
早稲田大学教育学部 学術研究（数学編）第55号 1～14ページ，2007年 2月 1

Remarks on BV estimates for vanishing
viscosity approximations to hyperbolic systems

Kazuo Kobayasi∗,† and Hiroki Ohwa∗∗

Abstract

We consider the Cauchy problems for a parabolic n×n system in one-space dimension:

ut +A(u)ux = uxx, assuming that A(u) has n real, distinct eigenvalues and that the initial

data have small total variation. We discuss local existence and decay estimates of the

solutions in detail.

1. Introduction

The Cauchy problem for a system of conservation laws in one space dimension takes

the form

ut + f(u)x = 0 , (1.1)

u(0, x) = ū(x) . (1.2)

Here u = (u1, ..., un) is the vector of conserved quantities, while the components of f =

(f1, ..., fn) are the fluxes. We assume the flux function f : R
n �→ R

n is smooth and that

the system is strictly hyperbolic; i.e., at each point u the Jacobian matrix A(u) = Df(u)

has n real, distinct eigenvalues

λ1 < · · · < λn . (1.3)

One can then select bases of right and left eigenvectors ri(u), li(u), normalized so that

| ri |= 1, li · rj =




1 if i = j ,

0 if i �= j .
(1.4)
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Since the hyperbolic Cauchy problem is known to be well posed within a space of func-

tions with small total variation, it seems natural to develop a theory of vanishing viscosity

approximations within the same space BV. This was indeed accomplished in [1], in the more

general framework of nonlinear hyperbolic systems not necessarily in conservation form.

The only assumptions needed here are the strict hyperbolicity of system and the small total

variation of the initial data.

Theorem 1.1. Consider the Cauchy problem for the hyperbolic system with viscosity

uε
t + A(uε)uε

x = εuε
xx uε(0, x) = ū(x) . (1.5)

Assume that A(u) are strictly hyperbolic, smoothly depending on u in a neighborhood of

the origin. Then there exist constants C, L, L
′
and δ > 0 such that the following holds. If

Tot.Var.{ū} < δ , ‖ū‖L∞ < δ , (1.6)

then for each ε > 0 the Cauchy problem (2.5)ε has a unique solution uε, defined for all t ≥ 0.

Adopting a semigroup notation, this will be written as t �→ uε(t, ·) .= Sε
t ū. In addition, one

has

BV bounds : Tot.Var.{Sε
t ū} ≤ C Tot.Var.{ū} . (1.7)

L1 stability :
∥∥∥Sε

t ū − Sε
t v̄

∥∥∥
L1

≤ L
∥∥ū − v̄

∥∥
L1 , (1.8)∥∥∥Sε

t ū − Sε
sū

∥∥∥
L1

≤ L
′(|t − s| + |

√
εt −

√
εs|

)
. (1.9)

Convergence: As ε → 0+, the solutions uε converge to the trajectories of a semigroup S

such that ∥∥∥Stū − Ssv̄
∥∥∥

L1
≤ L‖ū − v̄‖L1 + L

′ |t − s| . (1.10)

These vanishing viscosity limits can be regarded as the unique vanishing viscosity solu-

tions of the hyperbolic Cauchy problem

ut + A(u)ux = 0 , u(0, x) = ū(x) . (1.11)

In the conservation case A(u) = Df(u), every vanishing viscosity solution is a weak

solution of

ut + f(u)x = 0 , u(0, x) = ū(x) , (1.12)

satisfying the Liu admissibility conditions (cf. [2]).
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We observe that uε is a solution of (1.5) if and only if the rescaled function u(t, x) .=

uε(εt, εx) is a solution of the parabolic system with unit viscosity

ut + A(u)ux = uxx , (1.13)

with initial data u(0, x) = ū(εx). Clealy, the stretching of the space variable has no effect

on the total variation. Notice however that the value of uε on a fixed time interval [0, T ]

correspond to the values of u on the much longer time interval [0, T
ε ]. To obtain the desired

BV bounds for the viscous solutions uε, we can confine all our analysis to solutions of

(1.13), but we need estimates uniformly valid for all times t ≥ 0, depending only on the

total variation of the initial data ū.

