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HANDLEBODY SPLITTINGS OF COMPACT 3-MANIFOLDS WITH
BOUNDARY

SHIN’ICHI SUZUKI

1. INTRODUCTION

Throughout this paper we work in the piecewise-linear category, consisting of simplicial
complexes and piecewise-linear maps.

We call a compact, connected, orientable 3-manifold M with nonempty boundary oM
a bordered 3-manifold. A bordered 3-manifold H is said to be a handlebody of genus
g iff H is the disk-sum (= the boundary connected-sum) of ¢ copies of the solid-torus
D?% x S' (cf. Gross [3], Swarup [15], etc.). A handlebody of genus g is characterazed by a
regular neighborhood N (P; R?) of a connected 1-polyhedron P with the Euler chracteristic
x(P) = 1 — g in the 3-dimensional Euclidean space R®, and by an irreducible bordered
3-manifold M with a connected boundary whose fundamental group 71(M) is a free group
of rank g (see Ochiai [11]).

It is well-known that a closed(=compact, without boundary), connected, orientable

3-manifold M is decomposed into two homeomorphic handlebodies; that is,

Theorem 1.1. (Heegaard Splittings; cf. Seifert-Threlfoll [14], etc.)

(A) For every closed, connected, orientable 8-manifold M, there exist handlebodies H,
and Hy in M such that
(0) Hy = Hy ; say, genus(H;) = genus(Hs) = g,
(1) M=H,UH;,, and
(2) HNHy=0H, NOHy=0H, =0H, = F.

(B) For every bordered 3-manifold M, there exist a handlebody Hy and a set of disjoint-
2-handles(=8-balls) Hy = hy U ---U hg such that
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2 SHIN’ICHI SUZUKI
(0) genus(H) =g,
(1) M=H{UH, , and
(2) each h; attaches for Hy at 0H, = F. O

We call such a (M; Hy, Ho; F) a Heegaard splitting (or H-splitting) for M of genus g,
and call the minimum genus of such splittings for M the Heegaard genus (or H-genus) of
M and denote it by Hg(M).

For an H-splitting for a closed orientable 3-manifold, Haken [4] proved the following
fundamental theorem. (See Hempel (6], Jaco [7] and also Ochiai [12].):

Theorem 1.2. (Haken [4]) If a closed orientable 3-manifold M with a given Heegaard
splitting (M; Hy, Ha; F) contains an essential 2-sphere, then M contains a 2-sphere which

meets F in a single circle. O

Since Hs of a H-splitting for a bordered 3-manifold M is a set of disjoint 3-balls and
so OHy # F, a Haken type theorem could not formulate for a H-splitting for M. Casson-
Gordon [1] has introdued a concept of compression bodies as a generalization of handle-
bodies, and for a bordered 3-manifold defined a new Heegaard splitting using compression
bodies, and formulated and proved a generalization of the Haken theorem.

On the other hand, in 1970 Downig (2] proved that every bordered 3-manifold can be
decomposed into two homeomorphic handlebodies, and Roeling [13] discussed on these
decompositions for bordered 3-manifolds with connected boundary. The purpose of the
paper is to report the Downing’s results [2] and Roeling’s results [13] in slightly modified
and generalized forms, and formulate a Haken type theorem for these decompositions in

the way of Casson-Gordon [1].

2. HANDLEBODY-SPLITTINGS FOR BORDERED 3-MANIFOLDS

For a bordered 3-manifold M, let 8M = By U By U ---U By, here B; is a connected

component for i = 1,2, -+, m, and let g; = genus(B;).

