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Chapter 1

Introduction

Signal analysis and processing is an important element in obtaining information

from observed data in various applications. Non-stationary signals including audio

and speech signals are generally analyzed or processed in the time-frequency (T-F)

domain because it is insufficient to analyze them in only the time or frequency

domains. The short-time Fourier tranform (STFT) [1] is usually utilized to convert

signals into the T-F domain, owing to its simplicity and easily understandable

structure [2–4]. STFT is a method of obtaining a T-F representation by the Fourier

transform of the signal multiplied by a time-shifted window function. The resolution

of the T-F representation obtained by STFT depends on the window function and is

limited in Heisenberg’s uncertainty principle. For more detailed analysis and more

accurate processing, a time-frequency representation with higher resolution than

the Heisenberg uncertainty principle is required.

The reassignment method and the synchrosqueezing transform (SST) have been

proposed to overcome Heisenberg’s uncertainty principle [5]. Kodera first proposed

the reassignment method to improve the readability of the T-F representation ob-

tained by the STFT [6]. Then, Auger and Flandrin popularized the reassignment

method by discovering an efficient computational method; furthermore, they gener-

alized the reassignment method to T-F representations in Cohen’s class and time-

scale representations [7]. Then, the reassignment method was generalized for any

filterbank [8,9]. It has been applied to acoustics, biomedics, and machine condition

monitoring [10–12]. The reassignment method sharpens a T-F representation using

the time and frequency derivative of its phase at the expense of invertibility.

In the context of audio signal analysis, Daubechies and Maes proposed the
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SST [13, 14], which is a variant of the reassignment method. The SST performs

frequency-only reassignment to a complex-valued T-F representation to sharpen

the T-F representation while ensuring invertibility. Subsequently, the SST was also

generalized for STFT [15,16] and other representations [9,17] and has been widely

studied [18–22]. SST has been applied to various fields such as seismic waves and

gravity waves [17, 21]. The main computations in the reassignment method and

the SST are the STFTs with a window and with its derivatives. In addition, they

can also be performed online using a finite-length window function in the time

domain. On the other hand, it is not easy to reassign the components in their

original positions when they are mixed by the influence of windowing.

In a different vein, sparsity-aware methods for estimating T-F representation

have been proposed [23–32]. Sparsity-aware methods aim to find the coefficients of

a predefined redundant dictionary such that the signal is represented with as few co-

efficients as possible. The direct formulation for finding the sparsest representation

of representing the signal is to minimize the number of non-zero coefficients, called

the ℓ0 norm. Unfortunately, this problem is usually an intractable combinatorial

optimization problem, and its solution is sensitive to noise. Mallat et al. have pro-

posed the method of matching pursuit that finds an approximate solution to this

problem with a greedy algorithm [23]. Chen et al. propose the method of basis

pursuit that solves the minimization problem using the ℓ1 norm, which is a convex

relaxation of the ℓ0 norm [24]. This formulation is a convex optimization problem,

which can be solved by convex optimization algorithms efficiently. Furthermore,

It has advantages in obtaining globally optimal solutions and robustness to noises

and mixing components. However, it is computationally intensive due to the use

of iterative algorithms. It is also difficult to apply to online processing because it

solves the optimization problem using the entire signal. Thus, there is a trade-off

between robustness and computational complexity for the reassignment method,

the synchrosqueezing transformation, and the iterative algorithm, and the choice

must be made according to the application. Thus, the reassignment method, SST,

and the sparsity-aware methods should be selected according to the application.

The aim of this thesis is to explore and improve the STFT and the estimation

methods of sparse T-F representations based on STFT. The organization of this

thesis is illustrated in Fig. 1.1. Chapter 2 provides the general knowledge related to

the STFT and Heisenberg’s uncertainty principle. Next, the reassignment method,

13



SST, and sparsity-aware method are described as techniques for estimating sparse

T-F represenations to overcome Heisenberg’s uncertainty principle.

In Chapter 3, we propose a method for designing window functions for comput-

ing instantaneous frequency (IF), which used in the reassignment method and the

SST. The IF is computed using the STFTs with a window and with its derivatives.

These frequency responses affect computing the IF. The proposed method designs

window functions to minimize the sidelobes of derivatives of the windows. This

work was presented in [33,34].

In Chapter 4, we propose an estimation of sparse T-F representation using the

atomic norm. The formulation using the ℓ1 norm requires the discretization of the

frequency parameter onto a grid. If the grid and the actual frequencies do not

match, a sparse solution may not be obtained. To avoid the grid mismatch, we

propose a method for estimating sparse T-F representation using the atomic norm.

In Chapter 5, we propose a method to improve sparsity by combining the gridless

sparse method using the atomic norm with nonconvex optimization. The estimator

via the atomic norm minimization includes a bias to reduce the amplitude as well as

the ℓ1 norm. In the grid-based sparse optimization, nonconvex penalties induceing

sparsiy have been proposed instead of the ℓ1 norm. The proposed method combines

of a gridless sparse optimization method using the atomic norm and a sparse op-

timization method using non-convex functions. Chapter 6 summarizes this thesis

and discusses the remaining issues.

14
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Chapter 2

Background

This chapter explains the STFT and the methods of estimating a sparse T-F repre-

sentation. First, the classical T-F representations including the STFT, WVD, and

Cohen’s class are described. Next, we introduce reassignment method and sparse

optimization-based methods as methods for estimating sparse T-F representations.

2.1 Classical time-frequency representation

2.1.1 Fourier transform

Before describing the STFT, we define some terms related to the Fourier transform.

The Fourier transform maps a time-domain signal to the frequency domain. The

Fourier transform f̂ ∈ L2(R) of a signal f ∈ L1(R) ∩ L2(R) is defined as

f̂(ω) :=

∫
R
f(t)e−i2πωtdt. (2.1)

The signal f can be recovered from f̂ via the inverse Fourier transform:

f =

∫
R
f̂(ω)ei2πωdω. (2.2)

For a discrete signal f ∈ CL, the discrete Fourier transform (DFT) F : CL → CL is

defined as

f̂ [m] := (Ff)[m] =

L−1∑
l=0

f [l]e−i 2πml
L , (2.3)

and its inverse F−1 : CL → CL is given by

f [l] = (F−1f̂)[l] =
1

L

L−1∑
m=0

f̂ [m]ei
2πml

L . (2.4)
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2.1. CLASSICAL TIME-FREQUENCY REPRESENTATION
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Figure 2.1: Time and frequency representations of a speech signal.

Then, we define the (continuous) frequency response of a discrete signal f ∈ CL as

(Ff)(ω) :=
L−1∑
l=0

f [l]e−i2πωl. (2.5)

2.1.2 Short-time Fourier transform (STFT)

When analyzing non-stationary signals such as audio signals, the time-domain and

the frequency-domain representations are not sufficient. Fig. 2.1 plots time and

frequency representations of a speech signal. These two representations show some

information on the time interval of high energy and the main frequency components,

but they do not tell us which frequency components are included at which time.

STFT is a tool to obtain time and frequency information simultaneously [1–4].

The basic idea of STFT is to apply the Fourier transform to a localized signal

obtained by multiplying a window function. The STFT of a signal f ∈ L2(R) with

a window function g ∈ L2(R) ∩ C1(R) is defined as

(Vgf)(t, ω) :=
∫
R
f(τ)g(τ − t)e−i2πωτdτ, (2.6)

where t ∈ R and ω ∈ R represent time and frequency, respectively. The signal f

can be recovered from its STFT via the inverse STFT with a window function h

satisfying ⟨g, h⟩ ̸= 0:

f =
1

⟨g, h⟩

∫
R2

(Vgf)(τ, ω)h(t− τ)ei2πωτdτdω. (2.7)

Fig. 2.2 displays the T-F representations of the speech signal obtained by STFT

with three Blackman windows of different lengths. These T-F representations ade-

quately represent time-varying frequencies. The length of the window changes the
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Figure 2.2: T-F representations of the speech signal obtained by STFT with the

Blackman window. Each column shows (from left to right) the T-F representations

using the Blackman windows of length N = 27, 28, 29.

localization of the obtained T-F representation. Specifically, shortening the win-

dow length increases the frequency spread instead of decreasing the time spread.

By contrast, increasing the window length decreases the frequency spread instead

of increasing the time spread. This inability to simultaneously decrease the time

and frequency spread is referred to as the uncertainty principle. Gabor introduced

Heisenberg’s uncertainty inequality [1]:(∫
R
(t− t0)

2 |f(t)|2dt
) 1

2
(∫

R
(ω − ω0)

2 |f̂(ω)|2dω
) 1

2

≥ 1

4π

∫
R
|f(t)|2dt, (2.8)

for arbitrary points (t0, ω0). The equality holds if and only if f is a multiple of

e
−(t−t0)

2

σ2 ei2πω0t (σ > 0).

Since the property of the STFT is characterized by the window function, the

choice of the window function affects the performance of the signal analysis and

synthesis. To adjust the resolution of the STFT, many window functions have

been proposed from various viewpoints, such as frequency responses [35–44] and

numerical stability in signal processing [45–50]. For example, the Hann and Nuttall

windows are popular windows designed to achieve a better sidelobe decay. The

Kaiser window was proposed so that its frequency response was adjustable by a

tuning parameter [38]. Furthermore, a method for determining the optimal window

width using the Rényi entropy is proposed [51].
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Figure 2.3: Comparison of STFT and WVD of the sum of a sinusoid, a linear chirp,

and a quadratic chirp.

2.1.3 Wigner–Ville distribution (WVD) and Cohen’s class

WVD was derived by Wigner in quantum mechanics [52], and then introduced in

signal analysis by Ville [53]. The WVD of a signal f(t) is defined by

Wf (t, ω) :=

∫
R
f
(
t+

τ

2

)
f
(
t− τ

2

)
e−i2πωτdτ. (2.9)

The WVD depends only on the signal and achieves the perfect localization in the

case of linear chirp signals. However, in the presense of multiple components, the

WVD have the cross terms between the components.

Fig. 2.3 shows the T-F representations obtained by STFT and WVD. Each

component in the WVD is more localized than that in the STFT. On the other

hand, the WVD have cross terms not seen in the STFT. The cross terms in WVD

make it difficult to analyze the more complex signals.

The way to reduce the interference terms is convolving the WVD with a smooth-

ing kernel Π,

CΠf (t, ω) :=
∫
R2

Wf (τ, ν)Π(τ − t, ν − ω)dτdν, (2.10)

which is referred to as Cohen’s class [54]. The spectrogram |(Vgf)(t, ω)|2 and the

WVD Wf (t, ω) correspond to CΠf (t, ω) whose kernels are the WVD of the window

Wg(t, ω) and δ(t)δ(ω), respectively. There is a tradeoff between the concentration

of the T-F representation and the attenuation of the cross terms.
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2.2. REASSIGNMENT AND SYNCHROSQUEEZING

2.1.4 Other representations

The classical STFT analyzes a signal with a single T-F resolution over the entire

T-F domain. Some signals may are desirable to analyze at different resolutions.

As the methods analysing with different resolutions in the frequency direction,

wavelet transform [55], S-transform (Stockwell transform) [56], constant-Q trans-

form [57], and the method using any filterbank [58] have been introduced. The

method analysing in different resolutions over the T-F domain is referred to as the

non-stationary Gabor transform and has been studied [59,60].

As a different approach for non-stationary signal analysis from these represen-

tations, empirical mode decomposition (EMD) has been proposed [61]. EMD is a

data-driven technique which decomposes a nonstationary signal into intrinsic mode

functions (IMFs). To compute the time-frequency representation, the instantaneous

frequency of each IMF is calculated using the Hilbert transform.

2.2 Reassignment and synchrosqueezing

The T-F representation obtained by the STFT is spread by the window function.

The reassignment method aims to assign the energy spread to the original position

using the information of phase derivatives [6].

The original position can be estimated from the local centroid of the spectro-

gram, which is written as

t̂ =

∫
R2 τWf (τ, ν)Wg(τ − t, ν − ω)dτdν∫
R2 Wf (τ, ν)Wg(τ − t, ν − ω)dτdν

, (2.11)

ω̂ =

∫
R2 νWf (τ, ν)Wg(τ − t, ν − ω)dτdν∫
R2 Wf (τ, ν)Wg(τ − t, ν − ω)dτdν

. (2.12)

Then, the reassigned spectrogram is represented using (t̂, ω̂) as

T f
g (t, ω) =

∫
R2

|(Vgf)(τ, ν)|2 δ(t− t̂(τ, ν))δ(ω − ω̂(τ, ν))dτdν, (2.13)

where δ(t) denotes the Dirac delta distribution. The reassignment method is gen-

eralized to T-F representations in Cohen’s class, time-scale representations [7], and

any filterbank [8, 9].

Although the reassignment method provides the sparse T-F representation,

the representation cannot be converted onto the time-domain signal. The syn-

chrosqueezing transform (SST) estimates an invertible and sparse T-F representa-
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Figure 2.4: Diagram of reassignment method and SST.

tion by reassigning the complex-valued T-F representation in the frequency direction

only [14,15]. Using (2.12), the SST written as

Sfg (t, ω) =
∫
R
(Vgf)(t, ω)δ(ω − ω̂(t, ν))dν. (2.14)

The diagram of the reassignment method and SST is shown in Fig. 2.4. Though the

SST is less localized than the reassginment method since the SST reassigns only

in the frequency direction, the SST retains invertibility. High-order SST [20–22]

and time-reassigned synchrosqueezing [62] have been proposed for obtaining better-

localized representation.

2.2.1 Relation between reassignment operators and phase deriva-

tives

The relation between the centroid (t̂, ω̂) and the derivative of the phase of STFT

is shown in [6]. Let Mf
g := |Vgf | and Φf

g be the STFT magnitude and phase,

respectively. The STFT can be represented as

(Vgf)(t, ω) =Mf
g (t, ω) · ei2πΦ

f
g (t,ω). (2.15)

Then, (2.11) and (2.12) are also represented using the gradients of phase as

t̂(t, ω) = − ∂

∂ω
Φf
g (t, ω), (2.16)

ω̂(t, ω) = ω +
∂

∂t
Φf
g (t, ω). (2.17)

The time and frequency derivatives of the STFT phase are referred to as the in-

stantaneous frequency (IF) and group delay (GD), respectively, they are denoted

21



2.2. REASSIGNMENT AND SYNCHROSQUEEZING

by [63,64]

GDf
g (t, ω) := −t−

∂

∂ω
Φf
g (t, ω), (2.18)

IFf
g (t, ω) :=

∂

∂t
Φf
g (t, ω). (2.19)

For instance, let us consider the IF of a continuous sinusoid

s(t) = Ase
i(2πξst+ϕs). (2.20)

The STFT of s(t) is explicitly expressed as

(Vgs)(t, ω) = Ase
iϕs

∫
R
g(τ − t)e−i2π(ω−ξs)τdτ

= Ase
iϕs−i2π(ω−ξs)t

∫
R
g(τ)e−i2π(ω−ξs)τdτ

= ĝ(ξs − ω)Ase
iϕs−i2π(ω−ξs)t, (2.21)

where ĝ(ω) is the Fourier transform of g(t). Then, its phase is given by

Φs
g(t, ω) =

ϕs +Arg
{
ĝ(ξs − ω)

}
2π

− (ω − ξs)t. (2.22)

Consequently, the IF of s(t) is calculated as

IFs
g(t, ω) =

∂

∂t
Φs
g(t, ω) = ξs − ω. (2.23)

This corresponds to the difference between the frequency of the sinusoid ξs and the

frequency axis ω, which allows us to observe detailed frequency information from

the spread T-F representation obtained by the STFT. Some studies refer to it as

the relative instantaneous frequency [65]1.

2.2.2 Computing IF using window derivative

The straightforward approach for computing IFf
g from (2.19) in the discrete set-

ting is an approximation of the time derivative of the phase by finite differences.

