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Introduction

In 1990, V. A. Vassiliev [39] defined a series of Z-valued knot invariants to

study on the cohomology of the space of all knots. Afterwards, J. S. Birman

and X.-S. Lin [4] proposed a combinatorial way to calculate them.

Is Vassiliev invariant complete invariant? We have not got the answer to

it, but when we fix a natural number n, order of Vassiliev invariant, Lin,

Y. Ohyama, T. Stanford proved Proposition A [19, 27, 35].

Proposition A. Let n be a natural number and K an oriented knot. Then

there are infinitely many knots Jm (m = 1, 2, · · · ) such that v(Jm) = v(K) for

any Vassiliev invariant v of order less than or equal to n.

M. N. Goussarov [7] and K. Habiro [9] gave one answer to the question:

when two knots have the same values for Vassiliev invariants of order less

than or equal to n, what kind of topological properties do they have. They

introduced a local move which is defined as Cn-move and proved Proposition

B independently.

Proposition B. Two oriented knots have the same Vassiliev invariant of order

less than or equal to n if and only if they are transformed into each other by

Cn+1-moves.
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If two knots K and K ′ can be transformed into each other by Cn-moves, we

denote the minimal number of Cn-moves needed to transform K into K ′ by

dCn(K, K ′) and call it the Cn-distance between K and K ′.

There is much still unknown part what property Vassiliev invariants have,

and many approaches have been done. From Proposition B we set problems

below.

Problem 1. For given natural number n, do Vassiliev invariant of order less

than or equal to n have any information about Ck-distance between two knots?

Problem 2. For given natural numbers m and n (m ≥ n), if dCn(K, K ′) = 1

what is the value of vm(K)− vm(K ′), where vm(K) is a Vassiliev invariant of

order m of the knot K?

Problem 2 relates to the distance of knots on the Cn-moves.

On Problem 1, in the case of k = 1, Ohyama, K. Taniyama and S. Yamada

[30], and Ohyama [28] showed that Vassiliev invariants have no information

on C1-distance. On Problem 2, for the case m = n, M. Okada [32] (n = 2),

T. Tsukamoto [38] (n = 3), and B. Matsuzaka [20] (n = 4) determined concrete

value and for any n Ohyama and Tsukamoto [31] showed the relation between

Cn-move and Vassiliev invariant of order n.

In Chapter 1, we give the results related to Problem 1 for k = 2, 3 by

restricting the property of Jm in Proposition A.

In Chapter 2, on Problem 2 we consider m-th coefficient of Conway polyno-

mial am for most elementary Vassiliev invariant of order m and study the rela-

tion between Cn-move and am. In this paper, we treat the case of n = 2, 3, 4.

We are getting on with general case.
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In Chapter 3, we apply the result giving in Chapter 2 to the argument of

Dehn surgery.

It is known that any closed orientable 3-manifold is a surgery manifold of

some framed link in S3, and if two framed links determine the same surgery

manifold, then they are related by a finite sequence of Kirby moves [14]. We

do not have similar relation when we restrict it to knot. But if we specify the

framing number, there are some results. Let K1 and K2 be framed knots. In

the case the framings are 0, it is known that ∇K1(z) = ∇K1(z) if χ(S3;K1) =

χ(S3;K2), where ∇K(z) is a Conway polynomial of K. So we give Problem 3.

Problem 3. When χ(S3;K1) = χ(S3;K2), how do the Conway polynomial

∇K1(z) and ∇K2(z) relate to each other?

On Problem 3, when the framings are ±1, we have |a2(K1)| = |a2(K2)| from

Casson surgery formula [34]. Moreover, W. B. R. Lickorish showed that their

Conway polynomials can differ [18]. In Chapter 3, we will show that there

is no restriction on the coefficient of higher order of Conway polynomial by

applying Theorem 2.1.3.
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Chapter 1

Delta and clasp-pass distances
and Vassiliev invariants of knots

1.1 Introduction and results

In 1990, V. A. Vassiliev defined a sequence of knot invariants which is now

called Vassiliev invariants [39]. After that, for any knot K and any integer n,

some examples of knots have been constructed whose Vassiliev invariants of

order less than or equal to n coincide with those of K [7, 19, 27, 35]. Recently

Y. Ohyama, K. Taniyama and S. Yamada [30], and Ohyama [28] gave such

examples of knots whose unknotting numbers are equal to one.

Theorem 1.1.1 ([30, 28]). Let n be a natural number and K an oriented

knot in S
3. Then there are infinitely many unknotting number one knots Jm

(m = 1, 2, · · · ) such that v(Jm) = v(K) for any Vassiliev invariant v of order

less than or equal to n.

Therefore, for fixed n, all the Vassiliev invariants of order less than or equal

to n do not detect the knots whose unknotting number is greater than one.
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In this chapter, we consider similar problem for Ck-distance, and give the

result on delta and clasp-pass distances. Namely we get the result for C2 and

C3-distances.

A delta move is a local move as illustrated in Fig. 1.1.1. Delta move is

defined in [21, 24] and it is shown that any oriented knots K and K ′ are

transformed into each other by delta moves. We denote the minimal number

of delta moves that is needed to transform K into K ′ by d�(K, K ′) and call

it the delta distance of K and K ′. Let T be a trivial knot. Then we denote

d�(K, T ) by u�(K) and call it the delta unknotting number of K. We denote

the second coefficient of the Conway polynomial of K by a2(K). It is well-

known that a2(K) is a Vassiliev invariant of order 2, and that any Vassiliev

invariant of order 2 is determined by it. M. Okada showed Theorem 1.1.2.

delta move

Fig. 1.1.1

Theorem 1.1.2 ([32]). Let K and K ′ be oriented knots. If K ′ is obtained

from K by a delta move, then a2(K) = a2(K
′) ± 1.

