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Abstract

Multi-agent control is a hot but challenging research topic which covers
many research fields, such as evolutionary computation, machine learning,
neural networks, etc.. Various approaches have been proposed to guide
agents’ actions in different environments. Evolutionary Computation (EC)
is often chosen to control agents’ behaviors since it can generate the best
control policy through evolution. As a powerful machine learning approach,
Reinforcement Learning (RL) is competent for agent control since it enables
agents to directly interact with environments and get rewards through “trial
and error”s. It is fast and efficient in dealing with some simple problems.
However, its state-action pairs may become exponentially large in com-
plex environments, which is computationally intractable. Neural Networks
(NNs) could also be used to guide agents’ actions since it can map between
the input of the environment information and the output of control sig-
nals. However, in some high dynamic environments which are uncertain
and changing all the time, NN could not work.

Genetic Network Programming is a newly developed EC method which
chooses the directed graph structure as its chromosome. High expression
ability of the graph structure, reusability of nodes and realization of par-
tially observable processes enable GNP to deal with many complex problems
in dynamic environments. One of the disadvantages of GNP is that its gene
structure may become too complicated after generations of the training.
In the testing phase, it might not be able to adapt to the new environ-
ment easily and its generalization ability is not good. This is because the
implicit memory function of GNP can not memorize enough information
of the environment, which is incompetent in dealing with the agent control
problems in high dynamic environments. Therefore, explicit memory should
be associated with GNP in order to explore its full potential.

Various research has revealed that memory schemes could enhance EC in
dynamic environments. This is because storing the useful historical infor-
mation into the memory could improve the search ability of EC. Inspired by



this idea, a GNP-based explicit memory scheme named “Genetic Network
Programming with Rule Accumulation” is proposed in this thesis. Focus-
ing on this issue, it is studied in the following chapters of this thesis how
to create action rules and use them for agent control, how to improve the
performance in Non-Markov environments, how to prune the bad rules to
improve the quality of the rule pool, how to build a rule pool adapting to the
environment changes and how to create more general rules for agent control
in dynamic environments. The organization of this thesis is as follows.

Chapter 1 describes the research background, problems to be solved and
outline of the thesis. Some classical methods in the domain of evolutionary
computation and reinforcement learning are reviewed.

Chapter 2 designs the general framework of GNP-RA, which contains two
stages, the training stage and the testing stage. In the training stage, the
node transitions of GNP are recorded as rules and stored into the rule pool
generation by generation. In the testing stage, all the rules in the rule pool
are used to determine agents’ actions through a unique matching degree
calculation. The very different point of GNP-RA from the basic GNP is
that GNP-RA uses a great number of rules to determine agents’ actions.
However, GNP could use only one rule corresponding to its node transition.
Therefore, the generalization ability of GNP-RA is better than that of GNP.
Moreover, GNP-RA could make use of the previous experiences in the form
of rules to determine agents’ current action, which means that GNP-RA
could learn from agents’ past behaviors. This also helps the current agent
to take correct actions and improve its performance. Simulations on the
tile-world demonstrate that GNP-RA could achieve higher fitness values
and better generalization ability.

Chapter 3 aims to solve the perceptual aliasing problem and improve
the performance for multi-agent control in non-Markov environments. The
perceptual aliasing problem refers to that different situations seem identical
to agents, but different optimal actions are required. In order to solve this
problem, a new rule-based model, “GNP with multi-order rule accumulation
(GNP-MRA)” is proposed in this chapter. Each multi-order rule records not
only the current environment information and agent’s actions, but also the
previous environment information and agent’s actions, which helps agents
to distinguish the aliasing situations and take proper actions. Simulation
results prove the effectiveness of GNP-MRA, and reveal that the higher the



rule order is, the more information it can record, and the more easily agents
can distinguish different aliasing situations. Therefore, multi-order rules are
more efficient for agent control in non-Markov environments.

Chapter 4 focuses on how to improve the quality of the rule pool. Two
improvements are made in order to realize this. One of them is that during
the rule generation, reinforcement learning is combined with evolution in
order to create more efficient rules. The obtained knowledge during the
running of the program could be used to select the proper processing for
judgments, i.e., better rules. The second approach is that after the rule
generation, a unique rule pruning method using bad individuals is proposed.
The basic idea is that good individuals are used as rule generators and bad
individuals are used as monitors to filter the generated bad rules. Four
pruning methods are proposed and their performances are discussed and
compared. After pruning the bad rules, the good rules could stand out
and contribute to better performances. Simulation results demonstrate the
efficiency and effectiveness of the enhanced rule-based model.

Chapter 5 is devoted to improve the adaptability of GNP-RA depending on
the environment changes. GNP-RA has poor adaptability to the dynamic
environments since it always uses the old rules in the rule pool for agent
control. Generally speaking, the environment keeps changing all the time,
while the rules in the rule pool remain the same. Therefore, the old rules
in the rule pool become incompetent to guide agents’ actions in the new
environments. In order to solve this problem, Sarsa-learning is used as a
tool to update the old rules to cope with the inexperienced situations in
the new environments. The basic idea is that when evolution ends, the elite
individual of GNP-RA still execute Sarsa-learning to update the Q table.
With the changes of the Q table, the node transitions could be changed
in accordance with the environment, bringing some new rules. These rules
are used to update the rule pool, so that the rule pool could adapt to the
changing environments.

Chapter 6 tries to improve the generalization ability of GNP-RA by prun-
ing the harmful nodes. In order to realize this, “Credit GNP”is proposed
in this chapter. Firstly, Credit GNP has a unique structure, where each
node has an additional “credit branch”which can be used to skip the harm-
ful nodes. This gene structure has more exploration ability than the con-
ventional GNP-RA. Secondly, Credit GNP combines evolution and rein-



forcement learning, i.e., off-line evolution and on-line learning to prune the
harmful nodes. Which node to prune and how many nodes to prune are de-
termined automatically considering different environments. Thirdly, Credit
GNP could select the really useful nodes and prune the harmful ones dynam-
ically and flexibly considering different situations. Therefore, Credit GNP
could determine the optimal size of the program along with the changing
environments. Simulation results demonstrated that Credit GNP could gen-
erate not only more compact programs, but also more general rules. The
generalization ability of GNP-RA was improved by Credit GNP.

Chapter 7 makes conclusions of this thesis by describing the achievements
of the proposed methods based on the simulation results.
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Introduction

How to create efficient action rules for multi-agent control in dynamic and uncertain
environments has been a hot topic for many decades. It covers Artificial Intelligence
(AI), Machine Learning (ML) and many other research fields. In this chapter, the
classical methods in the related domains of this thesis are briefly reviewed, including
evolutionary computation, reinforcement learning and the memory schemes.

1.1 Evolutionary Computation

In the field of Artificial Intelligence (AI), Evolutionary Computation (EC) is an
important branch whose essential concept is from Darwin’s Theory of Evolution. It
uses computer programs to imitate the biological evolutionary mechanisms such as
selection, crossover and mutation and to get the optimal solutions. EC is often chosen
as a tool to guide agents’ actions since it can generate the best control policy through
evolution(1, 2). A large number of research has been done on evolutionary computation
and many classical evolutionary algorithms (EAs) have made great contributions to this
field, such as: Genetic Algorithm (GA)(3, 4), Genetic Programming (GP)(5, 6, 7, 8),
Evolutionary Programming (EP)(9, 10) and Evolution Strategy (ES)(11, 12). In 1975,
a standard genetic algorithm (GA) based on bit representation, one-point crossover,
bit-flip mutation, and roulette wheel selection was proposed and widely applied during
the 1980’s. The gene of GA is represented as a string structure composed of 0s and 1s,
which is good at searching the global optimal solutions in a feasible searching space.
However, the expression ability of the string structure is a bit limited. GP extends
GA’s expression ability by using tree structures where each non-terminal node has
an operator function and each terminal node has an operand. GP was mainly used
to solve relatively simple problems because it is very computationally intensive and
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would easily cause the exponential growth of the genes. During the evolution, the
increase of the depth of GP causes the enlargement of the structure, resulting in the
large occupation of memory and increase in calculation time, known as the “bloating
problem”(13, 14). EP evolves its program by using finite state machines as predictors
which is a model of behaviors composed of a finite number of states transitions using
the states and actions. EP is a useful optimization method especially when other
techniques such as gradient descent or direct, analytical discovery are not possible. ES
uses a natural problem-dependent representation and only mutation and selection are
chosen as genetic operators. It is typically applied to numerical optimization problems
because it is fast and is competent for dealing with real-valued optimization problems.
Its speciality is the self-adaptation of mutation step sizes. Many optimization methods
such as Particle Swarm Optimization (PSO) (15, 16) and Ant Colony Optimization
(ACO)(17, 18) could also be used for multi-agent control problems(19, 20, 21).

Genetic Network Programming (GNP)(22, 23, 24, 25) is a new evolutionary com-
putation method which adopts directed graphs as its gene structure. The advantages
of GNP are:

• Compact Gene Structure. GNP programs are composed of a number of nodes
which execute basic judgment and processing functions. These nodes are connected by
directed links and thus the gene structure is very compact.

• Reusability of Nodes. The nodes in the gene structure of GNP could be revisited
many times which greatly decreases the memory cost, therefore, GNP never causes the
bloating problem.

• Partially Observable Process. The judgment nodes can judge any partial infor-
mation and processing nodes can generate any action based on the judgments. GNP
doesn’t require the complete information of the environment to take an action, thus,
the partially observable process could be easily realized by GNP.

However, the conventional GNP also has its shortcomings such as:
• Over-fitting problem(26, 27). The nodes of GNP and their connections make the

gene structure very complicated after generations of the training. Such complex gene
structure may over-fit the training instances easily. In other words, the generalization
ability of conventional GNP is not good.

• Weak implicit memory. Although the redundant nodes in the chromosome
enable GNP to have some implicit memory function, they are not enough to store
enough information in evolution. On the other hand, too many redundant nodes could
aggravate the over-fitting problem of GNP. These shortcomings should be overcome in
order to explore GNP to its full potential.
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Conventional GNP pays more attention to the final solution, that is, the optimal
gene structure obtained in the last generation. However, the experiences generated
during the evolutionary process are ignored and not taken into account. The subgraphs
of GNP and good transition routes in the evolutionary process which are useful for
directing agent’s actions should also be preserved and used to guide agents’ actions.

Currently, a lot of research has been done to optimize GNP. In the theoretical as-
pect, GNP with individual reconstruction (28) proposed a method to replace the worst
GNP individuals by using the extracted rule chains. GNP with subroutines(29) in-
troduced subroutines into GNP which serve as good building blocks and improved its
performance. Also, GNP could be combined with other techniques, such as: reinforce-
ment learning(22), ACO(30), etc.. In the application aspect, GNP has been applied
to many real world problems such as: elevator supervisory control systems(31), stock
market prediction(32), traffic volume forecasting(33), network intrusion detection(34),
and class association rule mining (35) in data mining field.

1.2 Reinforcement Learning(RL)

RL is an important branch of machine learning. It learns how to act given an
observation of the environment. Each action has some impacts to the environment, and
the environment provides the feedback in the form of rewards that guides the learning
algorithm. RL is often selected as the learning strategy for multi-agent systems(36, 37),
since it enables agents to directly interact with the unknown environment and get
rewards through “trial-and-error”s. RL is very fast and efficient in learning some simple
problems. However, when the problem become complicated, its state-action pairs (Q
table) will become exponentially large which is computationally intractable(38). As a
result, the solution space becomes too large and the obtained rewards are not enough,
which degrades its performance. How to control the Q-table becomes an important
issue in RL.

Among RL, the most widely used techniques are Q-learning(39) and Sarsa-learning(40).
However, Q-learning is an off-line policy(41) since the selection of the maximum Q-value
at each state is necessary. Sarsa-learning is an on-line approach(42) because it updates
its Q values based on the really obtained rewards during the task execution. Therefore,
in this thesis, Sarsa-learning is chosen as the learning strategy for different purposes.

Various research(22, 43, 44, 45, 46) revealed that combining EC and RL could bring
better solutions. This is because RL could build a bridge between the static chromosome
of EC and the dynamic execution of its program. The obtained knowledge during
the programming running could be utilized to create more reasonable gene structures.
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Therefore, in real-world applications, RL is often integrated with EC to enhance its
search ability. In this thesis, RL is introduced into the GNP framework to create more
efficient rules in chapter 4, improve the adaptability of the rule pool in chapter 5 and
improve the robustness of the rule-based model in chapter 6.

1.3 Inspiration

1.3.1 Memory schemes enhance evolutionary computation

The research on discovering historical information on good examples and reusing
them later has been conducted for many years, which reveals that using past experiences
can benefit the current decision making. Typical examples could be said of Case-base
Reasoning (CBR)(47, 48, 49) and Memory-based Reasoning (MBR)(50) in cognitive
science. For example, CBR could solve a new problem by retrieving relevant cases
stored in the memory. After the problem is successfully solved, it is stored into the
memory as a new case, which helps to solve the similar problems in the future.

In the domain of EC, using memory schemes which stores historical information on
good solutions and reuse them later, could enhance the performance of EAs in dynamic
problems(51, 52, 53, 54). Generally speaking, there are two types of memory schemes,
implicit memory scheme and explicit memory scheme.

1.3.2 Implicit memory schemes

In implicit memory schemes, EAs use genotype representations that are larger than
necessary. The redundant gene segments store some good (partial) solutions to be
used in future. For example, Goldberg and Smith extended the simple haploid GA
to a diploid GA with a tri-allelic dominance scheme(55). Thereafter, Ng and Wong
developed a dominance scheme with four alleles for a diploidy-based GA(56). Lewis
et al. further investigated an additive diploidy scheme, where a gene becomes 1 if the
addition of all alleles exceeds a certain threshold, or 0 otherwise(57). In these methods,
the redundant information may not affect the fitness evaluation, but it can be remained
in the gene structures so as to maintain the population diversity, which make the search
range flexible and wide. GNP also has an implicit memory function(22), since there
exist many redundant nodes in its chromosome. The nodes which are not used in
the current environment might be used in future environments. However, the implicit
memory function of GNP is not satisfactory since it is not sufficient enough to store
the environment information in complex problems. On the other hand, if too many
redundant nodes exist in its gene structure, the generalization ability of GNP would
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decrease and the over-fitting problem could happen easily. Therefore, how to store the
useful information into the explicit memory and how to use it properly are essential to
improve the performance of GNP.

1.3.3 Explicit memory schemes

In explicit memory schemes, useful information of good solutions is stored in the
outside memory. The knowledge from the current generation can be explicitly memo-
rized and reused in future generations. In (58), the best individuals during a run are
stored into a memory for the open shop rescheduling problem. Whenever a change
happens, the population retrieves partial (5%-10%) individuals from the memory cor-
responding to the previous run, and initializes the rest randomly. In a robot control
problem(59), the best individuals are stored in the memory together with its environ-
ment information. In the new environment, the similarity of the current environment
to the recorded environment information is measured, and the best individual with the
most similar associated environment information is selected and reused. A case-based
GA(60) records and uses its prior experiences to tackle the current problem. But, these
cases could not be used directly as decision rules. GP with reusable programs(6) auto-
matically discovers the subsets of GP and reuses them. However, the reusable programs
are mainly used to discompose complex problems into detachable subproblems, which
could not be used directly. The memory scheme storing merely the best solutions is
called directed memory scheme and the one storing both solutions and their associated
environment information is called indirected memory scheme or associative memory
scheme.

1.4 Contents of this thesis

Inspired by the above research, a GNP-based explicit memory scheme name “GNP
with Rule Accumulation(GNP-RA)” is proposed in this thesis. The purpose is to
improve performance for multi-agent control in dynamic environments. The unique
points of GNP-RA are:

• Rule-based model. Different from the traditional memory schemes, GNP-RA
does not store the best individuals themselves directly. Instead, it extracts a large
number of rules from the best individuals, and stores the rules into the rule pool as
memory. These rules are very simple and general, which enables GNP-RA to avoid the
over-fitting problem and improve the generalization ability.
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• Accumulation mechanism. Rules extracted from the best individuals are stored
into the rule pool generation by generation, and the rule pool serves as an experience
set. Past experiences of the best solutions could be used to determine the current
action, which could improve the accuracy of guiding agents’ actions.

• Unique matching calculation. GNP-RA does not use the best individual directly,
instead, it uses all the rules in the rule pool to make decisions through a unique matching
degree calculation. Rules contains the partial information of agents’ environments and
the action under such environments, therefore, they don’t need to be associated with
the best solutions and could be used directly to determine agents’ actions. This is also
quite different from the conventional memory schemes.

1.4.1 Research topics

This thesis concerns on how to create actions rules from GNP, how to build an
efficient and robust rule pool with good adaptability to the environment changes, and
how to guide agents’ actions using the rules in the rule pool. There are 7 chapters in
the thesis.