However, this suffers from the phase unwrapping problem [67]. Avoiding such prob-

lems, [7] proposed an alternative expression of the IF given by

IFf
g =

1

2π
ℑ
{

1

Vgf
· ∂
∂t
Vgf

}
= − 1

2π
ℑ
{
Vg′f
Vgf

}
, (2.24)

1This comes from defining STFT as (2.6), and other definitions will change this expression.

More details are shown in [66].
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where g′ = dg/dt is the derivative of the window g. This is derived from the

following calculation using the chain rule:

∂

∂t
(Vgf)(t, ω) = ei2πΦ

f
g · ∂

∂t
Mf

g +Mf
ge

i2πΦf
g · i2π ∂

∂t
Φf
g

= ei2πΦ
f
g · ∂

∂t
Mf

g + Vgf · i2π
∂

∂t
Φf
g . (2.25)

In addition, the derivative of the STFT with respect to time can be rewritten as

∂

∂t
(Vgf)(t, ω) = −

∫
R
f(τ)

dg

dt
(τ − t)e−i2πωτdτ

= −(Vg′f)(t, ω). (2.26)

According to (2.24), computing the IF requires the STFT using the window function

g and its derivative g′. Hence, the computed IF depends on both windows.

From the similar manipulations, the GD can be expressed as

GDf
g (t, ω) = −t−

1

2π
ℑ
{

1

Vgf
· ∂

∂ω
Vgf

}
= −t− 1

2π
ℑ
{
−i2πt− i

1

Vgf
· VgTf

}
=

1

2π
ℜ
{
VgTf
Vgf

}
, (2.27)

where gT(t) =
t
2πg(t). Hence, (2.11) and (2.12) can be rewritten as

t̂(t, ω) = t+
1

2π
ℜ
{
VgTf
Vgf

}
, (2.28)

ω̂(t, ω) = ω − 1

2π
ℑ
{
Vg′f
Vgf

}
. (2.29)

From the above equations, the reassignment is calculated from the three STFTs:

Vgf , Vg′f , and VgTf .

2.3 Sparsity-aware methods

Sparsity-aware methods aim to find a sparse solution of an underdetermined sys-

tem. The sparsity-aware methods for estimating T-F representations prepare the

overcomplete dictonaries localized in the T-F domain and estimate sparse coeffi-

cients representing the signal [23–32]. Matching pursuit [23] and basis pursuit [24]

are known as methods to find sparse solutions. In particular, basis pursuit, which

finds the solution minimizing the ℓ1 norm, is widely employed in sparse optimiza-

tions and estimating sparse T-F representations. Although there are many possible
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choices of dictionaries [29], this section describes the basis pursuit using the Gabor

frame for discrete signals.

2.3.1 Gabor frame

Let g ∈ RL denote a window. A Gabor system is defined as a collection of windowed

sinusoids [2, 3],

G(g, a,M) = {gm,n}m=0,...,M−1, n=0,...,N−1 , (2.30)

where

gm,n[l] = ei
2πm(l−an)

M g[l − an], (2.31)

a ∈ N is the time-shifting width, and M ∈ N is the number of frequency channels.

The discrete Gabor transform (DGT) and inverse DGT with respect to the Gabor

system G(g, a,M) are defined by

(G∗
gf)[m+ nM ] = ⟨f ,gm,n⟩ , Ggc =

∑
m,n

c[m+ nM ]gm,n, (2.32)

where c ∈ CMN is a collection of the coefficients corresponding to a T-F representa-

tion. DGT can be viewed as the discrete and downsampled STFT. In the acoustic

signal processing community, “STFT” often refers to DGT.

A system G(g, a,M) is said to be a frame [2,3] if there exist 0 < A,B <∞ such

that

A ∥f∥22 ≤
∑
m,n

|⟨f ,gm,n⟩|2 ≤ B ∥f∥22 , (2.33)

for all f ∈ CL. A and B are called the lower and upper frame bound, respectively. If

the Gabor system is a frame, there exists a dual frame G(h, a,M) = {hm,n} which

satisfies

f =
∑
m,n

⟨f ,gm,n⟩hm,n. (2.34)

That is, a T-F representation c satisfying f = Ggc can be obtained by DGT

with a dual window h associated with g. When a Gabor frame is redundant, the

corresponding dual window h is not unique. A standard construction of the dual

window is the canonical dual window:

h̃ = (GgG
∗
g)

−1g. (2.35)

The inverse DGT using the canonical dual window G∗
h̃
corresponds to the Moore–

Penrose pseudo-inverse of Gg.
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2.3.2 Sparse T-F representation using ℓ1 norm

A T-F representation obtained by DGT G∗
h is spread due to multiplication of a

dual window h. If G(g, a,M) is a frame, the T-F representation c is a redundant

representation of a time-domain signal f , i.e., the T-F representation c satisfying

f = Ggc (2.36)

is not unique. The direct formulation for finding the sparsest solution of this un-

derdetermined system is to minimize the ℓ0 norm. This problem is usually an

intractable combinatorial optimization problem. Instead of the ℓ0 norm, the ℓ1

norm has been widely used as a cost function for promoting sparsity [24–32]. It is

formulated as

minimize
c

∥c∥1 subject to f = Ggc, (2.37)

which is referred to as basis pursuit. This problem is convex and thus can be solved

by convex optimization algorithms.

A global optimum of a convex optimization problem can be found independently

of the choice of algorithm. Furthermore, Prior information other than sparsity can

be introduced in the formulation using ℓ1 norm. For example, if the signal contains

additive noise, a sparse T-F representation can be estimated with a formulation

that relaxes the constraint, which is written as

minimize
c

1

2
∥f −Ggc∥22 + λ ∥c∥1 . (2.38)

The parameter λ adjusts for the sparsity and data fidelity. This formulation is

called basis pursuit denoising or lasso. Furthermore, the formulation that take

into account the relationship between neighboring dictionaries can also be made by

group sparsity [28]. Since an iterative algorithm is required to solve the ℓ1-norm

minimization problem, its computational complexity is greater than those of the

reassignment method and SST.
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Chapter 3

Window functions with

minimum-sidelobe derivatives

for computing instantaneous

frequency

3.1 Introduction

The short-time Fourier transform (STFT) is widely used to convert a signal into

the T-F domain, owing to its simplicity and well-understood structure [1–4]. The

resolution of a T-F representation obtained by the STFT is limited by Heisen-

berg’s uncertainty principle. The reassignment method and the synchrosqueezing

transform (SST) have been proposed to overcome Heisenberg’s uncertainty princi-

ple [5]. The reassignment method sharpens a T-F representation using the time and

frequency derivatives of its phase at the expense of invertibility. The time and fre-

quency derivatives of the STFT phase are referred to as the instantaneous frequency

(IF) and group delay, respectively. The SST performs frequency-only reassignment

to a complex-valued T-F representation to sharpen the T-F representation while

ensuring invertibility. The FSST reassigns the spread components using the IF,

which is affected by the window function. Therefore, to improve the performance

of the FSST, the window should be designed considering the computation of the

IF.
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Moreover, IF has also been employed in other applications, such as a phase

vocoder [68–71], T-F mask estimation [72, 73], phase conversion [66, 74–76], and

speech processing [77–79]. In the context of a phase vocoder, the effect of a window

on the IF computation has been demonstrated by comparing several existing win-

dows [70]. Therefore, designing a window for computing the IF can also improve

the performance of its applications.

A method to compute the IF uses the STFTs with a window and with its (time-

)derivative [7], which can compute accurately even in a discrete setting. That

is, the computed IF depends on both the window and its derivative. Furthermore,

interference of multiple signal components influences the IF computation. To reduce

the interference of multiple signal components, the window and its derivative should

be designed to reduce the T-F spreading under Heisenberg’s uncertainty.

The main purpose of a window design for reducing spreading is its frequency

response because the spread in the time direction can be controlled relatively easily

by the support of the window. Hence, the sidelobes of the frequency responses of

the window and its derivative need to be reduced. In particular, the sidelobes of

the window derivative should be given more attention since the differential operator

emphasizes high-frequency components. Several window functions are designed by

considering the continuity at their edges, which is related to the sidelobe of their

derivatives [43, 44]. However, no method has explicitly considered the frequency

response of the window derivative. Designing a window function to minimize the

sidelobes of the frequency response of its derivative is expected to obtain a window

function that is more suitable for IF computation.

Therefore, in this chapter, we propose a framework for designing a window func-

tion for IF computation. The proposed method first designs the window derivative

to minimize the sidelobes and then estimates the window function from the designed

window derivative. The designed windows are evaluated by the IF computation and

an application to the FSST.

The rest of this chapter is organized as follows. Sections 3.2 and 3.3 introduce

the IF of the STFT and bandwidth-adjustable windows, respectively. Then, Sec-

tion 3.4 explains our proposed method for designing windows. Section 3.5 presents

the frequency responses of windows designed by the proposed method. Section 3.6

provides numerical experiments to evaluate the performance of the designed win-

dows in terms of computing the IF. Section 3.7 presents the performance of applying
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the designed window to the FSST, and the conclusion of this chapter is presented

in Section 3.8.

3.2 Preliminary

3.2.1 Computing IF in Discrete STFT

The discrete version of the STFT for a discrete signal f ∈ CL with a discrete window

function g ∈ CL is written as

(Vgf)[n,m] :=
L−1∑
l=0

f [l]g[l − n]e−i 2πml
L (3.1)

where n = 0, 1, . . . , L − 1 is the time-shift index and m = 0, 1, . . . , L − 1 is the

modulation index. g[l] outside the domain [0, L − 1] is evaluated as an L-periodic

sequence [2], i.e.,

g[l + L] = g[l]. (3.2)

As in (2.24), the IF of the discrete STFT can be computed by the window g and

its spectral derivative g′ = Dg,

IFf
g[n,m] = − 1

2π
ℑ
{
(Vg′f)[n,m]

(Vgf)[n,m]

}
. (3.3)

The spectral differentiation operator D is defined as

(Dg)[l] :=
1

L

L−1∑
m=0

d[m]ĝ[m]ei
2πlm

L

=(F−1 diag(d)Fg)[l], (3.4)

where

d[m] :=


i2πm/L if 0 ≤ m < L/2

0 if m = L/2

i2π(m− L)/L if L/2 < m ≤ L− 1

. (3.5)

The rationale for using the spectral derivative as a counterpart to the continuous-

time derivative is given by [8]1.

1To be precise, [8] considered a counterpart of the continuous-time derivative for an infinite-

length sequence. The rationale for using the spectral derivative was derived by a straightforward

adaptation of [8] for a discrete and finite-length signal.
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Figure 3.1: Spectral differentiation of a window function supported on [0, N − 1]

(N = 7).

An example of a window function and its derivative obtained by spectral dif-

ferentiation is illustrated in Fig. 3.1. In Fig. 3.1, the signal length is L = 18, and

the window is supported on [0, N − 1] (N = 7). The spectral differentiation corre-

sponds to the differentiation of a function obtained by the Fourier interpolation of

a discrete signal. A function obtained by the Fourier interpolation of the window

oscillates slightly outside of [0, N−1], even if the window is supported on [0, N−1].

Therefore, the support of the window does not coincide with the support of its

derivative. In general, the spectral derivative of a window supported on [0, N − 1]

does not have the same support when N < L. When N = L, the STFT requires

computing the DFT of the entire signal, which reduces its applicability to real-time

processing or lengthy signal analysis [80–82]. In practice, the window derivative is

truncated to have the same support as the original window.

3.2.2 Comparison of spectral and analytical derivatives

When the window function is initially defined as a differentiable continuous func-

tion, an alternative to spectral differentiation is to calculate the window derivative

analytically and sample the derivative. Let us illustrate this method using the
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Hann window, which is one of the most famous of such window functions. The

Hann window supported on [0, N − 1] is defined as

g(t) =


1
2

(
1− cos

(
2πt
N−1

))
if t ∈ [0, N − 1]

0 otherwise
. (3.6)

Its analytical derivative is given by

g′(t) =


π

N−1 sin
(

2πt
N−1

)
if t ∈ [0, N − 1]

0 otherwise
. (3.7)

Here, we compare the spectral and analytical derivatives in terms of the computed

IF of a sinusoid. Considering a discrete complex sinusoid

s[l] = Ase
i(2πξsl+ϕs), (3.8)

for l = 0, 1, . . . , L − 1, we evaluated the error between the analytical IF of the

sinusoid (2.23) and the computed IF

e[n,m] =
(
ξs −

m

L

)
− IFs

g[n,m]. (3.9)

With the same manipulations in (2.21), the STFT of sinusoid s is calculated as

(Vgs)[n,m] = (Fg)
(
ξs −

m

L

)
Ase

iϕs−i2π(m
L
−ξs)n. (3.10)

Then, the IF of sinusoid s is calculated as

IFs
g[n,m] = − 1

2π
ℑ
{
(Vg′s)[n,m]

(Vgs)[n,m]

}
= − 1

2π
ℑ

{
(Fg′)(ξs − m

L )

(Fg)(ξs − m
L )

}
, (3.11)

which is independent of the time index n. When g is real-valued, (3.11) is simplified

as

IFs
g[n,m] = − 1

2π
ℑ
{
(Fg′)(mL − ξs)

(Fg)(mL − ξs)

}
. (3.12)

Thus, the error (3.9) is rewritten as

e[m] =
(
ξs −

m

L

)
+

1

2π
ℑ
{
(Fg′)(mL − ξs)

(Fg)(mL − ξs)

}
. (3.13)

Fig. 3.2 shows the frequency responses of the window derivatives and errors of

IF computation using these window derivatives. The window length and the signal
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Figure 3.2: Comparison of derivatives of the Hann window. The left and right sides

show the frequency responses of the window derivatives and the errors of the IF

computation using these window derivatives.

length were set to N = 27 and L = 212. The mainlobe width ωMW is defined as

the first null point of the frequency response except for ω = 0. The error in the IF

computed by the analytical derivative is larger than that of the spectral derivative.

Therefore, this chapter focuses on spectral differentiation, even if these windows are

analytically differentiable.

3.3 Bandwidth-adjustable windows

One aim of the window design is to control T-F spreading under Heisenberg’s un-

certainty principle. The spread in the time direction can be controlled by setting

the length of the window function. We assume that a window g is supported on

[0, N − 1] and let w ∈ CN denote its nonzero part, i.e.,

g[l] =

w[l] if l = 0, 1, . . . , N − 1

0 otherwise
. (3.14)

To obtain a well-localized T-F representation, a window should be designed so that

its frequency response has a narrow mainlobe and low sidelobe levels under the

defined window length N . However, a window function has a trade-off between the

mainlobe width and the sidelobe level. The mainlobe width is closely related to

the appearance of the T-F representation and can be intuitively chosen according

to the application. Thus, the sidelobe characteristics should be optimized under

the mainlobe width ωMW chosen according to the application. The sidelobe energy
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Figure 3.3: Sidelobe energy and highest sidelobe level of a window function.

(SE) and highest sidelobe level (HSL) are used to evaluate the localization of the

frequency response of the window functions, which are defined as

SE = 10 log10

∫ 1
2

− 1
2

WωMW(ω) |(Fw)(ω)|2 dω∫ 1
2

− 1
2

|(Fw)(ω)|2 dω
, (3.15)

HSL = 10 log10
maxωWωMW(ω) |(Fw)(ω)|2

maxω |(Fw)(ω)|2
, (3.16)

where WωMW(ω) is a weight function,

WωMW(ω) =

0 if |ω| < ωMW

1 if |ω| ≥ ωMW

. (3.17)

The SE and HSL of a window function are shown in Fig. 3.3.

Many windows, such as the rectangular window, Bartlett window, Hann window,

Blackman window, and Nuttall window [43] depend only on the window length.

