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CHAPTER 12

Ergodic chaos in a piecewise linear
cobweb model

Akio Matsumoto

The emergence of complex dynamics in a cobweb model augmented with upper
and lower bounds for output variations is demonstrated. The purpose is to
consider the implications of the output constraints on the dynamic behavior of
an agricultural economy.

The traditional cobweb mode], which has monotonic specifications of de-
mand and supply and naive or adaptive expectations formation, can produce
only three types of dynamics: convergence to an equilibrium, convergence to
period-2 cycles, or divergence. None of these types, however, is satisfactory to
explain the irregular and asymmetric fluctuations of agricultural goods markets.

To overcome those limitations, the literature on nonlinear cobweb dynamics
has been expanding with the help of new developments in nonlinear dynamics. '
Several stability results have been established that show the existence of chaotic
fluctuations as well as the convergence to stable periodic cycles. The literature
fall into two groups. In the first, we have endogenous nonlinear cobweb models
in which the supply-and/or-demand curves are nonlinear (see Jensen and Ur-
ban 1984, Chiarella 1988, Finkenstddt and Kuhbier 1992, and Hommes 1994).
By nonlinear behavioral assumptions, transition maps in the first group are
more or less similar to the logistic map that is able to give rise to complex
dynamics involving chaos. In the second, we find a linear cobweb model with
a upper bound for variations of output. Owing to the upper-quantity constraint,
the transition map in the second ground is also nonlinear (or, more precisely,
piecewise linear) in spite of the linear behavioral specifications. In particular, it
is similar to the tent map that is able to generate complex dynamics. The upper
bound not only prevents the price (or quantity) dynamics from explosive oscil-
lations but also works to generate persistent irregular fluctuations (see Cugno
and Montrucchio 1980, Nusse and Hommes 1990, and Huang 1995). However,

I' The traditional cobweb model has been extended in other directions in which the effects of several
production time lags or the effects of exogenous stochastic factors are analyzed.
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the piecewise linear model with the upper bound has a possibility of almost all
trajectories escaping from the domain of the transition map for some parameter
constellations. In such a case, trajectories are negatively unbounded and thus
the model is unable to track the price~quantity evolution in an economically
meaningful region. Not much has yet been revealed with respect to a device
that makes output trajectories remain nonnegative. The purpose of this chapter
is to demonstrate the possibility of economically meaningful complex dynam-
ics for the case in which a linear cobweb model augments the lower bound
for variations of output in addition to the upper bound. It is intuitively clear
that unstable trajectories bounce back to a bounded region and keep fluctuating
within it. However, it has not yet been investigated whether complex dynamics
may appear in the case in which output variations are bounded from above and
below. This chapter demonstrates, through numerical examples, that the linear
cobweb model augmented with the upper and the lower bounds can generate
a wide spectrum of dynamic behavior ranging from stable periodic cycles to
ergodic chaos.

This chapter is organized as follows. In Section 1 the linear cobweb model
is set up with upper and lower bounds for output variations. In Section 2 the
model is simulated to explore the relations between the output constraints and
the output dynamics. Concluding remarks are made in Section 4.

1 Piecewise linear cobweb model

The simplest version of the traditional cobweb model is made up of the following
four equations in discrete time:

qf = D(p;), demand,

g; = S(pf). supply,

g: = q° = ¢, temporary equilibrium.

p{ = p;—.naive expectation. - (12.1)

This model can be reduced to a one-dimensional difference equation of
output or price:

gi+1=S[D7Hg)l or pi = D7 S(p)]. (12.2)

In the simple version, the demand function as well as the supply func-
tion 1s assumed to be monotonic and thus the composite map, S [D~! (g;)] or
D~'S(p,)], is also monotonic. Its slope evaluated at the equilibrium point
characterizes dynamics, as it equals an eigenvalue of the dynamic equation. As
long as the slope lies between 0° ahd —45°, the equilibrium point is stable.
The stable trajectories of price or quantity converge to a stationary state, which
does not go with persistent fluctuations observed in the real world. As the slope

12



steepens beyond —45°, the equilibrium point is unstable. The unstable trajecto-
ries explosively oscillate, which also contradicts the actual dynamic behavior.
When the slope is equal to —45°, period-2 cycles can appear. However, the
nature of regular cycles is unlike the irregular nature of the actual cycles. Thus
such a simple cobweb model has difficulties in explaining cyclical and erratic
movements observed in statistical data of the agricultural good (e.g., see the
data provided by Finkenstiddt and Kuhbier 1992).

By using linear supply-and-demand functions, Cugno and Montrucchio
(1984) modified the traditional cobweb model by intfoducing an upper bound
a imposed on the positive growth rate of-g;:,

S(pi—) =—a-+bpi—1, a>0,b>0,
D"l(q,) =c—dg, c¢>0.d=>0,
g1 < gl =0 +wq, o>0, | (12.3)

where the last device is found in Day? (1980, 1994). Substituting the second
equation of Eqs. (12.3) into the first and taking account of the third equation
yield the following piecewise linear transition map:

gr+1 = max[(1 + a)g;, bc —a — bdgq.]. ‘ (12.4)

It is a tent map in which a maximizer is
bc —a
Constructing this piecewise linear model, Cugno and Montrucchio (1984)

clarify the following conditions under which the transition map can give rise to
chaotic dynamics:

QM = (12.5)

1+a>bd>2+a

a ~1l+4+a

(12.6)

In condition (12.6), the first condition guarantees trajectories to be nonneg-
ative and the second condition with equality guarantees Oy to be a period-3
point. By the Li—Yorke chaos theorem, the period-3 point implies that transi-
tion map (12.4) satisfying condition (12.6) generates the persistent and irregular
(i.e., chaotic) motions of output. Furthermore, recognizing the fact that transi-
tion map (12.4) is expansive (i.e., the slope in the absolute value is greater than
1) and unimodal in an unstable economy where bd > 1, Nusse and Hommes
(1990) replace condition (12.6) with a weaker condition,

1+a
a

> bd > 1, (12.7)

2 Day (1980, p. 197) considers the symmetric upper and lower constraints.
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Figure 12.1. Examples of chaotic trajectory and escaping ﬁajectory.

and demonstrate that transition map (12.4) generates the Li—Yorke chaos as
well as the “sensitive dependence on initial values” chaos.

There is a possibility that a set of parameters may violate the first inequality
condition of condition (12.6) or (12.7). In such a case, almost all trajectories
(with respect to the Lebesgue measure) eventually escape from a economi-
cally meaningful interval between O and [(bc — a)/(bd)] and fall to zero if a
nonnegative constraint is implicitly assumed or go to negative infinity if not.
Figures 12.1(a) and 12.1(b) are graphical representations of output trajectories
generated by transition map (12.4). In those simulations, we start with the same
initial value of g, and set it to be 0.05. We take ¢ and bc — a to be 1.5 and
5, respectively. The simulations are performed under two different values of
bd: bd is taken to be 20/13 =~ 1.54 in Fig. 12.1(2a) and to be 2 in Fig. 12.1(b).
Because [(1 + a)/a] = 5/3 =~ 1.67. it can be checked that the former value
of bd satisfies condition (7) but the latter violates it. In consequence, as those
figures suggested. the trajectory in Fig. 12.1(a) is chaotically oscillating within
the bounded interval and that in Fig. 12.1(b) escapes from the domain of the
transition map.

To get rid of such economically meaningless dynamics, we modify the
Cugno—Montrucchio version of the cobweb model by introducing the lower
bound for variations of output. If we observe the real economic world, it 1is
not surprising that a competitive firm prevents output tomorrow from chang-
ing drastically from output today, taking into account various constraints such
as capacity constraints, financial constraints, and cautious response to demand

14



uncertainty.” Having recognized this fact, we impose a lower bound B on the
negative growth rate of output,

g1 = qf = (1= Pg-i, 1>p>0. (12.8)

to the Cugno—Montrucchio model given by Eqgs. (12.3). The lower-bound con-
" straint, analogous to the upper-bound constraint, has the effect of preventing
output in period ¢ from decreasing by more than 1008% from the output of
period ¢t — 1.

The lower bound and the upper bound work to compress trajectories into a
cone spanned by g2, = (1 +a)q; and gF = (1 — B)q;— in the phase space. In
consequence, the transition map becomes a map with three line segments and
two kinked points,

_ (1 4+ a)g; for ¢ < Oum :
f(g) =< bc—a—bdg, for Oy <q; < Qm, (12.9)
" (1= 8)q: for g: = Onm
where a minimizer O, is calculated as
bc—a
.= ——. 12.10
Q 1—8+0bd (12.10)

In a compact form, transition map (12.9) is

f(g;) = min{(1 — B)g:, max[(1 + e)q:, bc — a — bdg:]}.

