all	other	players	(the	"followers")	move	after	him.	Figure	4.2	is	the	system	
model	of	Stackelberg	game.	

 
 
 
 
 
 
 
 
 
 

  
  

Figure	4.3	is	the	system	model	with	Stackelberg	game	in	cloudlet	network	
we	proposed.	When	many	task	servers	distribute	tasks	to	the	same	resource	
server,	each	task	server	will	compete	the	bandwidth	and	computing	resources	
of	the	resource	server,	thus	creating	a	competitive	relationship.	At	the	same	
time,	 the	 allocation	 strategy	 of	 each	 task	 server	will	 indirectly	 restrict	 the	
strategies	 of	 other	 task	 servers	 by	 affecting	 the	 pricing	 strategies	 of	 the	
resource	servers.	

Therefore,	 there	 is	 a	 noncooperative	 game	 relationship	 between	 task	
servers	and	resource	servers.	

Nash	equilibrium	is	a	solution	to	the	noncooperative	game	and	is	a	stable	
state	of	 countermeasures	between	 the	various	players.	Assuming	 that	 each	
player	 can	 make	 rational	 decisions,	 when	 the	 game	 reaches	 the	 Nash	
equilibrium,	 the	 utility	 of	 each	 player	 is	 maximized,	 and	 each	 player	
participating	in	the	game	cannot	change	the	strategy	to	obtain	more	profits.	
However,	 the	 optimal	 solution	 does	 not	 necessarily	 exist.	 Some	
noncooperative	 game	 models	 do	 not	 have	 an	 optimal	 solution,	 and	 some	
models	may	have	multiple	optimal	solutions.	In	our	scenario,	we	want	to	get	a	
good	solution	quickly	instead	of	getting	the	optimal	solution	slowly.	If	it	takes	
a	lot	of	time	to	get	the	optimal	solution,	it's	meaningless	for	the	time-sensitive	
tasks	to	be	transferred	to	other	cloudlets.	It	may	take	less	time	to	execute	these	

Resource	servers	

(leaders)	

Task	servers	

(followers)	

Figure	4.3.	System	model	with	Stackelberg	Game	in	cloudlet	network	

Figure	4.2.	System	model	of	Stackelberg	game	
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tasks	locally.	

4.3 Stackelberg	Game	Definition	in	Cloudlet	Network	

The	 entire	 Stackelberg	 game	 process	 consists	 of	 two	 phases:	 the	 leader	
decision	 phase	 and	 the	 follower	 decision	 phase	 and	 three	 elements:	 player,	
strategy	 and	 payoff.	We	 define	 the	 player,	 strategy	 and	 payoff	 of	 Stackelberg	
game	in	our	scenario	as	follows:	

1. Two	phases	in	Stackelberg	game	
Leader	 decision	phase:	 resource	 servers	 (leaders)	 first	 determine	 the	

unit	price	of	their	own	resources,	and	then	send	information	such	as	price,	
resource	number	and	computing	power	to	the	surrounding	task	servers.	The	
resource	server	will	adjust	the	price	strategy	based	on	the	fee	paid	by	the	
task	servers.	

Follower	decision	phase:	task	servers	(followers)	distribute	their	tasks	
to	surrounding	resource	servers	and	calculate	the	rewards	of	the	tasks	based	
on	the	performance,	fee	paid	for	resource	servers	and	task	execution	time.	In	
our	scenario,	the	task	server	will	choose	the	resource	server	with	the	largest	
reward.	

2. Payoff	
Payoff	is	defined	as	the	reward	obtained	by	the	player	in	Stackelberg	

game.	 The	 resource	 servers'	 payoff	 is	 defined	 as	 '% (x,	 y)	 and	 the	 task	
servers'	payoff	is	defined	as	 (&(x,	y),	i∈M,	j∈N,	x∈X,	y∈Y.	

3. Strategy	
The	strategy	of	task	server	is	distributing	the	tasks	to	ideal	cloudlets.	

For	 the	 resource	 server,	 the	 strategy	 is	 to	 set	 the	 unit	 price	 for	 task	
execution.	The	task	servers'	strategies	combination	is	defined	as	X	=	{*+,	
*,,…,	 *-},	and	the	set	is	represented	as	X.	The	resource	servers'	strategies	
combination	is	defined	as	y	=	{.+,	 .,,…,	 ./},	and	the	set	is	represented	as	
Y.	
The	price	strategy	of	 resource	server	 j:	 $& .	The	price	strategies	of	all	

resource	server:	
P	=	{$+,	 $,,	…,	 $-}	

Define	 0% 	 =	(0%& ,	 01%&)	as	resource	requirement	vector	for	task	server	i.	
0%& 	 represents	the	computing	and	network	resources	policy	requested	by	
task	server	i	to	resource	server	j.	 01%& 	 represents	the	resource	policies	of	
task	server	i	except	the	resource	server	j.	