However, some window functions contain additional parameters for adjusting the

bandwidth; these are referred to as adjustable windows. The Dolph–Chebyshev

window [35], the Slepian window [36], the Kaiser window [38], the Saramäki window

[39], the ultraspherical window [40,41], the cosh window [42], and the Tukey window

(tapered cosine window) [83] belong to this class. Among them, the Slepian window

and the Dolph–Chebyshev window are characterized by the following optimization
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problems:

minimize
w

∫ 1
2

− 1
2

WW (ω) |(Fw)(ω)|2 dω∫ 1
2

− 1
2

|(Fw)(ω)|2dω
, (3.18)

minimize
w

maxω∈[− 1
2
, 1
2
] WW (ω)|(Fw)(ω)|

maxω∈[− 1
2
, 1
2
] |(Fw)(ω)|

, (3.19)

respectively, where W ∈ (0, 12 ]. These windows are designed to have a well-localized

frequency response in terms of SE and HSL, and they certainly show better char-

acteristics than other window functions (as indicated in the left side of Fig. 3.10).

3.4 Proposed method

We now propose a window design method to reduce the influence of the sidelobes

of the window derivative on the IF computation. A comparison between the con-

ventional and proposed methods of computing a window function and a window

derivative pair is illustrated in Fig. 3.4. In general, to obtain a window and its

derivative, the window function is first designed, and then the window derivative

is calculated by differentiating the designed window [Fig. 3.4 (a)]. By contrast,

our method first designs the window derivative to minimize the sidelobes and then

estimates the window function from the window derivative [Fig. 3.4 (b)].

3.4.1 Problem formulation

To restrict the spread in the time direction, we assume that the window derivative

is supported on [0, N − 1], i.e.,

g′[l] =

z[l] if l = 0, 1, . . . , N − 1

0 otherwise
, (3.20)

where z ∈ CN corresponds to the nonzero part of g′. Calculating the window

derivative from the window function can be performed straightforwardly by spectral

differentiation. Conversely, from z such that ⟨z,1N ⟩ = 0, g can be calculated as

the spectral integration:

g = F−1 diag(b)FPL,Nz+ c1L, (3.21)
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Figure 3.4: Block diagrams of (a) the conventional computation of a window func-

tion and a window derivative pair and (b) the proposed method.

where

b[m] :=



0 m = 0

−iL/2πm if 0 < m < L/2

0 if m = L/2

−iL/2π(m− L) if L/2 < m ≤ L− 1

,

PL,N ∈ RL×N is the zero-padding matrix,

PL,N := [IN ,ON,L−N ]T , (3.22)

and c is an integral constant. ⟨z,1N ⟩ = 0 constrains the integration of the Fourier

series to also be a Fourier series. Therefore, we formulate the design of the window
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derivative as

minimize
z

Θ(z)

subject to ⟨z,1N ⟩ = 0, (3.23)

where Θ(z) is an objective function measuring the sidelobes of the frequency re-

sponse of z, which corresponds to the SE or HSL of z. In summary, we first design

the window derivative z by (3.23) and then estimate the window function from z

by (3.21).

In the remainder of this section, Sec. 3.4.2 and Sec. 3.4.3, we explain the meth-

ods for designing the window derivative to minimize the SE and HSL, respectively.

Estimating the original window w from the designed window derivative z is in-

troduced in Sec. 3.4.4. Hereafter, the window derivatives minimizing the SE and

HSL are referred to as the Slepian window derivative and the Chebyshev window

derivative, respectively.

3.4.2 Slepian window derivative

This subsection explains the design of the Slepian window derivative. Considering

the case where the cost function Θ(z) in (3.23) is the ratio of the energy outside

[−W,W ] to the total energy, the design problem of the Slepian window derivative

is formulated as

minimize
z

∫ 1
2

− 1
2

WW (ω) |(Fz)(ω)|2 dω∫ 1
2

− 1
2

|(Fz)(ω)|2dω

subject to ⟨z,1N ⟩ = 0. (3.24)

The cost function in Eq. (3.24) can be rewritten as the Rayleigh quotient:

zTz− zTSNz

zTz
= 1− zTSNz

zTz
, (3.25)

where SN ∈ RN×N is a real-symmetric matrix whose elements are given by

SN [m,n] =2W sinc(2W (m− n)), (3.26)

sinc(x) :=


sin(πx)

πx if x ̸= 0

1 if x = 0
. (3.27)
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Fixing zTz = 1 and reducing the constant 1 not relevant to minimization, (3.24)

can be rewritten as

minimize
z

− zTSNz

subject to zTz = 1, zT1N = 0. (3.28)

Such a problem can be simplified to an eigenvalue problem [84].

Let the Lagrangian function associated with (3.28) be

L(z, µ, η) = −zTSNz+ µ(zT z− 1) + 2ηzT1N , (3.29)

where µ and η are the Lagrange multipliers. The optimal solution z⋆ to (3.28)

satisfies the following necessary conditions:

∂

∂z
L(z⋆, µ⋆, η⋆) = 2 (−SNz⋆ + µ⋆z⋆ + η⋆1N ) = 0, (3.30)

∂

∂µ
L(z⋆, µ⋆, η⋆) = z⋆Tz⋆ − 1 = 0, (3.31)

∂

∂η
L(z⋆, µ⋆, η⋆) = z⋆T1N = 0. (3.32)

Multiplying (3.30) on the left by 1TN , η⋆ can be calculated as

η⋆ =
1

N
1TNSNz⋆. (3.33)

Substituting η⋆ into (3.30), we obtain

TNSNz⋆ = µ⋆z⋆, (3.34)

where TN = IN − 1
N 1N1TN is the projection matrix onto

{
z ∈ CN

∣∣ zT1N = 0
}
.

Hence, denoting KN = TNSN , the eigenvectors of KN are candidates for the

solution to the problem (3.28). Furthermore, since the eigenvectors of KN satisfy

(3.31) and (3.32), multiplying (3.34) on the left by zT, we get

zTTNSNz = µzTz,

zTSNz = µ. (3.35)

Therefore, the eigenvector corresponding to the largest eigenvalue µ0 is the solution

to the problem (3.28). However, finding the eigenvalues of KN is numerically ill-

conditioned; likewise, SN . This ill-conditionedness follows from the following fact

and proposition.
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Fact 1. The eigenvalues of SN are nondegenerate and take values between zero and

one. Furthermore, most eigenvalues of SN are clustered around 1 or 0 [36].

Fact 2. Let λ0, λ1, . . . , λN−1 denote the eigenvalues of SN such that

1 > λ0 > λ1 > · · · > λN−1 > 0, (3.36)

and their corresponding eigenvectors be v0,v1, . . . ,vN−1, whose norm and signs are

determined so that

∥vk∥ = 1,

N−1∑
n=0

vk[n] ≥ 0 for k = 0, 1, . . . , N − 1. (3.37)

The eigenvectors v0,v1, . . . ,vN−1 of SN have the following properties [36]:

Orthogonality: ⟨vj ,vk⟩ = 0 for j ̸= k, (3.38)

Symmetry: vk[n] = (−1)kvk[N − n− 1], (3.39)

for k = 0, 1, . . . , N − 1.

Proposition 1. vk for k = 1, 3, . . . , 2⌊N/2⌋ − 1 are the eigenvectors of KN .

Proof. According to (3.39), vk for k = 1, 3, . . . , 2⌊N/2⌋ − 1 satisfies

TNvk = vk. (3.40)

Then, the following relationship holds:

KNvk = TNSNvk

= λkTNvk

= λkvk. (3.41)

Therefore, λk and vk are the eigenvalues and eigenvectors of KN , respectively.

Finding the eigenvalues of SN is numerically ill-conditioned since most eigenval-

ues of SN are clustered around 1 or 0, as shown by the blue line in Fig. 3.5. Even

if the eigenvalues of SN are nondegenerate, they behave as if they are degenerate

because of rounding errors in the numerical computation. According to Proposi-

tion 1, its eigenvalues λk for k = 1, 3, . . . , 2⌊N/2⌋ − 1 are also eigenvalues of KN .

Hence, most eigenvalues of KN are also clustered around 1 or 0, as shown by the

red line in Fig. 3.5.
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Figure 3.5: Eigenvalues of SN and KN for N = 27 and W = 0.03.

Here, KN is centrosymmetric since both TN and SN are centrosymmetric [85].

Thus, the eigenvectors are symmetric or antisymmetric, but their order is un-

clear. When z are symmetric or antisymmetric, (Fz)(ω) can be represented as

the cosine or sine series [86]. Fig. 3.6 shows (Fz)(ω) localized in [−W,W ] under

⟨z,1N ⟩ = 0. Note that the linear phase of the frequency response is ignored to

make the spectrum real-valued for display. The symmetric case contains an extra

extremum in [−W,W ] compared with the antisymmetric case to satisfy the con-

straint ⟨z,1N ⟩ = 0. From this observation, the antisymmetric window localizes the

frequency response in [−W,W ] under the constraint ⟨z,1N ⟩ = 0 more than the

symmetric window. Since vk for k = 1, 3, . . . , 2⌊N/2⌋ − 1 are antisymmetric from

Proposition 1, the eigenvector v1 corresponding to the second largest eigenvalue

λ1 is the solution to (3.24). To compute the eigenvector v1, efficient methods for

computing the eigenvectors of SN [87, 88] are available instead of computing the

eigenvectors of KN directly.
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Figure 3.6: Frequency responses (Fz)(ω) localized in [−W,W ] under ⟨z,1N ⟩ = 0 of

symmetric and antisymmetric windows. Note that the linear phase of the frequency

response is ignored for display.
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3.4.3 Chebyshev Window Derivative

In this subsection, we consider the design problem of the Chebyshev window deriva-

tive. Similar to (3.24), the direct formulation of the design problem of the Cheby-

shev window derivative is

minimize
z

maxω∈[− 1
2
, 1
2
] WW (ω)|(Fz)(ω)|

maxω∈[− 1
2
, 1
2
] |(Fz)(ω)|

subject to ⟨z,1N ⟩ = 0. (3.42)

Considering the constraint ⟨z,1N ⟩ = 0 and the symmetry of the cost function with

(3.24), the solution to (3.42) should be antisymmetric.

When z is antisymmetric, the following decomposition of (Fz)(ω) is proposed

by McClellan and Parks [86]:

(Fz)(ω) = ei(
π
2
−(N−1)πω)Q(ω)P (ω,α), (3.43)

where

P (ω,α) =

K−1∑
k=0

α[k] cos(2πωk), (3.44)

Q(ω) =

sin(2πω) if N is odd

sin(πω) if N is even
, (3.45)

α ∈ RK , and K = ⌊N/2⌋. The derivation of (3.43) and the relation between α and

z are explained in Appendix A. The linear phase ei(
π
2
−(N−1)πω) has no effect on the

cost function of (3.42). Since Q(ω)P (ω,α) is antisymmetric, finding the highest

sidelobe level only needs to consider the positive frequency. Furthermore, since the

constraint ⟨z,1N ⟩ = 0 is always satisfied when z is antisymmetric, (3.42) can be

rewritten as

minimize
α

maxω∈[0, 1
2
] WW (ω)|Q(ω)P (ω,α)|

maxω∈[0, 1
2
] |Q(ω)P (ω,α)|

. (3.46)

Fixing the denominator to be 1 as in (3.28), (3.46) can be rewritten as

minimize
α

max
ω∈[0, 1

2
]
WW (ω)|Q(ω)P (ω,α)|

subject to max
ω∈[0, 1

2
]
|Q(ω)P (ω,α)| = 1. (3.47)

This optimization problem is still difficult to solve due to this equality con-

straint, hence it needs to be further rewritten. Here, the role of the constraint is to

40



3.4. PROPOSED METHOD

-0.5 -0.25 !W0 W 0.25 0.5

Normalized frequency

-1

-0.5

0

0.5

1
P (!;,) and Q(!)

P (!;,)
Q(!)

-0.5 -0.25 !W0 W 0.25 0.5

Normalized frequency

-0.05

0

0.05
Q(!)P (!;,)

Figure 3.7: P (ω, α) and Q(ω) (left) and their product Q(ω)P (ω,α) (right).

preserve the large peaks of |Q(ω)P (ω,α)| in [−W,W ] while reducing the sidelobe

level. Fig. 3.7 shows P (ω, α), Q(ω) and their product Q(ω)P (ω,α). According

to Fig. 3.7, the peaks of Q(ω)P (ω,α) in [−W,W ] are composed of the product of

Q(ω) and the mainlobe of P (ω,α) in [−W,W ]. Since Q(ω) is independent of α, con-

straining P (0,α) to a nonzero value will preserve the large peaks of |Q(ω)P (ω,α)|

in [−W,W ]. Based on these observations, we formulate the design problem of the

Chebyshev window derivative as

minimize
α

max
ω∈[0, 1

2
]
WW (ω)|Q(ω)P (ω,α)|

subject to P (0,α) = 1. (3.48)

(3.48) can be solved using the modified Remez (MRemez) algorithm [89], which

is an extension of the Parks–McClellan algorithm [90] to deal with an equality-

constrained minimax approximation problem. Introducing a weight function

W̃ϵ
W (ω) =


1
ϵ if ω = 0

0 if 0 < |ω| < W

Q(ω) if W ≤ |ω|

, (3.49)

(3.48) is rewritten as the unconstrained optimization problem,

minimize
α

max
ω∈[0, 1

2
]
|E(ω,α)|, (3.50)
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where

E(ω,α) = lim
ϵ→0
W̃ϵ

W (ω) [P (ω,α)−D(ω)] , (3.51)

D(ω) =

1 if ω = 0

0 if ω ̸= 0
. (3.52)

Denoting the solution of (3.48) as α⋆, there exist K + 1 frequencies ω⋆
0, ω

⋆
1, . . . , ω

⋆
K

satisfying 0 = ω⋆
0 < ω⋆

1 < · · · < ω⋆
K ≤

1
2 such that [91]

P (ω⋆
k,α

⋆) =

1 if k = 0

(−1)k

W(ω⋆
k)
δ⋆ if k = 1 . . . ,K

(3.53)

where

|δ⋆| = max
ω∈[0, 1

2
]
|E(ω,α⋆)|. (3.54)

The MRemez algorithm finds ω⋆
0, ω

⋆
1, . . . , ω

⋆
K using the following procedure:

Step 1. Initialize reference frequencies ω0, ω1, . . . , ωK so that ω0 = 0 and W ≤ ω1 <

· · · < ωK ≤ 1/2.

Step 2. Compute δ and P (ω,α) by the barycentric formula:

δ = lim
ϵ→0

∑K
k=0 βkD(ωk)∑K

k=0(−1)kβkW̃ϵ
W (ωk)

, (3.55)

P (ω,α) =

∑K
k=0

βk
cos(2πω)−cos(2πωk)

pk∑K
k=0

βk
cos(2πω)−cos(2πωk)

, (3.56)

where

pk = lim
ϵ→0

D(ωk) +
(−1)k

W̃ϵ
W (ωk)

δ, (3.57)

βk =

K∏
i=0,i ̸=k

1

cos(2πωk)− cos(2πωi)
. (3.58)

Step 3. Compute E(ω,α) by (3.51) and find the new reference frequencies ω+
0 , ω

+
1 , . . . , ω

+
K

satisfying [92]

sign
[
E(ω+

k−1,α)
]
= − sign

[
E(ω+

k ,α)
]
, (3.59)

|δ| ≤ |P (ω+
k ,α)|, (3.60)

where at least one of the inequalities is strict.
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Step 4. Repeat 2–3 until convergence.

After estimating ω⋆
0, ω

⋆
1, . . . , ω

⋆
K using the MRemez algorithm, the Chebyshev

window derivative z can be computed from its frequency response by sampling and

performing the inverse DFT,

z = F−1ẑ, (3.61)

ẑ[m] = ei(
π
2
−N−1

N
πm)Q(m/N)P (m/N,α⋆), (3.62)

for m = 0, 1, . . . , N − 1. P (m/N,α⋆) can be calculated from ω⋆
0, ω

⋆
1, . . . , ω

⋆
K by the

barycentric formula (Step. 2).

3.4.4 Window estimation from the window derivative

In the previous subsections, two window derivatives were introduced as solutions

to (3.23). This subsection presents the method for estimating the window from the

obtained window derivative.

