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Quantum SU(3)-invariants derived from the linear skein theory.
Brigitte MEYER: ‘
Abelian Chern Simons theory and knots.



16:10-16:30
Room 1. Makoto SAKUMA :
Unknotting tunnels for knots and links,
Room?2.  Eiji OGASA |
On the intersection of three spheres. in a sphere.
Room 3.  Isabel DAZEY (with DW SUMNERS)
A strand passage metric for topoisomerase action.
16:40-17:00
Room 1.  Oliver COLLIN
Floer homology for orbifolds and gauge theory knot invariants.
Room 2.

Room 3. . Katura MIYAZAKI & Kimihiko MOTEGI
Seifert fibred manifolds and Dehn surgery on knots.

July 25(Thu)
9:15-10:00 Hugh R. MORTON
- Young diagrams, the Homfly skein of the annulus and unitary invariants.

10:10-10:30 COFFEE and DONUTS
10:30-11:15 Roger FENN

Some new results in the theory of braids and generalised braids.
11:30-12:15 Tain AITCHISON

Lifting surfaces to embeddings in covers.
12:15-13:30 LUNCH
13:30-14:15 Criag HODGSON ‘

Arithmetic invariants and hyperbolic Dehn filling.
14:40-15:00

Room 1. .- Sergei.V. MATVEEV
A finiteness theorem for surfaces in Haken. 3-manifolds.

Room 2.  Yasuyuki MIYAZAWA
A Conway presentation and the coefficients of the Jones and Kauffman
polynomials of a 2-bridge link.

Room3.  Saburo MATSUMOTO (with I R. AITCHISON and J. H. . RUBINSTEIN)
Normal surfaces immersed in the figure-8 knot complement.

15:00-15:40 COFFEE BREAK



15:40-16:00

Room 1.

Room 2.

Room 3.

16:10-16:30

Room 1.

Room 2.

Room 3.

16:40-17:00

Room 1.

Room 2.

Room 3.

July 26(Fri)
9:15-10:00

10:00-10:30
10:30-11:15

11:30-12:15

12:15-13:30
13:30-14:15

Artem U. MACOVETSKY

Transformations on special spines of 3-manifolds and branched surfaces.
Akiko SHIMA

On simply knotted tori in §* II.

Makoto TAMURA

The average edge-order of triangulations of 3-manifolds

with boundary modification.

Victor V. GORYUNOV (with S. CHMUTOV)

Kauffman bracket of plane curves.

Sin’ichi SUZUKI (with F. HOSOKAWA)

Every 2-link with 2 components is link-Homotopic to the trivial 2-link.
Ichiro TORISU

The determination of the pairs of two-bridge knots or links with Gordian distance one.

Teruhiko SOMA
Spatial-graph isotopy for trivalent graphs and minimally knotted embeddings.

Ki Hyoung KO (with J. BIRMAN)

Band-generator presentation of the braid group and its advantage.

Jose Maria MONTESINOS

Arithmetic-and geomeltry of some cone manifolds.

COFFEE and DONUTS

Maria -Teresa LOZANO (with H. HILDEN and J. M. MONTESINOS)
Geometric invariants of cone manifolds.

JozefH. PRZYTYCKI

Algebraic topology based on knots.

LUNCH ‘

Yoshiyuki UCHIDA

Generalized unknotting number one two-bridge knot.



14.40-15:00

Room 1.
Room 2.

Room 3.

15:00-15:40
15:40-16:00

Room 1.

Room 2.

Room 3.

16:10-16:30

Room 1.

Room 2.

Room 3.

18:00-20:00

July 29(Mon)
9:15-10:15

10:15-11:00
11:00-12:00

Sergei CHMUTOV

A proof of Melvin-Morton conjecture.

Yoshiyuki YOKOTA

On SU(n) invariants of knots and 3-manifolds.

Jim E. HOSTE

Infinite framed link diagrams for open 3-manifolds.
COFFEE BREAK

Maxim V. SOKOLOV

Which lens spaces can be distinguished by the absolute values of
the Witten-Reshetikhin-Turaev invariants.

Han YOSHIDA

Invariant trace fields of hyperbolic 3-manifolds.

Mikami HIRASAWA (with M.SAKUMA)

Minimal genus Seifert surfaces for alternating links.

Yves MATHIEU (with M.BOILEAU & M.DOMERGUE)

On the complement of homotopically trivial knots.

Teruhisa KADOKAMI

Seifert complex for-links and 2-variable Alexander matrices.
Koya SHIMOKAWA (with C. HAYASHI)

Symmetric knots satisfy the cabling conjecture.

BANQUET (at Okuma Garden House)

Workshop

Cameron M. GORDON
Dehn Surgery, 1.
COFFEE and DONUTS
Louis H. KAUFFMAN

Invariants of links, I.



12:00-13:00 LUNCH

13:00-14:00 De Witt SUMNERS

The topology of DNA, I.
14:30-15:30 Toshitake KOHNO

Chern-Simons perturbative invariants.
16:00-17:00 Akio KAWAUCHI

Topological imitations.

July 30(Tue)
9:15-10:15 Cameron M. GORDON
Dehn:-Surgery, Il -
10:15-11:00 COFFEE and DONUTS
11:00-12:00 Louis H. KAUFFMAN
Invariants of links, II.
12:00-13:00 LUNCH
13:00-14:00 De Witt SUMNERS
The topology of DNA, I1.
14:30-15:30 Kouki TANIYAMA
On Spatial Graphs.
16:00-17:00 Kanji MORIMOTO
Tunnel number and connected sum of knots.
July 31(Wed)
9:15-10:15 Cameron M. GORDON
Dehn Surgery, 11
10:15-11:00 COFFEE and DONUTS
11:00-12:00 Louis H. KAUFFMAN
Invariants of links, I11.
12:00-13:00 LUNCH
13:00-14:00 De Witt SUMNERS
The topology of DNA, I1I.
14:30-15:30 Seiichi KAMADA
Surfaces in 4-Space.
16:00-17:00 Kinihiko MOTEGI

Knot yypes of sateilite knots and twisted knots.



Abstract of Lectures



The Tutte Polynomial and some of its Applications
to Knot Theory

by
B.I. Kurpita and K. Murasugi

We intend to discuss several properties of the Tutte polynomial for
a graph. In particular, we shall show that the theorems below have
.applications in knot theory.

Let Xa(x,y) be the Tutte polynomial of a graph G. It is known
that if G is a plane graph, then Xg(—t, —t™!) is equal to the Jones
polynomial Vk(t) (up to a factor +t™ ) of an alternating knot K whose
graph is G.

So, let us suppose that I' is a finite graph that does not con-
tain any multiple edges. We say that two graphs M; and My of T
are independent if they are disjoint, i.e., they do not have any ver-
tices in common. A collection of mutually independent subgraphs of T,
{Mj, My, ..., M, .}, is said to be of order k if

(1) each M; is a complete graph with say n; vertices, (n; > 1);

(2) Z(ni—-l) = k.

Further, if we consider a connected finite graph, G, with say n
vertices, then we may imbed G in a complete graph K,,, that has at least
n, m, say, vertices. In a natural manner, we may define H = K,,,\G,
the complement of G. H is also a finite graph. Let p(H) be the number
of collections (of mutually independent, complete subgraphs) of order
k in H. Then the following equality holds:

Theorem 1
For any m > n.

Xa(2,0) = mljao(H) — (m — 1)lpa () + (m — 2)1ua(H) —
A (DR (m = k) (H) + ...

where po(H) =1

Let us, now, consider n disjoint sets Ay, Ao, ..., A, with |A;| =
p; > 0. Suppose G(p1, ps, ... ,pn) is the graph constructed by joining



every vertex in A; to every vertex of A;, 1 <i# j <n. (We do not
allow a vertex to be joined to a vertex in the same set.) G(p1,p2, ... Pn)
will be called a complete n-partite graph. The following theorem holds
for n-partite graphs:

Theorem 2

Y D 4Pt o= B)k(Glp1,p2, - Pn)) = pilp2! ... ol

We may further generalize Theorem 2. To this end, let us divide
E(G(p1,p2, --- ,Pn)), the set of edges of G(p1,p2, ... pn), into two
subsets P and Q. Now, we may define an invariant, A(P), from the
Tutte polynomial so that the following theorem holds:

Theorem 3
pilp2! . P AP) = D (~DF(pr+ 2+ .. + P — K)k(Q)-
k>0 ;
It is straightforward to see that if p; = p, = ... = p, =1, then

Theorem 3 reduces to Theorem 1; while if P is empty, then Theorem 3
reduces to Theorem 2. ,
For the simplest case, n = 2, Theorem 3 has the following form:

Theorem 4
In the case in Theorem 3 when n = 2,

AR) =3 ll'kkE!P)

k>0

and

@ _ syt 28, )

]
k>0 Prp2’

More generally, for any integer d > 0, the following formula holds:

e (P) k(P1+P2+d k)
go(lﬁ—d)' 2.1 (p1+ d)\(pz + )1~ He(Q)-

Mailing address: Dept. of Math., University of Toronto, Toronto, Ontario,
M5S 3G3, CANADA.
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Random Knots and Links and
Applications to Polymer Physics

Tetsuo Deguchi and Kyoichi Tsurusakil

Department of Physics, Ochanomizu University, Tokyo 112, Japan
t Department of Physics, University of Tokyo, Tokyo 113, Japan

Abstract

We discuss random knotting and linking probabilities by making
an extensive use of topological invariants of knots and links. We show
that the probability of an N-noded polygon having knot type K can
be expressed by a simple scaling function of N. We define the linking
probability Pr(R; N) by the probability that a given pair of N-noded
random polygons in a distance R gives a link L. We introduce a
formula for the probability Pr(R; N). We confirm it by numerical ex-
periments. We also show some applications of random knotting and
linking to statistical mechanics of polymers. From random knottiong
and linking we show how the virial coefficients of a ring polymer so-
lution depend on the degree of polymerization N.

Generating a large number of N-noded random polygons by com-
puters and enumerating some knot invariants for each polygon, we
can practically evaluate the statistical fraction of those polygons that
have the same knot type K..The fraction is called knottmg probability
Pg(N).

We make plots of the knotting probabilities Pk (IV) obtained nu-
mericall; y against the size IV of the random polygons for various knot
types. Then we find that the knotting probabilities are expressed by
fitting curves given by the following formula

Px(N) = C(K)N™®) exp(-N/N(K))



where m(K), N(K) and C(K) are fitting parameters. Our numerical
experiments show that for a given model of random polygon the pa-
rameter N(K) does not depend on the knot type K : N(K) = N(0).
Here 0 denotes the trivial knot.

We study the self-avoiding effect on the knotting probability by
the bead-rod model, where the bead-radius is changed. The numerical
results are consistent with our hypothesis that when a knot K is given
the exponent m(K) is universal: the same value of m(K') gives a good
fitting curve to any model of random polygon. [7]

Let us discuss statistical mechanics of a ring polymer solution,
which has the topological constraint that the ring polymers are not
linked each other in any thermal fluctuations. This constraint leads
to an effective entropic force among the ring polymers.

The second virial coefficient of a ring polymer solution has been
measured at the § temperature of its linear polymer solution. The
virial coefficient observed should be explained in terms of the topo-
logical effect. In fact, it is related to the linking probability Po(R; N)
by the following

Na 2
Ay = 5ty / anB*(1 - Po(R; N))dR, (1)

where N4 is Avogadro’s number and M, is the molecular weight of
the ring polymer. As far as our numerical experiments are concerned,
the experimental and numerical results are consistent. [7]
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On the universal quantum invariant of 3-manifolds

Jun Murakami
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Hyperbolic 3-manifolds and the 4-color Theoremn

SHUM YAMADA

The 4-color theorem is one of the most well known theorem of graph theory. Appel and
Haken proved the 4-color theorem after a long time computation by a computer. However,
we don't have any mathematical proof of this theorem.

THE 4-COLOR THEOREM [AH]. Any planar graphs are 4-colorable.
The main result in this note is the following.

MAIN RESULTS. The 4-color theorem is equivalent to the existence of some hyperbolic
3-dimensional manifolds.

Through this note, we assume any graphs are simple graphs, i.e., graphs without multi-
edges or loops.

We say a subset X of the vertex set of a counected graph G is an k-vertex cut set if
|X| = k and G — X are disconnected. We say a connected graph G is k-connected if G has
no (k — 1)-vertex cut sets. We say a plane graph G is dual k-connected if the dual graph
G* is k-connected.

A plane graph G is maximal if there are no plane graphs which contain G as a subgraph.
A k-coloring (of the vertices) of a graph G is an assignment of & colors to the vertices in
such a way that adjacent vertices have distinct colors. If a graph G has a k-coloring then
we say G is k-colorable.

THEOREM 1. The 4-color theorem Is equivalent to the following proposition
PROPOSITION 1. Any 5-connected maximal plane graphs are 4-colorable.

PROOF: It is trivial that the 4-color theorem implies Proposition 1. We shall prove the
reverse direction by an induction on the number of vertices of the graph. Assume Gisa
maximal plane graph which is not 5-connected. Let X = {v=1,...,v =k} be a minimal
L-vertex cut set with k < 5. We can assume that {vy,..., vk} constitutes the vertex set of
a k-cycle C of G in this order. Let G — X = A’ U B' be the decomposition into connected
components. Set A = G — B’ and B =G — A’ so that AUB = Gand ANB = C. Since A
and B have vertices less than G, they have a 4-coloring by the hypothesis of the induction.

We shall consider two cases; k < 3 and k = 4. Assume k < 3. We can permute the colors
of the coloring on A so that the colors on C' C A coincide with the colors on C C B. Then
we have a 4-coloring on G = AU B. Assume k = 4. We classify A and B into following
two types.

Type I It has a 4-coloring which assigns mutually distinet colors on the 4 vertices of C'.

Type II Not type L.

Then, for 4 and B, the following two lemmas hold.

Typeset by ApS-TpX



LEmMA 1. If it is type I, then it has 4-coloring ¢, such that ¢(v)) = ¢, (vy), 0 1{ta) =
¢ (v4) or d-coloring ¢, such that ¢ (vi) = d(va), D1(ve) = di(vs).
(x
04

LeMMA 2. If it is type II, then it has 4-coloring ¢, such that ¢,
Y () and 4-coloring v, such that ¢ (vy) = ¢1(vs), ¥ {va) = ¥ (

1) = dles), ¢aor) =
0

Now we shall complete the proof with four cases of type of A and B.

Case of A and B are type I Take 4-colorings on A and B. After suitable permutation
of colors we have a 4-coloring on G.

Cuase of A and B are type II. Take the 4-coloririgs on 4 and B which presented as ¢ in
Lemma 2. After suitable permutation of colors wé have a 4-coloring on G. :

Case of A is type I and B i3 type II. Take a 4-coloring ¢, or phiz on A which presented
in Lemma 1. According to ¢, or ¢,, take a 4-coloring | or ¥, on B which presented in
Lemma 2. After suitable permutation of colors we have a 4-coloring on G.

Case of A 1s type II and B 1is type I It is same as the third case.

The following theorem is a different way of saying the well-known fact that the 4-Color
Theorern is equivalent to Edge-3-Color Theorem.

THEOREM 2. Let G C S* C S* be a trivalent plane graph on S* in S*. The regions of
? — G has 4-coloring if and only if there is a Z3 X Zy branched cover of S* whose branch
set is G.

The following theorem is derived from Andre’ev’s theorem.

THEOREM 3. Let G be a trivalent, dual 5-connected, plane graph. Then thexe is a hyper-
bolic polyhedron such that its 1-skelton is G and every face angle is right angle.

THEOREM (ANDRE'EV [A1][A2]). Let Q be an orbifold such that the base space Xq is a
3-ball B® and the singular locus $¢q is S* = 0B*. Then Q is a hyperbolic orbifold if and
only if Q) has no incompressible sub-orbifold P whose Eular characteristic x(P) > 0.

We can derive the following theorem from the above theorems.
THEOREM 4. The 4-color theorem is equivalent to the following proposition.
PROPOSITION. Let P be a hyperbolic polyhedron whose dihedral angles are the right angle.
Then P has a Z; x Z, x Z, fold manifold cover.
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EQUIVALENCE OF RIBBON PRESENTATIONS FOR KNOTS

YOSHIHIKO MARUMOTO

Department of Mathematics, Osaka Sangyo University

My purpose here is to state about a representing method of a knot; and discuss sevral
topics around this.

The first question is "Is a knot determined if a cross section of the knot is given?”
This is negative because the question itself is too ambiguous. For improving this point,
we introduce a ribbon knot and its equator, and then we can restate the question above
"Is a ribbon knot determined by its equator?” It is shown that there exist infinitely many
counter examples to this question in 2-dim. knots, but it is not known in three or higher

dimensions.

For attacking the last question, we introduce a notion of ribbon presentation, which
describes a geometrical way to construct ribbon knots. We then need to define equivalence
among ribbon presentations, and sevral equivalences are discussed. Using our definition, we
modify the questions above to have " Are any ribbon presenttations for a knot equivalent?”
We introduce results to this question. One of them is that there exist arbitraty finite
many ribbon presentations for a knot in any dimension. The ribbon presenatations are, of
course, different under an equivalence, but it is interesting that they are the same under

another equvalence.

DaiTo, OSAKA 574, JAPAN: E-MAIL: D52718@ JPNKUDPC,BITNET
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HEEGAARD SPLITTINGS OF 3-MANIFOLDS
AND MAPPING CLASS GROUPS

SusuMmU HIRoOsSE

Let Hy, H; be the 3-dimensional manifolds, each of which is constructed from a
3-ball with attaching g 1-handles, $* = H, U H be the Heegaard splitting of S3. By
Waldhausen [W], the genus g Heegaard splitting of S® is unique up to isotopy. We
investigate thf: group &y, a group consisted of elements of mapping class group of §H,
which can be extended to orientation preserving diffeomorphisms of 5. We give a

system of generators of the group &, :
Theorem A. &, is generated by p, w1, p12, 612.

Remark 1. The maps p, w1, p12, 612 are defined as follows:

p+ a cyclic translation of H,

1980 Mathematics Subject Classification (1985 Revision). Primary 57N05, 57N10.
Key words and phrases. Mapping class group, handlebody, Heegaard splitting.
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SUSUMU HIROSE

w; ¢ a twisting a knob of H,

pij : an interchanging two knobs of H,
& &

A
-4

Remark 2. By Suzuki [S], a system of generators of the mapping class group of H, is

Ay i

given. When we embed H, standardly in 53, as is easily seen, two of these elements
can not be extended to S3. We prove that the other elements generate ;. In the paper

by Powell [P], it is shown that £, is generated by p, w;, p12, 612 and “v".

Each element of £, acts on m (Hy,*), a free group of rank g, as an isomorphism,

hence, there is a natural homomorphism a : £ — Out(ri(Hy,*)). For this homomor-



HOMEOMORPHISMS OF A 3-DIMENSIONAL HANDLEBODY

phism, {a(p), a(w1), a(p12), a(812)} is a system of generator of Out(m;(H,,*)) given
by Nielsen (see [MKS]), therefore, « is surjective. Let £, be the kernel of a. We give

the following theorem for this group €K, :

Theorem B. (1)K, is generated by ball-twistings on H,.
(2)EK, is not finitely generated.

Remark 3. A

?I%u(e. L ’ Ix F ke 2

A ball-twisting of first kind (resp. a ball-twisting of second kind) on H, (resp. H;) is
the map defined as follows: Let B be a 3-ball embedded in S® whose intersection with
H, (resp. H,)is as in Figure 1 (resp. Figure 2). Give a polar coordinate (r,(?,t,b) on this
3-ball such that, in Figure 1, 88 N H,(resp. H;) is identified with {(1,6,¢)|r/2 <8 <
7,0 < ¢ < 27}, and, in Figure 2, BN Hy(resp. H,) is identified With4{(1,0,<p)]() <6<
w/2—eorm/2+e< 8 <m, 0< o <2} where 0 < e < /2. Let € be the sufficiently
small number, a ball-twisting of first kind (resp. ball-twisting of second kind) on H,
(resp. Hy) along B is given as a map

(ry8,0 +2m(1—7)/€) 1-¢é<r<1
(r,6,9) = - : '
(r8,0) 0<r<l—e
Remark 4. By Luft (L] and McCullough [McC], the same kind of results for mapping
class grdups of handlebodies are shown. We show Theorem B(1) (resp. (2)), by applying
the same kind of technique of Luft (resp. McCullough). |
We have a homomorphism from &, to Aut(H(Hgy;Z)), induced by the action of the

elements of £, on H{(Hy;Z). Let £, be the kernel of this homomorphism. We give



SUSUMU HIROSE

the following theorem about £I; :

Theorem C. (1) €I, is generated by ball-twistings on H, and ball-twistings on Hj.

(2) €I, = £, 0 the Torelli group of genus g Riemann surface.
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A weight system derived from the Conway
potential function

Hitoshi Murakami

Depa'rtment of Mathematics
School of Science and Engineering
Waseda University

A weight system is defined from the Conway potential function. We also
show that it can be calculated recursively by using five axioms.



Planar surfaces in a handlebody and a theorem of Gordon-Reid
by
Kanji Morimoto

Department of Mathematics, Takushoku University
Tatemachi, Hachioji, Tokyo 193, Japan

e-mail : morimoto@hc.takushoku-u.ac.jp

In this talk, we show some results on incompressible planar surfaces in a han-
dlebody, and show a sufficient condition for an orientable closed 3-manifold to have
a lens space summand. As an application, we reprove a theorem of Gordon-Reid

(IGR)).

Proposition 1.1.  Let V be a genus g > 1 handlebody, and P an incompress-
ible planar surface with £ > 1 boundary components properly embedded in V. If OP
consists of mutually parallel separating loops in OV, then £ = 2 and P is a O-parallel

annulus.

Proposition 1.2.  Let V be a genus two handlebody, and P an incompressible
planar surface with £ > 1 boundary components properly embedded in V. If OP
consists of mutually parallel non-separating loops in 8V, then £ = 2 and P is an

annulus.

Let P be a compact 2-manifold properly embedded in a 3-manifold. Then we
say that P is essential if P is incompressible and has a component which is not
O-parallel.

"~ Proposition 1.3. Let M be an orientable closed 3-manifold with a genus
g > 1 Heegaard splitting (Vi,V3). If M contains a 2-sphere S such that SN V; has
an annulus component A which is separating and essential in V1 and cuts off a solid
torus W from V1 with W NS = A, then M has a ‘klens space summand.

Remark 1.4 In the hypothesis of Proposition 1.3, if g = 2 then we can get rid
of the condition that “which cuts off a solid torus from V}”. Because a separating
essential annulus properly embedded in a genus two handlebody cuts off a solid torus
([Ko, Lemma 3.2]).

Let B be a 3-ball and ¢ a family of n arcs properly embedded in B and finitely
many simple closed curves in B. Then we say that the pair (B,t) is an n-string
tangle, and that (B,t) is essential if c/(0B — N(t)) is incompressible and boundary
incompressible in cl(B — N(t)). Let L be a knot or a link in the 3-sphere S%. Then



according to [GR), we say that L is n-string composite if (83, L) can be decomposed
into two essential n-string tangles, and that L is n-string prime if (S3,L) is not
n-string composite. Then Gordon and Reid have proved in [GR] :

Theorem 1.5 ([GR, Corol‘lary‘1.2]'). " Every tunnel number one knot in S°
is n-string prime for all n >0. ‘

Remark 1.6 Ifn = 1 this was shown by Norwood ([No]), and if n = 2 this
was shown by Scharlemann ([Sc]). ' ‘

The key prop051t10n to prove the above theorem is :

Proposntlon 1.7 (|[GR, Prop051t10n 2. 1]) Let M be an orientable closed
3-manifold with a genus two Heegaard splitting (V1,V2). If M contains a 2- sph,ere S
such that each component of SNV, is a non-separating disk in Vy and SNV, is an

essentzal planar surface in Va, then M has a lens space or S? x S? summand

Remark 1.8 In [GRJ, by some techmcal reason the proposmon has been
proved under the hypothesis that SNV; is a “homotopically essential” planar surface
instead of “essential”. But there is no essentxal difference.

In [GRJ, Gordon and Reid have proved the proposition by using Scharlemann
cycle argument ([CGLS, Sc]) and all types argument ([GL, Pa]). As an application
of Propositions 1.1, 1.2 and 1.3, we reprove it not using those arguments, although

the proof does not become more simple or easier.
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ALPXANDER INVARIANT AND TWISTING OPERATION
Yasutaka Nakanishi
Department of Mathematics, Kobe University
Abstract

We consider an operation 7%, which is a local move canceling n full-twists on a link
diagram as in the figure below. We study a nccessary condition for two links to be
deformable to each other by a finite sequence of operations 7"*’s in term of Alexander
invariant. As a corollary, the Borromean rings and a 3-component trivial link are never
deformed to each other by a finite sequence of operations 72’5 and link-homotopies.

XX

AA
X -

Outline. For a p-component link L = K, U--- UK, let E = E(L) = S§% ~ L and
take the universal abelian covering p : E, — E, associated with the epimorphism
m(E) — (t1,... ,t,) sending each meridian of K; to t; (i = 1,... ,p), where (t1,... ,ty)
is the free abelian group with a basis t1,...,t,. The first integral homology group
Hi(E.;Z) is a finitely generated Z(ty,... ,t,)-module, which is called the Alexander
invariants, has a presentation matrices as a Z(t1, . .. ,t,)-module, written Pp, (t1,oo oyt

Theorem 1. Let two links Ly and Lo be deformable to each other by a finite sequence
of operations 7™’s. Then, for properly chosen Pr,(ti,... ,t.) and Ppr,(ti,... t.), we
have P, (t1,... ,tu) = Pr,(ty,... ,t,) mod {o.n(tptq),an(tpt;l), (1<p g}

In the above, o, (t) means (1 —t")/(1 —t) = 1+ ¢t+t2 + -+, and (fyy) =
(9ij)mod{hi,... ,h,} means that each pair of corresponding entries fi; and g; are in
the same class of the quotient Z{t,, ... ,t.)/(hi, ..., hy), where (hi,... , h,) is the ideal
generated by hy,...h, in Z{ty,... ,t,). Theorem 1 is reduced to the following form by
rewriting t;’s to the same ¢. :

Claim 1. Let two links L1 and Lo be deformable to each other by a finite sequence of
oerations T* s. .Then, for properly chosen Pp,(ty, ... ty), and Pp,(ty,... ,t.), we have
Py (t,...,t) = Pp,(t,... ,t) mod {2,1+1t*}.

On the other hand, by a surgical view of Alexander invariant, we have the following:

Theorem 2. If a 3-component link L is link homotopic to a trivial 3-component link,
then, for properly chosen PL(ti,t2,ts), Pr is characterized by the following type of
matrices:



L—ty L—ty 1ty 0 0
0 0 0 gii . - G
0 0 0 got gzv
fu fa far omyg 0 oy,

fiv fai fa Mt .. M

where each entry is a Laurent po/ﬂmmml with variables t\,t, 13 such that the following
conditions are satisfied:
(1) mU(tl,tg,t;) = mﬂ(tl by l,fzﬁd ),

_ 1 i 1—'j
(2) Iy (L, L, D] =6 = 0 ik’
(3) g1k _‘ka( Tty )(l—ffl)(l—tgl)-fzk(tll t5 !, t Ha—t3H( —t7h, and
g2k = fu(ty ,t;‘,ts 1)(1 — 7 —t3") = fa(tr 85 té‘l)(l —tr (1 -t ).

We consider the reduced version on Pp(t,t,t) as follows.

Claim 2. If a 3-component link L is link homotopic to a trivial 3-component link, then,
for properly chosen Pp(ty,ta,t3), PL(t,t,t) is equivalent mod {2, 1+t2} to(1—t 0 0).

Let two links Ly and Lo be deformable to each other by a finite sequence of operations
72’5 and link-homotopies. As an operation 72 and a link homotopy can be interchanged,
there exists a link L* such that L; and L* are deformed to each other by a finite sequence
of operations 7%'s and L* and L, are link-homotopic.

Here, let L1 be the Borromean rings, and Lo a trivial 3-component link. P, (t,t,t)

1—t 0 0
is equivalent mod {2,1+1%} to 0 1—-t 0 }.AndsoisPp.(¢tt,t), by Claim

' o 0 0 1=t :

1. On the other hand, L* is link-homotopic to a trivial 3-component link L, and
Pp-(t,t,t) is equivalent mod {2,1+#*} to (1—¢t 0 0) by Claim 2. Since 1 —t Z 0
mod {2, 1+t%}, both matrices are not equivalent mod {2, 14t%}, a contradiction. Hence,
the Borromean rings and a trivial 3-component link are never deformable to each other
by a finite sequence of operations 72’s and link-homotopies.

Remarks. In 1986, the author made a preprint [1], which consists of two long parts
and two short parts. There were gaps in the two short parts. So, the preprint went to
pieces. The two long parts were published as [2] and [3]. The gaps in the first short
part is filled up and this abstract is on such a topic. However, the gaps in the second
short part is not removed until now.
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Ramsey Theorem for Good Spatial Graphs

Seiya Negami
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A spatial embedding of a graph G is an embedding f : G — R3 of (G into the 3-space
R3 and its image f(G) is called a spatial graph. We denote by K, the complete graph over
n vertices, that is, one each pair of whose vertices are joined by an edge. The following
theorem, proved by Conway and Gordon in [1], is the starting point of our subject in this
talk.

THEOREM 1. (Conway-Gordon [1])
(i) Every spatial embedding of Kg contains a nonsplittable 2-component link.

(ii) Fvery spatial embedding of K7 contains a nontrivial knot.

This theorem presents an unavoidable phenomenon in sufficiently large complete graphs
K,. Such a theorem is called a “Ramsey theorem” in combinatorics or discrete mathe-
matics. (See [2] for general observations on Ramsey theory.)

A natual question arises: Does K, with sufficient large n contain a prescribed knot
type or link type? The answer to this question is negative in general. For example, if one
makes a local knot on each edge of a spatial embedding of K, then any cycle in K, will
involve a number of such local knots, which restricts the knot types and link types.

To give a positive answer, Negami [4] has proved the following theorem, restricting
spatial embeddings of K, to be rectilinear, that is, to be spatial graphs each of whose
edge is a straight line segment in R3.

THEOREM 2. (Negami [4]) Given a spatial graph H, there ezists a positive integer n
such that any rectilinear spatial embedding of K, contains a subgraph which is ambient
tsotopic to H. : : :

Moreover, Miyauchi [3] has shown that the same theorem holds for complete bipartite
graphs K, and pointed out that her theorem implies the above as its corollary since
Kantm contains K, . In this talk, we shall give a generalized form of their theorems,
relaxing the rectilinearity of embeddings.

The projection of a spatial graph f(G) is its image p(f(G)) via the canonical projection
p: (z,y,2) = (z,y,0) and is said to be rectilinear if each edge is a straight line segment
on the xy-plane. The rectilinearity of projections also excludes local knots on edges.
Recently, Negami [5] has given a very simple proof of a theorem for spatial embeddings
of K, m with rectilinear projections, in the same style as above.

We define another property on the projections to exclude local knots, as follows. A
good drawing of a graph G on the plane is a drawing of G such that:

__35 —



(i) The points presenting vertices are all distinct.
(ii) Each edge is a simple arc.
(iii) Any adjacent pair of edges intersect only in their ends.
(iv) Any nonadjacent pair of edges cross each other in at most one point.

This is a familiar notion in topological graph theory, related to the “crossing numbers”
of graphs on the plane. For example, a rectilinear projection satisfies these conditions. A
spatial graph G is said to be good if its projection is a good drawing after carrying out
an ambient isotopic deformation of G.

THEOREM 3. Given a spatial graph H, there ezists a pair of positive integers (n,m)
such that any good spatial embedding of K m contains a subgraph which s ambient isotopic
to H.

