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Chapter 1

Introduction

The objective of this dissertation is to extend the notion of weak solutions for
nonlinear partial differential equations by renormalization theory, and moreover
to characterize the solutions for the Cauchy problem of nonlinear degenerate
partial differential equations given general L' data.

A partial differential equation is an equation involving an unknown function
of two or more variables and some of its partial derivatives, and describes various
phenomena in physics, biology, chemistry, engineering, economics, and so on. For

instance, a second order partial differential equation has the form
f(D*u, Du,u,z) = 0, (1.1)

where 2 € RY, v : RY¥ — R is an unknown function, f : RV’ xRYxRxRY — R
is a given function, and D*u denotes all k-th order derivatives for & = 1,2, that
is,
DFy = %
ARG e
with ZZJL k; = k. Furthermore, we classify the partial differential equation (1.1)

into the following four categories. Let a, ag, a; and as be given functions.

(C1) The partial differential equation (1.1) is called linear provided it has the

form

az(z) D*u + ay () Du + ap(x) u+ a(z) = 0.

1
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(C2) The partial differential equation (1.1) is called semilinear provided it has

the form

as(z) D*u + a(Du,u,r) = 0.

(C3) The partial differential equation (1.1) is called quasilinear provided it has

the form

as(Du, u, v) D*u + a(Du,u,z) = 0.

(C4) The partial differential equation (1.1) is called fully nonlinear provided it

depends on nonlinearly the second order derivatives.

We usually say the partial differential equation (1.1) is nonlinear if (1.1) is not
linear, namely, we sometimes regard semilinear and quasilinear as nonlinear.
In this dissertation, we mainly deal with the following nonlinear, quasilinear
formally, degenerate parabolic-hyperbolic equation
0
a—;‘ +divF(u) = div(A(w)Vu) + f  in Q= (0,T) x RV, (1.2)
where v = u(t, ) is the unknown, ¢t € (0,7), T > 0, z € RY and N > 1. The

flux F : R — R", the diffusion matrix A = (a;;) and external forces f are given.

We employ
ou ou N oF; (u)
Vu i= | =—,+ , 57— d divF =
U (3LE1’ ’&EN) an iv F(u) ; o,
for F(u) :== (Fi(u),---, Fy(u)) as usual. Afterward, for simplicity, we write u,,
for %. The diffusion term div (A(u)Vu) is sometimes written as
N
Z Aij (U)Iﬂ]
ij=1

with A;;(r) := foraij (€)dg, A;j(0) =0 for r € R. This type of equation typically
appears in biology, for example, it describes the evolution of a biological species

in porous medium.
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If A = O, that is to say the diffusion term degenerates, this equation becomes

the so-called conservation law
u +divF(u) = f in @, (1.3)

which can be applied to traffic lows or gas dynamics. Moreover, we handle
this partial differential equation with an initial condition. This means that we

consider the following initial Cauchy problem with appropriate data f and uy,

u +divF(u) = f in Q,
(1.4)
u(0,) = wuy in RY.

As a typical example of appearance of a conservation law in the real world,

we now consider the traffic low on an expressway.

Example 1: Let u(t,z) be the density on an expressway at time ¢ and point
x. We assume, for simplicity, that u is continuous in ¢ and z, and the speed s of

the cars depends only upon their density, which means that s = s(u) and s’ < 0.

S
_—

D, W

a b

The traffic flow on the expressway

For any two points a,b on the expressway, the number of cars between a and b
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depends upon the inflow at x = a and outflow at z = b, namely,

d [
), u(t,z)de = s(u(t,a))u(t,a) — s(u(t,b))u(t,b)
_ —{ (ult, x))u(t,x)] )

= —/ab(s(u(t,x))u(t,x))mdx

holds for any a,b. Since u is continuous and a,b are arbitrary, we have the

conservation law

with the flux F'(u) := s(u) u. Statistically, one usually takes

s(u) = Cy log%

with 0 < u < CY for appropriate positive constants C, Cs.

We refer to Evans [E1998] for the theory and applications of various partial

differential equations.

1.1 Weak solutions

We are interested in finding all solutions of a partial differential equation
and furthermore investigating the existence, uniqueness, asymptotic behavior and
other properties of solutions for general data. Most partial differential equations,

however, are not expected to have smooth solutions.

Example 2: Consider the Cauchy problem of the inviscid Burgers’ equation

1
1422

uy + uuy, = 0, u(0,2) =

(1.5)
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It is known that a smooth solution for (1.5) blows up in finite time, namely,
the discontinuity of the smooth solution appears in finite time even if the initial
datum is sufficiently smooth. This corresponds a shock wave in gas dynamics. In
this problem, we see that the smooth solution for (1.5) blows up at t = 8/1/27
by the implicit function theorem. We now investigate the phenomena at

1 ] 3 8 1 8 5
27 77 27 /27 1000000 /27’

t=0,

using “Maple”.

> with(plots):

> with(PDEtools):

> pde:=diff (u(t,x),t)+u(t,x)*diff (u(t,x),x)=0:
> ini:=[0,s,1/(1+s"2)]:

> sol:=pdsolve(pde,u(t,x)):

> solve(x=y+t/(1+y~2),y):

> v:i=(t,x)->(x,y):

~ —~Tl ~xDall+ 2\ N Lo JENNSIEES oY Lo 1 W

The graph of u(t, )
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> f1:=v(0,x):

> f2:=v(1/2,x%):

> f3:=v(1,x):

> f4:=v(3/2,x):

> £5:=v(8/sqrt(27)-1/1000000,x) :

> £6:=v(8/sqrt(27) ,x):

> f7:=v(2,x):

> plot([f1,f2,£3,f4,f5,f6,f7],x=-3..5);

IIIIEYIIII:"?I

I
N
o
N
S

The graphs of £1,---  £7

As we saw before, we need to extend the notion of solutions to nonsmooth so-
lutions including discontinuous solutions interpreted in the sense of distributions,
which is the so-called weak solution. Thanks to the notion of weak solutions, we

can deal with a lot of partial differential equations which have not been handled
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in the classical sense up to then. We now state the definition of a weak solution

for the Cauchy problem of a conservation law (1.4).

Definition 1.1. We say u € L*(Q) is a weak solution for the Cauchy problem
(1.4) provided

//Q (v + F(u) Vo + f §) dudt = 0

holds for any ¢ € CH(Q), and u(t,-) — ug in L}, (RY) ast | 0 essentially.

loc

Nevertheless, it is known that there exist many weak solutions in general
for the Cauchy problem of nonlinear degenerate parabolic-hyperbolic equations

including conservation laws.

Example 3: Consider the Cauchy problem of the inviscid Burgers’ equation

u? 1 if >0
U + (—) =0, u(0,2) = (1.6)
2/, 0 if z<0.

For every r € (0, 1), we define the piecewise constant function u, : [0,00) xR — R

as

( rt
0 if r<—
1 xTr 2

t 1 t
up(t,x) == ¢ r if %§x<%

(14+7r)t
—y

1 if >

\
Then, each u, is a solution for the problem (1.6) since it satisfies the equation
almost everywhere and Rankine-Hugoniot conditions hold along the two lines of
discontinuity

o =1L and o) = %
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Thereupon, Kruzkov [Kr1970] introduced a new notion of an entropy solu-
tion which is a weak solution satisfying an entropy inequality, and proved the
uniqueness of an entropy solution for a conservation law. This ‘entropy’ comes,
roughly speaking, from the thermodynamic principle that physical entropy can
not decrease as time goes forward. The entropy inequality is a suitable criterion
to extract accurately the exact one weak solution according as physical demands,
and ensure the uniqueness of weak solutions. We here refer to the definition of

an entropy solution for the Cauchy problem of a scalar conservation law (1.4).

Definition 1.2. Let n € C*(R) be a conver function. If there exist functions
¢ € C'(R),i=1,---,N, such that for anyr € R

nl(r) F;'I(T) = qzl'(r) i=1,---,N,
then (n,q) is called an entropy-entropy flux pair of the conservation law (1.3).

Definition 1.3. We say u € L*(Q) is an entropy solution for the Cauchy prob-
lem (1.4) provided for every entropy-entropy fluz pair (n,q) of the conservation

law (1.3), the so-called entropy inequality

n(u); +divg(u) < f

holds in the sense of distributions, namely,

// u) r +q(u)-Vo + f ¢) dvdt > 0

is fulfilled for any ¢ € Cy(Q)*F, and u(t, ) — ug in L,.(RY) ast | 0 essentially.
Here C}(Q)" denotes the space of all nonnegative functions belong to C3(Q).

Denote by Sy(r) the sign function taking 1 if » >0, 0if r =0 or —1 if r < 0.

Note that we may consider

nu) = |u—kl,
ai(u) = So(u—k) (Fi(u) — F(k)), i=1,---,N
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for £ € R as an entropy-entropy flux pair even if they are not smooth enough by
taking account of an appropriate smoothing function. To be sure, we consider a
function G € C*(R) with G(z) = |z| for all || > 1, G'(0) = 0 and G > 0. For
fixed £ € R, we set

G. = eG((x —k)/e).

Then we see that G, — ‘x — k‘ as € | 0. This formulation makes it possible to

define an entropy solution in the following way:

Definition 1.4. We say u € L*>(Q) is an entropy solution for the Cauchy prob-
lem (1.4) provided

// ‘U—k‘¢t+50 u—k ( (u )—F(k))-V¢+Sg(u—k)f¢>da:dt >0

holds for any k € R and any ¢ € CH(Q)T, and u(t,+) — ug in L (RY) ast |0

essentially.

We can easily check that an entropy solution is a weak solution. Indeed, let u
be an entropy solution for the Cauchy problem (1.4). If u is bounded, choosing

k < we have

ol
0 < //Q (= k) 61+ (F(u) — F(R)) V6 + f ) dind
- //Q(ud>t+F(u)-V¢+f¢>dxdt.
On the other hand, choosing k > |[ul], . o, we have
0 < // E—u)d,+ (F(k) ~ F(w)-Vo — f 6) dudt
_ _//Q u¢t+F(u)-V¢+f¢)dxdt.

Combining these estimates, we deduce that

// <u¢t—|—F(u)-V¢+f¢> dzdt = 0,
Q
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which means u is a weak solution for the Cauchy problem (1.4).

Since the notion of entropy solutions was introduced, many researchers have
studied the Cauchy problems and initial-boundary value problems for nonlinear
degenerate equations as well as conservation laws.

On the other hand, Portilheiro proved that the equivalence of an entropy
solution and a dissipative solution of a conservation law (1.3). The notion of
dissipative solutions was introduced first by Evans, and established afterward by
Portilheiro for conservation laws. The original definition of dissipative solutions

is as follows:

Definition 1.5. Let X be a certain Banach space. We say A : D(A) — 2% is

an accretive operator if
|u—v| < ||(u—2v)+A(Au— Av)||
holds for any u,v € D(A) and A > 0, where || - || denotes the norm in X.
Definition 1.6. We say u is a dissipative solution of the equation
Au = f

with possibly multivalued accretive operator A : D(A) — 2% defined as a subset

of some Banach space X if

[u—¢,f—Agls >0
holds for every ‘nice’ function ¢, where [-, -]+ denotes the Kato bracket defined as

+ || —
o o= g Lt =

We note that A is accretive if and only if

[u—v, Au — Av]y > 0
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holds for any u,v € D(A). We also note that if X = L'(Q) particularly, then the
Kato bracket is given by

ol =[] snadsies [[ (o] dea

for any f,g € L'(Q).
The definition of dissipative solutions of a scalar conservation law (1.3) with

globally Lipschitz-continuous flux F is given as follows:

Definition 1.7. We say v € L'(Q) is a dissipative solution of a conservation

law (1.3) with globally Lipschitz-continuous flux F provided

//Q So(u— @) (f — ¢ — divF(¢)) dzdt > 0

holds for any ¢ € CH(Q) such that ¢(t,x) = k for large x, and u(t,-) — ugy in
L: (RN) ast | 0 essentially.

loc

Direct proofs of existence and uniqueness of dissipative solutions have not
been obtained yet, but the notion of dissipative solutions is flexible and suitable
to handle relaxation systems than the entropy framework.

As we mentioned before, the notion of entropy and dissipative solutions is
useful and important to resolve the mechanism of phenomena describing as partial
differential equations. On the other hand, it is known from Crandall [C1972] that
a weak solution for (1.4) has been constructed for any L! data using nonlinear
semigroup theory (see Crandall and Liggett [CL1971] for example). In this case,
however, if the flux has no growth, then it is impossible to construct a solution
even in the sense of distributions since the flux function may fail to be locally
integrable. To resolve the difficulty, DiPerna and Lions introduced the following

renormalization theory.
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1.2 Renormalization

DiPerna and Lions [DPL1989] studied the Cauchy problem for the Boltzmann

equation
fet &Vuf = Q(f.f)  in (0,00) x RY x RY (L.7)

where f = f(t,2,£),t >0,z € RY, £ € RY, N > 1 and Q(f, f) is a collision
operator defined by

Qi) = [ [ (€ hE) = e ) Ble = &) dude

for h € C(RYN). In fact, Q(f, f) means Q(f(¢,x,), f(t,x,-)) in (1.7). Here,
g =&— (- &, ww, & = &+ (€ — &, w)w with inner product (-,-), and

B(z,w) > 0 called the collision kernel is a given function of ‘z‘ and ‘(z, w)‘ only.

N

— N

K
o

Before the collision After the collision
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The physical interpretation of &, &,, &', & is as follows: &, &, are the veloc-
ities of two colliding molecules immediately before collision while &', £, are the
velocities immediately after the collision. Furthermore, local conservation laws

of momentum and kinetic energy

E+& =¢+€  and g +]a] = |€]+ €

hold for binary interaction.

DiPerna and Lions proved that sequences of classical solutions of (1.7) with
uniform a priori bounds obtained from the standard physical identities associated
with (1.7) converge weakly in L' to a renormalized solution of (1.7) defined below,
and also deduced from this stability result the existence of a global renormalized
solution of (1.7) with an initial condition. Due to the definition of the collision

operator Q(f, f), it is reasonable to ask for an estimate of the following form

J € Lioe((0,00) x Ry 5 L'(RY'))

loc

and such an estimate does not seem to be available in general. This lack of
the estimate has been the major obstruction to a complete understanding of the
Cauchy problem for (1.7). To overcome this difficulty, the notion of renormalized

solutions was introduced. The definition of renormalized solutions is as follows:

Definition 1.8. A nonnegative function f is a renormalized solution of (1.7) if

1+ H7'Q(f, f) € L), and g := log (1 + f) solves a renormalized Boltzmann

loc
equation
1
1+ f

in the sense of distributions.

g+ & Vag = Q(f.f)  in (0,00) x RY x RY (1.8)

Similar ideas for nonlinear elliptic equations also appear in Bénilan et al.
[BBGGPV1995] and Boccardo et al. [BGDM1993].
As we mentioned above, for the Cauchy problem of degenerate parabolic-

hyperbolic equations, it is known that if initial data and external forces are
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unbounded then the solution constructed by nonlinear semigroup theory is also
unbounded in general. Furthermore, if no growth conditions are assumed on the
flux, the flux function may fail to be locally integrable, and therefore the Cauchy
problem does not possess a solution even in the sense of distributions. In order
to conquer this difficulty, Bénilan et al. [BCW2000] introduced a new notion
of renormalized entropy solutions and obtained existence and uniqueness results
of renormalized entropy solutions for the Cauchy problem of conservation laws
with general L' data. As to the definition of renormalized entropy solutions, see
Definition 4.1 in Chapter 4 later.

As related problems, initial-boundary value problems of nonlinear degenerate
parabolic-hyperbolic equations or uniqueness of solutions for systems of conser-

vation laws also rouse our interest.

1.3 Overview

This dissertation is organized as follows: We begin in Chapter 2 with a study
of construction of local C* center unstable manifolds for time dependent evolution
equations of parabolic type in Banach spaces. In the case of unbounded domain,
there is no well-defined spectral gap due to the appearance of continuous spectrum
of the linearized equation. In order to apply the partial differential equations on
unbounded domains, we shall present a useful theorem to formulate a local center
unstable manifolds for the evolution equations in Banach spaces. Furthermore,
our result is used in Kobayasi [K02002] to construct a local invariant manifold
for a nonlinear parabolic equation on the whole space RY. Contents of this
chapter is based on the paper [KT2003] which is a joint work with Professor
Kazuo Kobayasi.

Chapter 3 is concerned with renormalized solutions for degenerate quasilin-
ear elliptic equations with no growth convection term on unbounded domain.

The existence result of renormalized solutions for this problem was obtained by
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Kobayasi [K01998]. In terms of this, we focus on the uniqueness of renormalized
solutions, and apply our theory to the stationary problem of p-Laplace equations.
Contents of this chapter is based on the paper [KTU2000] jointly with Professor
Kazuo Kobayasi and Mr. Takeshi Uehara.