In the proof of Theorem 1.1 in [1], it is proved that (1.13) with initial data

u(0, x) = ū(x) (1.14)

having small total variation, say

Tot.Var.{ū} ≤ δ0 ,

and

zt + [DA(u) · z]ux + A(u)zx = zxx (1.15)

with initial data

z(0, x) = z̄(x) ∈ L1 (1.16)

have solutions u = u(t, x) and z = z(t, x), respectively, defined on an initial time interval

[0, t̂] with t̂ ≈ δ−2
0 . Moreover, it is proved that all higher derivatives of the solutions, decay

quickly.

In this paper, we discuss this situation in detail.

2. Parabolic estimates

Following a standard approach, one can write the parabolic system (1.13) in the form

ut − uxx = −A(u)ux (2.1)

regarding the hyperbolic term A(u)ux as a first order perturbation of the heat equation.

The general solution of (2.1) can then be written as
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u(t) = G(t) ∗ u(0) −
∫ t

0

G(t − s) ∗ [A(u(s))ux(s)]ds

in terms of convolutions with the Gauss kernel

G(t, x) =
1

2
√

πt
e−

x2
4t . (2.2)

From the above integral formura, one can derive local existence, uniqueness and regularity

estimates for solutions of (2.1). Since we shall be dealing with a solution u = u(t, x) having

small total variation, a more effective representation is following. Consider the state

u∗ .= lim
x→−∞u(t, x) , (2.3)

which is independent of time. We then define the matrix A∗ .= A(u∗) and let λ∗
i , r

∗
i , l∗i be

the corresponding eigenvalues and right and left eigenvectors, normalized as in (1.4). It will

be convenient to use “ • ” to denote a directional derivative, so that z • A(u) .= DA(u) · z
indicates the derivative of the matrix valued functon u �→ A(u) in the direction of the vector

z. The systems (1.13) and (1.15) can now be written respectively as

ut + A∗ux − uxx = (A∗ − A(u))ux , (2.4)

zt + A∗zx − zxx = (A∗ − A(u))zx − (z • A(u))ux . (2.5)

Observing that, if u is a solution of (2.4), then z = ux is a paticular solution of the variational

equation (2.5). Therefore, as soon as one proves an a priori bound on zx or zxx, the same

estimate will be valid also for the corresponding derivatives uxx, uxxx.

In both of the equations (2.4), (2.5), we regard the right hand side as a perturbation of

the linear parabolic system with constant coefficients

wt + A∗wx − wxx = 0 . (2.6)

We denote by G∗ the Green kernel for (2.6), so that any solution admits the integral repre-

sentation

w(t, x) =
∫

G∗(t, x − y)w(0, y)dy .

The matrix valued function G∗ can be explicitly computed. If w solves (2.6), then the i-th

component wi
.= l∗i · w satisfies the scalar equation

wi,t + λ∗
i wi,x − wi,xx = 0 .

Therefore wi(t) = G∗
i (t) ∗ wi(0), where
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G∗
i (t, x) =

1
2
√

πt
exp

{
− (x − λ∗

i t)
2

4t

}
.

It is now clear that this Green kernel G∗ = G∗(t, x) satisfies the bounds

‖G∗(t)‖L1 ≤ κ , ‖G∗
x(t)‖L1 ≤ κ√

t
, ‖G∗

xx(t)‖L1 ≤ κ

t
, (2.7)

for some constant κ and all t > 0.

In the following, we consider an initial data u(0, ·) having small total variation, but

possibly discontinuous. We shall prove the local existence of solutions and some estimates

on the decay of higher order derivatives. To get a feeling on this rate of decay, let us first

take a look at this most elementary case.

Example 2.1. The solution to the Cauchy problem for the heat equation

ut − uxx = 0 , u(0, x) =




0 if x < 0 ,

δ0 if x > 0 ,

is computed explicitly as

u(t, x) = δ0

∫ ∞

0

G(t, x − y)dy .

The Gauss kernel (2.2) satisfies

∥∥∥ ∂k−1

∂xk−1
G(t)

∥∥∥
L∞

≤
∥∥∥ ∂k

∂xk
G(t)

∥∥∥
L1

= O(1)t−
k
2 for 1 ≤ k ≤ 3 .