By Theorem 1.1.2, we can estimate the delta unknotting number of a knot

K.
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Corollary 1.1.3. Let K be a nontrivial knot and a2(K) = p. Then if p �= 0,

u∆(K) ≥ |p| and if p = 0, u∆(K) ≥ 2.

See [25] for an application of Corollary 1.1.3.

When we think about Problem 1 only from the view of delta distance, we

have Theorem 1.1.4.

Theorem 1.1.4. Let n be a natural number and K and M oriented knots in

S
3.

(1) Suppose that a2(K) �= a2(M). Then there are infinitely many knots Jm

(m = 1, 2, · · · ) with d�(Jm, M) = |a2(K) − a2(M)| such that v(Jm) =

v(K).

(2) Suppose that a2(K) = a2(M). Then there are infinitely many knots Jm

(m = 1, 2, · · · ) with d�(Jm, M) = 2 such that v(Jm) = v(K).

Where v is any Vassiliev invariant of order less than or equal to n.

Corollary 1.1.5. Let n be a natural number and K an oriented knot in S3.

(1) Suppose that a2(K) �= 0. Then there are infinitely many knots Jm

(m = 1, 2, · · · ) with u�(J) = |a2(K)| such that vn(Jm) = vn(K).

(2) Suppose that a2(K) = 0. Then there are infinitely many knots Jm

(m = 1, 2, · · · ) with u�(J) = 2 such that vn(Jm) = vn(K).

Where v is any Vassiliev invariant of order less than or equal to n.

Remark. Note that if n ≥ 2 and v(Jm) = v(K) for any Vassiliev invariants of

order less than or equal to n, then a2(Jm) = a2(K). Therefore, by Corollary

1.1.3 d�(Jm, M) ≥ |a2(K) − a2(M)|. Theorem 1.1.4 says that a2 is the only
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Vassiliev invariant of order less than or equal to n that detects delta distance

of knots.

Proof of Theorem 1.1.4 can be deduced from that of Theorem 1.1.9 in Section

3 of Chapter 1. If a2(K) �= a2(M) (a2(K) = a2(M), resp.), we set a2(K) −
a2(M) = p in Theorem 1.1.9, and start the proof with a composite knot

M#Kp, where Kp is the knot illustrated in Fig. 1.3.1 (Fig. 1.3.2, resp.), and

we give similar procedure.

M. N. Goussarov [8] and K. Habiro [9, 10] showed independently that two

oriented knots have the same Vassiliev invariant of order less than or equal to

n if and only if they are transformed into each other by Cn+1-moves, where

Cn-move is a local move illustrated in Fig. 1.1.2.

Now we define Cn
′-move as illustrated in Fig. 1.1.3 for n ≥ 4, and when

n ≤ 3, we regard Cn
′-move as Cn-move. It is easy to see that Cn

′-move is

equivalent to Cn-move. Therefore Goussarov and Habiro’s theorem can be

rephrased as :

Theorem 1.1.6. Two oriented knots have the same Vassiliev invariant of

order less than or equal to n if and only if they are transformed into each

other by C ′
n+1-moves.

A C2-move is equivalent to a delta move and a C3-move is equivalent to a

local move in Fig. 1.1.4. A C3-move as in Fig. 1.1.4 is also called a clasp-pass

move.

By the result of Goussarov and Habiro, two knots K and K ′ with the same

order two Vassiliev invariant can be transformed into each other by C3-moves.

In [38], T. Tsukamoto described the difference of the order three Vassiliev
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n n-1 2 1 0 n n-1 2 1 0

Fig. 1.1.2

n 0123n-1 n 0123n-14 4

Fig. 1.1.3

invariant between K and K ′ by the chord diagram. Let V
(3)
K (t) be the third

derivative of the Jones polynomial VK(t) [12] of K then V
(3)
K (1) is a Vassiliev

invariant of order three.
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Fig. 1.1.4

Theorem 1.1.7 ([38]). If a knot K is transformed into K ′ by a clasp-pass

move, then

V
(3)
K (1) − V

(3)
K ′ (1) = 0, or ± 36.

If two knots K and K ′ have the same order two Vassiliev invariant, by

dcp(K, K ′), we denote the minimal number of clasp-pass moves needed to

transform K into K ′. By Theorem 1.1.7, we have Corollary 1.1.8.

Corollary 1.1.8. If a knot K is transformed into K ′ by clasp-pass moves,

then

dcp(K, K ′) ≥ 1

36

∣∣∣V (3)
K (1) − V

(3)
K ′ (1)

∣∣∣ .

In this chapter, by modifying the way to prove Theorem 1.1.1 in [28], we

will construct examples of knots that satisfy more conditions than those of

Theorem 1.1.1 and Corollary 1.1.5. Namely we will prove Theorem 1.1.9.
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Theorem 1.1.9. Let n be a natural number and K a knot with a2(K) = p.

And let Tp be the twist knot with a2(Tp) = p and suppose V
(3)
K (1) − V

(3)
Tp

(1) =

36q. Then there exist infinitely many unknotting number one knots Jm (m =

1, 2, · · · ) such that v(Jm) = v(K) for any Vassiliev invariant v of order less

than or equal to n and each Jm satisfies the followings:

(1) If p �= 0, u∆(Jm) = |p| and if p = 0, u∆(Jm) = 2.