Chapter 4 is devoted to the relation of specific weak solutions for the Cauchy
problem of a scalar conservation law with locally Lipschitz-continuous flux. In
case of globally Lipschitz-continuous flux, Portilheiro [P2003] introduced a notion
of dissipative solutions and proved the equivalence of such solutions and entropy
solutions. The structure of dissipative solutions is flexible and suitable to deal
with relaxation systems than entropy scheme. In this chapter, we shall extend
some results obtained by Portilheiro to the case of locally Lipschitz-continuous
flux. We introduce a new notion of renormalized dissipative solutions which is a
generalization of dissipative solutions in the sense of Portilheiro for the Cauchy
problem of a scalar conservation law with locally Lipschitz-continuous flux and
L' data, and show the equivalence of a renormalized dissipative solution and
a renormalized entropy solution in the sense of Bénilan et al. We apply our
result to contractive relaxation systems in merely an L'-setting and construct a
renormalized dissipative solution as a relaxation limit. Contents of this chapter is
based on the paper [KT2005] with Professor Kazuo Kobayasi. This research was
supported by Waseda University Grant for Special Research Projects #2003A—
856.

Chapter 5 deals with the extension of the notion of renormalized dissipative
solutions to second order degenerate parabolic equations with locally Lipschitz-
continuous flux and L' data. We shall show the equivalence of such solutions
and renormalized entropy solutions in the sense of Bendahmane and Karlsen
[BK2004]. 1In this case, there is another difficulty due to the appearance of
derivative of the Dirac mass. In order to overcome this, we try to multiply a test
function and convolute them. We apply our result to certain relaxation systems

in general L'-setting and construct a renormalized dissipative solution. Contents
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of this chapter is based on the paper [T2005]. This research was supported by
Waseda University Grant for Special Research Projects £2004A-108.

A list of our original papers shall be drawn up at the tail of this dissertation.
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Chapter 2

Local center unstable manifolds

We start with construction of local center unstable manifolds for nonlinear
parabolic evolution equations. In the case of unbounded domain, the main diffi-
culty arises from the appearance of continuous spectrum of the linearized equa-
tion. This means that there is no well-defined spectral gap, and therefore the
existing center unstable manifold theorem can not be used. In order to apply the
partial differential equations on unbounded domains, we shall present a useful
theorem to formulate a local center unstable manifolds for the evolution equa-
tions in Banach spaces. Furthermore, our result is used in Kobayasi [K0o2002]
to construct a local invariant manifold for a nonlinear parabolic equation on the
whole space RY. Contents of this chapter is based on the paper [KT2003] which

is a joint work with Professor Kazuo Kobayasi.

2.1 Introduction

We consider the existence of local C* center unstable manifolds for time de-
pendent evolution equations of parabolic type in Banach spaces. The center un-
stable manifold theorem is a standard and useful idea in studying the long-time
behavior of solutions to a class of partial differential equations in the neighbor-
hood of a stationary point. In its formulation, up to now almost all theorems

can apply to only a partial differential equation on a bounded domain. These

20
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frameworks are, however, too restrictive for many interesting applications, espe-
cially in the application of the equations on unbounded domain. In the case of
unbounded domain, the main difficulty arises from the appearance of continuous
spectrum of the linearized equation; there is no well-defined spectral gap. Nev-
ertheless, a nonlinear heat equation of the form u; = Au + F(u) on R" does
possess finite-dimensional local center unstable manifold, see Wayne [W1997].

It is thus useful to formulate a local center unstable manifold theorem in order
to apply the partial differential equations on unbounded domains. In this chapter,
we present such an abstract theorem for the evolution equations in Banach spaces
as to treat a class of partial differential equations on unbounded domains. Indeed,
our result is used in Kobayasi [K2002] to construct a local invariant manifold for
a nonlinear parabolic equation on the whole space RY.

Our approach is based on the classical method of Lyapunov-Perron and fol-
lows closely Chow and Lu [CL1988]. Related results can be found in Miklavéic
[Mik1991], Galley [G1993], Mielke [Miel1991], Carr [C1983], Kobayasi [K1999],
and so on.

Let X, Y and Z be Banach spaces. The norms of X and Y will be denoted by
||-|| and |-|, respectively. Suppose that both X and Y are continuously embedded
in Z. Note that X is not necessarily embedded in Y. Let {S(t); ¢ > 0} be a
Cy-semigroup in Z and f : R x X — Y a nonlinear map of class C* for some
k > 1. Instead of evolution equations, we would rather consider the integral

equation

u(t) = S(t)x0+/0t5(t—s)f(s,u(s))ds, £ 0. (2.1)

We are interested in the asymptotic behavior of the solution of (2.1).

We assume the following conditions on the Cjy-semigroup:

(H1) Z = Z1 ® Z,, dimZ; < oo and S(t) P, = P; S(t), i = 1,2, where P; is a

continuous projection from Z onto Z;.
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(H2) Z; € X xY and the restriction of S(¢) to X also forms a Cy-semigroup on
X.

(H3) There exist constants «, 3,7,n, M, M* such that a > 0, 4+ (k—1)n > 0,
n<0,0<~<1, M>1, M*>0,

e S(t) Pry|| < Me|y) for t<0, yey,
He‘"tS(t) P xH < Mebt Hx“ for t>0, ve€X,
e S(t) Pyl < (M7 + M*)e by for t>0, yeV.

Remark 2.1. (a) Condition (H2) implies X1 = Y, = Z;, where X; = P, X
and Y1 = PY, for X1 C Z, = P, Z C Xy. Therefore, there is a constant
M, > 1 such that M;" ‘y‘ < Hy“ <M ‘y‘ forye X, =Y.

(b) The restriction of Py to X becomes a continuous projection from X onto
X, = X, for|Pua] < e+ |Pral] < el [Pral,, < | +Ce], <
C HxH forx e X.

(c) Under the conditions (H1)-(H3) there exists My > 1 such that
1SHy|| < Mot |y|  for t€(0,1], y €Y. (2.2)
We have our primary conclusion.

Theorem 2.2. Assume that the hypotheses (H1)-(H3) above are satisfied. Let
the map f: R x X =Y satisfy the following conditions:

(a) Foreacht € R, f(t,-) is of class C*. For eachx € X, f(-, ) is continuous.

(b) f(t,0) =0 and Df(t,0) =0 fort € R, where Df(t,x) is the derivative of
f(t, x) with respect to x evaluated at (t,x).

(c) f(t,x) and Df(t,x) converge, as ||z| — O uniformly in t, to 0 in'Y and
B(X,Y), respectively.
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Then there exist neighborhoods Uy C X1, Uy C Xy of zero and a continuous
function h : R x Uy — Uy with the following properties:

(M1) The set M = J,eg M(t), M(t) = {(t, £ + h(t,€)) ; € € Ui}, is a local
invariant manifold of (2.1), that is, for each o € M(0) there exist Ty, Ty €
(0, 00] such that a solution u of (2.1) uniquely exists on (—Tp,Th) and u(t) €
M(t) for all t € (=Ty, Ty).

(M2) For each t € R, h(t,-) is of class C*, h(t,0) =0 and Dh(t,0) = 0.

(M3) For each xy € Uy x Uy, (2.1) has a unique solution on some interval [0,T).
If in addition T = oo, then there exists a unique solution u of (2.1) on M
such that

sup e " ||lu(t) — u(t)]| < oo.
>0
The proof of Theorem 2.2 is obtained from the global center unstable manifold
theorem by using an appropriate cut off function. We thus consider the global
theorem in Section 2 and complete the proof of Theorem 2.2 in Section 3. In
Section 4, we shall introduce an application of our theory to nonlinear parabolic

equations on the whole space which was studied by Kobayasi [K2002].

2.2 Global center unstable manifold theorem

In this section, as a nonlinear map let us take the continuous map F : RxX —

Y satisfying the following conditions:
(H4) For each t € R, F(t,-) is of class C*, F(¢,0) = 0 and DF(¢,0) = 0.

(H5) There exist constants L, r > 0 such that | DF (¢, z) ‘B(X’Y) < Land F(t,x) =
0forallt € R, x € By(r) and T € X with ||, Z|| > r, where

By(r) = {xEX; HngH gr}.
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Let J C R be an interval. For any p € R we denote by C),(J, X) the Banach

space

C.(],X) = {U € C(J,X); sup e ™™ |lv(t)]| < oo}

teJ

with the norm

= sup e " ||v(t)]]-

of
H C(J,X) ey

Let
C(J,By(r)) == {ueC(J,X); ut) € By(r)  forall te.J}
and
Cy(r) = Cy(R™, X)NC(R™, By(r)).

Clearly, C,(r) is a closed subset of C),(R™, X). Set

T (0, )(t) = S(t)§+/t S(t—s) P, F(s+T1,0(s))ds

t
+/ S(t—s) Py F(s+T1,p(s))ds, teR™

for € € Xy, ¢ € Cy(r) and 7 € R. Note that by virtue of (H3)-(H5), these

integrals exist.

Lemma 2.3. If

1

K(aaﬂ+(k_1)n77)L < ma

then there ezists €g € (0, ) such that for each € € [0,e0], 7 € R and £ € X, the

equation

o(t) = T (v, 6)(1), teR” (2.3)
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has a unique solution o(7,&)(+) € Cyye(r/(M + 1)) independent of €, where
K(a,8,7) == M(a™ +T(1=7)f""") + M5~

and I' is the gamma function. Moreover, the map o(t,-) : X1 = Ciy(r/(M + 1))

is of class C*.

Proof. By the continuity of K(«a, #,7) in « and 3, there exists g > 0 such that

1

K(O[—€,ﬁ+€,’)/)L < m

for every e € [0, 0]. We show that J,(-,&) : Cpye(r/(M +1)) = Cpie(r/(M +1))
is a uniform contraction with respect to £ and 7. We first prove that J.(-,§)
maps Cpi.(r/(M + 1)) into itself. Let ¢ € Cyy.(r/(M +1)). By (H3)-(H5), we
have J,(p,€) € Cpe(R7,X) and

1P = | [ st= 0Pt pton o

t
</ (M(t—s)""4+ M")e (5"ts‘Fs+Tg0 ‘ds

— 00

Since F(s+ 7, ¢(s)) = 0 if |Pig(s)|| > r by (H5), we have

‘F(s+7',<p(s))‘ = ‘F(s+7’ cp(s))—F(s+7’,0)‘
< L(r+[[Pe(s)])
M+ 2
= Myl
Therefore,
M+2 T
1P T, @ < Kl =m) gL < g

and 50 T,(2,€) € Cypc(r/ (M +1)).

Next we prove that J.(-,&) is a contraction uniformly with respect to £ and

7. For ¢1,p9 € Cpie(r/(M +1)), £ € Xy and 7 € R, from (H3) and (H5) we
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have (see Chow and Lu [CL1988]|)

17:(01.6) = (22, . m )

< K(a—e,B8+¢,7) L|¢
1
= m“‘ﬁl_%”qﬂ(nzx)'

—¥2 HC,HE(R* ,X)

AN

The strict contraction theorem assures that there exists a unique @.(7,&) €
Chie(r/(M + 1)) such that J,(¢(7,§), &) = @e(7,€). Since Cyyc(r/(M + 1)) C
C,(r/(M+1)), by the uniqueness we have ¢.(7,&) = ¢o(7, &) for every ¢ € [0, g¢].
Finally, according to [CL1988, Lemma 3.4], ¢(7,-) is C*¥ as a mapping from
X into Cyy(r/(M + 1)). We notice that the proof of [CL1988] works well only
by replacing C,4s(R~, X) with Cp15(r/(M + 1)). 0O
Now consider the equation

t
u(t) = S(t—to)u(ty) +/ S(t—s) F(s,u(s))ds, t > to. (2.4)

to
We shall say that u € C(J, X) is a solution of (2.4) on J if it satisfies (2.4) for
all t, ty € J with ¢ty <. Proceeding as in the proof of [CL1988, Lemma 4.2] we
can also obtain that a function u € C((—o0, 7|, Bo(r)) is a solution of (2.4) on

(—oo, 7] if and only if the function o(t) defined by ¢(t) = u(t + 7) is a solution
of (2.3) with & = P, u(7).

Lemma 2.4. Let 1 < p<1+1/M and
1—(p—1)M
2(M +1)
Then, for each xy € Ba(pr/(M +1)) and ty € R, the equation (2.4) has a unique
solution u € C([tg, 00), Ba(r)) such that u(ty) = xo.

K(a,8,7) L <

Proof. We may assume that ty = 0. Let xy € By(pr/(M + 1)). For w €
C([0,T1], By(r)) set

(Gw)(t) = S(¢) £U0+/0 S(t—s) F(s,w(s))ds, te[0,7T].
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We first show that G’ maps C([0, T, By(r)) into itself. Indeed, by our hypotheses

[P (Gw)(t)]]
Mopr ! _ o —B(t—s
< M+1+/0(M(t—s) Y+ M*) e P )L(T+HP2w(s)H)ds
Mpr
< < r
< M+1+2K(Ozﬁfy) <r

It follows from (H5) and (2.2) that for w,w € C([0, T, Ba(r))
L M,

I(Gw)®) O] <

tlﬁ Hw - {EHC([U,T},X)'

By induction on n it follows easily that

LMO (1 —9)"
F'n+1—nvy)

G w)@) O] = " JJw =,

([0,71,X)

Since

(LM - )Ty
1m
nsoo I'(n+1-—nv)

= 0,

by the fixed point theorem G has a unique fixed point ur in C([0, 7], B2(r)). We
then define u € C(R™, By(r)) by u(t) = ur(t) for ¢ € [0, T], which is well-defined
by the uniqueness of fixed points. Clearly, u becomes a solution of (2.4).

The uniqueness of u is a consequence of the following argument.Let u be

another solution. Let ¢; > 0 and ¢ € [t1,¢; + 1]. By (H5) and (2.2) we have
t
o) =70 < K e = o)+ Mo [ (¢ 5 o) = ) s
t1

where K = maxo<;<) HS(t)HB(X). Therefore, it follows from [P1983, Lemma 6.7]
that

Ju() —a(t)]| < K |fu(h) - () \|+Z<M0L§t1_+71)”>

n (Mo LF(I - )) / (t - S)nfn'yfl Hu(s) . ﬂ(S)H ds.

P(TL - nf}/) t1
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We now fix n sufficiently large such that n(1 — ) > 1. Then, we find that there
exist positive constants Cy(t1) and Cy (1) such that

t
Hu(t) — ﬂ(t)“ < Ci(t) Hu(tl) — ﬂ(tl)H + C’g(tl)/t Hu(s) — ﬂ(s)H ds.
Using Gronwall’s inequality, we obtain
|u®) —a@)|| < Ci(t) e [Ju(ty) —u(t)]]-

Since t; > 0 is arbitrary, this inequality immediately yields the uniqueness of
u. U

Proposition 2.5. Suppose that (H1)-(H5) are satisfied. Let

1—(p—1)M

1
1 14+ — d K L
< p< +M an (a, B,7) L < S 1)

For 7 € R, define

M(r) = {u(T) ;u € C((—o0, 1], Ba(r/(M +1)))

is a solution of (2.4) on (—oc,7]}.
Then we have that

(a) There exists a function h € C(R x X1, Ba(r/(M + 1))) such that h(t,§) is
C* in & and

M(r) = {E+h(r,8); £ Xu}.

(b) For a solution u of (2.4) on [r,00), we have that u(t) € M(7T) implies
u(t) € M(t) fort> 1.

Proof. By Lemma 2.3 we see that M(7) # 0. Let zop € M(7) and

u € C((—o00,7], Ba(r/(M +1)))
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a solution of (2.4) with u(7) = xy. As noted above, o(7,&)(:) = u(- + 7) is the

unique solution of (2.3) with & = P; z5. Then we set

h(r,§) :/ S(—=s) Py F(s+1,¢(s))ds.

o0

It is easy to see that xy = & + h(7,&) and h(7,&) = ¢(7,£)(0) — €. Hence, by
Lemma 2.3, h(7,&) is a C* mapping from X; into X, with respect to &. To see
the continuity of h(t,€) in ¢, we write

h(t, Py u(t)) — h(o, Py u(t))
= P (u(t) —u(o)) + h(o, PLu(o)) — h(o, Py u(t)).
Hence,
Hh(t, Pyu(t)) — h(o, P, u(t))“ < C Hu(a) — u(t)“

for some constant C'. Thus (a) is proved.
Next, let 29 € M(7). Since zq € By(r/(M+1)), by Lemma 2.4 we can extend
u to the solution of (2.4) on R satisfying u(t) € By(r) for all ¢ € R. In particular,

we have for 7 > 7
u(t+7) = T=(u(-+7), Pu(r))(t), teR".

Hence, for t <7

-7
IPyu()]| = H/ S(t—F—5) PyF(s + 7 uls +7)) ds
t
< [ e ) ALk )]
r
< 2K Lr < .
< 2K(a By Lr < e
Therefore, by definition we have u(7) € M(7). This proves (b). 0O

Proposition 2.6. Suppose that (H1)-(H5) are satisfied. Let 1 < p <1+ 1/M,

1= (- )M MK (0,,7) T
s+ 1) ™M T R@anL <"

K(a,8,7) L <
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Then, for each xy € By(pr/(M + 1)), there exists a unique zf; € M(0) such that

< o0,

sup e " ||u(t, z9) — u(t, z})
£>0

where u(t, zy) is the solution of (2.4) on R™ with u(0,x¢) = xy and M is the

constant given in Remark 2.1 (a).
Proof. Fix the solution u(t) = u(t,z9) € C(R™, Ba(r)) of (2.4) and put
= {we C,R",X); wt)+u(t) € By(r)  forall t>0}.
Let wy € By(pr/(M 4 1)). For w € F, define
L(w)(t) = S(t) (wy — o) + /OtS(t —5) Py (F(s,w+u) — F(s,u))ds
—/OOS(t—s)PI(F(s,w+u)—F(s,u))ds for t>0.
t

Then, we have for w, w € E.and t >0

Mpr
M+1

HPQ(ﬁ('LU)(t)"_U/(t)H < + 2K (o, B,7v)Lr < r

and

e (L)) = L@@ < Ko ,7) Ll|w = |, ey

Thus, L is a strict contraction from E, into itself and hence there exists a unique

w(wy)(-) € E, such that £(1(ws)) = w(ws). Define
g(wy) = Pii(we)(0) for wy € By(pr/(M + 1)).