In Chapter 2, a unique rule-based model is proposed and its framework is designed.
The rule of GNP-RA is defined, and how to extract rules from the node transitions of
GNP and how to make use of these rules for multi-agent control is described in details.
The performance of GNP is compared with the conventional GNP in the tile-world
problem.

In Chapter 3, a new rule-based model named “GNP with multi-order rule accu-
mulation (GNP-MRA)” is proposed. The purpose is to improve the performance in
non-Markov environments and solve the perceptual aliasing problem. Each multi-order
rule contains not only the current environment information and agent’s action, but also
the past environment information and agent’s actions. The past information serves as
some additional information which helps agents to distinguish different aliasing situa-
tions. Rules of different orders are extracted and how the rule order affects the proposed
model is studied. Two matching methods, completely matching and partially matching
are designed to make use of the multi-order rules, and their performance are evaluated.

In Chapter 4, in order to improve the quality of the rule pool, reinforcement learning
is introduced into evolution to generate more efficient rules. Besides, a unique rule
pruning approach using bad individuals is proposed. The idea is to use good individuals
as rule generators and bad individuals as rule monitors to filter the generated bad rules.
Four pruning methods are designed and their performances are compared and analyzed.
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In Chapter 5, GNP with updating rule accumulation (GNP-URA) is designed to
improve the adaptability of GNP-RA. The general idea is, after evolution, the best
individuals still execute Sarsa-learning to generate some new rules corresponding to
some new environments. The new rules are added into the rule pool to update the
old rules, therefore, the rule pool could adapt to the changing environment gradually.
Sarsa-learning is used in both the off-line evolution phase and on-line updating phase.
In the off-line phase, Sarsa-learning helps to create better rules, while in the on-line
phase, it is used to realize the rule pool updating.

In Chapter 6, “Credit GNP-based Rule Accumulation(CGNP-RA)” is proposed
in order to improve the generalization ability of GNP-RA. Credit GNP is proposed
in this chapter which has an additional credit branch to prune the harmful nodes.
Which node to prune and how many nodes to prune are determined automatically by
reinforcement learning. Credit GNP could generate not only more compact programs,
but also more general rules. Therefore, CGNP-RA can guide agents’ actions more
efficiently in dynamic environments and exhibits better generalization ability.

In Chapter 7, some conclusions are made based on the previous chapters.
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2

Genetic Network Programming

with Rule Accumulation

2.1 Introduction

2.1.1 Problem to be solved: over-fitting

In this chapter, a GNP-based rule accumulation method (GNP-RA) is proposed.
The main purpose is to solve the over-fitting problem and improve performance for
multi-agent control.

GNP is a newly developed evolutionary algorithm as an extension of GA and GP.
Directed graph structure, reusability of nodes and partial observable processes enables
GNP to deal with complex problems in dynamic environments efficiently and effec-
tively. GNP evolves the population and uses the best individual in the last generation
to guide agents’ actions. However, the gene structure of GNP is relatively complex
which contains many nodes and connections. Such complex structure could over-fit
the training data easily and its generalization ability is not good. In this chapter, it
is tried to discover the useful information in the best individuals in the form of rules,
which are more simple and general. Each rule contains only partial information of
agents’ environment, which enables agents to execute partial observable processes; A
large of rules could be used to determine agents’ actions. This helps agents to choose
the correct action. How to create actions rules and use them to guide agents’ actions
is to be studied in this chapter.

2.1.2 Contents of the proposed method

The main point of this chapter are as follows:
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2.2 Novelties of GNP-RA over GNP

• The definition of the rule in GNP-RA is unique, which is different from those
of the conventional EC methods and the class association rule(61) in data mining.

• How to generate rules from the node transitions of GNP, and how to store the
rules are described in this chapter.

• A unique rule matching method is designed to make use of the accumulated rules
in the rule pool to determine agents’ actions, which is different from the conventional
decision making mechanism.

The organization of this chapter are as follows. In section 2.2, the general framework
of GNP-RA and its novelties are described by comparing it with GNP. In section 2.3,
the basic concepts of GNP are briefly reviewed in terms of its gene structure, genetic
operators and flowchart. Section 2.4 shows the algorithms of GNP-RA in details.
Section 2.5 introduces the simulation environment and analyzes the simulation results,
and Section 2.6 is devoted to summary.
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Figure 2.1: Comparison of GNP and GNP-RA

2.2 Novelties of GNP-RA over GNP

Fig. 2.1 shows the general idea of GNP-RA compared with GNP. The major dif-
ferences between them are as follows.

• In GNP, the best individual in each generation is regarded as the solution. While
in GNP-RA, the rules generated from the best individual are regarded as solutions.
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• The aim of evolution in GNP is to evolve the population to generate the best
individuals. However, the purpose of GNP-RA is to generate a large number of rules
and accumulate them into the rule pool, which represents the good experiences from
agents’ previous actions.

• The best individual of GNP in the last generation is used to guide agents’
actions, while in GNP-RA, all the rules in the rule pool are used to determine agents’
actions through a matching calculation.

2.3 Review of GNP

This section briefly reviews the basic concepts of GNP in terms of its gene structure,
genetic operators and the flowchart.

2.3.1 Gene structure of GNP

Similar to other evolutionary computation methods, GNP inherits some features
from Darwin’s Theory of Evolution such as the concept of selection, crossover and
mutation. Different from the bit string structure of GA or binary tree structure of GP,
GNP chooses the directed graph structure as its gene. Fig. 2.2 shows the phenotype
and genotype of GNP. There are three kinds of nodes in GNP: a start node, plural
judgment nodes and processing nodes which are connected by the directed branches.
The function of the start node is to choose the first node to be executed, i.e., the entry
of the program. A judgment node has one function which judges the information from
the environment. Each judgment node has multiple outputs which connect to the next
node depending on different judgment results. A processing node enables the agent
to take actions and change the environment, and there is only one connection, which
selects the next node. At each time step, the current node indicates what the agent
should do (judge or action) and selects the next node to visit.

The right part of Fig. 2.2 shows the gene structure of GNP from the genotype
perspective. A two-dimensional array is used to store the gene of nodes. Each gene
is the combination of the node information and connection information, namely, node
gene and connection gene. In the node gene segment, IDi is the identification number
of node i. NTi represents the node type of node i. NTi =0 means it is a start node,
NTi =1 means it is a judgment node and NTi =2 means it is a processing node. di is
the time delay for judgment and processing, {di=1 for judgment; di=5 for processing
and di=0 for connection in the simulations}. In the connection gene segment, Ci1, Ci2

...represent the nodes connected from node i firstly, secondly and so on and di1 , di2,
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Figure 2.2: Phenotype and Genotype of GNP

... represent the time delays spent on the transition from node i to node Ci1, Ci2, ...,
respectively. The connections of these nodes could be changed by genetic operators
such as crossover and mutation which enable individuals to evolve.

2.3.2 Genetic operators

The GNP population is composed of a number of GNP individuals, which are the
candidate solutions evolved generation by generation. Fitness is introduced to evaluate
the individuals and discriminate good individuals from bad ones. The commonly used
genetic operators are crossover, mutation and selection which enable GNP to generate
better solutions. The evolutionary process of GNP is a balance of exploration and
exploitation. The purpose of crossover and mutation is to explore the solution space
by generating new individuals. The aim of selection is to preserve better individuals
and eliminate worse ones, i.e., to exploit the obtained solutions.

2.3.2.1 Crossover

Crossover is executed between two parents and two offspring are generated after
the execution. Two parents are selected using tournament selection, and each node of
them is chosen as a crossover node with the probability of Pc . The parents exchange
the gene segments of the crossover nodes, and generated new individuals become the
new ones of the next generation. Fig. 2.3 shows a simple example of crossover.
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Figure 2.3: Crossover

Figure 2.4: Mutation

2.3.2.2 Mutation

Mutation is performed in one individual and a new one is generated. Basically,
there are two kinds of mutations: connection mutation and function mutation. Con-
nection mutation refers to that the connections of an individual (parent) are randomly
changed to other nodes with the probability of Pm. Function mutation refers to that
the functions of a particular individual (parent) are changed to other ones randomly
with the probability of Pm. Fig. 2.4 describes the two types of mutations.

2.3.2.3 Selection

At the end of each generation, the elite individuals with higher fitness values are
selected and preserved, while the rest individuals are replaced by the new ones gen-
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Figure 2.5: Flowchart of GNP

erated by crossover and mutation. There are virous kinds of selection methods, such
as Roulette Selection, Tournament Selection and Elite Selection, etc. In the proposed
method, Elite Selection and Tournament Selection are used for selecting the best indi-
viduals.

Fig. 2.5 shows the flowchart of GNP program.

2.4 GNP with Rule Accumulation (GNP-RA)

In GNP, the agents’ judgments and actions correspond to a series of successive GNP
transitions from node to node. Generally, it is noticed that some transition routes con-
sisting of some judgment nodes with their results appear frequently in individuals with
high fitness values. These judgment nodes with their judgment results and their suc-
ceeding processing node could be viewed as a good experience during the evolutionary
process. They are picked up and regarded as “rules”. Then, all the rules from the
elite individuals are picked up and accumulated in the rule pool, which serves as an
experience set. After that, the rule pool is used by classifying these rules, matching
them with the situations of the environments and guiding agents’ actions.
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Figure 2.6: Example of the rules

2.4.1 Definition and examples of the rule of GNP-RA

The rule of GNP-RA is defined as a sequence of successive judgment nodes with their
judgment results and the succeeding processing node. It starts with the first judgment
node after the previous processing node and ends up with the next processing node.
The judgment node chain reflects the information of the environment, which tell agents
“what the current environment is like”, and the processing node denotes what action
to take under such an environment, i.e., “what to do in the current situation”. Fig. 2.6
shows some examples of the rules of GNP-RA.

The rule of GNP-RA doesn’t require the complete information of agents’ environ-
ment. It contains only partial and necessary information of agents’ environment, which
is more general. Over-fitting problem could be relieved using such rules for decision
making. Besides, the rules of GNP-RA are generated by the evolution of GNP, which
are quite different from the class association rules(61) of data mining. The class asso-
ciation rules are generated by analyzing the correlations of different attributes in the
database, which usually requires scanning millions of data. Therefore, rules of GNP-RA
are easier to obtain compared with the class association rules.

2.4.2 Two stages of GNP-RA

There are two stages in the algorithm of GNP-RA, i.e., the training stage and the
testing stage. In the training stage, rules are recorded from the node transitions of GNP
and accumulated into the rule pool generation by generation. In the testing stage, the

14



2.4 GNP with Rule Accumulation (GNP-RA)

S
t
a
r
t


G
e
n
e
r
a
t
i
o
n
 
=
 
1


E
x
t
r
a
c
t
 
R
u
l
e
s


I
n
d
 
=
 
n
u
m
b
e
r
 
o
f

e
l
i
t
e
 
i
n
d
i
v
i
d
u
a
l
s
 
?


N
o


Y
e
s


P
o
p
u
l
a
t
i
o
n
 
I
n
i
t
i
a
l
i
z
a
t
i
o
n


I
n
d
 
=
 
1


P
r
o
c
e
s
s
i
n
g
 
/
 
J
u
d
g
m
e
n
t


C
a
l
c
u
l
a
t
e
 
F
i
t
n
e
s
s
 
V
a
l
u
e


Y
e
s


C
r
o
s
s
o
v
e
r


M
u
t
a
t
i
o
n


S
e
l
e
c
t
i
o
n


E
n
d


T
e
r
m
i
n
a
l

C
o
n
d
i
t
i
o
n

S
a
t
i
s
f
i
e
d
 
?


T
e
m
p
o
r
a
r
y
 
S
p
a
c
e


R
u
l
e
 
F
i
l
t
e
r


I
n

d


+
1



G

e
n


e
r

a
t


i
o

n


 
+

 
1




R
u
l
e
 
P
o
o
l


N
o


A
s
s
i
g
n
m
e
n
t


Figure 2.7: Flowchart of the training stage

accumulated rules are used to determine agents’ actions through a unique matching
calculation.

The training stage concerns how to store and accumulate rules into the rule pool.
Fig. 2.7 shows the flowchart of the training stage, which contains two steps.

Step 1: Rule Storage. In the evolutionary period, during the running of GNP
program, the node transitions of the best GNP individuals are recorded. The judgment
nodes and their corresponding judgment results with the succeeding processing node
are stored as a rule. For example, suppose a rule is like J2

1− > J1
4− > J1

6− > J3
8− > P7,

and the judgment result is {2:obstacle, 1:floor, 1:floor, 3:left }, and the processing node
is {2:turn left}. The subscripts denote the judgment node indexes and the superscripts
denote the corresponding judgment results. This rule is stored in the form of one-
dimensional string, as described by Table 2.1.

Step 2: Strength calculation. After the rules are generated, a strength value is
assigned to each rule, which represents its contribution to the fitness.

Fitness and frequency are used to evaluate the contribution of the rule. Eq. (2.1)
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Table 2.1: An example of rule storage

Node J1 J2 J3 J4 J5 J6 J7 J8 P Strength

Value 2 0 0 1 0 1 0 3 2 150

shows the definition of strength.

str(r) = fit(r) + µ ∗ F (r) (2.1)

where, str(r) is the strength of rule r ; fit(r) is the fitness value of the best individual
from which rule r is generated; F(r) is the frequency, i.e., the number of extracted times
of rule r in each generation; µ is constant parameter.

The same rule could be extracted many times in different generations. The rule is
updated by the following policy: if the strength of the rule is higher than that of the
same old rule, the strength of the rule is updated to the higher strength. Otherwise
the strength of the rule remains the same.

The testing stage concerns how to make use of the rules accumulated in the rule
pool. Fig. 2.8 describes the flowchart of the testing stage, which is divided into 3 steps
as follows.

Step 1: Rule pool division. After all the rules are accumulated in the rule pool,
the rule pool is divided into several classes according to the final processing nodes. All
the rules in the same class has the same processing node, therefore, each class represents
a specific action.

Step 2: Class matching. The environment data d is matched with all the rules
in each class in order to find the class whose situations are the most similar to the
current situation. A completely matching method is adopted in this paper, i.e., a rule is
matched if and only if all the judgment results are exactly the same as the environment
data d. Average Strength (AS) is calculated as follows in order to measure the similarity
of the current situation (environment data d) with all the situations recorded in the
rules of this class.

ASk =
str1 + str2 + ... + strNk

Nk
. (2.2)

Where, ASk represents the average strength of the environment data d in class k, str1,
str2,...and strNk

are the strengths of the matched rules in class k and Nk is the number
of matched rules in class k.
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Figure 2.8: Flowchart of the testing stage

Step 3: Action taking. The class with the highest average strength k is selected,
and its processing node is executed. The action is taken corresponding to the processing
node, and the environment is changed by taking this action. After an action is taken
as shown in Eq. (2.3), the environment is updated and a new environment data d is
obtained, as a result, agents could take the next action.

k = arg max
k∈K

{ASk}. (2.3)

Where, K is the set of suffixes of classes.
Fig. 2.9 shows the process of rule matching and action taking.

2.5 Simulations

2.5.1 Simulation environment

As an excellent test bed for the agent-based systems, the tile-world problem(62) is
chosen as the simulation environment. Fig. 2.10 shows an example of the tile-world
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Figure 2.9: Process of rule matching and action taking

whose size is 12×12. Tile-world is a two-dimensional grid which contains five types of
objects: tiles, holes, obstacles, floors and agents. Agents could move each time step
and push a tile into its neighboring cell. The goal of agents is to push tiles into holes
as many as and as quickly as possible without hitting obstacles or dropping themselves
into holes. Once a tile is dropped into a hole, they disappear to form a floor. Tile-world
is an ideal environment for multi-agent control problems. Therefore, the tile-world is
selected as the simulation environment.

Action taking in the tile-world is a great challenge to the multi-agent control prob-
lems, since the world information is unpredictable beforehand and agents have limited
sight. Agents should distinguish different objects in order to take a reasonable action.
The environment is always changing and agents cannot get the full information of the
environment, so that the cooperation between them becomes very difficult.

There are two types of tile-worlds, static tile-world and dynamic tile-world. In a
static tile-world, when a tile is dropped into a hole, they disappear to form a floor. No
new tile or new hole appear. In a dynamic tile-world, after a tile is dropped into a hole,
they disappear to form a floor. After that, a new tile and a new hole appear at random
positions. Compared with static tile-worlds, dynamic tile-worlds are more challengeable
for agents since the appearance of new objects are unpredictable, and the environment
keeps changing all the time. In this chapter, for simplicity, static tile-worlds are used
to test the performance of the proposed method.
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2.5 Simulations

Figure 2.10: An example of the Tile-world

2.5.2 Node function of GNP-RA

In order to get the environment information and take actions, 8 kinds of judgment
nodes(J1∼J8) and 4 kinds of processing nodes(P1∼P4) are set for the tile-world prob-
lem. J1 to J4 return {1: floor, 2: obstacle, 3: tile, 4: hole, 5: agent}, and J5 to J8
return the direction information {1: forward, 2: backward, 3: left, 4: right}. The
functions of judgment and processing nodes are listed in Table 2.2.