A proof of this theorem has been already shown in [6] with arguments on a Ramsey
theorem for good drawings in the plane. In this talk, we shall show some good spatial
graphs which admit no rectilinear projections. Thus, the last theorem generalizes the
others strictly.
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A CONDITION FOR A 3-MANIFOLD
TO BE A KNOT EXTERIOR

Tsuyoshi Sakai

Institute of mathematics and computer science, Tsuda College, Tokyo 187, Japan

We consider the following problem:
Problem. Research conditions for a given 3-manifold to be a knot exterior.

To state our result, we need some preliminaries.

Definition. A pseudo knot diagram L is an oriented knot projection with indi-
cation of positive or negative crossing for some of the double points(see Fig.1).

Note that a usual knot diagram is a pseudo knot diagram whose double points
are all crossing points(i.e. double points with indication as above).

For a finite set 2, W(Q) denotes the word semi-group with {2U 27! as alpha-
bets.

Definition. We associate a presentation SP(L) with a given pseudo knot diagram
as follows. We draw a sufficiently small squares at each crossing point of £, and
on the intersections of £ and the squares we put distinct labels and also put
arrows according to the orientation of £ as in Fig.2. Let {2 denote the set of all
labels. We associate two elements of W(£2) to each square as in Fig.3. We also
associate an element of W(Q) to each subarc of £ connecting two squares as in
Fig.4. Let R denote the set of all words associated as above. Then SP(L) is
defined to be the pair < : R >.

For two presentations P and P*, we denote P = P~ if P” is obtained from P
by renaming the generators.

Let H be a normal handle decomposition of a 3-manifold M consisting of
0-handle E, 1-handles {X|,---,Xn} and 2-handles {H;,---, Hp}. Let zi(i =
1,--+,n) denote the oriented belt circles of X; respectively and let {2 denote the
set {xy,---,zn}. Let h;(i = 1,---,m) denote the oriented attaching circle of
H; with a marked point. We now proceed on h;, according to its orientation,
starting from the marked point. Then, by reading the intersections of h; and
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2 A CONDITION FOR A 3-MANIFOLD TO BE A KNOT EXTERIOR

z(€ Q) weighted as in Fig.5, we obtain an element in W(Q). We denote it by
[h:]. Then ' ‘
SP(M3H) =< Ql{hl]‘a" "y [hm] >

is a presentation of 7y (M).

Theorem. Let M be a 3-manifold with Hy (M) = Z and M 2= T?U S? and let
H be a handle decomposition of M as above. Suppose that there exists a pseudo
knot diagram L such that SP(L) = SP(M,H). Then M is homeomorphic to
a punctured knot exterior. That is, there exists a knot k in 52 such that M is
homeomorphic to S3 — {intN (k) U (an open 3-cell)}.

oriented knot projection pseudo knot diagram

> ™
S
R-W
TGN
Qe
—t o e
I}
‘C.;. 4

a
A |2
ab=le~1d ; abe—14-1 ‘ Y

ng.'i | ‘ F‘\‘b' 4

‘Lé h; : positive h; ¢ negative

z z
\:\‘3 .5



DECOMPOSITION OF S* AS A TWISTED
DOUBLE OF A CERTAIN MANIFOLD

YUICHI YAMADA

We will work in the PL category.

Definition. (see [L]) Let N be a compact oriented 4-manifold with a boundary.
We say that S* decomposes as a twisted double of N if St=Nuy—N.

We use the word “twisted double” because we allow that the gluing map between
the boundaries is not id|sny. This conception is a kind of an extension of Heegaard
splitting of 5.

This story is an exarnple of an extension of the spacial graph theory in a sence,
for we treat a 2-complex in S%.

Motivation and History. (see[L] and its references) Let N; be a tubular
neighborhood of a (+)-standard RP? in S It is well known that the closure of
S\ N, is also homeomorphic to Ny by an orientation reversing homeomorphism, i.e.,
(1)S* = N Ug —N,. Thus 5% decomposes as a twisted double of N;. N; can be
characterized as a total space of a 2-disk bundle over RP? whose normal Euler number
is 2. (2) The boundary of N, which we call Q2, is a Seifert rational homology 3 sphere.
(3) It is known that the 2 covering of 5* branched along a (~—)-standard RP? is CP2.

Here we extend these facts to the case of a 2-complex X, (n > 2) defined below
instead of RP2. We note that X, = RP2.
Xn — D2 / eZﬂ'\/——_].O ~ 6271'\/:T(9+-;11-),
where D? = {|2] < 1|z € C}.

(n=6)

We define a standard realization of the complex X, in S$* and let N, be a
regular neighborhood of the realization. N, is a compact oriented 4-manifold with a
boundary.

Theorem. For anyn, S* decomposes as a twisted double of Ny,.
The boundary of our manifold Ny, which we call Qn, 1s a Seifert rational ho-

mology sphere. The author think Q, as a typical example among prime 3-manifolds
which can be embedded in S4.

Typeset by ApS-TEX



Proposition. Q, admits o Seifert structure ([O]) whose invariants are
{-1; (01,0); (n,1) (n,1) (n,n = 1) }, and T (Qn) 2 <o, Bla™=0"=(af)" >
When n = 2, this is the quaternion group, and when n > 2, this is an infinite

group.

We also study a (kind of) covering of S* branched along —X, using framed
links. A known complex manifold (a neighborhood of a singular fiber of a Fermat-

type Surface) appears.
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Turaev-Viro Modules of Satellite knots

Patrick Gilmer

Let (V, Z) be a Topological Quantum Field Theory over a field f defined
on a cobordism category whose morphisms are oriented 3-manifolds perhaps
with extra structure. Let (M, x) be a closed oriented 3-manifold M with this
extra structure together with x € H*(M). Let M,, denote the infinite cyclic
cover of M given by x. Consider a fundamental domain E for the action of
the integers on M., bounded by lifts of a surface ¥ dual to x, and in general
position. FE can be viewed as a cobordism from ¥ to itself. Z(E) can be
viewed as an endomorphism of V(X). Let V; be the generalized 0-eigenspace
for the action of Z(F) on V(X). Z(E) induces an automorphism Z,(E) of
V(X)/Vp. The Turaev-Viro module (M, x) associated to (V,Z) is simply is
V(2)/Vo viewed as a flt,t~!]-module where t acts by Z.(FE). Turaev-Viro
showed that this module does not depend on the choice of E. See my e-
print “Invariants for 1-dimensional cohomology classes arising from TQFT”
available as q-alg/9501004.

Given an oriented knot K in §2, let M(K) denote zero framed surgery
to S3 along K. Let x denote the cohomology class which evaluates to one on
a positive meridian of K. We are interested in the Tureav-Viro modules of
(M(K),x). We will take (V, Z) to be the Witten-Reshetikhin-Turaev TQFT
associated to SU(2) and level r. Actually we work within the framework de-
veloped by Blanchet, Habegger, Masbaum and Vogel with p = 2r (Topology
Vol 34,1995, 883-927.) Let M(K,c) denote M(K) with a meridian colored
by an integer ¢, 0 < ¢ < 7 —2. Let TV, (K, c¢) denote the Turaev-Viro module
of (M(K,c),x). In g-alg/9501004, we showed how the Witten-Reshetikhin-
Turaev invariants of the branched cyclic covers of K can be computed from
TV.(K,c). .

Suppose now that S is a satellite knot with companion C' , orbit K and
axis A. Here we use the terminology of Litherland, “Cobordism of Satellite



Knots”, Contemp. Math. 35,1984,327-362. There is a well known decompo-
sition of the infinite cyclic cover of the complement of S into pieces coming
from the infinite cyclic cover of C and the infinite cyclic cover of K. See Liv-
ingston and Melvin’s “Abelian invariants of satellite knots”, Springer Lecture
Notes 1167,217-227, where the decomposition is attributed “in essence” to
Seifert.

We use this decomposition to calculate T'V,(S, c) for some satellite knots
S from TV,(C, i) for 0 < i < r — 2 and similar information coming from the
pair (A, K). This will generalize a formula given for Turaev-Viro modules of
a connected sum of two knots given in g-alg/9501004.



Vassiliev knot invariants and Chern-Simons perturbation theory
to all orders ~

Daniel Altschuler
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In this talk I report on a joint work with L. Freidel [1]. Chern-Simons theory is the
most popular example of topological field theory in 3 dimensions. Given a compact Lie
group G, a compact, oriented 3-manifold M, a link L C M, and for each component of
L a representation of G, this theory associates topological invariants to these data. There
are several ways to define the invariants, which are all closely related. First of all there are -
the non-perturbative definitions: Witten [2] used fundamental properties of quantum field
theory, in particular the path integral formulation, and Reshetikhin and Turaev [3] used
quantum groups. These two definitions are equivalent.

Then there are the perturbative definitions, the first of which were given by Guadagnini et
al. [4] in the case M = §%, L # 0, using propagators and Feynman diagrams. This approach
was then elaborated by Bar-Natan [5]. The case M # S3, L = @ was treated by Axelrod
and Singer [6]. A common feature of all these works is the Feynman diagram expansion
familiar in perturbative quantum field theory. Invariants are defined at every order in the
expansion, each is a sum of several terms corresponding to the diagrams of the given order.
The contribution of any diagram is the product of two factors, the first depends only on
the group G and the representations associated to the components of L, and the second is
independent of G and its representations, it is an integral over the configuration space of
the vertices of the diagram, some of which are constrained to lie on L, while the others can
lie anywhere in the complement of L. When L is a knot in S3, several properties of the
invariant arising from the contributions of order two were already discussed in [4], although
the invariance itself was shown in [5]. Bar-Natan also studied the properties of the group-
dependent contributions, and among them he found relations between the contributions of
different diagrams which are the same for all groups G. This led him [8] to define abstract
objects, which we call BN diagrams, by these relations, and abstract invariants which take
their values in the space of BN diagrams. To every choice of group G and representations
corresponds a linear functional on the space of BN diagrams. Applying this functional to
the abstract invariants gives back the ordinary group-dependent invariants.

In order to show that the contributions of a given order sum up to an invariant, one
must compute the variation of these integrals under a small change of the embedding of
L, and this proved to be quite difficult and lengthy. However, Bott and Taubes [7] greatly
improved this situation. They showed that the variation can be split in two terms, the
“diagrammatic” and the “anomalous” variations. As its name indicates, the diagrammatic
variation can be read at once from the Feynman diagram. It corresponds to the differential
of Kontsevich’s graph complex, obtained by collapsing the edges. The anomalous variation is



more difficult to compute, but it is proportional to the variation of the first order contribution,
the “self-linking number”. The constant of proportionality, is still unknown in general, but
independent of the embedding. These results of Bott and Taubes are powerful enough, as
we will show, to prove invariance at all orders.

During the same period, the subject of Vassiliev knot invariants, also known as finite
type invariants, was developing rapidly. The starting point of Vassiliev [9] was the space of
all immersions of S! in $3. In this space, a knot type is a cell whose faces are singular knots
with a finite number of transverse double points.  Any knot invariant can be extended to
such singular knots. It is said to be a finite type invariant of order < N, if it vanishes on all
singular knots with more than N double points. Let V¥ be the space of invariants of order
< N. Unexpectedly at first, Bar-Natan found that VV/V¥~! embeds in the dual of the
space of BN diagrams of degree N. Kontsevich [10] showed that the two spaces are in fact
isomorphic. His proof [8] involved the construction of a universal Vassiliev invariant, a formal
power series in the space of BN diagrams whose coefficients are finite type invariants, based
on the Knizhnik-Zamolodchikov equations of the WZW model of conformal field theory.

In this talk we start from the results of Bott and Taubes (7] to construct a universal
Vassiliev knot invariant, given by the perturbative expansion of the expectation value of a
Wilson loop in Chern-Simons theory on R®. The basic ingredient in the integrals obtained
from the Feynman rules is the propagator of the gauge field, which is given m the Lorentz
gauge by the Gauss two-form, the pullback of the volume form on S2.

In more details, the contents of the talk are as follows: we first deﬁne the graphs appear-
ing in the perturbative expansion, which are equipped with an additional structure called
vertex orientation, and state some simple combinatorial lemmas. Then we give the Feyn-
man rules, in which the vertex orientation plays an important role. They allow us to define
unambiguously the signs of the contributions of graphs appearing in the perturbative expan-
sion. Next we define the expectation value of a Wilson loop Z, which is a sum over trivalent
graphs, and prove that it is invariant under the changes of embedding corresponding to the
collapse of a single edge. After that we consider the other variations of the embedding, called

“anomalous”. We improve some results of [7], which allow us to conclude that a suitably
corrected version of Z becomes a framed knot invariant Z. In the last part we prove that
7 is a universal invariant. In particular, the N-th order contribution to Z is a finite type
invariant of order < N. Although it is stated explicitly in the literature, we have never seen
a proof of this going beyond the second order. The question whether the KZ and the Chern-
Simons universal invariants are equal is still open. The answer would be positive if one could
show that the Chern-Simons invariant extends functorially to the category of tangles, as in
the case of the KZ invariant, but at least to us it is not obvious that it has this extension

property.
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Representation spaces of knot groups
GERHARD BURDE

Abstract

The character varieties of representations of 2-bridge knots (and
links) or rather a real section of these are considered from a geomet-
rical point of view. Information on the geometry of the representing
real algebraic curves can be derived by interpreting their points as
isometries of the hyperbolic plane of certain types resp. rotations in
IR3 . Further information is drawn from a first step to desingularize
the ideal critical points. This is used to prove an inequality which
gives an upper bound for the genus of the representation curve.
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Abstract

A knot K in S° is said to be periodic with a period ¢ > 1 if there exists an
an orientation preserving diffcomorphism f : .S* — $° such that f(K) = K,
order{f) = ¢, and the fixed point set of f is a circle disjoint from K. Any
such f is called a period ¢ transformation for K. Two knots are said to
be concordant if they cobound a smooth l1-manifold C = §' x I properly
embedded in §° x I. We say that two period ¢, concordant knots K and K3
are equivariant concordant if there are period ¢ transformations f; for K;, 1 <
i < 2, and an order ¢ diffeomorphism of 3 x I which leaves the concordance
C invariant and restricts to f; on the boundary component containing Kj.

A natural question is whether all period g, concordant knots are equiv-
ariant concordant. The answer is no. We observe that if K; and K, are
equivariant concordant, then the links K; U Fix(f;), 1 <14 < 2, are concor-
dant. It follows that the linking numbers lk(Ky, Fix(f1)) and Ik (Kz, Fix(f2))
are equal. These linking numbers are determined by ¢ and the Alexander
polynomials of the knots K;. We use this condition and give examples of con-
cordant knots which are periodic with the same period but not be equivariant
concordant. |

An equivariant slice knot is equlvarlant concordant to the trivial knot.
We discuss classical obstructions to sliceness in the equlvarlant setting. In
particular, we show that if K is equivariant slice, then the map induced by
a periodic transformation on the homology of an equivariant Seifert surface
preserves a metabolizer of the Seifert form.

Finally, a knot K is called g-equivariant ribbon if it is periodic with
period ¢ and it bounds an equivariant ribbon disk in S%. We give examples
of equivariant ribbon knots as well as of knots which are equivariant slice but

it is unknown whether or not they are equivariant ribbon.



On inevitability of knots, links and spatial graphs

Tatsﬁya TSUKAMOTO (Waseda Univei'ysi'ty)

Let G be a finite graph. We consider it as a topological space i.e. a l-dimensional
CW complex. A spatial embedding of G is an embedding g : G — R3of G into the 3-
dimensional Euclidian space R3, and its image g(G) is called a spatial graph. If it consists
of a single cycle or a disjoint union of cycles, then it is called a knot or a link. A graph
is called planar if there is an embedding of it into R®. A spatial graph g(G) is called
unknotted if it is ambient isotopic to a graph in R? ¢ R3. Thus g(G) is unknotted only
if G is planar. Of course, if it is a knot or a link, then it is usually called trivial

A regular projection of G is an image of a continuous map from G to R? whose
multiple points are only finitely many transversal double points of edges. Then, we
obtain 2°¢ diagrams from a regular projection of G by giving information about the over
crossings at all double points of it, where.c is a number of double points of the projection.
It is well known that if G is a single cycle (or a disjoint union of cycles), then there is
a trivial diagram i.e. a diagram of a trivial knot (or link) in diagrams obtained from
a regular projection of it. However, this is not always true for planar graphs. In fact,
Taniyama showed that there is a regular projection of a planar graph such that every
diagram obtained from it, is not a unknotted diagram ([1}, see the figure); yet, we obtain
the following proposition since every diagram obtained from the projection in Figure 1
contains a Hopf link as like Figure 2.

Proposition = There is a regular projection of a planar graph such that every diagram
obtained from it contains a subdiagram which is ambient isotopic to Hopf link.

NGRS
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Starting from this proposition, Taniyama and the author, in [2], introduced the concept
of inevitability of spatial graphs and obtained the following theorem.

Definition ~Let H be a spatial graph. A regular projection of a graph is called H-
inevitable if every diagram obtained from it contains a subdiagram that is ambient isotopic
to a diagram of H.

Theorem 1 (Taniyama-Tsukamoto [2])  Let T}, be a (2,n)-torus knot or link according
as n is odd or even. Then, for each integer n, there is a T,,-inevitable projection of a planar

graph.

Therefore a question naturally arises: For a prescribed knot K, is there a K-inevitable
projection of a planar graph? For this question; we obtain the following results.

Theorem 2 Given a planar graph embedded in R3, denoted by H, there is an H-
inevitable projection of a planar graph.

Corollary 1  Given a knot K, there is a K-inevitable projection of a planar graph.

Corollary 2  Given a link L, there is an L-inevitable projection of a planar graph.
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A quadratic lower bound for the number
of primitive Vassiliev invariants

S. Duzhin*

Extended abstract

I will speak about a result obtained in the course of my joint work with
S. Chmutov. Adding one more trick to the construction described below we
know how to prove a quartic lower bound (~ cn*) for the same number —
and we hope that after overcoming some technical difficulties we will be able to
establish a bound ¢,,n™ for any natural number m.

Dimensions of the filtered space of Vassiliev knot invariants V,, are presently
known only up to order 9 [BN1]. The exact asymptotics is not known either,
but there are some estimates from above and from below ([CD], [Ng], [CDL],
[MM]). Note that the associated graded space 4 = @Vn/Va-1 (called the alge-
bra of weight systems) is a commutative Hopf algebra generated by its graded
subspace of primitive elements P as a free polynomial algebra ([BN2]). Thus
it is sufficient to study the sequence of dimensions of P, = P N A,. The best
known lower bound for dim P, is linear in n ((MM]). The paper [K] mentions a
better estimate, but there is a circular reference between [K] and [BN3] about
this, and the proof is not given anywhere. ‘

In this talk, I will sketch the proof of a lower bound for the dimension of P,
which is quadratic in n. The argument is based on the explicite construction of
an ample linearly independent family of elements in Py.

We will use the characterization of the primitive space P, given by D. Bar-
Natan [BN2]: P, is the space spanned by all connected Chinese character dia-
grams. To prove linear independence of the families of diagrams, we will use
the weight function with values in the universal enveloping algebra of the Lie
algebra gl y due to M. Kontsevich [K]:

k:A-=U(gln)

for a sufficiently large N. It is known that the image of x belongs to the
center of U(gly) which, by Harish-Chandra theorem, coincides with the set of
all polynomials in the variables zy, ..., Zn, where z; is an element of the center

* University of Aizu, Aizu-Wakamatsu, 965, JAPAN, on leave from Program Systems In-
stitute, Pereslavl-Zalessky, 152140, RUSSIA, duzhin@botik.ru.



having degree i. Thus, for a given Chinese character diagram D, the value
k(D) can be rewritten as a polynomial in z,, ..., zx. We have found explicite
formulas for the highest homogeneous part of these polynomials, when D is
a polycycle diagram (to understand what it means see the picture below that
shows a tricycle diagram). —

Now we will state the main result of this note

Theorem. Let Wy, n '3 be the trzcycle dzagmm with 3 wheels of m, n and p
spokes:

12 m 12 n 12 p

Its order (half the number of triple points) is m+n+p+2. We claim that,
for a given order d, the family of all Wy, , , where m and p are odd, n even,
m<p<n/2and m+n+p=d-—2, is linearly independent in Py. Hence the
dimension of the subspace of 3 wheel primitive Chinese character dzagmms n
Py is asymptotically greater than or equal to d*/96.

Outline of the proof. The assertion follows from the fact that, for a suffi-
ciently large NV, the gl y-polynomials of these diagrams are linearly independent.

A direct computation yields the following explicite formula for the hlghest;
homogeneous part of these polynomials:

. it m\ /n
R(Win,np) = Z(fl) itk ( ;) (J) (i) (%i%j TeTir jrrks + TiTirgj TjrkTior)-

where i/ = m — 1, j' = n — j, k' = p — k and the summation is over all i from 0
to m, all j from 0 to n and all k from 0 to p.

To understand why the family of such polynomials for the triples (m,n,p)
described above is linearly independent, let us represent every nonzero term
ToZpTy s as the point (a, 8,7,8) € Z3 = {a+f+~+8 = const} € Z*. The set
of all such points forms the support of the polynomial (a notion different from
the Newton polyhedron because we use the numbers of the variables, not their
exponents, as coordinates). Since the variables z; are commutative, we have to
take all the permutations of the four indices and then consider the resulting set
modulo the natural action of the symmetric group Sy on AR

The following picture shows that the supports of K(Wm n p) are independent,
if m and p are small, while n is big:
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Twisting of two strings and Vassiliev invariants

Yoshiyuki OHYAMA

Department of Mathematics, Nagoya Institute of Technology,
Gokiso, Showa-ku, Nagoya, {66, Japan

In 1990, V. A. Vassiliev defined a sequence of knot invariants that’ is at least as powerful
as all of the quantum group invariants of knots. The set of all Vassiliev invariants of order
less than or equal to n forms a vector space, which is denoted by V;,. Only the case that the
order is small, the dimensions and the bases are known.

Some classical invariants are not Vassiliev invariants. To show this fact and to study
uniform limits of Vassiliev invariants, R. Trapp defined a twist sequence {K;}, which is a
sequence of knots that differ \only by a full twist of two strings and showed that the space of
all Vassiliev invariants on {K;} of order at most n, Vi, |(x,}, has dimension at most n + 1,
that is also obtained by J. Dean independently.

Moreover Trapp obtained that when a twist sequence { K} is a sequence of (2, 2:41)~torus
knots, the dimension of V;, |(x,} is exactly n and determined the topological information that
Vassiliev invariants give on {K,}. There are two cases for twist sequences according to an

otientation of two strings.

UL
R
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In this talk, we show the following theorems by using an n—similarity of knots.

Theorem A For a twist sequence {K,;} where two strings have parallel orientation, either
(i) dem(Vs lixy) = n (for alln 2> 2)
or

(ii) there ezists an integer k > 3, such that

n (forn < k)
n+1 (forn>k)

dim(V loxy) =

In the case (i) in Theorem A, the topological information that Vassiliev invariants give on
{K,} is obtained from the invariants of order 2 and order 3. A sequence of (2, 2¢ + 1)—torus
knots is an example of the case (i) and we have an example for any integer & > 3 that the

case (ii) occurs.

Theorem B For a twist sequence {K,} whose two strings are oriented against each other,

there exists an integer k > 1 such that

i =1 (forn < k)
dvm(Vy, l{K'}){SnJrl”.k (forn > k)’

In the case that k& = 1 and equality holds in Theorem B, the k" derivatives(k < n) of the

Jones polynomial of {K,} evaluated at 1 can be taken to be the bases. And we also indicate

an example for any £ > 1 that the equality holds in Theorem B.



Delta unknotting operation and
vertex homotopy of graphs in R*

Tomoe Motohashi and Kouki Taniyama

Throughout of this report we work in the piecewise linear category. Let G be a finite
simple graph and R? three-dimensional Euclidean space.

Two embeddings f,g : G — R® are vertez homotopic if f and g are transformed into
each other by crossing changes between adjacent edges, and ambient isotopy.

Two embeddings f,g: G — R> are homologous if there is a two-dimensional complex
A and an embedding @ : A - R3 x {0, 1] which satisfies the following three conditions.

(1) A is a connected sum of G'x [0, 1] and a finite number of closed connected orientable
surfaces. More precisely, each surface is connected summed to some open disk int ex (0, 1)
where e is an edge of G.

(2) There is a real number ¢ > 0 such that if we consider G x ([0,] U {1 —¢,1])
as a natural subspace of A, then ®(z,t) = (f(z),¢) forany z € G, 0 < t < € and
O(x,t) = (g(x),t) foranyz € G, 1 —e <t < 1.

(3) @ is locally flat. That is, each point of the image of ¢ has a neighbourhood /N such
that the pair (N, N N ®(A)) is homeomorphic to either the standard disk pair (D*, D?)
or (D? x [0,1], X,, x [0,1]) of some non-negative integer n.

The second author proved:

Proposition 1[2] If two embeddings f,g : G — R® are vertex homotopic then they are

homologous.

Theorem 2[5 Two embeddings f,g : G — R? are homologous if and only if they have

the same Wu tnvariant.

Therefore the next end is the vertex homotopy classification of embeddings of G into
R3. In this report we give a vertex homotopy classification for almost pseudo adjacent
graphs.

Two edges ey, e; of G are adjacent if they have a common vertex. We define recursively
that

(1) adjacent edges are pseudo adjacent,

(2) if ey, e, -+, en is the edges incident to a vertex of G and an edge e are pseudo
adjacent to each of ey, ez, -, en—2 and e,_y then e and e, are pseudo adjacent.

Namely pseudo adjacency is the maximal relation on the set of edges of G generated
by (1) and (2).

A graph G is pseudo adjacent if any two edges of GG are pseudo adjacent.



A graph G is almost pseudo adjacent if any three edges of GG contain two pseudo

adjacent ones.

Main Theorem Let G be an almost pseudo adjacent graph. Then two embeddings of G

into R3 are vertex homotopic if and only if they are homologous.
We give a proof of Main Theorem using Theorem 3.

Theorem 3 Two embeddings f,g : G — R* are homologous if and only if they are
transformed into each other by delta unknotting operation and ambient isotopy.

Let C(G) be the set of all cycles of G. We say that C(G) is spatially independent if
for any set of embeddings {f. : ¢ — R®|c € C(G)}, there is an embedding f : G — R®
such that the restriction map f|. is ambient isotopic to f. for each ¢ € C(G). Then C(6,)
and C(K,) are spatially independent by [1] and {7] respectively where 8, is the graph on
two vertices and n edges joining them. See also [8].

As an application of Main Theorem and an invariant defined in [4], we obtain next
Theorem.

Theorem 4 Let G be a nonplanar graph. Then C(G) is spatially dependent.
In the end we give a complete characterization of almost pseudo adjacent graphs.

Theorem'5 G is almost pseudo adjacent if and only if G does not contain any subdivision
of the 17 graphs'in Fig.1.

Fig.1
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Vassiliev-type invariants in J* -theory of planar fronts without
dangerous self-tangencies

J.W . Hill

Abstract

We obtain a combinatorial description of all complex-valued finite type invariants
in Arnold’s J*+-theory of planar fronts. The isomorphism of the order n graded part of
the space of C-valued invariants with the space spanned by specially marked n-chord
diagrams modulo an appropriate four-term relation is provided by the introduction of
the universal Vassiliev-Kontsevich invariant for fronts.

The manifold M? of.cooriented contact elements of the plane is diffeomorphic to the solid
torus R? x S!. M3 has-a natural-contact structure-given by zeros of the form cos(p)dz+
sin(p)dy where z,y are coordinates on R? and ¢ is the angle made by the coorienting normal
vector with some fixed direction. An immersion f : S' — M3 is called Legendrian if it is
tangent to the contact structure. The projection of a Legendrian curve to R? is called its
front.

The front of a generic Legendrian curve has only semicubical cusps and transversal double
points as singularities. A Legendrian curve in M? is uniquely determined by its cooriented
front in R?. Thus the study of invariants of cooriented fronts is equivalent to the study of
invariants of Legendrian curves.

There are two standard integer charactenstxcs of a fropt: the winding inder (or winding
number) and the Maslov inder. These two integers enumerate connected components of the
space Q of all C®-immersions St —— M3, We identify 2 with the space of cooriented fronts.

Consider the hypersurface  C 2 formed by the fronts with finitely many points of dangerous
self-tangency (i.e. points of self-tangency with parallel coorienting normal vectors). An
invariant of fronts which have no dangerous self-tangencies (of which Arnold’s J* is an
example [1]) is a locally constant function on Q \ . We extend these invariants to fronts
which have finitely many dangerous self-tangencies via the relations of figure 1 (cf. [8]).

D000 0-C-4K

Proposition 1 Any ertended invariant of fronts satisfies the two-term relations of figures
2(a) and (b) and the four-term relation of figure 3.

‘“/\J ) /\j Q\ /é\\

Figure 2:
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We denote by £, the set of all fronts which have exactly n points of dangerous self-tangency,
and by I! and I? the sets of fronts having n — 1 self-tangencies together with (respec-
tively) one cubical dangerous self-tangency and one point of coincidence of a dangerous
self-tangency with a cusp point. We assume that the fronts in the above sets have otherwise
only ‘moderate’ singularities. These moderate singularities can be any of transversal double
points, semicubical cusps, triple points (with pairwise transversal branches}, non-dangerous
self-tangencies, cusp crossings, cusp births (with a local normal form being a parabola of
degree 4/3), third branches passing through points of dangerous self-tangency (transversally
to the two tangent branches). '

We say that two fronts in £, are related if they can be connected by a smooth homotopy
mostly in I, and otherwise passing through £} U L2 UL, in a generic way.

The pu-marked chord diagram of a front with dangerous self-tangencies (figure 4) is an anti-
clockwise oriented circle with a finite number of chords which join the pairs of points on the
preimage circle that are mapped to the points of dangerous self-tangency of the front. Each
chord is marked with the winding index of the ‘subfront’ which is parametrised by the arc
on the preimage circle that faces the chord. The entire circle is marked with the winding
index and Maslov index of the whole front. In a p-marked chord diagram the sum of the
markings either side of any one chord equals the first marking on the whole circle. Chord
diagrams are considered modulo orientation preserving diffeomorphisms of the circle,

1.4

iz=3,m=4

Figure 4:
Theorem 1 Two fronts are related if and only if their p-marked chord diagrams coincide

We say that an extended invariant of fronts is of order < n if it vanishes on all fronts which
have > n points of dangerous self-tangency. We denote the space of order < n invariants by
X,. An invariant of order n is an element of the set X,,\ X ;. The symbol of an invariant of
order 7 is its restriction to fronts which have exactly n dangerous self-tangencies. Theorem
1 and Proposition 1 imply

Proposition 2 The value of the symbol of an invariant of order n on a front with ezactly n
points of dangerous self-tangency depends only on the p-marked chord diagram of the front.

Proposition 3 The values of symbols of invariants on y-marked chord diagrams of fronts
without dangerous self-tangencies obey the p-marked four-term relation of figure 6.

Let M* be the space of all C-linear combinations of finitely many elements of the set of all
p-marked n-chord diagrams modulo the g-marked four-term relation. Let the space of all C-
linear functions on M# be M¥#*. We denote by X, ¢ the space of order < n complex-valued



invariants of fronts
Theorem 2 Xnc/Xnorc = MY

Xnic/Xn-1c is a subspace of M#* by Proposition 3. The equality is provided by the intro-
duction of the universal Vassilev-Kontsevich invariant for fronts, which is obtained from that
used in [5] (cf. [7, 4, 6]) by addition of the Maslov index as a marking. Evaluation of such
a modified invariant on a front whose y-marked chord diagram D is a series in [],,,M#%
whose lowest term is a non-zero multiple of D. h
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LINK POLYNOMIALS AS VASSILIEV-TYPE INVARIANTS

TAIZO KANENOBU

Let V,, denote the vector space consisting of all Vassiliev knot invariants of order
less than or equal to n. There is a filtration

VocVicVyCc---C Ve

in the entire space of Vassiliev knot invariants. Each V. is finite-dimensional.
Vassiliev studied for the special cases when n is small: Vp = Vj, which consists
of a constant map, and V,/V; is a one-dimensional vector space, whose basis is
the second coefficient of the Conway polynomial. The dimensions for small n are
found by using the computer by Bar-Natan and Stanford: For n =1, 2,3,4,5,6,7,
dimV,/Vh-1=0,1,1,3,4,9, 14, respectively.