Since we have

Hg wy) — g(ws H < IMK((a ﬁﬁ?) ng wy, We € Ba(pr/(M + 1))
and
1h(0, ) — (mH_MMfWﬁ” 6, £ex,

K(a, 3,7) L
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there exists a unique w; € X; such that wi = ¢g(h(0,w] + Pizo)). Then we set
ws = h(0,w] + Pizy) and w*(t) = w(ws)(t). Obviously, we get wi = g(w;) =

Pyw*(0) and w* satisfies the equation
t
W)+ ult) = S (0) + o) +/ St — 5) F(s, 0" +u) ds.
0

Now set xj = w*(0)xo. Since xj; = wi + Pixg + h(0,w] + Pizy) € M(0), by
Lemma 2.4 we must have @*(¢) + u(t) = u(t, ) the unique solution of (2.4) on

R* with u(0,z}) = xf. Hence, u(t,z) — u(t) = w*(t) € C,(R*, X). O

2.3 Proof of Theorem 2.2

We are now in the position to prove Theorem 2.2.

Proof of Theorem 2.2. Let p: X; — R be a smooth function such that
0<pE) <1 for £ € X,
and
1
Ui o< 2

0 if ||¢][>1.

Since X is finite dimensional, the existence of such a function is obvious. For

r > 0 set
Fr(tax) = f(t,l‘)p((Pll’)/T), T e X,

and denote by L(t,r) the maximum of the Lipschitz constant of F,. with respect
to x over {xEX;

|P2 :EH < r}. Then, by assumption (c¢) of Theorem 2.2, we

have

lii(r)l L(t,r) =0 uniformly in ¢.
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Hence, applying Propositions 2.5 and 2.6 to the nonlinear map F,(¢,u) with

sufficiently small » > 0, we obtain the conclusion of Theorem 2.2 with
U1 = {1'1 S X1 s HZCIH < 7"}
and

U, = {22 € X5 ;

o < 1},

2.4 Application

We now apply our theory to nonlinear parabolic equations on the whole space.
This application was studied by Kobayasi [K2002]. For this reason, we shall
mention only an outline.

We consider the problem about existence of finite dimensional invariant man-

ifolds for nonlinear heat equations of the form
uy = Au+ F(u,Vu) in [1,00) x RY,

where u = u(t,x),t > 1and x € R". The linearized equation is the heat equation
on the whole space R" which has continuous spectrum extending from negative
infinity to zero, so that there is no gap in the spectrum. The applications of
invariant manifold theorems in nonlinear partial differential equations, however,
require that the linearized equation has an appropriate spectral gap in order to
split the spectrum into the parts associated with center or stable manifold. Nev-
ertheless, we shall prove that there are still finite dimensional invariant manifolds
for these partial differential equations which control the long-time behavior of
solution near the origin.

We here consider the asymptotic behavior of equations of the form
up = Nu— ‘uP_lu—l— F(u,Vu) in [1,00) x RY, (2.5)

where v > 1. We assume the following condition on F
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(F) Fis C', F(0,0) = 0 and there exist constants L > 0, 1, ¢, > 1 such that
r Fy(r, 2)| + |2 V.F(r,z)] < L|r|"|2]"

for all € R and z € RV, and

v+1

q1 + 5

G2 > 7.

Let p > 1 and m = 0,1,---. For any positive continuous function K, we

define a weighted Sobolev space as follows:

LP(K) := {u;/RN‘u(x)‘pK(x)dx < oo},
WmP(K) = {u;DO‘ueLp(K), ‘a‘gm},

the Banach spaces with the usual norms.

The main result is the following:

Theorem 2.7 (Kobayasi [K2002]). Suppose that v > 1 and the condition (F)
holds. Let

2
p > max{qQ—l—l,qu} and n > V1 - N —1.
r)/ i
Then, we can choose a weighted Sobolev space W' (K,) with K,(z) = (14 |z|?)™/?
for r >0, and a neighborhood U of [1,00) x {0} in [1,00) x WYP(K,) with the

following properties:

(i) There ewists a Y5, (7%7") dimensional local invariant manifold M for
(2.5) in U. More precisely, for each (1,z9) € M, there exist Ty € [1,00)
and a unique mild solution u of (2.5) on [1,Ty) such that u(l) = zy and
(t,u(t)) € M for all t € [1,Tp).
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(ii) For each (1,z1) € U, there exist Ty > 0 and a unique mild solution u; of
(2.5) on [1,T1) with uy(1) = z1. If, moreover, (t,u(t)) € U for allt > 1,
then Ty = oo and for every € > 0, there exist a unique mild solution u, on

the invariant manifold M and a constant C > 0 such that
‘x‘Q r/2p
(1 + T) |ui(t, ) — W (¢, 2)| < C¢ N2 mh/2ee

for allt > 1 and z € RV,
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Chapter 3

Renormalized solutions

In this chapter, we consider renormalized solutions for degenerate quasilinear
elliptic equations. The existence result of renormalized solutions for this problem
was obtained by Kobayasi [K1998]. In terms of this, we focus on uniqueness
of renormalized solutions, and apply our theory to the stationary problem of p-
Laplace equations. Contents of this chapter is based on the paper [KTU2000]

which is a joint work with Professor Kazuo Kobayasi and Mr. Takeshi Uehara.

3.1 Introduction

Let Q denote an arbitrary open set in RV, N > 2. We shall study the

nonlinear elliptic equation
f(u) —diva(-,u,Vu) > f in Q
(P)
u = 0 on 00

where f € L'(Q), Vu = (ug,, -+, ugz, ) denotes the gradient of u, 3 is a maximal
monotone graph in R? with 3(0) > 0 and a : QxRxR" — R" is a Carathéodory
function, that is, measurable in z €  for any r € R, any £ € R" and continuous
in (r,£) € R x RY for almost every x € Q.

Many authors considered the problem of type (P) as well as the evolution

problem associated with (P) under various hypotheses on the vector field a, cf.

37
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e.g. Atik and Rakotoson [AR1996], Bénilan et al. [BBGGPV1995|, Bénilan and
Gariepy [BeG1995], Otto [01996], Rakotoson [R1991] and Xu [X1994]. Boccardo
et al. [BGDM1993] dealt with the problem of existence and regularity of renor-
malized solutions for some elliptic equations with convection term. Rakotoson
[R1994] treated the problem about existence and uniqueness of renormalized so-
lutions of (P) in the case that a may depend on w under the assumption that €2 is
bounded, 3 is an increasing continuous function and a(x, u, Vu) has power growth
in v as well as ‘Vu‘ of an appropriate order. The notion of renormalized solutions
was introduced by DiPerna and Lions [DPL1989] dealing with the existence of a
solution of the Boltzmann equation and various existence and uniqueness results
have been obtained, cf. e.g. Carrillo and Wittbold [CW1999], Kobayasi [K1998]
and the references therein.

In this chapter, we shall adopt the notion of renormalized solutions for the
nonlinear elliptic equation (P). Our goal is to establish the existence and unique-
ness of renormalized solutions of (P) under the hypothesis that €2 is an arbitrary
domain, not necessarily bounded set in R", and a(x, u, Vu) may depend on u so
as to contain the convection term with no growth condition. In particular our

theory applies to the stationary problem
B(u) — div (|Vu|" " Vu + h(u)) 3 f in Q

where 1 < p < N, 8 is maximal monotone in R? and h € C(R)Y, which is

associated with the nonlinear diffusion-convection problem. See Gagneux and
Madaune-Tort [GMT1994], for example.
Let us state our precise assumptions. Let 1 <p < N and p < ¢ < oo.

(H1) 3 is a maximal monotone graph in R? such that 0 € 3(0), D(3) = R and

q

lim sup M < 00

=0 |B9(r)]

where 3° denotes the minimal section of 3 (see Brezis [Br1973]).
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We will denote by Hg the set of continuous functions h : R — R such that

lim sup ‘h(r)‘q,
0 ‘BO(T)‘

(H2) a: Q x R x RY — RY is a Carathéodory function and there exist A > 0
and h € Hj such that

(a(z,r,6),€) > X[E[" + (h(r),€)

holds for almost every x € , any r € R and £ € RY, where (-,-) denotes

< oo with q':L.
qg—1

scalar product in RV

(H3) There exist nonnegative and nondecreasing functions d and w defined on
R* and by € L'(Q2) such that fol w(s)"'ds = oo and

(a(z,7,€) —alz,s,m), = n)
> —d(|r| + |s]) w(|r = s[) (bo(z) + [€]" + [n]" +[8°(s)] + [8°(r)])
holds for almost every x € Q, any r,s € R and any &,n € R" with & # .
(H4) There exist A > 0, ap € L” (Q) and h € HJ such that
(a(z,7,€),m) < A(aolx) + p(r)""” +[[7) [n] + (h(r), )

holds for almost every x € Q, any r € R and any &,n € RY, where

15°(r)] if |r|<1,
p(r) =
max {|8°(r)|, [r[""} if |r|>1,
with
N(p—1
pLoi= ]807_10) and p' = Z%

This chapter is organized as follows. In Section 2 we state the definition of the
functional space T;”() and renormalized solutions, and mention the existence
of such solutions which was obtained by Kobayasi [K1998]. We state the main
uniqueness result of renormalized solutions and devote to its proof in Section 3.

We show an example of our theory in Section 4.
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3.2 Renormalized solutions

We denote the usual Lebesgue and Sobolev spaces by LP(Q) and W'?(Q),
respectively, and W, () is the closure of C5°(Q), the space of compactly sup-
ported C*-functions on Q, in Wh*(Q). ||- Hp denotes the LP-norm in 2. We also
use the local spaces L () and W.7(Q).

For k£ > 0 and a measurable function u on €2 we define the truncated function

Tru by (Tyu)(x) := Tp(u(x)) for almost every x € Q, where

L) = ‘k+r‘;‘k—r‘.

We also define T}/ (r) and T} (), respectively, by
T (r) == Tp(r') and T, (r) == Ti((—=r)"),

where 7 := max{r,0}. Obviously, Ty(r) = T, (r) — T, (r).

Let us state the definition of 75 7(Q). Firstly, 7"?(Q) is the space of measur-
able functions u : Q@ — R such that for every &£ > 0 the truncated function Ty (u)
belongs to W1 (Q) and VT, (u) € LP(Q)N. Secondary, 7,7 (Q) is the subset of

loc

T'?(9) defined as follows: A function u € 7"#(£2) belongs to Ty (Q) if for every
k > 0 there exists a sequence v, € C§°(£2) such that

Vin — VTe(u) in IP(Q)V,
Uy — Ti(u) in L _(Q).

We list a few fundamental properties of those spaces. See Bénilan et al.

[BBGGPV1995] for more details.
(P1) Wy*(Q) € T"(9).

(P2) For every u € T'?(Q), there exists a unique measurable function v : Q — R
such that

VTk(u) = U X{|u|<k} for k> 0,
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where x 4 denotes the indicator function of a subset A of €2. In what follows

we denote this function v by Vu.

(P3) If u € T,7(Q) and 1 < p < N, then Tj,(u) € LP" (Q) for k > 0, where p*
denotes the Sobolev conjugate of p, that is,

_ PN
p o= N—p.

u € ’ , then u) = 0'(u) Vu for an € 0. oreover, 1f u €
(P4) If T,7(Q), then VA(u) = #'(u) Vu for any § € ©. M if
TP (Q), then A(u) € T3 "(Q) for any 6 € © with 8(0) = 0, where

© := {0 € Lip(R); spt 6 is bounded}.

We here present related lemmas. These proofs can be found in [K1998].

Lemma 3.1. Let H(r) = [/ h(0)do and a > 0. Ifv € TP (Q) N L®(Q) and
P € Wi () N L™(Q) satisfy
B(v) € L'Q) and Ve L*({a < v}),
then we have
/ divH(v) pdx = —/ (H(v) — H(a), V) dx.
{a<v} {a<v}
Lemma 3.2. (i) If u € T""(Q) and v € T;"P(Q) N L=(Q), then Jy(u)v €
TP (Q) for every L > 0, where

L+ |L4+1—r|| = |L—|r]

5 for r € R.

JL(T) =

(i) If u,v € Ty P(Q), then u — Ty (v) € Ty (Q) for every L > 0.
We now state the definition of renormalized solutions.

Definition 3.3. Let f € L'(Q) and 8 a mazimal monotone graph in R*. We
say that a function u is a renormalized solution of (P; 3, f), or (P) for short, if

the following properties hold:
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(R1) u € T;7(Q), and there exists w € L'(Q) such that w(z) € B(u(z)) almost
every x € ).

(R2) For any 6 € O, and ¢ € L=(Q) with O(u) ¢ € T, (Q),

[wowpds+ [ (aw 70, 90w dr = [ £00) g
Q Q Q

where ©. = {0 € Lip(R) ; spt § is compact and spt @ is bounded}.

. P 1/p
(R3) limps o0 I,(M) = 0, where I,(M) = (I{M<|u\<M+1} ‘Vu‘ dx) .
(R4) I{IUKM} ‘Vu‘p de < CM for any M > 0.

Let us make a few remarks about the definition. We first note that 3°(u) €
L'(Q). Fix 0 € ©, and ¢ € L>®(Q) as in (R2). Then V(0(u)¢) € LP(Q) by
O(u) ¢ € Ty P (Q)NL®(Q). By virtue of (2.3) and (2.4) in [K1998], for each k& > 0

we have that whenever ‘u‘ <k
pu) < |B°W)| + [u" sy < [B°@)| + B |ul* < Cr |8 (w)

and

IN

C1A%w)|"™ + 50| X{uf>a)
G (18°) [ + (jul /)" )
< CralBw)]".

[a(w)]

IN

Hence by (H4) we obtain for |u| < k
la(z, u, Vu)‘p, < Cra (aﬁl +18%(w)| + |Vul"). (3.1)
Consequently, we get

/Q‘<a(x,u, V), V(0(u) w)}‘dx

< Cra (flaol, + 8@ " + [ VI@]) ) [V (0(w) )

|p, (3.2)
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which is finite by (R4), and so the integrals in (R2) of the definition make sense
under assumptions (H1) and (H4).

We here mention the existence of renormalized solutions of (P). This result
was obtained in [K1998], therefore we only state the existence theorem and related

lemmas.
Lemma 3.4. Assume that u € T3"(Q) satisfies (R4). Let 61 € (0,py), o €
(0,p2) and K C Q a measurable set with finite measure, where

N(p—1)
= —— d = .
P=rN—, M RT TN

Then, we have

/ ‘u‘él dr < (7 and / ‘Vu‘b dr < O,
K K
where C'y and Cy are constants depending on Cy, meas K, ¢ and (5.

Lemma 3.5. Fori=1,2, let f; € L'(Q), ; a mazimal monotone graph in R?,
u; a renormalized solution of (P; (i, fi) and w; the section of B;(u;). Suppose that
18%(r)| < |83(r)| for r € R and (H1)-(H4) hold with 3 = B; and h = h; for some
h; € Hgi. If either uy or uy belongs to L*°(Q2), then

Jwi—w)as < [ (- ptar

Theorem 3.6 (Kobayasi [K1998]). Suppose that 1 < p < N and (H1)-(H4)

hold. Then, for each f € L'(QQ), there exists at least one renormalized solution

of (P).

3.3 Uniqueness

We consider uniqueness of solutions under the following additional assump-

tions.
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(H5) For each k > 0 there exist constants p > 0 and p > 0 such that p < ps and
<a(1‘77n7 g) - CL(l‘, 3777)75_ 77>
> —p (L[] + )P +]8°(r)] + |8%(s)])

for almost every = € Q, any &, € RY and any r, s € R satisfying ‘r — s‘ <
k.

(H6) a(x,r, &) = a(x,s,&) for almost every x and any &, whenever 3(r)N3(s) # 0.
The first uniqueness result is the following:

Theorem 3.7. Suppose that 1 < p < N and (H1)-(H6) hold. Let u be the
particular solution obtained in Theorem 3.6 by the approximation process and

an arbitrary renormalized solution of (P). Then we have u = u.
To prove this theorem we begin with a direct consequence of Lemma 3.5.

Lemma 3.8. Suppose that (H1)-(H4) hold. Let u,u be the same solutions as in

A~

Theorem 3.7 and w,w the corresponding sections of 3(u), B(w) in the definition

renormalized solutions. Then w = 0.