2.5.3 Environment data d

Fig. 2.11 shows an example of the environment data d in the tile-world problem.
Environment data d records the current environment information of the agent, which
is represented by a string of integers. J1 to J8 are the judgment nodes which get the
information from the environment, and the integers in the string represent the object
information or direction information. For example, J1 is to get the information of
“what is in front of the agent?”, and there is a tile in the environment, whose number
is 3. Therefore, the number of J1 is set at 3. The numbers of other judgment nodes
are set in a similar way.

2.5.4 Simulation configuration

In the training stage, 300 individuals are used in the population, which keeps evolv-
ing for 500 generations. 60 nodes are set for GNP-RA, including 40 judgement nodes
and 20 processing nodes. 10 different tile-worlds are used to train GNP individuals and
generate rules. In the testing stage, 8 new tile-worlds are used to test the performance
of the proposed method, where the locations of tiles and holes are different from the
training instances. In each tile-world, the number of tiles, holes and agents is set at 3.
Table 2.3 shows the parameter configuration for simulations.
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2.5 Simulations

Table 2.2: Node function of GNP-RA

Node Information that GNP-RA judges

J1 The object in front of the agent

J2 The object at the back of the agent

J3 The object on the left of the agent

J4 The object on the right of the agent

J5 The direction of the nearest tile

J6 The direction of the nearest hole

J7 The direction of the nearest hole from the nearest tile

J8 The direction of the second nearest tile

P1 Move Forward

P2 Turn Left

P3 Turn Right

P4 Stay

Table 2.3: Parameter configuration for simulations

Population: 300 Generations: 500
Mutation: 175 Judgment nodes: 40
Crossover: 120 Processing nodes: 20

Elite Individual: 5 Crossover Rate Pc: 0.1, 0.2
Tournament Size: 6 Mutation Rate Pm: 0.01, 0.05
Number of Agents: 3
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2.5 Simulations

Figure 2.11: An example of the environment data d

2.5.5 Fitness function

Fitness function for the static tile-world is defined as follows:

Fitness = Ctile ×DroppedT ile + Cdist ×
T∑

t=1
(InitialDist(t)− FinalDist(t))

+Cstp × (TotalStep− UsedStep).
(2.4)

Where, DroppedTile is the number of tiles the agents have dropped into holes.
InitialDist(t) represents the initial distance of the tth tile from the nearest hole, while
FinalDist(t) represents the final distance of the tth tile from the nearest hole. T is
the set of suffixes of tiles, and TotalStep and UsedStep are the number of steps which
are set and used for the simulation. Ctile, Cdist and Cstp are assigned constants. In
the situations, Ctile =100, Cdist =20, Cstp =10 and TotalStep =60 are used. Actually,
UsedStep is the number of steps spent on the tile-worlds when all the tiles are dropped.

2.5.6 Results and analysis

Fig. 2.12 shows the training results with three pairs of crossover and mutation
rates: (0.1, 0.01), (0.1, 0.05) and (0.2, 0.05). It is noticed that when crossover and
mutation rates are larger, the fitness curve increases faster in earlier generations. This
is because larger crossover and mutation rates enable GNP-RA to explore the solution
space efficiently and generate better solutions faster. However, in later generations,
their performances are not good because the exploitation ability is not satisfactory.
Large crossover and mutation rates may ruin the optimal gene structure. (0.1, 0.01)
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Figure 2.12: Training results of GNP-RA

enables GNP-MRA to generate the best program in the last generation because it can
well balance the exploration and exploitation ability.

Fig. 2.13 shows the testing results of GNP and GNP-RA. It is noticed that in some
tile-worlds, GNP can good results, while in other tile-worlds, its performance is not
satisfactory. For example, in the testing tile-world 1 and 8, GNP even gets negative
results which means that, agents can not drop the tile into the hole, but push the
tiles even further from their original nearest holes. This is because GNP uses the best
individual to determine agents’ actions, whose gene structure is very complex (too many
nodes and connections) after hundreds of generations. Such an individual can not be
generalized well in different testing tile-worlds, since its complex structure can not fit
into different situations which are quite different from the training environments.

On the other hand, GNP-RA could get relatively better and stabler results in the 8
testing tile-worlds. Furthermore, the average fitness of GNP-RA is higher that of GNP.
This is because GNP-RA guide agents’ actions using a large number of rules, which are
very simple and general. This helps to solve the over-fitting problem efficiently. Besides,
these rules are generated by all the best individuals from the previous generations,
which represent the good experiences from agents’ past behaviors. The explicit memory
function of GNP-RA could make use of the past experiences to determine the current
action, which could guide agents’ actions more accurately. Fig. 2.14 shows the number
of rules generated by GNP-RA in different generations, from which it is noticed that
GNP-RA could accumulate a large number of rules as the generation goes on.

In the following simulation, 100 randomly generated tile-worlds with different dis-
tribution of the tiles and holes are used to test the performance of GNP and GNP-RA.
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Figure 2.15: Random test of GNP-RA

Table 2.4: Average fitness and standard deviation of GNP and GNP-RA

matching methods GNP GNP-RA

Average fitness 61.4 80.7

Standard deviation 23.2 21.4

p-value(t-test) 2.76× 10−8

Fig. 2.15 shows the testing results of the two methods in different tile-worlds. Table 2.4
lists the average fitness values over the 100 testing instances. It is seen that GNP-RA
outperforms GNP in most testing tile-worlds, and the average fitness of GNP-RA is
higher than that of GNP. The p-value of the t-test in Table 2.4 suggests that improve-
ment of GNP-RA over GNP is obvious and evident. The results of the random test
also demonstrate the effectiveness of GNP-RA.

2.6 Summary

In this chapter, a GNP-based explicit memory scheme named GNP with Rule Ac-
cumulation was proposed. The purpose is to solve the over-fitting problem and improve
the performance for multi-agent control. In order to realize this, in this chapter, the
useful node transitions of GNP programs are defined as “rules” and used to determine
agents’ actions. The rules of GNP-RA are very simple, general and easy to get, which
helps to solve the over-fitting problem. A large number of rules are extracted from
the best individuals throughout the generations, which represent the good experiences
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from the past behaviors. These rules could help agents to choose the correct actions
and improve the performance.

In this explicit memory scheme, a two-stage framework is designed to build the
rule-based model. In the training stage, the node transitions of the best individuals are
accumulated into the rule pool generation by generation. In the testing stage, all the
rules in the rule pool are used to determine agents’ actions through a unique matching
calculation. Simulations on the tile-world problem show that GNP-RA could achieve
higher performance than GNP. Also, the generalization ability has been improved.

It is noticed that the testing results of GNP-RA is still much lower than that of
training, which means that this explicit memory scheme still has a broad space to
explore its full potential.
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3

Genetic Network Programming

with Multi-order Rule

Accumulation

For many real-world agent control problems, their environments are non-Markov
environments(63, 64, 65, 66). Multi-agent control in such environments is very difficult
because the environment information is partially observable. Agents suffer from the
perceptual aliasing problem(67) and couldn’t take proper actions. Therefore, the co-
operation between them becomes extremely hard. In order to solve this problem, this
chapter proposes a rule-based model named “multi-order rule accumulation” to guide
agent’s actions in non-Markov environments. The advantages are, firstly, each multi-
order rule memorizes the past environment information and agent’s actions, which
serves as the additional information to distinguish the aliasing situations, secondly,
multi-order rules are very general, so that they are competent for guiding agents’ ac-
tions in Partial Observable Markov Decision Process (POMDP), thirdly, multi-order
rules are accumulated throughout the generations, which could cover many situations
experienced in different generations. This also helps agents to take proper actions. The
new rule-based model is tested using the tile-world to demonstrate its efficiency and
effectiveness.
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3.1 Introduction

3.1.1 Problem to be solved: perceptual aliasing

Multi-agent control problems in such non-Markov environments are difficult because
agents couldn’t get full information on their environments. Therefore, they cannot take
proper actions and the cooperation between them becomes extremely hard. In such
situations, agents suffer from the perceptual aliasing problem, which means that different
situations seem identical to agents, but require different optimal actions. Fig. 3.1 shows
an example of such a perceptual aliasing problem. In Fig. 3.1, the agent’s task is to
reach the goal as soon as possible, but the direction of the goal is unknown since it has
limited sight. In position 1, the best action seems to turn right whereas in position
2, turn left is the best action. Agent becomes puzzled in such situations. However, if
position 1 and position 2 could be distinguished, e.g., if the agent knows the additional
environment information on position 1 and 2, or if it can remember which side of the
environment(left or right) it enters, it can take proper actions and perceptual aliasing
could be solved.

Figure 3.1: An example of perceptual aliasing

3.1.2 Motivation

Non-Markov environments could turn to Markov environments or get close to Markov
environments if enough information could be obtained(68, 69). However, sometimes it
is difficult. Since agents cannot rely on their current situations to determine the best
action, we can give them a memory to store additional useful information together with
the current situations to take correct actions. Recurrent Neural Network (RNN)(70)
was used to solve POMDP because it can get feedbacks which serves as additional

27
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information to distinguish the aliasing situations. A bit-register memory(71) was in-
corporated into an accuracy based classifier system and proved to be effective in solving
simple non-Markov problems. Reinforcement Learning could make use of its past state-
action pairs(72) to improve its performance when coping with POMDP. These research
indicates that additional information is useful in solving POMDP in non-Markov envi-
ronments.

3.1.3 Novelties of this chapter

In the previous chapter, a rule-based model named GNP-RA was proposed, which
helps solving the over-fitting problem and improved the performance and generalization
ability of GNP. However, the biggest problem of GNP-RA is that the rules are too
simple and contain only the current information. Therefore, historical information
on the environment and agents’ actions is lost, so that GNP-RA cannot distinguish
aliasing situations efficiently. In this paper, a more generalized method named “GNP
with Multi-order Rule Accumulation”(GNP-MRA) is proposed for multi-agent control
in non-Markov environments. The most important point of this paper in solving the
non-Markov problem is that, the history information of the environment and agent’s
behaviors are recorded in multi-order rules to distinguish different aliasing situations.
The novelties of GNP-MRA are as follows.

1) Multi-order structure. The multi-order rule of GNP-MRA is different from
the rule of GNP-RA. Each multi-order rule considers not only the current environment
information and agent’s actions, but also the previous environment information and
agent’s actions, which serve as the past observations of agent’s environments. This
additional information helps to distinguish the aliasing situations and improve the
performance in non-Markov environments. Rules of different order are extracted from
the node transitions of GNP, and how the rule order affects GNP-MRA is studied and
discussed in detail.

2) Matching degree calculation. In GNP-RA, a matching method using average
strength was used to select the relevant rules for the agent control. However, matching
of the multi-order rules is relatively more complicated. A novel matching method named
“average matching degree calculation” is designed to select the similar multi-order rules
to the current situation. Two matching methods, namely, completely matching method
and partially matching method, are used to match the multi-order rules, and how they
affect the performance of the rule-based model are studied.

The rest of this paper is organized as follows. Section 3.2 describes the flowchart and
algorithm of the proposed method in details. Section 3.3 compares GNP-MRA with the
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Figure 3.2: Flowchart of GNP-MRA.

conventional methods such as GP, GNP and previous GNP-RA method. Simulation
results are studied and analyzed. Section 3.4 is devoted to summary.

3.2 GNP with multi-order rule accumulation (GNP-MRA)

In this section, a GNP-based multi-order rule accumulation method is proposed for
agent control in non-Markov environments, and it is named as GNP-MRA. How to
generate multi-order rules from the node transitions of GNP and how to guide agent’s
actions using these multi-order rules are explained in details.

3.2.1 Flowchart

Fig. 3.2 shows the flowchart of the proposed method, which has two phases, i.e.,
the training phase and testing phase. In the training phase, the GNP population is
trained in order to increase the fitness and generate enough rules. In each generation,
the node transitions of the best-fitted individual are recorded as multi-order rules and
stored in the rule pool. When evolution terminates, it comes to the testing phase.
Multi-order rules in the rule pool are used to guide agent’s actions through a unique
matching calculation.
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3.2.2 Definition and examples of multi-order rules

1) Sub-rule: A sub-rule is defined as a sequence of successive judgment nodes (with
their judgment results) and the succeeding processing node in GNP. The rule of GNP-
RA is actually the sub-rule of GNP-MRA. Fig. 3.3 shows an example of rules. J1 →
J4 → P2 is a sub-rule, since judgment 1 and 4 are necessary for processing 2. Similarly,
J1 → J4 → J6 → P7 is another sub-rule.

2) Multi-order rule: A multi-order rule is defined as the sequence of N simple
sub-rules, where the N th sub-rule represents the current rule, and the previous N-1
sub-rules correspond to the past rules in the previous N-1 steps. Compared with the
sub-rule, the multi-order rule contains more history information in the previous time
steps. In Fig. 3.3, J1 → P1 → J2 → J3 → P3 is a second-order rule since it records
two consecutive actions and J1 → P1 → J2 → P3 → J6 → P7 could be regarded as a
third-order rule.

3.2.3 Multi-order rule generation in the training phase

In the training phase, the GNP population is trained in order to increase the fitness
and generate multi-order rules. The best individuals in each generation are selected
as the multi-order rule generators. During the running of the GNP program, the
visited judgment nodes (with judgment results) and the succeeding processing node
are recorded as a multi-order rule. An N th order rule contains not only the current
environment information and agent’s action, but also the environment information and
agent’s actions of the previous N − 1 steps. Rules are stored in the memory in the
form of one-dimensional string. For example, the second order rule in Fig. 3.3 could
be stored as J2(1) → P (1) → J1(2) → J2(3) → P (3), where, superscripts denote the
judgment results.
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3.2 GNP with multi-order rule accumulation (GNP-MRA)

Each multi-order rule has a strength value which represents its importance. The
fitness and frequency are used to evaluate the contribution of the rule. Eq. (3.1) shows
the definition of strength.

str(r) = fit(r) + µ ∗ F (r) (3.1)

where, str(r) is the strength of rule r ; fit(r) is the fitness value of the best individual
from which rule r is generated; F(r) is the frequency, i.e., the number of extracted times
of rule r per each generation; µ is constant parameter.

The same multi-order rule could be extracted many times in different generations.
The rule is updated by the following policy: if the strength of the rule is higher than
that of the same old rule, the strength of the rule is updated to the higher strength.
Otherwise the strength of the rule remains the same.

3.2.4 Multi-order matching in the testing phase

This phase concerns how to guide agent’s actions using multi-order rules in the rule
pool. In the previous GNP-RA method, the rules are matched by an average strength
calculation. The complete matching method is adopted, i.e., a rule is regarded as
“matched” if and only if all its judgment results are exactly the same as environment
data d. There is no problem when the rule is short. However, for the multi-order rules
of GNP-MRA which are usually longer than those rules of GNP-RA, the complete
matching method is very difficult. Therefore, in this chapter, a unique matching calcu-
lation method named “average matching degree calculation” is designed for multi-order
rule matching. The general idea is to find those multi-order rules whose judgment and
action sequence is similar to agents’ environment, and use them to guide the agent’s
actions in such an environment. There are 3 steps in the testing phase.

Step 1: Rule matching Before the rule matching, all the rules in the rule pool
are categorized into |K| classes according to the final processing nodes, so that each
class represents a specific action. We adopt two approaches to match the accumulated
multi-order rules with the environment: completely matching and partially matching.

Approach 1: completely matching. For the completely matching, firstly the
multi-order rules whose judgments and actions in the past N-1 sub-rules match with the
past environment data are picked up. Then, the matching degree of the N th sub-rule
with the current environment data is calculated.

Approach 2: partially matching. For the partially matching, all the judgments
and processings in the antecedent part of the rule are used to calculate the matching
degree with the environment data. Their differences are, the completely matching uses
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3.2 GNP with multi-order rule accumulation (GNP-MRA)

only the rules whose environments are completely the same as the environment data,
while the partially matching uses all the rules which are similar to the environment
data.

The matching degree of environment data d with rule r in class k is calculated as
follows.

Matchk(d, r) =
Nk(d, r)
Nk(r)

, (3.2)

where, Nk(d, r) is the number of matched judgment and processing nodes with data
d in the antecedent part of rule r in class k ; Nk(r) is the number of judgment and
processing nodes in the antecedent part of rule r in class k.

Step 2: Class Matching. This step aims to calculate the similarity of each class
to environment data d. A threshold value Tk is set for each class k to filter the lower
matched rules. If the matching degree of a rule is higher than the threshold, it could
be selected to calculate the average matching degree with environment data d.

Tk = meank + λ ∗ stdk, (3.3)

meank =
1
|Rk|

∑

r∈Rk

Matchk(d, r), (3.4)

stdk =

√√√√ 1
|Rk|

∑

r∈Rk

(Matchk(d, r)−meank)2, (3.5)

where, Tk is the threshold for class k ; meank and stdk are the mean value and
standard deviation of the matching degrees of class k ; Rk is the set of suffixes of rules
in class k.