Theorem 2.1. (Downing [2]) For every bordered 3-manifold M, there exist handlebodies
H, and Hy in M which satisfy the followings:

(0) Hy = Hy ; say, genus(H,) = genus(Hj) = g,
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(1) M = HyUH,,
(2) HHNHy =0H, NOH,y = Fy is a connected surface,
(3) HiNBi = 0H; N B; = Fj; is a disk with g; holes, and Fy; = Fy; (j = 1,2;1 =
1,2,---,m),
(4) the homomorphism induced from the inclusion
vim (Fyxi) = m(Hy i), 2 € 0Fy (7=1,2,1=1,2,---,m)

s tnjective. O

We call such a (M; Hy, Ho; Fy) a Downing splitting (or D-splitting) for M of genus g ,
and call the minimum genus of such splittings for. M the Downing genus (or D-genus) of
M and denote it by Dg(M). By the way, Roeling [13] has pointed out that 71 (Fj;; z;) in
Theorem 2.1(4) injects not only into m;(Hj; 2;) but also onto a free factor of m (Hj; z;),

when the boundary M is connected. In fact, it holds the following :

Theorem 2.2. For every bordered 3-manifold M, there exists a D-splitting (M; Hy, Ho; Fp)
which satisfies the followings :

(4) the homomorphism induced from the inclusion
vim (Fyxs) = mi(Hjsxg), ¢ € 0F; = 0Fy (j=1,2,i=1,2,--- ,m)
is injective, and every image vmy(Fj;; ;) is a free factor of the free group m1(Hj; x;)
of rank g ,
(5) there exists a tree T in Fy connecting x1,To, -+, Ty such that the homomorphism
induced from inclusion
vim(Fju-- U, UTz) - m(Hyz),zeT (j=1,2)

is injective, and the image is a free factor of my(Hj;x). O

By Kaneto [8] or Zieschang [16], the conditions (4) and (5) are equivalent to the following

geometric condition :

(6*) there exists a complete system of meridian-disks D; = {Dj, -+, Djq} of H; satisfy-
ing the following :
(i) DjgN(FjU--UFjp) = 0DjpN(Fj U---UFjpy) consists of at most one simple
arc (j=1,2;k=1,2,---,m), and
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(ii) Cl(Fﬂ - N(Djl U---u ng)) is a disk (j = 1,2).

We call a D-splitting for M satisfying the conditions (4) and (5) in Theorem 2.2 or the
condition (5*) a Special Downing splitting (or SD-splitting) for M of genus g, and call the
minimum genus of such splittings for M the Special Downing genus (or SD-genus) of M
and denote it by SDg(M).

It will be noticed that for a closed, connected, orientable 3-manifold, the three splittings,
an H-splitting, a D-splitting and an SD-splitting, are considered as the same one.

In order to prove Theorems 2.1 and 2.2, we need a lemma which is a generalization of
Lemma 1 of Downing {2]. In proving a lemma, the notation and definitions of Downing
[2] will be helpful. If g is a nonnegative integer, let Y(g) be the set of all points (x, y) in
the plane R? which satisfy

z€{0,1,---,9g}and -1 <y <1;or
0<z<gand |y =1
We put
X(g) = {(z,v) € Y(g)ly > 0},
90X (g) = {(z,0) € X(g)},
Z(g)={(z,y) e R?|0<z<g,0<y<1}.

Let H be a handlebody with X a copy of X (g) embedded as a PL subspace of H. X is
said to be properin H if XNOH = 8X , and X is said to be unknotted if X is proper in H
and the embedding of X (g) can be extended to an embedding of Z(g). Let X; U---U X,
be a copy of X(g1)U---U X {(gm) properly embedded as a PL subspace of H. We say that
X1 U U X, is unknotted if the embedding of X(g1) U ---U X (gm) can be extended to
an embedding of Z(g1)U---U Z(gm).