Under the assumptions of positive parameters, bd > 0,bc—a >0, >0,
and B > 0, transition map (12.9) has the tilted-z profile and its nonlinearity
becomes more pronounced when bd gets larger. Let q* be a stationary state
satisfyingg* = f(g™) {i.e.q" = [(bc—a)/(1+bd)]}.Ifbd > 1,itis oscillatory
unstable but fluctuations are bounded by the’upper and the lower constraints of
output. Three cases can be distinguished, depending on the relative magnitudes
between o and B: () (1 +o)(1 = B) =1, (2) (1 + a)(1 — B) < 1;and (3)
(1+a)(1 —pB) > 1. The typical profiles of the transition map under conditions
(1), (2), and (3) are depicted in Figs. 12.2(a), 12.2(b), and 12.2(c), respectively,
where the horizontal axis is ¢; and the vertical axis is g, We call condition (1)
the symmetric condition as the upper-bound locus and the lower-bound locus
deviated from the 45° line by the same degree — the former positively and the
latter negatively. We call condition (2) the upper asymmetric condition as the
upper-bound locus is deviated from the 45° less than the lower-bound locus,
and we call condition (3) the lower asymmetric condition as the lower-bound
locus is deviated less than the upper-bound locus. By simulating the model

3 Huang (1995) presumes that those constraints limit the positive growth rate of output. We assume
that those constraints also can work in the opposite direction to limit the negative growth rate.
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258 AKkio Matsumoto

Figure 12.2. Three profiles of the transition map f(g,) = min{(1 — B)g;,
max[(1 + a)q,, bc —a — bdg,1}.

under the different values of bd(>1), we demonstrate that piecewise linear
cobweb model (12.9) can generate various dynamics under each of these three
- parameter constellations for « and S.

2 Simulation of the model

To explore the dynamic behavior of output g, we simulate the model under
the different values of bd, in which b and 1/d reflect the slopes of supply and
demand curves, respectively. In bifurcation diagrams below, bd is taken to be
a bifurcation parameter and the calculations are done under different values of
« and B.

Symmetric case

The first simulation is shown in Fig. 12.3. It is performed with ¢ = 1 and
B = 0.5, which, as verified, satisfy the symmetric-constraint condition, (1 +
a)y(l —B) = 1. The inverse of the bifurcation parameter, 1/bd, is varied in
decrements of 0.02 from 1 to 0. For each value of 1/bd. f(g;) is iterated 400
times. Although the last 300 iterates are plotted on the vertical axis, only two
points are shown in the bifurcation diagram. Thus Fig. 12.3 suggests that the
symmetric-constrained cobweb model can give rise to period-2 cycles. These
results are verified as follows. In Fig. 12.4, the dashed line is a graph of f(q),
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Figure 12.3. Bifurcation diagram in the symmetric case (1 +a)(1 — ) = L.

g(t+1)

74 10 I1
' g(t)

Figure 12.4. Graphs of f(g) and f2(q) := f[f(q)].

and the solid straight line is a graph of f 2(q) := fLf(q)], the second iteration of
f(g). We denote a local minimum by Q iy := F(Q,) and a local maximum by
Omax = f(Ou). Because Omin < Ou < Om < Qmax holds in the symmetric
case, an interval / := [Omin, Omax] is the trapping interval, that is, any output
trajectories starting outside the interval enter it within finite iterations and one
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starting inside remains there. As can be seen, the graph of f?(g) has two
parts that are identical to the 45° line. This means that the corresponding two
subintervals of I, Iy := [Qmin, Ou] and I} := [Q,, Omax] are sets of fixed
points of f2(q) or sets of periodic points with period 2 of f(q) [i.e., f(Io) =
I, f(I) = Iy.] Every trajectory emanating from an interval Iy U I; U {g*}
enters into o U Iy after finite iterations. Thus we have stable period-2 cycles in
the symmetric case.

Upper aSymmetric case

Because the transition map, f(g), has the upper and the lower bounds, it induces
any trajectories, which are repelled by the unstable equilibrium, to bounce back
to a vicinity of the equilibrium point. Thus we can define a trapping interval by an
interval that eventually traps all trajectories. A restriction of f(g) to the trapping
interval governs the asymptotic behavior of g. Two distinct trapping intervals
can be identified, which depends on the relation between the maximum Q
and the minimizer Q,,: one interval is defined when Q max < O, and the otheris
defined when Qmax > O,,. Rewriting the upper asymmetric condition as e/ (1+
a)] < B, wecandefine (bd)Y by (bd)V := B[(1+a)/a] > 1.Itcanbe checked
that Qmax < O, holds for 1 < bd < (bd)Y and Qpax > Q,, for bd > (bd)V.

Let Vi :=[f(Qmax)> Omax]; It is the trapping interval for 1 < bd < (bd)¥ .
Consequently the restriction of f(g;) to Vi,

flv,(gr) = min[(1l + a)gq;, bc — a — bdq,], (12.11)

generates trajectories that are eventually confined in Vj. It is an asymmetric
tent map that is essentially the same as (12.2). Because it is expansive and uni-
modal, the restricted map f|v, (g;) can generate ergodic chaos.* Furthermore,
we can obtain a complete characterization of transition map (12.9) by applying
the results of Ito et al. (1979) and Day and Shafer (1987). A trajectory gener-
ated by f|v,(g,) 1s depicted in Fig. 12.5(a) in which b4 is taken to be 1.2 and
the bold line on the g(#) axis is the trapping interval V;. It can be seen that a
trajectory keeps aperiodically oscillating around the equilibrium point within
the trapping interval. Let V> 1= [Omin, Omax], which is the trapping interval for
bd > (bd)Y.Because V- contains two kinked points, Oy and O,,, arestriction
of f(g:) to V.

Flhn(g) = max{(1 — B)gq;. min[(1 + a)g,. bc —a — bdgq,]} (12.12)

takes on a tilted-; shape. Day and Schafer (1987) also make some charac-
terizations for such a map with three line segments and two turning points.

4 See Eq. (3) in property 5 of Nusse and Hommes (1990, p. 13). Also see theorem 3 of Day and
Schafer (1987, pp. 352-33).
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q(t+1) g(t+1)
(a)

g(t) q(t)

Figure 12.5. Two time paths of chaotic trajectory generated by f|y,(g) and
of noisy chaos with period 5 by flv,(q).

“ Figure 12.5(b) depicts trajectories generated by f|y,(q;) in which bd is taken
to be 5 and the bold line on the g (¢) axis is the trapping interval V;. It can be seen
that trajectories periodically visit from one interval to another but aperiodically
oscillate within the interval, it is called noisy chaos with period 3.

A bifurcation diagram in the upper asymmetric case is shown in Fig. 12.6,
which has been calculated by fixing « = 2 and 8 = 0.8 and decreasing 1/bd
from 1 to 0. The switching of the transition map from f|y, (g;) to f|v,(q.) takes
place at 1/(bd)Y. Chaotic dynamics in Fig. 12.5(a) emerges along a vertical
dashed line aa, passing through 1/1.2 2~ 0.83 whereas noisy chaos with period
5 in Fig. 12.5(b) emerges along a vertical dashed line bb, passing through a
point 1/5 = 0.2.

Lower asymmetric case

Analysis in the lower asymmetric case is similar to that in the upper asymmetric
case. InFig. 12.7 the bifurcation diagram in the lower asymmetric case is shown.
The simulation is done with @ = 3.2 and 8 = 4/9, which satisfy the lower
asymmetric condition (1 4+ «)(1 — 8) > 1. Once the bifurcation parameter
1/bd is less than unity, the stable-quantity equilibrium becomes unstable and
bifurcates to asymptotically stable period-2 cycles, noisy chaos with period
22, noisy chaos with period 2!, and noisy chaos with period 29 (i.e., chaos).
As 1/bd is decreased further, the asymptotically stable period-3 cycle emerges
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(i.e., window phenomenon occurs). When 1/bd is decreased further, the period-
3 cycle bifurcates to the noisy chaos with period 3 x 2!, one with period 3 x 20,
and then to chaos. As in the upper asymmetric case, the switching of a transition
map takes place. In order to see this, let (bd) % := {a[(1 —B)/B1} > 1, where the
last inequality is due to the lower asymmetric condition. For 1 < bd < (bd)L,
we have Oy < Qmin 50 that Uy := [Qmin, F(Omin)] can be a trapping interval.
A restriction of f(g) to Uj,

flv,(q) = maxfbe. — a — bdg,, (1 — B)q.], (12.13)

has an asymmetric tent-shaped profile. f|y, (g) is, however, not expansive be-
cause it has a slope less than unity (i.e., {[3f]y,(¢)]/3q} = 1 —B < 1)onanin-
terval [ O min, O ) and one greater than unity (i.e., Hldfu,(g)1/3g} = bd > 1)
on [Qu, f(Qmin)]. Although the results of Day and Schafer (1987) cannot be
applied to anonexpansive map, some results of Ito et al. (1979) are useful to char-
acterize it. For bd > (bd)t, we have Qpy, < QOu so that U, := [Qmin, Omax]
can be a trapping interval that has two kinked points, Q and Q,,.