Q	=	{0+,	 0,,	…,	 0/}	represents	a	combination	of	resource	requirements	
for	all	task	servers	in	the	cloudlet	network.	

4. Player	
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Define	 the	 resource	 servers	 as	 leaders.	 In	 the	 entire	 task	 transferring	
system,	the	resource	server	is	the	occupant	of	the	resource,	and	its	decision	
is	a	prerequisite	for	the	decision	of	the	task	servers,	and	its	pricing	will	affect	
the	task	transferring	of	the	task	servers.	

Define	the	task	servers	as	followers.	According	to	the	difference	between	
the	 resource	 servers'	 prices	 and	 execution	 capabilities,	 followers	 aim	 to	
optimize	their	own	utility	and	adjust	the	task	transferring	strategies.	

Define	m	leaders	and	n	followers,	represented	by	two	sets	M	=	{1,	2,	...,	
m}	and	N	=	{1,	2,	...,	n},	respectively.	 	

We	define	 that	 the	utility	 function	of	 the	 task	server	consists	of	 three	
parts:	payoff,	cost,	and	task	execution	time.	Utility	function	of	task	server	i	is	
defined	as:	

(%(p,	 0% ,	 01%)	=	 2%(∑ 0%&-
&5+ )	 -	 ∑ 7&($&, 	0%&)-

&5+ 	 -	 ∑ :&(0%&)-
&5+ 	

Function	 2% 	 is	 the	 payoff	 function	with	 the	 resource	 vector	 0% .	 The	
payoff	of	the	task	server	is	related	to	the	resources	obtained.	 7&($&, 	0%&)	 is	
the	fee	paid	by	the	task	server	i	to	the	resource	server	j.	 :&(0%&)	 is	the	tasks	
execution	time	of	task	server	i.	The	specific	function	we	define	is	as	follows:	

U(x)	=	 ;log(1	+	x)	
;	 varies	from	user	to	user,	it	can	be	understood	as	user	satisfaction	with	

resources.	
7&($&, 	0%&)	 =	 $& ∗ 0%& ,	 $& 	 =	($= ,	 $>)j,	

:&(0%&)	 =	 ?
@A
BAC
,	

D% 	 =	(D= ,	 DE)i.	 D= 	 is	the	computation	instructions	of	the	task	i.	 DE	 is	the	
data	size	of	task	i.	β	is	related	to	the	task	type.	For	delay	sensitive	tasks,	the	
β	value	is	large.	For	delay	insensitive	tasks,	the	β	value	is	small.	

Payoff	of	resource	server	j	is	the	fee	of	selling	the	resources	to	the	task	
servers.	

Utility	function	of	resource	server	j	is	defined	as	follows:	
'&($& ,	q)	=	 ∑ 0%&/

%5+ *	 $& 	
The	pricing	strategy	of	the	resource	server	is	defined:	
� Related	to	its	own	resources	
� Related	to	the	load	status	of	the	past	period	of	time	
� When	the	number	of	requested	resources	exceeds	its	own	resources,	the	

price	will	be	set	high	to	reduce	resource	requests	from	task	servers.	

4.4 Nash	equilibrium	of	noncooperative	game	

We	suppose	 that	 in	 the	case	 that	 the	 leaders	have	made	decisions,	each	
follower	of	the	participating	game	performs	a	noncooperative	game	[30]	under	
the	decision	to	maximize	his	own	profit,	then	the	best	strategy	of	the	follower	
under	the	leader	strategy	can	be	defined	as:	
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N(x)	=	{.∗	 =	(.+∗,	 .,∗,…,	 .&∗,…,	 ./∗):	 (& 	 (x,	 .&∗,	 .1&∗ )	 ≥ (& 	 (x,	 .&	, 	.1&∗ )	}	

Where	 .&∗	 represents	the	best	strategy	for	follower	j;	 .1&∗ 	represents	the	

best	set	of	strategies	for	followers	other	than	j.	
It	 can	be	seen	 from	the	above	 formula	 that	 in	 the	case	 that	 the	 leaders'	

strategies	have	been	determined,	each	 follower	has	an	optimal	strategy	and	
will	not	obtain	greater	profits	by	adjusting	his	own	strategy.	