(2) If |q| ≥ 2, dcp(Jm, Tp) = |q|, if |q| = 1, dcp(Jm, Tp) ≤ 3 and if q = 0,

dcp(Jm, Tp) ≤ 2.

1.2 Vassiliev invariants and one-branch tree

diagrams

In the next section, we prove Theorem 1.1.9 by the argument about the

relation between Jacobi diagram and Cn-move.

Whenever we have a knot invariant v which takes values in some abelian

group, we can extend it to an invariant of singular knots by the Vassiliev skein

relation:

v(KD) = v(K+) − v(K−).

Here a singular knot is an immersion of a circle into R3 whose only singular-

ities are transversal double points and KD, K+ and K− denote the diagrams

of singular knots which are identical except near one point as is shown in

Fig. 1.2.1.
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KD K+ K-

Fig. 1.2.1

An invariant v is called a Vassiliev invariant of order n, if n is the smallest

integer such that v vanishes on all singular knots with more than n double

points and we denote it by vn [39].

To compute Vassiliev invariants, a notion of chord diagram is introduced in

[4] and it is generalized to Jacobi diagram in [2]. In this paper we consider

a special kind of Jacobi diagrams called a one-branch tree diagram which is

defined by K. Y. Ng and T. Stanford in [26]. A one-branch tree diagram T of

order n is a trivalent graph with 2n vertices. It is a union of a circle and a

graph G which is isomorphic to a standard n-tree in Fig. 1.2.2. Only the circle

is oriented and each vertex has a cyclic ordering of the edges incident to it.

Jacobi diagrams satisfy the STU-relation in Fig. 1.2.3 and, as a consequence

of the STU-relation, the IHX-relation in Fig. 1.2.4 and the antisymmetry re-

lation in Fig. 1.2.5. Since a one-branch tree diagram T is a kind of Jacobi

diagrams, it satisfies the IHX-relation and the antisymmetry relation.

Label the branches of the standard n-tree as in Fig. 1.2.2. Under the iso-

morphism between the standard n-tree and the graph G of T , the branches of

G are also labelled. And number the vertices on the circle of T by 0, 1, 2, · · · ,

11



n

n - 1 2 1

0

Fig. 1.2.2

= -

Fig. 1.2.3

= -

Fig. 1.2.4
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= -

Fig. 1.2.5

n in the counterclockwise direction such that the end of branch 0 of G is num-

bered by 0. Then the correspondence between the label of branches of G and

the number of their end points on the circle determines a permutation σ ∈ Sn.

Conversely, if a permutation σ ∈ Sn is given, we can construct a unique one-

branch tree diagram T , denoted by Tσ. For one-branch tree diagrams and

Vassiliev invariants, we have Lemma 1.2.1.

Lemma 1.2.1 ([26, 28]). If K and K ′ are two knots with w(K) = w(K ′) for

any Vassiliev invariants w of order less than n, then there are integers aσ and

one-branch tree diagrams Tσ (σ ∈ Sn) of order n such that v(K) − v(K ′) =∑
σ∈Sn

aσv(Tσ) for any Vassiliev invariant v of order n.

The value of a Vassiliev invariant of order n for a singular knot with n

double points only depends on the chord diagram corresponding to it [3]. A

Vassiliev invariant of order n for a chord diagram with n chords is that for a

singular knot representing the chord diagram. By STU-relation, a one-branch

13



tree diagram is the signed sum of chord diagrams. Then v(Tσ) in Lemma 1.2.1

means the signed sum of the values for chord diagrams.

Remark. Since one-branch tree diagrams satisfy the antisymmetry relation

and the IHX-relation, we have Fig. 1.2.6. By Fig. 1.2.6, it is enough to consider

the one-branch tree diagrams Tσ whose permutation σ ∈ Sn satisfies that

σ(1) < σ(2) and σ(1) < σ(3) in Lemma 1.2.1.

= -
2 1

0

3 2

1

30

21

0

3 2 1

0

3

2

1 03

= -

Fig. 1.2.6

A one-branch tree diagram is closely related to a Cn-move in Fig. 1.1.2.

Y. Ohyama and T. Tsukamoto showed the following.

Theorem 1.2.2 ([31]). Let vn be a Vassiliev invariant of order n. If a knot

K ′ is obtained from a knot K by a Cn-move, then

vn(K) − vn(K ′) = ±vn(Tσ),

where Tσ is a one-branch tree diagram of order n.

14



A one-branch tree diagram in Theorem 1.2.2 is determined by the position of

bands in the Cn-move on a knot K and a sign in Theorem 1.2.2 depends only on

the signs of crossings in the Cn-move. And we note that for any permutation σ

and any sign ε ∈ {−1, 1}, we can choose a Cn-move that changes the Vassiliev

invariant by εvn(Tσ).

1.3 Proof of Theorem 1.1.9

In this section, we will prove Theorem 1.1.9 by using Lemma 1.2.1 and

Theorem 1.2.2. For p �= 0, let Kp be a diagram of the twist knot Tp with

a2(Tp) = p as is shown in Fig. 1.3.1. For p = 0, let Kp be a trivial knot in

Fig. 1.3.2.

