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Introduction

It is well known that any graph can be embedded in the three dimensional

Euclidean space R3 (or the 3-sphere S3). A graph can be embedded in R3

or S3 in various way. For a planar graph, the simplest sort of embedding

would be one that lies in a plane R2 (resp. a 2-sphere S2) in R3 (resp. S3)

and the embedding is unique up to ambient isotopy [12]. So we can regard

an embedding of planar graph into R2 ⊂ R3 (resp. S2 ⊂ S3) as a standard

embedding. However for a non-planar graph, it is difficult to decide which

embedding is the simplest. Hence we are interested in a natural way to define

a standard embedding or embeddings of any graph. As a part of the study

of a standard embedding, Kobayashi introduced a locally unknotted spatial

embedding of a graph [10]. We say that a spatial embedding f of G is locally

unknotted if there is a set of cycles of G which forms a basis of H1(G; Z) and

the knots in f(G) corresponding to the set of cycles bound a set of disks with

disjoint interiors. Endo and Otsuki proved Proposition A concerning a locally

unknotted spatial embedding [6].

Proposition A. Any graph has a locally unknotted spatial embedding.
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In general the rank of H1(G; Z) is not an upper bound of the number of

such disks with disjoint interiors. Hence, we can naturally think about the

following questions.

Question A. What is the least upper bound of the number of such disks?

Question B. What property does a spatial embedding which realize the least

upper bound have?

In Chapter 1, we consider about Question A. First in order to give an

upper bound of the number of such disks, we discuss about compact connected

orientable surfaces with disjoint interiors bounded by knots in a spatial graph.

Then we will show that this upper bound is the least upper bound by realizing

the upper bound with disks.

In Chapter 2, we define the boundary spatial embedding of a graph which

is a generalization of the boundary link as an answer to Question B. By the

definition of the boundary spatial embedding, we have that every graph does

not have a boundary spatial embedding. In Section 2.2, we give a complete

characterization of a graph which has a boundary spatial embedding. In Sec-

tion 2.3, we classify boundary spatial embeddings of graphs completely up

to self pass-equivalence. From the classification we have that any boundary

spatial embedding of a graph is trivial up to edge-homotopy. This result is a

generalization of the fact that any boundary link is trivial up to link-homotopy

[4, 5].
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In Chapter 3, we give spatial-graph-homology classification of spatial graphs

by linking numbers and Simon invariants. Spatial-graph-homology [28] is an

equivalence relation of spatial graphs defined by Taniyama. We show that two

spatial embeddings f and g are spatial-graph-homologous if and only if for

each subgraph H of G that is homeomorphic to a disjoint union of two circles,

the restriction maps f |H and g|H have the same linking number, and for each

subgraph H of G that is homeomorphic to a complete graph on five vertices

K5 or a complete bipartite graph on three-three vertices K3,3, the restriction

maps f |H and g|H have the same Simon invariant. In [14], it is shown that

two spatial embeddings are spatial-graph-homologous if and only if they are

transformed into each other by delta-moves and ambient isotopies. It is known

that a delta-move does not change any finite type invariant of order 1 of spatial

graph in the sense of [27]. Therefore we have that linking number and Simon

invariant determine all of finite type invariants of order 1 of spatial graph.

The matter of Chapter 2 is a joint work with Ryo Nikkuni and the matter

of Chapter 3 is a joint work with Kouki Taniyama.
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Chapter 0

Definitions and notations

Throughout this dissertation, we work in the piecewise linear category.

In this chapter, we introduce some definitions and notations which we use

throughout this dissertation. First we prepare terminology of graph theory.

Every graph which we deal with a finite graph. Let G be a graph. We consider

G as a topological space in the usual way. We denote the set of all vertices

and edges of G by V (G) and E(G) respectively. The degree of v in G, de-

noted by deg(v,G), is the number of the edges of G incident to v where a

loop is counted twice. Let W be a subset of V (G). By G−W we denote the

maximal subgraph of G with V (G−W ) = V (G) −W . Let F be a subset of

E(G). By G − F we denote the subgraph of G with V (G − F ) = V (G) and

E(G − F ) = E(G) − F . By |X | we denote the number of the elements of a

finite set X. A graph G is said to be n-connected if |V (G)| ≥ n + 1 and for

any subset W of V (G) with |W | ≤ n− 1 the graph G−W is connected. We

say that a graph is topologically n-connected if the graph is homeomorphic to

an n-connected graph. A simple graph is a graph without loops and multiple

edges. A graph is said to be topologically simple if it is not homeomorphic to

any non-simple graph. A path is a graph that is homeomorphic to a closed

interval. A path of G is a subgraph of G that is a path. Therefore we consider
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an edge as a path. For a graph H = H1 ∪H2, we say that H is obtained from

H1 by a path addition if H2 is a path of H and H1 ∩ H2 is the end points of

H2. A cycle is a graph that is homeomorphic to a circle. A cycle of G is a

subgraph of G that is a cycle. We denote the set of all cycles of G by Γ(G).

Let E ′ �= ∅ be a subset of E(G). The induced subgraph G[E′] is the subgraph

of G such that E(G[E ′]) = E ′ and V (G[E ′]) is the set of the all end points of

the edges which belong to E ′. A vertex v ∈ V (G) is called a cut vertex if there

are subsets E1 and E2 of E(G) such that E(G) = E1 ∪ E2, Ei �= ∅ (i = 1, 2)

and G[E1] ∩ G[E2] = v. A block is a graph which is connected and does not

contain a cut vertex. A subgraph H ⊂ G is called a block of G if H is a block

and there does not exist a block H ′ ⊂ G such that H ⊂ H ′ and H �= H ′. For

any graph G, there are blocks H1, H2, · · · , Hk of G such that G =
⋃k

i=1Hi.

This decomposition is unique. We call this the block decomposition of G. For

an edge e ∈ E(G) that is not a loop, the edge-contraction G/e is the graph

obtained from G− inte by identifying the end points of e. A graph H is called

a minor of G, denoted by H < G, if there exists a subgraph G′ of G and

e1, e2, . . . , em ∈ E(G′) such that H = (· · · ((G′/e1)/e2)/ · · · )/em. For other

standard terminology of graph theory, see [1] and [2] for example.

Next we prepare terminology of spatial graph theory. We call an embedding

f : G→ S3 (resp. f : G→ R3) of G into S3 (resp. R3) a spatial embedding of

a graph G or simply a spatial graph. A graph G is said to be planar if there

exists an embedding of G into S2. A spatial embedding of a planar graph is

said to be trivial if it is ambient isotopic to an embedding into S2 ⊂ S3 (resp.

R2 ⊂ R3).We use notations of graph theory for spatial graphs by extending
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them. For example, for a graph G and a spatial embedding f of G we denote

the set of all embedded vertices and edges of f(G) by V (f(G)) and E(f(G))

respectively.

Other definitions and notations which we need will be properly introduced

in each chapter.
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Chapter 1

Bounding disks to a spatial graph

1.1 Introduction and results

Throughout this chapter, we assume that the graph does not have vertices

of degree 0 or 1. Let G be a graph and f : G → S3 a spatial embedding.

For a cycle γ ∈ Γ(G), we can regard f(γ) as a knot in the spatial graph.

We consider about connected, compact and orientable surfaces with disjoint

interiors bounded by such knots. Let Γm(G) = {γ1, γ2, . . . , γm} be a subset of

Γ(G). Let S1, S2, . . . , Sm be connected, compact and orientable surfaces in S3.

Then we say that S = {S1, S2, . . . , Sm} is a collection of m-spanning surfaces

of f(G) (with respect to Γm(G)) if S satisfies the following conditions;

(S1) Si ∩ f(G) = ∂Si = f(γi) (i = 1, 2, . . . , m),

(S2) intSi ∩ intSj = ∅ (i �= j).

If each Si is homeomorphic to a disk, then S is called a collection of m-

spanning disks of f(G). There have been some studies on spatial graphs using

such surfaces. See for example [3], [6], [17] and [24]. As regards a collection of
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spanning disks, some results have been known. In [10], Kobayashi introduced

a locally unknotted spatial embedding of a graph. We denote the first Betti

number of G by β(G). If m = β(G), S is a collection of m-spanning disks of

f(G) and Γm(G) represents a basis of H1(G; Z), then f is said to be locally

unknotted (with respect to Γm(G)). In [6] Endo and Otsuki showed that for any

graph G there exist Γβ(G)(G) ⊂ Γ(G) that represents a basis of H1(G; Z) and a

locally unknotted spatial embedding f : G→ S3 with respect to Γβ(G)(G). We

note that in general β(G) is not an upper bound of the number of the spanning

surfaces. For example, we can see that there exists a collection of 3-spanning

disks of f(Θ) where Θ and f are the graph with β(Θ) = 2 and the embedding as

illustrated in Fig. 1.1.1 respectively. Hence, we are interested in the least upper

bound of the number of such surfaces of a spatial embedding of G. To simplify

our arguments, we introduce the following property. Let G be a block with

β(G) = g, f : G → S3 a spatial embedding of G, D = {D1, D2, . . . , D3g−3}
a collection of spanning disks of f(G) and C = {C1, C2, . . . , Cn} the set of

the closures of the connected components of S3 − ⋃3g−3
i=1 Di. We say that D

satisfies (�) if D satisfies the following conditions;

(�i) Each Ci is a 3-ball,

(�ii) Ci ∩ f(G) = ∂Ci ∩ f(G) is homeomorphic to the graph Θ as illustrated

in Fig. 1.1.1 (i = 1, 2, . . . , n).

Now we ready to state our results of Chapter 1.