When	 all	 followers'	 strategies	 satisfy	 the	 above	 formula,	 the	 optimal	
strategy	 space	 .∗ 	 is	 called	 a	Nash	 equilibrium	point	 of	 the	noncooperative	
game.	

4.5 Game	Equilibrium	Problem	Definition	

Define	the	Stackelberg	game	as	

V	=	{x,	y,	 '%(x,	y),	 (&(x,	y)},	i	 ∈	 M,	j	 ∈	 N,	x	 ∈	 X,	y	 ∈	 Y	

The	equilibrium	problem	can	be	defined	as:	
Existence	of	(*∗, .∗)	 ∈	 X	 ×	 Y	makes	 '%(*%∗,	 *1%∗ ,	 .∗)	 ≥	 '%(*% ,	 *1%∗ ,	 .∗)	

true,	i	 ∈	 M,	 .∗	 ∈	 N(x).	
If	any	strategy	combination	(*∗, .∗)	 ∈	 X	 ×	 Y	satisfies	the	above	formula,	

then	 (*∗, .∗ )	 is	 called	 the	 subgame	 perfect	 Nash	 equilibrium	 point	 of	 the	
Stackelberg	game.	

Next	is	the	proof	of	the	existence	of	Nash	equilibrium	in	the	utility	function	
of	task	server.	

(%(p,	 0% ,	 01%)	=	 2%(∑ 0%&-
&5+ )	 -	 ∑ 7&($&, 	0%&)-

&5+ 	 -	 ∑ :&(0%&)-
&5+ 	

=	 ;% 	 log(1	+	 ∑ 0%&-
&5+ )	-	 ∑ $& ∗ 0%&-

&5+ 	 -	 ∑ ?%
@A
BAC

-
&5+ 	

First	derivation	of	 (%:	
HIA(p,	BA,	BJA)

HBAC
	 =	 KA

+L∑ BACM
CNO

	 -	 $& 	 +	 ∑ ?%
@A
BACP

-
&5+ 	

Second	derivation	of	 (%:	
H	IAP(p,	BA,	BJA)

HBACP
	 =	- KA

Q+L∑ BACM
CNO R,

	 -	 ∑ ?%
,∗@A
BACS

-
&5+ 	

Because	 ;% 	 >	0,	 ?% 	 >	0,	
H	IAP(p,	BA,	BJA)

HBACP
	 <	0	is	always	true.	

The	utility	function	is	a	strict	concave	function	that	ensures	the	existence	
of	a	Nash	equilibrium.	Figure	4.4	is	the	structure	example	of	existence	of	Nash	
equilibrium	in	our	proposed	method.	

	
	
	



Waseda	University	
2019	Master's	Thesis	 Fukazawa	Lab.	

 18 

	
	
	
	
	
	
	

	 	

Nash	equilibrium	

Figure	4.4.	Example	of	existence	of	Nash	equilibrium	in	our	proposed	method	
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Chapter	5	

Proposal	

In	this	chapter,	we	will	introduce	the	optimization	problem	in	our	scenario	
and	 our	 proposed	 method,	 which	 combines	 Stackelberg	 game	 and	
reinforcement	learning.	

5.1 Optimization	problem	

In	an	incomplete	information	game,	the	task	servers	and	resource	servers	
don’t	 know	 the	 strategies	 of	 others	 and	 only	 can	 communicate	 with	
surrounding	cloudlets.	The	optimization	problem	in	our	scenario	is	that	how	
to	record	the	impact	of	other	players'	strategies	on	a	player's	own	rewards	and	
make	each	player's	next	decision	more	reasonable	and	accurate	based	on	each	
reward	after	each	iteration.	

The	probability	of	selecting	a	resource	server	 for	a	 task	server	that	was	
previously	thought	is	0	or	1,	which	means	unselected	or	selected.	For	a	task	
server,	 after	 selecting	 a	 resource	 server,	 the	 next	 choice	 of	 which	 resource	
server	 is	uncertain,	may	be	randomly	selected	 in	 the	traditional	Stackelberg	
game	model.	