On the other hand, Bar-Natan showed that the n-th coefficient of the Conway
polynomial is of order less than or equal to n. Birman and Lin proved that the
Jones, HOMFLY, and Kauffman polynomials of a knot can be interpreted as an
" infinite sequence of Vassiliev knot invariants. Stanford generalized this for a link.
From this, we have: Let V. (t) be the Jones polynomial of a link L. Then the
n-th derivative of Vy (t) evaluated at 1, Vé")(l), is a Vassiliev invariant of order n

(cf. [KM, Theorem 1}). Let P,E“(L; 1) be the £-th derivative of the k-th coefficient
polynomial of the HOMFLY polynomial of a link L evaluated at 1. In particular,
Pi(L; 1) = ax(L), the k-th coefficient of the Conway polynomial. Then P,gl)(L; 1) is
a Vassiliev link invariant of order less than or equal to max{k + ¢,0} [KM, Lemma
1]. Furthermore, we have:

Theorem 1 [KM, Main Theorem]. Let s = min{ n, {(n+r—1)/2] }. Then the
dimension of the subspace of the Vassiliev invartants for an r-component link of
order n spanned by the following Vassiliev invariants is s:

(n+r—2i-1) .
Py , 1=0,1,...,s.

Here [] denotes the greatest integer function.
Combining an upper bound of dim V,, /V,,—1 given by Ka Yi Ng, we have

Corollary. Ifn > 5, then [n/2] <dimVp/Va-1 < (n - 2)!/2.

Let Fk(e) (L ;‘i) be the /-th derivative of the k-th coefficient polynomial of the
Kauffman polynomial of a link L evaluated at i = +/—1. Ifk+£ > 0and £ > 0,



TAIZO KANENOBU

then i*+¢F, k(e) (L;4) is a Vassiliev-type invariant of order less than or equal to k+£,
otherwise it is of order 0.

We give a basis for the space V; in terms of the invariants derived from the
HOMFLY and Kauffman polynomials. Let v be a Vassiliev invariant of order < 5
and K be a knot. Let U be a trivial knot and 34, 4;,... the knots in the table of
[R]. We denote by K! the mirror image of K. Then we have

] . :
- - T
| A uy
v(41) az({f{)
o) = | YO x o
= | u(5q!) PO(B(K;l) ’
v(52) ap (K )P (K1) /24
v(6d) 1 | P®(K;1)/120
v(6al) P{V(K; 1)
L v(6s) N
v(6s) L Fél)(K;z)/z _
where ;
1 -3 & -3 3 ¥ -1 # -% -3]
o & 1 3 5 5 1 _1 I 1
o B o# & ¢ % & H B 2
. 48 288 24 4 288 12 288 36 18
0 -8 ‘mr 1 1 1 % _5 u I
9{5 2?8 12 2 316 3 2?8 118 118
x=|0 -3 —¢ 0 0 -5z 0 -3 5 3
0 -5 232 _L 1 - TS T A I A A
- 4‘;5 : 2%8 2i1 % 2{3{3 1% 228 356 118
R T N S DI R S
S s R S SR S S
0 -5 - 0 ! - 0 - -3 3§ .

Using this, we may obtain various relations among polynomial invariants.

Fact 1. A Vassiliev knot invariant of order < 3 is determined by the Jones
polynomial, but one of order 4 is not. Let K; and K, be the two 2-bridge knots
with 10 crossings S(49,—15) and S(49,27), respectively, which are 10;; and 1035
in the table of [R]. They share the same Jones polynomial, but they have distinct
Vassiliev invariants of order 4; P*™™ (K1,1) # P,£4“")(K2, 1) for n = 0,2,4.

Fact 2. A Vassiliev knot invariant of order < 4 is determined by the HOMFLY
polynomial, but one of order 4 is not. Let K3 and K, be the two 2-bridge knots
with 14 crossings 5(297,215) and S(297,233), respectively. They share the same
HOMFLY polynomial [KS], but they have distinct Vassiliev invariants of order 5;
F8™™ (Ks,i) # B ™Ky, 4) forn=1,2,3,4.

Fact 3. A Vassiliev knot invariant of order < 5 is determined by the Kauffman
_polynomial, but one of order 6 is not. Let K5 and Ky be the two 2-bridge knots
with 13 crossings S(245,~103) and S(245, 137), respectively. Then they share the
same Kauffman polynomial [KS], but they have distinct Vassiliev invariants of order
6; ag(Ks) = 4 and ag (Kg) = —1.
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Alternating links in the product space of
a closed oriented surface and the real line

Naoko KAMADA

Osaka City University

L.H. Kauffman and K. Murasugi proved the following theorem.

Theorem 1.1 (Kauffman;Murasugi). Any proper alternating connected link

diagrams of a given link in S® have the same number of double points.

Let F be a closed oriented connected surface. A result similar to Theorem

1.1 holds.

Theorem 1.2. Any proper alternating connected link diagrams of a given link
in F x R whose complements in F consist of open disks have the same number

of double points.

This is proved by using the Kauffman bracket polynomials (or the Jones

polynomials) of link diagrams on F'.
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The fundamental polygons

of twists knots and the (—2,3,7) pretzel knot
Thomas Mattman, McGill University o

We briefly review the machinery developed in [CGLS] and [BZ] for analyzing
cyclic/finite Dehn surgeries on a hyperbolic knot and explain how it can
be applied to determine the fundamental polygons of twist knots and the
(—=2,3,7) pretzel. ;

Let M = S*\ K denote the exterior of a hyperbolic knot. By [CGLS,

Chapter 1], there exists a norm || - || on V = H;(0M;R) satisfying the
following.
1. || - || is positive integer valued for each non-trivial element § € L where
L= H\(0M;Z).

2. Let s = min{||d]|;0 € L, # 0} and let B be the disc of radius s in V.
Then B is a compact, convex, finite-sided polygon whose vertices are

rational multiples of strict boundary classes in L.

3. If o € L is a primitive element which is not a strict boundary class and

if M () has cyclic fundamental group, then |laf = s.

We will call B the fundamental polygon of the norm || - ||.

In [BZ, Theorem 2.3], these results are extended to finite surgeries, that is,
surgeries o such that M(a) has finite fundamental group. Property 3 above
states that cyclic surgeries realize the minimal norm s. Although this is not
true in general for the non-cyclic finite surgeries, it almost is. For example,
the (—2,3,7) pretzel admits an Icosahedral-type surgery along slope 17. For

such “I-type” surgeries the norm is bounded by s + 8.



In addition to these bounds on the norms of cyclic/finite slopes, certain
other aspects of the geometry of the fundamental polygon B are known. For
example, B is symmetric to the origin (0,0) of V' (i.e. —B = B) and the
Euclidean area of B is no larger than 4 ([CGLS,page 244]). In [BZ], Boyer
and Zhang give the possible shapes of B for s < 10 and show that slopes in
B have longitude coordinate bounded by 2. They also argue that ||-|| is even
integer valued.

This information, along with a list of boundary slopes, is enough to ex-
actly determine the fundamental polygon in some cases. In unpublished
work, Boyer has calculated B for the twist knots. His analysis depends on
an explicit calculation of the norm for the small Seifert slopes —1, -2, —3.
Since the twist knots are 2-bridge knots, their boundary slopes may be found
in [HT], and together these fix B. In [BZ], the authors examine the (-2,3,7)
pretzel. They show that it admits exactly 4 finite surgeries and s > 8. We
will complete the analysis by showing the exact shape of the fundamental

polygon of this knot.
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Delta-unknotting operation
and adaptability of certain graphs

Akira Yasuhara

Department of Mathematics, Tokyo Gakuget University,
Nukuikita 4-1-1, Koganei, Tokyo 184, Japen
e-mail: yasuhara@u-gakuget.ac.jp

Let G be a graph and C = {c1,¢a,...,cn} the set of cycles of G. The graph G is
adaptable if for any knots ki, ks, ..., kn, there is an embedding f : ¢ — R? such that
fle) = ki (i =1,2,...,n). In [1] Kinoshita showed that the 8,-curves (p > 3) are adaptable,
and in [5] Yamamoto showed that the complete graph K4 on four vertices is adaptable.
Recently, Motohashi and Taniyama showed that any nonplanar graph is not adaptable [3L

To state our result we define the following sets of cycles of a graph. Let & be a grap
and C the set of cycles of G. For a positive integer r, let C, < C\ Uiz} C; (resp. C1 C C) be
the set of cycles with the following property; for each ¢ € C,, there are three edges e, ez, €3
(possibly e, = e, for some e,, e, with p # ¢) such that ¢ is the unique cycle in C'\ Uizt Ce
(resp. C) that contains e; U ey U es.

Theorem. Let G be a graph and | a positive integer. Let C and C; (r = 1,2,...,1) as
above. Set Ui:l C = {c, ¢, ...,cm}. Then for any embedding f : G — R? and any knots
ki, ko, ..., km, there is an embedding f' : G — R3 such that

(i) fl(c) = ki foranyi (i =1,2,..,m) and
(i) f'(c) = f(c) for any c € C\ Ut=1 Cr-

In particular, if C = ', C;, then G is adaptable.

If G is f,-curve or Ky, then C = C;. Hence by Theorem, #,-curves and K4 are adaptable.
By applying Theorem, we have the following examples. In fact, for the all cases below, we
have that C = C; U C,.

Examples. (1) The wheels W, (p > 3) are adaptable.

(2) Let e be an edge of the complete graph Ks on five vertices. The graph Ks — e obtained
from K3 by removing e is adaptable. This implies that any proper subgraph of Kj is
adaptable.

(3) The trianglar prism is adaptable. O



In order to prove Theorem, we need the following lemma.

Lemma.(cf. [4][5].) Let k and k' be knots in R® such that k is obtained from k' by n times
A-unknotting operations. Let L; = B;; U Bio U Bis (i = 1,2,...,n) be the Borromean rings
and L a link that is the split sum of Ly, Lo, ..., L, and k. "Then there are mutually dzsyomt
three arcs oy, as and az in k and mutually szJomt embeddings by; : I X [ —— R3
1,2,..,n, j=1,2,3) such that
(i) blj(l X )Nk = b (I'x {0}) Cay, by(I x [) (Ui L) = bi;(I x {1}) C Bij for any
i, J (1=12,.;n 7=1,23),

(ii) there are mutually disjoint 3-disks Dy, Da, ..., Dn such that for each i (i = 1,2

(Di, D0 (L UUi’,j b,’/]'(l X I))
= (D,‘,D,‘ﬂ (L1 Ubn([ X I) Ub,‘g([ X 1) Ubia([ X 1))

e Th),

by x 1)~ bl X 1)

(iii) (L —Usybis(I x 80)) U (Ui 0501 x I)) = K.
In the lemma above, A-unknotting operation is an unknotting operation defined by Mu-
rakami and Nakanishi in 12}
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Uniqueness of essential free tangle decompositions
of knots and links

Makoto OZAWA (Waseda University)

An f-string tangle is a pair (B, t), where B is a 3-ball, and ¢ is a union of mutually
disjoint n arcs properly embedded in B. We say that (B,t) is trivial if (B,t) is homeo-
morphic to (D x [, {zy,...,zn} x I} as pairs, where D is a 2-disk and z; is a point in
intD(i=1,...,n). We say that (B,t) is essentialif ¢/(0B — N(t)) is incompressible and
boundary-incompressible in c/(B — N{t)). We say that (B,t) is free if m;(B — 1) is a free
group.. We note that (B,1) is free if and only if c/(B — N(t)) is a genus n handlebody.

Let:L be a’knot or link in 5%, and let. (B,¢) and (B’,t') be n-string tangles. Then
we say that (B,t) U (B',t') is an n-string tangle decomposition of L if BU B' = S?,
BNB = 0B = 0B, ot = 0t and t Ut = L. An n-string tangle decomposition
(B, HYU(B',#") of L is said to be essential (free resp.) if both (B,t) and (B’,t') are essential
(free resp.). Let (B,t) U (B’,t’) and (C,s) U (C',¢') be n-string tangle decompositions
of L. Then we say that these tangle decompositions are mutually isotopic if there is an
ambient isotopy: { i} : S% — 53(¢ € [0,1]) such that fo =id, f1(9B) = dC and f(L) =L
for any t € [0,1].

Theorem Let L be a'knot or link in 5% which admits an’ essential free 2-string tangle
decomposition. Then L admits non-isotopic essential 2-string tangle decompositions if and
only if L is a 2-component Montesinos link M (e; (er, 1), (2,1), (@2, 32),(2,1)), where ¢
is an integer, o and B; are coprime integers and |o;| ts an odd integer greater than 1
(z=1,2).

Moreover, 'if(L is the Montesinos link. then L admits exactly two essential free 2-string
tangle decompositions up to isotopy, and any essential 2-string tangle decomposition of L

is isotopic lo one of those two.

Corollary [ a kuot I\ admits an essential free 2-string tangle decomposition, then es-

sential 2-string tangle decompositions of K are wnique up to wsotopy.



DEVELOPING COMPUTER PROGRAMS FOR KINOT CLASSIFICATION
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Abstract

In this paper we summarise the work discussed in Ref. [1] and [2], in which we
introduced a method helpful in solving the problem of knot classification. We also present
results obtained since then.

1. INTRODUCTION

Knot Theory has attracted significant attention during recent years, both among
mathematicians, and among areas of applied science such as Physics, Chemistry and Biol-
ogy. In fact, a number of problems that were previously considered unrelated to each other,
have been connected through applications of Kont Theory. While enormous progress has
been achieved in the study of knots and of their applications, the problem of a complete
classification remains still open, in spite of recent successes (Ref. [3]). In this paper we
describe and discuss an algorithmic approach that could be useful in solving the problem.
With the help of an algorithm which is presented in this paper, a computer program was
developed, resulting to the classification of all knots with crossing number up to 11.

In Section 2 we present the main points of the algorithm, while in Section 3 we
introduce a suitable notation and show how through this notation it is possible to classify
knot projections. In Section 4 we show how Reidemeister moves can be used to identify
projections of equivalent knots, so that ambient isotopic knots may not appear more than
once at the output. In Section 5 we generate a series of “color tests” in order to demonstrate
knot inequivalence; such a procedure is necessary since equivalent since equivalent knots
may fail to be identified through the procedure of Section 4. Finally in Section 6 we show
the results obtained through this computer program. Ideally, any two knot projections
should either be shown to belong to knots shown equivalent through Reidemeister moves,
or to knots shown inequivalent due to different responses in one or more “color tests”. This
would be the case if the computer program could run for ever; in practice the results depend
on the two input parameters, one indicating the maximum crossing number considered,
the other indicating the ultimate “color test” to be used. Currently this has been achieved
for all knots whose crossing number does not exceed 11.

2. THE ALGORITHMIC PROCESS

In this Section we present the main steps of the algorithm. First, a suitable method to
denote knot projections is introduced. Second, once the set of possible such notations has



been obtained, one needs a method to distinguish notations that correspond to actual knot
projections, from notations that do not. Third, notations that correspond to identical knot
projections must be identified. Once these steps are completed, knot projections are fully
classified. This however is not identical to classifying knots, since distinct knot projections
may correspond to ambient isotopic knots, and such knots are considered equivalent.

The next step therefore is to identify such projections. It is well known that projections
of ambient isotopic knots are related through Reidemeister moves (Ref. [4]). It is thus
necessary to know how a notation is affected by a Reidemeister move. Once this is known,
one may use such moves to identify ambient isotopic knots. In order for the program to be
finite, one may establish an upper limit to the number of Reidemeister moves to be applied;
it A turns out however to be simpler to set an upper limit not to the actual number of
such moves, but to the number of crossings of the knot projections involved. This upper
limit is one of the two input parameters used in the program.

Since however no upper limit to either this number, or the number of necessary moves
is known, there is no guarantee that projections not found connected through Reidemeister
moves, actually belong to inequivalent knots. Therefore once as many equivalent knots as
possible have been identified, one proceeds by selecting one knot from each equivalence
class, conventionally the knot appearing first, and by calculating knot characteristics, in
order to establish inequivalences between selected knots. As such characteristics we shall
use the so'called “color tests”, which:are a generalisation of the “tricolorisation” through
which the trefoil’s non-triviality may easily be shown. Each color test consists of an n x n
matrix whose elements take values in {1,2,...,n}; the strands of each knot projections
are mapped to elements of {1,2,...,n} (the n “colors”). Acceptable mappings are the
ones where the three strands meeting at each crossing, are mapped to numbers satisfying
relations determined through the n x n matrix. Once certain constraints among the matrix
elements are satisfied, the number of acceptable mappings is invariant under Reidemeister
moves. Therefore if two projections yiled different results for one or more such color tests,
they definitely belong to inequivalent knots.

Not all knots on which such “color tests” are applied, are going to yield distinct results
and thus shown inequivalent. This is due to two reasons. First, some of these knots are
actually equivalent, but due to the limitations in the Reidemeister moves considered, the
program failed to identify them. Second, even if two knots are actually inequivalent, they
may not yield distinct results due to the finite number of color tests applied. The second
input parameter indicates in fact the color tests that are applied.

Having presented the main steps of the program, we now proceed with a detailed
discussion.

3. THE CLASSIFICATION OF KNOT PROJECTIONS

Knot projections are denoted as sets of n pairs of natural numbers
{(a1,a2), (a3,a4), ..., (@2n—1,022)}, where n is the crossing number, such that
a; € {1,2,..,2n} and i # j < o; # a;. This set is obtained as follows. First one
chooses a starting point and an orientation. Then, as one travels around the projection,
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one assigns successive natural numbers to the crossing points, starting from 1 and ending
to-2n. Each crossing is eventually assigned two numbers, @oyer for the overcrossing and
Qiinder- for the undercrossing. The set of the pairs (@oyer, Gunder) denotes the projection.

Not all possible notations yield actual knot projections, the simplest counterexample
being {(1, 3),(2,4)}. One necessary condition is that odd numbers are always paired to even
numbers. This - icondition  is. not. sufficient, . as . the - counterexample
{(1,4),(3,6),(5,8),(7,10),(9,2)} demonstrates. The necessary and sufficient condition
is that any two loops obtained from an actual projection, must either share one or more
line segments, or intersect at an even number of points, vertices not being counted., This
condition is due to the Jordan Curve Theorem (Ref. [5]) which states that any loop on R?
or S? which does not intersect itself, divides R? or 52 into two disjoint pieces. In these
two counterexamples,: the loops 1-2-3 and 3-4-1, in the first case, and 1-2-3-4 and 5-6-7-8
in the second case, violate this rule by not sharing any common segment and intersecting
at exactly one point. The maximum number of loops obtained from an n crossing knot
projection 1s' 3™, since each crossing may be a vertex of the loop or may not, and if it is,
there are two possible direction changes. Therefore, checking whether a notation yields an
actual knot ‘projection, is a finite process.

Once “drawable”- notations have been separated from “undrawable”. ones, one needs
to identify notations leading to the same knot projection. For an n crossing projection,
there are at most 4n such projections, corresponding to 2n possible starting segments and
to 2 possible orientations. By altering the starting place and/or the orientation, each pair
(ai,a;) becomes (k + €a;, k + ea;), where k indicates the change of the starting point and
¢ = =1 indicates a possible change of orientation; € = 1 indicates that the orientation
remains the same, while € = —1 indicates that the orientation -has been reversed. One may
thus- identify all such notations. and keep just one, conventionally the one appearing first.
This too.is a finite-process, and since it is less time consuming than checking the notation’s
“drawability”, the program becomes more efficient if this step precedes the previous one.

At this point the procedure of classifying two-dimensional knot projections has been
completed.

4. | IDENTIFYING AMBIENT ISOTOPIC KNOTS

As mentioned earlier, two' projections correspond to ambient isotopic knots if and
only if they can be connected through Reidemeister moves. - There are three kinds of
Reidemeister moves, and their pictorial forms can be found in a number of relevant books
(see for example Ref. [6]). Here we present their “numerical” form, by showing how each
Reidemeister move affects a notation.

A first Reidemeister :move, which. increases the crossing number by 1, adds a pair
(¢,2+ 1) or a pair (i + 1,4) to the notation, while replacing any other number j which is
larger or equal to. 2, with j+ 2. A second Reidemeister move, which increases the crossing
number by 2, adds two pairs (¢,7) and (i + 1,5+ 1), or (¢ + 1,7) and (3,5 + 1), to the
notation. Numbers larger or equal to ¢ and smaller than j, increase by 2; numbers larger or
equal to j increase by 4. A first or second Reidemeister move which decrease the crossing



number, will have the converse effect. Finally a third Reidemeister move, which keeps
the crossing number constant, replaces pairs (¢, 7), (¢, k) and (j/, ¥’) with the pairs (i, k'),
(¢',7') and (3, k), where |¢/ — | = |j' — j| = |k’ — k| = 1, while all other n — 3 pairs remain
the same.

The process of identifying equivalent knot goes as follows. First; one obtains through
the procedure of Section 3, all distinct knot projections whose crossing number does not
exceed some maximum value N. Then, on each projection one applies Reidemeister moves
that do not increase the crossing number. Projections that cannot be connected to ones ap-
peared before, are stored in the computer memory and are assigned two natural numbers,
a “temporary” and a “permanent” one. Initially these numbers are equal. The permanent
numbers assigned to such projections, are successive natural numbers. Projections con-
nected to ones appeared before, are not stored in the memory, but help obtain equivalences
among projections already stored. If for example some projection P is found equivalent
to projections Py, Py, ..., P which have been assigned the permanent numbers py, ps, ...,
pr. and the temporary numbers ¢y, tq, ..., tk, the permanent numbers do not change, while
the temporary numbers are replaced by min(iy, to, ..., tx).

When all projections have been checked, only the ones stored in the memory with
equal temporary and permanent numbers are going to appear at the output, since only
these have not been found equivalent to preceding projections. As stated earlier, such
projections may or may not be equivalent, and one thus procedes by developing “color
tests” in order to distinguish inequivalent knots.

5. ESTABLISHING “COLOR TESTS”

A simple method to show the existence of non-trivial knots is through “tricolorisation”.
One maps the strands s; of a knot projection to a number n; € {1,2,3}, so that at each
crossing, the strands involved, s;, s;1 and s; satisfy the relation n; +ni41 +n; = Omod3.
If the projection is altered by a Reidemeister move, to each mapping of the old projection
corresponds exactly one mapping of the new. Therefore the number of mappings is a knot
invariant; if a projection P; admits m, mappings, while a projection P, admits mq, and
my # mg, then P, and P, definitely belong to inequivalent knots. For the trefoil three such
mappings are possible, each mapping the only strand to one of the elements of {1,2,3}.
In contrast, for the trefoil nine such mappings are possible; three map all strands to the
same number, while the other six map the strands to three different riumbers. Therefore
the non-triviality of the trefoil is established (Ref. [7]).

Starting from this “three color test”, one may generalise to obtain more such color tests
in order to distinguish inequivalent knots whose responses totricolorisation: are identical.
Each such color test is defined through an n xn matrix M;;, so that if at some crossing the
strands involved, s;, 5,41 and s; are mapped to n;, n;y1 and n;, then either n;y = My,
or n; = Mn, |, n;, depending on whether the crossing is positive or negative. Only mappings
sk — TMk; where this property is satisfied at every crossing, are considerd acceptable and
are counted for the corresponding knot invariant. For the “three color test” mentioned
before, one may notice that n = 3, M;; = 4, while for 7 # j, M;; = k, where k # i and
k+# 7. L



Not all possible matrices however are suitable. A matrix may only be used to define
a “color test™ if for any two knot projections P and P’ differing by Reidemeister moves,
to each acceptable mapping for P corresponds exactly one mapping for P’. To ensure this
property, one considers the constraints that each Reidemeister move imposes. One may
easily observe that these constraints are the following.

1** move: My =1 V i€ {1,2,..,n}
‘ an move: M] pessd Mi’j {:} 1= i,
34 move: Mij=k A Muy=m A Mj=n = My=Mp;

In addition, an n-color test is not considered if there is a subset S of {1,2,...,n}
other than the empty set and {1,2,...,n} itself, such that i e S = M;; € S V j €
{1,2,...,n}, since such a test may be reduced to simpler ones. Finally, two tests are
considered identical if one may be obtained from the other by permutation, or if they are
defined through matrices M and M’ such that M;; = k => M} = 4, since in such a case
they are related through mirror symmetry.

Subsequently, a computer program was developed that recorded the matrices that
vield distinct valid color tests. The running time grew exponentially with the number of
colors; to obtain all color tests for up to 11 colors the time needed was a few days, while
for 12 colors it would exceed one month. The number of color tests per number of colors
came out to be as follows. ‘

Number of Colors Number of Tests

OO 00 =3O U WD e
Ut k=t OO DD O NI BDND b O

[Ty

As shown in: Section 6, these tests are not sufficient for distinguishing knots of high
crossing numbers, and the method of establishing tests by explicitly checking every possible
matrix is not efficient enough. Instead, one obtains an infinite number of tests by general-
ising from the tests already established. One such class of tests is defined through matrices
Mi,j) = (k + 1)j — ki mod n, where the Greatest Common Divisor
GCD(k,n)=GCD(k + 1,n)=1. The existence of non-trivial mappings depends on the
determinant of the linear homogeneous system that is defined through the equations sat-
isfied at each crossing. This determinant is the Alezander-Conway polynomial (Ref.[8]).
One may thus calculate and compare the Alexander-Conway polynomials of various knots,



and apply additional color tests only for knots whose Alexander-Conway polynomials are
identical.

A second class of tests associates the “colors” to group elements g;, and is defined
through the matrix M(g:,g;) = gjgigj’1 (Ref. [9]). In particular, one may use as groups
the permutation groups S,; each conjugacy class, defined through a partition AL > A >
. > M ofn, (A + Az + ... + A = n), defines a valid color test.

6. COMPUTER RESULTS

The maximum value of the crossing number of the projections studied, was set equal
to N = 14. In order for the program to run, the CPU time needed was 8 days, and the
memory required was about 10 MBytes. The number of knots that were not connected
through Reidemeister moves, came out as follows.

Number of Crossings Number of Knots
0 1
1 0
2 0
3 1
4 1
5 2
6 3
7 7
8 21
9 49

10 165
11 552
12 2191
13 29781

Due to memory constraints, 14 crossing knots were not recorded. As pointed out
earlier, these numbers are mere upper limits, since it is certain that many of them although
equivalent, may only be connected through Reidemeister moves involving more than 14
crossings. One thus proceeds by applying the color tests in order to obtain topologically

- inequivalent knots.

When the color tests listed in the table of Section 5 were applied, which are all the
color tests involving at most 11 colors, all knots with crossing number up to 7 were shown
inequivalent. This was not the case however with knots whose crossing number is 8, and
therefore this method is good enough for only the first 15 knots.

When the Alexander-Conway polynomials were calculated, the results were slightly
better; all 36 knots whose crossing number does not exceed 8, possess distinct Alexander-
Conway polynomials. When knots with crossing number 9 are also considered, one faces
the first cases of inequivalent knots with identical Alexander-Conway polynomials.



We later applied color tests derived from permutation groups, as discussed at the end
of Section 5. Permutation groups up to S5 were sufficient to demonstrate the inequivalence
of all knots that possess identical Alexander polynomials and whose crossing number does
not exceed 10. For crossing number 11, one has to go up to Sy, until all 802 knots with
crossing number not exceeding 11 were shown inequivalent. For a complete list of all these
knots and the characteristics through which these knots were distinguished, the reader is
referred to Ref. 10.

For crossing numbers 12 and 13 it.is almost certain that equivalent knots do exist,
which would require the study of projections with crossing number higher than 14. The
basis of this assumption is the fact that 11 crossing knots may only be distinguished once
14 crossing projections are studied; if the maximum value is set equal to: 13 crossmgs, then
3 pairs of 11 crossing ambient isotopic knots cannot be identified.

At this point we have derived a full list of all knots whose crossing number does
not exceed 11. In principle the method discussed could lead to extending this list to an
arbitrary high crossing number; the CPU time and computer memory however rise very
rapidly with the crossing number.
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ENERGY AND THICKNESS OF KNOTS

Jonathan Simon. Department of Mathematics, University of Iowa, Iowa City, A 52240,

(319)335-0768, jsimon@math.uiowa.edu.

Overview Knots are idealized 1-dimensional loops that tangle themselves in 3-space.
They have been studied, for more than 100 years, primarily as abstract mathematical
objects even though the original interest in the subject seeims to be based in physics. There
is now interest in re-investing the mathematical abstractions with physical-like properties
such as thickness or self-repelling energy. The motivation is partly chemistry/biology and
partly the lure of the mathematics itself. By modeling knots with physical properties,
new invariants of knots can be defined and there is hope for better understanding of
how knotted and tangled filaments (simple loops, links of several loops, or tangled spatial

graphs) behave in real systems such as'DNA gel electrophoresis.

This paper considers several notions of energy and other measures of geometric complexity
for knots. Theorems show that various energies are related to each other, e.g. by inequal-
ities saying that one energy is less than some function of another, and that they also are
related to intuitive geometric measures of knot complexity such as compaction (a long knot
contained in a small ball) or average crossing number. Another idea, thickness (or, rather,
its reciprocal, -the rope-length of a knot) may be viewed either as an energy or as a naive
geometric measure of complexity; in-any case, it also is related to the others by various
inequalities. The general pattern of the theorems is that knots which seem complicated
according to one measure, also must be complicated according to others. This leads us to
believe that while the various energies etc. are defined differently (and are different), they
all are capturing, at least approximately, the same intuit! ive idea of one knot being more
complicated than another. One theorem common to the various energy functions is that
there are only finitely many knot types that can be realized by knots below a given energy

level, and that all knots below some level are unknotted..

There also are interesting questions about existence of minimum-energy conformations.
The situation is clearer for polygonal knots (minima exist for each knot type, for each
number of segments) than for smooth knots. M. Freedinan et al showed that minima
exist for prime knots under O'Hara's energy, and there is a widely believed conjecture that
minimum energy conformations do not exist for smooth composite knots; the problem

appears to be that the limiting energy is the sum of the energies of the factors, but that



as a sequence of knots tries to realize that limit, one factor of the knot gets pulled tight

to become singular in the limit.

The fact that one type of knot seems more tight or more complicated than another mani-
fests itself in the laboratory. When DNA loops (of the same length) are tied into different
types of knots, the loops move with different velocities in gel-electrophoresis experiments.
Initially, it was observed that the crossing numbers of the knot types largely determine
relative velocity; that is, six crossing knots move faster in the gel than five crossing knots,
etc. One reason this observation is surprising is that the crossing number of a knot type
is a property of a special "ideal” conformation of the knot, whereas the loops in the gel
are moving and bending in many ways, assuming many conformations. Nevertheless, the
tendency for velocity and minimum crossing number to be related is well-documented.
However, subsequent studies have shown that while the qualitative correlation between
crossing number and gel velocity is excellent for knot-types with few crossings, when one
gets t! o seven and eight crossings, the re are eight crossing knot types that move more
slowly than most seven crossing types. Knot energies provide an extra level of discrimina-
tion that seems to be a better predictor of gel velocity than crossing number; in particular,
the energies successfully predict which of the two five-crossing knots is faster in the gel,

and which eight-crossing knots should be the slow ones.