In the present example we have ux(t, x) = δ0G(t, x). Therefore

‖ux(t)‖L∞ ≤ ‖uxx(t)‖L1 = O(1)
δ0√

t
, (2.8)

‖uxx(t)‖L∞ ≤ ‖uxxx(t)‖L1 = O(1)
δ0

t
, (2.9)

‖uxxx(t)‖L∞ = O(1)
δ0

t
√

t
. (2.10)

In this section, our analysis will show that the same decay rates hold for solutions of

the perturbed equation (2.4), restricted to some initial interval [0, t̂]. More precisely, let δ0

measure the order of magnitude of the total variation data, so that

Tot.Var.{u(0, ·)} = O(1)δ0 .

Then:
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• There exists an initial interval [0, t̂], with t̂ = O(1)δ−2
0 on which the solution of (2.4) is

well defined. Its derivatives decay according to the estimates (2.8)-(2.10).

• As long as the total variation remains small, say

‖ux(t)‖L1 ≤ δ0 , (2.12)

the solution can be prolonged in time. In this case, for t > t̂ the higher derivatives satisfy

the bounds

‖ux(t)‖L∞ , ‖uxx(t)‖L1 = O(1)δ2
0 , (2.13)

‖uxx(t)‖L∞ , ‖uxxx(t)‖L1 = O(1)δ3
0 , (2.14)

‖uxxx(t)‖L∞ = O(1)δ4
0 . (2.15)

Proposition 2.2 (Local existence). For δ0 > 0 sufficiently small, consider intial data

u(0, x) = ū(x) , z(0, x) = z̄(x) (2.16)

such that

Tot.Var.{ū} ≤ δ0

2κ
, z̄ ∈ L1 . (2.17)

Then the equations (2.4), (2.5) have solutions u = u(t, x), z = z(t, x) defined on the time

interval [0, t̂], where

t̂
.=

( 1
220κκAδ0

)2

, κA
.= sup

u
{‖DA‖ , ‖D2A‖}

and κ is the constant in (2.7). Moreover one has

‖ux(t)‖L1 ≤ 2κTot.Var.{ū} , ‖z(t)‖L1 ≤ 2κ‖z̄‖L1 for all t ∈ (0, t̂] . (2.18)

Proof. The couple (u, ux), consisting of the solution of (2.2) together with its derivative,

will be obtained as the unique fixed point of a contractive transformation. For simplicity,

we assume here

u∗ .= lim
x→−∞ ū(x) = 0 .

Of course this is not restrictive, since it can always be achieved by ū(x) − ū(−∞). Cosider

the Banach space

E =
{
(u, v); u ∈ C

(
[0, t̂] : L∞(R)

)
, v ∈ L∞(

(0, t̂] : L1(R)
)}

with norm
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∥∥(u, v)
∥∥

E

.= sup
t

max{‖u(t)‖L∞ , ‖v(t)‖L1} .

On E we define the transformation T (u, v) = (û, v̂) for (u, v) ∈ E by setting

û(t) .= G∗(t) ∗ ū +
∫ t

0

G∗(t − s) ∗ [A∗ − A(u(s))]v(s)ds ,

v̂(t) .= G∗
x(t) ∗ ū +

∫ t

0

G∗
x(t − s) ∗ [A∗ − A(u(s))]v(s)ds .

Of course, the above definition implies v̂ = ûx. Observing that

lim
x→−∞G∗(t) ∗ ū = lim

x→−∞ ū = u∗ = 0 ,

we can compute

‖G∗(t) ∗ ū‖L∞ ≤ ‖G∗
x(t) ∗ ū‖L1 ≤ ‖G∗(t)‖L1

∫
R

d|ū(y)| ≤ δ0

2
. (2.19)

Moreover, if

‖u(s)‖L∞ ≤ δ0, ‖v(s)‖L1 ≤ δ0 for all s ∈ (0, t̂] ,

then
∥∥∥

∫ t

0

G∗(t − s) ∗ [A∗ − A(u(s))]v(s)ds
∥∥∥

L∞

≤
∥∥∥

∫ t

0

G∗
x(t − s) ∗ [A∗ − A(u(s))]v(s)ds

∥∥∥
L1

≤
∫ t

0

κ√
t − s

∥∥∥[A∗ − A(u(s))]v(s)
∥∥∥

L1
ds

≤
∫ t

0

κ√
t − s

κAδ0 sup
s∈(0,t̂]

‖v(s)‖L1ds

= κκAδ0 sup
s∈(0,t̂]

‖v(s)‖L1

≤ 2
√

tκκAδ2
0 .