Theorem 1.1.1. Let G be a graph with β(G) = g. Let G =
(⋃k

i=1Bi

) ∪(⋃l
i=1Ki

) ∪ (⋃n
i=1 Pi

)
be the block decomposition of G such that β(Bi) ≥ 2,
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β(Ki) = 1 and β(Pi) = 0 for each i. We regard
⋃0

i=1Bi,
⋃0

i=1Ki and
⋃0

i=1 Pi

as ∅. If for a spatial embedding f : G→ S3 there is a collection of m-spanning

surfaces S of f(G), then m ≤ 3g − 3k − 2l.

We will show that any graph has a spatial embedding which has a collection

of spanning disks realizing the upper bound of m given in Theorem 1.1.1 in

order to give the least upper bound of m. First we consider the case that G is

a block. We actually prove a slightly stronger result.

Theorem 1.1.2. Let G be a block with β(G) = g ≥ 2 and γ ∈ Γ(G). Then

there is a spatial embedding f : G→ S3 of G such that there exists a collection

of (3g−3)-spanning disks D = {D1, D2, . . . , D3g−3} of f(G) satisfying (�) and

∂D1 = f(γ).

Remark 1.1.3. In Theorem 1.1.2 if D satisfies (�) and ∂D1 = f(γ), the

following can be seen. Let G∗ be the dual graph of f(G) in S3 such that

V (G∗) and E(G∗) correspond to C and D respectively. The graph G∗ is a block

and 3-regular, i.e. all vertices of G∗ have the same degree 3. We can take a

maximal tree T ∗ of G∗ which does not contain the edge corresponding to D1.

Let {D′
1 = D1, D

′
2, . . . , D

′
g} ⊂ D be the set of the disks which correspond to

E(G∗)−E(T ∗). SinceN(f(G)∪⋃g
i=1D

′
i) = cl(S3−N(T ∗)) = cl(S3−B3) = B3,

f is locally unknotted with respect to {f−1(D′
1), f

−1(D′
2), . . . , f

−1(D′
g)}, where

N(·) denotes a regular neighborhood and B3 is a 3-ball. Though we did

not make mention of the relation between |C| and g, we have the equality
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|C| = 2g − 2 by the equality |E(G∗)| = |D| = 3g − 3, |V (G∗)| = |C| and

3|V (G∗)| = 2|E(G∗)|.

Θ f(Θ) ∪⋃3
i=1Di

D1 D2

D3

Fig. 1.1.1

We have the following as a corollary of Theorem 1.1.2.

Corollary 1.1.4. Let G be a graph with β(G) = g and G =
(⋃k

i=1Bi

) ∪(⋃l
i=1Ki

) ∪ (⋃n
i=1 Pi

)
the block decomposition of G such that β(Bi) ≥ 2,

β(Ki) = 1 and β(Pi) = 0 for each i. Let γi be a cycle of Bi (1 ≤ i ≤ k).

Then there is a spatial embedding f : G → S3 of G such that there exists a

collection of (3g − 3k − 2l)-spanning disks D = {D1, D2, . . . , D3g−3k−2l} of

f(G) such that the set of cycles {f−1(∂D1), f
−1(∂D2), . . . , f

−1(∂D3g−3k−2l)}
of G contains a set of cycles including each γi and Kj that represents a basis

of H1(G; Z).

This corollary generalizes Endo-Otsuki’s result. Here we give a proof of

Corollary 1.1.4 by using Theorem 1.1.2.
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Proof of Corollary 1.1.4. For each Bi, there is a spatial embedding fi of

Bi such that there exists a collection of spanning disks of fi(Bi) satisfying the

conditions of Theorem 1.1.2. For each Ki, there is a spatial embedding f ′
i

of Ki such that there exists a spanning disk of f ′
i(Ki). By Remark 1.1.3 and

considering one-point sum and split sum of these embeddings, we can construct

a spatial embedding f of G satisfying the conditions of this corollary.

We see that the estimation of Corollary 1.1.4 is best possible by Theorem

1.1.1.
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1.2 Proof of Theorems

First we prove Theorem 1.1.1 which give an upper bound of the number of

spanning surfaces.

Proof of Theorem 1.1.1. First we consider the case that G is a block.

If β(G) = 1, G is homeomorphic to a circle. Since G has only one cycle,

the theorem holds. Suppose that β(G) ≥ 2. We take a regular neighborhood

N(f(G)) of f(G) in S3 so that N(f(G))∩Si is an annulus for each i. Note that

∂N(f(G)) is a closed connected orientable surface of genus g. For any distinct

surfaces Si and Sj , there is an edge e ∈ E(G) such that f(e) ⊂ ∂Si and f(e) �⊂
∂Sj . Let e∗ be the meridian curve corresponding to e, then |(Si∩∂N(f(G)))∩
e∗| = 1 and |(Sj ∩ ∂N(f(G))) ∩ e∗| = 0. That means [Si ∩ ∂N(f(G))] �=
[Sj ∩∂N(f(G))] ∈ H1(∂N(f(G); Z)). Hence we see that

⋃m
i=1 Si∩∂N(f(G)) is

a disjoint union of m non-parallel essential simple closed curves on ∂N(f(G)).

It is well known that there are at most 3g − 3 mutually disjoint non-parallel

essential simple closed curves on a closed connected orientable surface of genus

g. Thereforem ≤ 3g−3. Now we consider the general case. By considering the

block decomposition of G, we have the inequality m ≤∑k
i=1(3β(Gi) − 3) + l.

Since g =
∑k

i=1 β(Bi)+ l, we have the desired inequality m ≤ 3g−3k−2l.

In order to prove Theorem 1.1.2, we introduce the amalgamation of two

graphs and prepare some lemmas. Let G1 and G2 be graphs and h : H1 → H2

a homeomorphism from a subgraph H1 of G1 to a subgraph H2 of G2. The

amalgamation G1 ∗hG2 is the graph obtained from the union of G1 and G2 by

12



identifying H1 with H2 by h. We regard a subgraph H of Gi as a subgraph of

G1 ∗h G2 naturally (i = 1, 2).

Lemma 1.2.1. Let Gi be a block with β(Gi) = gi ≥ 2, γi a cycle of Gi

and fi : Gi → S3 a spatial embedding of Gi (i = 1, 2). Suppose that Di =

{Di,1, Di,2, . . . , Di,3gi−3} is a collection of (3gi − 3)-spanning disks of fi(Gi)

satisfying (�) and ∂Di,1 = fi(γi). Let h : H1 → H2 be a homeomorphism

where Hi = γi and G the amalgamation G1 ∗h G2. We set g = β(G). Then

there exists a spatial embedding f : G → S3 such that there is a collection

of (3g − 3)-spanning disks D = {D1, D2, · · · , D3g−3} of f(G) satisfying (�),

∂D1 = f(γi) and Di ⊂ D.

Proof. Note that g = g1 + g2 − 1. By the assumption, we may assume that

there exist 3-balls B1, B2 ⊂ S3 such that fi(Gi)∪
⋃3gi−3

k=1 Di,k ⊂ Bi, ∂Bi consists

of Di,1 and two elements of Di, say ∆i,1 and ∆i,2, and f1(G1)∪ f2(G2) is equal

to G embedded in S3 and B1 ∩ B2 = ∂B1 ∩ ∂B2 = D1,1 = D2,1. Let f be the

corresponding spatial embedding of G with f(G) = f1(G1) ∪ f2(G2) and B =

B1 ∪B2 the 3-ball. We note that there exists a collection of (3g−4) -spanning

disks of f(G) corresponding to D1 ∪ D2. Let C ′ be the closure of S3 − B.

The closures of the connected components of S3 − (
⋃3g1−3

k=1 D1,k ∪
⋃3g2−3

k=2 D2,k)

except for C ′ satisfy (�i) and (�ii). At least one of ∆2,1 and ∆2,2, say ∆2,1,

intersects ∆1,1 by an arc. Let ∆′ be a properly embedded disk in C ′ such that

∂∆′ = ∂(∆1,1 ∪ ∆2,1). The disk ∆′ divides C ′ into two 3-balls C1 and C2 such

that ∂C1 = ∆1,1 ∪∆2,1 ∪∆′ and ∂C2 = ∆1,2 ∪∆2,2 ∪∆′. We note that C1 and
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C2 satisfy (�i) and (�ii). After renumbering the set of disks D1 ∪D2 ∪ {∆′} is

a collection of (3g − 3)-spanning disks of f(G) satisfying ∂D1 = f(γi).

Lemma 1.2.2. Let G be a block and Gi a subgraph of G such that G = G1∪G2

(i = 1, 2). If there is a cycle γ of G such that γ ∈ Γ(G1) and G1 ∩ G2 ⊂ γ.

Then G1 is a block.

Proof. Suppose that G1 is disconnected. Then there are subgraphs H1 and

H2 of G1 such that G1 = H1 ∪H2, H1 ∩H2 = ∅, γ ⊂ H1 and H2 �= ∅. Since

G = H2 ∪ (H1 ∪ G2) and H2 ∩ (H1 ∪ G2) = ∅, G is disconnected. This is

a contradiction. Thus G1 is connected. Suppose that G1 has a cut vertex v.

Then there are subsets E1 and E2 of E(G1) such that Ei �= ∅, E(G) = E1∪E2,

G[E1]∩G[E2] = v and γ ⊂ G[E1] (i = 1, 2). Since G = G[E(G2)∪E1]∪G[E2]

and G[E(G2)∪E1]∩G[E2] = v, v is a cut vertex of G. This is a contradiction.

Thus G1 has no cut vertices. Hence we have that G1 is a block.

Now we are ready to prove Theorem 1.1.2.