The restriction of the transition map to U, denoted by f|y,(q), is linearly
conjugate to Eq. (12) and possesses a tilted-z-shaped profile. Figure 12.8 shows
two numerical examples of chaotic trajectories; Fig. 12.8(a) is a trajectory
generated by f|y, (¢) that emerges along the vertical dashed line aa in Fig. 12.7,
and Fig. 12.8(b) is a trajectory generated by f|y,(g) that emerges along the
vertical dashed line bb.

gl{t+1) g(t+1)
(a) (b)

45°
g(t) ‘ glt)

Figure 12.8. Two chaotic time paths generated by f|y,(¢) and f]y,(q).
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3 Concluding remarks

This chapter investigates the dynamic structure of the linear cobweb mode] with
upper and lower bounds for variations on output. By the exogenous bounds, the
transition map becomes nonlinear (i.e., piecewise linear) even though the behav-
ioral specifications of supply and demand are linear. Simulating the model under
different values of bd, it was demonstrated that the piecewise linear cobweb
model may generate chaotic behavior if the output constraints are asymmetric
and that it can generate stable period-2 cycles'whose amplitudes depend on the
prevailing parameter constellations (i.e., choice of initial point, values of bd,
etc.) if the output constraints-are symmetric. Although the bifurcation diagrams
in asymmetric cases imply the emergence of chaotic behavior, the bifurcation
example of chaos is different according to whether the output constraints are
upper or lower asymmetric. In the upper symmetric case, the transition map gen-
erates persistent and aperiodic cycles for any values of bd greater than unity. The
control system (i.e., the restriction of the transition map to the trapping interval)
switches from the expansive map to the tilted-z-shaped map as bd is increased.
In consequence, noisy chaos with period 2 and then true chaos appear as bd
exceeds unity. Noisy chaos with period 5 appears if bd is further increased. On
the other hand, in the lower asymmetric case, the control system switches froma
nonexpansive tent map to the tilted-z-shaped map. As bd is increased from unity,
the stable-output equilibrium is unstable and bifurcates to stable period-2 cycles,
to noisy chaos with period 22, to chaos with period 2, and then to true chaos (.e.,
noisy chaos with period 1), the last of which shrinks to zero as bd goes to infinity.

The fact that this model can justify the persistent and aperiodic fluctuations in
a disequilibrium agricultural economy is itself worth note. What implications do
the simulations have for a linear cobweb model augmented with the upper and
lower bounds? The emergence of complex dynamics involving ergodic chaos
depends on a combination of parameters, bd, «, and B.bd > 1is necessary for
generations of chaos in the asymmetric cases. Here b measures the steepness of
the supply curve, a is the upper bound imposed on the positive growth rate of
output, and # is the lower bound on the negative growth rate. These are decision
variables of a producer. d measures the steepness of the inverse demand curve
and is a decision variable of a consumer. Thus it can be stated that one source of
such complex dynamics is an interaction between agents in the disequilibrium
market. Although those parameters’ values are exogenously given within our
framework, it is of interest to investigate how each agent determines values of
his or her decision variables. ‘
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Abstract

Chaos occurs in a nonlinear cobweb model with normal demand and supply, naive expectations
and adaptive production adjustment. The model differs from existing ones in that it includes adap-
_ tive production adjustment instead of adaptive expectations. The model exhibits observable chaos
(strange attractors) as well as topological chaos (horseshoes) associated with homoclinic points.
As numerical simulations show, the faster suppliers adjust their production and the more inelastic
demand is, the more likely the market behaves chaotically. ©2000 Elsevier Science B.V. All rights
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1. Introduction

A farmer decides how much to produce in a certain period before price is determined
and sales revenues are received. Some economists represent anticipated sales prices by
model-consistent expectations. According to their view, farmers have the true model of the
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product market. Many empirical researchers, for example Ito (1990) and Hey (1994), test
the hypothesis that expectations are model-consistent and reject it.

Nevertheless, the farmer has to forecast the price. Experimental evidence suggests that
subjects use past market prices to forecast and follow rules of thumb. Williams (1987), e.g.,
shows that the adaptive expectation hypothesis (including naive forecasts, which are a spe-
cial case of adaptive expectations) describes expectations in an experimental double-auction
market better than the extrapolative one. This result is consistent with the common behavior
of the farmer who uses the most recently received price as his prediction for the next period.

Such naive expectations are investigated in the formal cobweb literature starting with
Kaldor (1934), Leontief (1934) and Ezekiel (1938). In models with normal supply and
demand only three types of simple dynamics are possible: convergence to an equilibrium,
two-period cycles or exploding oscillations. If expectations are not naive but adaptive,
price behavior in the model with linear supply and demand is also simple (Nerlove 1958).
Unfortunately, the behavior of prices in agricultural markets is not so simple. !

Artstein (1983), Jensen and Urban (1984), Lichtenberg and Ujihara (1989) and Day
and Hanson (1991) show that complex price behavior is possible if at least either demand
or supply is non-monotonic. Hommes (1991, 1994), Finkenstiddt and Kuhbier (1992) and
Finkenstidt (1995) find complex behavmr in normal markets with adaptive expectations
when supply or demand is nonlinear.2 This literature assumes that farmers make a best
(optimizing) response given current expectations.

In this paper we investigate an alternative rule which specifies that farmers adjust par-
tially in the direction of the best current response. Such adjustment is a behavioral response
to uncertainty and adjustment costs. In order to show that our model exhibits topological
and observable chaos, we exploit some mathematical results concerning homoclinic points.
The occurrence of topological chaos is proved by applying the classical Homoclinic Point
Theorem which asserts that a transverse homoclinic orbit implies a horseshoe. Under dif-
ferentiability, this result is a little sharper than that by the Li-Yorke Theorem in regard to
continuous maps on interval. Furthermore, the occurrence of observable chaos (i.e., strange
attractors) for a large set of parameter values is shown, under some minor assumption, with
the aid of a recent result concerning the homoclinic bifurcation by Mora and Viana (1993).
In this way, we detect chaotic behavior in a theoretically large and empirically relevant
region of price elasticities of demand and adjustment speeds. The faster suppliers adjust
their production and the more inelastic the demand is, the more likely the market behaves
chaotically.

2. The model

At period t, a supplier decides his production x;.41 for period ¢ + 1. As he knows well,
even a production plan that maximizes profits may turn out to be a disaster in reality. He
calculates the profit maximum X4 and uses it as a target of adjustment. The calculation

| Whereas many agricultural markets are regulated to stabilize prices, see for example, Finkenstddt (1995) for
chaot]c price movements of egg, potato and pig in Northern Germany.
2 See Lorenz (1993) for a general introduction to complex economic behavior due to various kind of nonlinearities.
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. . - ~ . ol . . .
is done subject to the quadratic cost function (h/2)x~. b > 0 and naive price expectation,
which means that his price expectation for the next period is equal to the current price p;.
The resulting amount is

P

X = |
Ny 1 A (h

He has to adjust cautiously since every theoretically advantageous change may or may not
enlarge real profits. Therefore, he is assumed not to produce ¥, | immediately but to adjust
adaptively his last period’s production in the direction of ¥, . This is a simple hedging
rule in the uncertain real world and is expressed as the equation:

X =X+ o (-;I-H - X)), (2)

where a € (0, 1) is the speed of adjustment. This equation, which can be rationalized by
adjustment costs, is one of the earliest ways of incorporating adaptive processes explic-
itly into economic models (Nerlove, 1958) and is often used in econometric studies of
macroeconomic behaviors. ?