The average matching degree of environment data d with the rules in class k is
calculated as follows.

mk(d) =
1

|Mk|
∑

r∈Mk

Matchk(d, r) ∗ strk(r), (3.6)

where, Mk is the set of suffixes of the selected rules in class k, and strk(r) is the strength
of rule r in class k.

Step 3: Action Taking. Finally, the class which has the highest average matching
degree is picked up and its corresponding action is taken. After an action is taken
as shown in Eq. (3.7), the environment is updated and new environment data d is
obtained, as a result, agents could take the next action.

k = arg max
k∈K

mk(d), (3.7)

where, K is the set of suffixes of classes (actions).
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Figure 3.4: Aliasing situations in the Tile-world

3.3 Simulations

3.3.1 Simulation environment

The tile-world problem is also selected as the simulation environment of GNP-
MRA. In POMDP, the environment is partially observable and agents can not get
full information of their environments. Therefore, the cooperation between agents
becomes very difficult. Tile-world is a typical POMDP because the world information
is unpredictable beforehand and agents have limited sight. Besides, the combinations
of the grid objects are almost infinite, and many aliasing situations exist in the tile-
world. Fig. 3.4 shows a simple example of such aliasing situations in the tile-world
problem. Suppose agents can only “see” the objects at its surrounding. In situation 1,
the agent should turn right in order to avoid the obstacle and drop the tile. However,
in situation 2, the agent should turn left. Situation 1 and situation 2 seem identical to
the agent with limited sight, which requires different actions. This problem happens
because the agent’s current information is not enough for its next action. Therefore,
the past information of the environment or agent’s actions is needed to determine the
next action.

3.3.2 Simulation conditions

In the simulation, the generation is set at 500 in order to accumulate enough multi-
order rules. The population is set at 300, and the best 5 individuals with the highest
fitnesses are selected as multi-order rule generators. 60 nodes are used in GNP including
40 judgment nodes and 20 processing nodes. As a classical method in EC for agent
control, GP is selected for comparison. For GP, the function nodes are selected from
the judgment nodes J1∼J8, and the terminal nodes are selected from the processing
nodes P1∼P4. The function nodes have multiple arguments corresponding to different
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3.3 Simulations

judgment results and the terminal nodes have no argument. In order to avoid bloating,
the maximum depth of GP is set at 4. Since each non-terminal node has five outputs,
the total number of nodes in GP is 781. The best individual of GP is selected to guide
agents’ actions. Each simulation is carried out for 30 independent runs and the average
result is calculated in order to get reliable results.

3.3.3 Results and analysis

Simulation results include the comparison of GNP-MRA with GNP-RA and the
conventional methods such as GP and GNP using different matching methods.

In this simulation, two types of environments are selected, i.e., single-agent envi-
ronment which has 1 agent and multi-agent environment which has 3 agents. Fig. 3.5
shows the training results of the best individuals averaged over 30 independent sim-
ulations(in the evolutionary period, the training results of GNP and GNP-MRA are
the same). The performance of GP is relatively low because of the limited size of its
gene. Tile-world is a difficult problem for GP since its expression ability is not enough.
However, if we increase the depth of GP, the memory cost and calculation time would in-
crease exponentially, and the program becomes hard to run. GNP-MRA(GNP) could
reuse nodes to avoid bloating, so that it can create compact programs with a small
number of nodes. Furthermore, GP execute its program from a root node to a certain
terminal node, so agents’ behaviors are guided only by the current information. GNP-
MRA(GNP) can determine agents’ actions by not only the current, but also the past
information. Therefore, they can distinguish the aliasing situations easily and achieve
better performance.

Fig. 3.6 shows the testing results of different methods. It can be seen that for GP
and GNP, there are some negative values in some tile-worlds. This is because agents
cannot drop the tiles and move them farther from their original nearest holes. For GNP-
MRA, there exits no negative value. The average fitness value of GNP-MRA over the
8 testing tile-worlds is higher than that of GNP and GP. This is because GNP and GP
use the best individual to control agents’ actions, whose genes are very complicated,
and this is also because in the testing phase, there is no genetic operations such as
crossover and mutation, so that the gene structure of GNP and GP cannot be changed
to adapt to different testing instances. However, GNP-MRA uses a large number of
rules to guide agents’ actions. These rules are very general and flexible, which could
cover many experienced situations in different generations. Agents could take proper
actions based on a large number of previous experiences. Therefore, this rule-based
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Figure 3.5: Training results of different methods

model could get relatively better results than the individual-based models, even if the
testing instances are different.

It is discovered that the performance of three agents is better than one agent in
both the training and testing. This is because pushing tiles into holes is a difficult
task in a single-agent environment, because the world map is broad and the agent
relies only on its own information. In the multi-agent environment, three agents share
the information of the environment and take actions considering the other two agents.
They could cooperate together to push tiles into holes, which is more efficient than a
single agent. Therefore, the number of agents is set at 3 in later simulations.

Fig. 3.7 shows an example of the agents’ traces within 60 time steps. Compared
with GP and GNP, GNP-MRA could drop more tiles and achieve higher fitness using
less steps. This also proves the effectiveness of the proposed method in non-Markov
environments.

The parameter λ plays an important role in adjusting threshold Tk. Different values
of λ are tried from 0 to 0.5 in our simulations. Fig. 3.8 shows the average fitness values
using different λs. It is noticed that when λ is 0 and 0.5, the fitness is relatively low.
This is because when λ is 0, Tk is a bit small, therefore, some unrelated rules which are
not so similar to the current situation are picked up to determine agents’ actions. This
decreases the accuracy of decision making. On the other hand, if λ is 0.5, Tk becomes
very high. As a result, many rules are filtered and not enough rules could be matched,
which means not enough experiences could be obtained to guide agents’ actions. 0.1
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Figure 3.6: Testing results of different methods

Figure 3.7: Agents’ traces of different methods

seems to be the optimal λ because it can well balance the number of rules and the
similarity of these rules to the current situation.

The following simulation compares GNP-MRA with the previous GNP-RA method,
and the purpose it to find out how the rule order affects the proposed method. GNP-
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Figure 3.9: Training results with different crossover and mutation rates

RA is a special case of GNP-MRA when the rule order is one. For simplicity, the order
of all the rules of GNP-MRA using the completely matching is set at two. In this
simulation, the performance of GNP is also provided as a benchmark.

Fig. 3.9 shows the training results with three pairs of crossover and mutation rates:
(0.1, 0.01), (0.1, 0.05) and (0.2, 0.05). It is noticed that when crossover and mutation
rates are larger, the fitness curve increases faster in earlier generations. This is because
larger crossover and mutation rates enable GNP-MRA to explore the solution space
efficiently and generate better solutions faster. However, in later generations, their
performances are not good because the exploitation ability is not satisfactory. Large
crossover and mutation rates may ruin the optimal gene structure. (0.1, 0.01) enables
GNP-MRA to generate the best program in the last generation because it can well
balance the exploration and exploitation ability.

Fig. 3.10 shows the testing results of each tile-world and Table. 3.1 lists the aver-
age fitness values of the three methods with different pairs of crossover and mutation
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Figure 3.10: Testing results of different methods

rates. It is discovered that GNP-MRA outperforms GNP-RA in most tile-worlds. This
is because the first order rule of GNP-RA contains only the current environment infor-
mation, which serves as the “if-then” decision rule. Tile-world contains many aliasing
situations, and agents’ current information is not enough to take a proper action. The
second order rule contains both the current and past information on the environments
and agents’ actions, which is like the sequence of the “if-then” decision rules. Agents
could “recall” their previous memory when taking the current action. This additional
information helps agents to distinguish many different aliasing situations. Therefore,
the performance of GNP-MRA is better than GNP-RA.

It is also noticed that when crossover and mutation rates increase, the average fitness
of GNP decreases from 79.6 to 50.4 (36.7%), while that of GNP-RA decreases from
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Table 3.1: Average fitness of different methods

crossover &mutation rate GNP GNP-RA GNP-MRA

(0.1, 0.01) 79.6 97.9 122.4

(0.1, 0.05) 69.0 92.0 121.9

(0.2, 0.05) 50.4 95.5 124.0

Table 3.2: Average fitness and standard deviation(in brackets) of GNP-MRA

matching methods 1st order 2nd order 3rd order

completely matching 89.1 (23.7) 108.5 (20.2) 76.2 (32.5)

partially matching 94.4 (21.3) 134.9 (19.3) 152.3 (18.9)

97.9 to 95.5 (2.5%) and GNP-MRA increases from 122.4 to 124.0 (0.3%). GNP-RA and
GNP-MRA exhibit smaller changes compared with GNP. This is because GNP uses the
best individual to guide agents’ actions, whose gene structure is sensitive, which means
that a small change in the gene structure could affect the fitness largely. However, GNP-
RA and GNP-MRA guide agents’ actions by using a large number of rules generated
and accumulated generation by generation. Therefore, many experienced situations
which are similar to the current situation could be retrieved and used to make proper
decisions. Since GNP-RA and GNP-MRA don’t use the best individual directly, genetic
operators have small influence on the performance of GNP-RA and GNP-MRA. This
means that the rule-based model could achieve more stable and robust results than the
individual-based model in non-Markov environments in terms of genetic operations.

This simulation studies how different matching methods affect the proposed method.
Fig. 3.11 shows the performance of GNP-MRA using different matching methods,
where 100 randomly generated tile-worlds are used as the testing instances. Table. 3.2
lists the average fitness values of the 100 tile-worlds.

In Fig. 3.11, as for the completely matching method, the second order rules out-
perform the first order rules and its reason has been discussed in the previous sub-
section. However, when the rule order turns to three, the performance of GNP-MRA
decreases(low average and high deviation). This is because when the rule order in-
creases, the number of judgment nodes and processing nodes in the multi-order rules
increases. The completely matching method uses only the completely matched rules (all
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Figure 3.11: Testing results of different matching methods

the nodes and the corresponding results are exactly the same as the current situation).
As the rule order increases, completely matching becomes more difficult to match. As
a result, the number of matched rules decreases dramatically. Fig. 3.12 shows the pro-
portions of completely matched, partially matched and mismatched rules. It is clearly
seen that only 17.3% of the second order rules and 4.1% of the third order rules could
be used to guide agents’ actions. These few rules could not provide enough experiences
to guide agents’ actions. Thus, the performance is not satisfactory as the rule order
increases.

On the other hand, it is noticed from Fig. 3.12 that the proportion of partially
matched rules is relatively stable(around 30%). The partially matching method uses
both the completely matched and partially matched rules to determine agents’ actions.
Fig. 3.13 shows the number of accumulated rules with different orders in the training
phase. Apparently, more rules could be generated if the order of rules is larger since
there are more combinations of judgments and processings in the rules with higher
order. Therefore, the partially matching method could obtain more experiences from
the previous actions than the completely matching method. Furthermore, the larger the
rule order is, the more information each multi-order rule could memorize, and the more
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Figure 3.13: Number of rules with different orders

easily agents could distinguish the aliasing situations in non-Markov environments.
This helps agents to take proper actions and achieve better performance. Therefore,
the performance of GNP-MRA gradually increases as the order of rules increases when
using the partially matching method. This also demonstrates the effectiveness of the
proposed method.

Table. 3.3 shows the calculation time of GNP-MRA using the partially matching
method as an example. The training time is relatively long because evolution takes
time. Besides, when the order of rules is larger, it takes more time to store multi-order
rules. However, in the testing phase, matching rules with data is fast, which costs only
several seconds. Moreover, as the rule order increases from 1 to 3, the calculation time
increases from 5.82 seconds to 8.51 seconds, which is still much faster than that of the
training phase. This means that the proposed method is very efficient for multi-agent
control once the rules are generated.
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Table 3.3: Time cost of the GNP-MRA

time(seconds) 1st order 2nd order 3rd order

training 974 1255 1732

testing 5.82 7.36 8.51

3.4 Summary

In this paper, a novel rule-base model named Multi-order Rule Accumulation is
proposed for multi-agent control, which is very different from the conventional methods
and the previous research. The purpose is to solve the perceptual aliasing problem
and improve the performance in non-Markov environments. Each multi-order rule
memorizes the past information on the environment and agent’s actions, which is the
additional information that helps agents to distinguish different aliasing situations. In
addition, multi-order rules contain only necessary judgments for an action and don’t
require complete information. Besides, multi-order rules are easy to obtain in the node
transitions of GNP. These general and flexible rules could handle POMDP in non-
Markov environments efficiently. Furthermore, multi-order rules are accumulated in the
rule pool which could cover many experienced situations throughout the generations.
These large number of rules could be matched with data and used to guide agents’
actions, which also improves the performance in non-Markov environments.

Simulation results on tile-world show that the higher the rule order is, the easier it
can help agents to distinguish different aliasing situations, and the better performance
it can achieve. They also reveal that, as the rule order increases, the partially matching
method is more appropriate to retrieve relevant rules and determine agents’ actions,
since completely matching becomes very difficult. The calculation time of the rule
matching (testing) is much less than the training time, which means that the proposed
method is very efficient once the rules are generated. The efficiency and effectiveness
of GNP-MRA has been proved.
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4

Genetic Network Programming

with Rule Accumulation and

Pruning

4.1 Introduction

In the previous GNP-RA method, rules are created by genetic operations such
as crossover and mutation. Genetic operations could generate rough rules because
crossover and mutation could change the gene structure largely. In the rule of GNP-RA,
which node to use, how many nodes are necessary and what action to take in the current
environment are determined only by evolution. Fitness is used as a standard to evaluate
the performance of the individuals. However, fitness is an off-line evaluation since it
represents the performance of the entire individual. In other words, fitness is obtained
by a serial of rules, and how much each rule contributes to the final fitness is unclear. In
creating the action rules for agents, it is expected to select the really useful judgments
and combine them to take a correct action. Therefore, the judgment nodes for a
particular processing should be determined during the running of the program. The
obtained knowledge during the running of the program is beneficial in creating efficient
rules. On the other hand, in GNP-RA, all rules generated by the best individuals are
regarded as good rule and stored in the rule pool. Actually, these rules contribute
differently to the final fitness. Even the best individual can generate some unimportant
rules which contribute to nothing, or even negatively to the final fitness. These rules
represent some random or misleading actions and should be pruned from the rule pool.
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4.1.1 Problem to be solved

The main problem of GNP-RA is that the quality of its rules are not good enough.
The reasons are as follows. Firstly, GNP-RA creates rules only by evolution, which is
an off-line method. The obtained knowledge obtained during the program running(on-
line learning) is lost and could not be used to create efficient rules. Secondly, rules
are generated only by the best individuals, where good rules and bad rules are hard to
distinguish. The bad rules should be pruned in order to improve the quality of the rule
pool. Besides, there exist some specific rules which can cause the over-fitting problem
easily. These rules should also be pruned and how to prune them becomes a problem
to be solved in this paper.

4.1.2 Motivation

Various research revealed that combining EC and RL is an effective way to bring
together their advantages and overcome their weaknesses(73, 74). This is because
combining off-line evolution and on-line learning helps to create better chromosomes
and more reasonable rules. On the other hand, many studies proved that utilizing
bad individuals could benefit the decision making. For example, (75) theoretically
showed that the use of infeasible solutions could transform an EA-hard problem to
an EA-easy problem. (76) directly used a part of infeasible individuals to construct
probabilistic models, and obtained better performance in some problems. In (77),
infeasible individuals are used to filter sample errors in EDA to improve the convergence
speed.

4.1.3 Novelties of this chapter

Inspired by the above research, a new rule-based model for agent control is proposed
in this paper, and it is named as “GNP with Rule Accumulation and Pruning”(GNP-
RAP). Compared with GNP-RA, the features and uniqueness of GNP-RAP are as
follows.

• On-line and Off-line learning. GNP-RAP combines evolution and reinforcement
learning, i.e., off-line evolution and on-line learning in its program. The really
important judgment nodes could be selected for a processing considering different
situations during the program running. The obtained knowledge could be used to
make rules more reasonable. This contributes to generating more efficient rules.
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• Pruning techniques. GNP-RAP extracts rules not only from the best individuals,
but also from the worst individuals. Rules generated from the worst individuals
are used to prune the generated rules in the rule pool and four different pruning
methods are designed and compared.

The rest of this chapter is organized as follows. Section 4.2 shows the framework and
detailed algorithm of the proposed method. Section 4.3 demonstrates the effectiveness
of the proposed method using the tile-world problem, and analyzes the simulation
results. Section 4.4 is devoted to summary.

4.2 GNP with Rule Accumulation and Pruning(GNP-RAP)

4.2.1 General framework of GNP-RAP

In this section, the algorithm of the proposed method is described in detail, which
consists of three stages: 1), evolve GNP individuals using Sarsa-learning and generate
rules. 2), prune rules to improve the quality of the rule pool. 3), use the rules to
guide agent’s actions by using a matching calculation. The following three subsections
will show the detail of them. Fig. 4.1 shows the flowchart of the proposed method, in
which A, B and C correspond to the subsections 4.2.2, 4.2.3 and 4.2.4 of Section 4.2,
respectively.