Proof. We denote by u, the approximation of u and by w, the section of 3(u,)
given by (P; 3+ v, gn). By Lemma 3.5 we have for v = w or @

[1o= Gt atwlde < [ 7= gl

Therefore, letting n — 0o we obtain [ ‘w - ﬁ)\‘ dx =0, and so w = . O

Proof of Theorem 8.7. Let k > 0. In the same manner as in the proof of (4.3) in
[K1998] we can prove that

/ (a(x,u, Vu) — a(z, up, Vu,), VI (U — uy,)) dx
0

— (=g Bt ) Te@ ) (3.3)
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Fix n € (0,1) and write
E} = ({lul = n} U{lun| > n}) N {Jun — 0l < k}
and
F = {lul <} 0 {lunl <n} 0 {fun —u] <k},
and so E'"U F! = {|u, — u| < k}. In view of (H5) we have

xgr (al-, u, Vu) — a(-, up, Vu,), Vi — Vu,)
> —pxp (L4 |VA] + [Vua|)” + [8°@)] + | 8°(un) ).

Since p < py by assumption, it follows from (4.4) in [K1998] and Lemma 3.4 that
the function y g» (1+ ‘Vﬂ‘ + ‘Vun‘) is bounded in L"(£2) uniformly in n, provided
that p < r < ps. Hence, by Vitali’s convergence theorem we may as well assume

that as n — oo it converges in LP(€2) to the function
Xtluznpu-ai<) (1+ V] + |Vau]).

Furthermore, since |3%(u,)| < |va(un) + wy| and v, (un) + w, — w in L1(Q), we

can consequently employ Fatou’s lemma to get
lim inf/ (a(x,u, V) — a(z,up, Vuy,), Vi — Vu,) dr
n—00 EZ
> / (a(x,u, Vu) — a(z,u, Vu), Vu — Vu) dx.  (3.4)
{lul>n,lu—a]<k}
On the other hand, we have from (3.1) that the function

XF! (Cl,(', aa Vﬂ) - Cl,(', Unp,, Vun))

is bounded in LP'(Q) uniformly in n as well as 5. This implies that as n — oo it

converges weakly in LP' () to the function

X{lul<nju—al<k} (a( @, V@) — a(-, u, Vu)),
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and hence

lim (a(x,u, Vu) — a(z, Uy, Vu,), Vi — Vu,) dx

n—oo FJZ

= / (a(x,u,Vu) —a(z,u, Vu),Vu — Vu) dx.  (3.5)
{lul<n,lu—ul<k}

Owing to (4.4) in [K1998] the integral of ‘Vu — Vun‘p over F7 is bounded by
2P=1 ' n, and so

/F:z

for some constant C}, probably depending on k£ but not on n and 7.

We now intend to pass to limits in (3.3). Thanks to (3.4)-(3.6) and the fact

(a(x,u, Vu) — a(z,up, Vu,), Vi — Vu,) | dr < Cign (3.6)

that w = @ by Lemma 3.8, we obtain
/ (a(z,u, Vu) — a(z,u, Vu), Vu — Vu) de < Cg.
{Ju—u|<k}

Since f(u) N B(u) # 0 almost everywhere by Lemma 3.8 again, (H6) implies
that a(-,u, Vu) = a(-,u, Vu) almost everywhere. Therefore, by letting n | 0 we

conclude that
/ (a(z,u,Vu) — a(z,u, Vu), Vi — Vu) de < 0. (3.7)
{Ju—ai| <k}

Since this is true for any k& > 0, we conclude by (H3) that Vu = Vu almost

everywhere. Taking into account that u, @ € T, ”(Q) we conclude that v = 7. [

Remark 3.9. The main interest of our treatment lies in the uniqueness of un-
bounded renormalized solutions. If we restrict ourselves to the bounded solu-
tions, then the uniqueness is a simpler matter. We have the following: Suppose
1 < p < N and that (H1)-(H4) and (H6) hold. If uy and uy are arbitrary renor-
malized solutions of (P) satisfying us € L*(S2), then u; = uy. Indeed, since
(4.3) in [K1998] is still valid with F. replaced by T}, and wy = wy by Lemma 3.5,
it follows from (H6) that (3.7) again holds for every k > 0. Thus we have the

conclusion.
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We next consider uniqueness of solutions under the following additional as-

sumptions.

(H5)" There exist a constant A > 0 and an increasing function w; € C(R*,R™)
such that [ wi(s)"/7ds = oo and

<a(x,r, 6) - a(xa 5777)76_ 77>

)“6_77‘17 —willr —s P 0(p 0(g
Gl b =D @l )7+ [P0 + [P 6)

for almost every z € Q, any £,7 € RY and any r,s € R, where p =
max{p, 2} and p = max{2 — p,0}.

(H6)" There exists a constant « > 0 satisfying that if r, s € (—a, ) and £(r) N
B(s) # 0, then r = s.

Theorem 3.10. Assume2— N~' < p < N and that (H1)-(H4), (H5)" and (H6)'

hold. Let u and u be the same solutions as in Theorem 3.7. Then we have u = u

Proof. Fix ¢ > 0 and define the function G, by
G.(r) = / wi(o) tdo  for r € R,

where r. = max{e, min{r, 1}} as before. In the same fashion as in the proof of

(4.3) in [K1998] we can again prove that

/ (a(x,u, Vu) — a(z, up, Vu,), VG(U — u,)) dx
Q

= / (f = gn — D +wn + Yn(uy)) Ge(U — uy) da. (3.8)
Q
Of course u,, and w,, denote the approximation of u and the section of 5(u,). For
simplicity, we write
ha = 14|Vi| + |Vu,|,
En = ({lil =2 o} U{fun| = a}) N e <@ —u, <1},

F, = {jul <a}n{|uy| <a}ni{e<u—u, <1}.
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As before, measF,, is finite and uniformly bounded in n. Since p < py by as-
sumption, it follows from Lemma 3.4 that [ 5 h? dz is uniformly bounded in n.

Hence, by (H5)'

/ (a(z, @, V) — a(z, up, Vu,), VG.(T — u,)) dz
o8
A\va—vun\ﬁ o 0
L (hP ) J

‘Vﬁ—Vun‘ﬁ
> /—~dx—
En w1 (U — up)hh

(3.9)

with some constant C' independent of n.
Take ¢ € [1,ps). This choice of ¢ is possible by the assumption that 2— N~! <
p. By Holder’s inequality
‘t

~ t/p
Vi — Vu, V- Vu” \"”
B, wi (U — u,)t/? B, w1 (U — uy) hh

On the other hand, to calculate the integrals over F;, we notice that
Fy © {[al 2 £/2} U{Jua| > £/2}.

Then, by Holder’s inequality, for 1 < s < p/ps

/ ‘Vﬂ — Vun‘t ’
— = dx
p, \wi (= uy)'P
R ts/p
< wi(e) 7P (measkF,)'~(t5/P) (/ |Vu — Vun‘p dx) ,
Fn

which is bounded in n by (4.4) in [K1998]. In view of Lemma 3.8 and (H6)',
u must coincide with u on the set {|u] < a} N {Ju] < a} and hence the set
{lu| < a, |u| < e, e < —u < 1} is empty for almost everywhere. Thus

Vi — Vu,|
i [ VIVl (3.11)
n—oo [ wy (u — un)t/P
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Thanks to (H5)', we have
Xr, (a(-,u, Vi) — a(-, up, Vuy,), VG(0 — uy))
> —Cxr, (W + [B°(@)] + |5 (un)]).

From (4.4), (4.5) in [K1998] and Lemma 3.4 we find that the right-hand side
of this inequality is bounded in L*(Q2), uniformly with respect to n, whenever

1 < s < py/p. Therefore we can apply Fatou’s lemma to obtain

MMM/<M%@V®—a@mmV%LW%@—mmdx>O. (3.12)
Fr

n—00 -

Next, on the analogy of GG, define the function 6. by
0.(r) = / wi (o) YPdo  for r€R.

Since 0.(i — uy,) € 75 P(Q) by Lemma 3.2, Sobolev’s embedding implies

t

10-@ - wa) ||}, < C||VO-(a@ — )|,
- C [vi-vu[ , 3.13
N E,UF, wi (T — up)Y/P - (3.13)
Combining (3.8)-(3.13), we immediately calculate that
Hﬁg(ﬂ—un) . < ligr_l)glfuﬁg(ﬂ—un) . < C

with a finite constant C'.
To prove u < u, we assume to the contrary that meas{u — u > p} for some

p > 0; it follows that for 0 < e < p

0.(p) (meas{ii — u > p})' "™ < ||6.(@ —u)

< C.

r*

But, 0.(p) — [/ wi(o)""/Pdo = oo as £ | 0. This contradicts that C'is finite.
Thus we obtain u < u. Likewise we can prove the converse inequality and hence

uU=u. O
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3.4 Application

Let us consider as an example of our theory the following problem

v—Dpp(v)+divF(v) = f in
(3.14)
v = 0 on 09,

where 2 is an open subset in RY with N > 2, A, is the so-called p-Laplacian,
that is, Ay = div (|Vo|"*Vv), ¢ € C(R) and F € C(R)Y. This is the station-
ary problem corresponding to the associated degenerate parabolic equation with
convection. See Gagneux and Madaune-Tort [GMT1994] for more details.

We make the assumptions that ¢ is nondecreasing, ¢(R) = R, ¢(0) = 0,
F(0) =0, and that there exists a constant C' such that

|[F(r)— F(s)| < C‘¢(r)—¢(s)‘l/ﬁ"r—s‘l/q’, r, s € R. (3.15)

Here recall that p = max{p,2} and 1 < p < ¢q. We see from (3.15) that for each

r € R the function F takes a constant value on the set ¢—!(r). Put
g =¢! and h = Fog¢ '

Then (3 is maximal monotone in R?, 3(0) > 0, D(3) = R, h € C(R,R"), and
(3.14) may be written as

B(u) — Apu+divh(u) > f in Q,

(3.16)
v = 0 on 0.
To apply our results above we furthermore assume that
q
lim sup ] < 00 (3.17)
r—0 ‘50(1")‘
and
sup |h(r) — h(s)| < oo for each k > 0. (3.18)

|r—s|<k
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Then from (3.15) and (3.17) it is easily seen that

)|
115% 30(r)| =0

and hence condition (H1) holds. To check the rests of conditions postulated above
put a(z,r, &) = ‘f‘p_Qﬁ + h(r) and p = max{2 — p,0} as before. An elementary

calculation shows that

(el e =l ne=n) > N (el+ D 7le=n, & neRY, (3.19)

the constant A\, depending on p. By (3.15), (3.19) and Hdélder’s inequality, we

have for £ #n

Ap ‘5 _ 77‘1? _
2(1¢1 + [nl)?

> —C (| + )7 |8°r) — ()T |r — 5

> C (€] + [n)? |h(r) — h(s)|”

> —Cd(|r|+1s) (J€]" + n]” + [8°(")| + |8°(5)]) |r — 5

with some nondecreasing function d : R™ — R™. This implies that condition
(H3) holds. Furthermore, if (3.18) is satisfied then condition (H5) follows from
the first inequality stated just above provided p < p, or, equivalently,

3N —2
2N -1

< p < N.

Since conditions (H2), (H4) and (H6) are immediately satisfied, we can conclude

from Theorem 3.6 and Theorem 3.7 the following result.
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Theorem 3.11. Suppose 1 < p < N, f € L'(Q) and that ¢ € C(R) and F €
C(R)N satisfy ¢(0) = 0, F(0) = 0 and ¢(R) = R. If (3.15) and (3.17) hold,
then (3.14) admits at least one solution v in L'(Q) in the sense that u = ¢(v) is

a renormalized solution of (3.16). In addition, if

and (3.18) is satisfied, then the solution is unique.
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Chapter 4

Renormalized dissipative
solutions

In this chapter, we consider the Cauchy problem of a scalar conservation
law (CP): uy + divF(u) = f, u(0,:) = uy with locally Lipschitz continuous F.
In the case that the flux F is globally Lipschitz continuous, Portilheiro intro-
duced a notion of dissipative solutions for (CP) and proved the equivalence of
such solutions and entropy solutions. The dissipative solutions are more suitable
to obtain relaxation limits for some hyperbolic systems than entropy solutions.
Indeed, Portilheiro used this notion to obtain certain relaxation limits for hyper-
bolic systems describing discrete velocity models and chemical reaction models.
Our purpose of this chapter is to extend some results obtained by Portilheiro
[P2003a, P2003b] to the case of locally Lipschitz-continuous flux. We introduce
a new notion of renormalized dissipative solutions which is a generalization of
dissipative solutions in the sense of Portilheiro for a scalar conservation law (CP)
with locally Lipschitz F and L! data, and show the equivalence of such solutions
and renormalized entropy solutions in the sense of Benilan et al. As an example,
we apply our result to contractive relaxation systems in merely an L!'-setting
and construct a renormalized dissipative solution via relaxation. Contents of this
chapter is based on the paper [KoT2005] which is a joint work with Professor
Kazuo Kobayasi. This research was supported by Waseda University Grant for

26
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Special Research Projects §2003A-856.

4.1 Introduction

We consider the following Cauchy problem
u+divF(u) = f in Q:=(0,T) x RV,
(CP)
u(0,-) = wuy in RV,
where T'> 0 and N > 1. Here f € L'(Q) and uy € L'(R") are given functions
and the flux F : R — RY is a locally Lipschitz continuous function.

Kruzkov [Kr1970] proved that if ug € L*(RY) N L*(RY), then (CP) has a
unique weak solution u € C([0,T); L'(R"Y)) N L*°(Q) satisfying the entropy in-
equalities, which is the so-called entropy solution. In the case that the flux F
is globally Lipschitz, Portilheiro introduced a notion of dissipative solutions for
(CP) and proved the equivalence of such solutions and entropy solutions. The
relationship between the notions of various solutions for degenerate parabolic
equations is also investigated in Kobayasi [K02003], and Perthame and Sougani-
dis [PS2003]. The dissipative solutions are more suitable to obtain relaxation
limits for some hyperbolic systems than entropy solutions. Indeed, Portilheiro
[P2003b] used this notion to obtain certain relaxation limits for hyperbolic sys-
tems describing discrete velocity models and chemical reaction models. His idea
is also based on the perturbed test function method introduced by Evans [E1989]
for conservation laws. These systems have already been studied by Katsoulakis
and Tzavaras [KaT1997, KaT1999], who obtained several important results in-
cluding comparison results. On the other hand, it is known that if f € L'(Q)
and ug € L'(RY), then the mild solution u of (CP) constructed by nonlinear
semigroup theory is a unique entropy solution which is unbounded in general. In
the case that F is only locally Lipschitz, the flux function F(u) may fail to be
locally integrable since no growth condition is assumed on the flux F, and hence

(CP) does not possess a solution even in the sense of distributions. To overcome
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this the notion of renormalized entropy solutions has been introduced by Bénilan
et al. [BCW2000], where the existence and uniqueness of a renormalized entropy
solution of (CP) has been established and the semigroup solutions of (CP) in
L' spaces are characterized. Renormalized solutions have been introduced first
by DiPerna and Lions [DPL1989] for the Boltzmann equation and utilized for
degenerate elliptic and parabolic problems in the L'-setting in the last decade.
However, the argument in Portilheiro [P2003a] does not work well in the case
that F is only locally Lipschitz and the solution u is unbounded.

Our purpose of this chapter is to extend some results in [P2003a] to the case
of locally Lipschitz continuous flux. In Section 2, we introduce a new notion of
renormalized dissipative solutions which is a generalization of dissipative solu-
tions in [P2003a], and we prove that the equivalence of renormalized dissipative
solutions and renormalized entropy solutions in Section 3. In Section 4, as an
application, we apply our result to contractive relaxation systems in merely an

L'-setting and construct a renormalized dissipative solution via relaxation.

4.2 Equivalence

We begin with some notations and definitions. For r,s € R, we set r A s :=
min (r,s), 7 Vs := max(r,s), r* :=rVv0and r~ := (—r) V0. For r € R and
j = 0,1, we define a sign function S; by S;(r) =1ifr >0, S;(r) = -1 if r <0,
S;j(0) = j. Then we denote Sj (r) := S;(r) V 0 and S; (r) := S;(r) A 0.

Let u € LY(Q). For (t,2) € Q and r > 0, we set

B (t,z) == {(s,9) € Q; (s —)* + |y — 2| <12},

and define the upper and lower semicontinuous envelopes of u as
u*(t,z) == lim sup {u(s,y); (s,y) € B,(t,z)}
rl0
and

u,(t, ) := lim inf {u(s,y); (s,y) € B,(t,x)},

rl0
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respectively. Then we see that u, < u < u*, u* is upper semicontinuous and u, is
lower semicontinuous.
We now recall from Bénilan et al. [BCW2000] the definition of renormalized

entropy solutions.

Definition 4.1. (i) We say u € L'(Q) is a renormalized entropy subsolution
of (CP) if for any k,l € R,
e = (WAL—k)Y+div{Sf(unl—k) (F(unt) —F(k))}
—Sf(unt—k)f (4.1)

15 a Radon measure on ) such that for each k € R,

£—00

and for each ¢ € R,

(u(t, YANL—ugAl)™ — 0 in L]

loc

(RM) as t— 0 essentially.