Lemma 2.3. (Downing [2]) Let M’ ba a closed, connected orientable 3-manifold, and
(M'; Wy, Wa; F) be an H-splitting for M'. Let S be a 1-dimensional spine of W,. We
suppose that Yy U---UY,, is a copy of Y(g1) U ---UY(gn) embedded in S. Then there
exists an ambient isotopy {n,} of M’ satisfying the following :

() mNU---UY,)NW; = X;1U---UX;p is a copy of X(g1) U---U X (gm) which is
proper and unknotted in W; for 3 =1,2.
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Proof. The case m = 1 is Lemma 1 of Downing [2], and the proof of the case m > 2, which

is omitted here, is the same as that of the case m = 1. O

Proof of Theorems 2.1 and 2.2. The proof of Theorems 2.1 and 2.2 is the same as
that of Theorem 1 of Downing [2], but for the future reference, we record it here. |

Let V; be a handlebody of genus g; (1 = 1,2,---,m). We sew V; into the boundary
component B; of M to form a closed, connected, orientable 3-manifold M’ = M UV U
-+-UVy,. Let Y; be a copy of Y(g;) which is embedded as a 1-dimensional spine of V; and
we triangulate M’ so that Y; U---UY,, is contained in the 1-skeleton S.

Let W) = N(S; M'), a regular neighborhood of S in M’, and let Wy = Cl(M'~Wy; M").
Then these form an H-splitting (M'; W), Wy; F) for M', where F' = W, = W,. By
Lemma 2.3, there exists an ambient isotopy {7;} of M’ so that

(") m(iu---UY,)NW; = X;;U---UXjp is a copy of X(g1) U---U X(gm) which is
proper and unknotted in W; (j = 1,2).
We put
N=NmMU---UYp); M),
N1 =N(X1U---UXiy; Wh), No = N(Xy U+ U Xop; Wa).
Then, N = Ny UN,, and CI(M’' — N) is homeomorphic to M because {7,} is an ambient
isotopy. From the unknotted condition (*),
H, = Cl(W) — N;), Hy = Cl(W3 — N3)
are homeomorphic handlebodies decomposing CI(M’' — N) = M, and it is easily checked
that this splitting satisfies the conditions (1)~(5) in Theorem, completing the proof. O

3. REMARKS ON GENERA OF BORDERED 3-MANIFOLDS
From the definitions and the proof of Theorems 2.1 and 2.2, we know :
Proposition 3.1. For every bordered 8-manifold M, it holds the following :

(1) SDg(M) = Dg(M).
(2) SDg(M) > g1+ -+ gm = the total genus of OM.

The following theorem has proved by Roeling [13] when m = 1, and the proof of general

case is the same as that of m =1 under the condition (5*).
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Theorem 3.2. (Roeling [13, Theorem 1]) If a bordered 3-manifold M has an SD-splitting
(M; Hy, Hy; Fy) of genus g , then M has an H-splitting of genus g. Thus, for every bordered
3-manifold M, it holds that

Hg(M) < SDg(M) O

Theorem 3.3. (Roeling [13, Theorem 2]) If a bordered 3-manifold M with connected

boundary has an H-splitting (M ; Hy, He; F') of genus g , then M has a D-splitting of genus

g - Thus, for every bordered 3-manifold M with connected boundary, it holds that :
Dg(M) < Hg(M) < SDg(M). O

Closed 3-manifolds of H-genus 0 are chracteralized as the 3-dimensional sphere S3.

Corresponding to this fact, it holds the following :

Proposition 3.4. Let M be a bordered 3-manifold with m boundary components.
SDg(M)=0 <= Hg(M)=0
< M = 83 with M holes

<= M is the connected sum of m copies of the 3-ball D3.
4. HAKEN TYPE THEOREM (1)

A 2-sphere in a 3-manifold M is essential if it does not bound a 3-ball in M. A 3-manifold
M is irreducible if it contains no essential 2-sphere.

The following corresponds to the Haken Theorem 1.2.

Theorem 4.1. Let (M; Hy, Hy; Fy) be an SD-splitting for a bordered 8-manifold M. If
there erists an essential 2-sphere in M, then there exists an essential 2-sphere ¥ in M

such that ¥ N Fy consists of a single loop.