4.2.2 Evolution and learning of GNP-RAP

GNP-RAP combines both evolution and reinforcement learning to create efficient
rules, while evolution is to make the rough gene structure statically and reinforcement
learning is to use the obtained knowledge during the program running dynamically to
make the rough gene structure more reasonable, which contributes to creating more
efficient rules.

Evolution is to change the gene structure of GNP-RAP largely through genetic
operators in order to generate rules quickly. Genetic operators are similar to those of
GA and GP. For crossover, two parents are selected and exchange their gene segments
to generate two new offspring for the next generation. All connections of the selected
nodes are exchanged. For mutation, the connection or function of a particular node
is changed randomly to another one, so that a new individual could be generated. At
the end of each generation, the elite individuals with higher fitness values are selected
and preserved, while the rest individuals are replaced by the new ones generated by
crossover and mutation. Fig. 4.2 shows the genetic operators of GNP-RAP.
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Figure 4.1: Flowchart of the proposed method.
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Figure 4.2: Genetic operators of GNP-RAP

Reinforcement learning is a machine learning technique which enables agents to
interact with its environment through “trial-and-error”s. It can build a bridge between
the dynamic execution of GNP-RAP and its static structure. Furthermore, the obtained
knowledge during the program running could be obtained to create more effective rules,
thus, in this paper, the diversified search of evolution (off-line) and intensified search
of RL (on-line) are combined in order to improve the quality of the generated rules.
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Figure 4.3: Node structure and transition of GNP-RAP

Among RL, Sarsa is an on-policy approach(42) which updates its state-action pairs
based on the really taken actions, i.e., the real information during task execution.
Therefore, Sarsa-learning is more appropriate for this paper and is selected as the
learning strategy. In order to realize Sarsa-learning, sub-nodes are introduced into the
judgment and processing nodes. Each node is a “state” and selection of a sub-node is
regarded as an “action”. The Q-value of each subnode estimates the sum of discounted
rewards to be obtained in the future. Fig. 4.3 shows the node structure and node
transition of GNP-RAP. The notation IDij is the identification number of subnode j
in node i, and Qij is the Q-value of selecting this subnode; CA

ij , CB
ij , ... denote the next

nodes to which subnode j in node i connects according to different judgment results
A, B, ..., and so on. The selection of the sub-node is based on the ε-greedy policy, i.
e., the sub-node with the highest Q-value is selected with the probability of 1-ε, or a
sub-node is selected randomly with the probability of ε.

The Q-value of each state-action pair is updated by the following equation.

Q(i, a) ← Q(i, a) + α[r(t) + γQ(j, a′)−Q(i, a)], (4.1)

where, Q(i, a) is the Q-value of state i when taking action a. a’ is an action taken at
state j. State j is the next node of node i. At the beginning of learning, all the Q-values
in the Q-table are initialized at 0.

However, because of the ε-greedy policy of Sarsa, some unreasonable connections
could be visited, bringing some bad rules. Therefore, pruning of these rules becomes
necessary. In the previous research, rules are only extracted from the best individuals
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and store them as good experiences. In this chapter, the rules are extracted from the
best R individuals (with the highest fitness) throughout the generations and are stored
into the GOOD rule pool, which represents the good experience set of agent’s historical
behaviors. Meanwhile,the rules are also extracted from the worst R individuals and
stored into the BAD rule pool, which represents the bad experiences, i.e., the passive
precepts that tell the agent to avoid some particular actions. For simplicity, the order
of rules extracted by GNP-RAP is set at one.

4.2.3 Rule pruning

Generally speaking, the rules in the GOOD rule pool have good experiences which
are helpful for guiding agent’s actions. However, it also contains some bad rules which
contribute to nothing, or even mislead the agent. On the other hand, among all the
rules in the rule pool, it is hard to tell which one is good and which one is bad. It is
noticed that the bad rules appear more frequently in the worst individuals. Thus, we
could use the BAD rule pool to find out the bad rules in the GOOD rule pool. A simple
method is to check the rules in the GOOD and BAD rule pool one by one, and find
the overlapped rules. Four methods are proposed to deal with the overlapped rules.

Method 1: Deleting Overlapped Rules. The overlapped rules contain some
bad rules generated by the good individuals. If they are pruned from the GOOD rule
pool, the really good ones could stand out and contribute more to the final reward. A
simple method is to delete all the overlapped rules, and use the rest rules in the GOOD
rule pool for decision making.

However, because rules are extracted from R individuals of both the best and the
worst individuals. When R increases, there exists a possibility that the worst R indi-
viduals could generate some good rules, which may be pruned mistakenly by simply
deleting them. Meanwhile, in the overlapped rules, there exist some neutral rules, i.e.,
those who don’t directly contribute to the final reward, but are essential for taking
actions. For example, in the tile-world problem, some “stay” actions of agents don’t
directly contribute to dropping the tiles into holes, but they are essential for agents’
cooperation to achieve the global optimal solutions. Some reasonable stays of agents
could bring more rewards in the future. In order to avoid deleting these neutral rules,
the partial use of the overlapped rules becomes sensible. A simple approach is to
decrease the strengths of the overlapped rules by the following methods.

Method 2: Pruning using Subtracted Strength. In human society, a person
is evaluated by both his good behaviors and bad behaviors. His good behaviors are
discounted if he commits some bad behaviors. Similarly, each overlapped rule has
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Figure 4.4: Examples of different pruning methods.

its strength value corresponding to the positive and negative contributions to agent’s
actions. The strength of the rule in the GOOD rule pool is subtracted by its strength
in the BAD rule pool, so that its contribution to agent’s behaviors could be fairly
evaluated. For example, if the strength of an overlapped rule in the GOOD rule pool
is a and its strength in the BAD rule pool is b, then the strength of the rule is set at
a-b.

Method 3: Pruning using Averaged Strength. Method 3 regards the two
strength values of the same rule as the contributions to the higher and lower fitness,
respectively. Actually, the worst individuals could evolve and the extracted rules by
them also contribute to some rewards. In order to fairly evaluate the rule, the average
of the two strength values is calculated to represent its real contribution to the final
fitness. For example, if the strength of an overlapped rule in the GOOD rule pool is a
and its strength in the BAD rule pool is b, the strength of this rule becomes (a+b)/2.

Method 4: Pruning using Ranking. Since the overlapped rules have different
strength values, a reasonable method is to rank all the overlapped rules according
to their strength values in the GOOD rule pool and use only highly ranked ones for
decision making. In this paper, the top 20% of them are selected. Fig. 4.4 gives some
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examples on the different pruning methods.

4.2.4 Rule matching

This step focuses on how to make use of the good rules in the pruned rule pool.
The matching method is the same as chapter 3, rules are matched through an “aver-
age matching degree calculation”. The matched rules are picked up to calculate the
average matching degree, which represents the general similarity between the current
environment and all different situations recorded in the rules. Finally, the class with
the most similar situations to the current situation is selected, and its processing is
executed.

4.3 Simulation

4.3.1 Simulation environment

Dynamic tile-world is chosen as the simulation environment to test the performance
of GNP-RAP. In dynamic tile-worlds, the locations of the tiles and holes are randomly
distributed. Agents should distinguish different objects and take appropriative actions
in different situations. The task of the agents is to move tiles into holes as many as and
as quickly as possible without hitting obstacles or dropping themselves into the holes.
After a tile is dropped into a hole, they disappear to form a floor, and a new tile and a
new hole appear at random positions. This dynamic tile-world is a great challenge to
agent control problems because the world information is unpredictable beforehand and
agents have limited sight. Therefore, the cooperation between agents becomes more
difficult and challengeable than the static tile-world. Furthermore, a broader map with
the size of 20×20 is used as the simulation environment. Fig. 4.5 shows an example of
the dynamic tile-world.

The number of rule generators R is set at 5. The rules from the best five individuals
are extracted and stored into the GOOD rule pool. Likewise, the rules extracted from
the worst five individuals are stored into the BAD rule pool. The evolution of GNP
lasts for 1500 generations, and 300 time steps are assigned for agents to take actions.
The number of agents is initialized at 3. 10 tile-worlds are used as training instances
in order to extract enough rules, where 30 tiles and 30 holes are randomly distributed
at the beginning of evolution. In the testing phase, 10 new tile-worlds with different
locations of tiles and holes are used to test the performance of the proposed method.
The program is executed for 30 times with different random seeds in order to get reliable
results. The parameter configuration for the simulation is described by Table 4.1.
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Figure 4.5: An example of the tile-world

In the simulation, the proposed method is compared with the classical methods
such as GP and GNP. For GP, the function nodes are selected from the judgment nodes
J1∼J8, and the terminal nodes are selected from the processing nodes P1∼P4. The
function nodes have multiple arguments corresponding to different judgment results
and the terminal nodes have no argument. The maximum depth of GP is set at 4 in
order to avoid bloating. For fair comparison, parameters of GP are also set as Table
4.1. Since each non-terminal node has five outputs, the total number of nodes in GP is
781. The best individual of GP is selected to guide agents’ actions. For GNP, the total
number of nodes is set at 60, including 40 judgment nodes and 20 processing nodes.

4.3.2 Fitness function

Fitness function of the dynamic tile-world is defined as the sum of total rewards
obtained within the assigned time steps, as shown by Eq. (4.2).

fit =
N∑

j=1

reward[j], (4.2)

where, reward[j] is the jth reward and N is the total number of rewards. Reward is 1
if a tile is successfully dropped into a hole, otherwise it is 0.

4.3.3 Results and analysis

In the following simulation, GNP-RAP is compared with some conventional methods
such as GP and GNP. Fig. 4.6 shows the training results of different methods, and Fig.
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Table 4.1: Simulation conditions

Evolution Sarsa-learning

Population 300
Mutation 170
Crossover 120

Elite Number 5
Worst Number 5

Mutation Rate Pm 0.01 Learning Rate α 0.9
Crossover Rate Pc 0.1 Discount Rate γ 0.9

Generations 1500 ε 0.01, 0.1, 0.2
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Figure 4.6: Training results of the proposed method

4.7 shows the testing results which are averaged over 30 independent simulations.
GP increases its fitness relatively slowly and also its testing results are not satisfac-

tory. This is because GP has too many nodes. For example, the total number of nodes
in GP is 781 if the maximum depth is 4. The decision tree becomes very large and hard
to evolve, which over-fits the training data easily. That is why GP can not increase its
fitness too much in later generations. In the testing phase, such a large structure can
not adapt to the environment changes easily, and its generalization ability is not good.

GNP shows better performance than GP(in the training phase, GNP and GNP-RA
are the same). This is because GNP can reuse the nodes to create compact programs.
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Figure 4.7: Testing results of the proposed method

60 nodes are enough for GNP to deal with complicated problems and GNP never causes
bloating. However, GNP has many connections which make the gene structure very
complex. Therefore, the generalization ability of GNP is not good and its testing results
are relatively low.

GNP-RAP achieves lower fitness than GNP in earlier generations because it has to
update its state-action pairs gradually. In later generations, it outperforms GNP. This
is because GNP-RAP combines evolution and reinforcement learning in its program.
The obtained knowledge during the running of the program could be used to create
more reasonable combinations of judgments for processings (rules). In the testing
phase, GNP-RAP and GNP-RA could get higher fitnesses than GP and GNP, which
demonstrates the effectiveness of the rule-based model. This is because, GNP-RAP
and GNP-RA use a large number of rules to guide agents’ actions. These rules are
very general which can overcome the over-fitting problem. Furthermore, many past
experiences could be retrieved to make the current decision, which can guide agents’
actions more accurately.

In this simulation , GNP-RAP is compared with the previous GNP-RA method.
How ε affects the proposed method in both training and testing is also studied. The
pruning method of GNP-RAP is to simply delete the overlapped rules.

Fig. 4.8 shows the training results of GNP-RAP when ε is 0.01, 0.1 and 0.2,
respectively. From the results, it is noticed that the case of ε = 0.2 increases the fitness
value fastest and ε = 0.01 increases it slowest in earlier generations. This is because
relatively larger ε enables GNP-RAP to search for the optimal solutions in a broader
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Figure 4.8: Training results of GNP-RAP

space, which helps to increase the possibility of generating good solutions. In later
generations, the results of ε = 0.01 and ε = 0.2 are worse than that of ε = 0.1. ε =
0.01 enables GNP-RAP to over-exploit the obtained information and its exploration
ability is not satisfactory, thus it can be easily trapped into the local minima. ε = 0.2
explores the solution space sufficiently, but its exploitation ability is not good. The case
of ε=0.1 could get comparatively better results in later generations probably because
its exploration and exploitation ability is well balanced.

Fig. 4.9 shows the testing results of GNP-RA and GNP-RAP with different εs.
The x axis is the testing tile-world 1-10 and the y axis is the fitness. GNP-RAP
shows better performance than GNP-RA in all three cases. This is because GNP-RAP
could prune the unimportant rules, which helps to improve the quality of the rule
pool. Furthermore, some specific rules which represent the specific situations could
be deleted. This contributes to improving the generalization ability of the rule-based
model.

In this simulation, the effectiveness of 4 different pruning methods is studied and
analyzed. The results of the previous GNP-RA method (without rule pruning) are also
provided as a benchmark.

Fig. 4.10 shows the testing results of GNP-RA and GNP-RAP(Method 1 to Method
4). Generally speaking, the four pruning methods outperform GNP-RA without rule
pruning in most testing instances. Table 4.2 shows the average fitness values of the
five methods under different εs. From the table we could see that the average fitness
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Figure 4.9: Testing results of GNP-RA and GNP-RAP

values of the four pruning methods are higher than that of the conventional GNP-RA
method, which demonstrates the effectiveness of the proposed method. After pruning
the overlapped rules, the really good rules in the rule pool could stand out and con-
tribute more to the final reward. Method 1 is a little better than GNP-RA, but the
improvement is not satisfactory. This is because deleting all the overlapped rules could
reduce the impact of the bad rules. Actually, some good rules generated by bad indi-
viduals as well as the useful neutral rules could also be deleted mistakenly. Method 4
doesn’t improve the performance too much because in earlier generations, the strength
values of the good rules are generally low. Simply ranking the overlapped rules could
not distinguish the good rules among them, and some good rules in earlier generations
are lost. Method 2 and Method 3 could get relatively higher results because reducing
the strength values of the overlapped rules could reduce the influence of the bad rules,
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Table 4.2: Average fitness value of the testing results

ε GNP-RA Method 1 Method 2 Method 3 Method 4

0.01 5.11 5.26 5.72 5.90 5.01

0.1 7.84 8.42 9.31 9.64 8.55

0.2 6.54 7.32 8.87 9.29 7.70

Table 4.3: Number of rules under different εs

ε GOOD Pool BAD Pool Overlapped Rules Proportion

0.01 3662 4269 138 3.76%

0.1 4983 5576 396 7.94%

0.2 7453 8626 865 11.61%

so that they don’t interfere the decision making so much. On the other hand, it could
avoid deleting the neutral rules in the overlapped rules by mistake.

It is noticed that when ε is larger, the improvements of the proposed method become
more obvious. Table 4.3 shows the number of rules in the GOOD and BAD rule pool
as well as the proportions of the overlapped rules under different εs. It is noticed that
when ε increases from 0.01 to 0.2, the number of rules in both GOOD rule pool and
BAD rule pool increases. Meanwhile, the proportion of the overlapped rules is also
increasing. This is because larger εs enable agents to search for the optimal solutions
in a broader space, so that state-action pairs with lower Q-values could be visited,
bringing more rules into the rule pool. However, when ε is too large, the quality of
the rule pool may decrease. When ε is 0.01, the proportion of the overlapped rules
is merely 3.76%. Pruning such few rules doesn’t make too much difference, so that
the improvements of the four methods are not obvious. However, when ε turns to 0.2,
the proportion of the overlapped rules comes to 11.61%, thus the improvements of the
proposed method become more apparent.

Since rules are extracted from both the best and worst R individuals, and how R
affects the proposed method is studied.

Table 4.4 shows the average fitness values of GNP-RA and GNP-RAP under differ-
ent Rs. For simplicity, we choose Method 1 as the pruning method. It is noticed that
when R increases, both the performance of GNP-RA and GNP-RA with rule pruning
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Figure 4.10: Testing results of different pruning methods with different εs

increases. This is because more individuals could generate more rules which means
more experiences for determining actions. However, when R is 50, the performance de-
creases because rules generated from not so good individuals decrease the quality of the
rule pool. Meanwhile, the proportion of the overlapped rules in the GOOD rule pool
increases together with R, because larger Rs increase the possibility of generating more
common rules between the best and worst individuals. When R is 1, the improvement
rate of the proposed method over conventional GNP-RA method is 4.63%, which is not
obvious enough because the proportion of overlapped rules is merely 2.7%. Pruning of
such few rules doesn’t work too much. When R turns to 5 and 10, the improvements are
more satisfactory since a good number of bad rules are pruned to increase the quality
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Table 4.4: Average fitness value under different Rs

R GNP-RA GNP-RAP Overlapped Rules Improvement

1 5.62 5.88 2.7% 4.63%

5 7.84 8.42 7.94% 7.40%

10 8.23 8.72 8.68% 5.95%

50 8.07 8.39 11.23% 3.97%

of the rule pool. Nevertheless, when R turns to 50, the improvement rate decreases.
This is because the worst individuals could also generate some good rules, and too large
R could increase the chance to prune some good rules mistakenly. Thus, selecting a
proper number of rules in the rule pools is important for the proposed method. Rs of
5 and 10 seem to be the optimal ones in this simulation.