Proof of Theorem 1.1.2. We may assume that the minimum degree of

vertices of G is greater than or equal to 3. The proof proceeds by induction

on β(G). If β(G) = 2, then G is homeomorphic to Θ and the result follows

from Fig. 1.1.1. Now assume that Theorem 1.1.2 holds for any block B with

β(B) < β(G). Since G is a block, γ is not a loop. First, we consider the case

that G−γ is connected. For any e ∈ E(γ) there is a path P of G[E(G)−E(γ)]

such that e ∪ P is a cycle and G1 = G[E(γ) ∪ E(P )] is homeomorpic to Θ. If

we put G2 = G[E(G) − e] and γ2 = (γ − e) ∪ P ∈ Γ(G2), we can regard G as
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the amalgamation of G1 and G2 at γ2. By Lemma 1.2.2, G2 is a block. Since

β(G2) = β(G) − 1, the conclusion for the pair (G2, γ2) follows by induction

hypothesis. Now the conclusion for the pair (G, γ) follows from Lemma 1.2.1.

Next we consider the case that G− γ is disconnected. Let G′
1, G

′
2, . . . , G

′
n be

the connected components of G− γ. If we put Gi = G′
i ∪ γ, we can regard G

as the amalgamation of G1 and
⋃n

i=2Gi at γ. By Lemma 1.2.2, Gi is a block.

It is easy to see that β(Gi) < β(G). Then the conclusion for the pair (Gi, γ)

follows by induction hypothesis. Now the conclusion follows from Lemma 1.2.1

inductively.
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Chapter 2

Boundary spatial embeddings of
a graph

2.1 Introduction and results

Let G be a graph. We set Γ(G) = {γ1, γ2, . . . , γm}. We call a spatial

embedding f : G → S3 of G a boundary spatial embedding if there exists a

collection of m-spanning surfaces of f(G). We note that if G is homeomorphic

to the disjoint union of circles, then a boundary spatial embedding of G is a

boundary link [25].

Example 2.1.1. Let f be a spatial embedding of Θ as illustrated in Fig. 2.1.1.

Then it is easy to see that there exist connected, compact and orientable

surfaces S2 with ∂S1 = f(e1) ∪ f(e3) and S2 with ∂S1 = f(e2) ∪ f(e3) such

that S1 ∩ S2 = f(e3). We note that S1 ∪ S2 is also a connected, compact

and orientable surface. We define S3 = (S1 ∪ S2)
+, where S+ (resp. S−)

denotes a parallel copy of a connected, compact and oriented surface S with

boundary in S3 obtained by pushing S slightly in the positive (resp. negative)
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normal direction of S relative to ∂S, namely S ∩ S+ = ∂S = ∂S+ (resp.

S ∩ S− = ∂S = ∂S−) and intS ∩ intS+ = ∅ (resp. intS ∩ intS− = ∅). Then

we have that S3 is also a connected, compact and orientable surface whose

boundary is f(e1) ∪ f(e2) and the interiors of S1, S2 and S3 are mutually

disjoint. Therefore we have that f is a boundary spatial embedding.

f(e1)
f(e3)

f(e2)

S1 S2

Fig. 2.1.1

Every graph does not always have a boundary spatial embedding. We give

the following characterization of graphs which have boundary spatial embed-

dings.

Theorem 2.1.2. Let G = B1 ∪B2 ∪ · · · ∪Bn be a graph and its block decom-

position. Then the following are equivalent.

(1) There exists a boundary spatial embedding of G.
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(2) Each Bi is an edge or a graph which is homeomorphic to one of the graphs

G1, G2, . . . , G5 as illustrated in Fig. 2.1.2.

(3) Each Bi (i = 1, 2, . . . , n) does not have a minor which is homeomorphic

to one of the graphs G′
1, G

′
2 and G′

3 as illustrated in Fig. 2.1.3.

We prove Theorem 2.1.2 in Section 2.2.

G1

v

e1

G2

e1

e3

e2

G3

e1

e2

e3

e4

G4

e1

e2 e3

e4 e5

G5

e1

e2 e3

e4

e5

e6

Fig. 2.1.2

G′
1 G′

2 G′
3

Fig. 2.1.3

It is well known that a graph is non-planar if and only if it contains a

subgraph which is homeomorphic to K5 or K3,3 as illustrated in Fig. 2.1.4 [11].

Since each of K5 and K3,3 has a subgraph which is homeomorphic to G′
2, we

have the following.
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K5 K3,3

Fig. 2.1.4

Corollary 2.1.3. Any non-planar graph does not have a boundary spatial

embedding.

Let G be an oriented graph, namely an orientation is given to each edge of

G. For a spatial embedding f of G, we give the orientation to each spatial

edge induced by G. A pass-move [8] and a sharp-move [15] on a spatial graph

are local moves which are illustrated in Fig. 2.1.5 and Fig. 2.1.6 respectively.

We also refer the reader to [18] for a related work.

pass-move

Fig. 2.1.5

In Section 2.3 we consider a specific pass-move (resp. sharp-move) on a spa-

tial graph. We call a pass-move (resp. sharp-move) on a spatial graph is a self

pass-move (resp. self sharp-move) [21] if all four strings in the move belong to

the same spatial edge. We say that two spatial embeddings f and g of G are
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sharp-move

Fig. 2.1.6

self pass-equivalent (resp. self sharp-equivalent) if they are transformed into

each other by self pass-moves (resp. self sharp-moves) and ambient isotopies.

It is easy to see that these equivalences do not depend on the choice of orien-

tations of edges of G. In particular for oriented links, the following results are

known.

Theorem 2.1.4. (1) (Murakami [15]) Any two oriented knots are self sharp-

equivalent.

(2) (Kauffman [8]) Two oriented knots J and K are self pass-equivalent if and

only if Arf(J) = Arf(K), where Arf(·) denotes the Arf invariant [19].

(3) (Shibuya [20]) Any two boundary links are self sharp-equivalent.

(4) (Cervantes and Fenn [4]) Two boundary links L = J1 ∪ J2 ∪ · · · ∪ Jn and

M = K1 ∪ K2 ∪ · · · ∪ Kn are self pass-equivalent if and only if Arf(Ji) =

Arf(Ki) (i = 1, 2, . . . , n).

We note that Arf(K) coincides with the modulo two reduction of the second

coefficient of the Conway polynomial of a knot K [8]. We extend Theorem 2.1.4

to boundary spatial embeddings of a graph G as follows.
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Theorem 2.1.5. (1) Any two boundary spatial embeddings of a graph are self

sharp-equivalent.

(2) Two boundary spatial embeddings f and g of G are self pass-equivalent if

and only if Arf(f(γ)) = Arf(g(γ)) for any γ ∈ Γ(G).

Two spatial embeddings of a graph G are said to be edge-homotopic [28]

if they are transformed into each other by self crossing changes and ambient

isotopies, where a self crossing change is a crossing change on the same spatial

edge. This is a generalization of link-homotopy on oriented links in the sense

of Milnor [13]. Since a self sharp-move is realized by self crossing changes, we

have the following by Theorem 2.1.5 (1) and Corollary 2.1.3 as a generalization

of the fact that any boundary link is trivial up to link-homotopy [4, 5].

Corollary 2.1.6. Any boundary spatial embedding of a graph is trivial up to

edge-homotopy.

We prove Theorem 2.1.5 in Section 2.3. We remark here that all oriented

links were classified up to self pass-equivalence by Shibuya and Yasuhara in

terms of the Arf invariant of proper sublinks and link-homotopy [22].
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2.2 Complete characterization of a graph which

has a boundary spatial embedding

In this section we prove Theorem 2.1.2 which gives a complete characteriza-

tion of a graph which has a boundary spatial embedding. By Theorem 1.1.1,

we have the following.

Lemma 2.2.1. Let G be a block with β(G) ≥ 2 and |Γ(G)| = n. If n >

3β(G) − 3, then G does not have a boundary spatial embedding.

For graphs G1, G2, . . . , G5 as illustrated in Fig. 2.1.2, we set

Γ(G1) = {γ1},

γ1 = e1,

Γ(G2) = {γ1, γ2, γ3},

γ1 = e1 ∪ e3, γ2 = e2 ∪ e3, γ3 = e1 ∪ e2,

Γ(G3) = {γ1, γ2, γ3, γ4, γ5, γ6},

γ1 = e1 ∪ e4, γ2 = e2 ∪ e4, γ3 = e3 ∪ e4,

γ4 = e1 ∪ e2, γ5 = e1 ∪ e3, γ6 = e2 ∪ e3,

Γ(G4) = {γ1, γ2, γ3, γ4, γ5, γ6},

γ1 = e1 ∪ e4 ∪ e5, γ2 = e2 ∪ e4, γ3 = e3 ∪ e5,

γ4 = e1 ∪ e2 ∪ e5, γ5 = e1 ∪ e4 ∪ e3, γ6 = e1 ∪ e2 ∪ e3,

Γ(G5) = {γ1, γ2, γ3, γ4, γ5, γ6},

γ1 = e1 ∪ e4 ∪ e5 ∪ e6, γ2 = e2 ∪ e5, γ3 = e3 ∪ e6,
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γ4 = e1 ∪ e2 ∪ e4 ∪ e6, γ5 = e1 ∪ e3 ∪ e4 ∪ e5,

γ6 = e1 ∪ e2 ∪ e3 ∪ e4.

Lemma 2.2.2. Let G be a block. Then the following are equivalent.

(1) There exists a boundary spatial embedding of G.

(2) G is homeomorphic to one of the graphs G1, G2, . . . , G5 as illustrated in

Fig. 2.1.2.

(3) G does not have a minor which is homeomorphic to one of the graphs G′
1,

G′
2 and G′

3 as illustrated in Fig. 2.1.3.