Background Many people have speculated informally about what would happen if a
knotted string were somehow given an electric charge and allowed to repel itself. Seiminal
papers by S. Fukuhara and by J. O’Hara have helped lead to a large body of work involving
different energy functions for smooth or polygonal knots. When we try to make the
thought-experiment (”charge the string and let go”) mathematically precise, the most naive
definition of a potential energy function for a charged knot has mathematically unpleasant
properties. So the functions defined by various investigators have departed from what
seems like "true” physics, in order to obtain functions that are finite and prevent curves

from changing knot type.

Approximate definitions The energies that have been studied for smooth knots gen-
erally are of the following kind: For each pair of points ,y on the curve K, one computes
a number that depends on [some power, usually 2, of] the reciprocal distance between the
points, and then integrates over ' x . To prevent a near-neighbor effect that would make
the integral infinite, one needs to regularize, either by subtracting something equally diver-

gent (e.g. the same quantity computed for points on a standard circle used to parametrize



L) or by multiplying by a factor that has a zero of the appropriate order when points
approach each other along the curve. The O’Hara energy used the first approach, and

other energies explored in this paper use the second.

A simple energy for a polygonal knot IV is defined as follows: For each pair X,}" of
nonconsecutive segments of Iy, compute the minimum distance between the segients,

MD(X,Y); then take the sumn over all non-adjacent pairs X,Y of the numbers

length{(X) x length(Y")
[MD(X,¥)]2.

If one wants to consider knots with varying numbers of segments, then it is helpful to
normalize the number of segments, e.g. by subtracting the energy associated to a standard

regular n-gon.

Another kind of "energy” comes from visualizing a knot as actually made of some rope,
with a positive thickness. Given a smooth curve K in 3-space, we can associate a number,
R(K) that bounds the thickness of a uniform tube that can be placed around K without
self-intersection. (Formally, this is defined in terms of the normal bundle N(K; R?)). To
correct for varying lengths, we either normalize A to have its length equal 1 or define
R(K) to be a ratio of radius/length. To get an energy, e.g. something that would become
large as knots get more complicated, we use the reciprocal of thickness, which we may call
the rope-length of K. Our main theorem on rope-length is that the thickness of a knot
K equals the minimum of two numbers: the min radius of curvature, and the min critical

self-distance on Iv.

When a knot in 3-space is projected into a plane, for almost all choices of direction, the
projected curve is immersed and one can count the number of self-crossings. This can be
averaged over all directions to produce the average crossing number. M. Freedman et al
showed that acn(f) can be computed as double integral over K x K, which facilitates

comparison with energies.

Acknowledgments This paper is an exposition of joint work by various combinations of
G. Buck, O. Durumeric, R. Litherland, E. Rawdon, and the author. The author is partly
supported by NSF No. DMS9407132, "Energy Functions for Knots”.



Statistics of knots and some relations with random walks on hyperbolic
plane

Michael Monastyrsky, ITEP, Moscow, Russia

Abstract

In this talk we consider some relations between knot theory, conformal
field theory and random walks on the plane with punctures. More precisely
we study the simpliest nontrivial case where knots generated by Bruid group
Bsj and the plane is considered with 3 punctures. Very scrappy our approach
based on the following observation. From the one hand side we generate the
knots invariants using the well-known relation between knots and braids and
from the other hand side we consider the representation of braid groups as
the monodromy matrices on the Riemann surfaces with punctures. For all
such surfaces we construct conformal field models and calculate correlation
‘n-point functions.

For special case of surfaces with three punctures we consider four point
correlation functions.It is known the remarkable but not completely under-
standable relation between the indices of sub- factors II; generated Jones
polynomials and the discrete triangle subgroups of SL(2, R). Using this re-
lation we construct conformal models related to these groups and calculate
their critical dimensions.We discuss lso the relation between knots invariants
and spectral properties of corresponding Riemann surfaces.

The main results of this talk based on joint paper with Sergei Nechaev
(Landau Institute,Moscow). I would like to thank S.Nechaev for very fruthful
collaboration. '

M. Monastyrsky,Institute of Theoretical and Experimental Physics, 117259
, Moscow , Russia.E:mail:Monastyrsky@uvxitep.itep.Ru



Invariants of links and three-manifolds
from finite dimensional Hopf algebras

Louis. H. Kauffman

Abstract: A convenient category, Cat(A), using immersed diagrams
in the plane, is constructed for a (finite dimensional) Hopf algebra A. By
using this category one can construct invariants of knots, links and three
manifolds, characterize a large class of elements in the center of a quasi-
triangular Hopf algebra, see algebraic identities diagrammatically. Invariants
distinct from those of Reshetikhin-Turaev are constructed via integrals on the
Hopf algebra. Numerous questions about the nature of these invariants can
be formulated. The relationship with Kuperberg’s formalism and invariants
will be discussed.



ABSTRACT: FINITE TYPE INVARIANTS OF 3-MANIFOLDS

JEROME LEVINE

The notion of finite-type invariants, as applied to knots or 3- manifolds emerges from the following
approach'to computation. One first. looks for formulae which measure how the invariant changes when
certain types of alterations are performed on a manifold (or knot). These formulae should ultimately
depend on the scheme of the alterations but not on the manifold (or knot). Using these formulae would
then allow one to reduce the computation to knowing the value of the invariant on a smaller class of
manifolds (or knots), equipped with such a scheme, to which any such object can be changed by the
allowed alterations. These values would be presented in an ectuality table and we would then say the
invariant is of finite type if this table were of finite size.

An_explicit definition of finite. type for integral homoloé,'y spheres was first given by Ohtsuki using
alterations in the form of surgeries on unit-framed, algebraically split links.. Given an invariant v of
oriented inktegra.l homology spheres, one then extends it to pairs (M, L), where L is such a link in M, by

the formula:

o(M, L) = > (~1)F (M)

L

where L’ ranges over all sublinks of L, |L’| is the number of components in L' and M. is the result of
doing surgery on L’. One says that v is of type n if v(M,L} = 0 whenever |L| > n. To satisfy the
philosophical requirements of finite-type described above, one would want the space of invariants of type
n to be finite-dimensional and to have a nice explicit set of generators. This has now been verified and
culminates in a universal finite-type invariant defined by Le-Murakami-Ohtsuki using a generalization of
Kontsevich’s universal finite-type knot invariant.

A variation of Ohtsuki’s notion of finite type was proposed by Garoufalidis using the smaller class of
boundary links instead of all algebraically split links. This turns out to be more efficient and seems to
be equivalent to Ohtsuki’s notion. Garoufalidis-Levine have shown that an Ohtsuki type 3n invariant is
of Garoufalidis type n and that a Garoufalidis type n invariant, which is assumed to be of some finite

Typeset by Aps8-TiEX



JEROME LEVINE
Ohtsuki type is of Ohtsuki type 3n. The question remaining is whether finite Olitsuki type implies finite
Garoufalidis type.

Recently Garoufalidis-Levine have considered a new notion of finite type using alterations defined by
cutting and pasting along separating surfaces (Heegard decomposition). If ¢ is some subgroup of the
mapping class group whose members, after a cut and paste, don't change the homology of the manifold,
then any decreasing filtration G, of G defines a notion of finite type. If vis an invariant of closed oriented
3-maunifolds then it is of type n if v(M),) = v(M) whenever h € G4y, where My, denotes here the result
of cutting and repasting via h along a separating surface in M. Our first example might be § =Torelli
group and G, =lower central series of G. Question: What is the relation between thése notions of finite
type and those using surgery on links? It turns out they coincide if we replace the lower central series
ﬁittation by a closely related filtration of the group algebra of G by powers of the fundamental ideal.
Then the Ohtsuki and Garoufalidis notions coincide with that defined using two appropriate choices for
G (neither of which is the Torelli group) and the Torelli group notion of finite type coincides with that
defined by surgery on a third class of links (called blinks). Finally we know that type 3n in the Ohtsuki
(algebraically split links) sense coincides with type 2n in the Torelli group (or blink) sense. Thus all these

notions of finite type seem to be equivalent {except for the remaining question mentioned eatlier).



ON THE EXISTENCE OF THE ENERGY MINIMIZING KNOTS

Jun O’HARA

Department of Mathematics, Tokyo Metropolitan University

Abstract of abstract. Energy of knots is a kind of real valued function on the space
of knots, originally inspired by the static electric energy of charged knots. The goal
is to define good-looking conformations for any given knot type as the embeddings
that attain the minimum value of the energy within their knot type. Several results
are known when the total space in which the knots are embedded is the euclidian
3-gpace. We give conjectures when the total space is the 3-sphere or the-hyperbolic
3-space.

1. INTRODUCTION

In this note we focus our attention on the problem to define the canonical confor-
mation for any given knot type, i.e. {hopefully unique) good-looking representative
for its knot type. Our approach is to find a suitable real valued functional on
the space of knots to define the canonical conformation as the embedding that at-
tains the (local) minimum value of that functional within its knot type. One might
naively lead to the notion of the static electri¢ energy of charged knots, which turns
out to blow up for any knot. Thus we are obliged to make kinds of regularizaion to
obtain well-defined functionals.

Our functionals should satisfy that if a knot is approaching to have self-intersections
then its value of the functional is blowing up. Such a functional is called energy
functional of knots or knot energy for short. This property is required to assure
that the knot type is kept unchanged during the process where the knot evolves
itself along the gradient flow of that functional, though it is not sufficient because
of the pull-tight phenomena may happen.

This subject has inclined people to do numerical experiments from the beginning.
Several kinds of energy functionals for the polygonal knots were introduced in the
very first paper of this subject by Fukuhara [Fu] accompanied by his computer
program, followed by the papers and programs by Ahara, Buck and Orloff, Gunn,
Kim and Kusner, Kusner and Sullivan, Ligocki and Sethian, Scharein, Simon, and
Wu.

The first example of the energy functionals for the smooth knots was given in
[O1] and studied in [FHW]. Other kinds of energy functionals were studied by Buck
and Orloff, Chui and Moffatt, and [02]. Some generalization to higher dimension
was given in Auckly and Sadun, and Kusner and Sullivan.

1991 Mathematics Subject Classification. 57M25, 49Q10, 53A04.
Key words and phrases. knot, energy, minimizer.
+ The author’s 7th birthday!
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2. KNOWN RESULTS.
Let f: S! — R® be an embedding with |f/(t)] = 1 (Vt). Let

=[] {sf(x) T @, TP } =y

where 6(f(z), f(y)) is the shorter arclength between f(z) and f(y). Then E;?
is an energy functional of knots if and only if

1
p2= (0<j<2) or —5>p2- (2<7<4).

(N

Let E(f) = E2'(f).
Theorem [FHW]. There is an E-minimizing knot in any prime knot type.

Remark. Since E is Mobius invariant [FHW], there are infinitely many E-minimizing
knots in any prime non-trivial knot type.

Remark. In the case of composite knot type, Kusner and Sullivan’s experiments
indicate that there are no E-minimizing knots in any composite knot type because
all the component tangles are going to pull tight to points if we evolve the knot so
as to decrease its energy E.

If jp > 2 the value of E;? blows up if pull-tight phenomena happen. Thus there
hold; ‘ ‘

Theorem [02]. (1) If jp > 2, then there is an E;P- minimizing knot in any knot
type.

(2) For any knot type, the number of the "rough shapes” of the E;P-minimizing
knots is finile.

Remark. When one tries numerical experiments for polygonal knots, it sometimes
seems better to use higher power than 2 to get good-looking conformations.
3. CONJECTURES ON THE SPHERICAL OR HYPERBOLIC CASES.

There are two ways to generalize the energy E to the space of knots in a 3
dimensional manifold M. If we assume that "the electric density p”"= 1, we get
Eu,p, and if we assume that "the total charge t"= 1, we get Epry. Let f — M be
an embeddmg Then

! " f (v)|dzdy
Bl / /;s (warrom ~ e ) @ Wl

where dp(f(x), f(y)) is the distance in M between f(z) and f(y), i.e. the length of
the shortest path in M joining f(z) and f(y), 6(f(z), f(¥)) is the shorter arclength
on the knot between f(z) and f(y), and Ly is the length of the knot f(S5%).



ON THE EXISTENCE OF THE ENERGY MINIMIZING KNOTS

In this section, we use Eps instead of E to specify the total space in which the
knots are embedded.

(1) Spherical case. Let M = S3 C R*.

Ezample 1. Consider the family of circles ¢, in S° of radius 7 (0 < r < 1). Then
the great circle c; gives the absolute minimum value 0 of both Egs , and Egs ;.
Both Egs ,(c.) and Egs ¢(c,) increase as r goes down to 0 to 4 which is the value
of Egs of the circle and oo respectively. :

Ezample 2. Consider a trefoil ty in 53 which is almost the great circle except a
very small tangle which makes it trefoil. Then Egs ,(tp) is approximately same
as the value of Egs of the ’open’ trefoil with the same tangle. Since numerical
experiments shows

; fis inf on PR (f) =74,
Moébius invariance of Egs shows that Egs ,(tp) > 70 = 74 — 4.

Consider next the family of trefoils on the Clifford tori. Numerical computation
by Ligocki shows that Egs , attains the minimum value approximately 54.3 which
is much smaller than 70. This indicates that in the spherical case the energy clearly
decreases as a tangle is relaxed, which is different from the euclidian case.

If we use Egs , instead of Egs ,, this tendency seems to become more definite.

Thus we are lead to the following conjecture:

Conjecture. There are (hopefully, finitely many) Egs ,-(or Egs 4-)minimizing knots
in any knot type.

(2) Hyperbolic case. Let M = H® C R*.

Ezample. Consider the family of circles ¢, in H 3 of radius r > 0. Then Eys p(cr)
decreases as r goes down to 0 to 4, and Egs 4(c,) decreases as r goes up to oo to 0.

Thus we are lead to the following conjecture:

Conjecture. There are no Eys ,-(nor Egs ,-)minimizing knots in any knot type.
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HEEGAARD SPLITTING FOR SUTURED MANIFOLDS
AND ITS APPLICATION

HIROSHI GODA

1. HEEGAARD SPLITTING FOR SUTURED MANIFOLDS

A manifold pair (IV,8) is a product sutured manifold if (N,6) is homeomorphic to
(S x[0,1],8S x [0,1]) with R.(6) = S x {1}, R_(6) = S x {0},6 = 0S5 x [0, 1], where S
is a compact surface with boundary. Let L be a non-split oriented link in S®, E(L) the
exterior of L and R denotes a Seifert surface of L. Since RN E(L) is homeomorphic to
R, we abbreviate RN E(L) to R. (N,8) = (N(R; E(L)), N(OR; 3E(L))) has a product
sutured manifold structure (R x [0,1],0R x [0,1]). Here, N(X;Y) means a regular
neighborhood of X in Y. (M,v) = (¢<(E(L) — N),cl(OE(L) — 6)) with Ri(y) = Rz(6)
is called the sutured manifold for R, where cl(X) denotes the closure of X.

A compression body W is a cobordism rel & between surfaces 0, W and 9_W such
that W is homeomorphic to 8, W x [0,1] U 2-handles U 3-handles and 0_W has no 2-
sphere components. We can see that if 0_W # ¢ and W is connected, W is obtained
from 8_W x [0,1] by attaching a number of 1-handles along disks on O_W x {1} where
3.W corresponds to W x {0}. We denote by h(W) the number of these attaching
1-handles.

A Heegaard splitting for a sutured manifold (M,~) is a pair of compression bodies
(W, W such that M = WUW WNW =0, W =30 W, ,0_.W =R, (y)and 0. W' =
R_(7). Any sutured manifold has this splitting. The handle number h(R) is defined by
h(R) = min{h(W)|(W, W') is a Heegaard splitting for (M,~)}.

Suppose that L is a fibered link in S, Then E(L) is a surface bundle over S! such
that a Seifert surface R represents a fiber. This Seifert surface is called a fiber surface.
We can easily see that:

Proposition 1.1. A{R) = 0 <= R is a fiber surface.

A 2n-Murasugi sum is a Murasugi sum attaching along 2n-gon. In particular, a 2-
Murasugi sum is called a connected sum and 4-Murasugi sum is called a plumbing. Let
R be a Seifert surface obtained from Seifert surfaces R; and Ry by a 2n-Murasugi sum.

Then we have:
Theorem 1.2 ([4]). h(R;) + h(Ry) —n+1 < h{(R) < h(Ry) + h(R,).
Theorem 1.3 ([4]). If h(R,) = 0, then h{R) = h{R,).



Corollary 1.4 ([2], [10]). If R, and R are fiber surfaces, then R is a fiber surface.

The inequality of Theorem 1.2 is the best possible for any n. Further, we have a
sufficient condition to realize the upper equality h(R) = h(R,;) + h(R,) of Theorem 1.2
in the case of n = 2.

Theorem 1.5 ([5]). Let R be a Seifert surface obtained by a 4-Murasugi sum of Seifert
surfaces Ry and Ry and (M, v, Ai)(i = 1,2) the marked sutured manifold for R; associ-
ated with the 4-Murasugi sum. If there exists a product disk in My with A, as an edge,
then h(R) = h(Ry) + h(R,).

For the.definition of a marked sutured manifold, see [5].

By using these theorems, we can completely determine the handle numbers of incom-
pressible Seifert surfaces for prime knots of < 10 crossings. This result involves some
results of [3] and [7]. In addition, we see that there is a knot which admits two minimal
genus Seifert surfaces whose handle number are mutually different.

2. APPLICATION

As a characterization of the handle number 1 case, we have:

Proposition 2.1 ([6],(8]). Suppose that L has a Seifert surface R such that h(R) = L.
Then L can be changed into o fibered knot L' by a crossing change. Moreover, (the genus
of L' )=(the genus of R)+2.

\\e__%/\/’

a crossing change

Example 2.2. Except fibered knots, every prime knot of < 10 crossings has a minimal
genus Seifert surface R such that A(R) = 1. Thus all prime knots of < 10 crossings can
be changed into fibered knots by a crossing change.

Moreover, we have:

Proposition 2.3 ([6]). Every tunnel number one genus one non-fibered knot in S has
a genus one Seifert surface R such that h(R) = 1.

Thus we have:

Theorem 2.4 ([6]). Let K be a tunnel number one genus one knot in S*. Then K can

be changed into a genus three fibered knot by a crossing change.
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FORMULAE FOR THE CALCULATION
AND ESTIMATION OF WRITHE

JURGEN ALDINGER
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Abstract

In applications to the biological and physical sciences one of the most useful
results in knot theory is the formula

Lk=Tw+Wr (1)

which gives the well known relationship between the linkage (Lk), twist
(Tw), and writhe (Wr) of a closed ribbon. The ideas behind this formula
~were developed by Calugareanu [5, 6] and Pohl [18, 19] and proved in full
generality by White [24]. Work by Fuller (8, 9] also presented this result with
particular emphasis on its applications to DNA structure. We concentrate
here on the writhe. Unlike Lk and Tw, the writhe Wr is independent of the
choice of ribbon and is a global geometric characteristic of the base curve
itself. This fact is of physical significance in certain circumstances.

One of the best known consequences of (1) arises in the context of the knot-
ting and unknotting of circular double-stranded DNA. Without strand pas-
sage Lk is a topological invariant which implies by (1) that the only geometric
freedom is between Tw and Wr. The twist in a closed ring can be converted
to writhe; this conversion can lead to various crossings (i.e. contact points)
between the strands which in turn can be passed through each other by the
action of the emzyme topoisomerase II. This twist to writhe conversion fol-
lowed by strand passage is the basic mechanism by which circular DNA is
knotted and unknotted (see, for example, Wasserman and Cozzarelli [23]).
The onset of the “writhing instability,” i.e. the occurence of the critical



twist needed to trigger a conversion to writhe for simple closed. filaments,
has been considered by Zajac {26] and Benham [1, 2]. The role of (1) in
characterizing fluid mechanical and magnetic helicity has been discussed by
Berger and Field [3] and Moffatt and Ricca [17].

In terms of actual computation the challenge typically lies in evaluating the
geometric quantities. White and Bauer [25], for example, have discussed the
properties and explicit computation of Tw and Wr for a variety of ribbon
geometries. Here our main interest lies in the general properties and com-
putation of Wr. Given Wr, as Lk is a topological invariant, one can obtain
Tw (which is often of energetic consequence) using (1). Fuller [8, 9] gives a
number of explicit expressions by which Wr can be calculated or approxi-
mated. We will state these formulae together with several new ones. The
first is the geometrically appealing construction

1+ Wr=A/2r mod?2

where A is the area enclosed by the curve on the unit sphere traced out by
the tangents along a given closed, non-intersecting space curve X. The main
computational formula relates the writhe between two closed curves X, and
X, that can be deformed into each other:

1
wrk) - wexo) = oo T i (T + T e

These formulae are frequently cited and used in the literature but, to the
best of our knowledge, rigorous proofs have not been provided. Fuller pro-
vides hints for a few of the proofs, some of which we have used here. Here
our aim is to bring together a detailed analysis of these formulae along with
other known results concerning directional writhing number and estimates of
writhe for nearly planar curves. In addition to providing some new insights
into these results our analysis also leads to an apparently new result con-
cerning the rate of change of writhe with deformation parameter ), namely

1
;XWT(X,\) - —% }g ((%T(t, ) x T(t, A)) : %T(t, ).

As will be discussed in the conclusion this result has a number of impor-
tant applications; these include the description of the dynamics of elastic
filaments subject to external twisting forces and the conservation of writhe
in closed curves evolving under certain integrable evolution equations.

In addition, it seems that Wr can be considered as a measure of the energy
of a knot and we will expand on some ideas in this direction.

Important references concerning the topics mentioned include the following:
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TQFT versus finite type invariants of 3-manifolds
Abstract of a talk of Stavros Garoufalidis

In the past 15 years there is a plethora of numerical knot and 3-
manifold invariants. At present, there are two sources of such invari-
ants: topological quantum field theory (TQFT for short), and finite
type.

TQFTs, as axiomatized by M. Atiyah [At], produce representations
of mapping class groups of compact surfaces of arbitrary genus, with
an arbitrary number of boundary components. Traces of such repre-
sentations give (complex valued) invariants of (framed, colored) knots
and (framed) 3-manifolds. Examples of such TQFT's were introduced
by E. Witten [Wi] in his seminal 1989 article. Using a Chern-Simons
Lagrangian (on an appropriate space of connections), he constructed,
for every compact simple Lie group G, and integer k, a TQFT in 3-
dimensions. Witten’s idea, even though it invloves a not-yet-defined
integration over an infinite dimensional affine space of connections,
unified the various skein theory approaches to the various Jones-like
polynomials, and shortly afterwards was made rigorous by a number of
authors: T. Kohno [Kh], N. Reshetikhin, V.. Turaev [RT1], [RT2] and
O. Viro to mention a few.

The specific TQFT that was introduced by E. Witten has the specific
feature that it depends on an integer k, or alternatively, on a complex
root of unity g = ezp(2Z). As k — oo the stationary phase approxima-
tion of the theory produces knot and 3-manifold invariants (depending
on a Lie group G and a G-representation of an appropriate fundamen-
tal group). Due to the presence of a Chern-Simons Lagrangian with
quadratic and cubic terms only, the Feynmann diagrams of these per-
turbative knot and 3-manifold invariants are graphs with univalent and
trivalent vertices only, additionally equipped with a vertex orientation,
and considered modulo two relations: an antisymmetry relation, and
another one resembling the Jacobi identity.

A few years after Witten’s fundamental contribution, A. Vassiliev
[Va] (originally motivated by singularity theory) axiometized the above
mentioned knot invariants, and M. Kontsevich [Ko|] showed that a uni-
versal such (finite type) invariant exists.

Last year, T. Ohtsuki [Oh] in pioneering work, introduced the no-
tion of finite type invariant of integral homology 3-spheres. Subse-
quently, joint work of T.Q.T. Le, J. Murakami and T. Ohtsuki [LMO],
[L] showed that the universal such invariant exixsts. The first such
nontrivial type 3 invariant is the Casson invariant, considered in ear-
lier work of H. Murakami [Mul], [Mu2] and S. Morita [Mo].



In the talk we will discuss reformulation of the notions of finite type
invariants of knots and 3-manifolds. We will also compare the two
notions of invariants, namely TQFT and finite type. We will com-
ment on conjectures relating the two notions as well as implications of
such conjectures on arithmetic, combinatorics, geometry, physics and

topology.
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Quantum SU(3)-invariants derived
from the linear skein theory

Haruko A.Miyazawa and Miyuki Okamoto

Witten [5] introduced topological invariants of a compact oriented 3-
manifold using quantum field theory. These invariants, which are associated
with a compact Lie group G, are called quantum G-invariants.

In the case of G = SU(2), Lickorish [1] gave an elementary construction
of invariants using the linear skein theory. The basic idea of the consruction
is the following: To begin with, consider the skein module S(S L I) of the
annulus and define the element w of S(S* x I) satisfying “some” condition.

It is well known that any closed oriented 3-manifold M can be obtained
by a surgery along a framed link in $3. Such a surgrey is represented by
its diagram D in S?, where the framing of each component of the link is
represented by the writhe of its image in the diagram. Given D with p-
components, there is a multilinear map

<, > S(SUX IO — S(S?) 22 Z[A, A7

given by replacing neighbourhoods of its components by elements of S(S* x
I).

Evaluating this map at primitive 4r-th roots of unity, we have its value
as a complex value. Then the quantity

< W,w, .y w >p<w >y < w >y

is a topological invariant of M, where U denote planar diagrams representing
the unknots with framings &1 respectively, and o+ denote the numbers of
positive and negative eigenvalues of the linking matrix of the link respectively.

Moreover he [2] showed that the evaluations at primitive 2r-th roots of
unity, r odd, turn out to be quantum SU (2)-invariants, too.



From the point of view above, a construction of quantum SU (3)-invariants
using the linear skein theory was given by Ohtsuki and Yamada [3]. (In the
case of G = SU(N), Yokota [4] established invariants in the same way.) They
obtained invariants for evaluations at primitive 6r-th roots of unity.

Inspecting the construction of invariants by Ohtsuki and Yamada, we find
possibility of another choice of roots of unity. Our purpose is to establish
that evaluations at primitive 3r-th roots of unity, 7 odd, also give them.

Theorem. Let M be a closed oriented 3-manifold obtained by Dehn surgery
on S§° along a framed link which is represented by a planar diagram D.
Suppose that r is an odd integer, r > 5, and that A is a primitive 3r-th root
of unity. Then there exists w € S(§' x I) = Z[A, A™'][z, y] which is the same
as w in [3], and the quantity

<W,Ww,...,w>p<w > T <w >y "

is a topological invariant of M. Here U.. are planar diagrams representing the
unknots with framings 41 respectively, and o4 are the numbers of positive
and negative eigenvalues of the linking matrix of the link respectively.
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Unknotting tunnels for knots and links

MakoTo SAKUMA

In this talk, I will report on my joint work with Kanji Morimoto and Yoshiyuki
Yokota [MSY], that with Elena Klimenko [KS], and the master thesis of Yoshiyuki

Nakagawa [N] written under my supervision on unknotting tunnels and related topics.

Theorem 1. A Montesinos knot or link K = M(b; (a1,51), - ,(ar, B;)) has
tunnel number one, if and only if one of the following conditions holds up to cyclic
permutaion of the indices:

(1) r=2.

(2)r=3,01 =2, and ag or a3 =1 (mod 2).

(3)r =3, Bofas = Bs3/az € Q/Z, and e(K) = £1/(ajaz).

This theorem was obtained in [MSY] and [KS] for knot case and was obtained
in [N] for two component link case. In [N], the unknotting tunnels of some classes
- of two component Montesinos links are determined by using a method of [AR]. To

prove this theorem, we use the idea of [BM] and the following result which is proved

in [KS].

Theorem 2. The extended triangle group [p, q,r] =< z,y,z]2? = y? = 22 =
(zy)? = (y2)? = (22)" = 1 > is generated by two elements if and only if one of the
following conditions are satisfied up to permutation of the indices:

(1) p=2 and ¢ # 0 (mod 2).
(2) p=¢qg=3 and r #£0 (mod 3).

In fact, [KS] gives an answer to the following problem by using the method
of Matelski [M]: Let f and g be elements of the isometry group /som(H?) of the

Typeset by ApS-TpX
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hyperbolic plane H?, and assume that one of them is orientation-reversing. Let G =<
f,g > be the group they generate. Then when is G discrete?

I also hope to discuss on our experimental observation coucerning relation
between the unknotting tunnels and the canonical decompositions of hyperbolic knot

complements.
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ON THE INTERSECTION OF THREE SPHERES IN A SPHERE

Eur Ocasa®

Departient of Mathematical Sciences, University of Tokyo
Komaba, Tokyo 153, Japan

B . - n .

Let ST and S5 be 3-spheres embedded in the 5-sphere $° and intersect transversely.
Then the intersection C is a disjoint collection of circles. Thus we obtain a pair of

. . : . - a . 3
1-links C'in S, and a pair of 3-knots S} in S°.

Conversely let (L1, Ly) be a pair of 1-links and (X, .X,) be a pair of 3-knots. It is
natural to ask whether (L, Ly) is obtained as the intersection of X, and Xj.

In this paper we give a complete answer to this question.

Furthermore we discuss somne modified problems of this.

An (oriented) (ordered) m-component n(-dimensional) link is a smooth, oriented

submanifold L = {K,...,K,,} of S™?2, which is the ordered disjoint union of m

manifolds, each PL homeomorphic to the standard n-sphere (if m = 1, then L is
called a knot.)

81

Definition.(Ly, Ly, X1, X») is called a 4-tuple of links if the following conditions
(1), (2) and (3) hold.

(1) L; = (Ki, ..., Kim,) is an oriented ordered m;-component l-dimensional link
(1=1,2). (2) m) = my. (3) X; is an oriented 3-knot.

Definition.A 4-tuple of links (Lq, Le, X, Xy) is said to be realizable if there exists
a smooth transverse inunersion f : §7 [] S5 o S® satisfying the following conditions.
(1) fS? is a smooth embedding and defines the 3-knot X;(i = 1,2) in 5.

(2) For C = f(S3)N f(S3), the inverse image f~'(C) in S defines the 1-link L;(i =
1,2). Here, the orientation of C is induced naturally from the preferred orientations
of §7,53, and §°, and an arbitrary order is given to the components of C.

The following theorem characterizes the realizable 4-tuples of links.

Theorem 1. A 4-tuple of links (Ly, Ly, Xy, Xy) is realizable if and only if (Ly, Ly, Xy, Xy)
satisfies one of the following conditions i) and ii).

*This rescarch was partially suppported by Rescach Fellowships of the Promotion of Science for
Young Scientists.

— 104 —



i) Both Ly and Ly arc proper links, and

AIf(L]) - Alf(Lg)
ii) Neither Ly nor Ly is proper, aud
lk(Ky;, L) — Kyj) = k(Kyj, Ly = Kyj) mod 2 for all j.

Let f : S? 9 S° be a smooth transverse imumnersion with a counected self-
N . . [ . . . . Y.
intersection €' in S°. Then the inverse image f~1(C) in S” is a knot or a 2-component
link. For a similar realization problem, we have:

Theorem 2.
(1) All 2-component links are realizable as above.
(2) All knots are realizable as above.

Remark.By Theorem 1 a 4-tuple of links (L, Ly, X, Xo) with Iy being the trivial
knot and K, being the trefoil knot is not realizable. But by Theorem 2, the two
component split link of the trivial knot and the trefoil knot is realizable as the self-
intersection of an immersed 3-sphere.

§2 We next discuss high dimensional case.
Definition. (K, K,) is called a pair of n-knots if K; and K, are n-knots.
(K1, Ky, X, X>) is called a 4-tuple of n-knots and (n+2)-knots or a 4-tuple of (n,n-+
2)-knots if K, and K3 compose a pair of n-knots (K, Ky) and X; and X, are
diffeomorphic to the standard (n + 2)-sphere.
Definition. A 4-tuple of (n,n+ 2)-knots (K, Ky, X1, Xy) is said to be realizable if
there exists a smooth transverse immersion f : ST ][ S31% 9» S™+* satisfying the
following conditions.