With	reinforcement	 learning,	we	represent	 the	behavior	of	 the	resource	
server	selection	by	probability,	that	is,	the	task	has	such	a	probability	to	choose	
the	 resource	 server.	 In	 this	way,	 each	 time	 the	 probability	 of	 each	 resource	
server	is	updated	according	to	the	obtained	rewards.	

We	use	 reinforcement	 learning	 to	 determine	which	 resource	 server	 the	
task	server	should	choose.	That	is,	when	the	task	servers	are	going	to	distribute	
the	 tasks	 to	 the	 ideal	resource	servers,	 they	 just	choose	the	resource	server	
with	the	biggest	selection	probability.	

We	model	 the	 resource	 server	 and	 task	 server	 into	 a	 multi-leader	 and	
multi-follower	Stackelberg	game	and	build	 their	 respective	utility	 functions.	
We	combine	Stackelberg	game	and	reinforcement	learning	to	find	the	optimal	
task	distributing	strategy	quickly	and	efficiently.	

If	a	task	server	can	get	a	relatively	large	reward	from	the	resource	with	the	
biggest	selection	probability	multiple	times,	it	means	that	the	reward	is	stable.	
If	the	behaviors	and	rewards	of	the	all	task	servers	tend	to	be	stable,	it	means	
we	 find	 the	Nash	 equilibrium	of	 Stackelberg	 game,	 that	 is,	 the	 optimal	 task	
transferring	strategy	for	all	task	servers.	
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5.2 Stackelberg	Game	+	Reinforcement	Learning	

For	a	task	server,	there	are	some	resource	servers	to	choose.	Task	server	
can	 calculate	 the	 rewards	 of	 each	 task	 based	 on	 the	 performance	 and	
resources	of	the	resource	servers.	Then,	based	on	the	rewards,	the	selection	
probability	of	each	resource	server	is	updated.	

For	resource	server	j,	the	reward	of	task	i	will	update	the	probability	that	
task	 i	 chooses	 cloudlet	 j,	 and	 it	will	 also	update	 the	 selection	probability	of	
other	 resource	 servers.	 If	 a	 task	 gets	 a	 better	 reward,	 it	 will	 increase	 the	
probability	 of	 selecting	 this	 resource	 server,	 and	 it	 will	 also	 reduce	 the	
probability	of	selecting	other	resource	servers.	If	a	task	gets	a	poor	reward,	it	
will	reduce	the	probability	of	selecting	this	resource	server,	and	it	will	increase	
the	probability	of	selecting	other	resource	servers.	

In	 order	 to	 achieve	 this	 goal,	 we	 refer	 the	 Linear	 Reward-Inaction	
algorithm	[6]	and	propose	our	reinforcement	learning	method.	

Task	server	probability	function	is	defined	with	reinforcement	learning	as:	

$%(k	+	1)	=	 $%(k)	+	α(r(k)	-	r)(1	-	 $%(k))	

$&(k	+	1)	=	 $&(k)	-	α(r(k)	-	r)$&(k)	(jT[1,	M]	except	i)	

k	 is	iteration	time	of	task	server.	r	represents	the	average	reward	in	the	
past	period	of	time.	

When	a	task	server	takes	a	behavior,	gets	a	reward	r(k).	If	r(k)	is	greater	
than	r,	then	the	selection	probability	of	this	resource	server	will	increase,	and	
the	selection	probability	of	other	resource	servers	will	decrease.	If	r(k)	is	less	
than	r,	then	the	selection	probability	of	this	resource	server	will	decrease,	and	
the	selection	probability	of	other	resource	servers	will	increase.	When	the	task	
server	takes	an	action	and	gets	the	same	rewards	for	a	period	of	time,	then	r(k)	
-	r	is	equal	to	0,	and	the	selection	probability	of	each	resource	server	does	not	
change.	 It	means	 that	 the	 task	 transferring	strategy	and	reward	of	 the	 task	
server	will	tend	to	be	stable.	

Resource	server	price	function	is	defined	with	reinforcement	learning	as:	

0%(t	+	1)	=	 0%(t)	+	 U%(s(t)	-	s)	
t	 is	 the	 iteration	 time	of	 resource	 server.	 s	 represents	 the	average	 total	

reward	 of	 the	 tasks	 in	 this	 resource	 server	 in	 the	 past	 period	 of	 time.	 s(t)	
represents	the	total	reward	of	the	tasks	at	time	t.	 0%(t)	is	the	resource	server's	
price	at	time	t.	 U%	>	0	is	the	learning	step-size.	
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5.3 Stackelberg	 game	 and	 reinforcement	 learning	

(SGRL)	algorithm	

The	pseudo	code	of	Stackelberg	game	and	reinforcement	learning	(SGRL)	
algorithm	is	shown	in	Algorithm	1.	

