博士論文審査報告書

大学名　早稲田大学
研究科名　スポーツ科学研究科
申請者氏名　大金 林太郎
学位の種類　博士（スポーツ科学）
論文題目　感覚フィードバックに基づく発話動作の適応過程に関する研究
A Study on Adaptation Process in Speech Movement
Based on Sensory Feedback
論文審査員
主査　早稲田大学教授　誉田 雅彰　工学博士（早稲田大学）
副査　早稲田大学教授　彼末 一之　医学博士（大阪大学）
　工学博士（大阪大学）
　副査　早稲田大学教授　正木 宏明　博士（人間科学）（早稲田大学）
　副査　早稲田大学教授　菊池 英明　博士（情報科学）（早稲田大学）

本学位論文は、感覚フィードバックに基づく発話動作の適応化過程を実験的に明らかにしたものです。

第1章では、研究の背景と目的を述べている。身体動作の獲得や運動制御において、視覚や聴覚をはじめとする感覚情報は重要な役割を担っている。発話動作は身体動作の中でも熟練を要する高度な動作であり、感覚情報は発話の獲得や脳内の発話の運動計画に関連性が見られる。たとえば、先天的な聴覚障害者は発話機能の獲得が極めて困難なこと、発話時に音声を時系列的に遅らせると聴覚にフィードバックすると発話に支障をきたすなど、これまでに発話動作と聴覚機能の関わりについて多くの知見が得られている。しかしながら、聴覚フィードバック情報と発話動作の関係に関しては未だ十分な解明がなされておらず、両者の関係を明らかにする発話獲得や発話動作の運動計画のメカニズムを明らかにする上で重要な課題となっている。本研究では、発話動作において重要な動的な音響的特徴を修正して聴覚にフィードバックしたときの発話動作の適応化過程を実験的に明らかにしている。音声の動的な音響的特徴は、半母音や子音を特徴づけると同時に発話動作の運動自体において、動的な修正聴覚フィードバックに対して発話補償動作が生じるか否か、また補償動作の適応化の過程を明らかにすることは発話獲得や発話動作の運動計画のメカニズムを解明する上で重要な手がかりを与える。

第2章では、本研究に関連する従来研究を述べている。従来の関連研究として、修正聴覚フィードバックを用いた研究がある。それらの研究では、発話音声の基本周波数やホル
マント周波数などの音響的特徴を修正してリアルタイムに聴覚にフィードバックすると、その変化を補償する発話動作が生じることが示されている。しかし、これまで研究では、音声の静的な音響的特徴を修正する聴覚フィードバックに対する発話補償動作が検討されており、動的な音響的特徴の修正聴覚フィードバックに対する発話補償動作についてはほとんど研究がなされていなかった。このような動的な修正聴覚フィードバック実験が実施されてこなかった背景には、音声の動的特徴をリアルタイムに修正する実験系の構築が困難であったことが挙げられる。

第3章では、修正聴覚フィードバック実験系について述べている。前述したような実験系にかわる課題を解決するため、発話音声の音響的特徴の動的な変化を検出し、TD-PSOLA（Time Domain Pitch Synchronous OverLap ADD）法に基づきリアルタイムに発話音声の時間長を局所的に伸縮し、修正音声を聴覚にフィードバックする実験系を独自に構築した。本実験系では、音声信号と併用してEGG（Electro GlotGraph）信号を測定することにより、時間長修正処理に必要な音声のビッチエポック時点をより安定に検出すとともに、処理の時間遅延を抑えるために信号処理の工夫が取り入れられている。

第4章では、半音を対象として、音声の時間長変換と音韻変化の関係について述べている。半音の時間長の変化に伴って半音音が母音に変化することを知覚実験により確認するとともに、音韻の知覚変化が生じる時間長の伸縮率を特定し、次章の修正聴覚フィードバック実験で用いる時間長伸縮率を設定した。

第5章では、時間長修正聴覚フィードバックに対する発話補償動作について述べている。発話補償動作を特徴付ける音響的特徴として第1、第2ホルマント周波数の速度の最大値（VF1とVF2）と第1、第2ホルマント周波数の相対的変化値（TD）を用い、発話補償動作の時間的な推移や修正量と補償量の関係を定量的に分析した。その結果、（1）時間長修正聴覚フィードバックに対して、VF1、VF2、TDのいずれの音響特徴においても補償動作が現れること、（2）VF1における補償動作が最も顕著であり、時間軸の修正量に応じて補償量が単調に増大すること、（3）補償動作が修正聴覚フィードバック開始後の3発声後にはば達成すること、（4）修正聴覚フィードバックを通常の聴覚フィードバックに戻した場合に発話補償動作の影響が残る、いわゆる後効果が生じることを明らかにした。

第6章では、聴覚にフィードバックされる音声の音韻知覚実験について述べている。その結果、発話補償動作により聴覚フィードバック音声において発声目標となる半音音の音韻性が保たれていることが確認された。

第7章では、本研究のまとめと今後の展望を述べている。

本学位論文において特に重要な章は、第3章で述べられた修正聴覚フィードバック実験系の構築と、第5章で述べられた修正聴覚フィードバック実験である。本研究では、音声の動的な音響特性を修正して聴覚にフィードバックした場合にも発話動作の補償動作が生じることを明らかにした先駆的な研究である。その研究成果は、原著論文 Rintaro Ogane, Masaaki Honda, “Speech Compensation for Time-scale Modified Auditory Feedback”,
Journal of Speech, Language, and Hearing Research (2014年4月掲載予定)、査読付国際会議論文2篇、国際シンポジウム発表3件、国内学会発表7件として発表されている。

本学位論文は、聴覚フィードバックに基づく発話動作の適応化過程を、独自に構築した実験系を用いて明らかにしたものであり、その成果は発話獲得および発話運動計画のメカニズムの解明、さらには聴覚情報に基づく身体動作の獲得や運動計画のメカニズム解明に向けて大きく寄与するものであり、博士（スポーツ科学）の学位を授与するに十分値するものと認める。

以上