(ii) We say u € L'(Q) is a renormalized entropy supersolution of (CP) if for
any k,l € R,

Ve = (uVLl—k),+div{Sy(uVvl—k)(F(uvl) —F(k))}
—Sy(uvel—k)f (4.2)

s @ Radon measure on QQ such that for each k € R,

lim V,;te(Q) = 0,

L——o00

and for each ¢ € R,

(u(t,)VL—uyVLl)~ — 0 in L]

loc

(RV) as t — 0 essentially.

(iii) We say u € L'(Q) is a renormalized entropy solution of (CP) if u is a
renormalized entropy subsolution of (CP) and also a renormalized entropy

supersolution of (CP).
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Next, we introduce a new notion of renormalized dissipative solutions of (CP).

Definition 4.2. (i) We say u € L'(Q) is a renormalized dissipative subsolu-

(ii)

(iii)

tion of (CP) if there is a sequence {up} C Myp(Q)T with wue(Q) — 0 as
¢ — 0o such that for each ¢ > 1 and ¢ € Ty,

//QSJ(UM—@ (f = ¢ — divF(¢)) dadt
+//QSO+(U*M—¢)dW >0 (43)

and

(u(t, YNl —ugAl)T — 0 in L]

loc

(RV) as t— 0 essentially,

where Ty .= C{(Q) N {¢; ¢(t,x) =k for (t,x) € Q if |x| > R for some k €
(—¢,¢) and R > 0} and My(Q)" denotes the space of all nonnegative

bounded measures on Q).

We say u € L'(Q) is a renormalized dissipative supersolution of (CP) if
there is a sequence {vp} C My(Q)" with v,(Q) — 0 as ¢ — oo such that
for each £ > 1 and ¢ € Ty,

//Q Sy (wV (=) — @) (f — ¢y — divF(¢)) dadt
" //Q Sy (wnV (=) =¢)dve = 0 (4.4)
and

(u(t,)VL—uyVLl)~™ — 0 in L]

loc

(RV) as t — 0 essentially.

We say v € L'(Q) is a renormalized dissipative solution of (CP) if u is a
renormalized dissipative subsolution of (CP) and also a renormalized dissi-

pative supersolution of (CP).
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Then we obtain the following main result.

Theorem 4.3. Suppose that v € L'(Q) and u*(t,x) < oo and u.(t,z) > —o0
for almost every (t,x) € Q. Then u is a renormalized entropy subsolution
(respectively supersolution) of (CP) if and only if u is a renormalized dissipa-

tive subsolution (respectively supersolution) of (CP).

4.3 Proof of Theorem 4.3

Claim 1: Ifu € LYQ) and u*(t,z) < oo (respectively u.(t,r) > —oo) for
almost every (t,x) € Q, then a renormalized entropy subsolution (respectively su-
persolution) u of (CP) implies a renormalized dissipative subsolution (respectively
supersolution).

The proof of Claim 1 will be divided by several parts.
Step 1: Tt follows from [BCW2000, Proposition 2.7] that there exists a sequence

{pe} € My(Q)" such that 1o(Q) — 0 as £ — oo and pue = e — ik — X{usey f for

k < ¢, where x4 denotes the indicator function of A. Then we have

L= [ o0
Nk UNL<k

for each 6 € C§°(Q). Indeed, since u*A £ is upper semicontinuous, {u*A ¢ < k} is
open and hence for any ¢ € C§°({u*A ¢ < k}),

//QSOde,z
_ —// St —k) { At —k) g+ (B(unb) — (k)Y + [ o} dad.
Q

On the other hand, since {u > ¢} = () whenever u* A ¢ < k and k < ¢, we have

//QQOd/Lk,é = //deué—//ngduk—//uﬂfgpdxdt
://QSOdW—//ngduk.
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Therefore, we obtain that
// wduk—// p dpug
Q Q
= // Sf(unt— k){(u AN—k)pr+ (F(untl) —F(k))-Veo+ fgo}d:z:dt. (4.5)
Q

We now use the partition of unity (see Yosida [Y1965]). Since {u*A ¢ < k} is
open, there exists a system of functions {o;} C C§°(Q) such that

spto; C {u"Al <k}

for each j, 0 < 0;(t,z) < 1forevery jand ), 0;(t,z) = 1 for (¢, x) € {u"Al < k}.
Let # € C§°(Q) and put #o; into ¢ in (4.5). Then, since

Sf(unl—k)=0  forany (t,z) € {u"Al<k}
and spt (0 o;) C {u* Al <k}, we see that

// HO'jduk—// Gajd,ug:O.
u*A <k w*N <k

Therefore, summing up with respect to j, we get

// Odp, = // 6 d (4.6)
u*A<k w*N <k

for each # € C§°(Q). Then, from (4.6) we have for any 0 € C§°(Q)" and k < ¢,

J[ v = [[ oan~ [[ oam— [[ i sz
Q Q Q Q
= // Hd/Lg—// Qduk—// X{usey f0drdt
uw*AL>k NN u*ANL>k
T
uw*AL>k u*AL>k

We now check that
/ / 0dpy = 0. (4.7)
uw*Nl=k
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To this end, let C' be a countable subset of (—¢, ). Then, we have

S Mt e =iy = S [[

keC keC
< / ‘u*/\ Z‘ dfig
Q
< / ‘u*‘ dpy < oo.
Q
From this, we see that the cardinality of the set
{k € (=0,0); pe({u*nl=k}) > O}
is at most countable, and therefore the set
{k €(—=0,0); p({u"nl=k}) = O}

is dense in (—/¢,¢). This means that (4.7) holds.

Combining these estimates, we obtain that

// SH(unt—k) {(uM—k) 0, + (F(u A 0) —F(k))-v9+f9} ddt
Q

=~ [[ b,
Q

> = [ dus [[ xgen foduat
uNL>k N>k

which implies

/ s;(uM—k){(uM—k)et+(F(qu)—F(k))-va+f9}dxdt
Q

+/ Sy (u'A L — k) {9sz — X{u>} fedfrdt} >0 (48
Q

for any 6 € C§°(Q)" and k, ¢ € R.
Step 2: Let n. and py be standard mollifiers on R and R, respectively, and let

(» be a nonnegative smooth function satisfying

1 if jz| <n,

Co(t,x) =
0 if |z| > 2n,
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and |V(,| < C/n with positive constant C. Take ¢ € T,. Then we put 0 =
ne(z —y) palt — s) Cu(t,x) and k = ¢(s,y) in (4.8), and integrate in s and y over
() to obtain

////2SJ(U/\€_¢){(UA€_¢)(napACn)t+fnepACn

(B A €)= F(9)-Valne p2 Go) | dydsdnds
+ / / / v Sy (WAL —9) {775 P Cn dite = Xgusey f 1 Pr Cn dfcdt} dyds
= ////ﬁo*(u/\f—cﬁ) |:(U/\€_¢)775p/\(Cn)t_775p/\Cn¢s

— (WAL= )1 paCn), + [ A Cn
o dlva(d)) Te P Cn + e P (F(u A 6) - F(¢))Vm<n
— div, { (F(u A ) = () 0 px Gu }| dydsddt

][] s ne=0) o Gudie = sy £ 10 Godd} dyds
QQ

0

IN

9

=y I (4.9)

J=1

We begin with I, For p,q > 0 we set
O(p,q) = sup {|p(t,x) — ¢(s,y)|; (t,2). (s,y) € Q, |t — 5| <p, [z —y| < q}.
Then we have
= /// - S (AL —(s,9)) f 1 P Cu dydsdadt
! ////f<o So (uN L= ¢(s,)) f e pa Co dydsdrdt
/// /f S (u A €= (t,7) + B(N,2)) f 1. pa G dydsdadt
- ///_/f o Sy (uN L= ¢(t,z) = ®(X,€)) £ - pa Cu dydsdut,
<

IN
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which implies

limsup I;M" < // Sf’(uAE—¢)andmdt+// Si(untl—¢) f,dadt
20

g, A0 f<0

_ //Qs;(me—qs)fcndxdt+//w¢f+¢ndxdt.

In a similar way we also have that

limsup ITM" < // Sy(unl—¢)(uAl— ) () dudt,
Q

e,Al0

limsup I3 < — // S (u Al — @) ¢y C ddt
e,Al0 Q
+ / / (¢1) Codadt,
uNl=¢

limsup I < — // Si (u Al — ¢)divF(¢) ¢, dudt
Q

e, Al0
i //u/\é¢ (div F(d))) Cp ddt,

limsup [N < / / SE(uA L — ) (F(uA £) — F(6))- Ve, dudt
Q

e, Al0

" //u/\ezqs((F(u ANC) —F(9))-V(,) " dudt
- //Q Sg (unl =) (F(unt) —F(¢)) Vi, dudt,

// Sar(u*/\f—gb)gndugﬂL// Cadte,
£,A0 Q wN=¢

. A,
lim sup /g

IN

and

: A
lim sup I5™"
e, A0

< //Q S (u Al — @) Xfusey [ G dadt + // (X{u>g} f)+ Cn dxdt.

u*N=¢

As to IEM" we introduce a sequence {a,,,} € C}(R) with

0 < g, (1) < Cmxgri<i/m)
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which approximates S; (r). Then we have
J / / / /Q i (A L= 6)div, {(F(u A 0) = P(6)) e pr &} dydsdads
= — lim ////QQam(u AL — @) divy{(F(u A L) — F(})) 0. pr Ca} dydsdadt

m— o0

m— 00

= =i [[[[] it n =)o (G 0) = P(0) V0 dudsnr,

Let us denote by L, the Lipschitz constant of F on [—/, £]. Then, for any (¢,z) € Q

and m large enough, we get

o (u A L= ¢) (F(uA ) = F(0))] [V,
< CmXqune-ol<i/my Le [u A E= 8] [0
< CLex{une-oi<i/my [Vy(u AL = ¢)]
= C Ly X{une—gi—oy [Vy(uAl—¢)] = 0 as m — oo

and hence Io" = 0. Similarly, we also get I:*" = 0. Passing to the limit in

(4.9) as e, A | 0 gives

0 < //QSJ(uM—q»(uM—@(cn)tdxdt

_//Q S (uNt— o) ¢tc”dxdt+/LAZ:¢(¢t)_Cnd$dt

+//QSO+(u/\£—ng)f(ndxdtJr//uM:(bﬁCndxdt
—//Qs;(u/\z—qs)divF(qﬁ) gndxdt+//UAM(divF(¢))Cnd:cdt

- //Q S (Al — @) (F(u A ) — F(6))-VE, dudt

+//QSO+(U*M—¢)gndug+//m¢Cnduz

+ //Q S(;r(u*/\ l— d)) X{u>£} [ Cndxdt + // (X{u>£} f)+ Cn dxdt.

UN=¢p
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Passing to the limit as n — co, we have
0 = // So (unl—9)(f — ¢ — divF(¢)) dzdt
Q
+ //Q S (u*A L — @) {dll«é + X{u>t} fdxdt}
* /LA4¢{f+ + (¢t)— + (diV F(¢’))7} dxdt

- //uwd){dw + (X(u>ey f)+ dmdt}
+limsup// SFuAl—¢) (WAl — @) (Co)e dudt
Q

n—o0

—|—limsup//Q SEUAL— ) (F(un 0) — F())-Veydudt. (4.10)

n— 00

Step 3:  We calculate the last term on the right hand in (4.10). Since
Sq(unl—9)F(unt)e L'(Q)N, we see that

nlgl&//@ Sy(untl—)F(uAl)-V,dedt = 0.
Suppose that ¢(¢,x) = k for large |z|. If k = 0, then ¢ € L'(Q), and hence

lim // St(uA L — §)F(6)-VC, dudt = 0.
Q

n—0o0

We have
//Q SS'(U Al — @) F(p) -V, dxdt
= [[ st —0) ) - P56,z
+//Q SNl — @) F(k)-VE, dudt
= //Q Sy (unt— o) (F(p) - F(k))-VCndxdtJr//uM>¢F(k)-VCn dadt.

The first integral converges to 0 as n — oo since F(¢) — F(k) € LY(Q)N. As to
the second integral, we first note that for fixed k € (—¢,¢) and £ € C§°(Q) we
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may write ¢ = £+ k. Assume 0 < k < £. Then by Chebyshev’s inequality we get

LY {unt> o)) = LY {untl—€ >k}

< //‘u/\ﬁ f‘dxdt < 00,

where LN *! denotes the (N +1)-dimensional Lebesgue measure on (). Hence this
integral converges to 0 as n — oo.

Next assume that —¢ < k < 0. Since the second integral equals

- / /u AES(ﬁF(k)-VQL dadt,

LY {unt <)) = LY ({unt—¢<kY)

< i//‘u/\ﬁ—f‘d:z:dt < 0.
k1o

Therefore, the second integral also converges to 0 as n — oco. Thus we obtain

we have

n—oo

lim // SE(uA L — §)F(6)-VC, dudt = 0
Q

for ¢ € T;. In a similar way, we also see that

n—o0

lim //Qs;(mz—¢)(uAe—¢)(gn)tdmt S

for ¢ € 7.
Step 4: Recall that we may write ¢ = £+ k for k € (—¢,¢) and £ € C§°(Q).
Then we see that the set {k € (=¢,0); p({uAl=E+k}) =0} is dense in (—¢, 0)
because Y, . k| p({u Al =&+ k}) is finite for any countable set C' C (—/, ),
where p denotes the (N + 1)-dimensional Lebesgue measure £¥*! or p,. Hence
the cardinality of the set {k € (=0,0); p({fu A€ = £+ k}) > 0} is at most
countable.

We now fix any k € (—/,¢) and choose a sequence {k} such that &} | k as
n— oo and u({fu ANl =&+ k' }) =0 for any n > 1. It follows from (4.10) with
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¢ =&+ k' that
0 < // SHuAL— ) (f — ¢ — div F(¢)) dudt
Q
+ [ st ne=o) {dus+ xqon £ dsdt)}
Q

which means that (4.3) holds with dy, replaced by djiy + X (use f dxdt.

Claim 2: Ifu € LY(Q) and u*(t,z) < 0o for a.e. (t,z) € Q, then a renormal-

ized dissipative subsolution u of (CP) implies a renormalized entropy subsolution.
The proof of Claim 2 will be also divided by several parts.

Step 5: Let k € (—¢,¢) and # € C*(Q)*. For each 6, > 0, choose a function

V5. € C§°(Q) such that

0 if ()€ B;(0,0),
7/)5,5(75,35) =
/e if (t2)€Q\ Byic(0,0),

where B;(0,0) = {(t,z) € Q; t*+|z|* < 6°}. Putting ¢s. := k+ b5 (t—s,z—y)
in (4.3) for each (s,y) € Q, multiplying (4.3) by an arbitrary function 6(s,y) €

C(Q)' and integrating in s and y over Q, we obtain

////Qz So (uAl—6sc) {f — (¢o,e)r — dinF(%,g)} 0 dydsdxdt

+////250+(“*M—¢6,a)9dydsdue > 0. (4.11)

Note that Si (u Al — ¢s:) = Sg(wAl—k) Xyt (s,y) and Sg (u* ALl — ¢5.) —
Sq (WAl —k) Xy (s,y) as € | 0, and also note that

B // / o STUA L= 65.) (65:): 0 dydsdde

= //// 2 ST(unt —s.) (unl— ¢s.) 0, dydsddt

B //// R So (unl—gse) (uAl— bse) 9)5 dydsdxdt
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- //// 2 So (u Al — ¢5.) diveF(6s,) 0 dydsdudt

— ][ S n = 000 (Bl )~ (6.9,
Q2
N /// 0’ So (uN = ¢52) divy {(F(u A €) — F(¢s,)) 0} dydsdadt. (4.12)

Step 6: We first compute the second integral on the right hand in (4.12). As
in the same argument as above, by using again the approximating functions
{am} © CY(R) we see that this integral vanishes. As to the first integral on the
right hand in (4.12), note that for k € (—¢,¢) and £ > 0 sufficiently small,

1S§ (Al —¢sz) (F(uAl) —F(s.))| < Le(unl—se),

which implies that Si (u Al — ¢5.) (F(uAl) —F(ds.))-V,0 € L' (Q?). Therefore,
passing to the limit in (4.11) as € | 0 yields

////M L SErE=H

f9+(u/\€ k)0, + (F(uAf) — F(k))- vye} dydsdudt

//// Sy (u* AL — k) O dydsdu, > 0.
QX Bs(t,x)

Dividing by volume of the ball Bs(t,z) and passing to the limit as ¢ | 0, we

obtain

0 < //QSJ(U/\E—k){f@—i—(u/\é—k)&t—l—(F(u/\E)—F(k))-VG}dxdt

+// S (u* Al —k)Oduy
Q

://9d<55r(u/\€—k)f (WA €= k) + ST AL — k) g
Q

—div {SF(uAl—k) (Funr)— F(k))}) (4.13)
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for each § € C5°(Q)*. This means that
(uAl—Fk), +div{Sf(untl—Fk)(Funt)—Fk))}
—Sg(unNl—k)f =Sy Al—k)u
is a Radon measure on () and hence
e = (WAL—k), +div{Sf(unl—k)(Funt)—F(k))}
—Sq(unl—k)f

is also a Radon measure on ). Moreover, we see from (4.13) that for any 6 €

CSO(Q)+7
// Hd/lk,z
Q
- _// St L= k) {F0+ (uAL— ), + (F(uA b) — B(k)-V0} duds
Q

< // So (u* AL — k) O dp.
Q

Taking a sequence {f,} C Cg°(Q)" which tends to x>0y as n — oo, and

passing to the limit as n — oo, we obtain that

1,(Q) < //QSJ(U*/\Z—k)dW < w(Q) — 0 as [ — oo.