 

Algorithm	1	Stackelberg	game	and	reinforcement	learning	(SGRL)	algorithm	

Input:	

	 	 	 	 Cloudlets	information	in	cloudlet	network	
Output:	

	 	 	 	 Task	transferring	strategies	of	task	servers	
Initialization	

	 	 Each	resource	server	initializes	the	price	strategy	based	on	its	resources	
1:	for	each	iteration	t	do	
2:	 resource	server	j	distributes	its	information	of	price,	performance	to	the	

surrounding	task	server	i	
3:	 Task	server	i	receives	the	information	of	surrounding	resource	server	j	
4:	 Task	server	i	initializes	the	selection	probability	p	
5:	 for	each	iteration	k	do	
6:	 Task	server	i	selects	the	resource	server	j	with	the	max	p	
7:	 Resource	 server	 j	 receives	 the	 task	 execution	 requests	 from	

surrounding	task	server	i	
8:	 Resource	 server	 j	 decides	 which	 task	 is	 executed	 based	 on	 the	

resources	it	has	and	sends	the	execution	decision	to	the	task	server	i	
9:	 if	the	tasks	are	accepted	
10:	 	 The	tasks	are	executed	in	resource	server	j	
11:	 else	

	 	 The	tasks	are	executed	locally	in	task	server	i	
	 end	if	

11:	 Task	server	i	calculates	the	rewards	of	resource	servers	j	
12:	 Task	server	i	updates	the	selection	probability	p	
13:	 end	for	
14:	end	for	
	

5.4 Iterative	algorithm	running	time	series	

In	the	process	of	the	task	servers	reaching	the	Nash	equilibrium,	the	price	
of	the	resource	server	must	remain	unchanged,	and	the	resource	servers	need	
to	observe	and	wait	for	the	task	transferring	strategies	of	the	task	servers	to	
stabilize.	 This	 waiting	 time	 is	 one	 iteration	 time	 slice	 ∆W 	 of	 the	 resource	
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servers.	The	iterative	process	of	the	price	change	includes	multiple	time	slices	
∆W,	and	each	time	slice	 ∆W	 includes	multiple	iteration	time	slices	 ∆X	 of	task	
servers.	The	algorithm	running	time	series	is	shown	in	the	Figure	5.1.	

Through	multiple	iteration	time	slices	 ∆X,	the	task	transferring	strategy	
of	 task	servers	 is	gradually	optimized.	Through	multiple	 iteration	times	 ∆W,	
the	price	strategy	of	the	resource	server	is	gradually	optimized.	

   
 
 
 
 
 
 
 
 
 
 
 

  

t	 t+1	

X	 X+1	

Resource	server	

Task	server	

Non-cooperative	game	

Figure	5.1.	Iterative	algorithm	running	time	series	
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Chapter	6	

Simulation	Results	

6.1 Simulation	Definition	

In	 order	 to	 prove	 that	 our	 proposed	 method	 has	 much	 less	 algorithm	
running	 time	 and	 better	 scalability	 than	 the	 method	 in	 [27],	 we	 make	 the	
following	simulation	definition.	

We	 construct	 a	 cloudlet	 network	 consisting	 of	 2000	 cloudlets.	 Each	
cloudlet	has	a	50%	probability	of	becoming	a	resource	server	or	task	server.	
Each	cloudlet	is	connected	to	nearby	cloudlets	based	on	its	geographic	location.	
The	number	of	each	cloudlet	connected	to	other	cloudlets	is	between	2	and	10.	
The	 computing	 performance	 varies	 among	 cloudlets.	 The	 instruction	 per	
second	of	cloudlet's	processor	speed	varies	from	500	to	2000.	The	number	of	
tasks	that	exceed	the	load	on	each	task	server	is	between	3	and	8.	Tasks	are	
divided	into	4	types.	There	are	simple	tasks	with	a	small	amount	of	data	and	a	
small	amount	of	calculation.	There	are	also	complex	tasks	with	a	large	amount	
of	data	and	a	large	amount	of	calculation.	The	tasks	are	defined	in	Table	1.	