4.4 Summary

In this paper, a new rule-based model named “GNP with Rule Accumulation and
Pruning” is proposed. The purpose is to improve the performance of GNP-RA by im-
proving the quality of its rules. In order to realize this, GNP-RAP combines off-line
evolution and on-line learning to create more efficient rules. During the rule genera-
tion, the diversified search of evolution and intensified search of reinforcement learning
work together to create more reasonable combinations of the judgement nodes for a
processing. The obtained knowledge (Q table) during the program running could be
used to create more efficient rules, which helps to improve the quality of the rule pool.
After the rules are generated, a unique rule pruning approach using bad individuals is
designed in this chapter. The general idea is to use bad individuals as rule monitors to
filter the bad rules in the rule pool. Four methods for pruning the overlapped rules are
designed, and their performances are systematically analyzed. Simulations on the tile-
world demonstrate the effectiveness of the proposed method over the classical methods
and the previous work.
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5

Genetic Network Programming

with Updating Rule

Accumulation to Improve

Adaptability in Dynamic

environments

5.1 Introduction

In this chapter, it is studied how to improve the adaptability of GNP-RA in ac-
cordance with the changing environments. As an important feature of agent-based
systems, adaptability (78, 79, 80, 81) is to be understood as the ability to adapt them-
selves quickly and efficiently to changed environments. An adaptive system is therefore
an open system(82, 83) that is able to fit its behaviors or update parts of itself ac-
cording to the changes in its environment. Adaptability is also an important feature
in real-world applications, for example, when a best trained product with the optimal
policy is used, it is expected to adapt to the new environment.

5.1.1 Problem to be solved

One problem of GNP-RA is that its adaptability is very poor. In GNP-RA, the best
individuals in each generation are used to generate action rules, which are stored into
the rule pool. These rules remain the same without any change throughout the testing
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phase. However, the environment is dynamic and changing all the time, where new
situations appear frequently. The old rules in the rule pool are becoming incompetent
for guiding agent’s actions, which cannot deal with changing environments efficiently.
Therefore, updating them becomes necessary. How to update the rules in the rule pool
in accordance with the environment changes is the main problem to be solved in this
chapter.

5.1.2 Motivation

Adaptability in changing environments has becomes a hot topic for decades. EC
proves to be an effective method to solve dynamic optimization problems because of
its global search ability in uncertain environments(84, 85). Recently, machine learn-
ing (ML) is witnessed to play an important role to enhance EC methods(86, 87). For
example, EC with memory schemes(88) could store historical information into mem-
ory to generate better solutions. A variable relocation approach(89) was proposed to
re-initialize the population after a change occurred. Reinforcement learning (RL)(90)
could also improve the robustness through trial-and-error interaction with dynamic
environments. However, its state-actions pairs will exponentially increase when the
problem is complicated, which decrease its performance(87). In real world applica-
tions, RL is often combined with EC to create more robust individuals(91), since it
combines the diversified search of EC and intensified search of RL. Up to now, most
research focuses on the individual level, i.e., to generate the most adaptive individuals
for dynamic environments. It remains a new topic on how to improve the adaptability
through generating and updating rules.

5.1.3 Novelty of this chapter

Inspired by the above mentioned methods, this chapter proposes a novel rule-base
model named GNP with Updating Rule Accumulation (GNP-URA) for the multi-agent
control in changing environments. Different from the conventional methods, this chap-
ter focuses on how to build a more adaptive rule pool, i.e., how to adapt the rule pool
to the changing environments, so that “rule pool adapting to changing environments”
is the novel point of this chapter.

In order to realize this, Sarsa-learning is used as a tool to generate better, more
and newer rules for GNP-URA, which is helpful to increase its adaptability. Firstly,
Sarsa can select the really important judgments and actions in the current situation,
generating better rules. Secondly, the ε-greedy policy of Sarsa enables GNP-URA
to explore the solution space sufficiently, so that some unvisited transitions could be
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visited. This contributes to generating more rules, which means more experiences for
agent control. Most importantly, when evolution ends, Sarsa could also updates its
policy by on-line learning in the new environments. Some new situations could be
recorded as new rules to update the old ones in the rule pool. Thus, the rule pool could
adapt to new environments.

The rest of this chapter is organized as follows. Section 5.2 describes the general
framework and the detailed algorithm of the proposed method. Section 5.3 compares
the performance of different methods, and analyzes the reasons for improvements. Sec-
tion 5.4 is devoted to a brief summary.

5.2 Genetic Network Programming with Updating Rule

Accumulation

In this section, a rule-based model with higher adaptability named GNP-URA is
proposed to guide agent’s actions in changing environments. How to generate rules
through evolution and learning in the training phase, how to update the rules through
Sarsa-learning in the testing phase and how to guide agent’s actions using the rule pool
are explained in details.

5.2.1 General framework of GNP-URA

Fig. 5.1 shows the framework of the proposed method, which contains three phases.
In the training phase, the population is trained by dynamic tile-worlds, and rules
generated by the best individual are stored in the rule pool generation by generation.
When evolution ends, it comes to the testing phase, where the environment keeps
changing. The best individual continues to learn in such environments and the rule
generation is done successively. The generated new rules in the new environments are
used to update the old rules in the rule pool. In the testing phase, all rules in the
updated rule pool are used for determining agent’s actions through a unique matching
calculation.

5.2.2 Node structure of GNP-URA

Fig. 5.2 shows the node structure of the proposed method. In order to realize
Sarsa-learning, each node in GNP-URA has a macro node. Sub-nodes are introduced
into each macro node as alternative functions. In this structure, each macro node is
regarded as a “state” and selection of a sub-node is regarded as an “action”. IDij is
the identical number of sub-node j in node i, and Qij is the Q-value of selecting this
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Figure 5.1: General framework of GNP-URA
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Figure 5.2: Node structure of the proposed method

sub-node (the number of sub-nodes is set at 2 in this chapter); CA
ij , CB

ij , ... denote
the next nodes to which sub-node j in node i connects according to different judgment
results A, B, ..., and so on. Q-values estimate the sum of discounted rewards to be
obtained in the future, which represents the sub-node’s importance. The selection of
the sub-node is based on the ε-greedy policy, that is, the sub-node with the highest
Q-value is selected with the probability of 1-ε, or a sub-node is selected randomly with
the probability of ε.

62



5.2 Genetic Network Programming with Updating Rule Accumulation

Figure 5.3: Flowchart of GNP-URA

5.2.3 Rule description

In GNP-RA, the rule is defined as a sequence of successive (macro)judgment nodes
with their judgment results and the succeeding (macro)processing node. For example,
in Fig. 5.2, JA

1 →JB
6 →JD

8 →P12 is a rule, and JC
3 →JE

4 →P7 could be regarded as an-
other rule, where A, B, C, D and E in the superscripts denote the judgment results.
However, in GNP-URA, the actually visited sub-nodes are recorded and regarded as
the ingredients of the rule.

5.2.4 Flowchart of GNP-URA

Fig. 5.3 describes the flowchart of the proposed method, whose detailed algorithms
are explained in the following three sub-sections.

5.2.5 Rule generation in the training phase

In the training phase, evolution (diversified search) is combined with Sarsa-learning
(intensified search) in order to generate better rules. Genetic operators such as crossover
and mutation could change the gene structure largely, so that the best combinations
of judgments with a processing could be obtained. Evolution enables GNP-URA to
generate a great number of useful rules quickly.
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Sarsa-learning could update its policies, i.e., Q-values of the state-action pairs based
on the real information obtained during task execution, since the really important
judgments for a processing in the current situation could be selected. This helps GNP-
URA to generate more reasonable rules for different situations, namely, better rules.
Furthermore, the ε-greedy policy of Sarsa-learning could bring more rules for decision
making. Fig. 5.4 shows the node transitions of GNP-RA and GNP-URA, from which
it can be seen that only one rule could be generated in the node transition of GNP-RA,
while two(or even more) rules could be generated by GNP-URA.

The strength of the rules is defined the same as that in the previous chapter.

5.2.6 Rule updating in the testing phase

When the training phase terminates, it comes to the adapting phase, in which the
rule pool is updated depending on the changing environments by updating the rules in
it. The best individual obtained in the training phase continues learning in the changing
environments. There is no genetic operation such as crossover and mutation, so that
the gene structure of the best individual doesn’t change. However, its node transition
could be changed by updating the Q-values of the sub-nodes in each judgment and
processing node. The best individual interacts with the new environments and get
rewards. Once a reward is obtained, Q-values of the visited sub-nodes which reflect
this reward are updated as follows.

Q(st, at) ← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)], (5.1)

where, Q(st, at) is the Q-value of the pair of state st and action at, rt is a reward from
the new environment, α is a learning rate and γ is a discount rate.
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Changing the Q-values of the sub-nodes could change the node transition of GNP-
URA. In the new node transition, the visited nodes are recorded and stored as new
rules in the rule pool. These new rules represent some unexperienced situations, which
are different from those in the training phase. These rules are used to update the old
rules in the rule pool, so that the rule pool could “learn” and adapt to the changing
environments.

Once a new rule is generated, the rules in the rule pool are updated under the
following policy: If the new rule and the old rule in the rule pool are the same(this rule
already exists in the rule pool), and if the strength of the new rule is higher than that
of the old rule, update the strength of the old rule to the higher one, otherwise the
strength remains the same. If a new rule doesn’t exist in the rule pool, then directly
add it into the rule pool.

5.2.7 Rule matching and action taking in the testing phase

The average matching degree method is also used in this chapter to match rules with
the environment data in different classes. The class with the highest average matching
degree is picked up, and its action is taken by the agent. After that, the environment
is updated and a new environment data could be obtained for the next step.

5.3 Simulations

5.3.1 Dynamic Tile-world

Dynamic tile-world is used in this chapter to testify the adaptability of the proposed
method in comparison with the conventional methods. In the dynamic tile-world,
tiles and holes are randomly distributed in different positions. After a tile is dropped
into a hole, they disappear to form a floor, and a new tile and a new hole appear
at random locations. Dynamic tile-world is an excellent test-bed of adaptability since
the environment keeps changing all the time, and the changes are unpredictable before
hand. The size of the dynamic tile-world is set at 20×20, where 30 tiles and 30 holes are
randomly distributed. The number of agents is set at 3. In the training phase, evolution
lasts for 1000 generations with each generation having 300 action steps. After that, the
environment keeps changing continuously for 1000 episodes and each episode has 300
action steps. The performances of different methods are tested in such environments.
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Table 5.1: Parameter configuration for the simulation

Evolution Sarsa-learning

Population 300
Mutation 175
Crossover 120

Best Individual 5
Mutation Rate Pm 0.01 Learning Rate α 0.9
Crossover Rate Pc 0.1 Discount Rate γ 0.9

Generations 1000 ε 0.01, 0.1, 0.15, 0.2

5.3.2 Simulation configuration

In this simulation, GNP-URA is compared with GP, GNP and the conventional
reinforcement learning method. For GNP-URA, the rule pool is used to guide the
actions of the three agents. In the testing phase, after one episode ends, the rule pool
is updated for the testing. Then, it comes to the next episode. Therefore, GNP-URA
could react immediately once the change happens. For GP, the function nodes are
selected from the judgment nodes J1∼J8, and the terminal nodes are selected from the
processing nodes P1∼P4. The function nodes have multiple arguments corresponding to
different judgment results and the terminal nodes have no argument. In order to avoid
bloating, the maximum depth of GP is set as 4. The best individual of GP is selected to
guide agents’ actions. For conventional reinforcement learning method, Sarsa-learning
is chosen for comparison in the testing phase. Here, “state” is defined as the full
information of judgment nodes J1∼J8, and “action” is defined as one processing from
P1∼P4. Since J1 to J4 return {1,2,3,4,5}, and J5 to J8 return {1,2,3,4}, the possible
number of state-action pairs is 54×44×4 = 640, 000. Q-values of the state-action pairs
are updated in the same way as Eq. (5.1). Table 5.1 shows the parameter configuration
for the simulation.

5.3.3 Results and analysis

5.3.4 Training results of different methods

Fig. 5.5 shows the training results of different methods which are averaged from 30
independent simulations. The x-axis is generation(for RL, the x-axis is episode) and
the y-axis is fitness. It can be seen that in earlier generations, GNP-RA increases its
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Figure 5.5: Training results of different methods
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Figure 5.6: Number of generated rules in training

fitness faster than GNP-URA. This is because GNP-URA has to update its state-action
pairs gradually through Sarsa-learning. However, in later generations, GNP-URA out-
performs GNP-RA since it can make use of the information during task execution to
generate more reasonable combinations of its nodes. This contributes to generating
better rules. Furthermore, the ε-greedy policy of Sarsa could bring more useful rules
into the rule pool. Fig. 5.6 shows the number of rules in the rule pool in each genera-
tion, from which it is noticed that GNP-URA could generate more rules than GNP-RA.

GP increases quickly in earlier generations, but converges to low fitness in later
generations. This is because the expression ability of its tree structure is limited,
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Figure 5.7: Testing results of different methods
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Figure 5.8: Number of rules in the testing phase

and tile-world is very difficult to solve using such a tree structure. However, if the
depth of the tree is increased, the cost of memory and calculation time would increase
dramatically. GNP-RA and GNP-URA could get relatively better training results since
they can reuse the nodes to avoid bloating, and create general programs through partial
observable processes. RL increases its fitness very slowly because it has too many state-
action pairs, and the obtained rewards are not enough to update them.

5.3.5 Testing results of different methods

Fig. 5.7 describes the testing results of different methods. The x-axis is episode
and y-axis is fitness. Generally speaking, GNP-URA could obtain higher testing results
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than GNP-RA. This is because GNP-URA could generate better and more rules than
GNP-RA in the training, which also helps to improve the adaptability in the testing.
Moreover, it is noticed that the fitness curve of GNP-RA gradually decreases along with
the environment changes. This is because the rules generated in the training phase
fail to reflect the new situations in the changing environments. Many unexperienced
situations appear frequently, therefore, the old rules are incompetent for guiding agent’s
actions. On the contrary, the fitness curve of GNP-URA gradually increases, which
could be explained by the following reasons. Firstly, the same rule with higher strength
as the one in the rule pool is used to update the old rule in the rule pool, which
contributes to improve the performance of the rule. Secondly, some new rules which
represent the unexperienced situations of the changing environment are added into the
rule pool so that they could “learn” and adapt to the environment changes. Thirdly,
the total number of rules in the rule pool is increasing, which means more experiences
are accumulated for making decisions. Fig. 5.8 shows the number of rules in the testing
phase, from which it is seen that the number of rules for GNP-URA is increasing, while
that of GNP-RA remains the same.

GP achieves relatively low fitness which is decreasing in the testing phase. The
limited size of its gene fails to generate adaptive individuals for the tile-world problem.
Since there is no genetic operations such as crossover or mutation in the testing phase,
it is impossible to change the gene structure of the best individual to adapt to the
environment changes. Therefore, the adaptability of GP is not good. For RL, although
it performance is gradually increasing in the testing episodes, its fitness is very low.
This is because there are too many state-action pairs of RL and updating them takes
very long time. The 1000 episodes are not enough for updating its Q-table.

5.3.6 Parameter discussion

As a sensitive parameter, ε balances the exploration and exploitation of reinforce-
ment learning. If ε is too small, the program would be trapped into local minima with
high probability. If ε is too large, the program would take too much random actions
and the results are unstable. Fig. 5.9 shows the training results when ε is (0.01, 0.1,
0.15, 0.2). It can be seen that in earlier generations, when ε is large, the fitness curve
increases quickly and fluctuates a lot. This is because large ε helps to explore the so-
lution space sufficiently and generate best solutions quickly. However, its performance
is not good in later generations since its exploitation ability is not satisfactory. On the
other hand, lower ε takes too much time for exploring the search space, so its fitness
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Table 5.2: Number of rules and average fitness with different εs

ε=0.01 ε=0.1 ε=0.15 ε=0.2

Generated Rules 3427 5086 5743 7956

Updated Rules 254 610 726 1159

Updated Proportion 7.41% 11.99% 12.64% 14.57%

Average Fitness 7.25 9.36 9.04 6.48

Stand Deviation 0.615 0.448 0.519 0.641

curve increases slowly. 0.1 seems to be the optimal value of ε in training because it
could well balance exploration and exploitation.