Proof. We first show (3) ⇒ (2). It is well known that any block is homeo-

morphic to a graph which can be obtained from G1 by path additions. Then it

can be easily seen that G3, G4, G5 and G′
2 are all blocks which can be obtained

from G1 by two path additions, see Fig. 2.2.1. Then we can check that any of

the graphs which can be obtained from G3, G4 and G5 by a path addition has

a minor which is homeomorphic to G′
1, G

′
2 or G′

3. Thus we have the result.

Next we show (2) ⇒ (1). It is sufficient to show that each of G1, G2, . . . ,

G5 has a boundary spatial embedding. Let B1 and B2 be 3-balls such that

S3 = B1 ∪ B2 and ∂B1 = ∂B2 = S2. We regard each Gi as illustrated in

Fig. 2.1.2 as a trivial spatial embedding hi : Gi → S2 = ∂B1 = ∂B2 ⊂ S3

of Gi (i = 1, 2, . . . , 5). It is clear that h1 is a boundary spatial embedding,

namely there exists a disk D1 in S2 such that ∂D1 = h1(γ1). Next we consider

h2. There exist disks D1 and D2 in S2 such that ∂Di = h2(γi) (i = 1, 2).

Besides we can obtain a disk D3 which is properly embedded in B1 such that

∂D3 = h2(γ3). Since D1, D2 and D3 have mutually disjoint interiors, we have
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G1

G2

G3 G4 G5 G′
2

Fig. 2.2.1

that h2 is a boundary spatial embedding. Next we consider h3. There exist

disks D3, D4 and D6 in S2 such that ∂Di = h3(γi) (i = 3, 4, 6). Besides we can

obtain a disk D5 which is properly embedded in B1 such that ∂D5 = h3(γ5)

and a diskD2 which is properly embedded in B2 such that ∂D2 = h3(γ2). Then

S2∪D5− int(D4∪D6) is a 2-sphere in B1 which bounds a 3-ball B3 and we can

obtain a disk D1 which is properly embedded in B3 such that ∂D1 = h3(γ1).

Since D1, D2, . . . , D6 have mutually disjoint interiors, we have that h3 is a

boundary spatial embedding. We have that h4 and h5 are boundary spatial

embeddings in the same way as the case of h3. Thus we have the result.
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Finally we show (1) ⇒ (3). Assume that G has a boundary spatial embed-

ding f . For any subgraph H of G, it is easy to see that f |H is a boundary

spatial embedding of H . Let e be an edge of G that is not a loop. Then the

contraction of e induces a bijection from Γ(G) to Γ(G/e) and we can see that

f(G)/f(e) represents a boundary spatial embedding of G/e naturally. There-

fore we have that each minor of G has a boundary spatial embedding. But we

can see that each of G′
1, G

′
2 and G′

3 is a block and does not have a boundary

spatial embedding by Lemma 2.2.1. Thus G cannot have a minor which is

homeomorphic to G′
1, G

′
2 or G′

3. This completes the proof.

Now we are ready to Theorem 2.1.2.

Proof of Theorem 2.1.2. By considering the block decomposition of any

graph, we have the result immediately by Lemma 2.2.2.
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2.3 Classification of boundary spatial embed-

dings of a graph up to self pass-equivalence

In this section we prove Theorem 2.1.5. First we prepare some lemmas. It

is known that a pass-move is realized by sharp-moves and ambient isotopies

as illustrated in Fig. 2.3.1 [16]. Thus we have the following.

Lemma 2.3.1. Self pass-equivalence implies self sharp-equivalence.

≈ ≈

pass-move

sharp-moves

Fig. 2.3.1

A Γ-move [8] is a local move on a spatial graph as illustrated in Fig. 2.3.2.

We call a Γ-move a self Γ-move if all three strings in the move belong to

the same spatial edge. It is known that a Γ-move is realized by a pass-move

[8] and ambient isotopies, see Fig. 2.3.3. Thus we have the following.
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Γ-move Γ-move

Fig. 2.3.2

Lemma 2.3.2. A self Γ-move is realized up to self pass-equivalence.

Γ-move Γ-move

pass-move

pass-move

≈≈

≈ ≈

Fig. 2.3.3
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Lemma 2.3.3. If two spatial embeddings f and g of G are self pass-equivalent,

then Arf(f(γ)) = Arf(g(γ)) for any γ ∈ Γ(G).

Proof. If two spatial embeddings f and g of G are self pass-equivalent, it is

clear that f(γ) and g(γ) are self pass-equivalent for any γ ∈ Γ(G). Thus by

Theorem 2.1.4 (2) we have that Arf(f(γ)) = Arf(g(γ)).

Now we are ready to prove Theorem 2.1.5.

Proof of Theorem 2.1.5. We first prove (2). By Lemma 2.3.3, we have

the ‘only if’ part. So we show the ‘if’ part. Let f and g be boundary spatial

embeddings of G such that Arf(f(γ)) = Arf(g(γ)) for any γ ∈ Γ(G). In

the following we show that f can be transformed into a canonical spatial

embedding ψf up to self pass-equivalence.

Let

G =

5⋃
l=0

nl⋃
il=1

B
(l)
il

be the block decomposition of G such that B
(0)
i0

is an edge (i0 = 1, 2, . . . , n0)

and B
(l)
il

is homeomorphic to Gl (il = 1, 2, . . . , nl and l = 1, 2, . . . , 5). We fix

a homeomorphism ϕ
(l)
il

: Gl → B
(l)
il

and put

Γ(B
(l)
il

) =
{
γ

(l)
il,j

= ϕ
(l)
il

(γj) | γj ∈ Γ(Gl)
}

(il = 1, 2, . . . , nl and l = 1, 2, . . . , 5). Let T1 = v, T2 = e3, T3 = e4, T4 = e4∪e5
and T5 = e4∪e5∪e6 be spanning trees of G1, G2, . . . , G5, respectively. Namely

T
(l)
il

= ϕ
(l)
il

(Tl) is a spanning tree of B
(l)
il

.
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Since f is a boundary spatial embedding of G, there exist connected, com-

pact and orientable surfaces S
(l)
il,j

(l = 1, 2, . . . , 5, il = 1, 2, . . . , nl, j =

1, 2, . . . ) such that the interiors of them are mutually disjoint and

f(G) ∩ S(l)
il,j

= f(G) ∩ ∂S(l)
il,j

= f(γ
(l)
il,j

).

Let us consider

P = f(G) ∪
n1⋃

i1=1

S
(1)
i1,1 ∪

n2⋃
i2=1

(
2⋃

j=1

S
(2)
i2,j

)
∪

n3⋃
i3=1

(
3⋃

j=1

S
(3)
i3,j

)

∪
n4⋃

i4=1

(
3⋃

j=1

S
(4)
i4,j

)
∪

n5⋃
i5=1

(
3⋃

j=1

S
(5)
i5,j

)
.

LetN
(1)
i1
, N

(2)
i2
, N

(3)
i3
, N

(4)
i4

andN
(5)
i5

be regular neighbourhoods of f(T
(1)
i1

), f(T
(2)
i2

),

f(T
(3)
i3

), f(T
(4)
i4

) and f(T
(5)
i5

) in S
(1)
i1,1, S

(2)
i2,1∪S(2)

i2,2, S
(3)
i3,1∪S(3)

i3,2∪S(3)
i3,3, S

(4)
i4,1∪S(4)

i4,2∪
S

(4)
i4,3 and S

(5)
i5,1∪S(5)

i5,2∪S(5)
i5,3, respectively such that N

(l)
il

contains all cut vertices

between f(B
(l)
il

) and the other blocks of f(G) (il = 1, 2, . . . , nl, l = 1, 2, . . . , 5)

as illustrated in Fig. 2.3.4. Then we can regard

5⋃
l=1

nl⋃
il=1

(
f(T

(l)
il

) ∪ ∂N (l)
il

)

as a trivial spatial embedding h of G and

F = cl

(
P −

5⋃
l=1

nl⋃
il=1

N
(l)
il

)

is the disjoint union of spanning surfaces of a boundary link L = ∂F . Therefore

we may assume that there exist mutually disjoint n1 + 2n2 + 3n3 + 3n4 + 3n5

disks b
(l)
il,j

embedded in S3 such that b
(l)
il,j

∩ F = ∂b
(l)
il ,j

∩ ∂F is an arc, b
(l)
il,j

∩
h(G) = ∂b

(l)
il ,j

∩ inth(ϕ
(l)
il

(ej)) is also an arc (il = 1, 2, . . . , nl, l = 1, 2, . . . , 5 and
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j = 1, 2, . . . ) and

f(G) = h(G) ∪
⋃

∂b
(l)
il,j

∪ L−
⋃

int
(
h(ϕ

(l)
il

(ej)) ∩ b(l)il,j

)
− int

(
∂F ∩ b(l)il,j

)
,

see Fig. 2.3.5. We call this a band sum of a boundary link L and h(G).

S
(1)
i1,1

N
(1)
i1

f(v)

S
(2)
i2,1 S

(2)
i2,2

N
(2)
i2

S
(3)
i3,1

S
(3)
i3,2

S
(3)
i3,3

N
(3)
i3

S
(4)
i4,1

S
(4)
i4,2 S

(4)
i4,3

N
(4)
i4

S
(5)
i5,1

S
(5)
i5,2 S

(5)
i5,3

N
(5)
i5

Fig. 2.3.4

Fig. 2.3.5
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By Theorem 2.1.4 (4), L can be transformed into a completely split link L′

up to self pass-equivalence such that each of the components of L is a trivial

knot or a trefoil knot. Thus we have that f can be transformed into a band

sum of L′ and h(G) up to self pass-equivalence, see Fig. 2.3.6. Then by using

self Γ-moves, namely up to self pass-equivalence by Lemma 2.3.2, we can shrink

each band with the component of L′ one by one, see Fig. 2.3.6. By shrinking

all bands in such a way, we obtain a spatial embedding ψf which is a trivial

spatial embedding with some local trefoil knots.

We note that a local trefoil knot attached to ψf (ϕ
(l)
il

(ej)) is unique up to

ambient isotopy. We have that g also can be transformed into a canonical

spatial embedding ψg up to self pass-equivalence in the same way. Since a

trivial spatial embedding of a planar graph is unique up to ambient isotopy

[12], by the assumption we have that ψf = ψg. Therefore we have that f and

g are self pass-equivalent.