Proof. We will give a mild generalization of this theorem in Theorem 4.3 below, and so
we will not include a proof of Theorem 4.1, but simply refer the reader to Jaco’s account

of Haken’s proof [4, Chapter 1I] or the proof of Theorem 4.3 below. O

Corollary 4.2. Suppose that a bordered 8-manifold M has a decomposition
M = M#---#M,

(as a connected-sum; see Hempel [6]). Then it holds that :
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SDg(M) = SDg(M,) + - - - + SDg(M,). O

Let Fy be a compact orientable surface, and let 77 and J5 be proper 1-dimensional
submanifolds in Fy. We shall say that 7, and J are in reduced position, if 71 N T
consists of a finite number of points crossing one another, and there is no disk on Fj
whose boundary consists of an arc in J; and an arc in Js .

Let M be a bordered 3-manifold and let (M; Hy, Ho; Fy) be an SD-splitting for M.
We call the complete systems of meridian-disks D; of H; and D, of Hy which satisfy
the condition (5%) a special complete systems of meridian-disks. These special complete
systems of meridian-disks D; of H) and D; of Hj are said to be irreducible if 7, = D, N Fy

and J3 = Dy N Fy are in reduced position in Fy.

Theorem 4.3. Let (M; Hy, Hy; Fy) be an SD-splitting for a bordered 8-manifold M, and
let Dj = {Dj, -+, Djg} be a special complete system of meridian-disks of H; (j = 1,2),
and we suppose that Dy and D, are irreducible. Let ¥ be a disjoint union of essential 2-
spheres in M. Then there exist a disjoint union of essential 2-spheres ©* and a complete

system of meridian-disks D3 of Hy such that

(1) X* is obtained from ¥ by ambient I-surgery and isotopy,

(2) each component of ©* meets Fy in a single loop,

() DinZ* =0, D;NE* =0, and DyN(Fj1U---UFj,) = DaN(FjU---UFjy,), where
Fj; is the planar surface 0H; N B;, B; a connected component of OM.

Proof. We choose a 1-dimensional spine So; of the planar surface Fj; so that Sy; consists
of simple loops based at the point z; and each loop intersectd with Dy at a single point
(1t =1,2,---,m). Then we can choose a 1-dimensional spine Sy of Hs so that Sy N Dy;
consists of a single point (i = 1,2,---,m) and Sy NOHy = Soy U -+ U So,,. We may
suppose that Sy intersects transversally with ¥ at a finite number of points. Since H, is a
regular neighborhood of S5 , we may assume that ¥ intersects with Hs at a finite number
of disks, say oy, -, 0p.

Let ¥ = Cl(X—(01U- - -Uoy,); ). Then EoN(D1;U- - -UD)y) consists of a finite number
of simple loops and proper arcs. Since H) is irreducible, we can remove all simple loops by

cut-and-paste, and so we may assume that XN (D U- - -UDi4) consists of a finite number
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of proper arcs, say ay, -, a. Since 9N Fyj =0 fori=1,2,---,m, we can choose an
innermost arc , say aj, on one of Dyy,---, Dyg, say Dyy, if ZgN (D1 U-- ‘UDyg) # 0. Let
A C Dy, be the disk cut off by a; so that

AmEozaAﬂEozal, Aﬂ(FuU'“UFlm):@.

Now, we may apply the same argument as that of Jaco [7, 7~ 9]; that is, we can
deform % along A (by isotopy of type A) so that new £* does not meet at c;. By the
repetition of the procedure, we can get rid of all intersections ay, - - - , oy of £*ND;. Now,
it is easy to see that the new ¥* satisfies the conditions (1), (2) and (3) D, N T* = 0.

Since HyNY* consists of a finite number of disks and £* N (Fp U- - - U Fyn) =0, we can
choose, if necessary, a complete system of meridian-disks D} of Hj so that Dj satisfies the

other conditions in (3), and completing the proof. O

5. HAKEN TYPE THEOREM (2)

A proper disk in a bordered 3-manifold M is said to be essential if it does not cut
off a 3-ball from M. Using essential disks, Gross [3] and Swarup [15] have formulated
another prime decomposition theorem under the boundary connected sum (= disk sum)
for a bordered 3-manifold.