Denoting g0 = F−1 diag(b)FPL,Nz, (3.21) is rewritten as

g = g0 + c1L. (3.63)

Recall that c is the integral constant, which has to be determined for estimating

the window g. In our conference paper [33], estimating c is formulated as the

minimization problem of the ratio of the energy outside [−W,W ] to the total energy,

similar to the Slepian window,

minimize
c

1− (g0 + c1L)
T SN (g0 + c1L)

(g0 + c1L)
T (g0 + c1L)

, (3.64)

to obtain the well-localized frequency response.

An example of the window obtained by the spectral integration from a window

derivative supported on [0, N − 1] (N = 7) is illustrated in Fig. 3.8. As with

the spectral differentiation, even if window derivatives are supported on [0, N − 1]

(N < L), the integrated windows are not supported on [0, N − 1]. The integrated

windows are truncated to have the same support as the window derivatives in

practice. This truncation may change the frequency response of the window and

decrease the accuracy of the IF compuation. In this chapter, we propose a method

for estimating c based on minimizing the truncation effect.

43



3.4. PROPOSED METHOD

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16 18

Samples

Window derivative
Fourier interpolation
Spectral integration

-2

-1

0

1

2
#10!3

Figure 3.8: Spectral integration of a window derivative supported on [0, N − 1]

(N = 7).

The truncated window outside [0, N−1] can be expressed using the zero-padding

matrix PL,N as

PL,NPT
L,N (g0 + c1L). (3.65)

We estimate c by minimizing the squared error of the window before and after

truncation, i.e., our proposed estimation problem is formulated as

minimize
c

1

2

∥∥(IL −PL,NPT
L,N )(g0 + c1L)

∥∥2
2
. (3.66)

IL −PL,NPT
L,N can be interpreted as a projection onto the set of vectors that take

a zero value in [0, N − 1]. Note that the cost function of (3.66) does not go to

zero since g0[l] outside [0, N − 1] oscillates similarly to the spectral differentiation

in Fig. 3.1. This problem is a linear least squares problem, so the solution c⋆ to

(3.66) satisfies

1TL(IL −PL,NPT
L,N )T(IL −PL,NPT

L,N )(g0 + c⋆1L) = 0.

Because IL−PL,NPT
L,N is a diagonal projection matrix and 1TL

(
IL −PL,NPT

L,N

)
1L =

L−N , the solution c⋆ to (3.66) is given by

c⋆ = − 1

L−N
1TL(IL −PL,NPT

L,N )g0. (3.67)
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Figure 3.9: Results of designed windows. Each column shows (from left to right)

the window functions, their frequency responses, the window derivatives, and the

frequency responses of the window derivatives. Each row represents the results of

a type of window function. The red lines show the frequency responses when the

conventional window derivatives or the proposed windows are truncated outside

[0, N − 1]. The broken black lines indicate the bandwidths ωMW.

Since this formulation minimizes the energy of the outer components, the proposed

integration method is applicable for the case N < L. The proposed integration

method is effective when the window width is limited, as in real-time processing,

because the effect of truncation can be significant.

3.5 Frequency responses of designed windows

This section compares the proposed windows with the Slepian and Dolph–Chebyshev

windows. Hereafter, the windows calculated from the Slepian window derivative and

the Chebyshev window derivative are referred to as the proposed Slepian window

and the proposed Chebyshev window, respectively.

First, Fig. 3.9 illustrates the shapes and frequency responses of the windows
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and the window derivatives. The length of the windows was set to N = 27, and

the signal length for the spectral differentiation/integration was set to L = 212.

Each parameter W for the window was chosen such that ωMV = 0.03. Note that

the frequency responses in Figs. 3.9 were normalized such that the maxima are 0

dB. The derivatives of the Slepian and Dolph–Chebyshev windows have nonzero

values outside [0, N − 1], as in Figs. 3.1, which are omitted in Figs. 3.9(c) and (g)

since they are too small for illustration. The red lines in Fig. 3.9(d) and (h) show

the frequency responses when these outside values are truncated. Conversely, the

proposed Slepian and Chebyshev windows have nonzero values outside [0, N − 1]

due to the spectral integration. The frequency responses of the truncated windows

are plotted as the red lines in Fig. 3.9(j) and (n).

In the time domain, there is little difference between the shapes of the four

windows. The derivative of the Dolph–Chebyshev window (Fig. 3.9(g)) has a slight

oscillation at both ends compared with the others. According to Figs. 3.9(b) and (l),

the Slepian window derivative has a similar sidelobe decay to the Slepian window.

Likewise, the sidelobe decay of the Chebyshev window derivative in Fig. 3.9(f) re-

sembles that of the Dolph–Chebyshev window in Fig. 3.9(p). Additionally, the pro-

posed Slepian and Chebyshev windows have better sidelobe decays than the Slepian

and Dolph–Chebyshev windows, respectively, although their highest sidelobe levels

are slightly higher. This is because estimating a window from its derivative window

in (3.21) suppresses the high frequencies. Furthermore, Fig. 3.9(d), (h), (j), and

(n) show that the proposed Slepian and Chebyshev windows have smaller effects

on the frequency responses caused by truncation compared with the Slepian and

Dolph–Chebyshev windows. The result indicates that the proposed design method

can reduce the effect of truncation.

Then, the sidelobe energy and the highest sidelobe level of each window at

various bandwidths ωMW are summarized in Fig. 3.10. Fig. 3.10 also shows the

SE and HSL of four well-known windows: Hann, Blackman, Nuttall, and truncated

Gaussian windows. The truncated Gaussian window is represented by

wσ[n] = e−
{n−(L−1)/2}2

2σ2 , (3.68)

where σ is a parameter to control the mainlobe ωMW. Although they were originally

defined as continuous functions, we computed these derivatives by the spectral

differentiation as mentioned at the end of Sec. 3.2. The jumps in the mainlobe
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Figure 3.10: Sidelobe energy and highest sidelobe level of the designed windows.

The top and bottom rows show the sidelobe energy and highest sidelobe level of the

window functions, respectively. The left and right columns correspond to the results

of the window functions and the window derivatives. Each line color represents a

different type of window.

widths seen in the truncated Gaussian and Dolph–Chebyshev are due to nonzero

minima in the frequency responses, as shown on the right side of Fig. 3.11.

When the bandwidth W was set to a higher value, the SE and HSL of the

Slepian, Dolph–Chebyshev, proposed Slepian and proposed Chebyshev windows

decreased. Fig. 3.10 confirms that the Slepian window derivative and the Chebyshev

window derivative were correctly designed with the desired optimality.

3.6 Evaluation of IF computation

This section compares the four windows in terms of the IF computation. Through-

out this section, the window length N = 27 and the signal length L = 212. Each

parameter W for the window was chosen so that ωMV = 0.03.
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Figure 3.11: Truncated Gaussian windows with different σ.

3.6.1 Comparing window integration methods

First, the proposed integration method in (3.66) was compared with the conven-

tional estimation method (3.64) [33]. They were assessed based on the error in

computing the IF of the sinusoid in (3.12).

The frequency responses of the estimated windows from the Slepian and Cheby-

shev window derivatives using the two integration methods are shown in Fig. 3.12.

The SE and HSL of each window are shown in the upper right corner of each subfig-

ure. Although the conventional method determines c by minimizing the energy out-

side of [−W,W ] to reduce the SE, the frequency responses of the windows estimated

by the two methods have comparable SE. However, for both window derivatives,

the changes due to truncation of the windows estimated by the proposed method

were smaller than those of the conventional method.

The errors of the IF using two integrated windows are shown in Fig. 3.13. The

errors using the conventional method increase due to truncation, but this is not seen

in the results of the proposed method. This suggests that the proposed method can

estimate the window to avoid an increase in the error due to truncation effects.

Additionally, with or without truncation, the errors using the proposed method are

smaller than those using the conventional method in [0, ωMW]. This may be because

minimizing the outer energy reduces the oscillation of the frequency responses.
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Figure 3.12: Frequency responses of estimated windows from Slepian and Chebyshev

window derivatives using two integration methods. The left and right columns

correspond to the frequency responses of the conventional and proposed methods,

respectively.

3.6.2 Comparison of windows for IF computation of a sinusoid

Second, the four windows were compared in terms of computing the IF of a sinusoid.

They were also evaluated by the error in (3.13).

The IF errors using the four windows are shown in Fig. 3.14. Regardless of

truncation, the errors using the proposed windows are smaller than those using

the conventional windows. In particular, the error using the proposed Chebyshev

window was smaller than that using the Slepian window, shown in Fig. 3.14, even

though they have similar frequency responses, shown in Fig. 3.9. The results indi-

cate that the proposed window design method can improve the accuracy of the IF

computation of the sinusoid.
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Figure 3.13: IF computation error in a sinusoid using the windows shown in

Fig. 3.12. The left and right columns correspond to the results of the conven-

tional and proposed integration methods, respectively.

3.6.3 Comparison of windows for IF computation in the presence

of another sinusoid

Then, we consider estimating the IF of the sinusoid s from a signal composed of

two complex sinusoids,

x = s+ i, (3.69)

where

i[l] = Aie
i(2πξil+ϕi), (3.70)
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Figure 3.14: IF computation error in a sinusoid using the four windows. The left and

right columns correspond to the results without and with truncation, respectively.

for l = 0, 1, . . . , L − 1. s and i correspond to the target and interference signals,

respectively. The IF of x is expressed as

IFx
g[n,m]

= − 1

2π
ℑ
{
(Vg′x)[n,m]

(Vgx)[n,m]

}
= − 1

2π
ℑ

{
rei∆ϕ(Fg′)(mL − ξs) + (Fg′)(mL − ξi)

rei∆ϕ(Fg)(mL − ξs) + (Fg)(mL − ξi)

}
, (3.71)

where

r =
As

Ai
, ∆ϕ = 2πξsn+ ϕs − (2πξin+ ϕi).

The error of the IF between s and x is given by

e = IFx
g[n,m]− IFs

g[n,m]

= − 1

2π
ℑ


(Fg′)(m

L
−ξi)

(Fg)(m
L
−ξi)

− (Fg′)(m
L
−ξs)

(Fg)(m
L
−ξs)

rei∆ϕ (Fg)(m
L
−ξs)

(Fg)(m
L
−ξi)

+ 1

 . (3.72)

According to (2.25), the real part of the numerator of (3.72) is zero since the STFT

magnitude of a complex sinusoid is time-invariant. Hence, (3.72) can be rewritten

using IFi
g and IFs

g as

e = ℜ

 IFi
g[n,m]− IFs

g[n,m]

rei∆ϕ (Fg)(m
L
−ξs)

(Fg)(m
L
−ξi)

+ 1

 . (3.73)
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Figure 3.15: IF computation error in the sum of two sinusoids. Each row shows

(from top to bottom) the results for the Slepian window, Dolph–Chebyshev window,

proposed Slepian window, and proposed Chebyshev window.

The transitions of e associated with the initial phase ϕs, ϕi, and the time in-

dex n are irrelevant to the evaluation. Moreover, from (3.12), the IF of a com-

plex sinusoid is constant regardless of the time index n. Therefore, we consider

the worst case of e in any ∆ϕ. The error e becomes large regardless of sidelobe

level when m/L is outside the mainlobe of the target signal or inside the main-

lobe of the interference signal. Under these conditions, it is challenging to ob-

tain a meaningful IF unless the amplitude ratio is quite large. Thus, we consider

the case where m/L is inside the mainlobe of the target signal and outside the

mainlobe of the interference signal. Assume that the amplitude ratio r satisfies

|(Fg)(m/L− ξs)/(Fg)(m/L− ξi))| > 1/r. This assumption is mild in the con-

dition we considered because |(Fg)(m/L− ξs)/(Fg)(m/L− ξi))| should be large.

Then, the worst case of e by choosing ∆ϕ is given by

emax =
IFi

g[n,m]− IFs
g[n,m]

1− r
∣∣∣ (Fg)(m

L
−ξs)

(Fg)(m
L
−ξi)

∣∣∣ . (3.74)

The deviation of (3.74) is shown in Appendix B. (3.74) indicates that as the

amplitude ratio r decreases, the error of the IF increases.

Fig. 3.15 plots the error of the IF computation in (3.74) for r = 1. The bright

central areas in the four results correspond to cases where the two mainlobes overlap.

The top and bottom bright regions in the four results represent the errors of the IF

outside the mainlobe of s. In addition, the error at m/L = ξs in Fig. 3.15 is shown

in Fig. 3.16.
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Figure 3.16: Error at m/L = ξs in Fig. 3.15. Each color represents the result of a

different window.

The IF using the Dolph–Chebyshev window had the most significant error

among the four windows. In contrast, the results for the proposed Slepian win-

dow had the smallest error. The results using the Slepian window and the proposed

Chebyshev window had comparable errors. These results suggest that reducing the

sidelobe of the window derivative decreases the error of the IF computation.

3.7 Application to FSST

As an application for IF computation, the proposed windows were applied to the

FSSTs of an artificial signal and a speech signal. The FSST of a signal f with a

window function g is defined as

Sfg[n,m] :=

L−1∑
k=0

ei
2πkn
L (Vgf)[n, k]δ [m− m̃[n, k]] , (3.75)

where

m̃[n,m] :=
⌊
m+ L · IFf

g[n,m]
⌉
, (3.76)

and δ[l] is the Kronecker delta. We used the Rényi entropy as a metric of the

energy concentration of the FSST spectrogram [93]. The Rényi entropy of the

FSST spectrogram is given by

Hα :=
1

1− α
log2

(∑
n,m

( ∣∣Sfg[n,m]
∣∣∑

n,m

∣∣Sfg[n,m]
∣∣
)α)

− log2(L),
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with α > 2 being recommended for the T-F domain measures [93]. α = 3 is chosen

throughout the experiments.

As shown in Fig. 3.10, sidelobes can be reduced by increasing the mainlobe

width. In contrast, if the mainlobes of multiple components overlap, the IF error

becomes large. Therefore, an appropriate mainlobe width must be selected to reduce

both effects. The Rényi entropy has also been used as a metric to select the variance

of the Gaussian window in STFT and FSST [51,94]. Since the mainlobe widths of

the designed windows will also affect the Rényi entropy of the FSST, we evaluated

the Rényi entropy of the FSST for various mainlobe widths.

To further evaluate the FSST of an artificial signal, we used the Earth mover’s

distance [95]. The Earth mover’s distance is an index that measures between two

distributions and has been used to evaluate the synchrosqueezing-based method

[21, 22, 96]. This evaluation consists of averaging the 1D Earth mover’s distance

between the estimated T-F representation and the ideal representation at each

time index n. If the ideal representation is known, the Earth mover’s distance is a

more valid metric for estimating the T-F representation than the Rényi entropy.

3.7.1 FSST of artificial signals

The proposed windows were evaluated with the FSST of a real-valued artificial

signal, which contained a sinusoid, a linear chirp, and a quadratic chirp. The

window length was set to N = 26 because the calculation of the Rényi entropy of

FSST was numerically unstable when N = 27.

The Rényi entropies of the FSST with different mainlobe widths ωMW are plot-

ted in Fig. 3.17. Table 3.1 shows the minimum values of the Rényi entropies in

Fig. 3.17 and the corresponding bandwidths. Compared to the other four windows,

the widely used truncated Gaussian window shows poor performance. The Slepian

window and the proposed Chebyshev window show approximately equivalent per-

formance. The proposed Slepian window achieves the best performance among the

five windows. Then, the Earth mover’s distance of FSST with different mainlobe

widths ωMW are shown in Fig. 3.18, and their minimum values are shown in Ta-

ble 3.2. Although the mainlobe widths that obtain the minima are different, the

FSST spectrogram using the proposed Slepian has the smallest distance. These

results indicate that the proposed Slepian window provides the most concentrated

FSST spectrogram of the five windows.
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Figure 3.17: Rényi entropies of FSST spectrograms of a synthesized signal.

Fig. 3.19 illustrates the T-F representations obtained by the STFT and FSST

in the case of Table 3.1. Focusing on the enlargement in the red box (the right

column of Fig. 3.19), it can be confirmed that the component outside the center

frequency is reduced using the proposed Slepian window. The FSST spectrogram

using the proposed Chebyshev window is almost as sharp as that using the Slepian

window.