In order to bridge the gap between a single supplier and the market as a whole, we suppose
that all n suppliers are homogeneous and behave identically. Therefore, the aggregate supply
X is given by

X[ = HXy. (3)
We assume the following monotonic inverse demand function with constant price

elasticity of 1/8(8 > 0) :

C
Pr=—z . 4)
! Yﬁ

!
where ¥; is demand at period 1 and ¢ is a positive shill parameter, which can be regarded
as the extent of the market. Finally, price is set so that the market clears at each period:
Yr =X, (5)
Summarizing the model, we substitute Egs. (1) and (3)—(5) into Eq. (2) and obtain the
one-dimensional, discrete-time dynamical equation:

oxcn
Xep1 = (I —a) X, + —. (6)
bX ,

t

To make the analysis below easier, let us consider the variable transformation:

b —1/(1+8)
X( L= — Zr-
Ch

Substituting into Eq. (6), we get

(03
Zr41 :(1 *‘O’)Z{’f‘—ﬁ‘- (7)

<

3 Fora survey of adaptive behavior, see Day (1998).

27



104 T, Onozaki et al./J. of Econoniic Behavior & Org. 41 (2000) 101-115

As the transformation is linear. X, behaves periodically if z; does so, and X, behaves
aperiodically if z, does so, regardless of the number of suppliers 1. the slope of marginal
cost b and the extent of the market ¢. These parameters change the value of z; into that of
X, through the scalar (h/en)y~UFA  Essential parameters for the qualitative behavior of
our model are the adjustment speed of production & and price elasticity of demand 1/8. In
what follows. we concentrate only on the dynamics of Eq. (7).

3. Analysis of the model

Our model (7) can be reformulated by the two-parameter family of maps fo.p : Ryt —
Ryyas

Japlz) = =)z + % (. B) € (0. 1) x (0. c0). (8)

which are also expressed as [ orsimply f. Note that for any pair (o, B) € (0. 1) x (0. 00),
o* = 1 is the unique fixed point for f.i.e.

feH=="e=1

The first and second derivatives are calculated as

y 5 " I+
‘]‘(Z):l'—a’——:?—é/_’;, f (‘Z):?"B‘E—z“:ﬂ‘é—)>0, ZER++,

which imply that f is astrictly convex and unimodal function on Ry (see Fig. 1) with its
minimum at the critical point ‘

(Xﬂ /(M)
z :{ } =0 (o, B) (= 0(B) = 0).

| —«
The fixed point is a repeller if
ffih=1—a—-af <-—1,
which is equivalently rewritten as

2—«

o

B > &)

In the following subsections we present two propositions concerning the complex behav-

ior of our model. The proofs and the related fundamental notions of symbolic dynamics are
given in the Appendix.

3.1. Existence of horseshoes
First we present a proposition which states that for every sulfficiently large 8, the map

fp exhibits a horseshoe. By a horseshoe we mean here a compact invariant set on which
some iterate of f is topologically conjugate to the one-sided full-shift on two symbols. The
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Fig. I. Graph of the map (8).

existence of a horseshoe is assured by that of a transverse homoclinic point. We say thatamap
exhibits ropological chaos either if it has a horseshoe or, alternatively, if the topological
entropy of the map is positive.4 Although a map restricted on horseshoes behaves in a
complicated way. the existence of horseshoes itself does not assure complex dynamics
in the long run; the economic system may eventually settle down to a periodic motion
even if horseshoes are present. Nevertheless, horseshoes may often generate long-lasting
complicated transient dynamics, and even small external shocks are likely to give rise to
erratic motions of a system which are otherwise periodic in the long run. Finding horseshoes
in our model is, therefore, not insignificant even from an empirical viewpoint.
Our result is summarized as follows:

Proposition 1. Fix an o € (0, 1) arbitrarily. Then there exists a number B = Bla) >
(2 — a)/a such that fg in Eq. (8) has a horseshoe for each p = p.

One of the important features of a horseshoe (more precisely, a hyperbolic set) is the
stability of the associated map against C"-perturbations (r > 1) (see e.g. de Melo and
van Strien (1993), p. 225, Theorem 2.3). Roughly speaking, once the economic system
described by fg possesses horseshoes, they will be preserved despite small changes in the
underlying economic structure.

4See. e.g. Block and Coppel (1992) for details about topological entropy.
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3.2. Existence of strange attractors

Next we present a proposition which states that, under some generic condition, our model
frequently exhibits observable chaos in the sense of strange attractors. While horseshoes
do not assure complex dynamics in the long run, strange attractors do assure that we can
observe erratic behavior for some large set of initial conditions. Hence, frequent occurrence
of observable chaos seems to be useful in explaining irregular behavior of economic time
series.

To state our proposition, we first introduce some basic notions.

Definition. A compact invariant set A C R for f is called an attractor if its stable set
WS(A) = [z € Rllimy—eod(f"(z), A) = 0] contains a nonempty interior and f has a
dense orbit in A. An attractor A here is said to be strange if it contains a dense orbit with
positive Lyapunov exponent, i.e., there is a point z € A for which {f"(z)},>0 = A and
limy, - ot~ S 1 logl f'(f7 ' @)] > 0.

Strange attractors will appear via homoclinic bifurcation, that is, when a non-degenerate
homoclinic tangency unfolds generically. In other words, they will appear when the critical
point (B) with f”(8) 0 which is contained in a homoclinic orbit to the repeller z* = |
for some B = B* passes through z* at non-zero speed for some iterate of fg as B varies.
Formally, (d/'dﬁ)f/g (8(B)) # 0at B = p* for some n with ff’;* (6(B*)) = 1. See Mora and
Viana (1993) for a full explanation.

The following result shows that our model may exhibit observable chaos for measure-
theoretically large sets of parameter values.

Proposition 2. Forany o € (0, 1), there is generically a positive measure set of parameter
values of B, E C Ry, such that for every € E the map fg exhibits a strange attractor.

4. Numerical simulations of the model

In this section we perform some numerical simulations and show that those are supported
by the theoretical results in the previous section.

First we depict the standard, one-parameter bifurcation plot of Eq. (8) with respect to
B in Fig. 2 and the corresponding topological entropy (TE) and Lyapunov exponent (LE)
in Figs. 3 and 4.° Intuitively, topological entropy measures the exponential growth rate
of the number of foldings of the graph of the nth iterate of a map. By definition TE > 0,
and if TE > 0 then the map exhibits topological chaos. From Fig. 3 we can observe that
topological chaos occurs in our model for values of B larger than B7£-0 ~ 3.0008. Propo-
sition | states that our model may exhibit topological chaos when g satisfies the condi-
tion (9). We can confirm this as follows: the value of o used in the calculation of TE is
0.7 and substituting into B = (2 —«a) /a gives B ~ 1.857 < PBreso which is found in
Fig. 2.6

5 To calculate topological entropy. we utilized the algorithm presented by Block et al. (1989).
6 ;’3 is exactly the period-doubling bilurcation value at which a single stable fixed point splits into a stable period-2
cycle.
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B 2 2.5 3 35 4 4.5 g
Fig. 2. Bifurcation diagram with respect to B(1.5 < B <47)witha =0.7.
TE
1.
08t
0.6 +
04}
02t
B

2 2.5 3 35 4 4.5
Fig. 3. Graph of topological entropy corresponding to Fig. 1 with @ = 0.7. Topological entropy is measured using

base 2 logarithms so that the vertical axis is [0, 1]. A positive value for topological entropy indicates topological
chaos. '

The Lyapunov exponent expresses the exponential rate of divergence between two arbi-
trarily close orbits as time elapses. If LE > 0 then the map exhibits observable chaos in the
sense that it has strange attractors, and no stable-periodic orbit has a positive Lyapunov ex-
ponent. Values of 8 such that Lyapunov exponents have a positive sign in Fig. 4 correspond
to those of shaded area in Fig. 2, and observable chaos occurs for such values of B.
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Fig. 4. Graph of Lyapunov exponent corresponding to Fig. | with o = 0.7. A positive value of the Lyapunov
exponent indicates observable chaos.

As stated in the previous section, the observable motions may be indeed periodic even
if topological chaos is present. Comparing Figs. 2 and 3, it is realized that in the region
of TE > 0 there exist windows of periodic behavior. On the other hand, if there appear
periodic motions then LE < (. Therefore, we can classify chaos to be present in our model
as follows:

LE > (0 : observable chaos,
TE > 0: topological chaos
LE < 0: windows (latent chaos).
In addition, the Schwarzian derivative of f atz is
aB(l+ ) [af(B — 1) +2(1 — )2+ p)z'*F]
2t — )2+ + apz]’

Sf(z) =~

]

and it is negative if Eq. (9) is satisfied. Therefore, f has at most one periodic attractor. 7
As mentioned above, the essential parameters in our model are o and 8. Thus a question
arises here: what happens to the above bifurcation plot if o also varies? To answer this, we
draw two kinds of 2-parameter diagrams after the manner of Gallas and Nusse (1996): one
is an iso-period plot and the other is an observable chaos plot. The former is the union of all
iso-period- p plots for p € [1, p] C N (in this paper p = 64). And each iso-period-p plot
is made of the set in the parameter space such that for each element in this set the trajectory
through some fixed initial point xg converges to a stable period-p cycle. The latter consists
of the set in the parameter space such that for each element in this set the orbit through

7 See. e.g. Devaney (1989). pp. 69fF.
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Fig. 5. Iso-period plot for the map (8). The green area corresponds to period-1 cycles (a stable fixed point), the
dark blue area to period-2 cycles. the yellow area to period-4 cycles, and the red area to period-8 cycles. The blue
and magenta areas correspond to period-3 and period-6 cycles.

some fixed initial point vy is observably chaotic in the sense that it has a positive Lyapunov
exponent.