In the case |q| ≥ 2, we perform the C ′
3-move on the band A by |q| times

as in Fig. 1.3.3 and we have the knot Kp,q. Since C ′
n-moves cannot change

the Vassiliev invariants of order less than n, a2(Kp,q) = p. By Theorem 1.1.7,

Lemma 1.2.1 and Theorem 1.2.2, V
(3)
Kp,q

(1) − V
(3)
Kp

(1) = 36q. If we perform C ′
2-

moves on the center band in Kp,q by p times, we have a trivial knot. Then we

have u∆(Kp,q) = |p| if p �= 0 and u∆(Kp,q) = 2 if p = 0. If we perform C ′
3-moves

on the band A by q times, we have Tp. Then it follows that dcp(Kp,q, Tp) = |q|.
Since Kp,q and K have the same Vassiliev invariants of order less than 4,

there are integers aσ such that

v4(K) − v4(Kp,q) =
∑
σ∈S4

aσv4(Tσ),

for any Vassiliev invariants v4 of order 4. Here, we may suppose that aσ = 0

unless σ(1) < σ(2) and σ(1) < σ(3) by Remark in Section 2 of Chapter 1.

15



p

A

p > 0

| p |

A

p < 0

Fig. 1.3.1

Then we consider two cases σ(1) < σ(2) < σ(3) and σ(1) < σ(3) < σ(2).

In the case σ of Tσ satisfies σ(1) < σ(2) < σ(3), if aσ > 0 we perform C ′
4-

moves that change the Vassiliev invariant by v4(Tσ) on the band B by aσ

times and if aσ < 0 we perform C ′
4-moves that change the Vassiliev invariant

by −v4(Tσ) on the band B by |aσ| times. In the case σ of Tσ satisfies σ(1) <

σ(3) < σ(2), we perform C ′
4-moves on the band C in the same way as the

case σ(1) < σ(2) < σ(3). Let K4
p,q be the knot obtained from Kp,q by C ′

4-

moves as above. We continue this process, that is, if we have the knot Ki
p,q

such that vk(K
i
p,q) = vk(K) (k = 1, 2, · · · , i), we construct the Ki+1

p,q by C ′
i+1-

moves in the same way for the construction for K4
p,q. Then we have the knot

16



A

Fig. 1.3.2

Kn
p,q. By Lemma 1.2.1 and Theorem 1.2.2, it follows that vk(K

n
p,q) = vk(K)

(k = 1, 2, · · · , n). And as the case for Kp,q, we have u∆(Kn
p,q) = |p| if p �= 0 and

u∆(Kn
p,q) = 2 if p = 0. Moreover the unknotting number of Kn

p,q is equal to one

and dcp(K
n
p,q, Tp) = |q|. Here, we choose a C ′

n+1-move which corresponds to Tσ

of order n + 1 such that vn+1(Tσ) is not zero. By performing the C ′
n+1-moves

on Kn
p,q repeatedly, we have an infinite sequence of knots Kn

p,q = J1, J2, J3, · · · ,
no two of whose Vassiliev invariants of order n + 1 coincide, and we have the

case |q| ≥ 2.

In the case |q| = 1, let Kp,q be the knot in Fig. 1.3.4 and in the case q = 0

let Kp,q be the knot in Fig. 1.3.5. By a similar way of the case |q| ≥ 2, we can

obtain the case q = 0,±1. �

17



( a )     q > 1 ( b )     q <  - 1

B

C

q 

B

C

| q |

Fig. 1.3.3

B

C

B

C

Fig. 1.3.4
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B
C

Fig. 1.3.5

Remark. In the case |q| = 1 in Theorem 1.1.9, there exists the case with

dcp(Jm, Tp) = 1 for a knot K. In the case q = 0, it is not clear for the author

whether there exists the case with dcp(Jm, Tp) < 2 or not.
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Chapter 2

C2, C3 and C4-moves and
the coefficient of the Conway
polynomial for knots

2.1 Introduction and results

If two knots K and K ′ can be transformed into each other by Cn-moves, we

denote the minimal number of Cn-moves needed to transform K into K ′ by

dCn(K, K ′) and call it the Cn-distance between K and K ′.

Based on M. N. Goussarov and K. Habiro’s work that we mention in Chapter

1, some researches about the Vassiliev invariant of order n and Cn-move has

been done [20, 31, 38]. In such a situation, it is natural that we have a problem

as below.

Problem 2.1.1. For given natural numbers m and n, if dCn(K, K ′) = 1 what

is the value of vm(K)− vm(K ′), where vm(K) is a Vassiliev invariant of order

m of the knot K.

This is a problem related for the distance of knots on the Cn-moves.
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In this chapter, we investigate the variance of the value of am, the m-th

coefficient of the Conway polynomial of knots as a concrete Vassiliev invariant

of order m, by a Cn-move.

Let K and K ′ be knots. When they are transformed into each other by Cn-

moves, the following equation is easily deduced from the result by Goussarov

and Habiro:

vm(K) − vm(K ′) = 0 (0 ≤ m < n).

Then we only consider the case m ≥ n.

Problem 2.1.2. For given natural numbers m and n with m ≥ n, if

dCn(K, K ′) = 1 what is the value of am(K) − am(K ′)?

Remark. It is known that the Conway polynomial ∇K(z) of a knot K can be

expressed as ∇K(z) = 1 +
∑
i∈N

a2i(K)z2i. Therefore we have only to consider

the case that m is even.