Therefore, it follows that

‖(û, v̂)‖E ≤ δ0

2
+ 2

√
t̂κκAδ2

0 < δ0 .

Hence we see that the transformation T maps the domain

D
.=

{
(u, v) ∈ E : ‖u(t)‖L∞ , ‖v(t)‖L1 ≤ δ0 for all t ∈ (0, t̂]

}

into itself. To prove that T is a strict contraction, we compute the difference T (u, v) −
T (u

′
, v

′
). The norm is estimated as
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‖û − û
′‖L∞ ≤ ‖v̂ − v̂

′‖L1

=
∥∥∥

∫ t

0

G∗
x(t − s) ∗

{
[A∗ − A(u(s))](v(s) − v

′
(s))

+[A(u
′
(s)) − A(u(s))]v

′
(s)

}
ds

∥∥∥
L1

≤
∫ t

0

‖G∗
x(t − s)‖L1‖[A∗ − A(u(s))](v(s) − v

′
(s))

+[A(u
′
(s)) − A(u(s))]v

′
(s)‖L1ds

≤
∫ t

0

κ√
t − s

{
‖DA‖‖u(s)‖L∞‖v(s) − v

′
(s)‖L1

+‖DA‖‖u(s)− u
′
(s)‖L∞‖v′

(s)‖L1

}
ds

≤ 2κκAδ0‖(u − u
′
, v − v

′
)‖E

∫ t

0

1√
t − s

ds

≤ 4
√

tκκAδ0‖(u − u
′
, v − v

′
)‖E .

Hence

‖T (u, v) − T (u
′
, v

′
)‖E ≤ 4

√
t̂κκAδ0‖(u − u

′
, v − v

′
)‖E

=
1
55

‖(u − u
′
, v − v

′
)‖E .

Therefore, the map T is a strict contraction. By the contraction mapping theorem, a unique

fixed point exists in D. Clearly, this provides the solution of (2.4) with the prescribed initial

data.

Having constructed a solution u of (2.4), we now prove the existence of a solution z of

the linearized variational system (2.5), with initial data z̄ ∈ L1. Cosider the Banach space

E
′
=

{
z; z ∈ C

(
[0, t̂] : L1(R)

)
, zx ∈ L∞(

(0, t̂] : L1(R)
)}

with norm ∥∥z
∥∥

E′
.= sup

t
max{‖z(t)‖L1 ,

√
t‖zx(t)‖L1} .

On E
′
we define the transformation T (z) = ẑ for z ∈ E

′
by setting

ẑ(t) .= G∗(t) ∗ z̄ +
∫ t

0

G∗(t − s) ∗
{
[A∗ − A(u(s))]zx(s)

− [z(s) • A(u(s))]ux(s)
}

ds .

Thus u is a solution of (2.4). The bounds (2.7) now yield

‖G∗(t) ∗ z̄‖L1 ≤ κ‖z̄‖L1 , ‖G∗
x(t) ∗ z̄‖L1 ≤ κ√

t
‖z̄‖L1 . (2.20)
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Moreover, using the identity
∫ t

0

1√
s(t − s)

ds =
∫ 1

0

1√
σ(1 − σ)

= π < 4 (2.21)

one obtains the bound
∥∥∥

∫ t

0

G∗(t − s) ∗
{
[A∗ − A(u(s))]zx(s) − [z(s) • A(u(s))]ux(s)

}
ds

∥∥∥
L1

≤
∫ t

0

κ√
s

{
‖DA‖‖u(s)‖L∞

√
s‖zx(s)‖L1 + ‖DA‖

√
s‖zx(s)‖L1‖ux(s)‖L1

}
ds

≤ 4
√

tκκAδ0 sup
s∈(0,t̂]