Next we prove (1). By Lemma 2.3.1, we have that any boundary spatial

embedding f of a graph can be transformed into ψf by self sharp-equivalence

in the same way as the proof of (2). We note that the self sharp-move is

an unknotting operation (Theorem 2.1.4 (1)). Thus we can undo each of the

local knots by self sharp-moves. So we have that f is trivial up to self sharp-

equivalence.
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Γ-move

Γ-moves

Γ-moves

≈

≈
≈

Fig. 2.3.6
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Chapter 3

Homology classification of spatial
graphs by linking numbers and
Simon invariants

3.1 Introduction and results

Let G be a graph. In this chapter, we mean an embedding f : G→ R3 of G

into R3 by a spatial embedding of G. In [29] Taniyama showed that two spatial

embeddings are spatial-graph-homologous if and only if they have the same Wu

invariant. Spatial-graph-homology is an equivalence relation of spatial graphs

introduced in [28]. We note that in [28] and [29] spatial-graph-homology is

simply called homology. See [28] or [29] for the definition of spatial-graph-

homology. It is known that Wu invariant coincides with linking number if

G is homeomorphic to a disjoint union of two circles, and it coincides with

Simon invariant if G is homeomorphic to a complete graphs on five vertices

K5 or a complete bipartite graph on three-three vertices K3,3. Note that both

linking number and Simon invariant are integral invariants that are easily

calculated from a regular diagram of a spatial graph. The purpose of this
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chapter is to show that f and g are spatial-graph-homologous if and only if

all of their linking numbers and Simon invariants coincide. Namely f and g

are spatial-graph-homologous if and only if for each subgraph H of G that

is homeomorphic to a disjoint union of two circles, the restriction maps f |H
and g|H have the same linking number, and for each subgraph H of G that

is homeomorphic to K5 or K3,3, the restriction maps f |H and g|H have the

same Simon invariant. In [14] it is shown that two spatial embeddings are

spatial-graph-homologous if and only if they are transformed into each other

by delta-moves and ambient isotopies. It is known that a delta-move does not

change any finite type invariant of order 1 of spatial graphs in the sense of

[27]. Therefore we have that linking number and Simon invariant determine

all of finite type invariants of order 1 of spatial graphs.

Now we state the definition of Wu invariant. See [29] for more detail. For a

topological space X let C2(X) be the configuration space of ordered two points

on X. Let σ be an involution on C2(X) that is the exchange of the order of

two points, i.e. σ(x, y) = (y, x). Let f : G → R3 be a spatial embedding. Let

f 2 : C2(G) → C2(R
3) be a map defined by f 2(x, y) = (f(x), f(y)). Then f 2

induces a homomorphism

(f 2)# : H2(C2(R
3), σ) → H2(C2(G), σ)

where H2(C2(X), σ) denotes the skew-symmetric second cohomology of the

pair (C2(X), σ). It is known that H2(C2(R
3), σ) is an infinite cyclic group.

Let τ be a fixed generator of H2(C2(R
3), σ). Then Wu defined an invariant of

f by (f 2)#(τ) [31].
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We denote this element of H2(C2(G), σ) by L(f) and call it the Wu invariant

of f .

Theorem 3.1.1. (Taniyama [29]) Two spatial embeddings f, g : G → R3 are

spatial-graph-homologous if and only if L(f) = L(g).

Thus Wu invariant classifies spatial graphs completely up to spatial-graph-

homology. See [32] for another spatial-graph-homology classification using

disk/band surfaces of spatial graphs.

In the summer of 1990, J. Simon gave a lecture at Tokyo. In the lecture he

defined an invariant for spatial embeddings of K5 and K3,3 as follows.

We give an orientation of the edges ofK5 andK3,3 as illustrated in Fig. 3.1.1.

K3,3K5

e1

e2

e3

e4

e5

d1

d2 d3

d4

d5

c1

c2

c3

c4

c5

c6

b1

b2

b3

Fig. 3.1.1

Let G = K5 or K3,3. For two disjoint edges x, y, we define the sign ε(x, y) =

ε(y, x) as follows;

ε(ei, ej) = 1, ε(di, dj) = −1 and ε(ei, dj) = −1 for i, j ∈ {1, 2, 3, 4, 5}.
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ε(ci, cj) = 1, ε(bk, bl) = 1 and

ε(ci, bk) =

{
1 if ci and bk are parallel in Fig. 3.1.1
−1 if ci and bk are anti-parallel in Fig. 3.1.1

for i, j ∈ {1, 2, 3, 4, 5, 6}, k, l ∈ {1, 2, 3}.
Let f : G → R3 be a spatial embedding and π : R3 → R2 a natural

projection. Suppose that π ◦ f is a regular projection. For disjoint oriented

edges x and y of G, let �(f(x), f(y)) be the sum of the signs of the mutual

crossings π◦f(x)∩π◦f(y) where the sign of a crossing is defined by Fig. 3.1.2.

−1+1

Fig. 3.1.2

Now we define an interger L(f) by

L(f) =
∑

x∩y=∅
ε(x, y)�(f(x), f(y))

where the summation is taken over all unordered pairs of disjoint edges of G.

It is known that two regular projections represent ambient isotopic embed-

dings if and only if they are connected by a sequence of generalized Reide-

meister moves [9]. Then it is easy to check that L(f) is invariant under these

moves. Therefore L(f) is a well-defined ambient isotopy invariant. We call

L(f) the Simon invariant of f .

The following are known in [29]. If G is homeomorphic to a disjoint union

of two circles, K5 or K3,3, the group H2(C2(G), σ) is an infinite cyclic group.
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Then we may suppose that L(f) is an integer. If G is homeomorphic to a

disjoint union of two circles, L(f) is equal to twice the linking number of f(G)

up to sign. If G is homeomorphic to K5 or K3,3, L(f) is equal to L(f) up

to sign. In [28, Theorem C] it is shown that if a graph G does not contain

any subgraph that is homeomorphic to a disjoint union of two circles, K5

or K3,3 then any two spatial embeddings of G are spatial-graph-homologous.

Corresponding to this result it is shown in [29] that the group H2(C2(G), σ) is

trivial for such G. Namely if G is a planar graph that does not contain disjoint

circles then H2(C2(G), σ) = 0.

In [26] the following is shown.

Theorem 3.1.2. (Soma, Sugai and Yasuhara [26]) Let G be a connected

planar graph and f, g : G → R3 spatial embeddings of G. Then f and g

are spatial-graph-homologous if and only if for any subgraph H of G that is

homeomorphic to a disjoint union of two circles the restriction maps f |H and

g|H have the same linking number.

In this chapter we generalize Theorem 3.1.2 to an arbitrary finite graph.

Our main theorem in this chapter is the following theorem.

Theorem 3.1.3. Let G be a graph and f, g : G → R3 spatial embeddings of

G. Then f and g are spatial-graph-homologous if and only if for each subgraph

H of G that is homeomorphic to a disjoint union of two circles the restriction

maps f |H and g|H have the same linking number, and for each subgraph H

of G that is homeomorphic to K5 or K3,3 the restriction maps f |H and g|H
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have the same Simon invariant. In other words L(f) = L(g) if and only if

L(f |H) = L(g|H) for each subgraph H of G that is homeomorphic to a disjoint

union of two circles, K5 or K3,3.

In [29, §2] a method of calculation of Wu invariant from a regular diagram

of a spatial graph is explained. By using this calculation it is easily seen that

Wu invariant is a finite type invariant of order 1 in the sense of [27]. It is

shown in [30] that two spatial embeddings have the same finite type invariants

of order 1 if they are transformed into each other by delta-moves and am-

bient isotopies. Since spatial-graph-homologous embeddings are transformed

into each other by delta-moves and ambient isotopies [14] we have that every

finite type invariant of order 1 is determined by linking numbers and Simon

invariants. Namely we have the following theorem.

Theorem 3.1.4. Let G be a finite graph and f, g : G→ R3 spatial embeddings

of G. Then the following conditions are equivalent.

(1) f and g are spatial-graph-homologous,

(2) L(f) = L(g),

(3) v(f) = v(g) for any finite type invariant v of order 1 ,

(4) for each subgraph H of G that is homeomorphic to a disjoint union of two

circles the restriction maps f |H and g|H have the same linking number, and

for each subgraph H of G that is homeomorphic to K5 or K3,3 the restriction

maps f |H and g|H have the same Simon invariant.
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Remark 3.1.5. In [29] it is shown that H2(C2(G), σ) is torsion free. This

fact is essentially used in the proof of the ‘if’ part of Theorem 3.1.1. We give

a new proof of this fact as a corollary of Theorem 3.2.1 in Section 2.

We say that two spatial embeddings f, g : G → R3 are minimally different

if f and g are not ambient isotopic and for each proper subgraph H of G,

the restriction maps f |H and g|H are ambient isotopic. Let G be a planar

graph and u : G→ R3 a trivial spatial embedding. Then a spatial embedding

f : G → R3 is called minimally knotted if f and u are minimally different.

A graph G is called a generalized bouquet if there is a vertex v of G such

that G − {v} contains no cycle. It is shown in [7] that a minimally knotted

embedding is not isotopic to u unless G is a generalized bouquet. Note that

isotopy is an equivalence relation of spatial graphs that is weaker than ambient

isotopy, but stronger than spatial-graph-homology [28]. As an application of

Theorem 3.1.3 we have the following result that is a contrast to the result

stated above.

Theorem 3.1.6. Let G be a graph which is homeomorphic to none of a

disjoint union of two circles, K5 and K3,3. Then any two minimally different

embeddings of G are spatial-graph-homologous.

Proof. Let f, g : G → R3 be minimally different embeddings. Let H be a

subgraph of G that is homeomorphic to J , K5 or K3,3. By the assumption

we have that H is a proper subgraph of G. Then we have f |H and g|H are
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ambient isotopic. Therefore L(f |H) = L(g|H). Then by Theorem 3.1.3 we

have that f and g are spatial-graph-homologous.