On Problem 2.1.2, am(K)−am(K ′) ≡ 0 (2) for m = n > 2 [22, 29]. Moreover

it is shown that a2(K)−a2(K
′) = ±1 for m = n = 2 [32] and a4(K)−a4(K

′) =

0 or ±2 for m = n = 4 in [20]. In the case n = 1, for given any integer sequence

(n1, n2, · · · , nl), there are knots K and K ′ satisfying that dC1(K, K ′) = 1,

a2k(K) − a2k(K
′) = nk (1 ≤ k ≤ l) and a2p(K) − a2p(K

′) = 0 (l < p). This

is induced immediately by the fact that “there exist unknotting number one

knots whose Conway polynomial coincides with any given polynomial with

constant term being 1 in Z[z2] ” [15, 33].

In the case m ≥ 2n, we have Theorem 2.1.3 from Proposition 2.2.1 in Section

2 of Chapter 1.
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Theorem 2.1.3. For any natural number n and integer sequence

(pn, pn+1, · · · , pl), there are knots K and K ′ satisfying that

dCn(K, K ′) = 1,

a2k(K) − a2k(K
′) = pk (n ≤ k ≤ l) and

a2q(K) − a2q(K
′) = 0 (l < q).

By the above result in [32] and the case n = 2 in Theorem 2.1.3, we have

the answer for C2-moves on Problem 2.1.2.

Theorem 2.1.3 concerns m ≥ 6 for C3-moves and m ≥ 8 for C4-moves. For

the rest case, we have Theorems 2.1.4 and 2.1.5 for n < m < 2n on n = 3 and

n = 4 from Propositions 2.2.2, 2.2.3 and 2.2.4.

Theorem 2.1.4. For any natural number k, there are knots K and K ′ satis-

fying that

dC3(K, K ′) = 1 and

a4(K) − a4(K
′) = k.

Theorem 2.1.5. For any natural number k, there are knots K and K ′ satis-

fying that

dC4(K, K ′) = 1 and

a6(K) − a6(K
′) ≥ k.
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2.2 Proofs of Theorems

Let K(α1, α2, · · · , αk) (αi ∈ Z) be a knot depicted in Fig. 2.2.1. Let Kb3(α),

Kb4(α) and Kb5(α) (α ∈ {0} ∪ N) be knots depicted in Figs. 2.2.2, 2.2.3 and

2.2.4.

Fig. 2.2.1
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Fig. 2.2.2

For K(α1, α2, · · · , αk), we can know the Conway polynomial of it immedi-

ately by Proposition 3.2.1.

Proposition 2.1.1. ∇K(α1,α2,··· ,αk)(z) = 1 + (−1)k−1z2(k−1) +
k∑

i=1

(−1)i−1αiz
2i.

We also get the coefficient of minimum degrees except constant of Kb3(α),

Kb4(α) and Kb5(α).

Proposition 2.1.2. ∇Kb3(α)(z) = 1 + (−α2 − α)z4 + · · · · · · .
Proposition 2.1.3. ∇Kb4(α)(z) = 1 + (2α + 1)z4 + · · · · · · .
Proposition 2.1.4. ∇Kb5(α)(z) = 1 + (−α2 − 4α − 1)z6 + · · · · · · .

We prepare some definitions and Lemmas to show Proposition 2.1.1. In this

paper, all coefficients of homology groups are assumed to be the integers Z.

It is known that any oriented knot or link L bounds a Seifert surface S, that

is, a compact connected oriented 2-manifold S embedded in S
3 with oriented

24



Fig. 2.2.3

boundary ∂S = L = S ∩ L. A family �v = (J1, · · · , Jn) of oriented simple

closed curves Ji’s in S is called a basis of S (or H1(S)) if the homology classes

[J1], . . . , [Jn] generates H1(S) and n = rank(H1(S)). For a simple closed curve

J in S, we let J+ denote a simple closed curve in S3 which is obtained from J

by pushing forward to the positive side of S.

Let L be an oriented link, and S a Seifert surface for L. Let �v = (v1, · · · , vn)

be a basis of H1(S). We denote the matrix (lk(vi, v
+
j )) by VS,�v, or simply

by VS and we call it the associated Seifert matrix of S. The polynomial

det
(
t

1
2 VS − t−

1
2 V T

S

)
is called the Alexander polynomial of L associated with

S. It is known that the associated Alexander polynomial is independent of the
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Fig. 2.2.4

choice of S and �v, and the polynomial is called the Alexander polynomial of L

and it is denoted by ∆L(t). (See [34, Lecture 7], [17, Appendix] for details.)

The Conway polynomial ∇L(z) and the Alexander polynomial ∆L(t) are

related to each other via z = t−
1
2 − t

1
2 .

For an n-tuple (α1, · · · , αn) of integers, we set A(α1,··· ,αn) the following (2n×
2n)-matrix:
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A(α1,··· ,αn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1

0 α1 1

1 0 −1

0 α2 1
. . .

. . .
. . .

1 0 −1

0 αn−1 1

1 0 −1

0 αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is noticed that A(α1,··· ,αn) is realized as a Seifert matrix of the knot

K(α1, · · · , αn). The corresponding Seifert surface of genus n and the basis

{x1, y1, · · · , xn, yn} are indicated in Fig. 2.2.5.

Lemma 2.2.5.

det
(
t

1
2 A(α1,··· ,αn) − t−

1
2 AT

(α1,··· ,αn)

)
= 1 −

n∑
i=1

(−1)iαi(t
1
2 − t−

1
2 )2i.

Proof. The proof will be done by induction on n. When n = 1, A(α1) =(
1 −1
0 α1

)
and det

(
t

1
2 A(α1) − t−

1
2 AT

(α1)

)
= 1 + α1(t

1
2 − t−

1
2 )2. The conclusion

follows.