The	simulation	is	performed	on	a	macOS	Catalina	machine	with	an	Intel	
Core	i7	3760h	2.3	GHz	CPU,	8	GB	RAM.	

 
 
 
 
 
 
 

 
There	are	5	to	10	excessive	VMs	on	each	resource	server.	If	the	resource	

server	runs	out	of	all	VMs,	it	will	no	longer	be	able	to	accept	tasks,	unless	there	
are	tasks	that	have	been	executed	and	free	up	some	computing	resources.	

If	all	the	VMs	on	the	resource	server	connected	to	the	task	server	are	used	
up,	and	there	is	no	place	to	transfer	the	extra	tasks	on	the	task	server,	then	the	
task	 will	 wait	 for	 the	 local	 task	 to	 finish	 before	 executing	 it	 locally.	 Tasks	
executed	locally	have	a	waiting	time.	

Task	type	 Data	size	 Instruction	size	

0	 1~100	 1~100	

1	 100~1000	 100~1000	

2	 1000~5000	 1000~5000	

3	 5000~10000	 5000~10000	

Table	6.1.	Task	definition	
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6.2 Comparison	methods	

Agent-based	central	management	method	

In	 this	 method,	 there	 is	 an	 agent	 to	 collect	 all	 cloudlet	 information,	
including	task	server	task	information,	resource	server	computing	power,	and	
number	of	VMs.	In	order	to	obtain	the	minimum	execution	time	of	all	tasks,	
the	 simplest	 method	 is	 transferring	 the	 tasks	 with	 a	 large	 amount	 of	
calculation	 to	 the	 resource	 servers	 with	 a	 strong	 computing	 capability	 for	
execution.	Tasks	with	a	small	amount	of	computation	are	transferred	to	the	
resource	 servers	 with	 a	 weak	 computation	 capability	 for	 execution.	 If	 the	
number	of	 tasks	received	by	 the	resource	server	exceeds	 the	number	of	 its	
own	VMs,	additional	tasks	with	a	small	amount	of	calculation	will	be	executed	
locally	 on	 the	 task	 server.	 The	 execution	 time	 of	 the	 overall	 tasks	 will	 be	
minimal.	

6.3 Task	execution	time	comparison	

We	randomly	generate	a	cloudlet	network	50	times.	We	use	our	proposed	
Stackelberg	game	and	reinforcement	learning	(SGRL)	method	and	agent-based	
method	to	get	the	task	transferring	strategy	with	minimum	task	execution	time,	
and	record	the	sum	of	the	execution	time	of	all	tasks.	The	results	are	shown	in	
Figure	6.1,	the	smaller	the	value,	the	better.	From	the	Figure	6.1,	we	can	see	
that	the	execution	time	of	all	tasks	obtained	by	SGRL	is	longer	than	that	of	the	
comparison	method.	Figure	6.2	shows	the	gap	ratio	of	task	execution	time.	The	
smaller	 the	 value,	 the	 better.	 The	 average	 task	 execution	 time	 gap	 ratio	 is	
181.29%.	

The	 agent-based	 method	 knows	 all	 the	 information	 of	 all	 tasks	 and	
cloudlets,	so	it	can	get	the	task	transferring	strategy	with	the	minimum	task	
execution	time.	Because	our	proposed	method	SGRL	is	a	game	with	incomplete	
information,	our	results	will	only	be	infinitely	close	to	the	results	of	the	agent-
based	method.	
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Figure	6.1.	Task	execution	time	comparison	
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6.4 Algorithm	running	time	comparison	

In	SGRL	method,	we	calculate	the	average	time	Δt	spent	by	an	iteration	of	
a	resource	server	and	the	average	time	∆X	spent	by	an	iteration	of	a	task	server.	
∆t	=	∆X	*	r2,	r2	is	the	iteration	times	of	a	task	server.	The	overall	iteration	time	
is	Δt	*	r1,	r1	is	the	iteration	times	of	a	resource	server.	

Because	 the	 leaders	 and	 followers	 in	 the	 Stackelberg	 game	 adjust	 their	
strategies	in	their	respective	iteration	intervals	at	the	same	time,	each	iteration	
time	of	the	leader	and	follower	is	very	short.	The	final	running	time	is	∆X	*	r2	*	
r1.	