Note that each of a disjoint union of two circles, K5 and K3,3 has minimally

different embeddings that are not spatial-graph-homologous. Examples are

illustrated in Fig. 3.1.3. Since they have different linking numbers or different

Simon invariants they are not spatial-graph-homologous. Then it is easily

checked that they are minimally different.
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Fig. 3.1.3
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3.2 Proof of Main Theorem

For the simplicity we denote the group H2(C2(G), σ) by L(G). Let H be a

subgraph of G then the inclusion C2(H) ⊂ C2(G) induces a homomorphism

ϕH : L(G) → L(H). By J = C1 ∪C2 we denote a disjoint union of two circles

C1 and C2.

Theorem 3.2.1. Let G be a finite graph. Let x, y be elements of L(G).

Suppose that ϕH(x) = ϕH(y) for any subgraph H of G that is homeomorphic

to J , K5 or K3,3. Then x = y.

Corollary 3.2.2. (Taniyama [29]) Let G be a finite graph. Then L(G) is

torsion free.

Proof. Let x be an element of L(G) and n an integer greater than one

such that nx = 0. Suppose that a subgraph H of G is homeomorphic to

J , K5 or K3,3. Then L(H) is an infinite cyclic group. Therefore we have

0 = ϕH(0) = ϕH(nx) = nϕH(x). Thus we have ϕH(x) = 0. Thus we have

ϕH(x) = ϕH(0) if H is homeomorphic to J , K5 or K3,3. Then by Theorem

3.2.1 we have x = 0. This completes the proof.

Proof of Theorem 3.1.3. Suppose that L(f |H) = L(g|H) for each subgraph

H of G that is homeomorphic to J , K5 or K3,3. Since L(f |H) = ϕH(L(f)) and

L(g|H) = ϕH(L(g)) we have ϕH(L(f)) = ϕH(L(g)). Then by Theorem 3.2.1

we have L(f) = L(g).
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We prove Theorem 3.2.1 step by step. First we prove Theorem 3.2.1 when

G is a simple 3-connected graph. This case is the core of Theorem 3.2.1.

Proposition 3.2.3. Theorem 3.2.1 is true if G is a simple 3-connected graph.

For the proof of Proposition 3.2.3 we prepare some lemmas. Let P be a

path. Let u and v be the degree one vertices of P . We call u and v the end

points of P . Then we say that P joins u and v and by ∂P we denote the set

{u, v}. Let P and Q be paths of G. If Q ⊂ P then we say that Q is a subpath

of P . A subpath of P joining u and v is denoted by (u, v;P ). Let H be a

subgraph of G. Let u and v be vertices of H . Let X and Y be subsets of V (H).

Suppose that there uniquely exists a path P of H joining u and v such that

V (P ) ⊃ X and V (P ) ∩ Y = ∅. Then we denote P by (u, v,H, inX, exY ). We

denote (u, v,H, in∅, exY ) by (u, v,H, exY ), (u, v,H, inX, ex∅) by (u, v,H, inX)

and (u, v,H, in∅, ex∅) by (u, v,H) for simplicity. The following Lemma 3.2.4

is well-known in graph theory. See [2] for example.

Lemma 3.2.4. Let G be a 2-connected graph and e1 and e2 disjoint edges of

G. Then there is a cycle of G containing both of e1 and e2.

Lemma 3.2.5. Let G be a finite graph and e1 and e2 disjoint edges of G.

Suppose that G − {e1}, G − {e2} and G − {e1, e2} are topologically simple

and topologically 3-connected. Note that then G is topologically 3-connected.

However G is not necessarily topologically simple. Then there is a subgraph H

of G satisfying one of the following conditions.
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(1) There is a homeomorphism h : J → H such that h(Ci) contains ei

(i = 1, 2).

(2) There is a homeomorphism h : K5 → H such that h(di) contains ei

(i = 1, 2) where d1 and d2 are disjoint edges of K5.

(3) There is a homeomorphism h : K3,3 → H such that h(di) contains ei

(i = 1, 2) where d1 and d2 are disjoint edges of K3,3.

Proof.

Claim 1. There is a cycle Ω of G containing e1 and e2.

Since G is 2-connected this is an immediate consequence of Lemma 3.2.4.

Claim 2. There is a subgraph H of G, disjoint edges f1 and f2 of a complete

graph on four vertices K4, and a homeomorphism h : K4 → H such that

e1 ⊂ h(f1) and e2 ⊂ h(f2).

Let e3 and e4 be edges on Ω such that e1, e3, e2, e4 are lying on Ω in this

cyclic order. Since G−{e1, e2} is 2-connected there is a cycle Λ of G−{e1, e2}
containing e3 and e4. Then it is not hard to see that either the condition (1)

holds or there is a subgraph H in Ω ∪ Λ that satisfies the desired conditions.

Claim 3. Suppose that the condition (1) does not hold. Then there is a

subgraph H of G, disjoint edges f1 and f2 of a complete graph on four vertices

K4 and a homeomorphism h : K4 → H such that e1 = h(f1) and e2 = h(f2).

Suppose that ei is a proper subset of h(fi) for some i ∈ {1, 2}, say i =

1. Let u and v be the end points of h(f1). Since (G − {e2}) − {u, v} is
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connected there is a path of (G− {e2}) − {u, v} joining a vertex of h(f1) and

a vertex of H − h(f1). Then we either have the condition (1) or find H ′ and

a homeomorphism h′ : K4 → H ′ with e1 ⊂ h′(f1) and e2 ⊂ h′(f2) such that

h′(f1 ∪ f2) is a proper subset of h(f1 ∪ f2). By repeating this replacement we

finally have the desired situation.

Let ui and vi be the vertices incident to ei for i = 1, 2. Let Γ be the cycle

H − {e1, e2}. Since (G− {e1, e2})− {u2, v2} is connected there is a path P of

G−{e1, e2} joining a vertex, say w1, in (v2, u2,Γ, in{u1})−{u2, v2} and a vertex,

say w2, in (u2, v2,Γ, in{v1}) − {u2, v2}. We may suppose that P ∩ H = ∂P .

Up to the symmetry of H it is sufficient to consider the following two cases.

Case 1. w1 ∈ (u1, u2,Γ, ex{v1}) − {u1} and w2 ∈ (v1, v2,Γ, ex{u1}) − {v1}.
In this case we have that H ∪ P is homeomorphic to K3,3, and we have the

condition (3).

Case 2. w1 ∈ (u1, u2,Γ, ex{v1}) and w2 ∈ (u2, v1,Γ, ex{v2}).
We choose P so that w1 is closest to u1 among all paths with w1 ∈ (u1, u2,Γ,

ex{v1}) and w2 ∈ (u2, v1,Γ, ex{v2}). Note that we consider the case w1 = u1 as

the closest case. Suppose that w1 �= u1 and there is a pathQ withQ∩(H∪P ) =

∂Q joining a vertex, say s, of (u1, w1,Γ, ex{u2}) − {w1} and a vertex, say t,

of (w1, u2,Γ, ex{v1}) − {w1}. Then we replace (s, t,Γ, in{w1}) by Q and have

a new subgraph, still denoted by H . Then we choose for this new H new

P with new w1 ∈ (u1, u2, new Γ, ex{v1}) and new w2 ∈ (u2, v1, new Γ, ex{v2})
so that w1 is closest to u1. Note that such new P exists because old P ∪
(s, old w1, old Γ, ex{u2}) satisfies the condition for new P . If new w1 is still not

equal to u1 and there still exists a path Q as above then we perform the same
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replacement. We continue these replacements so that there are no such paths.

Then among all paths with the same w1 we choose P so that w2 is closest to

v1. Suppose that w2 �= v1 and there is a path Q with Q∩(H∪P ) = ∂Q joining

a vertex of (u2, w2,Γ, ex{v1})−{w2} and a vertex of (w2, v1,Γ, ex{v2})−{w2}.
Then we perform a similar replacement. Then we rechoose P so that w2 is

closest to v1. We continue these replacements until there are no such paths.

Note that these operations do not change w1.

Case 2.1. w2 �= v1 and there is another path Q with Q ∩ (H ∪ P ) = ∂Q

joining a vertex, say x1, of (w1, u2,Γ, ex{v1}) − {w1, u2} and a vertex, say x2,

of (w2, v1,Γ, ex{v2}) − {w2}.
We choose Q such that x2 is closest to v1. If x2 �= v1 and there is a path R

with R ∩ (H ∪ P ∪Q) = ∂R joining a vertex of (w2, x2,Γ, ex{v1}) − {x2} and

a vertex of (x2, v1,Γ, ex{v2}) − {x2} then we perform a similar replacement.

By repeating the operations we have that there are no such paths and x2 is

closest to v1.

Now we consider the graph (G − {e1, e2}) − {w1, x2}. Since this graph is

connected we find a path W joining the components of (Γ∪P ∪Q)−{w1, x2}
and find the condition (1) in H ∪ P ∪Q ∪W .

Case 2.2. There are no such path Q, and w1 �= u1 or w2 �= v1.

In this case we consider the graph (G − {e1, e2}) − {w1, w2}. Since this

graph is connected we find a path W and find either condition (1) or (3) in

H ∪ P ∪W .

Case 2.3. w1 = u1 and w2 = v1.
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In this case we consider the graph (G − {e1, e2}) − {u1, v1}. Since this

graph is connected we find the condition (1), or find paths W1 and W2 joining

the components of (Γ ∪ P ) − {u1, v1} and find either condition (2) or (3) in

H ∪ P ∪W1 ∪W2. This completes the proof of Lemma 3.2.5.