Assume that n > 1. First we observe the following:

Lemma 2.2.6. Let U(α1,··· ,αn) be the ((2n−1)×(2n−1))-submatrix of A(α1,··· ,αn)

obtained by removing the 2n-th row and column. Then,

det
(
t

1
2 U(α1,··· ,αn) − t−

1
2 UT

(α1,··· ,αn)

)
= (−1)n−1(t

1
2 − t−

1
2 )2n−1.
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x1

x2
x3

y1

y2y3yn

Fig. 2.2.5

Proof. This follows by inductively since

det
(
t

1
2 U(α1,··· ,αn) − t−

1
2 UT

(α1,··· ,αn)

)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
1
2 U(α1,··· ,αn−1) − t−

1
2 UT

(α1,··· ,αn−1)

−t
1
2

t−
1
2 −zαn−1 −z

−z 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where z = t−
1
2 − t

1
2 . �

By using Lemma 2.2.6 and the hypothesis on induction, we have:

det
(
t

1
2 A(α1,··· ,αn−1,αn) − t−

1
2 AT

(α1,··· ,αn−1,αn)

)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z −t
1
2

t−
1
2 −zα1 −z

−z 0 −t
1
2

t−
1
2 −zα2

. . . −z

−z 0 −t
1
2

t−
1
2 −zαn−1 −z

−z 0 −t
1
2

t−
1
2 −zαn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= det
(
t

1
2 A(α1,··· ,αn−1) − t−

1
2 AT

(α1,··· ,αn−1)

)
×−(−t

1
2 · t− 1

2 )

− det
(
t

1
2 Ue,(α1,··· ,αn−1) − t−

1
2 UT

(α1,··· ,αn−1)

)
× (t

1
2 − t−

1
2 )2 · (t 1

2 − t−
1
2 )αn

= 1 −
n−1∑
i=1

αi(−1)i(t
1
2 − t−

1
2 )2i − (−1)n−2(t

1
2 − t−

1
2 )2n−3(t

1
2 − t−

1
2 )3αn

= 1 −
n−1∑
i=1

αi(−1)i(t
1
2 − t−

1
2 )2i − ·(−1)nαn(t

1
2 − t−

1
2 )2n

= 1 −
n∑

i=1

αi(−1)i(t
1
2 − t−

1
2 )2i.

This completes the proof. �
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From Lemma 2.2.5 and the relation between Conway polynomial and Alexan-

der polynomial, we have the Proposition 2.2.1 immediately.

Propositions 2.2.2, 2.2.3 and 2.2.4 can also be proven by inductions on α

respectively.

Remark. In Proposition 2.2.1, we embedded knot to S
3. More generary, when

we embed knot in homology three sphere, it also holds and can be proved by

the same way. We will use this fact in Chapter 3.

Proof of Theorem 2.1.3. Suppose n ≤ k, we can choose and perform a

Cn-move on K(α1, α2, · · · , αn, · · · , αk) to produce K(α1, α2, · · · , αn−1, 0) then

we have

dCn(K(α1, α2, · · · , αn, · · · , αk), K(α1, α2, · · · , αn−1, 0)) = 1,

and from Proposition 2.2.1, comparing the value of Conway polynomial of

K(α1, α2, · · · , αn, · · · , αk) to K(α1, α2, · · · , αn−1, 0), we have Theorem 2.1.3

immediately. �

Examples of Theorem 2.1.3. Here we suppose each αi is an integer.

(1) For given vector (α2, α3, · · · , α6), we take a knot K in Fig. 2.2.6 to get

a pair of knots satisfying the condition of Theorem 2.1.3.

Let K ′ be a trivial knot, then we can find a C2-move from K to

K ′. Now we know their values of Conway polynomial from Proposition

2.2.1.
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∇K(z) = 1 + (−1)5z10 − z2 + α2z
4

+ α3z
6 + α4z

8 + (α5 + 1)z10 + α6z
12

= 1 − z2 + α2z
4 + α3z

6 + α4z
8 + α5z

10 + α6z
12

∇K ′(z) = 1,

so we have⎧⎨
⎩

dC2(K, K ′) = 1
a2k(K) − a2k(K

′) = αk (2 ≤ k ≤ 6)
a2p(K) − a2p(K

′) = 0 (6 < p).

Fig. 2.2.6

(2) For given vector (α3, α4, α5), we take a knot K in Fig. 2.2.7.

Let K ′ be trivial knot in Fig. 2.2.8, so same as above examples we

have
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∇K(z) =1 + z4 + α3z
6 + α4z

8 + α5z
10

∇K ′(z) =1,

so we have⎧⎨
⎩

dC3(K, K ′) = 1
a2k(K) − a2k(K

′) = αk (3 ≤ k ≤ 6)
a2p(K) − a2p(K

′) = 0 (5 < p).

Fig. 2.2.7

Proof of Theorem 2.1.4. We consider two cases that k is even and is odd.

Case 1: If k is even, we use the knots of Proposition 2.2.2. Then, we

have

dC3(Kb3(α), Kb3(α + 1)) = 1 and

a4(Kb3(α)) − a4(Kb3(α + 1)) = 2(α + 1),

for any positive integer α ∈ N ∪ {0}.
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Fig. 2.2.8

Therefore we get the pair of knots Kb3(α) and Kb3(α + 1) satisfying

the condition of Theorem 2.1.4, by setting α =
k

2
− 1.

Case 2: If k is odd, we use the knot of Proposition 2.2.3 and the trivial

knot. Then, we have

dC3(Kb4(α), T ) = 1 and

a4(Kb4(α)) − a4(T ) = 2α + 1,

for any positive integer α ∈ N∪{0}. Where by T , we denote the trivial

knot.