The	 Figure	 6.3	 is	 a	 typical	 task	 execution	 time	 trend	 graph	 from	 our	
experimental	results.	

	

 
 
 
The	experimental	 results	show	that	 the	average	number	of	 iterations	 to	

obtain	a	solution	is	around	20.	So	the	average	running	time	to	obtain	a	solution	
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Figure	6.3.	A	typical	task	execution	time	trend	graph	
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is	about	20∆X.	
When	the	density	of	the	cloudlet	network	is	10,	that	is,	when	one	cloudlet	

is	connected	to	10	cloudlets	on	average,	the	average	running	time	∆X	for	one	
iteration	is	0.000548s.	The	average	running	time	of	getting	a	better	solution	is	
0.01096s.	

When	the	number	of	cloudlets	with	the	same	density	is	2000,	the	average	
running	time	of	the	agent-based	centralized	management	method	is	7.159969s.	
The	 algorithm	 running	 time	 comparison	 between	 SGRL	 and	 agent-based	
method	is	shown	in	Figure	6.4.	And	the	execution	time	of	agent-based	method	
will	increase	exponentially	with	the	number	of	cloudlets,	as	shown	in	Figure	
6.5.	The	running	time	of	SGRL	method	does	not	increase	with	the	number	of	
cloudlets	increasing.	
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Figure	6.4.	Algorithm	running	time	comparison	
	

Figure	6.5.	Algorithm	running	time	trend	graph	of	agent-based	method	
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Chapter	7	

Conclusion	and	Future	Work	

Experimental	results	show	that	our	proposed	method	can	approach	a	good	
solution	 with	 fewer	 iterations	 (about	 20).	 Compared	 with	 the	 agent-based	
central	management	method,	our	proposed	method	can	find	a	good	solution	
much	 more	 quickly.	 Therefore,	 our	 proposed	 framework	 can	 get	 a	 task	
transferring	strategy	in	near	real	time,	so	as	to	provide	the	users	with	a	good	
task	offloading	experience.	

Our	 method	 can	 meet	 the	 different	 requirements	 of	 different	 tasks,	
because	each	player	in	the	Stackelberg	game	can	define	its	own	utility	function.	
Such	 as	 execution	 time,	 price,	 performance	 of	 cloudlet	 and	 so	 on.	However,	
with	 agent-based	 central	management	method,	 we	 cannot	 specify	 different	
utility	functions	for	different	tasks,	we	must	use	a	unique	objective	function,	
such	as	the	least	execution	time	or	the	least	money	spent.	

The	 framework	 we	 proposed	 has	 better	 scalability.	 Because	 in	 our	
proposed	 framework,	 each	 cloudlet	 only	 needs	 to	 communicate	 with	
surrounding	 cloudlets	 that	 can	 provide	 computing	 resources,	 the	
communication	 volume	 is	 very	 small.	 And	 the	 communication	 volume	 and	
running	time	are	only	related	to	the	density	of	the	cloudlet	network	and	will	
not	 increase	with	 the	number	of	 cloudlets	 increasing.	However,	 the	 running	
time	 of	 the	 agent-based	 centralized	 management	 method	 will	 increase	
exponentially	with	the	number	of	cloudlets	increasing.	

In	the	future	work,	we	will	narrow	the	gap	between	the	optimal	solution	
of	 agent-based	method	and	 the	 solution	of	 the	SGRL	method.	Although	 it	 is	
almost	 impossible	 to	 get	 the	optimal	 solution	 in	 an	 incomplete	 information	
game,	we	will	optimize	our	method	to	make	the	solution	of	the	task	transfer	
strategy	closer	to	the	optimal	solution	and	strive	to	keep	the	gap	within	10%.	
The	 scenario	we	originally	 envisioned	was	 that	 after	multiple	 iterations,	 all	
players	will	gradually	choose	a	fixed	target,	so	that	on	the	basis	of	not	obtaining	
all	 the	 information,	we	will	get	a	solution	 that	all	players	are	satisfied	with.	
From	Figure	6.3,	the	strategy	chosen	by	each	player	will	change	slightly,	so	that	
the	 result	 of	 the	 objective	 function	 fluctuates.	 In	 the	 future	 work,	 we	 will	
research	 how	 to	 improve	 the	 Stackelberg	 game	 and	 reinforcement	 learning	
method	to	avoid	volatility	and	get	a	stable	solution.	
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