We also see that for each £ € R, (u(t,") AL —ugALl)T — 0in L]

loc

(RV)ast — 0

essentially, and thus we complete the proof of the theorem.

4.4 Application

We prove the existence of renormalized dissipative solutions of (CP) via re-
laxation methods.
Let w; > 0 and suppose that for k =1,2,--- andi=1,2,--- | N, V,, satisfy

the conditions
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1+Q
— v, sup Fl(u) < wi
1+ Vi inflycr Fj(u) ™ i<k

where @ = YN w;. Tt is proved in [KaT1997, Lemma 4.1] that there are a
strictly increasing function ry : [—k, k] — R defined by

w = rg(u) = HLQ <u+ZVkZ—IFZ(u)>

i=1
and functions hy; : [ri(—k), 7t (k)] — R, satisfying the conditions dhy;/dw < 0,
hii(0) = 0 such that
N
w— Z hii(w) = u,
i=1

Wi Vvk’i w + Vk,i h]m(ﬂ)) = FZ(U), u € [—k, k]

We consider the following family of relaxation systems for w® and z° = (25, - -, 25):
[ ows & ow*® 1 &
iVii 35— = = hii(w®) = 27),
G+ et = 3 ) )
(CRS) ¢ = =
0z; 0z; 1
l—Vi—Z:—hi 5__5, .:1,'-',N, >0
e = L) - s, :

with the initial conditions

w(0,2) = wo(w), z°(0,2) =z(x), x¢€ RV, (4.14)

a<wy<b, hi(b) < zo < hyila), (4.15)

where a < 0 and b > 0 are constants such that
N N
—k < a+ Y hi(b) < b+ hyla) < k.
i=1 i=1

The following result is obtained in [KaT1997, Theorem 4.2].
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Proposition 4.4. Let k > 1, u® = w° — ZZJL 25 and let ug = wy — ZZJL 20i €
LYRN). Then w = lim. g u® exists in L(Q) and W is an entropy solution of

(CP) with f =0 satisfying —k < uy < k.

Now, let uy € L'(R") and choose sequences of functions {wo,k}k>1 and
{Zo,k}k>1 which satisfy condition (4.15). Moreover, we assume that ZLM =
Wok — EZJL Zoik converges as k — oo to up in L'(RY). Since the function
Uy is a bounded entropy solution of (CP) with f = 0 the comparison property of

entropy solutions leads to

(8 = ) ey < s —

fort € [0,T] and k, k" > 1. Therefore, {Ek} converges as k — 0o to some function

win LY(Q). In fact, we can prove:

Theorem 4.5. The limit function uw above is a unique renormalized dissipative

solution of (CP) with f = 0.

Proof. We shall show that inequalities (4.3) and (4.4) with uy = v, = 0. To
this end we fix ¢ > 1. Define ¢y by to = 0 if u(t) < ¢ for all ¢ > 0 and by
to = inf{t > 0; u(t) = ¢} otherwise. We take any test function ¢ € T, and let
¢ = r:(¢) and ¢; = hy;(C). Choose 3 > 0 such that § — 32 hy;(B) = . This
choice is possible if k is taken sufficiently large. Since the constant functions
w = # and z; = hy;(0) satisfy the contractive relaxation system (CRS), we have

(see (2.11) in [KaT1997])

N

0 < //(U’tO)XRN {So*(ﬁ -¢) { G- iwivk,icxi + é ;‘(hk,i(g) — m)}
3 s(5) ~ s = (0 Vi, + 2 () — )| | .

We notice that —Sg (hgi(8)—hii(C)) = Sy (8—C) = Sy (re(£)—ri(d)) =Sy (£—¢),
B =r(0), ¢ — N b = ¢ and w;Vi i + Vithy = Fy(¢). Thus, the inequality
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becomes
0< // SSF(E — @) (—¢y — divF(¢)) dadt.
(0 to) xRN

On the other hand, the comparison property for (CRS) yields that u(t) < ¢ for
t € [to,T]. A similar argument as in [P2003b, Theorem 2.1] shows that

// So(Ts — 6) (—dr — divF(¢)) dadt > 0.
(to, T)xRN
Since 257 (r) = So(r) + 1 — x{r=0}, we see that
J[ St 0) (-0 divE(o)) o
(to, T)xRN

_ _//tm  Soliie = 0) (~1 — div F(9)) da

+5 //(tO’T)XRN(—qSt — divF(¢)) dzdt — %//ﬂm(—qst — divF(¢)) dzdt

1
— —¢; — divF dzdt.
> 5/ /(to,mw( 61 — div F(6)) dadt

The above inequality comes from the facts that u; is a dissipative solution and
satisfies (CP) with f = 0. Moreover, we see that the last integral also vanishes

due to the divergence theorem. Consequently, we deduce that
// Sy (T — ¢) (—¢y — divF(¢)) dzdt > 0.
(to,T) xRN

Notice, however, that

i (10 +29) sy wamo,ﬂm))

ey HLI o ~ 17 soryean)

:/ Sg“(f)gdxdt—i—// g* ddt
£>0 £=0
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for f,g € L'((ty, T) x R"). Indeed, we can check as follows:

1
< (120 s ey = 1 s o)

([ 297 710

1
- X(// (SJ(f+Ag)(f+Ag)—SJ(f)f)th)
(to,T)XRN
= // Sy (f + X g) g dudt
(to,T)XRN
1
DY / (S (f +Ag) = S5 (f)) [ dudt. (4.16)
A to,T) xRN
Dividing the first term into two integrals by the sign of g, we have

//( s Si(f +Xg) gdadt
to, 1) X

= / Sgr(f+)\g)gdxdt—|—/ Sq(f+Xg) gdadt
9>0 g<0

— //g>051+(f)gdxdt+//g<055“(f)gdxdt (A1 0)
= //f>050+(f)gdxdt+//f0g+dxdt.

As to the last term in (4.16), we first see that

L o
A //(to,T)XRN (So(f +Xg) = S5 (f)) fdadt

i(// fdxdt—// fdxdt) <0
A F<0, f+Ag>0 £>0, f+Ag<0

On the other hand, we also calculus as

—// (S5 (f +Xg) = SE()) f dadt

—(// fd:z:dt—// fdxdt)
A <0, f+Xg>0 >0, f+Xg<0
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> // gdxdt—// g dxdt
>0, f+Xg<0 <0, f+Ag>0

— // gdxdt—// g dxdt (A1 0)
£>0,£<0 £<0, f>0

= 0.

Hence, these estimates leads to

. 1
e ([ i S T ——

= / Sar(f)gd:z:dt+// gt dxdt.
>0 =0

We thus have that for any A > 0,

1 = . + _ (7 +

0< = ((uk—¢>—)\¢>t—)\d1VF(¢)) — (@ — &) )dmdt.

A JJ (to,1) xRN

Passing to the limit as £ — oo first and then as A | 0 yields
0 < [ sia-o)(-o - divF(e)) dod
T—>0
+// (= ¢ — divF(¢)) " dedt
U—¢p=0

_ // SH@ — &) (= — divF(g)) dudt.
(to, T)xRN

Consequently, we conclude that

//Q STAAL— ) (—y — divF(6)) dudt > 0.

76

The inequality (4.4) can be proved similarly. Therefore, @ is a renormalized

dissipative solution of (CP) and hence by Theorem 4.3 it is a renormalized entropy

solution of (CP). By virtue of the uniqueness theorem in [BCW2000], % is a unique

solution.

O
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Chapter 5

Renormalized dissipative
solutions for second order
equations

In this chapter, we introduce a new notion of renormalized dissipative solu-
tions for the Cauchy problem of a quasilinear anisotropic degenerate parabolic
equation u; + div F(u) = div (A(u)Vu) + f with locally Lipschitz-continuous flux
F and L' data, and prove the equivalence of such solutions and renormalized
entropy solutions in the sense of Bendahmane and Karlsen. The structure of
renormalized dissipative solutions is flexible and suitable to deal with relaxation
systems than the renormalized entropy scheme. The proof of our main theorem
is based on the method of doubling variables established by Kruzkov. As applica-
tions, we apply our result to certain relaxation systems in general L'-setting and
construct a renormalized dissipative solution. Contents of this chapter is based
on the paper [T2005]. This research was supported by Waseda University Grant
for Special Research Projects §2004A—-108.

79
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5.1 Introduction

We consider the following Cauchy problem:
ug +divF(u) = div(A(w)Vu)+ f in Q:=(0,T) x RV,
(CP)
u(0,:) = wp in RN,
where T'> 0 and N > 1. Here f € L'(Q) and uy € L*(RY) are given functions,
the diffusion function A(u) is a nonnegative symmetric N x N matrix and the
flux F : R — RY is a locally Lipschitz-continuous function.

In the case of A(u) = O, the diffusion term degenerates, and therefore the
equation becomes a hyperbolic equation u;+divF(u) = f. It is known that (CP)
has many solutions in the sense of distributions called weak solutions. Finding
a suitable criterion which would ensure the uniqueness of a weak solution is one
of the most interesting problems, and therefore many researchers have studied
hyperbolic equations and degenerate parabolic equations including conservation
laws. In consequence, various important results have been clarified for the last
few decades.

In 1970, Kruzkov [Kr1970] proved that if uy € L'(R") N L®(RY), then the
equation has a unique weak solution v € C([0,T); L'(R")) N L*®(Q) satisfying
the entropy inequality, which is the so-called entropy solution. He also introduced
the method of doubling variables which is a practical tool and on the basis of the
proof of uniqueness. Around three decades later, Chen and Perthame [CP2003]
extended the notion of entropy solutions to general degenerate parabolic equa-
tions with anisotropic nonlinearity, and obtained uniqueness of an entropy solu-
tion by utilizing a kinetic formulation and regularization by convolution. At the
same time, Portilheiro [P2003a] defined a dissipative solution of scalar conserva-
tion laws with globally Lipschitz-continuous flux F, which was established first
by Evans, and showed the equivalence of such solutions and entropy solutions by
accretive operator theory. Furthermore, the notion of dissipative solutions was

extended by Perthame and Souganidis [PS2003] to the second order degenerate
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parabolic balance laws and the equivalence result was obtained. The definition
of dissipative solutions is more simple and flexible, and also suitable to study
asymptotic problems handling relaxation systems than entropy solutions. Direct
proofs of existence and uniqueness of dissipative solutions, however, have not
been obtained yet.

On the other hand, it is known that if ug € L'(RY) and f € L'(Q), then the
mild solution u of (CP) constructed by nonlinear semigroup theory is a unique en-
tropy solution, which is unbounded in general. In the case where F is only locally
Lipschitz-continuous, the flux function F(u) may fail to be locally integrable since
no growth condition is assumed on the flux F, and hence (CP) does not possess a
solution even in the sense of distributions. To overcome this, the notion of renor-
malized entropy solutions has been introduced by Bénilan et al. [BCW2000] for
scalar conservation laws and by Bendahmane and Karlsen [BK2004] for second
order degenerate parabolic equations. Furthermore, the existence and unique-
ness of a renormalized entropy solution of these equations have been established
and the semigroup solutions of (CP) in L' spaces are characterized. The argu-
ments in [PS2003] and [P2003a], however, do not work well in the case where F is
only locally Lipschitz-continuous and the solution v is unbounded. The notion of
renormalized solutions has been introduced by DiPerna and Lions [DPL1989] for
dealing with the existence of a solution of the Boltzmann equation and utilized
for degenerate elliptic and degenerate parabolic problems in the L!-setting in the
last decade.

A new concept of renormalized dissipative solutions for a hyperbolic equation
with L' data has been established in [KoT2005] and the equivalence of such solu-
tions and renormalized entropy solutions in the sense of [BCW2000] was proved.
Existence of renormalized dissipative solutions for a contractive relaxation sys-
tem describing discrete velocity models and chemical reaction models has been
also shown in general L'-settings in [KoT2005] and solutions of the system were

characterized. The purpose of this paper is to extend this notion to quasilin-
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ear anisotropic degenerate parabolic equations including hyperbolic conservation
laws. In Section 2, we recall some important definitions and extend the notion
of renormalized dissipative solutions which is a generalization of dissipative so-
lutions in [PS2003]. We next show the equivalence of renormalized dissipative
solutions and renormalized entropy solutions in the sense of [BK2004] in Section
3. As applications, we shall apply the notion of renormalized dissipative solu-
tions to contractive relaxation systems and construct a renormalized dissipative
solution for the Cauchy problem of a scalar conservation law and the generalized

Stefan problem in Section 4.

5.2 Equivalence

We begin with some notations and definitions. Let s € R and j € [—1,1]. We
set sT := max{s,0} and s~ := —min{s,0}. Note that s~ > 0 and s = st — 5.
Define a sign function S; by S;(s) =1if s > 0, S;(s) = —1if s < 0 or S;(0) = j,
and set S (s) := max {S;(s),0} and S; (s) := min {S;(s),0}.

For s € R, the diffusion function A(s) = (a;;(s)) is a nonnegative symmetric

N x N matrix of the form

a;j(s) = > oim(s) Ojm(s),  Oim € Lin(R) (5.1)

fore,j=1,--- ,Nand m=1,--- , M, where M < N can be thought to be the
maximal rank of the matrix. Let 7, : R — [—/, ¢] denote the truncation function
with height ¢ > 0, that is, Ty(s) := min { max{s, —¢},¢} for any s € R. For
1<m<M,1<i< N and s €R, we set

B (s) = / () dr Bo(s) = (Bim()s -+ s Bum(s)),
and for any ¢ € C(R)

Bim(s) = /Ost/}(r) Oim(r)dr,  Bin(s) = (Bln(s). -+ Brm(s)).
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Following [BK2004] we define an entropy-entropy flux triple and a renormal-
ized entropy solution of (CP).

Definition 5.1. For any convex C? entropy function n : R — R, the corre-

sponding entropy flures
a= (¢, ,qv): R—>RY and R=(r;):R— RV

are defined by q;(s) = 1'(s) Fj(s) and ri;(s) = n'(s) ai;(s) fori,j =1,--- ,N and
s € R. Then, we define (n,q, R) as an entropy-entropy flux triple.

Definition 5.2. We say u € L*(0,T; L}(RY)) is a renormalized entropy solu-
tion of (CP) if a measurable function u : Q — RN satisfies the following condi-

tions:
(E1) Foranym=1,---, M,
B,.(Ty(u)) € L*(Q)N and divp,,(Ty(u)) € L*(Q) for all £> 0.
(E2) For anym =1,---, M and ¢ € C(R),
div B3, (Te(w)) = $(Ty(u) div B, (Te(u))
a.e. in Q and in L*(Q) for all £> 0.

(E3) For any ¢ > 0 and any entropy-entropy flux triple (n,q, R) with |n'| < K
for some given K > 0, there exists for any ¢ > 0 a nonnegative bounded

Radon measure ) on Q with puf (Q) — 0 as £ — oo such that

n(Te(w)): + div q(Te(u)) — Z rij(Te(w))asm; — 0'(To(u)) f
< W) Y (divB,(T(w)’ +uf  in D'(Q). (5.2)

(BE4) u(t,") = uy in L'(RN) as t ] 0 essentially.
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Note that all terms in (5.2) are well-defined since Ty(u) € L*(Q), and also
note that (E3) implies there exists a nonnegative bounded Radon measure i, on
Q with 11(Q) — 0 as £ — oo such that pf = Kop with Ko := sup,cr_,q|7'(s)|-
Indeed, for each i, j, putting 77 := K, 'n, ¢; := K, '¢; and 7;; := K, 'r;;, the triple
(7,4, E) should be an entropy-entropy flux triple with ‘77" < 1.

Next, we introduce a new notion of renormalized dissipative solutions which

is a generalization of dissipative solutions in the sense of [PS2003].

Definition 5.3. We say u € L*°(0,T; L*(RY)) is a renormalized dissipative so-
lution of (CP) if a measurable function u : Q — RN satisfies the following

conditions:
(D1) For anym=1,---,M,

B, (Ty(u)) € L*(Q)YN and divg,,(Ty(u)) € L*(Q) for all ¢> 0.
(D2) For anym=1,--- , M and 1) € C(R),

div B}, (Ty(u)) = ¢ (Te(u)) div B, (Te(u))
a.e. in Q and in L*(Q) for all £ > 0.

(D3) For any £ > 0, £ € CZ(RY) and 6 € CZ(R)* with spt® C (—{, (), there
exists a nonnegative bounded Radon measure vy on Q with v,(Q) — 0 as

{ — oo such that

/RN/ — &k —&)" dkdx
/RN/ S5 T k-

N
x (f —divF(k+ &)+ Y Ak + 5)%) dledz

- [ o -9

+/RN/R9(/§) SH(—k—€)dkdy, i D'(0,T), (5.3)

(div B,,(Tu(w) ~ o (Tu(w)) -vg)2 iz

NE

3
Il
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where Aj;(-) = aij(-), om(-) = (O1m(-),- -, onm(-)) and CF(R)" denotes

the space of all nonnegative functions in C2(R) as usual.
(D4) u(t,") = uo in L' (RN) as t |0 essentially.
Then we obtain the following main result.