We consider the region K = {(«, 8)]0 <o < 1,0 < 8 < 10}. The resulting iso-period
plot is shown in Fig. 5. In this figure, the green area exhibits pairs of parameter values
for which every trajectory converges to a unique stable fixed point. The dark blue area
consists of pairs of parameter values for which every trajectory converges to a period-2
cycle. The blue area corresponds to a period-3 cycle, the yellow area corresponds to
a period-4 cycle, the magenta area corresponds to a period-6 cycle, and the red area
corresponds to a period-8 cycle, etc. We emphasize that the border between the green
area and the blue area is expressed by the equation § = (2 — «) /«, the upper region
of which satisfies Eq. (9); therefore, the fixed point of the model is unstable
there.

The resulting chaos plot is presented in Fig. 6. The black area in this figure is the set
of parameters for which our model exhibits observable chaos in the sense of a positive
Lyapunov exponent. This figure implies that observable chaos occurs when o and § are
large. In other words, the faster suppliers adjust their production and the more inelastic
demand is, the more likely the market behaves chaotically. :

Finally, it should be stressed that these figures suggest that periodic behavior and observ-
ably chaotic behavior are complementary in the sense that the union of the colored area
in Fig. 5 and the black region in Fig. 6 is equal to the whole region of K. But unfortu-
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10

Fig. 6. Observable chaos plot for the map (8). The black arca is the set of (a, f) for which the model has strange
attractors.

nately, as Gallas and Nusse (1996) point out, there exists no theoretical result which assures
this fact.

5. Concluding remarks

We have investigated the dynamics of a nonlinear cobweb model where suppliers adjust
cautiously to hedge against the uncertain world. If suppliers adapt slowly, they may stabi-
lize the market. Adaptive adjustment could be a reasonable strategy to prevent large price
fluctuations. Whether the cautious behavior stabilizes the market effectively depends on
how much consumers change their demand as price changes.

Itis well-known that price elasticities of demand for essential goods like food are relatively
low. In fact, according to estimates by Pagoulatos and Sorensen (1986), the majority of US
food and tobacco industries has price elasticities of less than 1/5. In such markets, chaos
occurs even if adjustment is rather cautious.

The main difference between our model and existing ones consists of the adaptive ad-
justment hypothesis. Future research is required to better understand the adaptive behavior
of economic agents. Our model is so simple that we consider it a mere stepping-stone;
nevertheless, it shows that the adaptive adjustment approach is a promising research agenda
for explaining complex economic phenomena.
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Appendix

Some fundamental notions of symbolic dynamics

Let T, denote the setof all infinite sequences s = (sp.82.83, ... ), wheres; = Qor 1 for
i € N. We deline a metric on X by the function

[ee]

d(s. 1) = Z\l—z—«ﬂ s.1€ Ta.
i=1

The metric space (£;.d) is then compact, totally disconnected, and perfect, i.e., it is a

Cantor set. The shift map o : £; — X is defined by o((s1, 52, ...)) = (52,83, ...),

which is referred to as the one-sided shift on two symbols.

The shift map o : £, — X has the following properties:

(i) T, contains a countably infinite set of periodic orbits;

(i) £, contains an uncountably infinite set of aperiodic orbits:

(iii) the set of periodic points is dense in Z7;

(iv) o : Ty — Xp is topologically mixing, i.e., for every pair of nonempty open sets
U.V C T, there ism > | such that o’ (U) NV ## ¢ forall n = m;

(V) 0 : £y — X is expansive, i.e., there is § > 0 such that for any 5,1 € Zo(s # 1),
there is m > | with d(a" (s), "' (1)) = 6.

By definition, topological mixing property implies topological transitivity, and expan-
siveness implies sensitive dependence on initial conditions.

Let X and ¥ be metric spaces, and let f : X — X andg : Y — Y be continuous
maps. The map f is said to be topologically conjugate (or equivalent) to g if there exists a
homeomorphism /1 : X — Y (one-to-one, onto, continuous map with continuous inverse)
such that

ho f(x)=goh(x) forevery x € X.

i.e., the diagram

commutes. The map f is said to be ropologically semi-conjugate to g if there is an endo-
morphism h of X onto Y (i.e., continuous map of X onto V) suchthatho f = g oh.

Let us next consider a C'-map f of (an interval of) R into itself. Let p € R be a repelling
hyperbolic fixed point (or repeller) of f,i.e., f(p) = p and | f'(p)| > 1.Letg € R(g # p)
beapoint such that " (p) = ¢ forsomen € Nandthat there exists a sequence {g_;}To, with
the property that ¢ = go. f(g—i-1) = g_i(i = O)yand g_; — pli — o0). The sequence
HO (g, p) = {gq. [(q). F2q), ... (@) = plU {g=i)2, is said to be a homoclinic
orbit of ¢ to p. An element of the homoclinic orbit x € HO r(¢. p) is a homoclinic point
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to p. A homoclinic orbit HO j(¢. p) is said to be transverse it f'(z) # 0 for every
e HO (g, ).

Finally, we introduce an important theorem™ which is utilized to prove Proposition 1.

Theorem (Homoclinic Point Theorem for C'-Map on Interval). Let [ @ R — R be a
Cl-map and p € R be a repelling hivperbolic fixed point. If [ has a transverse homoclinic
I / ] LAY : / /.

orbit to p, then there exist a number n € N and a compact set A C R such that

1)y f"(AN) = A

(i) p e A;

i) FUIA - A — A s topologically conjugate to the one-sided full-shift on two symbols
. 1010; . j . ] )
0 Ty = L. ie., there is a homeomorphism h @ A — Zowithho f"|A =0 oh.

The set A here is called a horseshoe. and if the map [ has such a set, we say that the
map f has a horseshoe. By topological conjugacy. f"|A inherits complicated dynamical
properties of the shift map o |Z2 described above. Furthermore, if f is a continuous map
on interval and has a periodic point of period three, then for some 1 and some invariant set
A for f, f"IA is topologically semi-conjugate to o | Xa. See Block and Coppel (1992) for
more detail.

5.1. Proof of Proposition ]

By the Homoclinic Point Theorem in the previous subsection, it suffices to show that the
map f has a transverse homoclinic orbit. To show this we have to make some preparations.

Lemma 1. The following statements hold:

i) 0< f(O) <1 <0,

(il) there is a unigue point q = q(f) > 6 such that f(g) = 1.

Proof. (i) From Eq. (9), we get the last inequality. Since f has its global minimum at ¢,
we get the second inequality (see Fig. 1). (ii) Since f(6) < 1 and f(x) > 1 for large x,
there is ¢ > 6 with f(g) = 1. Since f(x) is strictly increasing on the interval (6, 00), the
uniqueness follows (see Fig. 1). 0

Let us define a piecewise linear map Ly : R — R by

~
IA

L) = fe(Hz =D+ 1,

I,
Lg(z) = h) = (e~ 1)+ 1. N

>

[ ]

Clearly, L(1) = l and L™"(z) — 1(n — oo) foreach z € R (see Fig. 7).

Lemma 2. There is a number By > (2 — «)/« such that for every f > By and for every
z € [ = [fp(0). 0] there is a unique sequence {z_f}i“;() C I suchthatzy =z, f(z=i=1) =
i ifori >0,andz_; = lasi — o0.

Proof. Since [z is one-to-one on the interval | fg(6). ]. the conclusion holds if given
sufficiently large 8, fp(z) > {1(2) forz € [ fp(@). 1) and fp(2) < (D) forz € (1,08]. By

& For the proof of this theorem sce ¢.g. Devaney (1989).
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Fig. 7. Graph of the map (8) and the piecewise linear m‘up Ly(z).

the strict convexity of f and by the construction of L, it is sufficient to show that for g large
enough, the inequality f(0) < [2(0). i.e.,

fp(B) +06(p) <2

holds. This is verified by the fact

Olﬁ l/(ﬂ-{—l)" |
_a !

lim & = li
533;0 B) ﬁlm [I

— 00

ﬂ“’gofﬂ((?(ﬂ)) = ﬁlingo [(1 —a)B(B) + aé)(ﬁ)"ﬂ] S

which completes the proof. U

Lemma 3. There is a number 2 > (2 — a)/a such that for every B > B the following
inequality holds:

0 < fp0(B) <1 <0(B) <q(B) < fHOP)).