Table 3.1: Minimum values of the Rényi entropies in Fig. 3.17 and the corresponding

bandwidths.

Window function Mainlobe width Rényi entropy

Slepian 0.0562 3.1177

Dolph–Chebyshev 0.0601 3.1198

Proposed Slepian 0.0534 3.1148

Proposed Chebyshev 0.0554 3.1174

Truncated Gaussian 0.0826 3.1680
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Figure 3.18: Earth mover’s distance of FSST spectrograms of a synthesized signal.

Table 3.2: Minimum values of the Earth mover’s distance in Fig. 3.18 and the

corresponding bandwidths.

Window function Mainlobe width Earth mover’s distance

Slepian 0.0468 0.6178

Dolph–Chebyshev 0.0505 0.6235

Proposed Slepian 0.0443 0.6144

Proposed Chebyshev 0.0467 0.6178

Truncated Gaussian 0.0594 0.7064
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Figure 3.19: FSST spectrograms of an artificial signal. Each column shows (from

left to right) the spectrograms, FSST spectrograms, and enlargements of the FSST

spectrograms in the red box. Each row shows (from top to bottom) the results

for the Slepian, Dolph–Chebyshev, proposed Slepian, proposed Chebyshev, and

truncated Gaussian windows.
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3.7.2 FSST of speech signal

We considered a speech signal with a sampling frequency of 7,418 Hz. The window

length was set to N = 27. Since the ideal T-F representation is unknown, the Earth

mover’s distance cannot be used for evaluation, and only the Rényi entropy is used

in this experiment.

Fig. 3.20 and Table 3.3 show Rényi entropies of SST with different bandwidths

and their minimum values, respectively. As in the case of the synthesized signal,

FSST with the proposed Slepian window achieves the best performance in terms of

the Rényi entropy. Fig. 3.21 depicts the T-F representations obtained by the STFT

and FSST in the case of Table 3.3. Although the appearances of the spectrograms

are similar, the proposed Slepian window provides the sharpest FSST spectrogram

of the four windows. The results confirmed that the proposed Slepian window

provides the sharpest FSST spectrogram of the four windows for a real speech

signal as well.

The proposed Slepian window showed the best performance throughout the ex-

periments in this section. Therefore, the proposed Slepian window can be useful

for FSST applications. However, the proposed Chebyshev window may be prefer-

able depending on the signal of interest because the sidelobes of the Chebyshev

window derivative near the mainlobe are smaller than those of the Slepian window

derivative.

Table 3.3: Minimum values of the Rényi entropies in Fig. 3.20 and the corresponding

bandwidths.

Window function Mainlobe width Rényi entropy

Slepian 0.0215 5.0835

Dolph–Chebyshev 0.0239 5.1175

Proposed Slepian 0.0208 5.0794

Proposed Chebyshev 0.0221 5.0899

Truncated Gaussian 0.0284 5.2594
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Figure 3.20: Rényi entropies of FSST spectrograms of a speech signal.
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Figure 3.21: FSST spectrograms of a speech signal. Each column shows (from

left to right) the spectrograms, FSST spectrograms, and enlargements of the FSST

spectrograms in the red box. Each row shows (from top to bottom) the results

for the Slepian, Dolph–Chebyshev, proposed Slepian, proposed Chebyshev, and

truncated Gaussian windows.
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3.8 Conclusion

In this chapter, we proposed a framework to design a window function for the IF

computation. The proposed method first designs the window derivative to minimize

the sidelobes and then estimates the window function from the designed window

derivative. We designed two minimum-sidelobe derivatives to minimize the SE and

HSL, referred to as the Slepian and Chebyshev window derivatives, respectively.

The integral constant that appears when integrating the designed window derivative

is estimated to minimize the truncation effect. In the IF computation of a sinusoid,

the proposed windows reduce the error compared to certain other windows. In

addition, the proposed Slepian window showed the best performance in the FSST

among the several windows.

Some phase-aware techniques use not only the IF but also the group delay and

higher-order derivatives of the phase [20–22]. Moreover, phase derivatives also play

an important role in wavelet synchrosqueezing transform and other filterbank-based

methods. Therefore, future work will include generalizing the proposed method to

these elements and investigating the method’s computational efficiency.
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Chapter 4

Sparse time-frequency

representation via atomic norm

minimization

4.1 Introduction

In this chapter, an estimation method of a sparse T-F representation using atomic

norm minimization is proposed. The T-F representation obtained by the STFT or

the DGT is spread due to the windowing of the analyzed signal. This spread may

affect the performance of T-F domain analysis and processing.

To achieve a well-localized T-F representation, many approaches have been pro-

posed [5, 7, 14, 18, 25–32]. Reassignment and synchrosqueezing methods aim to re-

locate the spread components into the original positions using phase derivative

information [5, 7, 14, 18]. Their performances are affected by the mixing of com-

ponents due to windowing [33]. Sparsity-aware methods are powerful tools that

are robust against such mixing of components and noises [25–32]. Sparsity-aware

methods aim to find a sparse solution of an underdetermined system. However,

the typical formulation based on ℓ1-norm minimization involves discretizing a con-

tinuous parameter onto a grid. It may degrade the performance due to a model

mismatch between the signal and the predefined grid [97].

Recently, sparse optimization using the atomic norm has been studied [98–

101] and applied to many applications such as line spectrum estimation [102, 103],

direction of arrival estimation [104–106], and target localization in radar [107].
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4.2. LINE SPECTRUM ESTIMATION USING ATOMIC NORM

The atomic norm does not require the discretization of continuous parameters.

Thus, introducing the atomic norm into a sparse T-F representation should obtain

a better-localized T-F representation.

In this chapter, we propose an estimation method of a sparse T-F representation.

In the proposed method, the estimation problem is formulated as atomic norm

minimization under the condition that the analyzed time-domain signal can be

reconstructed. Numerical experiments confirm that the proposed method provides

a sparser T-F representation than the conventional methods.

4.2 Line spectrum estimation using atomic norm

G(g, a,M) in (2.30) contains windowed sinusoids whose frequency is discretized onto

the grid {m/M}m=0,...,M−1. Eq. (2.37) may provide a poor result when the signal f

has a component whose frequency is not included in the grid. To avoid the effects

of grid mismatch, a method using the atomic norm has been studied as a gridless

sparse optimization method [98–107]. Here, line spectrum estimation is applied

only to the nth windowed signal. A windowed signal at time index n is denoted as

fn = Wnf , where Wn ∈ RL×L is a diagonal matrix whose diagonal elements are

given by Wn[l, l] = g[l − an]. We assume that the nth windowed signal fn can be

expressed as a sum of complex sinusoids,

fn = Wn

∑
k

cn,kan,k, an,k ∈ A, (4.1)

where A is a collection of complex sinusoids

A =
{
a ∈ CL

∣∣∣a[l] = ei2πωl, ω ∈ [0, 1)
}
. (4.2)

The atomic norm is used to express the nth windowed signal fn with a few coefficient

cn,k. Let us denote xn =
∑

k cn,kan,k, then the atomic norm of xn associated with

a set of atoms A is given by [99]

∥xn∥A = inf {νn ≥ 0 |xn ∈ νn conv(A)} , (4.3)

= inf

{∑
k

|cn,k|

∣∣∣∣∣xn =
∑
k

cn,kan,k, an,k ∈ A

}
,

where conv(A) is the convex hull of A. It corresponds to the infimum of the ℓ1-

norm of coefficients when xn is represented by a linear combination of elements in
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4.2. LINE SPECTRUM ESTIMATION USING ATOMIC NORM

A. That is, the atomic norm can be interpreted as an extension of the ℓ1-norm to

the continuous parameter ω ∈ [0, 1). The atomic norm in Eq. (4.3) is characterized

by the following optimization problem [100]:

∥xn∥A = min
un,νn

1

2L
Tr (T (un)) +

1

2
νn

subject to

 T (un) xn

x∗
n νn

 ⪰ 0, (4.4)

where T : CL → CL×L is the Hermitian Toeplitz operator:

T (u) =


u[0] u[1] · · · u[L− 1]

u[1] u[0]
. . .

...
...

. . .
. . . u[1]

u[L− 1] · · · u[1] u[0]

 . (4.5)

If the Hermitian Toeplitz matrix T (un) is positive semidefinite and singular, it can

be uniquely decomposed as [108]

T (un) =
K−1∑
k=0

|cn,k|an,ka∗n,k, an,k ∈ A, (4.6)

where K corresponds to the rank of T (un). an,k in Eq. (4.6) can be obtained by

Prony’s method [109], the matrix pencil method [110], or other linear prediction

methods [111]. Then, coefficients cn,k can be obtained by solving the linear equation

[an,0, . . . , an,K−1] cn = xn, (4.7)

where cn = [cn,0, . . . , cn,K−1]
T. Therefore, estimating sinusoids in the windowed

signal fn using the atomic norm is formulated as

minimize
xn

∥xn∥A subject to fn = Wnxn. (4.8)

Substituting Eq. (4.4) into Eq. (4.8), Eq. (4.8) can be rewritten as the following

semidefinite programming:

minimize
xn,un,νn

1

2L
Tr(T (un)) +

1

2
νn

subject to

 T (un) xn

x∗
n νn

 ⪰ 0, fn = Wnxn. (4.9)

While the eigenvalue decomposition of the (L+1)× (L+1) matrix needs to be

iterated when solving Eq. (4.9), it can be reduced to the eigenvalue decomposition

of a (J + 1)× (J + 1) matrix if the window function is supported on [0, J − 1].
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Figure 4.1: Estimating T-F representations using (a) ℓ1-norm, (b) the line spectrum

estimation by atomic norm, and (c) the proposed method.

4.3 Proposed method

The method of estimating the T-F representation based on the ℓ1-norm suffers

from degradation of performance due to discretization onto the grid, as shown in

Fig. 4.1 (a). By contrast, by performing the line spectrum estimation using the

atomic norm for each time index, a sparse T-F representation can be obtained

without a grid in the frequency direction. However, Eq. (4.9) estimates sinusoids

at each time index n independently as Fig. 4.1 (b), which does not efficiently take

advantage of the sparsity of the T-F representation (see Fig. 4.2).

In this chapter, we propose an estimation method for a sparse T-F representation

using the atomic norm to avoid the effect of grid mismatch. In our formulation, the

atomic norm is minimized under the constraint of the perfect reconstruction of the

entire signal. It can be interpreted as an extension of Eq. (2.37) with an infinite

number of frequency channels, shown in Fig. 4.1 (c).

4.3.1 Sparse T-F representation using atomic norm

Reconstruction of the nth windowed signal fn = Wnfn is considered in Eq. (4.9).

In contrast, reconstructing the entire signal f by windowing and summing xn is

considered in the proposed method, written as

Agx =

N−1∑
n=0

Wnxn, (4.10)

where x =
[
xT
0 ,x

T
1 , . . . ,x

T
N−1

]T
. A sum of atomic norms for time index n is chosen

as a cost function because it corresponds to the grid-less version of the cost function
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in Eq. (2.37),

N−1∑
n=0

∥xn∥A = inf

∑
n,k

|cn,k|

∣∣∣∣∣∣xn =
∑
k

cn,kan,k, an,k ∈ A

 .

Thus, the estimation of a sparse T-F representation is formulated as

minimize
x

N−1∑
n=0

∥xn∥A subject to f = Agx. (4.11)

Since xn =
∑

k cn,kan,k, the nth windowed signal Wnxn =
∑

k cn,k(Wnan,k) corre-

sponds to the vertical sum of elements in Fig. 4.1. The signal f can be reconstructed

by
∑N−1

n=0 Wnxn = Agx. After solving Eq. (4.11), the coefficients cn,k can be cal-

culated as the line spectrum estimation using the atomic norm (in Sec. 4.2).

4.3.2 Algorithm for solving Eq. (4.11)

To solve Eq. (4.11), we firstly reformulate it as a semidefinite programming. Sub-

stituting Eq. (4.4) into Eq. (4.11), it can be rewritten as

minimize
x,u,ν

N−1∑
n=0

1

2L
Tr(T (un)) +

1

2
νn

subject to

 T (un) xn

x∗
n νn

 ⪰ 0, for n = 0, . . . , N − 1

f = Agx, (4.12)

where u =
[
uT
0 ,u

T
1 , . . . ,u

T
N−1

]T
and ν = [ν0, ν1, . . . , νN−1]

T. We adopt the al-

ternating direction method of multipliers (ADMM) [112] to solve Eq. (4.12). To

apply ADMM to the proposed method, we introduce auxiliary variables Zn ∈

C(L+1)×(L+1) for n = 0, . . . , N − 1 and a set corresponding to the reconstruction

constraint C = {x|Agx = f}. Then, Eq. (4.12) is reformulated as

minimize
x∈C,u,ν
Zn⪰0

N−1∑
n=0

1

2L
Tr(T (un)) +

1

2
νn

subject to

 T (un) xn

x∗
n νn

 = Zn, for n = 0, . . . , N − 1.

66



4.3. PROPOSED METHOD

The augmented Lagrangian associated with this problem is given by

L(x,u,ν,Zn,Λn) =
N−1∑
n=0

1

2L
Tr(T (un)) +

1

2
νn

+

〈
Λn,

 T (un) xn

x∗
n νn

− Zn

〉
F

+
ρ

2

∥∥∥∥∥∥
 T (un) xn

x∗
n νn

− Zn

∥∥∥∥∥∥
2

F

, (4.13)

where Λn ∈ C(L+1)×(L+1) for n = 0, . . . , N − 1 are dual variables, and ρ > 0

is the augmented Lagrangian parameter. Then, ADMM consists of the following

iterations:

(x(i+1),u(i+1),ν(i+1)) = argmin
x∈C,u,ν

L(x,u,ν,Z(i)
n ,Λ(i)

n ), (4.14)

Z(i+1)
n =argmin

Zn⪰0
L(x(i+1),u(i+1),ν(i+1),Zn,Λ

(i)
n ), (4.15)

Λ(i+1)
n =Λ(i)

n + ρ

 T (u
(i+1)
n ) x

(i+1)
n

(x
(i+1)
n )∗ ν

(i+1)
n

− Z(i+1)
n

 . (4.16)

Introducing

Zn =

 ZTn zxn

zx
∗
n zνn

 , Λn =

 ΛTn λxn

λx
∗
n λνn

 ,

zx =
[
zx

T
0 , zx

T
1 , . . . , zx

T
N−1

]T
, and λx =

[
λx

T
0 ,λx

T
1 , . . . ,λx

T
N−1

]T
, Eq. (4.14) can be

separately solved for x, u and ν.

The proposed algorithm is summarized in Algorithm 1. The update for x is

written as the projection onto the set C = {x|Agx = f}, denoted by PC(·). It is

given by

PC(v) = v −A∗
g(AgA

∗
g)

−1(Agv − f). (4.17)

The computation of matrix inversion in Eq. (4.17) can be avoided by the canonical

dual window h̃ as

A∗
g

(
AgA

∗
g

)−1
= A∗

h̃
. (4.18)

The updates for u, ν, Zn, and Λn can be computed in parallel for each n. T † :

CL×L → CL in the update for u represents the pseudo-inverse operator of T ,

T †(X)[n] =
1

2(L− n)

L−n−1∑
k=0

(
X[k, k + n] +X[k + n, k]

)
.
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Algorithm 1 ADMM for solving Eq. (4.11)

Input: A, f , ρ

Output: x, u, ν

Initialize Zn and Λn for n = 0, . . . , N − 1

for i = 0, 1, · · · do

x← PC

(
zx − 1

ρλx

)
for n = 1, · · · , N do

un ← T †
(
ZTn − 1

ρ

(
ΛTn − 1

2IL
))

νn ← zνn − 1
ρ

(
λνn − 1

2

)
Zn ← PS+

 T (un) xn

x∗
n νn

+ 1
ρΛn


Λn ← Λn + ρ

 T (un) xn

x∗
n νn

− Zn


end for

end for

The update for Zn can be calculated by a projection onto the positive semidefinite

cone S+, which is implemented by setting the negative eigenvalues to 0. Since

Eq. (4.12) is a convex optimization problem, Algorithm 1 can obtain the global

optimal solution regardless of the initialization for Zn and Λn.