Fig. 5.10 shows the testing results with different εs. It is noticed that when ε is
0.1 and 0.15, the performance of GNP-URA increases during testing, while when it is
0.01 and 0.2, the performance decreases. This is because when ε is 0.01, not enough
rules are generated to update the rule pool, so that it cannot adapt to the changes of
environments. On the other hand, when ε is 0.2, GNP-URA takes too many random
actions. The state-action pairs with very low Q-values could be selected with high
probability. Therefore, many unimportant rules or even bad rule which mislead the
agents are generated. These rules decrease the quality of the rule pool, so that its
adaptability and robustness decrease. The cases of ε being 0.1 and 0.15 could get
higher fitness values because they can balance the number of updated rules and the
quality of these rules.

Fig. 5.11 and Fig. 5.12 show the number of rules in the training and testing phase,
respectively. Table 5.2 shows the total number of generated rules and updated rules,
and the average fitness values in the testing phase. It is noticed that when ε is large,
GNP-URA could generate rules quickly and generate more rules in both training and
testing. However, this does not mean the more the better. A proper number of rules
with high quality are helpful for guiding agents’ actions, so that balancing the number
of rules and the quality of these rules is necessary. ε being 0.1 and 0.15 could obtain
better results in the testing phase.

5.3.7 Agents’ traces

Fig. 5.13 shows the traces of different agents in the changing environments. For
simplicity, we use a small map(10×10) which has 3 tiles and 3 holes. 60 action steps
are assigned to 3 agents for taking actions. When tiles are dropped into holes, new
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Figure 5.9: Training results with different εs
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Figure 5.10: Testing results with different εs

tiles and new holes appear at different positions, then the old environment turns to a
new one. GNP-RA could drop 3 tiles within the 60 steps in the old environment, while
in the new environment, it only drops 1. Besides, the traces of the three agents don’t
change too much. This is because GNP-RA always uses the old rules to guide agents’
actions, which cannot cover the new situations in the new environment. Therefore,
the adaptability of GNP-RA to the changing environments is not good. On the other
hand, GNP-URA successfully drops all the tiles into holes, although the environment is
different from the old one. Furthermore, GNP-URA could change the traces of agents
largely to adjust to the environment changes. This is because GNP-URA could update
its rule pool through Sarsa-learning and generate many new rules which implies what

71



5.4 Summary

0


1000

2000

3000

4000

5000

6000

7000

8000

9000

1
 101
 201
 301
 401
 501
 601
 701
 801
 901


Generation

N
u
m
b
e
r
 
o
f
 
G
e
n
e
r
a
t
e
d
 
R
u
l
e
s



0.01 0.1
 0.15 0.2


Figure 5.11: Number of generated rules in training
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Figure 5.12: Number of updated rules in testing

agents should do in new environments. Thus, the adaptability of the proposed method
to the changing environment is improved.

5.4 Summary

In this chapter, a more adaptive rule-based model named “GNP with Updating
Rule Accumulation” is proposed for multi-agent control in changing environments. The
purpose is to increase the adaptability and robustness of the rule pool to cope with
the environment changes. In order to realize this, Sarsa-learning is introduced into the
rule-based model to generate new rules to update the old ones in the testing phase.
In addition, combining evolution and Sarsa-learning could generate better and more
rules in the training phase, which also helps to improve the adaptability in the testing
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Figure 5.13: Agent’ traces using different methods

phase. In new environments, some unexperienced situations are recorded into the new
rules, which are used to replace the old rules in the rule pool. Therefore, the rule
could adapt itself gradually to the environment changes. Simulations on the tile-world
problem demonstrate the effectiveness of the proposed method over the previous work,
GP and reinforcement learning. The proposed rule-based model could guide agents’
actions properly even if the environments keep changing. The results also show that
proper ε should be tuned in order to balance the number of updated rules and the
quality of these rules.
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6

Credit Genetic Network

Programming with Rule

Accumulation to Improve

the Generalization Ability

6.1 Introduction

In this chapter, we focus on how to improve the generalization ability of GNP-RA
in both training and testing. Generalization ability(92, 93, 94, 95) refers to the ability
of an agent based system to cope with unexpected situations and continue to work
efficiently without retraining. It is an important standard to evaluate the agent based
systems in new and unexperienced environments.

6.1.1 Problem to be solved

The generalization ability of both GNP and GNP-RA is unsatisfactory because of
the existence of some harmful nodes in the program.

In GNP, the function of the nodes and the number of nodes are assigned by the
designer. It is difficult to know the optimal number of nodes for a particular problem.
These nodes are not equally used during the program running(96), and some harmful
nodes exist in the program of GNP. As a result, the program over-fits the training data
easily and can not generalize well in the testing instances. Furthermore, it always uses
the fixed nodes and can not distinguish the important nodes from the unimportant
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ones. How to select the really useful nodes and a proper number of nodes in different
situations is essential to improve the generalization ability of GNP.

In GNP-RA, the generated rules contain some harmful attributes (nodes) which are
not useful for the processing. These rules are relatively long and represent some specific
situations. They can not guide agents’ actions efficiently in dynamic environments,
where many inexperienced situations exist. The generalization ability of the rule pool
is not good. Therefore, the harmful nodes should be pruned in order to create more
general rules.

The difficulty is, whether a node is harmful or not depends on different environ-
ments. The seldom used nodes in the old environment may be used frequently in a new
environment. Therefore, they can not be deleted simply. The really important thing is
to select the really useful nodes flexibly considering different environments.

6.1.2 Motivation

In has been proved in both Neural Networks(NNs)(97, 98, 99) and EC(100, 101)
that pruning the useless information in the program could improve its generalization
ability. In NNs, pruning the useless nodes in the hidden layers helps to increase the
generalization ability of the network and avoid the over-fitting(97). For example, a
Fourier amplitude sensitivity test method(98) was used to rank the nodes in a hidden
layer, and the nodes with lower rankings are pruned. In (99), PSO was incorporated
into NN to optimize its parameters in the pruning process. However, choosing suitable
parameters for PSO is difficult. A statistical pruning heuristic is proposed in (100), and
nodes with low variances in sensitivity are regarded as irrelevant and removed. In GP,
the nodes with unexecuted partial trees are regarded as useless and pruned in (101),
which improves the search ability of GP. Although these methods are difficult to be
used directly in GNP, they reveal a fact that pruning the useless information in the
program could increase the generalization ability.

6.1.3 Novelty of this chapter

In this chapter, how to prune the harmful nodes to create more general programs
and more general rules are studied. A new rule-based model named “Credit GNP with
Rule Accumulation”(CGNP-RA) is proposed, where Credit GNP is used as the rule
generator. The unique points of Credit GNP are as follows.

• Credit GNP has a unique gene structure, where each node has an additional
branch. This gene structure has more exploration ability than that of the con-
ventional GNP.
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• Credit GNP combines evolution and reinforcement learning, i.e., off-line evolution
and on-line learning in its program to prune the harmful nodes, which could speed
up evolution and increase fitness. Credit GNP is a more efficient rule generator
compared with GNP.

• Credit GNP could select the really useful nodes and prune the useless ones dy-
namically and flexibly considering different situations. Even if the environment
changes suddenly, Credit GNP could select the really useful nodes to determine
an action in the new environment.

• Credit GNP doesn’t simply delete the useless nodes, which is different from the
conventional pruning methods. It can create more general programs and more
general rules which helps to improve the performance of GNP-RA. Therefore,
CGNP-RA could be regarded as a unique tool for rule pruning.

In this chapter, Section 6.2 describes the algorithm of Credit GNP in terms of its
node structure, evolution and reinforcement learning mechanism. Section 6.3 shows
how to use Credit GNP to generate action rules for multi-agent control. A new rule-
based model named “Credit GNP with Rule Accumulation”(CGNP-RA) is proposed.
Section 6.4 demonstrates the effectiveness of CGNP-RA in both training and testing
phases. The dynamic tile-world is chosen as the simulation environment. Section 6.5
is devoted to the summary.

6.2 Credit GNP

In this section, the basic concepts of Credit GNP are introduced, including it gene
structure, genetic operators and reinforcement learning mechanism.

6.2.1 Node structure of Credit GNP

Fig. 6.1 compares the differences between the node structure of GNP and Credit
GNP. The features of Credit GNP are as follows.

• Besides the normal branches, each node of Credit GNP has a credit branch.

• The credit branch serves as an additional connection of each node, therefore,
Credit GNP has more exploration ability than the conventional GNP. This helps
Credit GNP to explore solutions in a broader space and improve the search ability.
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Figure 6.1: Node structure of GNP and Credit GNP

• If the credit branch is visited, the function of the node is not executed, i.e., its
function is neglected and regarded as non-existent, and the next node is picked
up for execution. In addition, the reward of taking credit branch is equal to zero
when Q-values of credit branch are updated.

• The probability of selecting the credit branch, and which node the credit branch
connects to are determined by evolution (crossover and mutation) and reinforce-
ment learning.

6.2.2 Node execution of Credit GNP

The node execution of Credit GNP is different from that of GNP. When the node
transition comes to a node in Credit GNP (suppose node i), it should firstly determine
whether to take credit branch of node i or not. If credit branch is not taken, the node
transition goes to the normal branches of node i, which is the same as in GNP; If credit
branch is taken, the node transition skip node i and goes directly to the next node,
which means node i is neglected. Whether to neglect node i or not depends on Q(i,
normal) and Q(i, credit), i.e., the Q-values of node i in the Q-table, which will be
discussed in the following sections.

6.2.3 Evolution of Credit GNP

The aim of evolution is to find the best-fitted individual with the optimal gene
structure. Genetic operators could change the gene structure of Credit GNP largely, so
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Figure 6.2: Genetic operators of Credit GNP

that the best individual could be obtained quickly. For crossover, two parents exchange
the corresponding nodes and their connections, and the generated new offspring become
parents of the next generation. For mutation, a parent randomly changes the function
or connection of its nodes, and a new offspring is generated. Fig. 6.2 shows the genetic
operators. Please note that the credit branch is changed in the same way as the normal
branches by crossover and mutation. If the credit branch is taken, to which node it
is connected is also determined by crossover and mutation. Tournament selection and
elite selection are used as the selection policies.

6.2.4 Reinforcement learning of Credit GNP

In each node, the probability of choosing the normal branch or credit branch is
determined by reinforcement learning, i.e., learning from the environments during the
execution of the program. Reinforcement learning builds a bridge between the static
structure of Credit GNP and the dynamic execution of its program. Q-learning and
Sarsa-learning are the most famous reinforcement learning techniques. However, Q-
learning is an off-line policy since the selection of the maximum Q-value at each state
is necessary. Sarsa-learning is an on-line approach because it updates its Q values based
on the really obtained actions during the task execution. Therefore, Sarsa-learning is
more appropriate for the learning of Credit GNP.

In Sarsa-learning, the “state”and “action”should be defined firstly. The node of
Credit GNP is defined as the “state”and the selection of the normal branches or credit
branch is regarded as an “action”. The Q-value of each state-action pair is updated by
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the following equation.

Q(i, a) ← Q(i, a) + α[r(t) + γQ(j, a′)−Q(i, a)], (6.1)

where, Q(i, a) is the Q-value of state i when taking action a ∈ {normal branch, credit
branch}. a’ is an action taken at state j. State j is the next node of node i as shown
in Fig. 6.3. As mentioned before, the reward of taking credit branch is zero.

The useless and harmful nodes could be distinguished and neglected gradually
through updating the Q-values. For example, suppose the Q-values of selecting the
normal branches or the credit branch at node i are Q(i, normal) and Q(i, credit),
respectively.

• If the normal branch is selected and node is useful, then Q(i, normal) is increased,
which increases the chance to visit node i the next time.

• If the normal branch is selected and the node is useless, then Q(i, normal) would
decrease, which increases the probability to select the credit branch and to skip
node i next time.

• If the credit branch is selected, then the node is skipped and Q(i, credit) is
increased, which avoids the possible negative effects of carrying out node i and
starts the new transition. This is also beneficial to the future rewards.

After calculating the Q-values, we adopt the following two policies for selecting
the normal branches or credit branch. How they affect the learning of Credit GNP is
studied in the simulation.

• ε − greedy: the branch with the largest Q value is selected with the probability
of 1− ε, or a branch is randomly selected with the probability of ε.

• Boltzmann Distribution(102): the probability of selecting the credit branch is Pic

and the normal branches are selected with the probability of 1 − Pic, and Pic is
calculated as follows.
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Pic = e
Q(i,credit)

T

e
Q(i,normal)

T +e
Q(i,credit)

T

, (6.2)

where, T is the temperature parameter. At the beginning of the learning, the initial
Q-values of the normal branches and credit branch are set at 1 and 0, respectively in
order to avoid the situation that many useful nodes are neglected.

Credit GNP is more efficient than GNP because of the following reasons. Firstly,
Credit GNP could generate more flexible node transitions because of the probabilis-
tic selection of the normal branches or the credit branch. This enables Credit GNP
to have more exploration ability which increases its search ability. While in GNP,
the node transition is fixed which is changed only by evolution. Secondly, the node
transition could be changed by updating the Q-values (Q(normal) and Q(credit)) and
the harmful node could be pruned automatically and dynamically. This means that
Credit GNP could select the really useful nodes and neglect the useless nodes during
the programming running in different situations. For example, after the normal branch
is selected, if a negative reward is given, then Q(normal) decreases. The credit branch
could be used when the node is visited the next time, and this node is skipped because
it is useless. This also increases the generalization ability in dynamic environments.

6.3 Rule accumulation based on Credit GNP

In this section, how to generate action rules through Credit GNP for agent control
in dynamic environments is explained in details. The new method is named as “Credit
GNP based Rule Accumulation”(CGNP-RA). Fig. 6.4 shows the flowchart of this
model, which contains two phases. In the training phase, the node transitions of the best
individuals in the Credit GNP population are recorded as action rules and accumulated
into the rule pool generation by generation. In the testing phase, all the rules in the rule
pool are used to guide agents’ actions through the average matching degree calculation.

6.3.1 Rule generation in the training phase

In the training phase, the node transitions of the best individuals are recorded as
rules and stored in the rule pool every generation. The rule of CGNP-RA is defined
in the same way as that of GNP-RA. However, the different point is, in recording the
node transitions, if the credit branch of a node is visited, this node is not recorded
into the rule of CGNP-RA. This is because this node is neglected by visiting its credit
branch, and its function is not executed. A large number of rules could be obtained
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Figure 6.4: Flowchart of CGNP-RA

by training Credit GNP. The rule pool covers many good experiences of all the best
individuals. Besides, it records many experienced situations in each generation.

Another advantage of the rule of CGNP-RA is, since the useless nodes are pruned by
Credit GNP, these rules become more general. This helps to avoid to match with some
specific rules and increase the generalization ability. Furthermore, even if some sudden
changes of the environment occur, in the new environment, the rules after pruning are
easier to match (since they are more general). This also contributes to improving the
performance of the rule-based model.

6.3.2 Rule usage in the testing phase

This phase concerns how to use rules to control agents. The average matching
degree calculation is used in this phase to match rules and determine agents’ actions.

Firstly, all the rules in the rule pool are categorized into |K| classes according to
their processing nodes, i.e., each class represents a specific action. Then, the matching
degree of new environment data d with rule r in class k is calculated as follows.

Matchk(d, r) =
Nk(d, r)
Nk(r)

strk(r), (6.3)

where, Nk(d, r) is the number of matched judgment nodes with data d in the antecedent
part of rule r in class k ; Nk(r) is the number of judgment nodes in the antecedent part
of rule r in class k ; strk(r) is the strength of rule r in class k.
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For each class k, a threshold Tk is set to filter the lower matched rules. Only the rules
whose matching degree are higher than the threshold could be regarded as selected.

Tk = meank + 0.1 ∗ stdk, (6.4)

meank =
1
|Rk|

∑

r∈Rk

Matchk(d, r), (6.5)

stdk =

√√√√ 1
|Rk|

∑

r∈Rk

(Matchk(d, r)−meank)2, (6.6)

where, Tk is the threshold of class k ; meank and stdk are the mean value and
standard deviation of the matching degrees of class k ; Rk is the set of suffixes of rules
in class k.

Secondly, the average matching degree of environment data d with all the rules in
class k is calculated.

mk(d) =
1

|Mk|
∑

r∈Mk

Matchk(d, r), (6.7)

where, Mk represents the set of suffixes of selected rules in class k.
Finally, class k which has the highest average matching degree is picked up and its

corresponding action is taken.

k = arg max
k∈K

mk(d), (6.8)

where, K is the set of suffixes of classes (actions). After an action is taken, the en-
vironment is updated and a new environment data d is obtained, as a result, agents
could take the next action.