Proof. By Lemma I, it suffices to show that for any arbitrarily large g, the following
inequality holds:

q < f*®). (AD)
Let us define a function [ by

()= f(Hz—D+1l=0—-a—af)z—1)+ 1
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Again by the strict convexity of f, we obtain
Lo fg0(B) < fEB(B)).
Note that fg(z) > (I — )z holds for every ¢ € R4 (see Fig. 1), so we have
1
qg(p) < —.
| -«

To obtain the inequality (A.1), it is therefore sufficient to show

<lo fg(8(B))

—a ™

for any sufficiently large . Noting that
Lo f50(8) = (1 —a —af) [(1 —e)0(B) +ab(B)F —1]+1,

we get limg_, ool © fg(6(B)) = o0o. So the lemma follows. O

Proof of Proposition 1. Let § = max{f|, 2} and pick 8 > B arbitrarily. By Lemma 3,
there is a point ¢’ € (f(6), 1) such that f(¢') = ¢. By Lemma 2, there is a sequence
{g" 12, C I such that q; = g fq ;) =q ;G =0),and g_; — (i — 00).
Hence, together with f2(g"y = 1, ¢’ is a homoclinic point to the repeller 1. Clearly, for
any homoclinic point z € HO,(g". 1) = {¢', f(g'), fHg") = 11U {g",1%2,, we have
z # 0 and so f'(z) # 0, which implies that the homoclinic orbit of ¢" to I, HO (g’ 1),1s
transverse. By the Homoclinic Point Theorem, the statement is proved. (]

5.2. Proof of Proposition 2

To find the abundance of strange attractors for the family of maps { fg}g, we exploit the
theorem by Mora and Viana (1993), Theorem C.

Proof of Proposition 2. We show that the (non-degenerate) critical point () is contained
in the homoclinic orbit of the repelling fixed point z* = 1 for some sequence of B-values.
Note first that the critical point @ is always non-degenerate, i.e., f"(9) # 0, since f”(x) > 0
forall x € Ry4.

We can observe that there is a sequence of eventually fixed points depending smoothly

on f3,
0B)={qi(®lgi(B)=[fp(gi+1(B)) for ieN, qg=q <q2<- - <qu<--1}

where q; () — (1 — o) <ooas B — oo foreveryi € N,

Let us fix @ € (0, ) arbitrarily and take 8 = f; as in Lemma 2. Then, from the observa-
tion above, there is ¢; (1) € Q(B;) such that fgl @(B1)) < qi(B1). Since f;(@(ﬁ)) — 0
as B —> oo by the proof of Lemma 3, and g; (8) — (1 — o)t as B — oo, there is B* > B
such that fg* (6(B*)) = q;(B*), which implies that the backward orbit of §(f*) converges
to the repelling fixed point z* = 1 and there is an integer n such that f.(9(8%)) = | and
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fg,i (6(B*)) # 1 for m < n. Hence, the non-degenerate critical point g(B*) lies in a homo-
clinic orbit to the fixed point z* = 1 (homoclinic tangency). Since (9/98) f(x. ) =0 if
and only if x = 1, we may generically assume that (d/dﬁ)f;; (B(B)) # 0at g = p*, which
implies that, in our case, this homoclinic tangency unfolds generically. By Theorem C in
Mora and Viana (1993), the statement of Proposition 2 follows. O
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Abstract

This study demonstrates the possibility that chaotic fluctuations may be preferable to a steady state. For this purpose,
it uses a simple macro disequilibrium model in which inventory can be chaotically fluctuated. In such a model, the profit
of a firm as well as the utility of a consumer fluctuates. This raises the question of their average profitability and
preferability in the long run. This study, with the aid of numerical examples, demonstrates that the long-run average
profit can be greater than the profit obtained at the steady state while the long-run average utility is the same as the utility
obtained at the steady state. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction market instability, that is, the market diverges from
a long-run steady-state equilibrium while remain-

In the recent literature, periodic or aperiodic ing bounded. Hommes extends some results of H-I:
motions of aggregate inventory have been demon- he shows that a deterministic nonlinear endogen-
strated in a la Metzlerian inventory cycle models ous relationship generates chaotic motions, that is,
with the help of the nonlinear dynamic theory. seemingly random behavior. In those studies, the
Honkapohja and Ito [1] (H-1 henceforth), Eckalbar focus is mainly placed on the existence of persistent
[2], Hommes [3], Franke and Lux [4], and inventory fluctuations. The continuance of inven-
Matsumoto [5] are only a few. Among them, of tory fluctuations means the continuing presence of
particular relevance to this study are [1,3]. In disequilibrium between supply and demand. How-
particular, H-I show a possibility of the long-run ever, such persistent disequilibrium of the market is

regarded as an unfavorable phenomenon in the
traditional economics. It is thus imperative to in-
vestigate the nature of long-run market dynamics
in order to understand the economic implications

*This is a condensed version of a paper entitled Preferable
Disequilibrium Dynamics, a part of which was presented at the
10th International Symposium on Inventories held in Budapest,

Hungary, August 23-28, 1998. T would like to thank two anony- of chaotic fluctuations.
mous referees, M. Gali and the participants of the Symposium The present study constructsa simple, macroeco-
for their comments and constructive suggestions. [ gratefully nomic, disequilibrium model with inventory and
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for Studies on Economics and Finance. Needless to say, any

remaining errors are mine. for the case in which inventory trajectories are
*Tel: 4+ 81-426-74-3351: fax: + 81-426-74-3425. bounded but never reach a steady state. In such an
E-mail address: akiom@tamacc.chuo-u.ac.jp (A. Matsumoto). unstable economy, the profits of firms as well as the
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utilities of consumers also fluctuate. This raises
the question of their average profits and utilities
in the long run. This study demonstrates, specifying
the dynamic system, that the long-run average
profit of the firm can be larger than the steady-state
profit while the long-run average utility of the con-
sumer is the same as the steady-state utility. These
results indicate that the inventory fluctuations may
be preferable to a steady state and provide new
insights into the chaotic fluctuations in perpetual
disequilibrium.

This study is organized as follows. Section 2 out-
lines the basic macroeconomic model. Section 3 de-
rives a dynamical system of the model. Section 4
provides possible microeconomic underpinnings of
the macroeconomic model and develops a method
of characterizing the chaotic inventory fluctuations.
Section 5 performs numerical simulations to show
the main result of this study, namely, that chaotic
fluctuations can be preferable to a steady state in
the long term. Section 6 is the conclusion.

2. Model

In this section, we recapitulate Hommes's ver-
sion of the H-I disequilibrium model with buffer
stock inventories.! The model has two markets and
two representative agents: one market for labor and
the other for storable consumption goods; one
agent is the consumer and the other the firm. The
markets are assumed to operate sequentially; labor
transactions are carried out first, and then produc-
tion and the trade of goods take place. This is
a disequilibrium model where demand is not neces-
sarily compatible with supply, and prices are held
constant. Without price adjustment, actual transac-
tions in disequilibrium markets are determined
by the minimum of supply and demand (ie., the
min-rule or the short-side rule),

L. =Min[LP,L¥] and Y,=Min[Y}, Y7], (1)

where LP, respectively L, denotes the demand for,
respectively, the supply of, labor, Y7, respectively
YS indicates the demand for, respectively, the

! See Honkapohja and Tto [1] and Hommes [3] for detail.
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supply of consumption goods, and L,, respectively
Y,. denotes the actual transaction of labor, respec-
tively the consumption goods. ¢ is an integer and
denotes the given time period. This is an inventory
model where the difference between supply and
demand determines the initial inventory of the fol-
lowing period and serves as the main source of
dynamics.

The consumer demands consumption goods and
supplies labor:

YP = a4+ bL,,
LS=d>0.

a>0,b>0, (2)

3)

Eq. (2) is an aggregate linear demand function for
consumption goods in which a is the minimum
demand and b is a proxy of the marginal propensity
to consume. As the labor market operates first, it
depends on employment. Eq. (3) describes the sup-
ply of labor which, for the sake of simplicity, is
assumed to be inelastic.

The firm supplies consumption goods, demands
labor and carries inventory under the following
four assumptions in which I{ denotes the desired
stock of inventory and S¢ the expected sales.”

Assumption 1. The firm tries to maintain a fixed
ratio B of expected sales to desired stock,
I} = BSt, > 0. ‘

Assumption 2. The firm determines its production
so as to aim at having the quantity, I{ + S;.