Lemma 3.2.6. Let G be a simple 3-connected graph and e an edge of G such

that G− {e} is topologically simple and topologically 3-connected. Then there

is a subgraph G0 of G − {e} with ∂e ⊂ G0 that is homeomorphic to K4, and

there is an increasing sequence G0 ⊂ G1 ⊂ · · · ⊂ Gn = G − {e} with the

following properties;

(1) each Gi is topologically simple and topologically 3-connected,

(2) each Gi is obtained from Gi−1 by a path addition,

(3) for each i the following (a) or (b) holds;

(a) Gi ∪ e is topologically simple and topologically 3-connected,

(b) Gi+1 ∪ e is topologically simple and topologically 3-connected.

Proof. Let u and v be the vertices incident to e. First we show that there is

a cycle Γ of G − {e} containing u and v. Let e1 and e2 be edges of G − {e}
incident to u and v respectively. Note that G− {e} is 2-connected. If e1 and

e2 are disjoint then by Lemma 3.2.4 we have a cycle containing e1 and e2.

Suppose that e1 ∩ e2 is a vertex, say w. Since (G − {e}) − {w} is connected

there is a path, say Q, of (G−{e})−{w} joining u and v. Then e1∪e2∪Q is a

desired cycle. Note that e1 �= e2 since G has no multiple edges. Since G−{e}
is 2-connected there is a path, say P , with P ∩Γ = ∂P joining some vertices of

Γ. Then Γ∪P is a graph homeomorphic to Θ as illustrated in Fig. 1.1.1. Since
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G−{e} is topologically 3-connected there is a path Q with Q∩ (Γ∪P ) = ∂Q

such that Γ ∪ P ∪Q is homeomorphic to K4. Then we set G0 = Γ ∪ P ∪Q.

Now suppose inductively that there is an increasing sequence G0 ⊂ G1 ⊂
· · · ⊂ Gk of subgraphs of G satisfying the conditions (1), (2) and (3). Suppose

that Gk �= G− {e}.
Case 1. Gk ∪ e is topologically simple.

Case 1.1. There is a vertex v of Gk that has degree two in Gk ∪ e.
Let P be the longest path of Gk that contains v so that each vertex of P−∂P

has degree two in Gk ∪ e. Let ∂P = {s, t}. Since G−{s, t} is connected there

is a path Q of (G−{e})−{s, t} with Q∩Gk = ∂Q joining a vertex of P and a

vertex of Gk − V (P ). Set Gk+1 = Gk ∪Q. Then it is easy to check that Gk+1

is topologically simple and topologically 3-connected.

Case 1.2. No vertex of Gk has degree two in Gk ∪ e.
There is a path P of G− {e} with P ∩Gk = ∂P . Let ∂P = {s, t}. If s and

t are not adjacent in Gk then we set Gk+1 = Gk ∪P . Suppose that s and t are

incident to an edge d of Gk. Since G has no multiple edges P is not an edge.

Then we replace d by P . Note that this replacement changes the increasing

sequence G0 ⊂ G1 ⊂ · · · ⊂ Gk. However it is clear that the new increasing

sequence still satisfies the required conditions. Thus this case is reduced to

Case 1.1.

Case 2. Gk ∪ e is not topologically simple.

Suppose that Gk = Gk−1∪P where P is a path of G−{e} with P ∩Gk−1 =

∂P . By the assumption we have thatGk−1∪e is topologically simple. Therefore

we have that P joins u and v. Since G has no multiple edges we have that
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P is not an edge. Since G is 3-connected there is a path Q of G − {e} with

Q ∩ Gk = ∂Q joining a vertex of P − ∂P and a vertex of Gk−1 − {u, v}. Set

Gk+1 = Gk ∪Q. Then it is easy to check that Gk+1 is topologically simple and

topologically 3-connected.

Lemma 3.2.7. Let G be a simple 3-connected graph. Suppose that G is

not isomorphic to K4. Then there is an edge e of G such that G − {e} is

topologically simple and topologically 3-connected.

Proof. Let e1 and e2 be distinct edges of G. We subdivide e1 and e2 by

taking vertices v1 and v2 on them respectively. We add an edge d joining

v1 and v2 to G. It is easy to see that the resultant graph G′ is simple and

3-connected. Note that G′ − {d} is homeomorphic to G hence topologically

simple and topologically 3-connected. Then we apply Lemma 3.2.6 to G′ and

d. Then we have that G′ − {d} is obtained from a topologically simple and

topologically 3-connected graph by adding a path P . Let e be an edge of G

corresponding the path P . Then we have that G− {e} is topologically simple

and topologically 3-connected.

Proof of Proposition 3.2.3. We give a proof by an induction on |E(G)|.
The first step is the case that G is isomorphic to K4. As we explained in the

previous section, L(K4) = 0. Thus Theorem 3.2.1 is true in this case. Suppose

that Theorem 3.2.1 is true for all simple 3-connected graphs with less than n

edges. Let G be a simple 3-connected graph with n edges. Now we review an

explicit presentation of L(G) = H2(C2(G), σ). See [29] for more details. We
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set E(G) = {e1, e2, · · · , en} and V (G) = {v1, v2, · · · , vm}. We choose a fixed

orientation on each edge of G. For a pair of integers (i, j) with 1 ≤ i < j ≤ n

and ei ∩ ej = ∅, we denote the pair (ei, ej) by Eij . For a pair of integers (i, s)

with 1 ≤ i ≤ n, 1 ≤ s ≤ m and vs is not incident to ei, we denote the pair

(ei, vs) by V is. We set

δ1(V is) =
∑

I(j)=s

Eρ(ij) −
∑

T (k)=s

Eρ(ik)

where I(j) = s means that the initial vertex of ej is vs and T (k) = s means

that the terminal vertex of ek is vs, and

ρ(ij) =

{
ij if i < j
ji if i > j.

Here the sum is taken over all j with I(j) = s and ei ∩ ej = ∅ and all k with

T (k) = s and ei ∩ ek = ∅. Then L(G) has an abelian group presentation

〈Eij (1 ≤ i < j ≤ n, ei ∩ ej = ∅) |
δ1(V is) (1 ≤ i ≤ n, 1 ≤ s ≤ m, vs is not incident to ei)〉.

By Lemma 3.2.7 there is an edge e of G such that G− {e} is topologically

simple and topologically 3-connected. We may suppose without loss of gener-

ality that e = en and en is incident to v1 and v2. Let x, y be elements of L(G)

such that ϕH(x) = ϕH(y) for any subgraph H of G that is homeomorphic to

J , K5 or K3,3. We will show that x−y = 0. Let (G−{en})′ be the 3-connected

graph that is homeomorphic to G− {en}. Then (G − {en})′ is simple. Since

G−{en} = (G−{en})′ or G−{en} is a subdivision of (G−{en})′ we have that

(G− {en})′ has at most n− 1 edges. Therefore we may apply the hypothesis

of induction and have that ϕG−{en}(x− y) = 0. This implies that x− y can be
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represented by an element as

x− y =
[∑

ainE
in
]

where i varies over all i ∈ {1 ≤ i < n} with ei∩en = ∅ and ain is an integer. We

will change the representative element of x−y step by step so that the range of

i becomes smaller and smaller as follows. Let G0 ⊂ G1 ⊂ · · · ⊂ Gk = G−{en}
be an increasing sequence satisfying the conditions of Lemma 3.2.6. Let Pi

be a path of G such that Gi = Gi−1 ∪ Pi. We may suppose without loss of

generality that there are integers 1 < r0 < r1 < r2 < . . . < rk−1 < rk = n− 1

such that E(Gi) = {e1, e2, . . . , eri
} for each i. Similarly we may suppose that

there are integers 1 < s0 ≤ s1 ≤ s2 ≤ · · · ≤ sk−1 ≤ sk = m such that

V (Gi) = {v1, v2, . . . , vsi
} for each i. Up to the symmetry of K4 there are six

cases of the topological type of G0 ∪ en as illustrated in Fig. 3.2.1.

en
en

en

en

en en

(a) (b) (c) (d) (e) (f)

Fig. 3.2.1

In any case it is easy to see that there is an element
∑
bnsδ

1(V ns) where s

varies over the set {1, 2, . . . , s1} and bns is an integer such that

∑
ainE

in +
∑

bnsδ
1(V ns) =

∑
cjnE

jn

where j varies over the set {r0+1, r0+2, . . . , n−2, n−1} and cjn is an integer.

Note that in (b), (c) and (e) we use the fact that ϕH(x − y) = 0 where H is
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homeomorphic to J . In (f) we use the fact that ϕH(x − y) = 0 where H is

homeomorphic to K3,3.

Now suppose inductively that x− y is represented as

x− y =
[∑

ainE
in
]

where i varies over the set {rj + 1, rj + 2, . . . , n− 2, n− 1}. We consider the

following three cases.

Case 1. Gj ∪ en is not topologically simple.

In this case ∂Pj = ∂en = {v1, v2} and ∂Pj+1 contains a vertex on Pj.

By adding some
∑
bnsδ

1(V ns) where s varies over the set {sj−1 + 1, sj−1 +

2, . . . , sj+1} we have the result. Namely we have

∑
ainE

in +
∑

bnsδ
1(V ns) =

∑
cjnE

jn

where j varies over the set {rj+1 + 1, rj+1 + 2, . . . , n− 2, n− 1} and cjn is an

integer.

Case 2. Gj ∪ en is topologically simple and Pj+1 ∩ en �= ∅.
By adding some

∑
bnsδ

1(V ns) where s varies over the set {sj + 1, sj +

2, . . . , sj+1} we have the result.

Case 3. Gj ∪ en is topologically simple and Pj+1 ∩ en = ∅.
In this case we regard en and Pj+1 as disjoint edges and apply Lemma 3.2.5.

Namely by adding some
∑
bnsδ

1(V ns) where s varies over the set {sj + 1, sj +

2, . . . , sj+1} we have the result. This complete the proof.