(1) f|SPH? defines X; (i=1,2).

(2) The intersection & = f(SP*)N f(S71?) is PL homeomorphic to the standard

sphere.

(3) £71(Z) in SP1? defines an n-knot K; (i = 1,2).
A pair of n-knots (K, K) is said to be realizable if there is a 4-tuple of (n,n + 2)-
knots (I, (5, X1, X2) which is realizable.

The following theorem characterizes the realizable pair of n-knots.

Theorem 3. A pair of n-knots (K, Ky) is realizable if and only if
(I0), Ky) satisfies the condition that

(K, Ky) is arbitrary  if n is even,

Arf(K, )=Arf(K,) ifn=4m+1, (mz20meZ).

o(I{y)=0(L;,) ifn=dm+3,

There exists a mod 4 periodicity in dimension similar to the periodicity which
appears in the knot cobordism theory and the surgery theory. ([CS1,2] and [L1,2].)

We have the following results on the realization of 4-tuple of (1, n 4 2)-knots,
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Theorem 4. A 4-tuple of (n,n + 2)-knots T = (I, Ko, X'y, Xy) is realizable if Iy,
and Iy are slice.

Kervaire proved that all even dimensional knots are slice ([Ke]). Hence we have:

Corollary 5. Ifn is even, an arbitrary 4-tuple of (n,n+2)-knots T = (I, Ky, X\, X3)
is realizable.

83 We next discuss the case when three spheres intersect in a sphere.

Let Fj be closed surfaces (i = 1,2, ..1). A surface-(F\, Fy, ..., F,)-link is a smooth
submanifold L = (K, Ky,...,v,) of §*, where I is diffeomorphic to Fy. If F; is
orientable we assume that F; is oriented and I; is an oriented submanifold which is
orientation preserving diffeomorphic to F;. If =1, we call L surface-F| -knot.

A (F\, Fy)-link L = (K, Ky) is called a semi-boundary link if [K;] = 0 € Hy(S* —
K5 Z) (14 5) ([S])

A (F\, Fy)-link L = (K, K3) is called a boundary link if there exist Seifert hyper-
surfaces V; for K; (1 = 1,2) such that V; N Vo=4¢.

A (F\, Fy)-link (K, Ky) is called a split link if there exist B} and Bj in S* such
that B{NBj = ¢ and K; C B}.

Definition. Let L; = (K13, K13), Lo = (K3, K91), and Ly = (I3, K32) be surface-
links. (Ly, Ly, L3) is called a triple of surface-links if I(;; is diffeomorphic to Kj;.
((4,7)=(1,2),(2,3),(3,1).) (Note that the knot type of K; is different from that of
I&rj,u)

Definition. Let Ly = (I&,lg, I{l;;), Lo = (I\"Q:},I{‘Zl), and Ly = (Ifgl,]—{;;g) be surface-
links. A triple of surface-links (L, Ly, L3) is said to be realizable if there exists
a transverese immersion f : St I S5 II S§ % S® such that (1)f|S} is an embed-
ding(i=1,2,3), aud (2) (F7(F(S2) 0 F(SD), £~ (F(SH) N F(SE) ) in 8P is Lo (
(4,7, k)=(1,2,3), (2,3,1), (3,1,2).)

Note. If (L, Ly, L3) is realizable, then K; are orientable and are given an orienta-
tion naturally. From now on we assumne that, when we say a triple of surface-links,
the triple of surface-links consists of oriented surface-links.

We state the main theorem.

Theorem 6. Let L; (i = 1,2,3) be semi-boundary surface-links. Suppose the triple
of surface-links (L, Ly, Ly) Is realizable. Then we have the equality

B(L1)+ B(La) + B(Ly) = 0,
where 3(L;) is the Sato-Levine invariant of L;.

Refer the Sato-Levine invariant for [S]. Since there exists a triple of surface-links

(L1, Ly, Ly) such that g(L,)=0, #(Ly)=0 and 3(Ly)=1 ([R] and [S]), we have:
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Corollary 7. Not all triple of oricuted surface-links are realizable.
We have sufficient conditions for the realization.

Theorem 8. Let L; (i = 1,2,3) be split surface-links. Then the triple of surface-
links (L, Ly, Ly) Is realizable.

Theorem 9. Suppose L; are (S*,S%)-links. If L; are slice links(i = 1,2,3), then the
triple of surface-links (L, Ly, Ly) is realizable.

It is well known that there exists a slice-link which is neither a houndary link nor
a ribbon link. Hence we have:

Collorary 10. There exists a realizable triple of surface-links (Ly, Ly, Ly) such that
neither L; are boundary links and all L; are semi-boundary links.

Besides the above results, we prove the following triple are realizable.

Theorem 11. There exists a realizable triple of surface-links (L, Ly, Ly} such that
neither L; are semi-boundary links.

Here we state:

Probrem 12(1). Sﬁpposc B(L)+B(La)+B(Ls)=0. Then is the triple of surface-
links (Ly, Ly, Ly) realizable?

Using a result of [0], we can wnake another problem from Probrem 12(1).
Probrem 12(2). Is every triple of (5%, S%)-links realizable?

Note. By Theorem 9, if the answer to Problem 12(2) is negative, then the answer
to an outstanding problem: “Is every (S5%,5%)-link slice?” is “no.” (Refer [CO] to
the slice ploblem.)
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A STRAND PASSAGE METRIC FOR TOPOISOMERASE ACTION
Isabel K. Dazey([1,2], De Witt Sumners[1,2].

(1] Department of Mathematics, Florida State University, Tallahassee FL USA.
(2] Program in Mathematics and Molecular Biology, University of California, Berkeley CA USA.

Strand passage of DNA mediated by topoisomerases may change the knot or catenane type of
covalently closed circular DNA substrate. The unknotting number of a knot and other similar knot
invariants can be generalized to study these topoisomerase reactions. For example, the unknotting
number of a knot is defined to be the minimum number of crossing changes needed to convert
the unknot (trivial catenane) into the knot (catenane); in biological terms, it is the minimum
number of times the topoisomerase must perform strand passage in order to convert unknotted
DNA substrate into an observed DNA knot (catenane). In a topoisomerase experiment performed
on circular DNA, however, the enzyme may interconvert nontrivial knots. This.enzyme action can
be studied using a generalization of the unknotting number: a strand passage metric on knots
[Murakami, Math. An., 270, 35 - 45] in which one computes the minimum number of strand
passages necessary to interconvert a pair of knots (catenanes). Study of this metric yields:

1.) The minimum number of times topoisomerase must perform strand passage to interconvert
DNA knots and catenanes.

2.) All possible minimal reaction pathways in a topoisomerase experiment, if all intermediates are
known:

Values of the strand passage metric are known for all (2n+1) torus knots and some twist knots.
We analyze the T4 topoisomerase data of Wasserman and Cozzarelli (JBC 266, 567-573) in which
exclusively (-) twist knots are produced by T4 topoisomerase acting on negatively supercoiled
unknotted substrate, and unpulished data of J. Wang in which topoisomerase I acting on single

(5,2) torus knot

Unknot

Unknot -5 Twist

Q

Unknot -3 Twist -3 Twist

— 108 —



Floer Homology for Orbifolds and Gauge
Theory Knot Invariants

OLIVIER COLLIN

In recent years, Gauge Theory has provided the field of Low-dimersional

Topology with many new invariants which, in some cases, have given a
new breath to the field. Some examples are Casson’s invariant and

Floer Homology for 3-manifolds, and also Donaldson invariants for

four-manifolds and their embedded surfaces. A Floer Homology for
knot complements seems hard to achieve for various reasons, but using

3-orbifolds (or cone manifolds), (Y3, K,n), which are singular along a

knot with Z, isotropy, a Floer Homology can be constructed and asso-

ciated to the singular knot. The case of primary interest is that of knots
in S3, but the construction is in general valid for knots in homology 3-

spheres. This Floer Homology for orbifolds generalizes Floer’s original

construction for manifolds which are homology spheres, and once the
hard analysis underpinning Floer’s construction is understood, there
are few complications that arise in the case of orbifolds. Moreover,

this construction ties in well with the four-dimensional work of Kron-
heimer and Mrowka on Donaldson invariants of embedded surfaces in
four-manifolds.

In this talk, our aim is to introduce this new gauge theoretic knot in-
variant. We will start by setting up rapidly the relevant Gauge Theory
for orbifolds, and then proceed to give the definition of the Floer Homol-
ogy for 3-orbifolds singular along a knot, denoted H F, *)($3, K,n). The

knot invariant HF* (83, K,n) consists of a collection of four groups
for each integer k < n. We will also be interested in the relations be-
tween this invariant and other recent invariants for knots. In particular
Lin’s invariant and it’s generalisation by D. Austin and by C. Herald

will be seen as the Euler characteristic of a relevant Floer Homology

for 3-orbifolds, and we will try to explain the relation to the recently
developped symplectic Floer Homology for knots of W. Li. If time

Date: 27th of May 1996.
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OLIVIER COLLIN

allows, we shall consider the problem of computing the invariant and
describe some possible applications.

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, 24-29 ST.GILES’, OX-

rorp OX1 3LB, U.K.
E-mail address: collin@maths.ox.ac.uk
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SEIFERT FIBRED MANIFOLDS
AND DEHN SURGERY ON KNOTS

KATURA MIYAZAKI AND KIMIHIKO MOTEGI

Let K be a knot in the 3-sphere §°. We denote by (K;r) the manifold obtained
from S° by r-Dehn surgery on a knot K, where 7 € QU {oo}. In general the
manifold obtained from a 3-manifold M by Dehn surgery on a knot K in M with
slope 7 is denoted by M(K; 7). A slope of K is called integral if a representative of
it intersects a meridian of K exactly once; for knots in S 3 integral slopes correspond
to integers using preferred meridian-longitude pair.

For a (p, q)-torus knot K (q > |p| > 1), (K;7) is a Seifert fibred manifold unless
r = pq. If K is a (p,q)-cable of a torus knot (¢ > 2), then (K;(pgn £ 1)/n) is a
Seifert fibred manifold for any integer m. It is conjectured that if K is nontrivial
and none of these knots, then (K;7) (r # oo) is a Scifert fibred manifold only for
re’z.

It is well known that l-surgery on the figure eight knot K is a Seifert fibred
manifold over S? with three exceptional fibres. In this example we can see an inter-
esting phenomenon : a trivial knot ¢ C S3 disjoint from K become an exceptional

fibre in (K 1).

Question. Suppose M = (K;r) is a Seifert fibred manifold. Is there a trivial
knot ¢ in S® disjoint from K such that when regarding ¢ C M, c is a regular or
exceptional fibre of some Scifert fibration of M7

Surprisingly all the known exaples of Scifert fibring surgery, the question has the
affirmative answer. With these in mind we prove:

Corollary 1.1. Let K be a knot in S3. Suppose that (K;r) (r # co) is a Scifert
fibred manifold such that Question has the affirmative answer for (K;r). Then one
of the following holds.

(1) K is a trivial knot, a torus knot or a cable of a torus knot.
(2) 7 s an integer.

Corollary 1.1 is a consequence of Theorem 1.2 on Secifert fibring surgery on kuots
in a solid torus.

Typeset by ApS-TEX
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KATURA MIYAZAKI AND KIMIHIKO MOTEGI

A 0-bridge braid in a solid torus is a simple closed curve isotopic to a curve in
the boundary of the solid torus.

Theorem 1.2. Let K be d knot in a solid torus V. such that K s not contained
in a 3-ball in V. Suppose that V(K;) is a Seifert fibred manifold where the slope
v is not meridional. Then one of the following holds.

(1) K s 0-bridge braid in 'V or a cable of a 0-bridge braid i V.

(2) v is an integral slope.

The next result is an application of Theorem 1.2 for Dehn surgery on periodic
knots.

Theorem 1.3. Let K be a nontrivial periodic knot in S with period p which 1s
nesther a torus knot nor a cable of a torus knot in S3. If p > 2, then (K;r) cannot
be a Seifert fibred manifold with infinite fundamental group for any r.

Remark. The condition “p > 2”7 cannot be deleted. In fact the figure eight knot
K has period 2 and admits Dehn surgery producing a Seifert fibred manifold with
infinite fundamental group.
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Young diagrams, the Homfly skein of the annulus and unitary invariants.

H.R.MORTON

Department of Mathematical Sciences, University of Liverpool,
PO Boz 147, Liverpool, L69 3BX, UK.

INTRODUCTION. The aim of this talk is to describe how the algebra of Young
diagrams underlies both the Homfly and the unitary invariants of links, and how it
features in the construction of manifold invariants from either route.

The Young diagram algebra Y is well-known classically in the context of represen-
tations of the unitary groups SU(N). The algebra Y consists of linear combinations
of Young diagrams, where the product of two diagrams A and p is given as an integer
linear combination of diagrams by the Littlewood-Richardson rules for multiplication.
The algebra Y itself is isomorphic to the polynomial algebra Cles,cs, ..., ¢ -4,
where c; is the Young diagram consisting of a single column with j cells. There is
an explicit determinantal formula for any Young diagram A as a polynomial in {c;}.

The representation ring Ry of SU(N) can be described in terms of this algebra
by means of a surjective homomorphism Y - Ry in which ey — 1 and ¢; = 0
for j > N, giving Ry 2 Cleq,¢g,.-+;,¢n-1]. In this setting the fundamental N-
dimensional representation corresponds to the Young diagram c; with a single cell,
and its jth exterior power to the Young diagram c;. Each irreducible representation
is the image of a single Young diagram with at most N — 1 rows, and the tensor

product in Ry of irreducibles comes from the product of Young diagrams in Y.

THE FRAMED HOMFLY SKEIN OF THE ANNULUS.
The Homfly polynomial P (v, z) of an oriented link is determined by the skein

relation
v P(M) v (N = 2 P() (),

with the normalisation P = 1 for the empty knot.

There is a framed version Xy (z,v,2) = (zv~)“(P) Py (v, z), where w(D) is the
writhe of any diagram having the required framing. Altering the framing by insertion
or deletion of curls changes X by multiples of zv~!. The skein relation for X is

zx( M) ~ax(N) = 2 X() ().

The framed Homfly skein of the annulus C consists of linear combinations of
framed diagrams in the annulus, up to the skein relations for X, with coefficient ring
A = Clz*!,v¥!, 2%!]. When a framed knot K is decorated by a pattern Q in the
annulus the polynomial Xg.q of the resulting satellite gives an invariant of K which
depends on @ only as an element of C. Write X(L;Qi,...,Qx) for the invariant of
a k-component link L with patterns Q,...,Qx applied to its components.

The skein C forms an algebra under the product induced by placing patterns
side by side in parallel annuli. Write C4; for the subspaces spanned by the closures
of braids on j strings, oriented either in the same or the opposite sense to the core of
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the annulus. The algebra C has been studied by Turaev [6] who showed it to be the
free polynomial algebra on generators {a;},j € Z for an explicit choice of elements
aj € C;. 1 shall restrict attention to the subalgebra C; generated by {a;}, 20,
which contains C; for each j > 0.

Linear combinations of braids on' j strings, modulo the skein relation for X,
form an algebra under braid composition isomorphic to the Hecke algebra Hj, (2],
and braid closure induces a surjective linear map from this to the subspace C; C C.
The elementary braids o; € H; satisfy a quadratic equation z='o — zo~! = z with
roots zs,—zs~', where z ='s — s~!. Two suitably weighted sums of the positive
permutation braids; one for each choice of root, determine idempotent elements of H;
which become the anti-symmetriser and the symmetriser respectively in the symmetric
group algebra on setting z = s = 1, [1]. Denote the closures of these two elements
in C; by C; and D;. It is easy to use Turaev’s result to show that C, is also freely
generated by {C;},j > 0, or equally by {D;},j > 0; at this stage the coefficient ring
A must be extended to consist of rational functions in z,v and s with denominators
of the form s* — s~%.

We may-then formally define an isomorphism from Y to Cy by ¢; = C;. It
is very satisfactory to find that this isomorphism carries each single-row Young di-
agram d; to D;. This can be proved using skein theory to establish the relation
C(X)D(X) = 1, where C(X) = Y (-1)'C;X* and D(X) = } D;X7 as formal
power series with coefficients in C. Indeed the isomorphism maps a general Young
diagram A to an element Qx € Cjx; which can be constructed very appealingly from
a template in the shape of A using the two sorts of idempotent.

QUANTUM INVARIANTS.  Reshetikhin and Turaev showed [4] how to use a finite-
dimensional module V over a suitable quantum group to construct an invariant
J(K;V) of a framed knot K which is a power series in the quantum group parameter

h. It can usually be expressed easily in terms of ¢ = e® or s = eh/?,

The construction extends to determine an invariant of framed oriented links when
‘coloured’ by a choice of module for each component. The invariants are multilinear
under direct sums of modules, while a knot K coloured with a tensor product VQW
of two modules has the same invariant as the link K(?) made up of two parallel copies
of K when coloured by V and W -respectively on the two components. It is thus
usual to regard the invariants for a framed link L' with k components as elements
J(L;wy, ..., wg) of the power series ring C[[h]] parametrised by a choice of wy,...,wx
in the representation ring of the quantum group. Further results allow the quantum
invariants of a satellite K #Q when coloured by a module V to be calculated in terms
of the quantum invariants of K itself, coloured by a suitable linear combination of
summands of tensor product V®J where the pattern @ is the closure of an oriented
j-braid, or (j,j) tangle T. This combination can be interpreted as an element oy (T)
of the representation ring of the quantum group, giving J(K *Q; V) = J(K;¢v(T)).
The element ¢y (7T") depends only on @, rather than the choice of 7', although this
is not immediately clear unless T is a braid. ‘

Reshetikhin and Turaev [3,5,4] established a direct connection between the invari-
ants determined by the quantum unitary groups SU (V)4 and the Homfly polynomial
invariants. They showed that the invariant J(L;Vg,...,Vg) for a link coloured
by the fundamental N -dimensional SU(N),-module Vg equals en(Xp), where
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en : A — CJ[[h]], is the substitution in which v — s™V = e~ Nh/2 g o g=h/2N
and z+— s — st =eh/2 —g~h/2,

When V = V(g the element J(K % (; V) depends only on @ as an element of
C, once the substitution ey is made, as indeed does @y (T) as an element of the
representation ring of SU(N),, which is isomorphic to Ry for generic g. We thus
have a map ¢n : Cx — Ry with the property that

This map ¢y : C4 — Ry, with coefficients altered by ey, is an-algebra homo-
morphism and carries the element @y to the irreducible SU(N)g-module V.

SuBsTITUTIONS.  The element @ € C, when written as a polynomial in Turaev’s
generators {a;}, has coefficients which are rational functions of z,v and s, with
2z = 8 — 8~!. The denominators have factors only of the form s* — s~% with 1 <
k < p(A) + c(A), where A has p()) rows and ¢(\) columns. Skein calculations
show immediately that X(K;Q,) is also a rational function whose denominator is
restricted in the same way for every choice of K.

Write §(A) for the rational function §()\) = X (U;Q,), where U is the unknot
with zero framing. The induced map § : C — ‘A is a ring homomorphism, determined
by the values §(C;). Direct skein calculation shows that

v—y~l yg—yTlsgml  pgivl o plgmitl

5(Ci) = (=1)° s—s1 s2—_g% gt — gt
1 — ps2ktly

mm and hence

This gives 6(C(X)) = S (~1)¥6(Ci) X = H

k=0
jv—vt vsTl —pTlg  ygmItl _ yligi-l
6(DJ) =("1) 1 2 e ' :
§— 38~ 84 —8 8§ —g=1

It can be shown that if e : A = A’ is a ring homomorphism, thought of as
substituting the values of e(z),e(v) and e(s) for z,v and s, and if e(6(A)) = 0
then e(X(L;...,Qx,...)) =0 for any link L with one component decorated by Q»,
provided that none of the denominators in X(L;...} evaluate to zero. Thus when
e(8()\)) = 0 the evaluation e(X(L;Q)) depends only on Q modulo the ideal in Cy
generated by Q.

If v = s~ after the substitution e, as in the case of ey above, then e(6(C;)) =0
for § > N, and the ideal generated by C;,7 > N has no effect on the value of
e(X(L;...)). Further skein calculation shows that if z= = s after e then the
ideal generated by Cy — 1 can also be factored out of the decorating algebra. Write
In C C4 for the ideal generated by {C;},5 > N and Cy —1; then Iy is indeed the
kernel of the map ¢ : Cy — Ry discussed earlier in the context of SU(NV), and
the substitution epn.

RooTs OF uNITY.

As a further example of the use of substitutions in X in relation to the Young
diagram algebra we can combine the substitution ey with the choice of s = e
where (rn,r) = 1. Then s” = s~", but s* # s7* for 0 < k < r. We can see that
6(d;) = 0 for 1 +1 < j < r—1 after this substitution, where | = r — N is called
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the level for the substitution. In this range the denominators remain non-zero, and
we may factor out the ideal Iy, of C; generated by {D;},1+1 <j<r-1,in
addition to Tn, without changing the value of the invariant after the substitution.
The natural parameter space for SU(NN)q invariants when they are to be evaluated at
s = ™ r = N+1 is thus the quotient algebra Vv, = C4 /Iy, . The Verlinde algebra
Vi, is a finite-dimensional algebra of dimension ( ;,:11), seen by first factoring out
In to get C[Cy,...,Cn-1] and then the N —1 polynomials Diy1,..., Dr-y.

The algebra Vjv; has a basis which can be represented by the Young diagrams A
with p(X) < N =1 and ¢(A) < !. In terms of this basis the structure constants by ,,
where Au =3 b5, v, are integers with important symmetry properties which can be
established quickly within the context of the Young diagram algebra, Y.

Construction of an invariant of a 3-manifold M presented by surgery on a framed
link L uses the symmetry property above. Start with the element 2 = ST6(A)Qa,
where A runs over the Young diagram basis for Vy . Then decorate all components
of L with 2. The element X(L;Q,...,Q), when evaluated with the substitution
above gives a complex number which, after a simple normalisation, can be shown by
the symmetry property to depend only on M.

In the description here it is primarily the properties of the Young diagram alge-
bra which govern the behaviour of the manifold invariant; it is clear that it can be
calculated using either a choice of Homfly invariants or of generic SU(N), invariants
and then making a suitable choice of substitution.
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Some New Results in the Theory of Braids
and Generalised Braids.

Roger Fenn

In this talk we look at recent advances in the theory of braids and gener-
alised braids.

An old question asked by Artin is ”when do two braids commute?” This
has now been answered when one of the braids involved is a standard gen-
erator. The answer has a satisfactory geometric flavour in that the other
braid must have a ribbon or band lying between two consecutive strings and
disjoint from the rest of the braid. '

It is a curious fact that mathematics often answers questions by general-
ising the theory concerned. One only has to think of the proof of the prime
number theorem and the above result was in part inspired by a desire to
solve a conjecture concerning singular braids.

The idea of looking at knots with singular points or self intersections, due
to Vassiliev, leads to invariants which include the so called quantum invari-
ants. Recent work by Bar Natan and others show that Vassiliev invariants
distinguish braids. ; ‘

We note that singular knots and links have a cubical cell structure and
that Vassiliev invariants depend on the resulting homology. We also look at
how three classical results in the theory of braids, namely: embedding posi-
tive braids in the braid group, Alexander’s theorem and Markov’s theorem,
can be reformulated for generalised braids.
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Lifting surfaces to embeddings in covers

lain Aitchison
University of Melbourne

We will describe briefly various conjectures and definitions concerning the
existence of immersed mj-injective surfaces in 3-manifolds. In particular, we
address whether or not certain non-Haken manifolds are virtually Haken.

The most familiar classes of non-Haken manifolds are surgeries on 2-

‘bridge: knot. complements, -and ‘surgeries -on certain once-punctured: torus
bundles. Although it is expected that many surgeries on knot and link com-
plements in S3 will yield non-Haken manifolds, a difficulty lies in proving that
there are no embedded i-injective surfaces. Hass and Menasco analysed the
complement of the link 8% in Rolfsen’s tables, and showed that many surgeries
yielded non-Haken manifolds. This example was investigated since the link
complement admits a polyhedral decomposition into cubes, and contains an
immersed mj-injective surface totally geodesic with respect to the polyhedral
metric 'of non—posmve curvature. Thls surface continues to be an immersed
‘7i-injective surface in essentially any manifold M3 obtained by surgery on
thelink; and since the surface satisfies the 4-plane, 1-line condition of Hass
and Scott, the manifold M3 is topologically rigid: it is determined among
irreducible; infinite mi 3-manifolds by its fundamental group.

v We:will show that a number of manifolds in this class are virtually Haken.
The technique used generalizes to manifolds obtained by certain surgeries on
the large class of prime, non-splittable alternating links with all comple-
mentary regions of even degree, and with exactly one bigon region at each
'crossmg The essential idea is that for cubed manifolds of non-positive cur-
vature, with all edg& of even degree, all canonical immersed ;-surfaces can
be shown to lift to embeddmgs in a specific 6-fold cover.

“Examples will also be descnbed of new constructions of manifolds con-
taining immersed ‘virtual fibres’: 7r1~1nject1ve surfaces which lift to fibres of a
fibration over S1. Again this exploits cubed manifolds and the implications
of edge parity on the ‘holonomy’ defined on surfaces continued from one cube
to the next.

Some of this work is joint with Hyam Rubinstein; some is joint with
Saburo Matsumoto and Hyam Rubinstein.
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Arithmetic invariants and hyperbolic Dehn filling
Craig Hodgson

Abstract: This talk will describe some arithmetic invariants of finite volume hyperbolic
3-manifolds including: the invariant trace field, the invariant quaternion algebra, and the
Bloch invariant. These invariants are very useful for studying commensurability and “cut
and paste” equivalence of hyperbolic 3-manifolds. We will discuss some basic properties
of these invariants, and describe methods for their computation. We will also give results
on the behaviour of some arithmetic invariants during hyperbolic'Dehn filling,
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A finiteness theorem for surfaces in Haken 3-manifolds
Sergei V. Matveev (Chelyabinsk)

Let F be a torus or a proper annulus in a 3-manifold M. By a twist of
M along F' we mean a homeomorphism of M which is the identity outside a
neighborhood of F.

THEOREM. Let M be an irreducible, boundary irreducible 3-manifold and
Xo be an integer. Then, up to isotopies and twists along tori and proper
annuli, there ezists only a finite number of incompressible, boundary incom-
pressible connected surfaces in M with Euler characteristic > xo.

The Theorem is well-known [1,2]. We give an alternative proof.

Step 1. Choose a handle decomposition £ for M. It was proved by W.
Haken that there is a (unique) finite set of fundamental (with respect to £ )
surfaces in M. Any incompressible and boundary incompressible surface in
M is isotopic to a surface F = k1 Fy + ko Fy + ... + kn F,, where each F; is a
fundamental surface and k; > 0 for 1 < i < n. The surfaces Fy, F3,..., F,
have no triple intersection points, and all double intersection curves are con-
tained in the union of 1- and 2-handles.  The coefficients k; and plus signs in
the above expression mean that one should take k; parallel copies of each F;
. and make regular switches along all double curves.

Step 2. It follows from Step 1 that F'is contained in a regular neigborhood
U of P = U™, F;. The set S(P) of singular points of P is a union of simple
curves. Connected components of P\ S(P) are called 2-components of P.
Suppose that there is a 2-component o homeomorphic to a 2-cell. Let the
curve a =Cl(a)\ a lie in F;N F; such that & C F;. Then we cut Fj along Ja
and glue two parallel copies of a to it. We get a new polyhedron P’ having a
smaller number of singular curves. Since F' is incompressible and boundary
incompressible, it can be isotoped into a regular neighborhood of P'.

Step 3. According to Step 2, we may assume that P has no 2-components
with positive Euler characteristics. The surface F' can be isotoped within U
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so that afterwards, outside a regular neighborhood of S(P), F' is a union
of sheets presenting cross-sections of normal bundles of 2-components. Since
x(F) > Xo, the number of sheets corresponding to 2-components with strictly
negative Euler characteristics has an upper bound depending on £ and xo. It
means that, up to a finite number of possibilities, we know the exact behavior
of F near the union of 2-components with negative Euler characterictics.

Step 4. Note that 2-components with zero Euler characterictics are tori,
annuli or Mdbius bands. A regular neigborhood V' of the union of such
2-components is a disjoint union of Seifert manifolds and I-bundles over
surfaces. Recall that, up to a finite number of possibilities, we know the
boundary of the surface F' = FNV. We conclude the proof of the Theorem
by the following easy observation: since each connected component of V'
is either a Seifert manifold or an I-bundle over a surface, the number of
possibilities for F” is finite up to isotopies and twists along tori and proper
annuli.
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A Conway presentation and the coefficients of the Jones
and Kauffman polynomials of a 2-bridge link

Yasuyuki Miyazawa

Let L be a knot and link and D be a diagram of L. The Jones and Kauff-
man polynomials of L are calculated from D by the recursive formulas. So
choosing a suitable diagram, we may find. the properties of these polynomi-
als. In this talk, we restrict L to a 2-bridge knot or link and investigate a
relation between a diagram and the coefficients of the Jones and Kauffman
polynomials of L. There are two kinds of diagram for 2-bridge knot or link:
the Schubelt and the Conway presentations. In this talk, we consider the
Conway presentation as a diagram D of L and denote it by C'(by,bo,---,by)
( [1] )- The Jones and Kauffman polynomials are defined by the recursive
formulas as in [2]. Let ¢ be the minimal crossing number of L and w be the
writhe of L. Then the Jones and Kauffman polynomials of L can be written
as Vi(t) = 435 g et and Fir(a,z) = a 35, fi(a)z', where v =1 or 2,
€i,2d € Z and f;(a) € Z[a*!]. Then we obtain the following theorems.

Theorem 1. Let L be a 2-bridge knot or link with a diagram
C(by, by, - -, by) satisfying b; >0, 1 <4 < n, and by, b, # 1. Then
(1) If ¢ > 3, then | e; |=[2], | ec—1 |= [2F].

(2) (i) If ¢ > 4 and c is odd, then

o2 |= gln® +4n4+3) = 3 (1),

[ ecca |= (% +80—1) = i (2) = pn(2) - quu)

(ii) If ¢ > 4 and c is even, then

1
| e |= -é(n2 +6n) — ua(2) — Z“J

1
| €ca |= 5 (n* +6m) — 1 (2) - Zu;
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1 if b <1,
Here“f(’):(o z}r by > L

Theorem 2 (cf. [3],[4]) Let L be a 2-bridge knot or link with a diagram
C(by,- - -, bn) satisfying b; > 0, 1 <4 < n, and by, b, # 1. Then

(1) fc- (@)@ +a) = 1.
(2) If ¢ > 3, then f._s(a)/(a™! +a) = [2E]a™! + []a.
(3) (i) If ¢ > 4 and n is odd, then
foolo) _ (wHINAD )= (@) - p(2)a

1<i=odd<n
n?+4n—1 "t

+ (—c+——T—— > (1)

=2

+

(1))a®

i—even

(ii) If ¢ > 4 and n is even, then

fes(a)  mP+2n e 2
m = 3 mgmlh(l) p1(2))a
b o(—c+t n+4n__“2": A1)
i=2
EE2 S (1) )

i=even<n
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Normal Surfaces Immersed in the Figure-8
Knot Complement

LR. Aitchison, S. Matsumoto, J.H. Rubinstein

ABSTRACT

Non-Haken hyperbolic 3-manifolds are conjectured to be virtually Haken,
that is, to contain immersed 7;-injective surfaces which lift to embeddings
in some finite-sheeted cover. A result of D. Long implies that if a closed
hyperbolic 3-manifold contains totally geodesic immersed surfaces, then this
conjecture is true. This gives rise to further studies of immersed surfaces,
incompressibility, and related topics. We consider these issues in the context
of the figure-8 knot complement, its 5-fold cover, and more generally, cubed
3-manifolds. ;

One of the well-known constructions due to W. Thurston is the realiza-
tion of various alternating knot- and link-complements as the union of two
polyhedra glued together. The figure-8 knot complement is a prime example
of this, consisting of two ideal tetrahedra where the faces are identified by
isometries of the hyperbolic space. We refer to this manifold, along with
this polyhedral structure, as Mg. Thurston analyzed this specific space and
concluded that there are no closed incompressible surfaces embedded in it
except for the boundary torus. This led to the question of the existence of
immersed incompressible surfaces.