√
s‖zx(s)‖L1

≤ 4
√

tκκAδ0‖z‖E′

and similarly

∥∥∥
∫ t

0

G∗
x(t − s) ∗

{
[A∗ − A(u(s))]zx(s) − [z(s) • A(u(s))]ux(s)

}
ds

∥∥∥
L1

≤
∫ t

0

κ√
s(t − s)

{
‖DA‖‖u(s)‖L∞

√
s‖zx(s)‖L1

+‖DA‖
√

s‖zx(s)‖L1‖ux(s)‖L1

}
ds

≤ 8κκAδ0 sup
s∈(0,t̂]

√
s‖zx(s)‖L1

≤ 8κκAδ0‖z‖E′ .

Therefore, it follows that

‖ẑ‖E′ ≤ ‖ẑ(t)‖L1 +
√

t‖ẑx(t)‖L1

≤ ‖ẑ(t)‖L1 + sup
t∈(0,t̂]

√
t‖ẑx(t)‖L1

≤ 2κ‖z̄‖L1 + 12
√

t̂κκAδ0 sup
t∈(0,t̂]

√
t‖zx(t)‖L1

≤ 2κ‖z̄‖L1 +
3
55

‖z‖E′

< ∞ .

Hence we see that the transformation T maps the domain E
′
into itself. Observing that

‖ẑ − ẑ
′
‖L1 ≤ 4

√
tκκAδ0‖z − z

′
‖E′

‖ẑx − ẑ
′
x‖L1 ≤ 8κκAδ0‖z − z

′‖E′ ,

it follows that
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‖ẑ(t) − ẑ
′
(t)‖E′ ≤ ‖ẑ(t) − ẑ

′
(t)‖L1 +

√
t‖ẑx(t) − ẑ

′
x(t)‖L1

≤ 12
√

t̂κκAδ0‖z − z
′‖E′

=
3
55

‖z − z
′
‖E′ .

Therefore, the map T is a strict contraction. By the contraction mapping theorem, a unique

fixed point exists in E
′
. Clearly, this provides the solution of (2.5) with the prescribed initial

data.

Finally, we prove (2.18). Because of v = v̂ = ux, it follows that

‖ux(t)‖L1 ≤ ‖G∗
x(t) ∗ ū‖L1 + ‖

∫ t

0

G∗
x(t − s) ∗ [A∗ − A(u(s))]v(s)ds‖L1

≤ κTot.Var.{ū} + 2
√

t̂κκAδ0 sup
t∈(0,t̂]

‖ux(t)‖L1 .

Hence (
1 − 2

√
t̂κκAδ0

)
sup

t∈(0,t̂]

‖ux(t)‖L1 ≤ κTot.Var.{ū} .

Since

1 − 2
√

t̂κκAδ0 =
109
110

,

we obtain

sup
t∈(0,t̂]

‖ux(t)‖L1 ≤ 2κTot.Var.{ū} .

Hence

‖ux(t)‖L1 ≤ 2κTot.Var.{ū} .

Moreover, because of z = ẑ, it follows that

‖z(t)‖L1 + sup
t∈(0,t̂]

√
t‖zx(t)‖L1 ≤ 2κ‖z̄‖L1 + 12

√
t̂κκAδ0 sup

t∈(0,t̂]

√
t‖zx(t)‖L1 .

Hence

‖z(t)‖L1 +
(
1 − 12

√
t̂κκAδ0

)
sup

t∈(0,t̂]

‖zx(t)‖L1 ≤ 2κ‖z̄‖L1 .

Since

1 − 12
√

t̂κκAδ0 =
52
55

,

we obtain
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‖z(t)‖L1 ≤ 2κ‖z̄‖L1 . �

Having established the local existence of a solution, we now prove the decay of its higher

order derivatives.

Proposition 2.3. Let u and z be solutions of the systems (2.4) and (2.5), respectively,

constructed in Proposition 2.2, satisfying the bounds

‖ux(t)‖L1 ≤ δ0, ‖z(t)‖L1 ≤ δ0 , (2.22)

for δ0 > 0 sufficiently small and all t ∈ (0, t̂], where

t̂ =
( 1

220κκAδ0

)2

, κA = sup
u

{
‖DA‖, ‖D2A‖

}
(2.23)

and κ is the constant in (2.7). Then for t ∈ (0, t̂] the following estimates hold.