Therefore we get the pair of knots Kb4(α) and trivial knot satisfying

the condition of Theorem 2.1.4, by setting α =
k − 1

2
. �

Proof of Theorem 2.1.5. The following equations hold for the knot of

Proposition 2.2.4 and the trivial knot.

dC4(Kb5(α), T ) = 1 and

a6(T ) − a6(Kb5(α)) = α2 + 4α + 1 > α,

for any positive integer α ∈ N ∪ {0}.
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Therefore we get the pair of knots Kb5(α) and trivial knot satisfying the

condition of Theorem 2.1.5, by setting α = n. �
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Chapter 3

Variation of the Alexander-
Conway polynomial under
Dehn surgery

3.1 Introduction and results

Let H be an integral homology 3-sphere. A framed knot (colored knot,

resp.) in H is a pair K = (K, γ) such that K is a knot in H and γ is an

integer (a rational number γ = q/p or ∞, resp.) which is called the framing

for K. (coloring for K, resp.) A framed link (colored link, resp.) is a link

L = K1 ∪ · · · ∪ Kn with an n-tuple L = (K1, · · · ,Kn) where Ki = (Ki, γi) a

framed knot (a colored knot, resp.) in H . We let E(L) denote the exterior

H − N̊(L) of a link L in H . For a framed (colored, resp.) link L in H , a

simple closed curve li in each component of ∂E(L) corresponding to ∂N(Ki)

is determined uniquely up to isotopy by γi for Ki in such a way that [li]

represents an element (pi, qi) ∈ H1(∂N(Ki)) such that γi = qi/pi where (1, 0)

represents the homology class of the preferred longitude and (0, 1) the meridian

of Ki. By attaching a solid torus Vi to each component of ∂E(L) so that the
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boundary of a meridian disk of Vi is glued to li, we obtain a closed 3-manifold

χ(H ;L) = E(L) ∪ ⋃n
i=1 Vi, so called a surgery manifold, and the construction

H → χ(H ;L) is called surgery along L. It is known that any closed orientable

3-manifold is a surgery manifold of some framed link in S3, and if two framed

links determine the same surgery manifold, then they are related by a finite

sequence of Kirby moves [14].

Let K1 = (K1, γ1) and K2 = (K2, γ2) be framed knots yielding the same

surgery manifold. We study the following problem. How do the Conway

polynomials ∇K1(z) and ∇K2(z) relate to each other? Here we shall specify

each framing to ±1 and 0 to simplify arguments. The Alexander-Conway

polynomial is a typical example of classical polynomial invariants for knots

and links in homology spheres.

When γ1 = γ2 = 0, the surgery manifold M is a homology handle, that

is, a 3-manifold with the infinite cyclic homology group H1(M) = Z, and it

is well-known that the Conway polynomials of K1 and K2 coincide and the

polynomial is called the associated Conway polynomial of M . Several examples

of non-equivalent knots which yields the same homology handle via 0-framed

surgery have been constructed. In [37], M. Teragaito gave finite sequences of

pairwise distinct such satellite knots of arbitrarily large numbers, and in [13],

A. Kawauchi constructed mutative hyperbolic knots such that they yield the

same hyperbolic homology handle and non-isometric but mutative 1-surgery

hyperbolic homology spheres.

36



In the case where γ1 = ε1 ∈ {−1, +1} and γ2 = ε2 ∈ {−1, +1}, the surgery

manifold is an integral homology sphere. In this case, the Alexander polyno-

mials can differ [18]. In 1985, A. Casson introduced an integer valued invariant

for oriented integral homology spheres, that counts the SU(2)-representations

of their fundamental groups in some sense. See [1, 34] for reviews and see

[17, 40] for more general surgery formula and extension of Casson invariant

for general 3-manifolds. This Casson invariant is denoted by λ(·). It satisfies

the following Casson surgery formula for any knot K in a homology sphere H ,

and for any ε ∈ {−1, +1}:

λ(χ(H ; (K, ε)))− λ(H) = εa2(K)

where the coefficient of zn in the Conway polynomial ∇K(z) is denoted by

an(K). In particular, when χ(H ; (K1, ε1)) = χ(H ; (K2, ε2)), then ε1a2(K1) =

ε2a2(K2). In this paper, we show that there is no other restriction for the

Alexander polynomials of K1 and K2 by proving the following theorem.

Theorem 3.1.1. Let H be a homology sphere. Let f1(z) =
∑n

i=2 ciz
2i and

f2(z) =
∑m

i=2 diz
2i be two polynomials in z2. For any ε1, ε2 ∈ {−1, 1} and for

any integer a ∈ Z, there exist framed knots K1 = (K1, ε1) and K2 = (K2, ε2)

in H such that ∇K1(z) = 1 + ε2az2 + f1(z), ∇K2(z) = 1 + ε1az2 + f2(z), and

χ(H ;K1) = χ(H ;K2).

The construction of the knots K1 and K2 will be explicit. As soon as f1(z) is

different from f2(z), 0-surgeries along K1 and K2 produce distinct manifolds.
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3.2 Proof of Theorem

For a link L in H and a colored knot K in H which is disjoint from L,

let χ(L;K) denote the link in χ(H ;K) which is obtained from L by surgery

along K. Note that if K = (K, 1/n) and if K is a trivial knot, then χ(H ;K)

is homeomorphic to H and L′ = χ(L;K) is obtained from L by the (−n)-full

twists along K.