~ The role of incompressible surfaces in the theory of 3-manifolds is very
crucial, particularly in light of the many well-known results by Haken, Wald-
hausen, and others. One way to study such surfaces is to examine nor-
mal surfaces, consisting of normal triangles and normal quadrilaterals in the
tetrahedra. Every essential surface in Mg can be realized in this way, i.e., by
the combinatorics of triangles and quadrilaterals. Conversely, given a cer-
tain fixed number of these normal triangles and quadrilaterals, one can ask
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whether there is any gluing of them which gives a regular surface, or a surface
without branch points. We will briefly refer to and describe a computer pro-
gram that answers this question, due to R. Rannard of Sydney University.
Through this program, we were able to find many regular normal surfaces in
Ms. We will also discuss some combinatorial conditions which are necessary
for regular surfaces.

Having discovered many immersed surfaces, we want to determine whether
these surfaces are incompressible or not. We first give a criterion for com-
pressibility, which we will apply to a series of examples called “homogeneous
surfaces.”

From the work of A. Reid, we know that Mj actually contains infinitely
many families of immersed totally geodesic and hence incompressible sur-
faces. One of the homogeneous surfaces we describe (first discovered by
W. Thurston but was not published) turns out to be totally geodesic. An-
other totally geodesic surface was found by A. Skinner (a former student of
Rubinstein) using a totally different method (described below). Trying to
understand totally geodesic surfaces in Mg from a combinatorial standpoint
seems to be a very interesting question as well.

We will also point out that A. Skinner constructed a five-fold covering
space for Mg which admits a cubing structure of non-positive curvature. In
fact, this is how he found the totally geodesic surface mentioned earlier. The
concept of cubing was studied extensively by Aitchison and Rubinstein, and
many significant facts are known about it. Hence, our analysis of normal
surfaces in My sheds some light on immersed surfaces in cubed 3-manifolds
as well. We conclude the paper by giving a criterion for incompressibility of
immersed surfaces in these cubed manifolds under certain conditions and by
showing some applications of it.
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Transformations on special spines of
3-manifolds and branched surfaces

Artem U. Macovetsky *

There are different methods for presenting 3-manifolds. These are, for
examples, triangulations of manifolds and Heegaard decompositions of man-
ifolds.

It is known that for two triangulations of the same manifold there is
a common star subdivision. Also, there is stable eqmvalence of any two
Heegaard decomposition of same manifold.

Besides two above-mentioned methods for presenting 3-manifolds there
is a well-known method for presenting 3-manifolds by special spines. The
relation between 3-manifolds and spines was studed in the [C]. In [M] it
was investigated Tg™, T5 moves for spines. We put next question. Is there
result for special spines like two above-mentioned results for trla.ngulatlons
and Heegaard decompositions? The following theorem is answer.

DEFINITION. A special spine Q of manifold M? dominates a spine S of
M3 if one can pass from S to Q by moves Ty and T .

THEOREM. Let P and S be special spines of a manifold M3. Then there
is a special spine Q of M3 such that Q dominates P and S.

In [MR] it was investigated such additional structures for the special
spines as orientation and branched surface structure.

THEOREM. Let P be a special spine with a branched surface structure and
let a spine Q be obtained from P by moves Ty, T>. Then @) has a branched
surface structure too.

THEOREM. Let P be a special spine with an orientation and a spine Q)
is obtained from P by moves Ty, To. Then spine @) s orientable too.

*Research is supported in part by INTAS, grant No. 94201.
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We discuss connections between these two structures on spines.

It is known ([MR]) that if a spine P is acyclic then P admits an orienta-
tion. We prove a theorem that describes some connection between different
orientations on an acylic spine.
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ON SIMPLY KNOTTED TORI IN S* II

AKIKO SHIMA

We will work in the PL category. We may assume that all manifolds are locally flat.
Let S™ be n-dimensional sphere, p : S*\ {o0} — S®\ {co} be the projection, and T
be an embedded torus in S*\ {co}. Put I(T™) = cl{z € p(T); Ip~*(z) N T| 2> 2} and
D(T) = p™{(T(T*) N T.

Moreover we may assume that each point z of I'(T™) there exists a regular neighborhood

N of z in 5% such that N N p(7T) satisfies either (i) or (ii).

(i) i | i] (i) |

Let S be an embedded surface in S*%, and o be an arc in S* such that 8o C p(9),
aNT(T*) = ¢, inta is transverse to p(S5), and each point of inta N p(S) has a signature
+ or —. Then we call (S,a) a surface with an arc. We construct an embedded surface

F(S,a) in S* from (S, ) as follows (See Figure 1).

FER) - 3

(S, a) Figure 1 £(S, )
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Put 7 = (2, 2)|e® + (y — 4i)? + 2% = 1} and B? = {(z,y,2)e? + (y ~ 4i)? + 2% < 1},
Let G = (ULIS,»Z,U?_._la,') be a surface with arcs, and a},a? be endpoints of a;. We call
F(6) an ribbon torus if & satisfies that

(1) all integers i there exist subarcs €, §; in oy with (e; U &) N (UL, B?) = Oai,

(2) there exists an integer m {1 <m < n) such that

if 1<i<m-—1,then a} C S? and o} C 54,
if i = m, then a!, C 5%, and d?, C S},

fm+1<i<n,thena! CS? anda,zCSJZ- (1<j<m).

Let T%(K}) be a symmetry-spun torus in S* (For the definition T*(K3), see [T]). Let
& = (T*(K)U(UL,S}), UL a;) be a surface with arcs, and a}; a? be endpoints of ;. We

T/ =

call F(&) a torus obtained by m-fusions of a symmetry-spun torus if 6 satisfies that
(1) p(T*(Ks)) C Bg,
(2) each an integer ¢ there exists a subarc ¢; in a; with €; N ( m B = al,

(3) a! € S? and a} C p(T*(&)) for all .

Main Theorem ([S4]). If I(T*) dose not contain 3rd singular points, then T can be

moved to either a ribbon torus or a torus obtained by m-fusions of a symmetry-spun torus.

Corollary. Suppose that I'(T*) consists of only 2nd singular points, and all components
of I(T) are not contractible in T.
If 7 (S*\ T) = Z, then T is unknotted (i.e. T is a boundary of a solid torus in S*).

Remarks. (1) There is a classification of symmetry-spun tori in [T].

(2) For a mean of arrows in Figure 1, see [Y].
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THE AVERAGE EDGE ORDER OF TRIANGULATIONS
OF 3-MANIFOLDS WITH BOUNDARY MODIFICATION

MAKOTO TAMURA

Let M be a compact, connected 3-manifold and K a triangulation of M. Note that
we distinguish a triangulation from a cell complex, that is, such a cell complex is a
triangulation when the intersection of any two simplices is actually a face of each of
them. Suppose M is closed. Then the average edge order po( K) of K is defined to be
3Fy(K)/Eo(K), where Ey(K) and Fy(K) are the numbers of edges and faces in K,
respectively. This is equal to the average of the orders of edges of K, where the order
of an edge is the number of triangles incident to that edge. Feng Luo and Richard
Stong showed in [1] that for a closed 3-manifold M, the average edge order being
small implies that the topology of M is fairly simple and restricts the triangulation
K of M. In fact, they proved the following theorem.

Theorem 1 (LS). Let K be any triangulation of a closed connected 3-manifold M.
Then

(a) 3 < po(K) < 6, equality holds if and only if K is the triangulation of the
boundary of a 4-simplez.

(b) For any € > 0, there are triangulations K1 and Ky of M such that puo(K,) <
4.5+ ¢ and po(Ky) > 6 — .

(c) If po(K) < 4.5, then K is a triangulation of S®. There are an infinite number
of distinct such triangulations, but for any constant ¢ < 4.5 there are only finitely
many triangulations K with uy(K) <c. ‘

(d) If po(K) = 4.5, then K is a triangulation of S 5% x St or S?xS*.

Furthermore, in the last two cases, the triangulations can be described.

For compact 3-manifolds with boundary, we modify the definition of the average
edge order as follows. Put Eo(K) = E;(K)+Es(K)/2 and Fo(K) = F;(K)+Fs(K)/2,
where E;(K) (resp. F;(K)) is the number of edges (resp. faces) in intK = K\0K,
and E3(K) (resp. Fp(K)) is the number of edges (resp. faces) on K. Then we define
the average edge order pg(K) of a triangulation K of a 3-manifold with boundary to
be 3F4(K)/Eo(K). This is the average of the orders of edges of K, where for each
edge e in 0K

(1) the order of e is defined to be the number of triangles incident to e, where
we count triangles on the boundary with weight 1/2, and
(2) the order of e is counted with weight 1/2 when we take the avarage.
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By using this average edge order, we have the following theorem.

Theorem 2. Let K be any triangulation of a compact connected 3-manifold M with
non-empty boundary. Then

(a) 2 < wo(K) < 6, equality holds if and only if K 1is the triangulation of one
3-stmplex.

(b) For any rational number r with 4 < r < 6, there is a triangulation K of M
such that po(K') =r. ;

(c) If po(K) < 4, then K is a triangulation of B®. There are an infinite number of
distinct such triangulations, but for any constant ¢ < 4 there are only finitely many
triangulations K with po(K) <c.

(d) If po(K) = 4, then K is a triangulation of B3, D* x §', or D*XS'.
Furthermore, in the last two cases, the triangulations can be described.
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Kauffman bracket of plane curves

S. Chmutov,* V. Goryunovt

There exists a straightforward way to get an invariant of an immersed
cooriented hypersurface C in a smooth manifold N. We lift C to the manifold
M of cooriented contact elements of N, that is to the spherisation ST*N of
the cotangent bundle of N. This gives us an embedded submanifold L¢ in
M. Now we take the value of a known invariant of embeddings on Lg — M
as the invariant of our initial immersion C &> N.

This general approach was used in [5, 6] to define an invariant of an
immersed plane curve C — R?. There a Kontsevich type integral [4] was
taken as a known invariant of knots L in the solid torus M = ST*R2.

In fact, the described procedure allows to induce invariants not only on
immersed C o N but also on submanifolds with certain “admissible” singu-
larities. Namely, the manifold M = ST*N has a natural contact structure.
Our lifting L¢ is a Legendrian submanifold with respect to this structure.
The hypersurface C is called the front of Lc. So it is natural to permit C
to have singularities which may appear as singularities of fronts of smooth
Legendrian submanifolds generically embedded into M.

In the simplest case of N = R?, the lifted submanifolds L are Legendrian
links in the solid torus M = ST*R? and the “admissible” singularities of
the underlying plane fronts are cusps. Thus we can induce an invariant on
collections of closed cooriented plane curves which may have only transverse

*Program Systems Institute, Pereslavl-Zalessky, 152140, Russia. E-mail:
chmutov@math.botik.yaroslavl.su. Partialy supported by the Fellowship “Emma e
Giovanni Sansone”, the International Science Foundation and the Russian Foundation for
Fundamental Research.

tDepartment of Applied Mathematics, Moscow Aviation Institute, Volokolamskoe sh.,
4, 125871 Moscow, Russia and Department of Mathematical Sciences, The University of
Liverpool, Liverpool, L69 3BX, UK. E-mail: goryunov@liv.ac.uk. Supported by an RDF
grant of The University of Liverpool.
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double points and cusps as singularities. We call such collections normal
fronts. Their invariant may come from any invariant of links in the solid
torus.

In the talk we will take the Kauffman bracket of links in a solid torus (see
(7]) as a known invariant to be induced on plane fronts.

Generic one-parameter families of plane fronts contain various types of
bifurcations: triple-point and self-tangency perestroikas, passing of a cusp
through a branch, birth/death of a pair of cusps. Self-tangencies can be sub-
divided into two types: dangerous (when the coorientations of the branches
coincide) and safe (when they are opposite). The corresponding Legen-
drian link in the solid torus changes its topology only under dangerous self-
tangencies.

So any invariant of plane fronts induced from a link invariant should
not change under any perestroikas except for dangerous self-tangencies. The
first invariant with this property was introduced by Arnold (1] and called J*.
Following this we call any invariant of plane fronts having similar restrictions
on its changes a J*-type invariant.

Legendrian lowering of the skein relations of the Kauffman bracket pro-
duces a set of skein relations in terms of plane fronts. It turns out that they
are sufficient to inambiguously calculate the invariant (we call it the Kauff-
man bracket as well) of any normal front completely staying on the plane,
without any mentioning of the links in the solid torus.

Theorem 1. There ezists a unique J* —type invariant <C > € Z[A* R)
of a normal front C satisfying the following properties:

(=20 (=470
2) (c0)=-A%
3) (O)=-4;

4) <C;-Cy>= —(A2+ A <C > <0y >,
fOT' C]_ # Q,Cg #@

1

~—

Here C; - C, is a collection of two fronts Cy and Cy which lie in different
half-planes with respect to a certain line in R2.
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Similar to the definition of a finite order invariant of knots in [9, 3|, one
can introduce a notion of a J*-type invariant of finite order. Consideration
of the coefficients of the Kauffman bracket from this point of view provides

Theorem 2. Set A = ¢! in the Kauffman bracket of a plane front C
and expand the result in a power series in t. Then the coefficient at t"* in
the series < C > | s—et is a J* —type invariant of order at most n in Vassiliev
sense. - o :

Their exists a way to calculte the weight systems of the above coéfficients.
It turns out that the first coefficient is basicly the quantum deformation of the
Bennequin invariant [2] introduced recently by M.Polyak [8]. The involved
space generated by corresponding chord diagrams is more complicated then
that of the original Vassiliev theory. For example, each graded part of this
space 1s mﬁmte—dlmensmnal
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Every 2-link with 2 components is
link-homotopic
to the trivial 2-link

Fujitsugu HOSOKAWA and Shin’ichi SUZUKI

Abstract

In the previous paper [1], we asserted that every link of two 2-spheres K U K
in the 4-sphere §* is link-homotopic to the trivial 2-link, but as J. P. Levine pointed
out in [5], there is a gap in the proof. In fact, the link-homotopy did not define in
R3[3, ). In this talk, we will construct a required link-homotopy, and complete the
proof.

Definition 1.  An n-link with ¢ components is an embedding L : S"[--- 115" —
S™*2 of the disjoint union of ¢ n-spheres into the (n + 2)-sphere S§7+2_ In particular,
an n-link with one component will be called an n-knot.

An n-link L : S™[]---1IS™ — S™? is called trivial, iff there exists an em-
bedding L : D™ []--- 1] D**' — 8™ of the disjoint union of (n + 1)-disks with
LD []--- 118D = L.

As an n-link L: S*[]---1[S™ — S™*? with ¢ components, we refer to the image
L(S™1]---118") by K1U---UK,. We shall use the motion picture method to describe
the configuration of subspaces of R*, R* U {oo} = S*, and we use the same notation
and definitions as [4] and [6]. Then we have the following:

Proposntlon Any locally flat 2- link (K1 U---UK, C R*) can be deformed into a
2-link (K1 ‘UK. C RY) in the normal form by an ambient isotopy of R*; that is,
(K;U---U K C R*) is in the followmg position:

(1) all mazzmum—dzsks of K1 U Kiu---u K, are in the hyperplane R3[3],

(2) all minimum-disks of K,U--- UK, are in the hyperplane R3[-3],

(3) all saddle-bands of K;U- UK are in the hyperplanes R*[—1] and R®[1], and so,
(4) the equatorial cross-sectional 1-link ((K1 U---UK)NR0] ¢ R?) is a 1-link with
¢ components.

We use the following criterion of 2-knots due to A. Kawauchi [3].

Theorem 1 [3].  Let (K C R*) be a locally flat 2-knot in the normal form. If the
equatorial cross-sectional 1-knot (K N R3|0] C R®) is a trivial 1-knot, then the second
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homotopy group ma(S* — K) is trivial.

Definition 2. Let Py,---, P, be polyhedra, and let P = Py[[-- 11 P, be their
disjoint union, and let X be a manifold.

A continuous map f : P — X is said to be a link-map, iff f(P) N f(P;) =0 for
i j.

Two link-maps fo, fi : P — X will be called link-homotopic, iff there exists a
homotopy { n+}er : P — X such that o = fo,m1 = fi and 7 is also link-map for
eachte [.

We can now formulate our main theorem.
Theorem 2. Every 2-link L : §? ] 52— S* is link-homotopic to a trivial 2-link.
A key lemma is the following:

Lemma [2]. Let O; = O U ---U Oing) be a trivial 1-link with n(i) components
in §3 = OD* fori = 1,---,u, such that O, U--- U0, is also a trivial 1-link with
n=mn(1)+---+n(u) components. Let P; = Dii[1--- LI Din(i) be the disjoint union
of n(i) 2-disks fori = 1,---,u, and let P = Py]]--- 1Py Let f and k be non-
degenerate link-maps of P into S® such that f(OD;;) = Oy; = k(0Dy;) fori=1,---,u
and j = 1,---,n(i). Then, f and k are link-homotopic in D* keeping O; U---U0O,
fized.
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THE DETERMINATION OF THE PAIRS OF TWO-BRIDGE
KNOTS OR LINKS WITH GORDIAN DISTANCE ONE

BY ICHIRO TORISU

Department of Mathematics, Osaka University
Toyonaka, Osaka.
560, Japan

1. INTRODUCTION

For any two knots or links K, K’ in §3, we can define the Gordian distance from K
to K', denoted by dg (K, K'), to be the minimal number of crossing changes needed to
deform a diagram of K into that of K’, where the minimum is taken over all diagrams
of K from which one can obtain a diagram of K’. Then dg defines a metric on the
space of the equivalence classes of knots or links. If O is a trivial knot or link, then
dg(K,O) is the unknotting or unlinking number of KX, denoted by u(K) (see [4]).

In this paper we determine the pairs of two-bridge knots or links with Gordian
distance one, This result can be thought as a generalization of those of Kanenobu-
Murakami [2] and Kohn [3].

2. MAIN THEOREM

Let S(p, q) be the two-bridge knot or link whose two-fold branched cover is the lens
space L(p, q), where p and q are relatively prime and p > 0. When p is even, S(p, q)
is a two component link, for p odd, S(p, q) is a knot.

Our main theorem-is then the following.

Theorem 1. Let S(p,q) and S(r,s) be two-bridge knots or links with ps < rq. Then
the following conditions are equivalent:

(1) da(5(p,q), S(r,8)) = 1.
(ii) There exist pairs of relatively prime integers (m,n) and (a,b) such that rb—sa =1

()= (5 3) (ais)

(iii) There ezist rational numbers T and v, such that

D
S = S l@l@
C

S(r,s) =
(rys) I II |

where E is a rational tangle of slope r; (for the definition of a rational tangle,
see [1, Chapter 12]) .
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1,0) is a trivial knot. So the condition (ii) of Theorem 1 says that

Remark 2. (i) S(1,
,0)) = 1 if and only if

dG(S(pv Q)y S(

S(p,q) = S(2an* + 2mn £ 1,2n?)
= S(2m'n + 1,2n?)

where m’ = m + an. Therefore . Theorem 1 is a generalization of
Kanenobu-Murakami’s theorem [2].

(ii) $(0,—1) is a trivial link. So the condition (ii) of Theorem 1 also says that
dg(S(p,q), S(0,—1)) =1 if and only if

S(p,q) = S(2n?, 2bm? — (2mn £ 1))
=S5(2n%2m'n+1)

where m' = —m -+bn. Therefore Theorem 1 is also a generalization of Kohn’s theorem

3].
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Spatial-Graph Isotopy for Trivalent Graphs and Minimally
Knotted Embeddings

TERUHIKO SOMA

In this talk, we will discuss spatial-graph isotopy for trivalent graphs, and give a
connection between this equivalence relation and minimally knotted embeddings of graphs
into 3-space.

A graph G is a finite, 1-dimensional CW-complex. Here, we also assume that graphs
have no isolated vertices. Let S(G) be the set of all piecewise linear embeddings I' : G —
R3. For a planar graph G, an embedding I' € S(G)‘ is said to be minimally knotted if T
itself is knotted but, for any proper subgraph H of G, the restriction ['|y is unknotted.
Examples of minimally knotted embeddings were presented by Kinoshita (2], Suzuki [4]
among others. .

In [5], Taniyama introduced several kinds of equivalence relations in §(G): ambi-
ent isotopy, isotopy, cobordism, I-equivalence, homotopy, weak-homotopy, homologous
and Z,-homologous. Rather weak equivalence relations among them such as homotopy,
weak-homotopy or homology were studied by some authors. Here, we will study stronger
equivalence relations (especially spatial-graph isotopy).

Consider a pair T',I" : @ — R® € S(G) admitting a piecewise linear embedding & :
G x I — R® x I such that ®(z,t) = ([(z),t) for any (z,t) € G x[0,¢], ®(z,t) = (I'(z),1)
for any (z,t) € G x [l — ¢€,1], where € is a sufficiently small positive number and [ is
the closed interval [0,1]. We say that [’ is ambient isotopic to I'" if ® is locally flat and
level-preserving, I is cobordant to I if ® is locally flat, and T is isotopic to I' if @ is level-
preserving. Note that an isotopy is quite different from an ambient isotopy. For example,
all knots in R® are isotopic to the trivial knot in our case. For our convenience, we denote
by [[eobor (resp. by [[lisotopy) the subset of S(G) consisting of all elements cobordant to
(resp. isotopic to) I' € S(G), and call it the cobordism class (resp. the isotopy class) of T'.

Kawauchi [1] and Wu [6] proved independently that any planar graph G without free
edges admits a minimally knotted embedding. The following theorem implies that such an

embedding can be constructed in the cobordism class of a planar embedding.
Theorem 1. Suppose that G is any graph without free edges and admitting a planar

embedding I'y : G — R? C R®. Then, the cobordism class [[o}cobor contains a minimally
knotted embedding.
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Our proof is based on Wu’s. However, we use a rather simple tangle to construct
minimally knotted embeddings.

Any isotopy between two elements I', [V € S(G) is realized by a sequence of blowing-
downs N, and ups , for example:

F=A /A /AN As /AN As N A S A =T

It is useful for the study of spatial-graph isotopy to rearrange the order of blowing-ups and
downs. In the case of G trivalent, we have the following rearrangement theorem which is a
basic result for further investigation.

Theorem 2. Let G be a trivalent graph, and let I';, Ty : G — R be embeddings isotopic
to each other. Then, there exists an embedding I's : G — R?® and a sequence of blowing-

downs followed by blowing-ups such that I'y \,--- \\ T3 /' --- /' Ta.

For a trivalent graph G, an element '™ € S(G) is said to be isotopically reduced if the
ambient-isotopy type of I"*d can not be changed by any blowing-down of I'*d. By using
Haken’s Finiteness Theorem, it is shown that the isotopy class [[}isotopy of any I' € S(G)
contains an isotopically reduced element. Corollary 1 gives an interaction between the two

equivalence relations, isotopy and ambient isotopy, in S(G).

Corollary 1. Let G be a trivalent graph, and let T';,T'; : G — R® be embeddings.
Suppose that I''*? is any isotopically reduced element in [lisotopy for @ = 1,2. Then, I'y is
isotopic to T, if and only if [ is ambient isotopic to I'Fd.

Corollary 1 is restated as follows.

Corollary 2. For any embedding I' : G — R® of a trivalent graph G, the class [[isotopy

contains a unique isotopically reduced element up to ambient isotopy.

It is easy to show that any embedding I' : © — R3 of a theta-curve © is isotopic to
a planar embedding I'y : © — R? C R?, ie. [[olisotopy = S{©). In particular, [Iolisotopy
contains a minimally knotted embedding. The following theorem implies the converse.

Theorem 3. Let G be a trivalent graph admitting a planar embedding I'y : G — R? C
R3. If the isotopy class [[olisotopy contains a minimally knotted embedding, then G is a
theta-curve.
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Corollary 3 follows immediately from Theorems 1 and 3.

Corollary 3. Suppose that G is a trivalent graph admitting a planar embedding T'o :

G — R2 C R3. If G is not a theta-curve, then [[oJisotopy do€s not contain [Co)cobor-

Final Remark. The speaker knows some sporadic results extending Theorems 2-3 and
Corollaries 1-3 to certain non-trivalent graphs, and feels that it would be possible to prove

such theorems and corollaries for any graphs.
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Band-generator presentation of the braid
group and its advantage

Ki Hyoung Ko

The elements of the n-string braid group B, defined by:
Age = (001012 + T411)05 (011012 - 0g41) .
for 1 < s >t < n together with 4-term defining relations:
Quslrg = Argas  If (t—T)(t—q@)(s—7)(s—¢q) >0

UtsQar = QrQis = QgrQer forall r,s,t with 1<r<s<t<n

give a presentation of B,.

The word problem for this presentation is solved by decomposing a word
into a canonical form:  The complexity of this decomposition is quadratic
in both the braid index and the word length. The conjugacy problem is
also solved by generating a “super summit set” uniquely determined by a
conjugacy class. A linear bound with respect to the braid index for the
number of conjugations required to get an element in the super summit set
is found. For By, the shortest word problem up to conjugacy can be solved
in this presentation.
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Arithmetic and geometry of some cone manifolds

J.M.Montesinos(U.C.Madrid)

In this talk joint work with Hugh Hilden and Maria Teresa Lozano will be discussed.

Let I be a hyperbolic knot in S®. The character variety of representations of m (5% -
I) into PSL(2,C) is an algebraic variety, denoted by C(K), Whose points can be inter-
preted as holonomies of geometric structures in $— /(. Among these geometric structures
are the cone-manifold structures (K,«) in 53, with singular set the knot A and angle o
around K. In particular for angle a = (27)/n, the cone-manifold (K, (27)/n) is the
orbifold structure in $3, with singular set the knot K and cyclic isotropy group of order
n. |

Let o, be an angle such that the cone-manifold (K, a,) is Euclidean. Then, we
have prove that 2cosa, is an algebraic number. Its minimal polynomial (called the
h-polynomial) is a knot invariant and can be computed from C(K).

We use also C(K) to detect the arithmeticity of some orbifolds structures.
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Geometric invariants of cone manifolds

Maria Teresa Lozano

This is joint work with Hugh Hilden and José Maria Montesinos.

After the Mostow Rigidity Theorem, each geometric invariant of a hyper-
bolic 3-manifold is a topological invariant. We are interested in computation
of the volume and the Chern-Simons invariant of hyperbolic 3-manifolds.

Some hyperbolic 3-manifolds are obtained by covering of § branched over
a hyperbolic knot K. Given a hyperbolic knot K, there exists an algebraic
variety, C(K), parametrizing geometric structures in §*— K. We use C(K) to
obtain the volume and the Chern-Simons invariant of the orbifold structure
(K,n) in §° with singular set the knot K and cyclic isotropy group of order
n. Then, we can obtain the volume and the Chern-Simons invariant of some
hyperbolic 3-manifolds, those obtained by certain coverings of §® branched
over the knot K.

The method to compute volumes of the orbifold structure (K, n), is to ap-
ply Schlaffli Formula for the volume to the family of cone-manifold structures
(K, a) in §%, with singular set the knot K and angle a around K.

To follow the same program to compute the Chern-Simons invariant, we
have prove a ”Schlaffli Formula” for a generalized Chern-Simons function on
the family of cone-manifold structures (K, a).
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(iv)

(observed by D.Bullock).

We introduce the concept of a skein algebra of an abstract group and
show that for finitely generated group, modulo nil-radical, it is equal to
the coordinate ring of the SL(2,C) character variety of the group. We
show several examples for which the nil-radical is trivial (e.g. surface
groups, abelian groups, finite groups).

We discuss torsion in Kauffman bracket skein modules. We show that
a manifold with an incompressible 2-sphere or torus has often a torsion
in its skein module. We consider, in more details, the case of the double
of the figure eight knot complement. Here to detect a torsion, we use
the hyperbolic structure on the figure eight knot complement.
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Algebraic topology based on knots

by Jézef H. Przytycki

Abstract.

Our goal is to build an algebraic topology based on knots. We call the
main object used in the theory a skein module and we associate it to any 3-
dimensional manifold. In short skein modules are quotients of free modules
over ambient isotopy classes of links in 3-manifolds by properly chosen local
(skein) relations.

These new objects are not sufficiently understood yet, however their prop-
erties seem to be topologically very significant. In particular, one should look
for their features similar to Seifert-Van Kampen or Mayer-Vietoris theorems.
Another interesting question concerns the relation between the skein mod-
ules of the base and the skein modules of the covering space, for coverings
and branched coverings. At present we can say something about the above
question only in a very special situation and then the result concerns symme-
tries of links. As in the case of homologies, one should try to understand the
free and torsion part of the module. In particular, the torsion of the mod-
ule seems to reflect the geometry of the manifold (i.e. their incompressible
surfaces).

We concentrate, in this talk, on the skein module related to the Jones
polynomial (via the Kauffman bracket), S, (M), describing, in particular,
the recent work with A.Sikora.

(i) We describe several examples of manifolds for which the Kauffman
bracket skein module is fully computed (e.g. lens spaces, (2,n) torus
knot complements).

(ii) We describe the algebra structure of the Kauffman bracket skein mod-
ule for a surface cross interval. We show that the algebra has no zero-
divisors.

(iii) We discuss the relation of the Kauffman bracket skein module with the
SL(2,C) character variety of the fundamental group of a 3-manifold
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Generalized unknotting number one
two-bridge knot

Y osHIAKI UCHIDA

Let k be a knot in S3. An ordinary unknotting operation is an opera-
tion which changes the overcrossing and undercrossing at a double point
of a diagram of k. The unknotting number of a knot k in S3 is the min-
imun number of this unknotting operations needed to deform £ into a
trivial knot. The unknotting number is not easy to calculate. For two-
bridge knots, Kanenobu-Murakami [KM] determined unknotting number
one.

Theorem[KM]. Let k be a two-bridge knot with unknotting number one.
Then k is equivalent to
(1) S(p,2n) where p is an odd integer (> 1) and m and n are coprime
positive integers with 2mn =p 1, or
(2) C(a,&]_, ag, " , Ok, :{:2, =y —ag, -—-al).

Here S(p,q) is Schubert’s notation for a two-bridge knot, and

C(ci1,c2,-++ ,cr) is Conway’s notation. If the continued fraction
. 1 1
c —_
1 cz+ e +C’r‘

is equal to p/q, then C(cy, a2, ,¢r) is equivalent to S(p,q)-
Moreover Kohn determened two-bridge links with unlinking number
one.

Theorem [K]. Let k be a two-bridge link with unlinking number one.
Then k is equivalent to

(1) S(2n,2m £ 1), where m and n are coprime, or
(2) C(ala Ao, Ak, iza = Qy a2, ”a’l)-

Now we can consider the unknotting operation is an operation that
exchanges a trivial tangle with a rational tangle 1/2. (See Figure 1.)

Typeset by ApSTEX
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N
= g\ /2

Figure 1. |

So, we can consider an operation which exchanges a trivial tangle with
a rational tangle b/a, and we call this operation b/a-type operation. Note
that it is not known that b/a-type operation is unknotting operation or
not, except 1/2-type. But Y. Nakanishi proved that for two-bridge knots
1/3-type, and 1/4-type operations are unknotting operations. We can
determine b/a-unknotting number one two-bridge knot.