4.4 Numerical experiments

To evaluate its performance, the proposed method was first applied to an artificial

signal containing a sinusoid, a linear chirp, and a quadratic chirp. The proposed

method was compared to DGT with the canonical dual window, the reassignment

method [7], the ℓ1-norm minimization [29], and the window-wise atomic norm min-

imization. The Slepian window [36] was chosen as a window g, and its length and

bandwidth were set to 27 and 0.04. The time-shifting width and the number of

frequency channels were set to a = 24 and M = 210. Zn and Λn in Algorithm 1

were initialized as zero matrices. Prony’s method was used to estimate an,k from

the solution of Eq. (4.12).

The estimated T-F representations are shown in Fig. 4.2. The T-F representa-

tion obtained using the ℓ1-norm was better-localized than DGT and the reassign-
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Figure 4.2: T-F representations of an artificial signal. Each column shows (from

left to right) the T-F representations obtained by DGT, the reassignment method,

the ℓ1-norm minimization, the window-wise atomic norm minimization, and the

proposed method, respectively. The bottom row illustrates these enlargements in

the red box.

ment method, but had multiple non-zero coefficients in each time index to represent

a sinusoid. The window-wise atomic norm minimization estimated a sparse repre-

sentation corresponding to the sinusoid. However, it cannot express the chirps

sparsely. The T-F representation obtained by the proposed method was the most-

localized among these T-F representations.

To evaluate the sparseness of these T-F representations, the squared absolute

value of coefficients is plotted in Fig. 4.3. It can be seen that the proposed method

can represent the signal using the fewest coefficients. These results indicate that

the proposed method provides a sparse representation using the atomic norm while

considering the relationship among each time index.

Finally, the proposed method was applied to a speech signal. The settings

associated with the Gabor system and the proposed algorithm were the same as in

the previous experiment. The estimated T-F representations are shown in Fig. 4.4.

It can be seen that the T-F representation obtained by the proposed method was

the sparsest among them. The result suggests that the proposed method performs

well for a real audio signal.
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Figure 4.3: Squared absolute value of coefficients in decending order.

4.5 Conclusion

In this chapter, we proposed a method for estimating a sparse T-F representation

via atomic norm minimization. The proposed method estimates a sparse T-F repre-

sentation without discretizing frequency using the atomic norm. The experimental

results show that the proposed method can estimate a sparser T-F representation

than existing methods.
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Figure 4.4: T-F representations of a speech signal. Each row and column represents

the same as Fig. 4.2.
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Chapter 5

Introducing nonconvex

regularization to gridless sparse

method

5.1 Introduction

Sparse optimization is a technique for estimating a signal from measurements by

assuming that the signal is sparse in certain domains [113,114]. This approach has

been widely employed in signal processing [115, 116]. Although the direct formu-

lation for finding sparse representation involves minimizing the number of nonzero

values, called the ℓ0 norm, this problem is usually an intractable combinatorial op-

timization problem. A typical formulation of sparse optimization uses the ℓ1 norm

instead of the ℓ0 norm as a sparsity-inducing regularization term. The ℓ1 norm cor-

responds to a convex relaxation of the ℓ0 norm, and efficient algorithms are available

for solving this problem. However, even though the actual parameters take contin-

uous values in applications such as line spectrum estimation and direction of arrival

estimation, this formulation involves discretizing a continuous parameter onto a

grid. As a result, the performance is often degraded due to model mismatches

between the signal and the predefined grid [97]. To address such grid mismatch

issues, some researchers have proposed off-grid methods based on some techniques

including Taylor series approximation [117–119], linear interpolation [120], adaptive

grid estimation [121, 122], and clustering [123]. These models perform better than

fixed grid-based approaches, but they are often nonconvex and challenging to solve.
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In addition, their performances depend on the initial grids.

Recently, a gridless sparse optimization method via atomic norm minimization

(ANM) has been developed [98–101]. In ANM, an infinite-dimensional sparse opti-

mization problem is transformed into a finite-dimensional semidefinite programming

(SDP) problem. It uses the Vandermonde structure, which enables continuous pa-

rameters to be handled without discretization. ANM-based sparse optimization

has been applied in line spectrum estimation [102,103], direction of arrival estima-

tion [104–106], target localization in radar [107], and time-frequency analysis [124]

and has demonstrated its effectiveness.

Although ANM can perform estimation without grid mismatches, the resulting

estimator is biased due to decreasing the amplitudes of coefficients, as in the ℓ1

norm-based method. In addition, the atomic norm suffers from a resolution limit

due to the convex relaxation [125, 126]. For cases in which some prior information

about the parameters is available, bias reduction methods that introduce weights

to the atomic norm have been proposed [127, 128]. In [127], prior information is

introduced as weights by dividing continuous parameters into several blocks. [128]

proposed an efficient algorithm for ANM weighted by a prior probability distribu-

tion. For situations where no prior information is available, reweighting methods

have been proposed to enhance sparsity [129, 130]. These reweighting methods

originate from the reweighting method in the on-grid ℓ1 norm-based method [131].

Other than the reweighting methods, nonconvex regularizations have been pro-

posed as alternatives to the ℓ0 and ℓ1 norms [132, 133]. These methods have been

designed to reduce the bias while relaxing the ℓ0 norm. Examples include the ℓq

(0 < q < 1) norm [134], the logarithmic penalty [135], the smoothly clipped absolute

deviation (SCAD) [136], the minimax concave penalty (MCP) [137], and the capped

ℓ1 norm [138]. These nonconvex regularizations have performed better than the ℓ1

norm. Introducing such nonconvex regularization into the gridless sparse approach

is expected to improve its performance, as well as the success of reweighting-based

ANM.

In this chapter, we propose a framework for incorporating such nonconvex reg-

ularizations into the gridless sparse optimization method. Our method is based on

an SDP formulation of ANM. The proposed method uses proximal algorithms and

can handle various existing regularizations with the same algorithm. Numerical ex-

periments confirmed that the proposed method provides performance better than
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conventional ANM and reweighted ANM (RAM).

The rest of this chapter is organized as follows. Sec. 5.2 introduces the con-

cept of sparse optimization via the atomic norm. Sec. 5.3 explains a nonconvex

regularization approach that promotes sparsity and the proximal algorithms that

can be used to solve it. Then, Sec. 5.4 explains the proposed method, which com-

bines ANM and nonconvex regularization. Sec. 5.5 provides numerical experiments

to confirm the effectiveness of the proposed method, and the conclusion of this

chapter is presented in Sec. 5.6.

5.2 Gridless sparse method with atomic norm

This section describes the signal model and the theoretical background of the grid-

less sparse method executed via ANM.

5.2.1 Signal model

Let us consider the problem of estimating a signal S ∈ CN×M from an observation

y ∈ CL represented as

y = B(S) + n, (5.1)

where B : CN×M → CL is a known linear mapping and n ∈ CL represents additive

Gaussian noise. The signal S is assumed to be expressed as the sum of a few

complex sinusoids, which is given by

S =
K−1∑
k=0

aks
H
k , ak ∈ A, (5.2)

where A is a collection of complex sinusoids

A =
{
a ∈ CN

∣∣∣a[l] = ei2πωl, ω ∈ [0, 1)
}
, (5.3)

and sk ∈ CM is the nth coefficient vector of the sinusoids. The ANM-based sparse

method aims to estimate the frequencies ωk and the coefficients sk without a priori

knowledge of the number of sinusoids K. ANM is based on the assumption that a

signal X can be expressed as a sum of a few atoms in the set A.
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5.2.2 Atomic ℓ0 norm

A direct metric for the number of sinusoids K is the atomic ℓ0 norm, which is

defined as

∥X∥A,0 = inf
ak,sk

{
K

∣∣∣∣∣X =
K−1∑
k=0

aks
H
k , ak ∈ A

}
. (5.4)

The atomic ℓ0 norm in (5.4) equals the optimal value of the following optimization

problem [139]:

minimize
Z,u,Q

rank (Z)

subject to Z =

 T (u) X

XH Q

 ⪰ 0, (5.5)

where T : CN → CN×N is the Hermitian Toeplitz operator:

T (u) =


u[0] u[1] · · · u[N − 1]

u[1] u[0]
. . .

...
...

. . .
. . . u[1]

u[N − 1] · · · u[1] u[0]

 . (5.6)

Denoting the optimal solutions of (5.5) by u⋆, Q⋆, and Z⋆, it is known that rank(Z⋆)

equals rank(T (u⋆)). Utilizing the ℓ0 norm ∥·∥A,0, a problem of estimating the signal

S from an observation y is formulated as

minimize
X

∥X∥A,0

subject to ∥B(X)− y∥2 ≤ η, (5.7)

where η ≥ 0 is a data fidelity parameter. η = 0 corresponds to the case where the

observation y contains no noise. Substituting (5.5) into (5.7), the equation can be

rewritten as

minimize
Z,u,X,Q

rank(Z)

subject to Z =

 T (u) X

XH Q

 ⪰ 0

∥B(X)− y∥2 ≤ η. (5.8)

From the property of the Schur complement [140], the solution T (u⋆) satisfies

T (u⋆) ⪰ 0. Thus, the Vandermonde decomposition can be applied to T (u⋆). Any
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positive semidefinite Hermitian Toeplitz matrix can be decomposed as [108]

T (u⋆) =
K⋆−1∑
k=0

p⋆ka
⋆
ka

⋆
k
H, a⋆k ∈ A, (5.9)

where K⋆ corresponds to rank(T (u⋆)) = rank(Z⋆). If K⋆ < N , its decomposition

is uniquely determined. In practical computation scenarios, a⋆k in (5.9) can be

obtained by Prony’s method [109], the matrix pencil method [110], or other linear

prediction methods [111]. Then, the coefficients p⋆ =
[
p⋆0, p

⋆
1, . . . , p

⋆
K⋆−1

]
can be

obtained by solving the following linear equation:

A⋆p⋆ = u⋆, (5.10)

where A⋆ =
[
a⋆0,a

⋆
1, . . . , a

⋆
K⋆−1

]
.

5.2.3 Convex relaxation of the atomic ℓ0 norm

Once the optimal solution to (5.8) is obtained, the frequencies ωk and coefficients sk

can be calculated through the Vandermonde decomposition. However, the atomic

ℓ0 norm is an intractable combinatorial optimization problem. Instead, the atomic

(ℓ1) norm [99],

∥X∥A = inf
ak,sk

{∑
k

∥sk∥2

∣∣∣∣∣X =
∑
k

aks
H
k , ak ∈ A

}
, (5.11)

is used as convex relaxation of the atomic ℓ0 norm. The sparse estimation problem

formulated in terms of the atomic norm is expressed as

minimize
X

∥X∥A

subject to ∥B(X)− y∥2 ≤ η. (5.12)

The atomic norm can also be characterized by the solution to the following opti-

mization problem:

minimize
Z,u,Q

1

2
√
N

Tr (Z)

subject to Z =

 T (u) X

XH Q

 ⪰ 0, (5.13)
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Hence, (5.12) is reformulated as an SDP problem:

minimize
Z,u,X,Q

1

2
√
N

Tr(Z)

subject to Z =

 T (u) X

XH Q

 ⪰ 0

∥B(X)− y∥2 ≤ η. (5.14)

5.3 Proximal operator for sparse and low-rank estima-

tion

This section provides the prior knowledge required for the proposed method.

5.3.1 Proximal operator of nonconvex sparse regularizations

Sparsity-inducing penalties, including the ℓ1 norm, are nonsmooth functions. Prox-

imal algorithms can efficiently solve optimization problems involving such regular-

izations [141,142]. The main operation in a proximal algorithm involves evaluating

the proximal operator of a regularizer iteratively.

Let R be a proper and lower semicontinuous function. The proximal operator

of R is defined by

proxλR(·)(x) = argmin
y

R(y) +
1

2λ
∥x− y∥22 , (5.15)

where λ > 0. If R(·) is fully separable, i.e., R(x) =
∑

l r(x[l]), then proxλR(·)(x)

can be evaluated in an elementwise manner as(
proxλR(·)(x)

)
[l] = argmin

y
r(y) +

1

2λ
|x[l]− y|2

= proxλr(·)(x[l]). (5.16)

Table 5.1 and Fig. 5.1 show examples of nonconvex penalties for inducing soar-

sity and their proximal operators. All of these penalties except for the ℓ1 norm are

nonconvex. The estimator using the ℓ1 norm is biased due to decreasing the ampli-

tudes of the coefficients when the true parameters are relatively large. To reduce

the bias while maintaining numerical stability, these nonconvex penalties have been

designed to fill in the gap between the ℓ0 and ℓ1 norms. Specifically, these penalties

behave like the ℓ1 norm when the amplitudes of the parameters are small and the
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ℓ0 norm when the amplitudes are large. The proximal operator of the ℓq norm

(0 < q < 1) does not have a closed-form expression except in the two special cases

where q = 1/2 [143] and q = 2/3 [144]. An iterative algorithm has been proposed

to evaluate the proximal operator of the ℓq norm for arbitrary q (0 < q < 1) [145].

5.3.2 Proximal operator for low-rank matrix positive semidefinite

matrix

Estimation of low-rank positive semidefinite matrices is formulated as minimizing

the sum of low-rank inducing regularization R(Z) and the indicator function of a

positive semidefinite cone ιSN+
(Z). Inducing low-rankness of a Hermitian matrix Z

can be achieved by regularizing the sparsity of its eigenvalues. The positive semidef-

initeness of a Hermitian matrix corresponds to the nonnegativity of its eigenvalues.

Hence, the proximal operators of R(Z) and ιSN+
(Z) are calculated as [141]

proxλR(·)(X) = VX diag(proxλR(·)(σX))VH
X (5.17)

proxιSN+
(X) = VX diag(proxιR+

(σX))VH
X

= VX diag((σX)+)V
H
X, (5.18)

respectively, where σZ ∈ RN is the eigenvalues of Z, VX is a matrix whose columns

are eigenvectors of X, and (·)+ = max (·, 0). In addition, since both R(·) and ι·≥0(·)

are separable, the proximal operator of R+(·) = R(·) + ι·≥0(·) can be evaluated as(
proxλR+(·)(x)

)
[l] = argmin

y∈R+

r(y) +
1

2λ
|x[l]− y|2

=
(
proxλr(·)(x[l])

)
+
. (5.19)

5.4 Proposed method

The SDP formulations of the atomic ℓ0 norm and atomic norm are explained in

Sec. 5.2. The SDP formulation of ANM (5.13) can be viewed as the minimization

of the trace norm of a semidefinite matrix. The trace norm induces low rankness in

the semidefinite matrix since the trace norm corresponds to the convex relaxation

of the rank of the matrix. Similar to that of the ℓ1 norm, the estimator of the trace

norm is biased to reduce the amplitudes of the eigenvalues.
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Table 5.1: Popular penalties for inducing sparsity and their proximal operators.