Assumption 3. The firm produces output from em-
ployment with constant returns to scale, 8L, 6 > 0.

Assumption 4. The firm has perfect foresight,
5S¢ =YP.

Assumption 1 means that the desired stock is an
increasing function of the expected sales. It cap-
tures the spirit of the micro-behavior of inventory
holding firms and is compatible with the (almost)

244-I make the first three assumptions and Hommes replaces
rational expectations with perfect foresight. This replacement
does not affect the existence results significantly.
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constant ratio of actual stock to sales observed in
the time series data for the past years.” By Assump-
tion 2, ex-ante production at period , denoted as
y,, is equal to production for expected sales S7
plus production for desired inventory investment
I¢ — I,. By Assumption 1, y, is written as

yo=0+pS — 1. )

By Assumption 3, ex-ante demand for labor is de-
termined by the inverse of the production function:

€

LP=<1+'B)SY _Ir. (5)

o
By Assumption 4, the firm can correctly forecast
the incoming demand. Thus substituting (2) for
S¢ in (5) and solving the resultant equation for
LP on condition that the firm can realize its
demand (ie., L, = L?) yield the demand for labor as
a function of initial stock of inventory:

(1 + pa~—1,

L) =5 =0+ b

()

The microeconomic study of inventory holding
firms confirms that optimal behavior can be char-
acterized by production smoothing, that is, an in-
crease in initial inventory leads to a reduction in
production (and hence a reduction in demand for
labor). To assert production smoothing, the
denominator of (6) is assumed to be positive in
Assumption 5 below. Here 6 is the marginal pro-
ductivity of labor and (I + )b is obtained by sub-
stituting (2) into (4) and differentiating it with
respect to L,. Thus the positive denominator means
that the marginal productivity of labor is greater
than the marginal output the firm expects to sell by
each unit of labor employed.*

Assumption 5. & > (1 + f)b.

The macroeconomic model functions as follows.
At the beginning of period t, holding the initial level
of inventory, I,, the firm demands labor, LP =
LP(I,), and the consumer supplies labor, L¥=d

3See Fig. 1 of Eckalbar [2].
4 A referec suggests this interpretation of Assumption 5.

42

33

The min-rule determines the actual employment
that is less than or equal to the full-employment
and must be nonnegative. Thus the actual employ-
ment is a piecewise linear function of the initial level
of inventory:

L(I,) = Max[0, Min[d, L°(1,)]]. (7)

Substituting L(I,) into (2) determines the aggregate
demand for goods while the sum of initial inventory
and current production determines the total supply
of goods, which will be denoted as Y¥(I,):

YP(I,) = a + bL(I,) and YS(I) =1, +8L(I,). (8)

Again the min-tule determines the actual transac-
tions of goods. As it must be nonnegative, the
actual transaction is also piecewise linear in I;:

Y(I,) = Max[0, Min[ YP(1,), Y()T]. )]

The difference between the total supply and the
aggregate demand determines the inventory of the
following period at the end of period ¢, and then the
process repeats itself with a new value of initial
inventory. The inventory dynamics is, therefore,
generatéd by a first-order difference equation,

I+, =0, where (,) = Y%I,)— Y>(I). (10)

As the result of the piecewise linearities of Y°(I,)
and Y%(I,), ©(I,) is also piecewise linear.

3. Dynamic equation

In this section, we derive a dynamic system of the
model, using the behavioral functions defined in the
previous section. In their dynamic analysis, H-I
distinguish two cases, depending on the sign of
5d — (a + bd). They demonstrate the existence of
a fixed point of @(I,) in the case where
5d —(a + bd) > 0 and call it a Keynesian steady
state.> Hommes confines his dynamic analysis to
the Keynesian steady state. Since we attempt to
extend some of Hommes’s results in this study, we
make the same assumption as he does; production

$See Theorem 1 of Honkaphja and Ito [1].
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is greater than demand when labor supply deter-
mines employment,

Assumption 6. od > (a + bd).
Taking account of the Egs. (5) to (10), we can

obtain the following piecewise linear function of
inventory:

o) =0, ifl, <y,

OU)=0,(1) ifly<I, <1,,

ol)y= 0, ifl, <I, (10
where

O )=1 +dé—(a+ bd),

Oal) = =5 bbE/f Iy - Zﬁi By
0,(I)=1, —a (12)

In (11), two critical levels of inventory, denoted as
I, and I,, are defined by LPUIy)=d and
LP(1,.) = 0, respectively and are spelled out as

Iy = (1 + PBla—d[s —b(l + p)],
Ly=(+pa

Under Assumptions 5 and 6, (12) indicates that
©,(I,) shifts upward from the I, ; = I, locus and
©5(1,) shifts downward and that @ ,(I,) and @5(I,)
have positive slopes while @,(I,) has a negative
slope. Thus @(l,), as a whole, takes on a tilted
Z-shaped profile and kinks at two critical levels of
inventory, I, and I,,. As is evident from the profile
of ®(I,), @,(I,) has a unique fixed point that is
a stationary level of inventory. The corresponding
labor is determined through (6). We denote those
stationary values by

*:aﬂé
I 6—b

(13)

and L* =

s (14)
Both are positive as Assumption 5 implies ¢ > b.
Moreover, it can be observed that the stationary
level of employment is less than the full-employ-
ment level, L* < d, and the stock-out is impossible
if the labor demand determines employment (i.e.,
L, = LP(t)). At the stationary slate, consumers can
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achieve their intended transactions in the goods
market but not in the labor market while firms can
achieve their intended transactions in the labor
market but not in the goods market. This is the
reason why H-I call this state the Keynesian steady
state.

The local stability of I* depends on the eigen-
value of the dynamic equation &(I,) evaluated at
the fixed point, the eigenvalue of which is equal to
a slope of ©,(1,). Accordingly, the stationary state
is locally stable if the slope is less than unity in
absolute value. The piecewise linearity of ©(I,) fur-
ther implies that the stationary state is globally
stable as well. There are no persistent oscillations in
the stable case. Since the main purpose of this study
is to investigate the nature of the long-run unstable
market dynamics, we focus on the unstable case in
which the slope of @,{I,) is assumed to be greater
than unity in absolute value.

Assumption 7. bf/d — b(1 4+ f) > 1.

Assumptions 5 and 7 limit the range of the mar-
ginal productivity to b(1 + B) <& < b(1 + 2f).
These inequalities imply that the following analysis
is concentrated on a case where the marginal pro-
ductivity & is neither much smaller nor much larger.
1f & is larger than b(1 + 2f), the market is stabilized
as stated above. If & is smaller than b(1 + f), the
firm behaves paradoxically; demand for labor in-
creases with the stock of inventory and zero em-
ployment prevails for lower levels of inventory.

Under Assumption 7, the fixed point losses its
stability and forces trajectories of inventory to
move away from its neighborhood. However, the
upper and/or lower bounds (ie., @(I,) and/or
@3(I,)) induces trajectories to bounce back to
a neighborhood of the fixed point, and, then, the

* trajectories move away again. Thus, trajectories
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stay in a bounded region and perpetually fluctuate
within it. Hommes characterizes such complex dy-
namics fully and demonstrates that @(I,) can gener-
ate various dynamics ranging from periodic cycles
to chaos, depending on the parametric values.®

®Sec Theorems 2B.1, 2 and 3 of Hommes [3].



A. Matsumoto [ Int. J. Production Economics 71 (2001) 31-43

Here we go one step further and consider the
economic implications of chaotic inventory fluctu-
ations. We know, by the theorem of Lasota and
Yorke [6], that @(l,) is ergodically chaotic.” This
means that trajectories are unstable, highly erratic
and unpredictable. Such behavior suggests that
trajectories are represented by densities (or distri-
butions) in the long-run. Indeed, the Mean Ergodic
Theorem of Birkhoff-von Newman® implies that if
O(1,) is ergodic, its time average converges o its
space average,

1 T—1
lim = ¥ f(0'(0) = qu)@(ndl
1=0 §

T-x

for almost all Tel, (15)

where f(-) is an integrable function, { is its domain
and @(-) is an invariant density function. Eq. (15)
implies that it is possible to characterize the long-
run average behavior of chaotic trajectories once
we obtain the functions f(-) and &(-). Thus our
next job is to find appropriate integrable functions
to evaluate a chaotic inventory trajectory and to
construct an explicit form of its density function. To
this end, our approach consists of three steps: (1) we
will find a profit function and a utility function that
are consistent with the behavioral specifications of
the macroeconomic model. Those functions are
clues to calculate the long-run average profit and
utility; (2) we will develop a method of constructing
density functions of chaotic trajectories; (3)
applying the long-run property described by (15),
we will compare the long-run behavior with the
stationary behavior. In particular, we will investi-
gate the following problem: Can chaotic fluctuations
be preferable to a steady state from the long-run
perspective?