Theorem. Let k be a b/a-unknotting number one two-bridge knot. Then
b=1 and k is equivalent to C(ag,a1,a2, - , 0k, £a, —ag, -+, —az, —a1)
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A proof of Melvin-Morton conjecture
| S.y Chmutov*

Abstréét

The coloured Jones function Ji (K) is an invariant of a framed knot K de-
fined by the irreducible k-dimensional representation of the quantum group
Uq(slz). The unframed coloured Jones function J{(K) is obtained from
Ji(K) by multipication by g~¢vr#hel) where C is the quadratic Casimir
number of the representation. The ordinary Jones polynomial corresponds
to the case k = 2 and the standard 2-dimensional representation of si,.

Set g = e*. Write J¥(K) as a power series in h:

Je(K) =) Jin (KR
d=0 .

The coefficient J},(K) is a Vassiliev invariant of order d. Jg(K) tends to k
as h tends to zero. So Jii(K) =k

First Melvin-Morton conjecture (IMM],[BNG]). Jix(K)/k is a
polynomial in k of degree at most d:
Tk = Y baj(KOF;  boo(K) =1

0<j<d

The conjecture has been proved in [BNG]. Also it easily follows from
results of [ChV].

Define the Melvin-Morton function MM (K) as the highest degree part
of the coloured Jones function:

MM(E) = 3 baa()I.
d=0

*Program Systems Institute, Pereslavl-Zalessky, 152140, RUSSIA
(chmtov@botik.ru).
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Second Melvin-Morton conjecture ([MM], [BNG]).
R/2 _ ~h/2
MM(K) - Ar(eh) = 25

where Ak (q) is the Alezander-Conway polynomial.

The conjecture has been proved in [BNG]. In fact, D.Bar-Natan and
S.Garoufalidis reduced this second conjecture to the following statement

about weight systems. Let Ax(e") =3 aa(K)h?, ag(K) = 1 be the power

series expansion of the Alexa.nder—Coﬁay polynomial. Consider the sym-
bols Smaa and Saq of the coefficients baq(-) and aq(-) respectively. These
are some weight systems, i.e. functions on chord diagrams satisfying the
four-term relations. The whole space W of weight systems carries a graded
Hopf algebra structure

W:WQEBW1®W2@
which is dual to the Hopf algebra of chord diagrams
.A:.A()@A1®.A2€B...

The symbol of a Vassiliev invariant of order d belongs to Wy. So Smyma € Wa
and Saq4 € Wa. Let Sya and S, be the formal power series

Sum =Y Suma; Sa=) ‘SA,d‘-
d=0 ‘ d=0

They belong to the graded completion W of W.
The second Melvin-Morton conjecture is equivalent to the equality:
Swm - Sa=1. (1)

The most difficult part of the paper [BNG] concentrated on the proof of this
equality.
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I give a new proof of the equality (1) based on the combinarorial de-
scription ([ChV]) of the primitive space of Hopf algebra A. The equality (1)
follows from

Proposition. Let Py C Ay be the primitive space. d > 0. Then

i) (Smmat+Saals, =0

i) for evend Smmdlp, takes two values : 0 and 2,
fOT odd d SMMled =

The function Saam ¢|,, was essentialy described in [ChV]. So one needs to
describe only the function Sa dlp,- This can be done in a pure combinatorial
way.
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ON SU(N) INVARIANTS OF KNOTS AND 3-MANIFOLDS

YOSHIYUKI YOKOTA

Graduate School of Mathematics
Kyushu University
Fukuoka, 812, Japan

The purpose of this talk is to give an elementary approach to the quantum SU(N)
invariant ' of knots and 3-manifolds, and to give a brief account of the quantum
PSU(N) invariant of 3-manifolds, together with its level-rank duality. Furthermore,
an observation on the invariants of mutant knots and 3-manifolds is also given.

We only suppose the existence of the Homfly polynomial for oriented links in a
3-sphere S2, and first introduce the linear skein S(F') of a planar surface ' which
is a complex vector space made up with diagrams in F' quotiented by

D Y ——t“ND
VO = t—t-1 7’
_’h—-_’ = tN2_1 T N —p /6\? = t—N2+1 —— y

f——

t - > =) 2

where D is arbitrary diagram in F and O stands for the boundary of a disk in
F disjoint from D. In this talk, F' is choosen to be an annulus A, a disk B or a .
2-sphere S2, and t is supposed to be a root of unity.

Let L be a framed link in S3 represented by a diagram D in S%. By decorating
each component of D with an element of S(A), we have an element of S(S?). By
identifying this element with a polynomial in ¢ via the skein relations above, we
obtain a multilinear form

< ,..., >p:S(A)x---xS(A4)—-C,
e e ey ~ 7
§D §D

where | D denotes the number of components of D. Of course, this multilinear form
is invariant under regular isotopy, and so invariant of L.

Now, associated with each Young diagram, say A, we define an element €y of
S(A) so that, for any §D-tupple of Young diagrams, A1, ..., A\yp say, the quantity

< €xyy.-€xp >D

behaves nicely under Reidemeister move I. We shall call such quantities the SU(N)
invariants of L. The invariants of a 3-manifold M will be expressed as a linear sum
of such SU(N) invariants of a framed link representing M.
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Infinite framed link diagrams for open 3-manifolds

Jim Hoste
Pitzer College, Claremont CA 91711

We prove that every open, orientable 3-manifold, M, may be obtained
from $3 by first removing a tame O-dimensional set X homeomorphic to the
space of ends of M, and then performing surgery on a locally finite link in
§3 — X with possibly infinitely many components. If M is non-orientable a
similar, but slightly more complicated, situation exists. In either case, the
Kirby calculus must be enlarged. We will discuss the general theory of such
infinite framed link diagrams.
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Which lens spaces can be distinguished
by the absolute values of
the Witten-Reshetikhin-Turaev mvariants.

M. Sokolov*

We give a criterion that answers a question whether or not two lens spaces can be dis-
tinguished by the absolute values of the Witten-Reshetikhin-Turaev invariants 7, ([RT]).

We mean that two lens spaces Ly, q and Ly, o, can be distinguished by the absolute
values of the Witten-Reshetikhin-Turaev invariants iff there is a level r > 3 such that
I ( Loy )| # 17 (Lps 2|

S. Yamada [Y] has derived the following explicit formula for the absolute values of the
Witten-Reshetikhin-Turaev invariants for any lens spaces for any level r > 3;

%(l—cosz’%’l), ifd=1;
- * o p ¢ .
2(1 —cos =), if d =2 and c is even;

ITT(Lp,q‘)’[2 = 5(177 if d >2 and cis even and ¢ = %1 (mod d)
ord>2and cis odd and ¢ = %:}: 1 (mod d);
0, otherwise,

where d = ged(p, 2r), ¢ = %ﬁl, p' = £, and p*, p™ are integers such that

/»/*_1
aﬂdpp /%

pp" =1 (mod r), pp” =1 (modr), p™ is even.
r

Our criterion is derived from this formula directly.

THEOREM. Lens spaces Ly, 4, and Ly, ,, can be distinguished by the absolute values of
the Witten-Reshetikhin-Turaev invariants iff one of the following holds:
1) p1 # p2;
2)pr=po=p, qisequalto Lorp—1, and g # L,p—1;
) p=p2=p q, @2 #1,p— 1, and there are k,v € N such that v > 2, v devides p,
and one of the following conditions holds:
a) v is equal to 1‘—}—1- or 821 gy # +1 (mod v);
b) v is equal to 12/%1 or -Lk—_i, g Z +£!1 (mod v).

"Research is supported in part by INTAS, grant No. 94201,
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CORROLARY 1. [f p is a prime integer, qi, g2 # Lip — L, then lens spaces Ly g, and
can not be distinguished by the absolute values of the Witten-Reshetibhin-Turaev

Ll)yqz

mvariants.

REMARK. It was proved in [J] that if p is prime integer and lens spaces Ly, and Ly,
are not homeomorphic then they can be distinguished by the Witten-Reshetikhin-Turaev
invariants.

CORROLARY 2. The pair Ly, and Ly are the lens spaces with the minimal first
parameter that are homotopic but not homeomorphic and can not be distinguished by the
absolute values of the Witten-Reshetikhin-Turaev invariants. The pair Lyzs and Lyss are
the lens spaces with the minimal first parameter that are not homotopic and can not be
distinguished by the absolute values of the Witten-Reshetikhin-Turaev invariants.
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INVARIANT TRACE FIELDS OF HYPERBOLIC 3-MANIFOLDS

HAN YOSHIDA

Department of Mathematics
Nara Womien’s University

We say that two hyperbolic manifolds are commensurable if they have finite
sheeted covers which are diffeomorphic to each other. It is known that if two cusped
hyperbolic manifolds are commensurable, the invariant trace fields of them coincide.
The reverse is not true in general. For example, the 5; knot complement and the
(-2,3,7) pretzel knot complement have the same invariant trace field Q(#) where
8> — 6% + 20 + 1 = 0, but they are noncommensurable (3].

In [6], Thurston has shown the following theorem.

Theorem. There exist infinitely many pairs of noncommensurable hyperbolic
3-manifolds which admit decompositions into the same set of ideal polyhedra.

Neumann and Reid give a geometric description of the invariant trace field of a
cusped hyperbolic 3-manifold M. Namely it is the field generated by the tetrahedral
parameters of an ideal triangulation of M. Hence by subdividing ideal polyhedra into
ideal tetrahedra, the above theorem implies the following corollary.

Corollary. There ezxist infinitely many pairs of noncommensurable hyperbolic 3-
manifolds which have the same invariant trace field.

In this paper we show that there exists a set of arbitrary number of mutually
noncommensurable hyperbolic 3-manifolds which admit decompositions into the same

set of ideal polyhedra. Therefore we can obtain the following theorem.

Main Theorem. There exists a set of arbitrary number of mutually noncommensu-
rable hyperbolic 3-manifolds with the same invariant trace field.

Typeset by ApS-TEX

— 157 —



HAN YOSHIDA

REFERENCES

. C.Adams:, Thrice punctured spheres in hyperbolic 3-manifolds, Trans.Amer.Math.Soc. 287
(1985), 645-656.

. D.B.A. Epstein, R.C. Penner:, Euclidean decomposition of non-compact hyperbolic manifolds,
J. Diff. Geom. 27 (1988), 67-80.

. W.Neumann, A.Reid:, Arithmetic of hyperbolic 3-manifolds, O.S.U.Math.Research Inst. Topol-
ogy '90 Proceedings of the Research Semester in Low Dimensional Topology at Ohio State Univ.
(de Gruyter Berlin) (1991).

. W.Neumann, A.Reid:, Amalgamation and the invariant trace field of Kleinian group, Math.
Proc.Camb.Phil.Soc. 109 (1991), 509-515.

. A:Reid:, A note on trace-fields of Kleinian groups, Bull.London Math.Soc. 22 (1990), 349-352.

. W.P. Thurston:, The geometry and topology of 3-mdnifolds, Mimeographed lecture notes Prince-
ton Univ. (1977).

— 158 —



Minimal Genus Seifert Surfaces for
Alternating Links

Makoto SAKUMA (Osaka University)
Mikami HIRASAWA (Osaka University)

Let L be an oriented, prime alternating link in §° with a reduced alter-
nating diagram D. We denote by S(D) a Seifert surface for L obtained by
applying Seifert’s algorithm to D. Generally the algorithm doesn’t uniquely
present a surface (this corresponds to the duality with respect to Murasugi
sum). However when D is a special alternating diagram, i.e., no Seifert circles
are nested, S(D) is uniquely decided and we call L a special alternating link.

Murasugi [4] and Crowell [1] showed that if D is alternating then S(D)is
of minimal genus for L And Gabai [2] presented a straightforward proof.
The question is on the converse; whether all minimal genus Seifert surfaces
for an alternating link are obtained from alternating diagrams by Seifert’s
algorithm. We show an affirmative answer to this question for special alter-
nating links applying the technique of [2]. Moreover We show that we can
find all minimal surfaces by consequently deforming a diagram by so-called
flypes. Namely we show; -

Theorem 1. Let D be a reduced, special alternating diagram for the
prime special alternating link L. Then for every minimal Seifert surface F
for L, there exists a finite sequence of flypes from D to another reduced,
special alternating diagram I for L such that F'is isotopic to S(D').

We remark that the same result is announced by Schrijver [5] without

full proof. Then we also determine the structure of the complex M.S(L) for



special alternating links defined by Kakimizu [3]. The complex reflects the
behaviors of the surfaces in the link exterior of S°.

Definition. The complex MS(L) for a link L is a simplicial complex
constructed from the set of minimal surfaces for L, defined as follows;

(1) the vertex set M S(L) consists of the equivalence classes of the
minimal surfaées for L, and

(2) a set of n + 1 vertices {vo, ..., Un} spans an n-simplex if and only if
there exist representatives {Fp, ..., Fn} such that F; N F; = @ for every i # j

~ Theorem 2. The complex MS(L) for every prime special alternating
link L is homeomorphic to a ball.

Note that this result supports Kakimizu’s conjecture [3] stating that
MS(L) for any link is contractible.

On the other hand, we show the answer to the above question is generally
negative for non-special alternating links. |

Theorem 3 . There are infinitely many prime alternating links with a
minimal surface which does not arise from alternating diagrams.

To be specific, we -have the following;

(1) There are infinitely many prime alternating links with arbitrarily
many minimal surfaces which do not arise from alternating diagrams, and
that such surfaces are disjoint (except for the boundaries) from one another
and the minimal surfaces which arise from alternating diagrams.

(2) There are infinitely many prime alternating links with a minimal sur-
face which does not arise from alternating diagrams, and that it intersects,
in arbitrarily large complexity, with every minimal surface arising from al-
ternating diagrams, i.e., the distance in terms of MS(L) from surfaces of

alternating diagrams is arbitrarily large.
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ON THE COMPLEMENT OF
HOMOTOPICALLY TRIVIAL KNOTS

M.Boileau-M.Domergue-Y.Mathieu

In 1988, Gordon and Luecke [G-L] showed knots in the 3-sphere are deter-
mined by their complement. David Gabai [Ga] had proved the same results
for knots in S* x §2 in 1985, but Domergue and Mathieu [D-M] gave tw=
o knots k and ¥ in the solid torus V' with homeomorphic complements and
= no homeomorphismof the pair (V,k) to the pair (V, k). For closed 3-
manifolds, Mathieu [M] constucts in Seifert fiber spaces examples of pairs
of knots with an orientation reversing homeomorphism of the complement
which are not equivalent .The question :

are knots determined by their complement ?
is still open for knots in arbitrary 3-manifolds.

We give now a “surgical” point of view of the complement problem. Let
X an oriented compact 3-manifold with boudary a torus, T = 3D0X ; a
slope on T is the isotopy class of a simple closed curve of T. Dehn filling on
X along a slope « is obtained by gluing to X a solid torus V' = 3DS" x D?
by its boundary AV identified with= T’, so that o bounds a disk in X(a) =
3DX U, V. In the case= of X is the exterior of a regular neighborhood
N(k) of a knot k in the 3-sphere, X = 3DS® — int(N(k)), Gordon-Luecke’s
theorem is:

Theorem [G-L] : Let X be a 3-manifold with incompressi= ble boundary a
torus and a slope p so that X (u) = 3DS®. If X(a) == 3DS?, thena = 3Dy

Corollary :Any knot in S® is determined by its complement.

Let now k be a knot in an oriented compact 3-manifold M and X =
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3DM — int(N(k)) with X(u) = 3DM for pu meridian of k. Let be M’ =
3D = X (') for any slope ' on 0X.

Property (H) A knot k has property (H) if ' Jiﬁemnt from p implies
m(M’) not isomorphic to m(M).
In the case of M = 3DS3, property (H) is known as property (P).

Remark : if a knot k a property (H), then k is determin= ed by its com-
plement. ;

1) Manifolds which are not rational homology spheres.

The first part concerns homotopically trivial (nul-homotop) knots in ori-
ented 3-manifolds with non trivial rational homology.
We use Gabai’s results [Ga] to prove the following :

Lemma 1 : Let M be a 3-manifold with hopfian fundament= al group, k
a homotopically trivial knot in M, and k' the core of the surgery in M’ =
3DX(u"), then my(M') is zsomo'rphzc to m (M) zf a= nd only if ¥ is homo-
topically trivial in M'.

Theorem 1 : Letk be a horﬁotbpically trivial knot in M , with X ‘=‘ 3DM —
int(N(k)) irreducible, boundary incompressible.
If M is not a rational homology sphere, then k has property (H).

2) Large knots.
In this part, the hypothesis “M is not a rational homology sphere” is
replaced by a geometrical condition on the knot complement :

Definition 1 : A knot k in M is sufficiently large i= f the complement of
k, M — k, contains an incompressible surface F.

Definition 2 : A sufficiently large knot k is strictly nul-homotop if k is
homotopically trivial in M — F.
We prove the fundamental proposition :

Proposition 1 : let k be a sufficiently large and homotopically trivial knot
in M and M’ = 3DX ().

If (M) is isomorph to m (M), then F separates M (and M'), and F
compresses both in M and M'.
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By using Proposition 1 and Scharleman’s result [S] we can prove :

Theorem 2 :Let k be a homotopically trivial knot in M = with M—int(N(k))
irreducible boundary incompressible. Let F' an incompressible surface in M —
k, no boundary parallel.

(i) if k is strictly nul-homotop, then k as property (H).

(ii) if F is an incompresible torus and wi(M) infinite hopfian, then k as
property (H) except maybe if k is a (1,2)-cable of an atoroidal knot K. In
this case k is not determined by is complement if and only if K also.

3) Detecting strictly nul-homotop knots.

As we see above, a knot k which has not property (H), cannot be in a
manifold which is not a rational homology sphere, and cannot be strictly
nul-homotop. s ‘

We give a sufficient condition to detect strictly nul-homotop knots :

Proposition 2 :Let k be a homotopically trivial knot in M with M —
int(N(k)) irreducible boundary incompresstble.

The knot k is strictly nul homotop if there is a singular disk 0 with 80 =
3Dk, so that for a regular neighborhood N(3) of 0 :

(i) either i,(m(N(D)) is different from wi(M), where i, is induced by
inclusion

i: N M

(i) or g(ON(8)) < h(M), where g(ON(0)) is the genus of the surface
ON(8), and h(M) is the Heegaard’s g= enus of M

Definition 3 : A knot k is totally nul-homotop in M = if there is a sub-
manifold N so that k is nul-homotop in N and the inclusion i : N C M
induces a trivial homomorphism on fundamental groups i,(m(N) = 3D{1}.

It is clear that totally nul-homotop knots are strictly nul-homotop knots,
but the class of totally nul-homotop knots is easier to recognize, in particular
for manifolds given by a Heegaard splitting. We have :

Corollary 1 :Let M be a rational homology sphere containing a nul-homotop
knot with irreducible boundary-incompressible ezterior. Suppose M 1is not a
homotopy sphere.
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If k is totally nul-homotop, then k is strictly nul-homotop. In particular
k has property (H).
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SEiFERT COMPLEX FOR LINKS AND
2-VARIABLE ALEXANDER MATRICES

TERUHISA KADOKAMI

Dept.of Mathematics,Osaka City Univ.,D2

ABSTRACT =

We introduce a general theory to extend a method for calculating an one-variable
Alexander matrix from a Seifert sutface to-a multi-variable ore by increasing com-
ponents of surfaces, and especially characterize the matrix in the 2-variable case.
A multi-component Seifert surface has singularities in general, so we define it here
a Seifert compler. This idea is mentioned by J.H.Conway and applicated firstly by
his student,D.Cooper,to a theory of knot cobordism invariants [6,7]. This is our
original to use it for a characterization theory of Alexander matrices.

For a statement of a main theorem,we introduce some terms.

Definitionl. (Types of a singularity)

Types of intersections of surfaces embedded in S* in general positions are shown
below.

(V)clasp singularity

5

(2)ribbon singularity

(38)circle singularity !

(4)triple point singularity
]
Ly
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Definition2. (S — complex,C — complex, R — complex, RC — complez)

If there are n Seifert surfaces in general positions,then we define the union of
them as an n-component S-complez(Seifert complez). And if its singularities are all
clasps,we define it a C-complez,if they are all ribbons,we define it an R-complez,and
if they are clasps and ribbons, we define it an RC-complexz.

Lemma. An S—complez can be transformed to a C—complex by isotopies of each
component with their boundaries fized.

Main Theorem. Let L = L U L, be an n—component link such that L;(i = 1,2)
is an n;—component link with n = ny + nqg,and s a Seifert surface of L, then a
2—variable Alezander matriz of L associated to S,Ap(t,t2),is calculated in the
following form up to basis changes.

24, 132 -
T e T e
C1 ‘
| f 0
!__ Cl (; o (1 —-tl)Ml
Ap(ty,ty) = f [ ; + (1= t3)M,
R (1= t2)(1 - )M
l Cy |

Here C,’ = (_Ot. ;) (Z = 1,2), B = tltzB__—tlB_+ eth+_+B++,an mxm—-type

matriz (This needs a precise ezplanation,but some preparation is needed,so we omit
My

it here.It will be ezplained in my talk.Sorry!/),and M =*' M = (M;),a symmetric
M3

matriz over 3 such that M, 1s a 2g; X (2g; + 292 + m)—type, M, is a 2g2 X (2g; +

2go +m)—type,and M; is an m x (2g) + 292 + m)—type.

Conversely,as M can. be taken arbitrary,this is a characterization of 2—variable
Alezander matrices.
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Symmetric knots satisfy the cabling conjecture
CHUICHIRO HAYASHI' and KOYA SHIMOKAWA?

Abstract

The cabling conjecture states that a knot K in 53 is a cable knot or a torus knot if
some Dehn surgery on K yeilds a reducible manifold. We prove that symmetric knots
satisfy this conjecture. (Gordon and Luecke also prove this independently ([G-L4])).

1 Introduction

Let X be an orientable 3-manifold, K ¢ X a knot, N(K) a regular neighbourhood of
K in X, r aslope on the torus ON(K). We let X(K;r) denote the 3-manifold obtained
from X by r-surgery on K, i.e., the result of attaching a solid torus W to X—int/V (K)
by identifying 8W with N(K) so that r bounds a disc in W. We use K* to denote the
core of W in X(K;r). Surgery slopes along a knot in $? (in solid torus) are in one to one
correspondence with rational numbers with respect to the standard (a prefered) meridian-
longitude coordinates. A knot K C X is said to be cabled in X if there is another knot K !
in X such that K ¢ ON(K') and [K] = w[K'] in H1(N(K"); Z) with w > 2.

In this paper we consider the case where a Dehn surgery on K produce an essential
sphere in $3(K;r), that is, S3(K; ) is a reducible manifold.

For restrictions on reducing slopes (i.e. slopes on which one can get reducible manifolds
by Dehn surgeries) C.McA. Gordon and J. Luecke proved that they are integral [G-L] and
if there are two such slopes then their distance is at most one [G-L3]. For restrictions on
types of knots F. Gonzalez-Acufia and H. Short proposed the following cabling conjecture.

The Cabling Conjecture If S3(K;r) is reducible, then K is cabled.

The cabling conjecture is known to be ture for some knots including satellite knots [Sch],
strongly invertible knots [E], alternating knots [M-T] and arborescent knots [Wul.

A symmetry for a knot K in X is a finite group G acting nontrivially on X such that
g(K) = K for each element g of G. In [L-Z], E. Luft and X. Zhang showed that “symmetric
knots satisfy the cabling conjecture” except for periodic knots of order 2,3 or 5. It is
confirmed in [H-M] that periodic knots of order 3 or 5 also satisfy the cabling conjecture.
We consider periodic knots of order 2 and get the following result.

Theorem 1 ([G-L4], [H-S]) Symmetric knots satisfy the cabling conjecture.

IThis research was partially supported by Fellowships of Japan Society for the Promotion of Science
for Japanese Junior Scientists.

2This research was partially supported by Fellowships of Japan Society for the Promotion of Science
for Japanese Junior Scientists.
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Since symmetric knots other than periodic knots satisfy the cabling conjecture {L-Z], we
consentrate our attention to periodic knots.

The basic idea of the proof of Theorem 1 owes to [L~Z]. Theorem 1 follows from Theorem
2 below. Let K be a non-cabled periodic knot with a periodic automorphism f of §* of
order n. Then f is a rotation of S% and Fiz(f) is a trivial knot disjoint from K. Hence
K is contained in the unknotted solid torus W = S°— int N(Fiz(f)). Passing through
the branched covering p: S3 — S%/{f}(=2 §3), we obtain the factor knot K = p(K). Luft
and Zhang show that if K produces a reducible manifold by m-surgery, then W(K;m/n)
contains a seperating essential annulus whose every boundary component intersects 9D
(D is a meridian disc of W) once. They proved if K is not cabled, then A(m/n,1/0) =
|n| < 6. C. Hayashi and K. Motegi [H-M] showed that A(m/n,1/0) < 2 and here we have
A(m/n,1/0) = 1.

Theorem 2 ([H-S]) Let V be a solid torus, D a meridian disc of V, and K C V a non-
cable knot. Assume that V is incompressible in V—intN(K). If the manifold V(K;r)
contains a separating essential annulus A such that each component of OA intersects 0D
transversely in one point, then A(u,r) =1, where u is the meridian slope of K.

From now on we assume A(u,7) = 2 by means of [H-M]. This assumption will lead us
to a contradiction.

2 Preliminaries

The method we used to prove Theorem 2 is analysis of intersections of a meridian disc and
a seperating essential annulus. We breifly describe it.

We take the meridian disc D of V so that np = | DN K] is minimal over all meridian discs.
We have an incompressible and J-incompressible planar surface Pp = D N (V—intN(K)).

We are given a boundary slope A on the torus §V. We take the annulus A in V(K;7) so
that ns = |ANK*| is minimal over all essential annuli in V' (K; ) with such a boundary slope
as above. Then the surface P4 = AN(V—int N(K)) is incompressible and ¢-incompressible.

Hence we can further take D and A so that |0Pp NJP4,| is minimal and Pp ﬂPA consists
of loops and arcs which are essential on both Pp and Pj.

As in [G-L2] we will form graphs Gp and G4 on D and A. In the following we assume
that {i,7} = {D, A}

We orient arbitrarily the knots K and K*. Number the components of JF; N GN (K),
{1,2,...,n;} in the order in which they appear on N(K). Thus K and K" are divided
into np and ny intervals [1,2},[2,3], ..., [ni, 1].

We label the end points of arcs of Pp N P4 in P, with the corresponding boundary com-
ponents of P;. Thus around each component of 9P, NON(K) we see the labels {1,2,...,n;}
appearing sequentially A times. ’
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We regard the discs D N N(K) and AN N(K*) as forming the “fat vertices” of graphs
Gp and G 4. The edges of G; are corresponding to the arcs of Pp N P, in P; except for
the arcs whose both end points are in 3i.- We call the closure of a component of 0(fat
vertex)—(end points of edges) a corner. If an edge e connects a vertex to a vertex, then
we say e is an interior edge, otherwise a boundary edge. If an interior edge e has both
two end points in the same fat vertex, then we say e is a loop. The graph G; contains no
trivial loops, i.e., a 1-sided face (no arc of P4 N Pp is boundary parallel in F;). We assign
arbitrary orientations to P.. Then every fat vertex v is assigned a sign + or — according
to the induced orientation of dv as it lies on N (K): If an interior edge e connects vertices
of the same sign, then we say e is a homo-edge, We thus obtain two labeled graphs in D
and A, whose edges are in one to one correspondence. We call components of i — G; faces
of Gi. A face P is called a disc face if P is an open disc. For every face P, let 9P be the
subgraph which consists of vertices and edges intersecting P-P.

Let  be a label of G;. An z-edge in G; is an interior edge with label z at an end point.
A subgraph o is an z-edge cycle if all its edges are homo z-edges and if there is a disc face
P of the subgraph ¢ such that ¢ = P. A Scharlemann cycle is an z-edge cycle for some
label z which bounds a disc face of G;. The length of a Scharlemann cycle is the number
of ‘edges contained in the cycle.

We call a Scharlemann cycle a Scharlemann cycle for the interval [z, z + 1] 1f its:corners
are in the interval [z, z+1]. We call the subgraph of G; consisting of the vertices z and z+1
and the edges corresponding to those of o a Scharlemann co-cycle of o. A Scharlemann
co-cycle in G; is inessential if it is contained in a disc imbedded in the surface j.

Lemma 2.1 ([C-G-L-S, Lemma 2.5.2.(a)]) The graph G4 does not contain a Scharlemann
cycle. The graph Gp does not contain a Schademann cycle whose Scharlemann co-cycle is
inessenttal.

3 Great z-webs in Gp

An z-web is a connected subgraph ¥ of Gp such that all the edges oyka are z-edges, all
the vertices of £ have the same sign, and such that there exists a vertex vy of ¥ with the
property that ‘

1. for any vertex v of ¥ other than vg, there is an edge of X mmdent; to v'at each
“occurrence of the label z at v, and ~

2. there is an edge of ¥ incident to vy at some occurrence of the label z at .

Let U be the component of D — % which contains 0D. A great z-web satisfies the
additional condition that all the vertices of Gpin D—U are those of the z-webs itself.
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- The loops JA divides the torus V(K r) into two annuli. We attach one of them, say
A" to A and obtain a torus T. We push T slightly into intV(K;r). This torus T' may
be compressible in V(K;r). As in [Go], we construct new graphs I'r and I'p on this
torus T and the meridian disc D, such that they contain no boundary edges. Let Pp be the
punctured torus TN(V —int N(K)). The curves of intersection of Pr and Pp in V—int N(K)
is derived from those of P4 and Pp:

The two boundary edges of Gp and G 4 are connected by a subarc of 0D in I'p and by
an essential arc in A’ in I'r, and are amalgamated into an edge eo.

The next Lemma follows from results of {Go| and [P].

Lemma 3.1 Assume A(u,r) > 2. Then I'p contains a great z-web.

4 Incaseny >4

Theorem 2 under the assumption that n4 > 4 follows from three lemmas.

Lemma 4.1 ([G-L3, Theorem 2.3]) Assume that na > 4. IfT'p contains a great z-web,
then I'p contains two Scharlemann cycles for distinct intervals.

Lemma 4.2 Assume that nga > 4. Then we can choose the annulus A’ so that I'p does
not contain a Scharlemann cycle which contains the edge ey derived from the two boundary
edges of Gp. (We regard a trivial loop as a Scharlemann cycle of length 1.)

Lemma 4.3 ([H-M2, Lemma 3.1]) Suppose that Gp contains two Scharlemann cycles for
distinct intervals. Thenna =2,

5 In caSe ng =2

Let ¥ be a great z-web in I'p, and U be the face of £ which contains 0D. A vertex v of
is called a cut-vertez if D contains a simple closed curve C such that CNE¥' = CNv and
Y has edges in both sides of C.- We say that X.is composite if I) contains a simple closed
curve C such that CNE = CN{edges of T}, |CNZ| =2 and ¥ has vertices on both sides -
of C. Otherwise X is prime. It is clear that if I'p contains a great z-web, then we can find
prime one without cut-vertices.

One can prove the following Lemma using the Euler’s formula.

Lemma 5.1 Let ¥ be a prime great x-web of I'p without cut-vertices. Then ¥ consists of
two kinds of Scharlemann cycles of length a and b placed in the checkerboard-like way and
(a,b) = (2,b), (3,3), (3,4) or (3,5).