Next we prove Theorem 3.2.1 for simple 2-connected graphs.

Proposition 3.2.8. Theorem 3.2.1 is true if G is a simple 2-connected graph.
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Lemma 3.2.9. Let G be a simple 2-connected graph and u, v vertices of G.

Suppose that the graph G− {u, v} is not connected. Let Q1, Q2, . . . , Qp be the

connected components of the topological space G−{u, v}. Let Hi be the closure

of Qi in G. Let Gi be a graph obtained from Hi by adding a new edge joining

u and v. Suppose that Theorem 3.2.1 is true for each Gi. Then Theorem 3.2.1

is true for G.

Proof. Let x, y be elements of L(G) such that ϕH(x) = ϕH(y) for any sub-

graphH of G that is homeomorphic to J , K5 orK3,3. We will show that x−y =

0. We set E(G) = {e1, e2, . . . , en} and V (G) = {v1 = u, v2 = v, v3, . . . , vm}.
Suppose that x− y is represented by an element as

x− y =
[∑

aijE
ij
]

where aij is an integer and the summation is taken for all pair (i, j) with

1 ≤ i < j ≤ n and ei ∩ ej = ∅. We will change the representative
∑
aijE

ij

step by step as follows. Let Ti be a spanning tree ofHi such that the degree of u

in Ti is one and the degree of v in Ti is one. Let T = T1∪T2∪· · ·∪Tp. Note that

the maximal subgraph of T without vertices of degree one is homeomorphic to

a graph on two vertices and p edges joining them. Therefore it is easy to see

that the representative
∑
aijE

ij of x−y can be chosen such that the following

condition (1) holds.

(1) aij = 0 if ei ∈ E(Tk) and ej ∈ E(Tl) for some k �= l.

Next we show that in addition to the condition (1) the following condition (2)

also holds.
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(2) aij = 0 if one of ei, ej is in E(Tk) for some k and the other is not in

E(Hk).

Suppose that ei ∈ E(Hl) − E(Tl). If ei is incident to u or v then it is easy

to erase all aij and aji with ej ∈ E(Tk) for some k �= l. Suppose that ei is

not incident to u nor v. Let γ be the unique cycle of Tl ∪ ei. Then by using

the condition on the disjoint cycles of T ∪ ei containing γ as a component we

can erase all aij and aji with ej ∈ E(Tk) for some k �= l without breaking the

previous conditions. Next we show that the following condition (3) holds.

(3) aij = 0 unless {ei, ej} ⊂ E(Hk) for some k.

Note that the condition (3) implies both (1) and (2). Let ei ∈ E(Hk)−E(Tk)

and ej ∈ E(Hl) − E(Tl) with k �= l. Let γ1 be the unique cycle of Tk ∪ ei and

γ2 the unique cycle of Tl ∪ ej . Then by the condition on these disjoint cycles

we have that aij = 0. Thus we have a representative
∑
aijE

ij of x − y that

satisfies the condition (3).

Finally we will erase the term aij with ei, ej ∈ E(Hk) for some k. We will do

this step by step. First we will erase all the terms aijE
ij with ei, ej ∈ E(H1) as

follows. Let P be a path in T2 joining u and v. Then H1 ∪P is homeomorphic

to G1. Let e0 be the edge of G1 joining u = v1 and v = v2. Then by the

assumption on G1 we have that

∑
a′ijE

ij =
∑

bisδ̃
1(V is)

where a′ij = aij if ei, ej ∈ E(H1) and a′ij = 0 otherwise, and the summation of

the second term is taken over some pair i, s with ei ∈ E(G1) and vs ∈ V (G1),

and each of δ̃1(V i1) and δ̃1(V i2) expresses the signed sum of some Ejk with
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ej , ek ∈ E(G1), one of them is ei the other incident to v1 or v2, not the signed

sum of some Ejk with ej , ek ∈ E(G), and otherwise δ̃1(V is) = δ1(V is). We will

modify the second summation as follows. First we replace each term bi1δ̃
1(V i1)

by bi1δ
1(V i1). Next we replace each term bi2δ̃

1(V i2) by bi2
∑
δ1(V is) where the

summation is taken over all s with vs ∈ (V (G) − V (H1)) ∪ {v2}. Finally we

replace each term b0sδ̃
1(V 0s) by b0s

∑
δ1(V is) where the summation is taken

over all i with ei incident to u = v1 and ei ∈ E(G)−E(H1). Let
∑
cisδ

1(V is) be

the summation obtained from
∑
bisδ̃

1(V is) by the replacement stated above.

Then we have that the new representative
∑
aijE

ij −∑ cisδ
1(V is) =

∑
dijE

ij

of x− y satisfies dij = 0 if ei, ej ∈ E(H1), and still satisfies the condition (3).

Repeating this replacement p times we have 0 as a representative of x − y.

This completes the proof.

Proof of Proposition 3.2.8. We will give a proof by an induction on the

number of the edges of a simple 2-connected graph. The minimal number of

the edges of a simple 2-connected graph is three and then the graph is K3.

Since L(K3) is trivial Theorem 3.2.1 is true for K3. Suppose that Theorem

3.2.1 is true for each simple 2-connected graph that has k or less edges. Let G

be a simple 2-connected graph that has k + 1 edges. If G is 3-connected then

by Proposition 3.2.3 we have the result. Suppose that G is not 3-connected.

Then there are vertices u and v of G such that the graph G − {u, v} is not

connected. Let Q1, Q2, . . . , Qp be the connected components of the topological

space G − {u, v}. Let Hi be the closure of Qi in G. Let Gi be a graph

obtained from Hi by adding a new edge joining u and v. Suppose that u and
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v are not adjacent in G. Then we have that each Gi is a simple 2-connected

graph. Suppose that u and v are adjacent in G. Then we have p ≥ 3, one of

G1, . . . , Gp is a cycle, and other graphs are simple 2-connected graphs. Note

that Theorem 3.2.1 is true for a cycle since L(G) is trivial if G is a cycle. Since

each Gi has k or less edges we have the result by the induction hypothesis and

by Lemma 3.2.9.

Next we prove Theorem 3.2.1 for simple connected graphs.

Proposition 3.2.10. Theorem 3.2.1 is true if G is a simple connected graph.

Lemma 3.2.11. Let G be a simple connected graph and v a vertex of G.

Suppose that the graph G − {v} is not connected. Let Q1, Q2, . . . , Qp be the

connected components of the topological space G− {v}. Let Gi be the closure

of Qi in G. Suppose that Theorem 3.2.1 is true for each Gi. Then Theorem

3.2.1 is true for G.

Proof. Let x, y be elements of L(G) such that ϕH(x) = ϕH(y) for any sub-

graph H of G that is homeomorphic to J , K5 or K3,3. We will show that

x − y = 0. We set E(G) = {e1, e2, . . . , en} and V (G) = {v1 = v, v2, . . . , vm}.
Suppose that x− y is represented by an element as

x− y =
[∑

aijE
ij
]

where aij is an integer and the summation is taken for all pair (i, j) with

1 ≤ i < j ≤ n and ei ∩ ej = ∅. We will change the representative
∑
aijE

ij

step by step as follows. Let Ti be a spanning tree of Gi such that the degree
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of v in Ti is one. First we change the representative element of x− y by using

the assumption on each Gi such that

(1) ajk = 0 if ej , ek ∈ E(Gi) for some i.

To do this we first consider the case i = 1. By the assumption on G1 we have

∑
a′ijE

ij =
∑

bisδ̃
1(V is)

where the meanings of a′ij and δ̃1 are similar to those in the proof of Lemma

3.2.9. Then we replace each bi1δ̃
1(V i1) by bi1

∑
δ1(V is) where the summation

is taken over all s with vs ∈ (V (G) − V (G1)) ∪ {v1}. Let
∑
cisδ

1(V is) be

the summation obtained from
∑
bisδ̃

1(V is) by this replacement. Then we

have that the new representative
∑
aijE

ij −∑ cisδ
1(V is) =

∑
dijE

ij of x− y

satisfies dij = 0 if ei, ej ∈ E(G1). Repeating this replacement p times we have

the condition (1). Next we change the representative element such that in

addition to the condition (1),

(2) ajk = 0 if one of ej and ek is in E(Ti) for some i.

This is easily done by using the fact that each Ti is a tree. Then by consid-

ering appropriate disjoint cycles we have that ajk = 0 for any j and k. This

completes the proof.

Proof of Proposition 3.2.10. We will give a proof by an induction on the

number of the vertices of a simple connected graph. It is clear that Theorem

3.2.1 is true for all graphs of one or two vertices. Suppose that Theorem 3.2.1

is true for each simple connected graph that has k or less vertices. Let G be

a simple connected graph that has k + 1 vertices. If G is 2-connected then by

Proposition 3.2.8 we have the result. Suppose that G is not 2-connected. Then
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there is a vertex v of G such that the graph G − {v} is not connected. Let

Q1, Q2, . . . , Qp be the connected components of the topological space G−{v}.
Let Gi be the closure of Qi in G. Then we have that each Gi is a simple

connected graph. Since each Gi has k or less vertices we have the result by

the induction hypothesis and by Lemma 3.2.11.

Proposition 3.2.12. Theorem 3.2.1 is true if G is a simple graph.

Proof. Let G be a simple graph and G1, . . . , Gp the connected components

of G. Then each Gi is a simple connected graph. We choose a spanning tree

Ti for each Gi. Then the proof is similar to that of Lemma 3.2.11 and we omit

it.

Proof of Theorem 3.2.1. By Proposition 3.2.12 it is sufficient to consider

the case that G is not simple. Let G′ be a simple graph that is a subdivision

of G. Then by Proposition 3.2.12 we have that Theorem 3.2.1 is true for G′.

Since L(G) is isomorphic to L(G′) we have that Theorem 3.2.1 is true for

G.
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