6.4 Simulation

6.4.1 Simulation conditions

The dynamic tile-world is selected as the simulation environment to testify the
generalization ability of the proposed method. In dynamic tile-world, the environment
information could change suddenly, and this change is unpredictable before hand. In
the testing tile-worlds, the locations of the tiles and holes are randomly set, which are
quite different from the training instances. The testing tile-worlds imitate the sudden
change of the environment, and the performance of Credit GNP and CGNP-RA is
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Table 6.1: Parameter configurations

Evolution Sarsa-learning

Population 300
Mutation Individuals 175
Crossover Individuals 120 Action Steps 300

Best Individuals 5 Learning Rate α 0.9
Mutation Rate Pm 0.01 Discount Rate γ 0.9
Crossover Rate Pc 0.1 T 1 ∼ 5

Generations 1000 ε 0.01 ∼ 0.2

studied. The world size is set at 20× 20. Table 6.1 shows the parameter configurations
for the simulations.

In this simulation, Credit GNP is compared with some classical methods such as
GNP, GP and standard Reinforcement Learning(RL). The total number of nodes for
Credit GNP is set at 60, including 40 judgment nodes and 20 processing nodes. For
GP, the function nodes are selected from the judgment nodes J1∼J8, and the terminal
nodes are selected from the processing nodes P1∼P4. The function nodes have multiple
arguments corresponding to different judgment results and the terminal nodes have no
argument. In order to avoid bloating, the maximum depth of GP is set at 4. Since each
non-terminal node has five outputs, the total number of nodes in GP is 781. The best
individual of GP is selected to guide agents’ actions. For RL, Sarsa-learning is chosen as
the learning policy, “state”is defined as the full information of judgment nodes J1∼J8,
and “action”is defined as the processing nodes from P1∼P4. Since J1 to J4 return
{1,2,3,4,5}, and J5 to J8 return {1,2,3,4}, the possible number of state-action pairs is
54 × 44 × 4 = 640, 000. Q-values of the state-action pairs are updated in the same way
as Eq. (6.1).

6.4.2 Results and analysis

6.4.2.1 Comparison with the classical methods

Fig. 6.5 and Fig. 6.6 show the training and testing results of RL, GP, GNP and
Credit GNP, respectively, which are averaged from 30 independent simulations.

RL increases its fitness very slowly in the training and exhibits the low fitness in the
testing. The main problem is that it has too many state-action pairs. The tile-world is
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Figure 6.5: Training results of different methods
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Figure 6.6: Testing results of different methods

very complex, where many different objects exist. Therefore, the search space(Q-table)
becomes extremely large and 1000 generations are not enough to update them.

GP performs better than RL, but its fitness is still low. This is because GP has
too many nodes(the total number of nodes is 781 if the maximum depth is 4). The
decision tree becomes very large and hard to evolve, which over-fits the training data
easily. That is why GP can not increase its fitness too much in later generations. In
the testing phase, such a large structure can not cope with environment changes easily,
and its generalization ability is not good.

GNP shows higher fitness in the training, because it can reuse the nodes to create
compact programs. 60 nodes are sufficient for GNP to fulfil the given tasks. Moreover,
the number of nodes is fixed and GNP never causes bloating. The graph structure
has stronger expression ability, which enables GNP to solve the tile-world problem
efficiently. However, due to the existence of the harmful nodes, the gene structure of
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Figure 6.7: Percentage of selecting the credit branch

GNP becomes complicated, which degrade its generalization ability. It is noticed that
the testing results of GNP are relatively low.

Credit GNP achieves lower fitness than GNP in earlier generations because it has
to update the state-action pairs gradually. In later generations, it outperforms the con-
ventional GNP. This is because Credit GNP could distinguish the important nodes and
unimportant nodes through evolution and reinforcement learning. The really impor-
tant nodes are selected for taking an action and the unimportant nodes are neglected,
which enables Credit GNP to use its nodes flexibly and sufficiently. Furthermore, after
pruning the harmful nodes, the program becomes more general, which can cope with
the new environments easily. Therefore, Credit GNP could get higher fitness in both
the training and testing.

Fig. 6.7 shows the percentage of selecting the credit branch during the node tran-
sition in different generations. The curve fluctuates a lot in earlier generations since
it has to update the Q-table gradually through reinforcement learning to distinguish
which node is useful and which node is harmful. This percentage converges to a cer-
tain number (approximately 20%) in later generations through enough learning, which
means that about 20% of the nodes could be pruned as harmful nodes. Therefore, the
program becomes more general after pruning which could handle different environments
efficiently. While in GNP, the number of nodes is fixed because it can not prune the
harmful nodes through genetic operations such as crossover and mutation.

Fig. 6.8 depicts the agents’ traces of different methods. For simplicity, a small
map with the size of 10×10 is used and the maximum time step is set at 60. It is
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Figure 6.8: Agents’ traces of different methods

noticed that Credit GNP could drop more tiles using less steps, which demonstrates its
effectiveness.

6.4.2.2 Node usage study

The generalization ability of GNP and Credit GNP is compared by studying the
usage of their nodes. In the training phase, GNP and Credit GNP are trained by the
training tile-world. In the testing phase, a new tile-world is used to test the performance
of the two methods. Agents’ traces in both the training and testing are recorded and
analyzed. For simplicity, the world size is set at 10×10 and the time steps are set at
60. Fig. 6.9 shows the ratio of used nodes by GNP and Credit GNP in the training
and testing tile-worlds. The x-axis is the node index, and there are 5 nodes for each
judgment and processing. The y-axis is the ratio of the used nodes.

Firstly, it is noticed that in GNP, the ratio of used nodes vary largely. Some
nodes are used very frequently, while many others are seldom used. It is impossible to
prune the harmful nodes through crossover and mutation. On the other hand, Credit
GNP could distinguish useful nodes and useless nodes and prune the useless nodes
by reinforcement learning. For example, the second node in J1, the fifth node in J2,
etc., could be pruned. This contributes to generating more general programs and more
general rules.

Secondly, let’s compare the ratio changes in the training and testing tile-worlds. It
is noticed that in GNP, there is a very small change of the ratio of used nodes in the
training and testing. This is because the gene structure of GNP could not be changed.
Therefore, the nodes of GNP in the testing are used in almost the same way as the
training, although the environment has changed a lot. This decreases the generalization
of GNP. On the contrary, the ratio of used nodes of Credit GNP changed a lot in the
testing compared with the training. For example, in the training, the second node of
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Figure 6.9: Ratio of nodes in training and testing

J1 is pruned, while in the testing, the fifth node in J1 is pruned. The fourth node of J6
is used frequently in the training; however, it is seldom used in the testing. This means
that Credit GNP could select the really useful nodes considering different situations.
Credit GNP could change the node transitions flexibly by updating its Q table through
learning in the new environments, although its gene structure could not be changed.
This also helps to improve its generalization ability.

Thirdly, it is noticed that Credit GNP could use its nodes more evenly, while in
GNP, the ratio is very different between the nodes. This means that Credit GNP could
distribute the task to different nodes. However, GNP always uses some particular nodes
for a given task. This is because Credit GNP has an additional branch which can jump
to any node if necessary. Therefore, Credit GNP has more exploration ability than
GNP, and it can make use of its gene structure more sufficiently.

Fig. 6.10 shows the agents’ traces of GNP and Credit GNP in the training and
testing tile-worlds, respectively. GNP could drop 3 tiles in the training tile-world, but
dropped only 1 tile in the testing tile-world. Besides, the agents’ traces don’t change
too much between the training and testing. GNP over-fits the training data, since it
always uses the same nodes for decision making and can not prune the harmful nodes.
On the other hand, Credit GNP dropped all the tiles in the testing tile-world although
the map has changed. Furthermore, it changed the agents’ traces largely to handly
the new situations. Credit GNP exhibits more generalization ability since it can prune
the harmful nodes to create more flexible solutions. Also, Credit GNP can make full
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Figure 6.10: Agents’ traces in training and testing

use of its nodes and change the node transitions flexibly using the obtained knowledge
during learning. Therefore, it can change the usage of its nodes largely to cope with
the sudden changes of the environment.

6.4.2.3 Parameter tuning

In the following simulation, how ε − greedy and Boltzmann Distribution affects
Credit GNP, i.e., the training results of CGNP-RA is studied. The optimal parameter
for each selection method is tuned for the next simulation.

Fig. 6.11 shows the training results of Boltzmann Distribution with different tem-
peratures. The temperature T is sensitive since, if T is very low, the selection becomes
too greedy; and if it is very high, the selection becomes too random. Credit GNP is
trained when T is from 1 to 5, where Pic (the probability of selecting the credit branch
in each node i) of 26.9%, 37.8%, 41.7%, 43.8% and 45% is obtained, respectively. When
T is 1, the fitness curve is stable in earlier generations but fluctuates a lot in later gen-
erations. This is because during learning, larger Q-values become dominant and the
selection becomes too greedy. When T is 5, it fluctuates a lot in earlier generations
and increases relatively slowly. This is because the credit branch is visited with high
probability and too many random actions are taken. As a result, many useful nodes
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Figure 6.11: Training results of Boltzmann Distribution
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Figure 6.12: Training results of ε− greedy policy

are neglected mistakenly, which results in the low fitness. T=2 seems to be the optimal
parameter for Boltzmann Distribution.

Fig. 6.12 shows the training results of ε− greedy policy. ε balances the exploration
and exploitation of reinforcement learning. If ε is too small, the program would be
trapped into local minima with high probability. If it is too large, the program would
take too much random actions and the results are unstable. ε being 0.2 increases the
fitness fast because large ε explores the solution space sufficiently and generate better
solutions quickly. However, its fitness is low in later generations since its exploitation
ability is not good. On the other hand, when ε is 0.01, the fitness curve increases
slowly because it over-exploits the obtained knowledge, while its exploration ability is
not good. 0.1 seems to be the optimal ε since it could well balance the exploration
and exploitation. Compared with Boltzmann Distribution, ε − greedy policy could
get relatively better results because it selects the best action with a stable probability.
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Table 6.2: Average fitness and standard deviation of the random test

GNP GNP-RA CGNP-RA

AVG 4.81 6.70 8.13

STD 1.226 0.937 0.845

p-values (t-test) 1.27×10−5 3.46×10−6

For Boltzmann Distribution, the temperature T is a bit hard to control. Therefore,
ε− greedy policy is chosen as the selection policy and ε is set at 0.1.

6.4.2.4 Comparison with the previous research

In the following simulation, CGNP-RA is compared with the previous GNP-RA
method. How Credit GNP affects the quality of the rules is studied. In GNP-RA,
important nodes and unimportant nodes are all recorded in the rules, while in CGNP-
RA, unimportant nodes are pruned from the rules. The results of GNP are also provided
as the benchmark. In order to fully test the performances of the two methods, 100
randomly generated tile-worlds are used as the testing cases.

Fig. 6.13 shows the testing results of the 100 tile-worlds and Table. 6.2 lists the
average fitness (AVG) and standard deviation (STD) of the three methods. The p-
values of the t-test between CGNP-RA and the other two methods are also listed in
Table. 6.2. The small p-values suggest that the improvement is significant. Besides,
CGNP-RA outperforms GNP-RA 82 times out of the 100 test cases. The average fitness
of CGNP-RA is 8.13, while that of GNP-RA is 6.70. This demonstrates the effectiveness
of the proposed method. This is because CGNP-RA could prune the unimportant nodes
in the antecedent part of the rules. Some unnecessary judgments are eliminated, which
may mislead the agents. As a result, the really important judgments could be picked up
for taking an action. This could guide agents’ actions more accurately. Furthermore,
after pruning the unimportant nodes, these rules become more general, which work
more efficiently in dynamic environments. Fig. 6.14 shows the average rule length of
CGNP-RA and GNP-RA in different generations. It is noticed that the rules of CGNP-
RA are becoming shorter(more general) since the harmful nodes are pruned gradually,
while the length of the rules in GNP-RA almost remain the same.

Fig. 6.15 shows the number of rules generated by CGNP-RA and GNP-RA. Al-
though the number of rules of CGNP-RA are less than those of GNP-RA, they could
work better and get higher fitness. It means that Credit GNP could generate more
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Figure 6.14: Average length of the generated rules

0


500


1000

1500

2000

2500

3000

3500

4000

4500

0


Generation

N
u
m
b
e
r
 
o
f
 
R
u
l
e
s



GNP-RA CGNP-RA


100        200         300        400        500        600     
 700        800        900      1000  


Figure 6.15: Number of generated rules

general rules for agent control. This also demonstrates the effectiveness of this pruning
method.
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6.5 Summary

6.5 Summary

In this chapter, a unique rule-based model named “Credit GNP based Rule Accu-
mulation” (CGNP-RA) is proposed for multi-agent control, where Credit GNP is used
as the rule generator. The purpose is to prune the harmful nodes and improve the
generalization ability of GNP-RA. In the training phase, CGNP-RA could prune the
harmful nodes in the gene structure and create more general programs. The obtained
knowledge during the running of the program is used to distinguish the useful nodes
from the useless ones. Which node is useless and how many nodes are useless are de-
termined by both evolution and reinforcement learning concerning different situations.
Furthermore, CGNP-RA could generate more general rules which are more efficient to
cope with the unexperienced new environments. Simulation results on the dynamic
tile-world problem demonstrate the effectiveness of CGNP-RA over the conventional
GNP, GP and reinforcement learning methods. They also prove that CGNP-RA could
build more general rule pool and achieve better performances than GNP-RA.
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7

Conclusion

In this thesis, a GNP-based explicit memory scheme for multi-agent control is pro-
posed, which is named as “Genetic Network Programming with Rule Accumulation”.
Different from the population-based methods which evolve the population and generate
the best individual for decision making, this rule-based model uses a large number of
rules to guide agents’ actions. Two major advantages of GNP-RA are, firstly, rules
are very simple and general, which could guide agents’ actions accurately and avoid
over-fitting. Secondly, good experiences from all the best individuals throughout the
generations are accumulated into the rule pool. Many experienced situations could be
recorded into rules, which helps agents to take correct actions in the current situation.

In chapter 2, the rule of GNP-RA is defined, and the general framework including
rule generation in the training phase and rule application in the testing phase is pro-
posed. The nodes transitions of the best GNP individuals are recorded as rules and
stored in the rule pool. After that, all the rules in the rule pool are used to determine
agents’ actions through an average strength calculation. The most important point
is, compared with only one rule (node transition route) of GNP, GNP-RA could use
a large number of rules to make decisions. Simulation results on the static tile-world
prove that GNP-RA could achieve higher fitness and better generalization ability than
GNP.

In chapter 3, GNP with Multi-order Rule Accumulation (GNP-MRA) is proposed to
solve the perceptual aliasing problem and improve performance in non-Markov environ-
ments. Historical information of the environment data and agent’s actions is recorded
into the multi-order rules, which serves as the additional information to distinguish
the aliasing situations. Two methods are designed to match the multi-order rules,
the completely matching and partially matching. Simulation results reveal that GNP-
MRA outperforms GNP-RA since the historical information in the previous steps helps
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agents to distinguish different aliasing situations and take correct actions. They also
prove that as the rule order increases, partially matching becomes more efficient since
they can retrieve many multi-order rules whose situations are similar to the current
situation, while completely matching becomes too difficult.

In chapter 4, GNP with Rule Accumulation and Pruning (GNP-RAP) is proposed
to improve the quality of the generated rules. GNP-RAP improves the quality of the
rules from two aspects. During the rule generation, evolution is combined with rein-
forcement learning in order to create more efficient rules, since the obtained knowledge
during the program running can create more reasonable combinations of judgments for
a processing. After the rules are generated, a post pruning approach is proposed to
filter the generated bad rules. The unique point is that bad individuals are used to
generate the bad rules, which are used to locate the bad rules in the rule pool. The
overlapped rules are reevaluated, which improves the quality of the rule pool.

In chapter 5, GNP with Updating Rule Accumulation (GNP-URA) is proposed to
improve the adaptability of GNP-RA in dynamic environments. Reinforcement learning
is combined with evolution in order to realize this, and Sarsa-learning is adopted as
the learning policy. In the off-line evolution, Sarsa enables GNP to generate better
and more rules. More importantly, when evolution terminates, Sarsa enables the best
individuals of GNP to learn in the changing environments, during which some new
rules could be obtained. These rules represent some unexperienced situations and are
used to update the old rules in the rule pool. Therefore, the rule pool could cope with
the environment changes. Simulation results on dynamic tile-worlds demonstrate the
effectiveness of GNP-URA in adapting to the changing environments.

In chapter 6, Credit GNP with Rule Accumulation(CGNP-RA) is proposed in order
to improve the generalization ability of GNP-RA. Different from GNP-RA, each node of
CGNP-RA has an additional branch named “credit branch” whose function is to skip
this node if it is considered harmful or useless. Reinforcement learning is combined
with evolution in CGNP-RA in order to prune the harmful nodes. Which node is
harmful and how many nodes are harmful are determined automatically considering
different situations. Therefore, CGNP-RA could use its nodes flexibly and sufficiently,
which helps to improve its generalization ability. Furthermore, the harmful nodes in
the antecedent part of the rule could be pruned, and the rules become shorter and more
general. These rules work better in dynamic environments. Some randomly generated
tile-worlds are used to test the generalization ability of CGNP-RA, and simulation
results prove that CGNP-RA could generalize well and achieve better performance
than GNP-RA.
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