Penalty λr(x) proxλr(·)(x)

ℓ1 norm λ|x| sign(x)max(|x| − λ, 0)

ℓ0 norm λ|x|0


0 if |x| <

√
2λ

{0, x} if |x| =
√
2λ

x if |x| >
√
2λ

ℓq norm (0 < q < 1) λ |x|q


0 if |x| < τ

{0, sign(x)β} if |x| = τ

sign(x)y if |x| > τ

where β = (2λ(1− q))
1

2−q , τ = β + λqβq−1,

and y ∈ [β, |x|] such that λqyq−1 + y = |x|

Logarithmic [135] λ
a log (1 + a |x|)


0 if |x| < λ[
|x|
2 −

1
2a +

√(
|x|
2 + 1

2a

)2
− λ

a

]
sign(x) if |x| ≥ λ

SCAD [136]


λ|x| if |x| < λ

2µλ|x|−x2−λ2

2(µ−1) if λ ≤ |x| < µλ

µ+1
2 λ2 if |x| ≥ µλ


sign(x)(|x| − λ)+ if |x| ≤ 2λ

(µ−1)x−sign(x)µλ
µ−2 if 2λ < |x| ≤ µλ

x if |x| > µλ

MCP [137] λ
∫ |x|
0 max

(
1− t

γλ , 0
)
dt


0 if |x| ≤ λ

sign(x)(|x|−λ)
1−1/γ if λ < |x| ≤ γλ

x if |x| > γλ

Capped ℓ1 λmin (|x| , θ)


sign(x)max(|x| − λ) if |x| < θ + λ

2

sign(x)
(
θ ± λ

2

)
if |x| = θ + λ

2

x if |x| > θ + λ
2

In this chapter, we propose a method to reduce the bias by replacing the trace

norm of (5.13) with rank-reducing nonconvex penalties. The relationship among

the atomic ℓ0 norm, the atomic norm, and the proposed method is illustrated in

Fig. 5.2. The proposed method bridges the atomic ℓ0 norm and the atomic norm

through the nonconvex regularizations as shown in Table 5.1.

5.4.1 Formulation

Since the trace norm ∥·∥∗ of Z ∈ SN+M
+ equals

N+M−1∑
k=0

|σZ[k]| =
N+M−1∑

k=0

σZ[k] = Tr(Z), (5.20)
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Figure 5.1: Nonconvex penalties for inducing sparsity and their proximal operators

(λ = 1).

(5.13) can be rewritten as

∥X∥A = min
Z,u,Q

1

2
√
N
∥Z∥∗

subject to Z =

 T (u) X

XH Q

 ⪰ 0. (5.21)

The trace norm ∥·∥∗ corresponds to convex relaxation of the rank of the matrix.

According to (5.21), the SDP formulation of the atomic norm can be considered a

convex relaxation of the SDP representation of the atomic ℓ0 norm.

Replacing the trace norm in the SDP formulation of the atomic norm with a

rank-reducing penalty R(·) is expected to improve the performance of the gridless

sparse estimation. Therefore, we propose a regularization

R(X) = min
Z,u,Q

λR (Z)

subject to Z =

 T (u) X

XH Q

 ⪰ 0. (5.22)

When R(·) is the trace norm ∥·∥∗ or the rank rank(·), the regularization R(·) is

equal to the atomic norm ∥·∥A or the atomic ℓ0 norm ∥·∥A,0, respectively. The

proposed regularization R(·) corresponds to the nonconvex relaxation of the SDP

formulation of the atomic ℓ0 norm (5.5). However, the relationship between the

direct nonconvex relaxation of the atomic ℓ0 norm,

∥X∥A,r = inf
ak,sk

{∑
k

r(∥sk∥2)

∣∣∣∣∣X =
∑
k

aks
H
k , ak ∈ A

}
,
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Figure 5.2: Relationship among the atomic ℓ0 norm, the atomic norm, and the

proposed method.

and the proposed regularization is not clear.

Utilizing the regularization R(·), the problem of estimating a signal S from an

observation y is formulated as

minimize
X

R(X) subject to ∥B(X)− y∥2 ≤ η, (5.23)

which can also be reformulated as the following SDP problem:

minimize
Z,u,X,Q

λR(Z)

subject to Z =

 T (u) X

XH Q

 ⪰ 0

∥B(X)− y∥2 ≤ η. (5.24)

A standard SDP solver is available for solving the conventional ANM problem. In

contrast, since (5.24) is nonconvex optimization problem, the solver cannot be used

to solve (5.24).

5.4.2 Algrithm via proximal ADMM

In this chapter, we adopt the proximal alternating direction method of multipliers

(ADMM) to solve (5.24) [146]. For applying the proximal ADMM to the proposed
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method, (5.24) is reformulated as

minimize
Z,u,X,Q

λR+(Z) + ιC(X)

subject to Z =

 T (u) X

X∗ Q

 , (5.25)

when η = 0, and

minimize
Z,u,X,Q

λR+(Z) +
1

2
∥B(X)− y∥22

subject to Z =

 T (u) X

X∗ Q

 , (5.26)

when η > 0, where

R+(Z) = R(Z) + ιSN+M
+

(Z), (5.27)

and C = {X|B(X) = y}. Although λ in (5.25) does not change the solution to

the optimization problem, An estimation obtained by the algorithm depends on λ.

Additionally, λ in (5.26) controlls the data fidelity instead of η.

The augmented Lagrangian associated with (5.25) is given by

Lρ(Z,X,u,Q,Λ)

= λR+(Z) + ιC(X)

+

〈
Λ,Z−

 T (u) X

XH Q

〉
F

+
ρ

2

∥∥∥∥∥∥Z−
 T (u) X

XH Q

∥∥∥∥∥∥
2

F

,

whereΛ ∈ C(L+M)×(L+M) is a dual variable, and ρ > 0 is the augmented Lagrangian

parameter. Then, the proximal ADMM for solving (5.25) consists of the following

iterations:

Z(i+1) = argmin
Z

Lρ(Z,X(i),u(i),Q(i),Λ(i))

+
β

2

∥∥∥Z− Z(i)
∥∥∥2
F

(X(i+1),u(i+1),Q(i+1)) = argmin
X,u,Q

Lρ(Z(i+1),X,u,Q,Λ(i))

+
β

2

∥∥∥∥∥∥
 T (u) X

XH Q

−
 T (u(i)) X(i)

(X(i))H Q(i)

∥∥∥∥∥∥
2

F

Λ(i+1) = Λ(i) + ρ

Z(i+1) −

 T (u(i+1)) X(i+1)

(X(i+1))H Q(i+1)

 ,
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where β > 0. The update for Z can be rewritten as

Z(i+1) = argmin
Z

λR+(Z) +
〈
Λ(i),Z

〉
F

+
ρ

2

∥∥∥∥∥∥Z−
 T (u(i)) X(i)

(X(i))H Q(i)

∥∥∥∥∥∥
2

F

+
β

2

∥∥∥Z− Z(i)
∥∥∥2
F

= argmin
Z

λR+(Z)

+
ρ+ β

2

∥∥∥∥∥∥Z− 1

ρ+ β

ρ

 T (u(i)) X(i)

(X(i))H Q(i)

−Λ(i) + βZ(i)

∥∥∥∥∥∥
2

F

= prox λ
ρ+β

R+(·)

 1

ρ+ β

ρ

 T (u(i)) X(i)

(X(i))H Q(i)

−Λ(i) + βZ(i)

 . (5.28)

Introducing

Z(i) =

 Z
(i)
T Z

(i)
X

(Z
(i)
X )H Z

(i)
Q

 , Λ(i) =

 Λ
(i)
T Λ

(i)
X

(Λ
(i)
X )H Λ

(i)
Q

 ,

X, u and Q can be updated separately as

X(i+1) = argmin
X

ιC(X)− 2
〈
Λ

(i)
X ,X

〉
F

+ ρ
∥∥∥Z(i+1)

X −X
∥∥∥2
F
+ β

∥∥∥X−X(i)
∥∥∥2
F

= PC

(
1

ρ+ β

(
ρZ

(i+1)
X +Λ

(i)
X + βX(i)

))
, (5.29)

u(i+1) = argmin
u

−
〈
Λ

(i)
T , T (u)

〉
F
+

ρ

2

∥∥∥Z(i+1)
T − T (u)

∥∥∥2
F

+
β

2

∥∥∥T (u)− T (u(i))
∥∥∥2
F

= T †
(

1

ρ+ β

(
ρZ

(i+1)
T +Λ

(i)
T + βT (u(i))

))
, (5.30)

Q(i+1) = argmin
Q

−
〈
Λ

(i)
Q ,Q

〉
F
+

ρ

2

∥∥∥Z(i+1)
Q −Q

∥∥∥2
F

+
β

2

∥∥∥Q−Q(i)
∥∥∥2
F

=
1

ρ+ β

(
ρZ

(i+1)
Q +Λ

(i)
Q + βQ(i)

)
, (5.31)

respectively. The projection PC(·) in the update for X is given by

PC(X) = X− B∗(BB∗)−1(B(X)− y). (5.32)
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The linear operator B(·) can be rewritten as the product of a matrix B ∈ CL×NM

and the vectorization of X

B(X) = Bvec(X). (5.33)

Then, its adjoint B∗ and (BB∗)−1 are calculated as

B∗(v) = matN,M

(
BH(v)

)
(5.34)

(BB∗)−1(v) = (BBH)−1v, (5.35)

where matN,M : CNM → CN×M is a matricization operator. T † : CL×L → CL in

the update for u represents the pseudo-inverse operator of T ,

T †(X)[n] =
1

2(L− n)

L−n−1∑
k=0

(
X[k, k + n] +X[k + n, k]

)
.

Algorithm 2 summarizes the algorithm for solving (5.25).

The augmented Lagrangian associated with (5.26) is similar to that of (5.25).

Hence, The algorithm for solving (5.26) differs only in the update of X, which is

given by

X(i+1) = argmin
X

1

2
∥B(X)− y∥22 − 2

〈
Λ

(i)
X ,X

〉
F

+ ρ
∥∥∥Z(i+1)

X −X
∥∥∥2
F
+ β

∥∥∥X−X(i)
∥∥∥2
F

= (B∗B + 2(ρ+ β)I)−1

·
(
B∗(y) + 2

(
ρZ

(i+1)
X +Λ

(i)
X + βX(i)

))
, (5.36)

where I is the identity operator. As in (5.34) and (5.35), (B∗B + 2(ρ+ β)I)−1 is

computed as

(B∗B + 2(ρ+ β)I)−1 (X)

= matN,M

((
BHB+ 2(ρ+ β)INM

)−1
vec(X)

)
. (5.37)

The algorithm for solving (5.26) is summarized in Algorithm 3.

The algorithms are applicable if the proximal operator of R+(·) can be com-

puted. Convergence of the proximal ADMM in nonconvex optimization problems

has been discussed [147], but convergence of this problem is not guaranteed. For

weakly convex R+(Z), the convergence of the proximal augmented Lagrangian
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Algorithm 2 Proximal ADMM for solving (5.25)

Input: B, y, and ϵ, ρ

Output: X, u, Q

Initialize Z(0), X(0), u(0), Q(0), and Λ(0)

for i = 0, 1, · · · do

Calculate Z(i+1) by (5.28)

Calculate X(i+1) by (5.29)

Calculate u(i+1) by (5.30)

Calculate Q(i+1) by (5.31)

Λ(i+1) ← Λ(i) + ρ

Z(i+1) −

 T (u(i+1)) X(i+1)

(X(i+1))H Q(i+1)


end for

method is guaranteed [148] 1. The discussion of the convergence of the proposed

method is a future issue.

5.5 Numerical experiments

This section compares the proposed method with ANM and RAM [130]. RAM

consists of repeatedly solving the following SDP problem:

minimize
X,u,Q

Tr
(
W(i)T (u)

)
+Tr(Q)

subject to Z =

 T (u) X

XH Q

 ⪰ 0

∥B(X)− y∥2 ≤ η, (5.38)

where W(i) =
(
T (u(i)) + εIN

)−1
is a weight matrix constructed by the solution of

the previous iteration u(i). The first iteration was computed with u(0) = 0N and

ε = 1. Then, ε was halved at the beginning of the next iteration until ε = 1
210

or

ε < Lη2

10∥y∥22
. We used CVX [149] with SDP3 [150] to solve (5.38).

The nonconvex penalties shown in Table 5.1 and Fig. 5.1 were used in the

proposed method. Each parameter of the nonconvex penalties was set to a = 1/λ

1Precisely, [148] proposes the Moreau envelope augmented Lagrangian (MEAL) method and

discusses its convergence. The MEAL method is identical to the proximal augmented Lagrangian

method with a certain parameter.
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Algorithm 3 Proximal ADMM for solving (5.26)

Input: B, y, ρ, and β

Output: X, u, Q

Initialize Z(0), X(0), u(0), Q(0), and Λ(0)

for i = 0, 1, · · · do

Calculate Z(i+1) by (5.28)

Calculate X(i+1) by (5.36)

Calculate u(i+1) by (5.30)

Calculate Q(i+1) by (5.31)

Λ(i+1) ← Λ(i) + ρ

Z(i+1) −

 T (u(i+1)) X(i+1)

(X(i+1))H Q(i+1)


end for

for the logarithmic penalty, µ = 3.7 for SCAD, γ = 3 for MCP, and θ = 2λ for

the capped ℓ1 norm. The parameters in Algorithm 2 and 3 were set to ρ = 1 and

β = 1. Since the optimization problems (5.25) and (5.26) in the proposed method

are non-convex, there is a dependency on the intial value. We set the initial values

to the zero matrices or the solution of ANM.

5.5.1 Sparsity separation and phase transition

We conducted an experiment to evaluate the separation performance of sinusoids

in noise-free situations. The proposed method was applied to estimate the line

spectrum of the sum of K sinusoids whose frequencies were separated by at least

∆ω. Let B in (5.1) be a sampling operator that samples L elements from a signal of

length N . The sampling index is generated uniformly at random. If the frequency

is correctly estimated, the entire signal can be reconstructed. If the error between

the unsampled signal and the estimated signal ∥S − X∥2F is less than 10−6, this

estimation result is treated as a success. The success rate of each combination

(K,∆ω) was calculated during ten runs. The size of the signal was set to N = 64,

M = 1, and L = 30.

Fig. 5.3 shows the success rates of ANM, RAM, and the proposed method with

the different regularizations when the initial values were set to the zero matrices.

The proposed method with the ℓ1/2 norm and the logarithmic penalty succeeded

in more conditions than the ANM. However, from Fig. 5.3, the proposed method
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Figure 5.3: Success rates of ANM, RAM, and the proposed method with the differ-

ent regularizations when the initial values were set to the zero matrices.

with the other regularizations rarely estimated correctly. Fig. 5.4 shows the success

rates when the initial values were set to the estimates by the ANM. Note that the

ANM shows the same result in Fig. 5.3. Furthermore, the first iteration of the RAM

matches the ANM, so the RAM also shows the equivalent performance in Fig. 5.3.

By setting the initial value to the estimations by the ANM, the proposed method

performed better than when the initial values were set to the zero matrices and

the ANM. The results suggest that incorporating nonconvex regularizations into

the gridless sparse method improves the performance of line spectrum estimation.

On the other hand, compared to the RAM, the performance issues remain when

minimum frequency separation ∆ω is small.

5.5.2 Line spectrum denoising

Next, the proposed method was used to estimate the sum of the sinusoids S obtained

from a noisy measurement y. The observation signal was generated by adding

complex Gaussian noise with a mean of 0 and a variance of σ2. This variance of σ2

was chosen so that the signal-to-noise ratio (SNR)

SNR =
∥S∥2F
MNσ2

(5.39)

87



5.5. NUMERICAL EXPERIMENTS

Minimum frequency separation "!

S
p
ar
si
ty

K
ANM (`1 norm)

0.005 0.01 0.015 0.02

5

10

15

20
RAM

0.005 0.01 0.015 0.02

5

10

15

20
`1=2 norm

0.005 0.01 0.015 0.02

5

10

15

20
`0 norm

0.005 0.01 0.015 0.02

5

10

15

20

Logarithmic

0.005 0.01 0.015 0.02

5

10

15

20
SCAD

0.005 0.01 0.015 0.02

5

10

15

20
MCP

0.005 0.01 0.015 0.02

5

10

15

20
Capped `1

0.005 0.01 0.015 0.02

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: Success rates of ANM, RAM, and the proposed method with the differ-

ent regularizations when the initial values were set to the estimations by ANM.

equals 0, 5, . . . , 40 dB. The estimation was performed 100 times for each SNR, and

the average of error ∥S − X∥2F was evaluated. The number of signal samples is

N = L = 24, M = 1, and B(·) is the identity operator I. That is, X was estimated

by solving

minimize
Z,u,X,Q

λR(Z) + 1

2
∥X− y∥2F

subject to Z =

 T (u) X

XH Q

 ⪰ 0. (5.40)

The regularization parameter λ was chosen to minimize the resulting averaged error.