Using the above lemma, we can show the next lemma, whose conclusion contradicts
Lemma 2.1.
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Lemma 5.2 = Each great z-web of I'p contains a Scharlemann cycle whose Scharlemann
co-cycle is inessential. :
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Dehn surgery

Cameron Gordon

We will give a survey of some known results and remaining problems
concerning Dehn surgery on knots, and. more generally, Dehn filling on 3-
manifolds along a torus boundary component. We will then focus on the
technique of combinatorial analysis of intersections of punctured surfaces,
and outline the proofs of some results obtained by these methods.
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Invariants of links

Louis H. Kauffman

1 Title of First Talk: Integral Heuristics and
Vassiliev Invariants

Abstract: This talk discusses how simple heuristics involving Witten’s func-
tional integral formulation of link invariants lead to the form of the weight
systems for Vassiliev invariants. We shall also discuss numerical experiments
(with Sostenes Lins) related to the large k asymptotics of Witten’s integral.

2 Title of Second Talk: Invariants of Links
and Quantum Groups

Abstract: This talk discusses the relationship of Hopf algebras (aka quantum
groups) with the structure of link invariants and with link diagrams. Specific
quantum groups are implicated by the simplest invariants and the categorical
structure of link diagrams corresponds to the axiomatics of quasi-triangular
Hopf algebras. This gives rise to a natural functor from the category of
tangles to a category naturally associated with any finite dimensional quasi-
triangular Hopf algebra.
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3 Title of Third Talk: Finite Dimensional
Hopf Algebras and Invariants of Three Man-
ifolds

Abstract: This talk uses techniques built in the previous talk to discuss
invariants of three manifolds obtained via integrals on finite dimensional
Hopf algebras. The talk will discuss the existence and applications of these
integrals (joint work with D. Radford). We also discuss applications of this
point of view to finding elements in the center of a Hopf algebra that are
represented by knots (jouint work with D. Radford and S. Sawin).
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The Topology of DNA

De Witt Sumners
Department of Mathematics
Florida State University

sumners@math.fsu.edu

The DNA of all organisms has a complex and fascinating topology. It
can be viewed as two very long, closed curves that are intertwined millions
of times, linked to other closed curves, tied into knots, and subjected to four
or five successive orders of coiling to convert it into a compact form for infor-
mation storage. For information retrieval and cell viability, some geometric
and topological features must be introduced, and others quickly removed.
Some enzymes maintain the proper geometry and topology by passing one
strand of DNA through another via an enzyme-bridged transient break in
the DNA; this enzyme action plays a crucial role in cell metabolism, includ-
ing segregation of daughter chromosomes at the termination of replication
and in maintaining proper in vivo (in the cell) DNA topology. Other en-
zymes break the DNA apart and recombine the ends by exchanging them.
These enzymes regulate the expression of specific genes, mediate viral inte-
gration into and excision from the host genome, mediate transposition and
repair of DNA, and generate antibody and genetic diversity. These enzymes
perform incredible feats of topology at the molecular level; the description
and quantization of such enzyme action absolutely requires the language and
computational machinery of topology. In the topological approach to enzy-
mology, circular DNA is incubated with an enzyme, producing an enzyme

signature in the form of DNA knots and links. By observing the changes in
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DNA geometry (supercoiling) and topology (knotting and linking) due to en-
zyme action, the enzyme mechanism and substrate conformation in solution
can often be characterized. These lectures will discuss analytic topological
models and Monte Carlo simulation models for the structure of DNA and
the active enzyme-DNA complex.

The long-range goal of the topological approach to enzymology is to de-
velop a complete set of experimentally observable topological parameters
with which to describe and compute enzyme mechanism and the structure
of the active enzyme-DNA synaptic intermediate. One of the important un-
solved problems in biology is the three-dimensional structure of proteins,
DNA and active protein-DNA complexes in solution (in the cell), and the
relationship between structure and function. It is the 3-dimensional shape
in solution which is biologically important, but difficult to determine. The
topological approach to enzymology is an indirect method in which the de-
scriptive and analytical powers of topology and geometry are employed in an
effort to infer the structure of active enzyme-DNA complexes in vitro (in a
test tube) and in vivo.

In the topological approach to enzymology, the topological invariance of
knotted and linked (catenated) DNA during experimental workup and the
computational power of topology are exploited to capture information on en-
zyme action. In in vitro (in a test tube) experiments, an enzyme extracted
from living cells is reacted with circular DNA substrate produced by cloning
techniques. Similar experiments have been done in vivo in which various ex-
perimental manipulations (mutation, drugs, heat shock) can be used to turn
off genes which produce enzymes whose action would confound the analy-
sis. The enzyme reaction produces a topological signature in the form of an

enzyme-specific family of supercoiled DNA knots and links (catenanes). By
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observing changes in DNA geometry (supercoiling) and topology (knotting
and linking) by gel electrophoresis and electron microscopy of recA-coated
products the enzyme mechanism can be described and quantized. Because
of the enormous variety of knot and catenane structure, fine details of DNA
structure and enzyme action can be selectively assayed.

The topological approach to enzymology poses a number of challenges
and problems for mathematics:

1. How can one best describe and compute enzyme mechanism?. There
are (mathematically) infinitely many ways to change one DNA knot or link
into' another.. Of all these ways, only a few make biological ”sense”. This
requires the construction of mathematical models for enzyme action.

2. How much experimental information is necessary in order to uniquely
characterize enzyme mechanism? Mathematical proof of biological structure
can significantly reduce the amount of lab work required.

3. How. can incomplete and scmetimes conflicting experimental informa-
tion be accommodated in-‘a mathematical model for enzyme action? The
model can often enumerate all possible enzyme mechanisms and enzyme-
DNA structures which could give rise to the observed products. At this
stage,-collaboration with biologists is crucial in order to incorporate super-
coiling energetics and other biclogical reasoning methods to produce hybrid
mathematics/biology arguments for selecting one answer instead of another.

4. What is the best mix of gel and EM data? Gel electrophoresis yields
node (minimum crossing) number of reaction products, gel velocity of a prod-
uct can often be used to determine its exact topology; electrophoresis can
detect vanishingly small amounts of product. Electron microscopy yields ex-
act topological information (when the EM can be unambiguously scored);

EM is technically difficult, and requires a large amount of product. What is
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the best mix of gel and EM data in order to uniquely characterize enzyme
structure /mechanism?

The tangle model has been developed to aid in the mathematical analysis
of these DNA experiments. A tangle is a model for two (or more) DNA
strands bound to a globular protein. The (2-string) tangle model can be used
to analyze experimental results for any enzyme which operates by binding
to DNA at two places, such as topoisomerase and site-specific recombinase.
The action of topoisomerase is to non-specifically bind to the DNA substrate
at two places, form an enzyme-bridged transient break (of one or two DNA
backbone strands), and pass the other binding site through the enzyme-
bridged transient break, releasing the DNA product at the termination of
the process. In site-specific recombination, recombinase recognizes and binds
to duplex DNA substrate at two specific places (sites), performs double-
stranded enzyme-bridged breaks at each site, and exchanges the ends (one or
more times) in an enzyme-specific manner, releasing the product when the
précess terminates.

Tangles can be added together to form other tangles, and can be closed
up to yield either a knot or a link by the numerator construction, in which
one forgets the defining 3-ball for the tangle. The numerator construction
is the mathematical analog of deproteinization, when the enzyme releases
the bound DNA. The numerator and addition operations on tangles can be
used to write tangle equations which describe enzyme action. The relevant
observation is that most DNA conformations are produced by the plectone-
mic interwinding of pairs of DNA strands; such interwinding templates are
exactly how rational tangles and 4-plats are constructed. Rational tangles
and 4-plats admit classification schemes by vectors which represent minimal

alternating diagrams; these vector classifications can be used to construct
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algorithms for computing all rational tangle solutions to tangle equations.
The tangle model provides mathematical proof of the topological struc-
ture of the enzyme-DNA synaptic complex, both before and after enzyme
action, the algorithmic calculation of that structure, and the precise predic-
tion of the results of further experiments. The tangle model uses experimen-
tal information to write down tangle equations which quantize changes in
DNA topology. The solution of these tangle equations uses some recently-
developed knot theory, such as the cyclic surgery theorem, property R, and

the knot complement theorem.
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Chern-Simons perturbative invariants

Toshitake KOHNO
Department of Mathematical Sciences, University of Tokyo

This is an expository lecture on recent developments in Chern-Simons perturba-
tive theory for knots and 3-manifolds. Let M be a 3-manifold and A the space
of G connections on M for a simply connected Lie group G. The critical points
of the Chern-Simons functional CS : A — R are the flat connections. The orig-
inal idea due to Witten is to compute the asymptotic expansion of the partition
function of the Chern-Simons functional with respect to the level k, around a
flat connection. Each term of such expansion gives, in principle, a toplogical
invariant of a framed 3-manifold described by Feynman diagrams. A direct
construction of such invariants was established by Axelrod-Singer, Kontsevich,
Taubes and other.authors. Here the invariants are expressed as an integral of a
wedge product of Green forms, which are 2-forms on M x M having singularities
along the diagonal set, over the configuration space of points on M. A different
approach based on Morse homotopy was persued by Fukaya.

1. Integral representations of knot invariants

Applying Chern-Simons perturbative theory to knots in R?, we obtain in-
teresting integral representations of classical knot invariants, which might be
considered to be a generalization of the Gauss formula for the linking num-
ber. The integral representation of the 2nd coefficient of the Alexander-Conway
polynomial was obtained by Guadagnini-Martellini-Mintchev, and has been de-
veloped by Bar-Natan, Bott-Taubes, Lin-Wang and others. We discuss such
integral representations in terms of the graph complex. We also describe com-
binatorial formulae due to Polyak-Viro and the relationship with Arnold theory
of invariants of plane curves.

2. Finite type invariants of 3-manifolds

On the other hand, a number theoretic expansion of the Witten invariants
has been investigated by H. Murakami and T. Ohtsuki. This is the expansion
of the Witten invariants with respect to ¢ — 1 where g is a root of unity. It
was shown by H. Murakami that for a rational homology 3-sphere, the leading
coefficient is expressed by the Casson-Walker invariant. We review developments
on such finite type invariants appearing in the expansion, especially the work of
Rozansky on the relation with asymptotic expansion with respect to the level k
and the work of Lawrence on the adic convergence of the above number theoretic
expansion. It should be noted that, more recently, Le Tu Quoc Thang, H.
Murakami, J. Murakami and T. Ohtsuki established a universal way to construct
finite type invariants with values in the algebra of chord diagrams.
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3. Chord diagrams on surfaces

We present an approach to understand the Chern-Simons perturbation the-
ory of a 3-manifold with boundary as a topological quantum field theory. Our
method is based on the structure of a Poisson algebra on the space of chord
diagrams on a surface discovered by Reshetikhin and others. We discuss Vas-
siliev invariants for links in the product of a surface and the unit interval, with
values in the quantization of the space of functions on the moduli space of flat
G connections on the surface. This approach leads us to a generalization of
Kontsevich’s integral to the case of higher genus. We discuss a relation be-
tween the asymptotic behaviour of the action of the mapping class group on the
space. of conformal blocks for large k limit and topological invariants of links
in the product of a surface and the unit interval defined associated with chord
diagrams on surfaces. In particular, we describe an integrable system on the
conﬁguration space of the torus whose holonomy defines Vassiliev invariants of
links in the product of the torus and the unit interval.
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TOPOLOGICAL IMITATIONS

AK10 KAWAUCHI

Department of Mathematics, Osaka City University, Osaka 558, Japan

L Abstract

By a (3,1)-manifold pair, we mean a pair (M,L) such that M is a smooth
connected oriented 3-manifold and L is a proper (possibly disconnected) oriented
smooth 1-submanifold.

A topological imitation of a (3,1)-manifold pair (M, L) is a (3, 1)-manifold pair
(M*, L*) together with a smooth map ¢ : (M*, L*) — (M, L) with some properties
close to a diffeomorphism (cf. [1,2,3,4,5,6,7]). A useful concept of the topological
imitation is an almost identical imitation, which we call here an AID imitation. It is
roughly a topological imitation ¢ : (M*, L*) — (M, L) with the following properties
(1) and (2):

(1) There exist tubular neighborhoods N(L*) and N(L) of L* and L in M™* and
M, respectively, such that the restrictions g|(nz=),r+) : (N(L*),L*) — (N(L), L)
is a diffeomorphism and ¢(M* — intN(L*)) = M — intN(L).

(2) The restriction g|pr«—inen(L*—a) : M* —intN(L* —a*) — M — intN(L —
a) is (boundary-relatively) homotopic to a diffeomorphism for every pair a*, a of
components of L*,L with ¢(a*) = a, where N(L* — a*) and N(L — a) are the
tubular neighborhoods of L* — a* and L — a obtained from N(L*) and N(L) in (1)
by removing the components which contain a* and a, respectively.

When (M, L) is a trivial link, the AID imitation ¢ : (M*, L*) — (M, L) is closely
related to the concept of an almost trivial link (or, in other words, a Brunnian link)
in knot theory which is defined as follows: |
DEFINITION. A link L in S? with 7(> 2) components K;(i = 1,2,...,r) is almost
trivial if the sublink L — K; is trivial in S® for all ¢. (In the case r = 2, we further
impose that the linking number of the link L 1s 0.)

Trying to strengthen the concept of an almost trivial link, we also have the

following concept of an almost trivial link in the strong sense:
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2 AKIO KAWAUCHI

DEFINITION. A link L in $* with r(> 2) components K;(i =1,2,...,7) is almost
trivial in the strong sense if it is almost trivial and every cyclic covering link of L
(i.e., the lifting of the sublink L — K to every finite cyclic covering space over S8
branched over K; for every i) is an almost trivial link.

For example, the Whitehead link is almost trivial, but not almost trivial in the
strong sense. On the other hand, the Milnor link, shown below, is almost trivial in

the strong sense.

Although the Milnor link is not any imitation of a trivial link (because the link

module is distinct from that of a trivial link), this concept leads us to the following
concept(cf. [7,9]):
DEFINITION. A strongly AID imitation is an AID imitation ¢ : (M*,L*) — (M, L)
of a (3, 1)-manifold pair (M, L) such that the lifting of this imitation to every finite
regular covering p : (M ,L) — (M, L) branched over a proper subfamily of the
components of L such that M is connected is still an AID imitation after missing
the branch set.

In this lecture, we shall explain these concepts and recent applications to some

3-manifold invariants.(cf. [7,8]) and the skein link polynomial.
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On spatial graphs
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First we review some recent results of the author on spatial graphs.

Let G be a finite graph without loops and multiple edges. Let / be the unit interval.
We say that two spatial embeddings f,g: G — R3 are '

(1) ambient isotopic if there is a level preserving locally flat embedding of G X [ into
R® x I between f and g.

(2) cobordant if there is a locally flat embedding of G x [ into R® x I between f and
g ‘

(3) isotopic if there is a level preserving embedding of G x [ into R3® x I between f
and g.

(4) I-equivalent if there is an embedding of G x [ into R® x [ between f and g.

(5) edge homotopic if f and g are transformed into each other by self-crossing changes
and ambient isotopy. Here a self-crossing change is a crossing change on an edge of G.

(6) vertex homotopic if f and g are transformed into each other by crossing changes
of adjacent edges and ambient isotopy. Here a crossing change of adjacent edges is a
crossing change between two edges that have a common vertex.

(7 hyomologous if there is a locally flat embedding of (G x IN# U™, S; into R? x [
between f and g where n is a natural number, S; is a closed orientable surface and #
means the connected sum. More precisely, there is an edge e of G for each ¢ such that .5;
is attached to the open disk int(e x [) by the usual connected sum of surfaces.

Then we have the following fundamental relationship.
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Theorem 1 [4].
(2)

Thus we are able to approach the ambient isotopy classification problem step by step.
Roughly speaking (7) homology is an ‘abelianization’of (1) ambient isotopy and free from
the difficulty of low dimensional topology. In fact it is classified by an algebraic invariant
as follows.

For a topological space X let Cy(X) be the configuration space of ordered pair of
(distinct) points in X. Let o be the involution on Cy(X) that exchanges the order of the
two points, i.e. o(z,y) = (y,z). Let f: G — R® be an embedding. Let f?: C3(G) —
C3(R®) be the map defined by f*(z,y) = (f(z), f(y)). Then f? induces a homomorphism

(f5)# : H¥(CoR?),0) — H*(C2(G),0)

where H?(Cy(X), o) denotes the skew-symmetric second cohomology of the pair (C2(X), o).
Namely H2(Cy(X),0) is the second cohomology of the subcomplex A.(C3(X),0) of the
singular chain complex A,(Ca(X)) defined by A,(C2(X),0) = {a € A(Co(X)) | o(a) =
—a}. It is known that H%(Cy(R3),0) is an infinite cyclic group, see [6] or [5]. Let T be
a fixed generator of H2(Cy(R?),0). Then Wu defined an invariant of f by (f2)#(r). We
will denote this element of H2(C,(G), ) by L(f).

Theorem 2 [3].
Two embeddings f and g of a finite graph G into R are homologous if and only if

L(f) = L(g).

Next we study the dependence and independence of the knot typeys of the subgraphs in
a spatial graph. This is motivated by the following two pioneering works. In [1] Conway
showed that every spatial embedding of the complete graph on six vertices contains
a pair of nontrivially linked cycles, and Gordon showed that every spatial embedding

of the complete graph on seven vertices contains a nontrivially knotted cycle. On the
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contrary, Kinoshita showed in [2] that any n(n —1)/2 knot types are realized by a spatial
embedding of 8, at once where 6, is the graph on two vertices and n edges joihing them.
This result is followed by [7] and [8]. Thus we are interested in the dependence and the
independence of all knot types in a spatial graph.

We show that under certain conditions, the Vassiliev type invariants of knots in a
spatial graph are dependent. We will show in particular that the knots in a spatial
embedding of a nonplanar graph are dependent. See [3].

Next we generalize the problem and give a complete answer to the realization problem
of knotted subgraphs in a spatial graph under (7) homology.
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Let K be a knot in the 3-sphere S® and ¢(K) the tunnel number of K, where
t(K) is the minimal number of arcs in S® whose end points are in K such that the
exterior of K and those arcs in S® is a handlebody. We call the family of those arcs
an unknotting tunnel system for K. Let K; and K; be two knots in 5%, then we
denocte the connected sum of ‘K and K, by Ki#K,.

In this talk, we report on study of the behavior of tunnel numbers of knots under
connected sum. | |

By the definition of tunnel number and connected sum of knots, and by taking
an arc contained. in the decomposing 2-sphere for the connected sum, the following

follows immediately.
Fact 1.1. (K #K3) < t{(K;) + t(K3) + 1 for any knots K, and K.
By the above inequality, the following two conjectures had been made.

Conjecture A. Tunnel numbers of knots cannot go down under connected
sum, i.e., the inequality t(K;) + ¢t(K32) < t(K#K2) holds for any knots K; and K,.

Conjecture B.  Tunnel numbers of knots can go up under connected sum,
i.e., there are knots K, and K, such that t(K #K2) = t(Ky) + t(K;) + 1.

Concerning the above conjectures, the first result is :

Theorem 1.2 ([No, Scj). Tunnel number one knots are prime, t.e., if
t(K #K,) = 1 then one of K, and K, is a trivial knot (tunnel number zero).

The above result was obtained in the first half in 1980’s. And this shows that
Conjecture A is true if t(K 1#K3) = 1.
In 1991, we studied the case when t(/#K3) = 2 and got the following.
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Theorem 1.3 ([Mol, Theorem]). Let K, and K, be non-trivial knots
in S°. Suppose t(K 1#K3) = 2. Then :

(1) if neither Ky nor Ky is a 2-bridge knot, then t(K;) = t(K;) = 1.

(2) if one of Ky and K3, say Ky, is a 2-bridge knot, then t(K;) < 2 and K, is

prime.

And in 1992, we showed that the estimate of the above theorem is the best
possible by constructing knots K having the property that t(K) = 2 and t(K#K') =
2 for any 2-bridge knot K’. In fact, we got the following.

Theorem 1.4 ([Mo2, Theorem 3]). Let n be a positive integer, and K,
the knot illustrated in Figure 1.1. Then we have :

(1) ¢(K,) =2.

(2) t(Ka#K) =2 for any 2-bridge knot K.

(3) Kn and Ky are different types if n # n'.

The examples in Theorem 1.4 show that Conjecture A is false. On the other

hand, in the same year, Moriah and Rubinstein got the following.

Theorem 1.5 ([MR, Theorem 0.8]).  For any positive integers t; and t,,
there are infinitely many pairs of knots Ky and K such that t(K;) = t1, t(K3) = t,
and t(Kl#Kz) =t +t+ 1.

Theorem 1.5 shows that Conjecture B is true. And the theorem was proved by
using argument from hyperbolic geometry, and those examples are corresponding to
sufficiently complicated Dehn surgeries along some pretzel knots in S°.

Concerning Conjecture B, the author, Sakuma and Yokota proved independently
of [MR] by using another method that there are infinitely many pairs of knots K
and K such that t(K;) = 1, t(K;) = 1 and t(K1#K3) = 3. This result is indeed
contained in that of Moriah-Rubinstein’s. But the examples we got would be more

conclete than those of Moriah-Rubinstein’s. In fact, we got the following.

Theorem 1.6 ([MSY, Theorem 2.1]).  Let m be an integer and K,, the
knot illustrated in Figure 1.2. Then t(Kyn) = 1, t{Kuw) = 1 and t(Kn#fKw) = 3

for any integers m and m’.
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SURFACES IN 4-SPACE

SENcHI KAMADA

Department of Mathematics, Osaka City University

Classical knot theory deals with simple closed curves in 3-space R? (or in the
3-sphere S3) and asks when they are ambient isotopic or not. It is generalized

into higher dimensional ones. We treat surfaces in 4-space R*.

By a surface in R* we mean a closed oriented (or non-orientable) surface
embedded in Euclidean 4-space RY. Two surfaces in R* are equivalent if they
are ambient isotopic. For given two surfaces in R* that are homeomorphic, it
is very difficult to determine whether they are equivalent or not. It is the main

problem in 2-knot theory.

The purpose of the talk is to explain some basic notions and fundamental
results which might help one to work in 2-knot theory. First we treat of a
method to describe surfaces in R* by considering their intersections with par-
allel hyperplanes R} (—oo < ¢ < 00), which is called hyperplane cross sections
in R. H. Fox’s article “A quick trip through knot theory”. Any surface F' in
R* is deformed, up to equivalence, such that the projection of the surface to
the t-axis is a Morse function. Critical points of index 0, 1 and 2 are called

minimal, saddle and mazimal points, respectively.

Projecting each hyperplane cross section into 2-space Rﬁy we have a series of
like knot (link) diagrams with some nodes. It is called a movie of F. A movie

corresponds to a projection of F into R* (in precise Riy,). Then Reidemeister
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type moves are introduced by D. Roseman and their completeness is proved by

J. 8. Carter and M. Saito.

Every example in Fox’s article above is a 2-sphere F"in R* such that F'N R} is
a knot and as t goes through a saddle point with increasing absolute value, the
number of components increases. He asked in the article (p. 134) whether any
2-sphere in R* is obtainable in this way. This is solved affirmatively. Actually,
for any surface in R* a natural analogy holds; namely it is defomed into a
certain kind of configuration called normal form. (A. Kawauchi, T. Shibuya
and S. Suzuki gave a concrete proof to it.) The first half of the talk concerns

with normal forms.

As every classical knot (or link) is equivalent to a closed braid, every ori-
ented surface in R? is equivalent to a closed £-dimensional braid. This fact
is announced by O. Ya. Viro in the lecture given at Osaka City University in
1990. (It is a motivation for my reserch on this field.) L. Rudolph also consid-
ered a similar notion called braided surface and gave some applications to knot
theory. I would like to devote the latter half to explaining some results on such

braidings of oriented surfaces in R*.
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KNOT TYPES OF SATELLITE KNOTS AND
TWISTED KINOTS

KIMIHIKO MOTEGI

Department of Mathematics, Nihon University

Let V be a standardly embedded solid torus in S* and K a knot in § 3 contained
in V. The pair (V, K) is called a pattern and the minimal geometric intersection
number (resp. algebraic intersection number) of K and a meridian disk of Vis
called the wrapping number (resp. winding number) of K in V and denoted by
wrapy (K) (resp. windy(K)). Let f be an orientation preserving embedding from
V into S3. Then using f we obtain a new knot f(K) in S°. If f(V) is a knotted
solid torus in S3, then f(K) is a satellite knot with a companion knot f(Cy ), where
Cy denotes a core of V. On the other hand, if f(V) is also unknotted, then the
above operation is essentially same as twisting several times along a meridian disk
of V.

First we consider the case where f(V) is a knotted soloid torus. We assume
that knots are oriented and we write K; = K, if K; and K, are equivalent as
oriented knots. The knot obtained from K by inverting its orientation is denoted
by —K. If wrapy(K) = 1, then the operation corresponds with a “product” of
knots. In such a situation, Schubert’s unique factorization theorem implies that
if f(K) = g(K) for two embeddings f and g, then their companions f(Cv) and
g(Cy) are equivalent.

It is this result we generalize to any pattern. In the following, twist(f) is defined
to be £k(f(Cv), f{£y)), where £ is a longitude of V(C §*). When wrapy(K) =1,
twist(f) is irrelevant. ‘

Theorem 1 ([Kouno-Motegi]). Let (V, K) be a pattern with wrapy(K) > 2 and
f:V «— S® an orientation preserving embedding such that f(V) is knotted. Let
g:V < 53 be an orientation preserving embedding satisfying g(K) = f(K). Then
g(Cy) = f(Cy), or f(Cy) = Ko§K,; and g(Cv) = (=Kp)i K1, where Ky and Ky
are the knots uniquely determined by f and the pattern (V, K). Furthermore, in
any case twist(f) =twist(g).

As a corollary, we have:
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Corollary 2. Let (V,K) and f be as in Theorem 1. Then up to isotopy there is
at most one orientation preserving embedding g : V — S* which is not isotopic to
[ and satisfies g(K) = f(K).

There is an example in which f(K) = g(K) but f and g are not isotopic ; in fact
f(Cy) and g(Cy) cannot be equivalent even in the weakest sense.

In what follows we restrict our a.ttentlon to the case where the original knot K

is unknotted in S°.
For a given pattern (V,K) (K is unknotted in S3), Theorem 1 can be simply

stated as follows.
Corollary 3. Let (V,K) and f be as in Theorem 1 and assume that K 1is unknotied
in §3. If f(K) = g(K), then f(Cy) = £g(Cv) and twist(f) =twist(g).

Let us fix an embedding f and exchange the pattern (V, K) to (V, K').

Can f(K') be ambient isotopic to f(K)?

Theorem 4. Let (V,K) and (V,K') be patterns such that K is unknotted and K’
is knotted in S3. If windy(K') # 0, then f(K) 2 f(K’) for any embedding f.

There is an example Showing the necessity of the condition “windy (K') # 0”.
We now turn to the case where both K and K’ are unknotted in S°.

Theorem 5. Let (V,K) and (V, K') be patterns such that K and K' are unknotted
in §3.

(1) If windy (K) # windy (K'), then f(K) % f(K') for any emdedding f.

(2) If windy(K) = windy(K') # 0 and wrapy(K) #wrapy(K'), then f(K) 2
f(K') for any embedding f.

If windy (K) = windy (K’) = 0, then there is a counterexample for this theorem.

Now let us assume that f(V) is an unknotted solid torus in S°. In this situation
we may assume that f(V) = V and f is a twisted homeomorphism f, (fa(£) =
£+ nm). In the following we assume that wrapy (K) > 2 and write K, = fa(K).

Theorem 6 ([Mathieu], [Kouno-M-Shibuya]). Suppose that K is a trivial
knot in S%. If K, is again a trivial knot in S® for some n # 0, then (V,K) is the
following.
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The following question was raised by Y.Mathieu.
Can we obtain a composite knot from a trivial knot by twisting?

If wrapy(K) = 2, then Scharlemann and Thompson, Gordon, and Zhang had
proved that K, is prime.
However in general we have:

Example ([Motegi-Shibuya]).

K K,

Ohyama, Yasuhara and Teragaito also found other examples. In any example
n = %1,

Theorem 7 ([Goodman-Strauss], [Hayashi-Motegi]). Suppose that K is a
trivial knot in S3. If K, is a composite knot, then n = £1.

Goodman'-S\trauss shows further that K_; and K, cannot both be composite.
In the case where a twisted knot K, is a torus knot, we have:

Theorem 8 ([Miyazaki-Motegi]). Suppose that K is a trivial knot in S3. If K,
is a torus knot, then except for trivial ezamples n = %1.
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A Weight System for 3-d Manifold

Laurent FREIDEL

The Kontsevich integral gives rise to an invariant of framed links with value
into the space of chord diagrams satisfying 4-term relation. T.Le, H.Murakami,
J.Murakami, T.Ohtsuki showed that it is possible to constract from this universal
invariant a 3-dim. manifold invariant under the condition that chord diagrams sat-
isfied some new relations: essentially orientation independence and handle sliding
independence relations. Using the recoupling theory of SU (2) we constract a weight
system, i.e. a linear functional on chord diagrams with value in Z /pZ, p odd prime
which satisfies these relations. -
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Knot Tabulation Progress Report
July, 1996

Jim Hoste, Morwen Thistlethwaite, Jeff Weeks
We have presently tabulated all prime knots through 15 crossings and all prime 16-crossing alternating

knots. A provisional table of prime 16-crossing non-alternating knots awaits final confirmation and will be
ready soon. The number of prime knots with a given crossing number are given in Table 1.

Numbers of Prime Knots by Crossing Number

crossings alternating non-alternating total
3 1 0 1
4 1 0 1
5 2 0 2
6 3 0 3
7 7 0 7
8 18 3 21
9 41 8 49
10 123 42 165
11 367 185 552
12 1288 888 2176
13 ’ 4878 5110 9988
14 19536 27436 46972
15 85263 168030 253293
16 379799
Table 1

The tables have been created by two completely independent efforts, each employing significantly dif-
ferent methods. Both Jim Hoste and Morwen Thistlethwaite have written computer programs to generate
complete lists of knots with a given crossing number and containing relatively few repetitions. In order to
remove dulpicates from these lists two approaches are taken. Hoste has teamed with Jeff Weeks and applied
methods from hyperbolic geometry. Using his computer program SnapPea, Weeks computes the canonical
triangulation of each hyperbolic knot on Hoste’s list. Since this is a complete knot invariant, duplications
are easily recognized and removed. The few knots that are not hyperbolic are handled separately. Thistleth-
waite relies on a battery of knot invariants {(including for example, skein polyromials and representations
of knot groups into permutation groups) to distinguish different knots and isolate suspected duplications.
Ultimately, duplicates are shown to be the same by applying a more intensive computer search for “moves”
that will relate the diagrams. Remarkably, only a handful of discrepancies have arisen between the two
tabulations, and in each case have been successfully resolved.

A computer program called KnotScape is being written to allow easy access to the tables. An alpha
version may be downloaded from http://www.math.utk.edu/"morwen/knotscape.html. This version only
includes knots through 15 crossings, does not yet contain a graphical knot editor which is still in a preliminary
state, and presumably contains bugs! It runs in a UNIX environment and requires Tcl 7.4 / Tk 4.0.
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Markov theorem with one move and
Markov theorem in 3-manifolds

Sofia Lambropoulou (with C. Rourke)

We show that braid equivalence reflecting knot/link isotopy in $% can be gen-
erated by one geometric move, the L-move (instead of the well-known conjugation
and stabilizing moves in the braid groups). We further explain how to obtain braid

equivalence for isotopic links in arbitrary c.c.o. 3-manifolds using braid equivalence
in knot/link complements.



On the invariants of lens knots

Nafaa Chbili

A knot in S3 is called a (p, s)-lens knot if it’s invariant by the (p, s)-lens
action on S3. The main purpose of this paper is to study the invariants of
these knots. We prove that the Vassiliev-Gusarov invariants of lens knots
are related to those of torus knots, in the same way as in Przytycki’s criteria
for periodic knots. We use this result to prove that in the case p = 3, the
HOMFLY polynomial satisfies a powerful criteria.
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