Note the following lemma.

Lemma 3.2.1. Let K1 and K2 be two disjoint knots in H. Let (J, ε) be a

1/n-colored knot in H disjoint from the link K1 ∪ K2. Then in the surgery

manifold H ′ = χ(H ; (J, 1/n)),

lkH′(χ(K1; (J, 1/n)), χ(K2; (J, 1/n)))

= lkH(K1, K2) − n · lkH(K1, J) · lkH(K2, J).

Proof. This follows by a homological argument. (cf. Fig. 3.2.1. Crossings

encircled contribute −lk(K1, J) · lk(K2, J).) �

Let L
(c1,··· ,cn)
(d1,··· ,dm) = C1 ∪ C2 be the two-component link locally viewed as

Fig. 3.2.2. It is clear that each component Ci is unknotted and lk(C1, C2) = 0.

Put K1 = χ(C1; (C2, 1/n2)) and K2 = χ(C2; (C1, 1/n1)). Since C2 is unknot-

ted, K1 is obtained from C1 by performing −n2 full twists along C2. Similarly,

K2 is obtained by twisting C2 along C1.

Then, we show the following.
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Fig. 3.2.1

Lemma 3.2.2.

∇K1(z) = 1 − n2(c1 + d1)z
2 + n2

n∑
i=2

ci(−z2)i, and

∇K2(z) = 1 − n1(c1 + d1)z
2 + n1

m∑
i=2

di(−z2)i.

Proof. Span a Seifert surface S1 of genus n to C1 disjoint from C2 as in the

figure, by performing a peripheral tubing on the side indicated in Fig. 3.2.2.

Take a basis �v1 = (x1, y1, x2, y2, · · · , xn, yn) of H1(S1) so that:

• x1 represents a meridian of the tube,

• y1 goes through the tube once satisfying lk(y1, C2) = 0,

• x2, y2, . . . , xn, yn are the same as in Fig. 3.3.3, and
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Fig. 3.2.2

• VS1,�v1 = A0,(c1,c2,··· ,cn).

Since K1 is obtained from C1 by performing the (1/n2)-surgery on C2, we

see that the Seifert form matches A−n2,(c1+d1,c2,··· ,cn) by Lemma 3.2.1. Now it

follows from Lemma 2.2.5 that ∇K1(z) = 1−n2(c1 + d1)z
2 +n2

∑n
i=2 ci(−z2)i.

By the same argument, we get the K2 from C2 by surgery along (C1, 1/n1)

such that ∇K2(z) = 1 − n1(c1 + d1)z
2 + n1

∑m
i=2 di(−z2)i. �

Now we are ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Put c′1 = −a, d′
1 = 0, c′i = (−1)iε2ci, and

d′
i = (−1)iε1di. Let L

(c′1,c′2,··· ,c′n)

(d′1,d′2,··· ,d′m) = C1∪C2 be the two-component link in H lo-

cally viewed as Fig. 3.2.2. Put K1 = χ(C1; (C2, ε2)) and K2 = χ(C2; (C1, ε1)).
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Since Ci is unknotted, the εi-surgery on Ci does not change the ambient man-

ifold H . Thus each Ki is a knot in H . Note that H ′ = χ(H ; (K1, ε1)) =

χ(H ; (K2, ε2)) = χ(H ; (C1, ε1), (C2, ε2)) and ε2
i = 1.

It follows form Lemma 3.2.2 that ∇K1(z) and ∇K2(z) have the desired forms.

This completes the proof. �

In the rest of this section, we state related problems. In order to construct

two knots K1 and K2 yielding the homeomorphic homology spheres, one may

begin with a two-component Brunnian link C1 ∪ C2 with linking number 0,

twist n1 times along C1 (n2 times along C2, resp.) and obtain K2 from C2 as

the result χ(C2; (K1, 1/n1)). (K1, C1 and χ(C1; (K2, 1/n2)) resp.) Note the

following proposition.

Proposition 3.2.3. Let K be a knot in a homology sphere H. Let C be a knot

in H disjoint from K such that lk(K, C) = 0. Put H ′ = χ(H ; (C,−1/n)) and

K ′ = χ(K; (C,−1/n)). Then, ∇K ′(z)−∇K(z) = nz2f(z) for some polynomial

f(z) in z2.

Proof. Use Lemma 3.2.1 and consider a Seifert surface of K disjoint from C

to compute ∆K(t) and ∆K ′(t). �

Our construction of colored knots (K1, 1/n1), (K2, 1/n2) defining the same

homology sphere always produces ones with the property that n1a2i(K1) −
n2a2i(K2) ≡ 0 mod n1n2 for each i > 0. In general, this does not hold. For

example, let K1 be a fibered knot in S3, and K2 the (2, 1)-cable about K1. Then

it follows from [23, Proposition 1.1] that χ(S3; (K1, 1/4)) = χ(S3; (K2, 1)) and

K2 is also fibered of twice genus of K1. Thus, both ∇K1(z) and ∇K2(z) are

monic.
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Now it is natural to ask the following.

Question. Let n1, . . . , nk be k integers. Let f1, · · · , fi(z) =
∑mi

j=2 ci,jz
2j , . . .,

fk be k polynomials in z2. For some a ∈ Z such that ni divides into a for

each i, do there exist k knots K1, . . ., Kk in a homology sphere H such that

∇Ki
(z) = 1 +

a

ni
z2 + fi(z) and they have surgeries defining the same surgery

homology sphere H ′ = χ(H ; (Ki, 1/ni))?
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