Now the following question immediately come to mind :

Question and Example 5.1. Let (M; Hy, Hy; Fy) be an SD-splitting for a bordered 3-
manifold M. If there exists an essential proper disk in M, then does there exist an essential

proper disk A in M such that AN Fy consists of a single arc ?

The answer is NO in general. The following counter example is due to Dr Kanji Mo-
rimoto. Let K be a simple loop on the boundary S! x S' of the solid torus D? x S1
such that K N D? = K N AD? consists of two crossing points, where D? is a standard
meridian-disk of D? x S'. Let J ¢ D? be a simple proper arc joining the two points.
Let H = N(K U J;D? x S!), and Hy = CI(D? x S' — H;; D? x S'). Then we have
an SD-splitting (D? x S, Hy, Hy; Fy) for D? x S of genus 2, where Fy is the surface
CU(OH, N Int(D? x S'); D? x S'). The meridian-disk D? is an essential proper disk in

D? x S* which is unique up to ambient isotopy of D? x S!, and D? N Fy consists of two
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arcs. It will be noticed that D? x S! has an SD-splitting of genus 1, and the above splitting

is of genus 2. O

Proposition 5.2. Let (M; Hy, Hy; Fy) be an SD-splitting for a bordered S-manifold M.
If there exists an essential 2-sphere in M which is not boundary parallel, then there exists

an essential proper disk A in M such that AN Fy consists of a single arc.

Proof. By Theorem 4.1 (or 4.3), we have an essential 2-sphere ¥ in M such that ¥ N oy

consists of a single loop. Using this ¥, we can easily obtain a required essential disk A. O

The following lemma corresponds to Theorem 4.3.

Lemma 5.3. Let (M; Hy, Hy; Fy) be an SD-splitting for an irreducible bordered 3-manifold
M. If there exists an essential proper disk in M, then there ezist an essential proper disk
A in M and a special complete system of meridian-disks D;j = {Dj1,---,Djy} of H;
(7 = 1,2) satisfying the followings :

(1) AN Fy consists of a finite number of proper arcs,

(2) AN Hj consists of a finite number of proper disks, and each component is essential
in Hj (j=1,2), and

(3) AnDy=0.

Proof. We choose a 1-dimensional spine Sy of Hy as the same way as that of the proof of
Theorem 4.3. Then, weé may consider Hy as a regular neighborhood of Ss.

Let O be an essential proper disk in M. We may assume that O intersects with Sa
transversally in a finite number of points, and so O N Hy consists of a finite number of
proper disks, which are regular neighborhoods of 0N S, in O. Now ON F, consists of
a finite number of proper arcs and loops. We can remove the loops by the same way as
that of the proof of Theorem 4.3 (cf. Jaco [7]), and let A be the new disk. It is easy to
see that A satisfies the conditions (1) and (2). If we cut H, along A, then we have some
handlebodies, and so we can choose a complete system of meridian-disks Dy of Ho with

the condition (3), and completing the proof. O

Using this Lemma, we can prove the following :
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Proposition 5.4. Let (M; Hy, Hy; Fy) be an SD-splitting for an irreducible bordered 3-
manifold M with connected boundary B of genus g. If there exists an essential proper
disk in M and SDg(M) = g, then there exists an essential proper disk A in M such that

AN Fy consists of a single arc.

Proof. Let A C M be an essential proper disk, and D; be a special complete system of
meridian-disks of H; (j = 1, 2) such that these satisfy the conditions of Lemma 5.3. We
cut H; along D; ; we have a 3-ball D?. On the boundary OD;'?, F}1 apears as a disk from
the condition (5*)-(ii). Using A we construct a required disk by the condition (3). The

proof is not so hard but fairly complicated, and we omit here. O

As a corollary to this Proposition, we have the following characterization of handlebodies

by SD-splittings.

Corollary 5.5. Let M be an irreducible bordered 3-manifold with connected boundary B

of genus g, and we suppose that M contains an essential proper disk. Then it holds that :

SDg(M) =g <= M is a handlebody of genus g.
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