Theorem 5.4. Suppose that u € L>(0,T; L*(RYN)). Then, u is a renormalized

entropy solution of (CP) if and only if u is a renormalized dissipative solution of

(CP).

Note that if a renormalized entropy (respectively renormalized dissipative)
solution u belongs to L*°(Q), then it is also an entropy (respectively a dissipative)
solution in the sense of [BK2004, Definition 2.2] (respectively [PS2003, Definition
1.3]). As we mentioned in Section 1, uniqueness of an entropy solution in the sense
of [BK2004, Definition 2.2] was proved in [CP2003] utilizing a kinetic formulation,
and the equivalence result of such solutions and dissipative solutions was obtained
in [PS2003].

If A(u) is a diagonal matrix, for example the isotropic case u; + div F(u) =
Ab(u) + f, the assumptions (E2) and (D2) are automatically fulfilled. In this
case, the notion of renormalized dissipative solutions was introduced and the
equivalence result of renormalized entropy solutions and renormalized dissipative
solutions was obtained in [T2004]. If A(u) = O, then the equation becomes a hy-
perbolic equation u; +div F(u) = f. In this case, the equivalence of renormalized
entropy solutions and renormalized dissipative solutions was proved in Chapter
4. Due to appearance of the Dirac mass, however, the definition of renormalized
dissipative solutions for hyperbolic equations differs from Definition 5.3. Then we
shall reconsider afterward the contractive relaxation system studied in Chapter

4 as an application for the hyperbolic case.
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5.3 Proof of Theorem 5.4

Claim 1: Ifu e L*®(0,T; L'(R")) is a renormalized entropy solution of (CP),

then u is a renormalized dissipative solution.

Proof. We see from the definition of renormalized entropy solutions that for any
¢ > 0 and any entropy-entropy flux triple (7, q, R) with || < K for some given
K > 0, there exists a nonnegative bounded Radon measure p, on Q with 1,(Q) —

0 as £ — oo such that

0 < //Q n(Ty(u)) G dedt + //Qéqi(ﬂ(u)) Coy drdt
+ //Q i rii (Lo () Coiar; ddt + //Q 7' (To(uw)) f ¢ dadt

ij=1

IR i(divamm(u»)%dmw [[ Kocine 5

m=1

for any ¢ € C3(Q)", where Ky := sup,; 44 |17 (s)]-
On the other hand, for given £ € CZ(RY) and # € CZ(R)" with sptf C
(—¢,0), we observe that

n(Ty(u)) = /R (To(u) — k — €(y)) " 0(k) dk

is a smooth entropy. Moreover, we see that

7 (Ty(u)) = /R S (Ty(u) — k — () (k) i

and
Ko = /R S (0 — k — £(y)) O(k) dk.

Let ¢ and p be standard mollifiers on (0,7) and R”, respectively. Define p,
by

pe(x —y) ==V p((z —y)/e),
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and let v, be a nonnegative smooth function satisfying

1 if |z|<n
Up(x) = {

0 if |z| > 2n,

and |V,| < C/n for some C' > 0. We now recall the definition of an entropy-

entropy flux triple and properties of the Dirac mass. Putting

¢ = pe(z = y) ¢(t) Yult, x)

in (5.4), integrating with respect to y over R™ and using (p.),, = —(p:)s,; yield

0< /RN / / (Ty(w)) (p-(x — ) $(t) a1, 0)) , dadidy
/RN// ZQZ Ty(u)) (pe(a —y) $(t) Pn(t,x)), drdtdy
/RN / / Z rij (Te(w)) (pe(x = y) 6() Yn (t, ), dwdtdy

1]1

+ /RN//Q 1 (Te(w)) £ pe(e = y) ¢(t) Yn(t, x) dedtdy

- /R . / / 0" (Ty(u)) f: (dive B, (Te(w)))p: (& — y) G(t) Yu (t, ) drdtdy
/ / Kope(x —y) ¢(t) Yn(t, ) dpedy
:/ /// S (Te(u) —k - (y))g(k)pﬁ((Tf(“)_k—f(y))¢¢n>tdkdxdtdy
RN

/RN///S+ Ty(u) = k = &(y)) Te(uw)1 0(k) pe ¢ ¢n ddxdtdy

— [ s @ k= e 0w divy B+ 60) p. 6 didndray
RN QR

. /R ) / /Q /R Si (Ty(u) — k — £(y)) (k)

X (F(Té(u)) - F(k + 5(9))) V:L’¢n Pe d) dkdxdtdy
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/RN// / Z S (To(u) =k —&(y)) (k) Aij (Te(u))aia; pe b Pn dkdzdtdy

i,5=1

* /RN / /Q /R So (Te(uw) =k —&(y)) O(k) f pe ¢ vn dhddidy
* /RN//Q/RSJ(E —k = €(y) 0(k) pe ¢ P dkdpudy

7
=: ZIZ’”’. (55)
h=1
We begin with I;™". For p > 0, we set
w(p) = sup {|£(x) = &(y)|; z,y € RN, |z —y| < p}.

Note that w(p) > 0 for any p > 0 and w(p) — 0 as p | 0. Then we see that

I < ////E o 20 ST = =€)+ 0(6)

x Z A (To(1)) 2y, 0 ped P dbdzdtdy

by
+ / / / /Zi,.Ai]_ T SJ(Tz(u) —k—&(z) — w(e))

N

i,j=1

which implies

lim sup I:™"
€l0

N
< / / / SE(To(u) = k=€) Y Aij(To(w)) oy, 0 ¢t dldadt
20, Aij (Te(w))e;2; >0 ij=1
N
+ / / / Sq(To(u) =k =€) > Aj(Te(w))sz, 0 ¢ by didadt
Zi,j Aij (Tl(u))wimj <0 1,j=1

N //Q/RSJ(TE(“) — k=g XN: Aij (To(w))ia; 0 ¢ b ddzdt

1,j=1

" /// =k+¢ (Z A (Te(W)) i, >+ 0 ¢4, dkdzdt.

i,7=1
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As to other integrals, we see from the same arguments as above that
" =0

limsup I;" < —/// S (Ty(u) — k — &) Ty(u)y 0 ¢y, dkddt,
Q/R

€l0

lirralf(,)upfg’n < - //Q/R S (Ty(u) — k — &) divF(k + €) 0 ¢ 1y, dkdxdt
/ / / (divF(k +€)) " 0 2y dkdzdt,

=k+¢
limsup I} < ///SJr Ty(u
€l0

limsup I;™" < S (Ty(u) — k — &) f 0 poy, dkdadt
6 oJr 0

€l0
+/// - k+§f+0¢z/1ndkdxdt

lim sup 15" S+ 0=k — &) 0 paby, dldpy.
7

€l0

— &) (F(Ty(u)) — F(k + &) Vb, 0 ¢ dkdadt,

Hence, passing to the limit in (5.5) as £ | 0 first and then n — oo gives

0< —//Q/Rs;(n(u)—k—g)Tg(u)te(pdkdmdt

_/// S (Ty(u) — k — €) divE(k + £) 0 ¢ dhdadt
Q/R

+ /// e (divF(k+¢))" 0 ¢ dkdxdt
+ hmsup// / Sq (Te(u) — k = &) (F(Ty(u)) — F(k +£))-Vipn0¢ dkdxdt

n— 00

N
" //Q/R So (Te(w) =k =€) Y Aij(Te(w))a.a, 0 ¢ dkdzdt

1,7=1

+
N
* ///Tz(u)kJrg (Z Aij (Tg(u))ij) 0 ¢ dkdxdt

2,j=1

+//Q/RSO+(T4(u)—k—f)f0¢dkdxdt+///%)k+§f+9¢dkdmdt
+//Q/RSO+(€—I<:—£)9¢dde. (5.6)
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Note that the set {k € (—¢,0); LN ({Ty(u) = k + £}) = 0} is dense in
(=0, 0) because Y, k| LY ({Ty(u) = k + £}) is finite for any countable set
C C (=¢,0), where LN*1 denotes the (N + 1)-dimensional Lebesgue measure.
Hence the cardinality of the set {k € (—¢,0); LN ({To(u) = k + &}) > 0} is at
most countable.

We now fix any k € (—/, /) and choose a sequence {k:{} such that k' | k as
n — oo and LN ({Ty(u) = kF +&}) = 0 for any n > 1. Tt follows from (5.6)
with & = k7 that

0 < —//Q/Rs;(n(u)—k—g) Ty(u), 0 6 dkdadt
—//Q/Rs;(n(u)—k—g)divF(k+5)9¢dmxdt

+ lim sup//Q/RS;“(Tg(u) — k= &) (F(Tu(uv)) — F(k 4+ €))- V09 dkdzdt

n—00
N

i //Q/RSJ(TZ(“) k=6 Y Ay(To(w)) s, 0 6 dhdadt

1,j=1

+ //Q/RSO*(Te(u) —k — &) f0¢ dkdadt + //Q/Rs;(f —k — &) O dkdyy
B 26:['” (5.7)

To this end, using the properties of the Dirac mass, we have

I, = //Q/R (To(u) — k — €) " 0¢' dkdxdt.

As to I3, we first note that F(Ty(u)) — F(k+ &)+ F(k) € L'(Q)". From this, we
see that

1im + u) — k — u)) — . rdt = 0.
| //Q/RSO (Ty(u) — k f)(F(Tg( ) F(k-i—f)—i—F(k)) Vi, 0 ¢ dkdxdt = 0

n— 00

On the other hand, thanks to Chebyshev’s inequality, we have for £ > 0 that

LY {Ty(u) — € > k}) < %//Q |Ty(u) — €| dzdt < oo,
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and therefore we see that

im - w) — k — . xdt = 0.
| //Q/RSO(T@() k= &) F(k)-Vibn 0 6 didudt = 0

n—o0
For £ < 0, the same result can be also obtained. From these observations, we

conclude that I3 = 0. We now calculate I, as

ij=1
///S+ Te(u) =k =€) ZAZJ k+&)ia; 0 ¢ dkddt
,=1
- _// 0(Te(u) — €) i (diVﬁm(Tg(U)) _UM(TZ(U))'V5>2¢dxdt
m=1
///S+ To(u) =k —£) ZAZJk+§xx 0 ¢ dkdxdt.
ij=1

Combining these estimates, we obtain that

0 < /A/}{(Tg(u)—k—fﬁeqb’dkdxdt

B // / Sy (Te(u) =k — &) divF (k +€) 0.6 dhdrdt
///S+ (Te(u =) Z Aij(k + &)aiw,; 0 ¢ dkdxdt

_// 0(Ty(u (dwﬂ (Ty(u)) — o (Ty(u ))'V§)2¢dxdt

/ / / S (To(u) — k — €) £ 0.6 dhdudt
+//Q/RSO+(£—I~:—§)9¢dkduz-

This is exactly (D3). O

HMi

Claim 2: If u € L*(0,T;LY(RY)) is a renormalized dissipative solution of

(CP), then u is a renormalized entropy solution.
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Proof. Let u € L*°(0,T; L'(R")) be a renormalized dissipative solution of (CP).
We consider a function o € CZ(RY)" and for each £, A\ > 0 a nondecreasing

smooth function & ) defined by

0 for |s| <A
&-.a(s) := Q strictly increasing  for A <|s| < A+¢
1/e for |s| > A +e.

Let V(N) denote the volume of the unit ball in RY. Using the test function
& 2(z —y) in (5.3), multiplying by

ax(y) = W a(y)

and integrating with respect to y yield for any ¢ € C(0,T)7,

0= /RN / / / —k =&z —y)" ¢ (t) arly) dkdxdtdy
N /RN / /Q /R 0(k) Sy (To(w) = k — &z — ) f $(t) ax(y) dkdadtdy

_ /RN//Q/R 0(k) ST (To(w) — k — En(z — y))

x div,F(k + & (v —y)) 6(t) an(y) dkdzdtdy

/RN/// ) S (Tu(u) = b — Eox(z — 9)

X Z Aij(k + & = Y))aiz; O(t) an(y) dkdadtdy

ij=1

/RN/ O(Ty(u) — Ex(x — 1))

s (dwxﬁm L)) — 0 (Ti(w)-Veena — 1)) G(1) o) dadidy

* /RN//Q/RH(k) Sp (0 =k — & (2 —y)) &(t) ax(y) dkdvedy
- 26:(]?' (5.8)
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We begin with J} . Thanks to the Lebesgue differentiation theorem, we have

=] /6 T K00 o) iy
n / / / /6 (T = = 2)" 000 ¢ () dhddrdy
R //// o 0(k) & ax(y) dkdedtdy (¢ | 0)
_ //Q/RW/"WQO@) dy (To(w) — k) 0(k) ¢ dkddt
R //Q/R(Tg(u)—k)*ﬁ(k)gb’oz(x)dkdxdt (AL 0).

Let ©'(-) := 6(-) with ©(—oc0) = 0. Calculating other integrals similarly, we
obtain that

- ] /lx_ms;(n(w—k)ff)(k)m(y)dkdxdydy € 10)
- /Q | ST =) £0(1) 6 o) dhdade (3 L),

JA Ly / / / / SH(Tu(u) — k) F(k)-V,an(y) 0(k) & dkdzdtdy
lz—y[<A

///| D) ) %yon(s) ddedidy (= 10)
N —/// St (Ty(w) — k) B(k)-Vaan(z) (k) ¢ dkdadt
// O(Ti(u ))-Veor(x) pdedt (A1 0)

= //Q (Te(w)) F(Te(u))-Va(z) ¢ dzdt,
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Jor 4 get

_ /RN//Q/Rs;(Tg(u)—k—fa,A)

N
X Z (Aij(k + & 2) — Aij(Te(w)) ax(y)ysy; 0(k) ¢ dkdzdtdy
i,j=1

/// 0(To(u) — &) % (le,Bm (T (u )))2¢aA(y) dwdtdy

+2///m e

(div BunlTo()) (o (Te(w))- Ve ) 6 @ (y) ddtdy

], st =

N
X Z - z] TE( ))) a)\(y)yiyj g(k)d)dkdxdtdy
i,7=1

X

SMi

M

///m y‘<)\9 Ti(u Z (d“’ﬁm Top(u ) ¢ ax(y) dzdtdy

m=1

2l

x X_j (div B (Te(w) ) (e (Talw)-Vyer(y) ) d dadedy (=1 0)

N

m=1
5 //Q/RSS_(TZ(U)—k) Z (443 (8) — Auj (Ty(w))) a)ora, (k) b didadt

M 2
// (Ty(u Z (dlvﬂm (Ty(u ))) ¢ a(x) dxdt
=1

—2/ o(Ty(u % dlvﬁm (To(u ))) (am(Tg(u))-Va(m))gbdmdt (A1 0)

=1

and

J“—>////|x y|<AS+E k) 0(k) dax(y) dkdvedy (e 1 0)
%//Q/Rs; (0 —k)O(k) pa(x)dkdy,  (X10).
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Combining these estimates, (5.8) can be written as

0 < / /Q /R (Ty(w) — k)* 0(k) ¢ a(x) dkddt
+ / /Q /R S (Ty(u) — k) £ O(k) 6 a(x) didadt

+/ O(Ty(u)) F(Ty(u))-Va(r) ¢ dedt

95

S0 =0 3 (0= A ) e, 00t
M

- [ n 3

=1
M

—2// (Ty(u Z(dwg (Ty(u )))(am(Tg(u))-Va(x)>¢dxdt

o fsion A

(div ﬁm(n(u))) 6 o(z) drdt

(5.9)
Following the definition of an entropy-entropy flux triple, we see that
oTw) = [ () (i) = )"
R
7(Tw) = [ o 0 S5 (Tita) )
R
6i(Te(u))a; = 0'(To(w) Fi(Te(u))a,,
rif(Te(u))asz; = 1/ (Te(w))a; Aij(Te(w))e, +0'(Te(u)) Aij(Te(w))zia; -
Putting § = 1" and © =1’ in (5.9), we obtain that
0 < // (Ty(u d)adxdt+// (To(w)) f ¢ avdadt
// (Ty(u Va¢dxdt+// Z ri (To(1)) g, ¢ dadt
Q i,7=1
— // n"(Tg(u)) d1v,3 gzﬁadxdt + // 0) ¢ adyy, (5.10)
Q m=1
which is exactly (E3). Thus we complete the proof of the theorem. O
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5.4 Applications

We now present two examples of renormalized dissipative solutions for relax-
ation systems.
Example 1: The definition of renormalized dissipative solutions for (CP) dif-
fers from the definition for hyperbolic equations mentioned in Chapter 4. For
this reason, we reconsider the same relaxation system in Chapter 4.