‖uxx(t)‖L1 , ‖zx(t)‖L1 ≤ 2κδ0√
t

, (2.24)

‖uxxx(t)‖L1 , ‖zxx(t)‖L1 ≤ 5κ2δ0

t
, (2.25)

‖uxxx(t)‖L∞ , ‖zxx(t)‖L∞ ≤ 16κ3δ0

t
√

t
. (2.26)

Proof. It will suffice to establish the desired estimates under the additional assumption

that z(0) is smooth, because the general case will then follow by completion.

We begin with (2.24). The function zx can be represented in terms of convolutions with

the Green kernel G∗, as

zx = G∗
x

( t

2

)
∗ z

( t

2

)
−

∫ t

t
2

G∗
x(t − s) ∗

{
(z • A(u))ux(s)

+ (A(u) − A∗)zx

}
ds . (2.27)

Recalling the identity (2.21) we compute

‖zx(t)‖L1 ≤
∥∥∥G∗

x

( t

2

)∥∥∥
L1

∥∥∥z
( t

2

)∥∥∥
L1

+
∫ t

t
2

‖G∗
x(t − s)‖L1

{
‖z(s)‖L∞‖DA‖‖ux(s)‖L1

+‖u(s)‖L∞‖DA‖‖zx(s)‖L1

}
ds

≤
√

2κ√
t

∥∥∥z
( t

2

)∥∥∥
L1

+ 2κκAδ0

∫ t

t
2

1√
t − s

‖zx(s)‖L1ds
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≤
√

2κ√
t

∥∥∥z
( t

2

)∥∥∥
L1

+ 8κκAδ0 sup
s∈(0,t̂]

√
s‖zx(s)‖L1 .

Hence

√
t‖zx(t)‖L1 ≤

√
2κ

∥∥∥z
( t

2

)∥∥∥
L1

+ 8
√

t̂κκAδ0 sup
t∈(0,t̂]

√
t‖zx(t)‖L1

=
√

2κ
∥∥∥z

( t

2

)∥∥∥
L1

+
2
55

sup
t∈(0,t̂]

√
t‖zx(t)‖L1 .

Observing that

53
55

sup
t∈(0,t̂]

√
t‖zx(t)‖L1 ≤

√
2κ

∥∥∥z
( t

2

)∥∥∥
L1

≤
√

2κδ0 ,

we obtain
√

t‖zx(t)‖L1 ≤ 55
√

2
53

κδ0 < 2κδ0 ,

which proves (2.24).

A similar technique is used to establish (2.25). Indeed, we can write

zxx = G∗
x

( t

2

)
∗ zx

( t

2

)
−

∫ t

t
2

G∗
x(t − s) ∗

{
(z • A(u))ux(s)

+ (A(u) − A∗)zx

}
x
ds . (2.28)

Since ∫ t

t
2

1
s
√

t − s
ds <

1√
t
2

<
2
√

t̂

t
,

we compute

‖zxx‖L1 ≤ κ√
t
2

2κδ0√
t
2

+
∫ t

t
2

κ√
t − s

∥∥∥(DA · z)xux

+(DA · z)uxx + (DA · ux)zx + (A(u) − A∗)zxx

∥∥∥
L1

ds

≤ 4κ2δ0

t
+

∫ t

t
2

κ√
t − s

{
‖D2A‖‖uxx‖2

L1‖z‖L1

+‖DA‖‖zxx‖L1‖ux‖L1 + ‖DA‖‖z‖L1‖uxxx‖L1

+‖DA‖‖ux‖L1‖zxx‖L1 + ‖DA‖‖ux‖L1‖zxx‖L1

}
ds

≤ 4κ2δ0

t
+ 4κκAδ0

{
κ2δ2

0 + sup
s∈(0,t̂]

s‖zxx(s)‖L1

}∫ t

t
2

1
s
√

t − s
ds
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<
4κ2δ0

t
+

8
√

t̂

t
κκAδ0

{
κ2δ2

0 + sup
s∈(0,t̂]

s‖zxx(s)‖L1

}

=
4κ2δ0

t
+

2
55t

{
κ2δ2

0 + sup
s∈(0,t̂]

s‖zxx(s)‖L1

}
.