The estimation results obtained at SNR = 20 when the initial values were set to

the zero matrices are shown in Fig. 5.5. (⃝) and (×) represent the ground truth and

the estimated parameters, respectively. In the results of the ANM, the amplitude

tends to be smaller than the ground truth because of the effect of including bias.

The RAM and the proposed method maintain the original amplitude. Furthermore,

the estimates using the proposed method have less variation than the estimate of

the RAM.

Then, Fig. 5.6 plots the averaged errors induced at each SNR. For SNR greater

than 20 dB, the proposed methods outperformed the ANM and RAM, indicating

that the original signal can be estimated with high accuracy by suppressing the
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bias. On the other hand, for SNR below 15 dB, the proposed methods using some

regularizations had worse performance than ANM. This is thought to be due to the

sensitivity to noise caused by nonconvexity. The nonconvex regularizations, except

for the ℓ0 norm, include a parameter that adjusts for nonconvexity. Hence, choos-

ing the parameter appropriately could improve the performance of the proposed

method. In fact, when the parameter θ in the capped ℓ1 is chosen large enough,

the estimation results of the capped ℓ1 equals those of the ℓ1 norm. The results

suggest that the proposed method can improve the performance of gridless sparse

optimization on noisy data.

The estimation results and average error at SNR = 20 when the initial values

are estimated by ANM are illustrated in Figs. 5.7 and 5.8. Compared to Sec. 5.5.1,

the proposed method works well in both cases of initial values.

5.6 Conclusion

In this chapter, we propose a framework to introduce nonconvex regularizations

for gridless sparse estimation. The proposed method reduces bias by replacing the

trace in the sparse estimation method (which uses the atomic norm technique) with

a nonconvex function that induces low rankness in the given matrix. The proposed

method outperformed the conventional ANM approach in a frequency separation

experiment. Furthermore, the proposed method performed better than ANM and

RAM in a line spectrum denoising at SNR greater than 20 dB.

The proposed method employs the proximal ADMM to solve the optimization

problem, but its convergence is not guaranteed. Future work will include a discus-

sion about the convergence of the algorithm. Future work will also include con-

ducting a theoretical analysis to clarify the relationships between the coefficients of

sinusoids and the proposed cost functions.

89



5.6. CONCLUSION

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

A
m
p
li
tu
d
e

ANM (`1 norm)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

RAM

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

`1=2 norm

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

`0 norm

0 0.2 0.4 0.6 0.8 1

Normalized frequency

0

0.5

1

1.5

2

A
m
p
li
tu
d
e

Logarithmic

0 0.2 0.4 0.6 0.8 1

Normalized frequency

0

0.5

1

1.5

2

SCAD

0 0.2 0.4 0.6 0.8 1

Normalized frequency

0

0.5

1

1.5

2

MCP

0 0.2 0.4 0.6 0.8 1

Normalized frequency

0

0.5

1

1.5

2

Capped `1

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

0.48 0.49 0.5 0.51 0.52
0.2

0.3

0.4

0.5

0.6

Figure 5.5: Results of line spectrum denoising for SNR = 20 when the initial values

were set to the zero matrices. (⃝) and (×) represent the ground truth and the

estimated parameters, respectively. The upper right subfigure in each figure is an

enlargement of the part in which the frequency ω = 0.5.
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Figure 5.6: Avaraged errors of line spectrum denoising when the initial values were

set to the zero matrices.
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Figure 5.7: Results of line spectrum denoising for SNR = 20 when the initial values

were set to the estimates by the ANM. (⃝) and (×) represent the ground truth and

the estimated parameters, respectively. The upper right subfigure in each figure is

an enlargement of the part in which the frequency ω = 0.5.
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Figure 5.8: Avaraged errors of line spectrum denoising when the initial values were

set to the estimates by the ANM.
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Chapter 6

Conclusions

6.1 Summary

T-F representations are essential in nonstationary signal analysis and processing.

The short-time Fourier transform (STFT) is widely used to convert a signal into

the T-F domain owing to its simplicity and well-understood structure. The res-

olution of a T-F representation obtained by the STFT is limited in Heisenberg’s

uncertainty principle. In this thesis, we explored methods for estimating sparse T-F

representations based on STFT and proposed the methods for improving them.

In Chapter 3, we proposed a framework to design a window function for com-

puting the IF of STFT. Computing the IF requires the STFT with a window and

STFT with its derivative, i.e., the IF computation depends on both the window

function and its derivative. To design a window suitable for computing the IF,

we formulated the window design problem as a sidelobe minimization problem of

the corresponding derivative. Two windows were designed considering the side-

lobe energy or the highest sidelobe level as cost functions to minimize the sidelobes

of their derivatives. The SST using the proposed window provided a sharper T-F

representation compared with those produced using ordinary bandwidth-adjustable

windows.

In Chapter 4, we proposed a method of estimating a sparse T-F representation

using the atomic norm. The atomic norm enables sparse optimization without the

discretization of continuous parameters. Introducing the atomic norm avoids the

effects of grid mismatch and allows to estimate sparser T-F representation than the

method using the ℓ1 norm.
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In Chapter 5, we proposed a framework for introducing non-convex penalties

into the gridless sparse optimization method. The proposed method aims to reduce

the bias that reduces the amplitude of the estimation. It was realized by replacing

the trace in sparse estimation using the atomic norm with a nonconvex function

that induces a lower-ranked matrix. Numerical experiments confirmed that the

proposed method performs better than the conventional ANM-based method.

6.2 Contribution to intermedia studies

Nonstationary signals are commonly difficult to understand visually, and they should

be converted into some representations. Converting these signals into a T-F domain

is effective to grasp the signal intuitively. Classical T-F representations have lim-

ited resolutions and sparsity, which may disturb understanding of the signal. The

sparse T-F representation provides higher resolution and aids in further under-

standing of the signal. Furthermore, sparse T-F representation is also useful in

signal processing. Our study has proposed the methods to obtain better sparse T-F

representations. This contributes to people grasping the signal intuitively.

6.3 Future remarks

Although the methods to estimate sparse T-F representations including the re-

assignment method, SST, and sparsity-aware methods have been proposed, most

audio signal processings are still performed using the STFT. In this thesis proposed

the methods improving the T-F representations. These works will contribute to the

expanded applications of sparse T-F representations and more accurate signal pro-

cessing using them. There are several remaining works to improve their performance

and expand their applications.

6.3.1 T-F representation via nonconvex gridless sparse method

In Chapter 4, we proposed a method of estimating a sparse T-F representation using

the atomic norm. The gridless sparse method with nonconvex regularization was

proposed in Chapter 5. These methods can be combined and expected to obtain a

sparser representation. Recall that the estimation of a sparse T-F representation
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Figure 6.1: T-F representations of a speech signal using gridless sparse methods.

The left and right sides show the T-F representations obtained using the atomic

norm (in Chapter 4) and the nonconvex gridless sparse method, respectively.

using ANM is formulated as

minimize
x

N−1∑
n=0

∥xn∥A subject to f = Agx. (6.1)

By replacing ∥·∥A in (6.1) with nonconvex regularization R(·) in (5.22), estimating

a sparse T-F representation via nonconvex gridress sparse method is formulated as

minimize
x

N−1∑
n=0

R (xn) subject to f = Agx. (6.2)

The two methods (4.11) and (6.2) were applied to a speech signal for comparing

these methods. The Slepian window [36] was chosen as a window g, and its length

and bandwidth were set to 27 and 0.04. The time-shifting width and the number of

frequency channels were set to a = 24 and M = 210. The logarithmic penalty was

used as a non-convex regularization R(·).

The estimated T-F representations are displayed in Fig. 6.1. The T-F repre-

sentation estimated using the nonconvex regularization appears to be more sparse.

However, it has discontinuities in the harmonics, which would disturb signal analy-

sis. Sparse optimization that takes into account the relationship in the time direc-

tion should be considered to solve this problem.
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6.3.2 Generalization for two-dimensional signals

In this thesis, we have discussed STFT for one-dimensional signals such as acoustic

signals. STFT is employed in the analysis and processing of two-dimensional signals

as well as one-dimensional signals [151–153]. This section shows the application of

sparse T-F representation to fringe restoration as an example for two-dimensional

signals.

Optical interferometry is a method for measuring the phase difference using light

interference with a reference light. The observed fringe pattern can be expressed as

f(x) = a(x) + b(x) cos(ϕ(x)) + n(x), (6.3)

where x = [x1, x2]
⊤ is the position vector, a is the background intensity, b is the

amplitude of the fringe, ϕ is the phase of the fringe and n is additive noise.

Two-dimensional STFT, often called the windowed Fourier transform (WFT),

has been used to extract the fringe b(x) cos(ϕ(x)) from the observation f(x). Ap-

plying the WFT to the observation image, the components of the fringe will be

localized. On the other hand, the noise components are spread over the entire

domain. Thus, the fringe can be restored by truncating values below a preset

threshold. This process is referred to as the windowed Fourier filtering (WFF).

As in the case of one-dimensional STFT, the representation of the WFT is spread

depending on the choice of a window function, which affects the performance of

the WFF. SST for two-dimensional signals has been studied in several literatures.

Introducing the SST in the WFF can localize the components of fringe and will

improve the restoration performance.

We simulated the data measured from interferometry and compared with WFF

and SST-based methods in the fringe restoration. A window function of WFT and

SST is designed as

g(x) = w(x1)w(x2) (6.4)

where w is a window with length N = 32 and bandwidth W = 0.1 designed to

minimize the sidelobe energy of its derivative shown in Chapter 3.

The simulated data and the frequency representation obtained by WFT and

SST are shown in Fig. 6.2. From Fig. 6.2, the frequency representation obtained

by the SST is more localized than that obtained by the WFT. The fringe patterns

restored by the WFF and filtering with the SST, are shown in Fig. 6.3. The fringe
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Figure 6.2: Two-dimensional SST of the noisy fringe data. (a) is the fringe pattern,

(b) is the observed data generated by adding Gaussian noise to the fringe, (c) is

the frequency representation obtained by windowing the red frame in (b), and (d)

is the frequency representation obtained by SST of (c).

restored by the WFF contains oscillations that are not included in the true fringe

(Fig. 6.2(a)). On the other hand, the fringe patterns restored using the SST contains

no such oscillations. The result suggests that filtering with the SST can removed

the high-frequency noise that could not be removed by the WFF since the SST

localize the components of the fringe.

6.3.3 Application of frequencies obtained with continuous values

The observed data in signal processing is generally a discrete signal, and its T-

F representation obtained by STFT is discretized in the frequency direction as

well. Thus, signal processing methods with STFT are designed to handle such dis-

cretized T-F representations. By contrast, the sparse T-F representation obtained

by reassignment, SST, and the sparse optimization using ANM have a continuous
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WFF Proposed method

Figure 6.3: Result of fringe restorations. The left and right sides illustrate the

fringes restored by the WFF and filtering with the SST, respectively.

frequency parameter. It is not easy to apply the processing methods used in STFT

to these T-F representations. For ease to handle, the T-F representation of SST

are often rounded to the same grid as STFT. This does not take advantage of all

the information that is originally contained. The consideration of the signal pro-

cessing methods using continuous frequency parameter may establish better signal

processing methods.
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Appendix A

Trigonometric representation of

the frequency response of the

window derivative

This appendix explains the derivation of (3.43) and the relation between α and

z based on [86]. The frequency response of the antisymmetric window z can be

represented as a sine series. When N is odd,

(Fz)(ω) = ei(
π
2
−(N−1)πω)

K∑
k=1

a[k] sin(2πωk), (A.1)

where K = (N − 1)/2 and a[k] = 2z[K − k] for k = 1, . . . ,K, and z[K] = 0. When

N is even,

(Fz)(ω) = ei(
π
2
−(N−1)πω)

K∑
k=1

a[k] sin

(
2πω

(
k − 1

2

))
(A.2)

where K = N/2 and a[k] = 2z[K − k] for k = 1, . . . ,K. (A.1) and (A.2) can be

rewritten as a cosine series using the trigonometric identities,

cos θ1 cos θ2 =
1

2
[cos(θ1 + θ2) + cos(θ1 − θ2)] , (A.3)

cos θ1 sin θ2 =
1

2
[sin(θ1 + θ2)− sin(θ1 − θ2)] . (A.4)

When window length N is odd,

K∑
k=1

a[k] sin(2πωk) = sin(2πω)

K−1∑
k=0

α[k] cos(2πωk), (A.5)
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where

a[k] =


α[0]− 1

2α[2] if k = 1

1
2(α[k − 1]−α[k + 1]) if k = 2, 3, . . . ,K − 2

1
2α[k − 1] if k = K − 1,K

. (A.6)

When window length N is even,

K∑
k=1

a[k] sin

(
2πω

(
k − 1

2

))
= sin(πω)

K−1∑
k=0

α[k] cos(2πωk), (A.7)

where

a[k] =


α[0]− 1

2α[1] if k = 1

1
2(α[k − 1]−α[k]) if k = 2, 3, . . . ,K − 1

1
2α[k − 1] if k = K

. (A.8)

Hence, using (3.44) and (3.45), (Fz)(ω) in the odd and even cases can be uniformly

rewritten as

(Fz)(ω) = ei(
π
2
−(N−1)πω)Q(ω)P (ω,α), (A.9)

which equals (3.43).

After obtaining the solution α⋆ by solving (3.48), the window derivative z is

calculated using (A.6) and

z[n] =


1
2a[K − n] for n = 0, . . . ,K − 1

0 for n = K

−1
2a[n−K] for n = K + 1, . . . , N − 1

(A.10)

when N is odd, and (A.8) and

z[n] =


1
2a[K − n] for n = 0, . . . ,K − 1

−1
2a[n−K] for n = K, . . . , N − 1

(A.11)

when N is even.
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Appendix B

Derivation of (3.74)

Let ρ ∈ R+ and φ ∈ (−π, π] such that

rei∆ϕ (Fg)(m/L− ξs)

(Fg)(m/L− ξi)
=: ρeiφ. (B.1)

Then, (3.72) can be rewritten as

e = ℜ

{
(IFi

g[n,m]− IFs
g[n,m])(ρe−iφ + 1)

(ρeiφ + 1)(ρe−iφ + 1)

}
. (B.2)

Since IFs
g and IFi

g are real,

e =
(IFi

g[n,m]− IFs
g[n,m])(ρ cosφ+ 1)

ρ2 + 2ρ cosφ+ 1
. (B.3)

When e becomes extrema, φ must satisfy

∂e

∂φ
=

(IFi
g[n,m]− IFs

g[n,m])ρ(1− ρ2) sinφ

(ρ2 + 2ρ cosφ+ 1)2
= 0. (B.4)

Because we assumed that |(Fg)(m/L− ξs)/(Fg)(m/L− ξi))| > 1/r, ρ must be

greater than 1. Thus, the denominator of (B.4) is not zero, and ∂e
∂φ becomes zero if

φ = 0 or φ = π. Substituting φ = 0 or φ = π for (B.2),

e0 =
(IFi

g[n,m]− IFs
g[n,m])(ρ+ 1)

ρ2 + 2ρ+ 1

=
IFi

g[n,m]− IFs
g[n,m]

1 + ρ
, (B.5)

eπ =
(IFi

g[n,m]− IFs
g[n,m])(−ρ+ 1)

ρ2 − 2ρ+ 1

=
IFi

g[n,m]− IFs
g[n,m]

1− ρ
. (B.6)
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The difference between the squares of these is

e20 − e2π = (IFi
g[n,m]− IFs

g[n,m])2
{

1

(1 + ρ)2
+

1

(1− ρ)2

}
= (IFi

g[n,m]− IFs
g[n,m])2

−4ρ
(1− ρ2)2

< 0.

Hence, the worst-case error is eπ, and eπ is equal to (3.74) by substituting ρ =

r |(Fg)(m/L− ξs)/(Fg)(m/L− ξi)|.
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