Let a parabolic-hyperbolic equation (E): u; +div F(u) = div (A(u)Vu) + f be
given. We assume that the initial data ug(x) takes values in some interval and

F(0) = 0. Let w; > 0 and suppose that V, ; satisfy the conditions

N

and

N
(1 +Zw]> 'sup F/(u) < w; (1 +ZV{,J-1|i‘n<f F}(“))
j usn

\u|<n

forn=1,2,--- and i = 1,2,--- | N. Following [KaT1997, Lemma 4.1], we see

that there exist a strictly increasing function r, : [-n,n] — R defined by

w = ry(u) = (1+Zwi> <u+ZV L (u )

and strictly decreasing functions hy,; : [r,(—n),7,(n)] = R with h,;(0) = 0 such
that

N
w — Zhn,i(w) =u and w;V,, w4+ V,,;h,i(w) = F(u), ué€[—n,n].

Now we consider the following relaxation system for w® and z° = (25, -, 2%)
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with relaxation parameter € > 0:

( N N
1 .
wfﬁ + Zwi Vi ’UJZZ. = . Z(hn,i(wa) — zf) in Q,
i=1 i=1
€ € 1 € c . .
(RS1) % (27)p = Vi (2)y, = ?(hn,i(w ) — 25) in Q i=1,---,N,
w®(0,-) = wp in RV,
\ 7 (0,-) = zio in RV, i=1,---,N,
with
a<wy<b and hy;(b) < zp < hyi(a). (5.11)

Here a < 0 and b > 0 are constants satisfying

N N
-n < a+ th(b) < b+ th(a) < n.
i=1 i=1

We next set u® = w® — Y20 | 2% and ug = wy — Y., zip € L'(RN). Then,
from the result of Katsoulakis and Tzavaras [KaT1997], we see that @, = lim, o u°
exists in L'(Q) and %, is an entropy solution of (CP) with A = O and f = 0
satisfying —n < u, < n. Let ug € L'(R") and choose sequences of functions
{wmn}ml and {ZiO,n}n>1 satisfying (5.11) for i = 1,--- , N. Moreover, we assume
that uo,; = Wy, — Zf\; Zio,n converges to ug in L'(RY) as n — oo. Then we
obtain an L' contraction property. Indeed, since the function %, is a bounded

entropy solution of (CP) with A = O and f = 0, we can apply the comparison

property of entropy solutions. From these observations, we obtain that

Theorem 5.5. The limit function U = lim,_,o Uy, in L'(Q) is a unique renor-

malized dissipative solution of (CP) with A= O and f = 0.

Proof. We check that u satisfies (D3). Fix ¢ > 1 and assume first uy > —/.
Note that u(t) > —/¢ for all t > 0 whenever uy > —¢ due to the invariant region
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property. Define ¢, by

0 if w(t) € [-¢, /] forall t >0,
t() =
inf {¢t > 0; u(t)=¢}  otherwise,

and set Q; := (0,tp] x RN and Q, := (t5,T) x RY. We take any test functions
£ e C3RYN) and 6 € CF(R)" with sptf C (—£,¢), and let ¢ = r,(k + &) and
V; = hy;(C). Taking n large, we can choose v > 0 such that v — Zz]\il hyi(7y) = L.
Notice that constant functions w = v and z; = h,;(7) satisfy the contractive

relaxation system (RS1), and therefore we see from [KoT2005] that

< //Ql/Re(k){( ++§: }qs dkdxdt

=

+ / / | /R 9(k){s+ v =) E zNj(hn,i(c) — ) —Zz:jwivn,icxi}

=1

+ 2S5 (i) = ) E(hn,i(o — i) + Vn,i(@bi)m] }¢> dkdzdt.

The first term on the right hand side is 0 since the integrand without ¢’ is

independent on ¢. We also note that
S5 (hua(7) = hua(Q)) = SE(Y =€) = SFrall) = rulk +€)) = S (€ =k =€),

v =ral), ¢ — ZZ i = k+ & and w;V,,,(+ Vb = Fi(k +§£). Thus, the

inequality becomes

0<//1/ k) St —k — &) (= divF(k + €)) ¢ dkdzdt.

On the other hand, thanks to the comparison property for (RS1), we see that
u(t) € [=¢,0] for t € [ty, T]. A similar argument as in [P2003b, Theorem 2.1]
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leads to
0 < /// O(k) (i — k — E)F ¢ didadt
/// (i — k— ) (— divE(k + £)) ¢ dkdadt
/// k) S& (7, — k—g){(an—k—§)¢'—divF(k+§)¢}dkdxdt,
which implies that for any A > 0,
0 < %//2/R{<En—k—§+)\{(ﬂn—k—§)9¢’—divF(k+§)9q§}>+
— (@p—k - §)+} dkdadt.
Passing to the limit as 7 — oo first and then as A | 0 yields
< ///“bos;(a—k—g) {@=Fk—€) 06 —divF(k+€) 00} dhdudt
+///H_§:0 (@-r-¢)oe —divF(k+§)9q§)+dkdxdt
- //2/R(ﬂ—k—§)+0¢’dkdxdt
+//2/Rso+(a—k—g) (= divF(k +¢€)) 0 ¢ dkdadt.

The same result can be obtained if ug < —¢. Consequently, we conclude that

0 < /// 0) — k —&)F ¢ didrdt

N //Q/R"(’“) Sa (Ty(@) — k — €) (— divF(k + €)) ¢ dkdad.

This means @ is a renormalized dissipative solution of (CP). By Theorem 5.4 and
the uniqueness theorem in [BCW2000], we conclude that @ is a unique solution

of (CP). O
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Example 2: We next consider the following system for w® and 2° with relax-

ation parameter ¢ > 0:

( N

1
wi 4 divG(w) = Y Byj(w)g,e, = ——w's i Q,
1,j=1
& 1 € L€ 3
(RS2) S 5= —_w?® in Q,
wé(0,) = wo in RV,
\ 2°(0,) = 2o in RV,

with
0<z<a and 0<wy< gyla) a.e.in RV,

where g, : [0,n] — R* is a strictly increasing function and a is a nonnegative
constant such that —n < —a < g,(a) < n for n = 1,2,---. In addition, we

assume on the data as follows:

fori,j=1,---,N.

(H2) G : R — R" is a locally Lipschitz-continuous flux with G(0) = 0.
(H3) wp, 20 € (L'RN) N LC’O(RN))Jr with [y |z]? we dz < co.

(H4) Fori,j,m=1,--- N,
N
Z Tim(8) Tim(8) = bij(s) and ;.. (s) = Tim(s) for s € R,
m=1

and ~,,(w®) € L*(Q)"N with v,,(s) := (71m(8), -+, Yvm(s)) for s € R.

This system describes the evolution of a chemical or a biological species which

is called a tracer in a porous medium. This tracer is supposed to be stuck on
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the surface of the solid frame. Belhadj et al. [BGP2003] studied this system and
obtained the existence of entropy solutions with continuously differentiable flux
G. In case of locally Lipschitz-continuous G, as in the analogous argument we

obtain the following results:

Proposition 5.6. Suppose that (H1)-(H4). Then, the problem (RS2) has a unique
entropy solution (w®, z°) € C((0,T); L"(RN))? satisfying the following properties:

P1) 0 £ w(02) < ey 000 € 2 02) < e

(t,x) € Q.

) almost every

(P2) If (w®, 2°) and (W¢,Z°) are two solutions corresponding to the initial data

(wo, 20) and (Wy, Zy), respectively, then we have

ng(t) _wg(t)HLl(RN) + Hzﬁ(t) _Eg(t)HLI(RN)

S H’wg — EOHLl(RN) + HZO - goHLl(RN) for all t Z 0.

(P3) Let (w*,2%) and (w¢,Z°) be two solutions corresponding to the initial data

(wo, 20) and (Wy, Zg), respectively. If wy < Wq and zq < Zo, then we have

w(t) < we(t) and 2°(t) < Z°(t) a.e. in RV,

(P4) divy,,(w®) € L*(Q) form=1,---  N.

Proposition 5.7. Suppose that (H1)-(H4). Let n > 1, u® = w® — 2° and uy =
wy — 29 € L'(RY). Then, u, = lim.qu® exists in L'(Q) and u, € [-n,n] is a
unique entropy solution of the following generalized Stefan problem:

N
w4 divG(ut) = Y Bij(uh)e., =0 in Q,
(GSP) ij=1
u(0,") = ug in RN,

From these propositions, we finally obtain that
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Theorem 5.8. Suppose that (H1)-(H4). Then, the limit function @ = lim,,_, @,
in LY(Q) is a unique renormalized dissipative solution of the generalized Stefan

problem (GSP).

Proof. Recall the definition of renormalized dissipative solutions and show that
for any £ > 0, £ € C2(RY) and 0 € C3(R)" with sptf C (—/, (), there exists a
sequence {vp} C Ry(Q)" with v,(Q) — 0 as £ — oo such that

0 < /// —k— &) ¢ dkdwdt
st o

( divG((k +&)* +ZBZJ (k+6)Masa )d)dkdmdt

i,j=1

N
— // G(Té Z le’Ym Tg )_ Tm(Té(ﬂ)+)V§)2¢dZL‘dt
@ m=1
+ //Q/R 0(k) Sy (6 —k — &) ¢ dkdy, for any ¢ € CL(0,T)", (5.12)

where 7,,(*) := (T1m (), -+, Tvm(+))-
To this end, we fix £ > 1. In a similar argument as Example 1, we first assume
that ug > —/, and define ty by
0 if wu(t) € [—¢,¢] forall t >0,
t[) -
inf {¢t>0; u(t)=¢}  otherwise.
We now set Q; := (0,t5] x RY and @, := (t;,T) x R, and take any test
functions £ € CZ(RY) and 0 € C2(R)" with spt§ C (—¢,¢). We can consider
constant functions w = ¢ and z = 0 by taking n large. Since this pair satisfies

the contractive relaxation system (RS2) with appropriate test functions, we see
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that

0 < // /9(k) (0 =k — &)* ¢! dkdudt
) fmeo-s-o

( div G((k + &)* +ZBZJ (k+8))nsa )d)dkdmdt

i,j=1
/ 00— (—Tmll )’ 6 dkdzdt.
Q1

On the other hand, if ¢ € [ty, T'], then by the comparison property for (RS2) we
see that u(t) € [/, ¢]. From Proposition 5.7 and the equivalence result [PS2003,
Theorem 1.1], we obtain that

0 < /// O(k) (T — k — E)F & dikdadt
T s

( divG((k +&)* +ZBZJ (k+6)Masa )d)dkdmdt

i,j=1

- // e(ﬂn - 5) Z (diV’Ym(ﬂ;) — Tm(ﬂ:).V§)2¢ dkdxdt

_ // /R St (@, — k — &) h(Tn, k) dkdadt,

where

h(ﬂn,k) = (ﬂn—k—g)gd)l‘f‘( leG k‘f‘g +ZBZJ x%) ¢

i,j=1

From this, we obtain that for any A > 0,

0 < %//Q/R{(ﬂn—k—fjt)\h(ﬂn,k)f—(ﬂn—k—§)+}dkdxdt.
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Passing to the limit as n — oo first and then as A | 0 yields

0 < / / / e SHT — k — €) h(a, k) dkdadt + / / /u o ha, k)" dkdadt
— // /R(a— k—&)" 0 ¢ dkdrdt
] [ sia-k-g

x (—div G((k+&") + ) Bi((k+ 5)*)@@) 0 ¢ dkdudt

ij=1

_ //Q O(u— &) Z (div*ym(ﬂJr) _ Tm(ﬂ+)'vf)2¢dxdt.

m=1

The same result can be obtained if ug < —¢. Consequently, we prove that
0< /// 0(k) (To(a) — k — €)" ¢ dkdzdt
Q/R

+//Q/Re(k)s;(n(a)—k—£)

X (—div G((k+ &)+ ) By((k+ 5)+)zixj) ¢ dkdzxdt

- / /Q OT(@) — &) S (div y, (Ty(@)") — 7 (Ty(7)*) - VE)? 6

for any ¢ € C§(0,7)". This means u is a renormalized dissipative solution of
(GSP). Moreover, by the uniqueness theorem in [BCW2000], we conclude that @

is a unique solution. O

Remark 5.9. We now check that (5.12) is meaningful. In other words, we shall
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prove that for u € L'(Q) N L>®(Q) and any ¢ € C3(0,T)"

0</// ) (u—k — &)t ¢ dhdrdt
ffwsosa
N

X <—div G((k+ M)+ > By((k+ 5)*)%.) ¢ dkdzdt

ij=1
// O(u—¢ XN: (div () - )vg) ¢ dadt.

Let u € LY(Q) N L>*(Q). For any test function ¢ € C3(Q) we have the following

estimates:
/// 5’+u—k ) (u—k— f)) ( dkdxdt

/// 0(u—k—&) (u—k—&) udkdrdt
/// k) S (u— k — &) uy C dkdadt
/// k) Sy (u—k — &) u ¢ dhdwdt,

/// k) div S”‘"‘? &) (Gu") - G((k+£)+))}cdkdmt
/// 0(u—k =€) (G(u") = G((k+ ")) V(u— &) ( dhdwdt
/// 0(k) Sy (u—k — &) div(G(u") — G((k +€)")) ¢ dkdxdt
/// k) S (u =k — &) div(G(u*) = G((k +&)")) ¢ dhdxdt
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///9 S+“_k ¢) (Bi (+)—Bz‘j((k+€)+))} ¢ dkdxdt

TiTj

- _///e(k)cz 0(u—k —&) (Bij(u™) — Bij((k + ™)) (u—é”)xi} dkdzdt

Zj

/// 5+U—k €) (B (+)_Bij((k+§)+))xi} ¢ dkdadt

i

= / / / 0 (k) Z 0(u—k =€) (Bij(u™) = Bij((k +6)7)) (u = &)z, G, dduwdt

///9 CZéu—k &) (Bij(wh) = Bij((k +)T)), (u — &), dkdzdt

zyl

///9 ZS+“_k §) (Bij(u™) = Bij((k +€)7)),,, ¢ dkdxdt.

1,j=1

As to the second term of the last estimate, we see that

- //Q/Rg(k) Z (u—k —&) (Bij(u) = Byj((k +6)")), (u— &),¢ dhdadt

— ///9 S(u—k—£€)¢C i(bij(w)u;i—bij((k+£)+)(k+f)+mi)

i,j=1

X (u — &)q, dkdxdt

_ //Q/R O(k) 5(u—k —€) ¢ i by (), (u — €),, dkdadt

i,j=1

+//Q/R€(k)6(u—k—g)gzbij((k+§)+) (k+ €)%, (u— &)y, dkdadt

i!]:]‘



CHAPTER 5. SECOND ORDER EQUATIONS 107

_ —//Q/Re(m(
+//Q/R€(k)5(

+//Q/R€(k)
z—//e(u—oci

N
u—k =8¢ byuh)ub, (u— &)y, dkdrdt

ij=1

u—k—{)CZ 0k + &) bij(k+6)7) (k+¢) &,

1,j=1

X (u— &), dkdzdt

S(u—k =8¢ Syk+8)bi((k+8)7) &, (u— &), dkdadt

ij=1

bij(u™) u™,, (u — &)a; dadt

//eu— g25+ bij(u®) &, (ut — €),, dudt

_ // u—e
// “_t

e
- ffo-s

// u¢
// u¢

zgl

)¢ Z bij(ut) (ut — ut —€),, dudt

zyl

C Z Z sz T]m

i,y=1m=1
X (ufvi u+m] u', &y — u+x], & + &0, &a]) dxdt
CZ Z '7zm ’7jm +) x; 7im(u+)li ij(u+) SIj
i,y=1m=1
- ’YJm( +)év] sz( ) Eo; + Tim(u+) ij(u+) 39 g%) dxdt
C Z Z 7zm l‘l - Tim(u+) f:rz)
i,y=1m=1
X (7jm(u+)xj — Tjm(u™) fx]) dxdt
N

CZ (Z ’7zm i Tim(u+) §m1)> dxdt

N
2
CZ d1v Y(u™) — Tm(u+)-V§) dxdt.
m=1
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Combining these estimates and putting ¢ € C}(0,T)*" into , we obtain that
/// [S+u k—&) (u—k—9),
+dw{s (k=€) (G*) - G((h+6)") }
- Z{s+ u—k— &) (By(u") — Bij((k+ &) ))}xixj] dkdzdt

///0 k) Sy (u—k — &) u ¢ dkdzdt

/// k) Sg (u—k — ) div(G(u") = G((k +€)")) ¢ dkdwdt
_/// is (w—k—&) (By(u") = By((k +£)")),,, ¢ dkdudt

N

// u— g d1v'ym ) - (u+)-vg)2¢dxdt

=1

_//Q/Re s;u_k_g

x (-divG((k+g)+)+ ST Bi((k+ ) )a )qﬁdkdxdt

/ / u— g dlwm ) - (u+)-vg)2¢dxdt.

On the other hand, we see that

///9 [S+uk§(uk§))

+dw{s+<u F-9) (Glh) - G((h+6)) |
_Z{s+u k=€) (Bij(u") — Bij((k +&)" ))}M.]dkdxdt

/// ) SH(u—k—&) (u—k— &) ¢ dkdadt
/// (u—k— &)t ¢ didzdt.
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Hence, we conclude that

0</// ) (u—k — &)t ¢ dhdrdt
Sl fwsiess

N

X <—div G((k+ M)+ > By((k+ 5)*)%.) ¢ dkdzdt

ij=1

- //Q O(u— &) i (div Y (uT) — Tm(u+)-V§>2¢ dudt.

m=1
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