Hence

t‖zxx(t)‖L1 < 4κ2δ0 +
2
55

κ2δ0 +
2
55

sup
t∈(0,t̂]

t‖zxx(t)‖L1

=
222κ2δ0

55
+

2
55

sup
t∈(0,t̂

t‖zxx(t)‖L1 .

Observing that
(
1 − 2

55

)
sup

t∈(0,t̂]

t‖zxx(t)‖L1 ≤ 222κ2δ0

55
,

we obtain

t‖zxx(t)‖L1 ≤ 222κ2δ0

53
< 5κ2δ0 ,

which proves (2.25).

Finally, since
∫ t

t
2

1
s

3
2
√

t − s
ds <

4
t

<
4
√

t̂

t
√

t
,

using (2.28) we compute

‖zxx‖L∞ ≤ κ√
t
2

5κ2δ0
t
2

+
∫ t

t
2

κ√
t − s

∥∥∥(DA · z)xux

+(DA · z)uxx + (DA · ux)zx + (A(u) − A∗)zxx

∥∥∥
L∞

ds

≤ 10
√

2κ3δ0

t
√

t
+

∫ t

t
2

κ√
t − s

{
‖D2A‖‖ux‖2

L∞‖z‖L∞

+‖DA‖‖zx‖L∞‖ux‖L∞ + ‖DA‖‖z‖L∞‖uxx‖L∞

+‖DA‖‖ux‖L∞‖zx‖L∞ + ‖DA‖‖u‖L∞‖zxx‖L∞
}
ds

≤ 10
√

2κ3δ0

t
√

t
+

∫ t

t
2

κ

s
3
2
√

t − s

{
8κ3κAδ3

0

+30κ3κAδ2
0 + κAδ0 sup

s∈(0,t̂]

s
3
2 ‖zxx(s)‖L∞

}
ds

<
15κ3δ0

t
√

t
+

4
√

t̂κκAδ0

t
√

t

{
8κ3δ2

0 + 30κ3δ0 + sup
s∈(0,t̂]

s
3
2 ‖zxx(s)‖L∞

}
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=
15κ3δ0

t
√

t
+

1
55t

√
t

{
8κ3δ2

0 + 30κ3δ0 + sup
s∈(0,t̂]

s
3
2 ‖zxx(s)‖L∞

}

<
863κ3δ0

55t
√

t
+

1
55t

√
t

sup
s∈(0,t̂]

s
3
2 ‖zxx(s)‖L∞ .

Hence

t
3
2 ‖zxx(t)‖L∞ ≤ 863

55
κ3δ0 +

1
55

sup
t∈(0,t̂]

t
3
2 ‖zxx(t)‖L∞ .

Observing that (
1 − 1

55

)
sup

t∈0,t̂]

t
3
2 ‖zxx(t)‖L∞ ≤ 863

55
κ3δ0 ,

we obtain

t
3
2 ‖zxx(t)‖L∞ ≤ 863

54
κ3δ0 < 16κ3δ0 ,

which proves (2.26). �

The estimates in the following corollary show that as long as Tot.Var.{u(t)} and

‖z(t)‖L1 satisfy the desired bounds, all higher order derivatives of ux and z are small,

with expotentially decaying L1 norms.

Corollary 2.4. In the same setting as in Proposition 2.3, assume that the boubds (2.22)

hold on a larger interval [0, T ]. Then for all t ∈ [t̂, T ],

‖uxx(t)‖L1 , ‖ux(t)‖L∞ , ‖zx(t)‖L1 = O(1)δ2
0 , (2.29)

‖uxxx(t)‖L1 , ‖uxx(t)‖L∞ , ‖zxx(t)‖L1 = O(1)δ3
0 , (2.30)

‖uxxx(t)‖L∞ , ‖zxx(t)‖L∞ = O(1)δ4
0 . (2.31)

Proof. These follow by applying Proposition 2.3 on the interval [t − t̂, t]. �
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