7The theorem can be stated as follows: Let 6:D — D be
piecewise C? where D is an interval. If |§'(/,)] > ¢ > 1 for almost
everywhere in D, then there exists an absolutely continuous
invariant measure. Although @{1,) does not satisfy the condition
of the theorem, its iterated equation, ®@"(l,) for n > 2 does.
Consequently the theorem asserts the existence of a unique
absolutely continuous measure that is invariant for ©"(/,),
namely, @(I,) is ergodically chaotic.

8See Day [7] and its reference to this theorem.
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4. Microeconomic underpinning

This section is divided into three subsections. We
will formulate the maximization problems of the
firm and the consumer in order to construct a con-
sistent microeconomic underpinning of the macro-
economic model in the first two subsections
and develop a method of constructing densities of
chaotic trajectories in the third.

4.1. Profit maximization

A firm determines its production so as to maxi-
mize an expected profit that is the expected sales
minus costs associated with production and hold-
ing inventories:

I, = pS; — C(y) — HLivy — I) + V(I1+1),  (16)

subject to the inventory identity and the perfect
foresight,
Livo =1+ - S5,

and S§7 =a+ bL,. (17

p is the price of the goods. The firm incurs two costs
in I1,: C(y) is the cost of producing y, and
H(I,+, —1% is the cost of holding inventory,
which depends on the deviation of an actual stock
of inventory from the desired stock. V(I,,,) is
the discounted maximum of the expected profit
that the firm can achieve by employing the
best policy from the next period and onwards. It
takes into account the discount factor. Labor is
the only input for production and the production
function is linearly homogenous by Assump-
tion 3 so that the production cost is equal to the
labor cost:

=%, (18)

C

where w is the nominal wage rate. To permit
explicit solutions in this maximization problem,
we specifly each of the remaining functions involved
in I, as follows:

o4

H(lL+y = IY) 5

Fsr — I and  V(4y) = 7Ly

(19)
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The quadratic cost function of holding inventory
implies that as an actual stock of inventories devi-
ates {rom the desired stock, the cost of holding
inventory increases due to the increasing possibility
‘of losing goodwill for negative deviation ([,1, < I})
and due to the increment of the storage cost for
positive deviation ([,.; > I{). The linearity of
V(I,+1)shows that the imputed real value increases
as inventories increase.” Differentiating (16) with
respect to L, yields the following condition for
maximizing expected profit:

dsy dy, adiey =19
Oy = - HY Y £ B A
de, (vt dL, 41 ¢) arL,
dl,
v L
+ V'+4) aL, 0, (20)

which roughly implies that the marginal sales rev-
enue minus the cost of producing one more unit
today minus the cost of holding it until tomorrow is
equal to the expected revenue for selling one more
unit out of inventory tomorrow. Our main aim in
this subsection is to construct a possible micro-
economic underpinning of Eq. (4), the supply side of
the macroeconomic model. We may find, by ob-
serving the optimal condition (20), that the follow-
ing condition is sufficient for our purpose:

dsy , dl 4y , dy,
drL, + V(I'H)”Ei‘ir = C(J’z)d—[l-
The left-hand side is the sum of the current ex-
pected sales revenue and the discounted future
profit induced by a unit change in employment
while the right-hand side implies increases in pro-
duction cost induced by the unity change. Thus if,
as indicated by (21), the marginal revenue is equal
to the marginal cost of production, the optimal
demand of labor is determined so as to min-
imize the marginal cost of holding inventory,

p 1)

°In this study which is a starting point for a more complete
study, we adopt the linear assumption for three reasons. First, it
is basically an approximation to inventory holding behavior in
which the present value function is supposed to be V'(I,.;) >0
and V"(I,+1) < 0. Second it makes the formidable mathematical
problem simpler and manageable. Third, only such a simplifica-
tion enables us to derive rigorous results and economically
interesting insights.

H'(I,+; — 1% =0 which is achieved for I,,, = I?.
Rearranging it to take account of the inventory
identity and Assumption 1, we have the following
form of the optimal production:

yo=0+pS5 -1, (22)

which is identical to Eq. (4). Thus the above profit
maximization can provide a possible micro-
economic underpinning of the supply side of the
macroeconomic model. Inserting the functions
specified above into (21) gives the following rela-
tionship among parameters, which we assume to
hold in the sequel.

Assumption 8. pb + (0 — b) = w.

According to the piecewise linearity of the actual
employment, the maximized expected profit (16) is
also piecewise linear:

(1)) = Min{IT5 (1), Min{IT, (1), IT,(I)}},  (23)

where
Hﬂ»s@—wa+m—§m—4m2&nnsuh

Hl(lr) = (p - V)a + 'YII

for Iy < I, <1,

muew—m+w—§n&ﬁ for I, <I..

(24)
4.2. Utility maximization

Supposing that a consumer demands money,°
we give one possible microeconomic underpinning
of the demand side of the macroeconomic model.
Possessing the actual quantity traded in the labor

10 Although it is not explicitly stated, we can presume that
Honkapohja and Ito [1] and Hommes [3] deal with a monetary
economy in which exchange takes place through money in
markets. Thus consumers as well as firms may bold money
balance. For the sake of analytical simplicity, we assume (1) the
stock of money in the economy is exogenously given; (2) the firm
always pays dividends equal to its profit to consumers at the
beginning of the period.
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market, L, the consumer makes a choice of con-
sumption demand and demand for money by maxi-
mizing the utility function subject to the sum of the
wage income wL and the initial amount of money
holding M. If we assume the Cobb-Douglas utility
function,

M 1-x
UEO’SX(—-> , 0>0, 1>x>0, 25

p
where S is the demand for consumption goods and
M/p is the desired end-of-period real balance,
routine calculations yield the demand functions of
consumption goods and money:

S = (I =x)

_ M _
XwL + M) and — (wL + F).
D p

(26)

If we set a = xM/p and b = xw/p, the optimal de-
mand is written as

S=a+blL, (27)

which is identical with the aggregate demand func-
tion defined in (2). Thus the above specification for
utility maximization can be a possible micro-
economic underpinning of the demand side of the
macroeconomic model. Again, due to the piecewise
linearity of actual employment, the indirect utility
function is also piecewise linear:

U(l,) = Min{U;(1,), Max{U(I,), U,(1)}},  (28)
where
U, () = ox*(1 — x)! **(—Aﬁ n Yd) for I, < I,
p D
M
Ua(I)) = ox(1 — X)l_"(; + X;—LD(I,)>

for Iy <1, <1, (29)

4.3. Density function

Given II(I,) and U(l,), the long-run properties of
ergodically chaotic trajectories can be investigated
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when the densities of trajectories are known. It has
been demonstrated that an invariant density is
a fixed point of the Frobenius-Perron operator.'!
Boyarsky and Goyarsky [8] show that it is possible
to construct closed-form expressions for densities
of chaotic trajectories if a dynamic equation is
piecewise lincar, continuous and Markov.'? O(1,) is
clearly continuous and piecewise linear. Further-
more, in our analysis, it can be Markov if, for some
natural number N, the kinked point is either event-
ually fixed or a periodic point with period-N.
According to their theorem, the f{ollowing proced-
ure is appropriate for constructing the density
function which &(I,) permits.

{1} Find a condition under which the kinked point

is eventually fixed or periodic.

Define a trapping interval that eventually traps

all trajectories and restrict ©(I,) to it.

Divide the trapping interval into subintervals

by the points of the periodic orbit.

(4) Counstruct a matrix version of the Frobenius-
Perron operator, My = (m;;) in which its
entries are defined by
m; = 105718,

@’ being the slope of @ on [; where [; is

a subinterval of the trapping interval

(j=12,...,N)y and 9; =1 if }; = ©(;) and

0 otherwise.

Solve the matrix equation, xMy =x where

x = (x;)eR". Then elements of solution x sat-

isfying the requirement Y 1w y'x;(}; — b)) =1

are constant steps of a unique absolutely
continuous invariant density function under

o).

When I, is an initial point and not a periodic
point of period-N cycle, we can define the long-run

t1See Section 8.6 of Day [7] for a full account of the
Frobenius-Perron operator.

12 See their Theorem 3. A continuous map is called Markov if
the domain of the map is divided into disjointed subintervals
and the restriction of the map to one subinterval is a homeomor-
phism onto some subinterval(s).
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average profit and the long-run average utility by

1T—1 N
ny = lim = Y, H(@lo) = 2. fu Mi(D®(DdL,

il

T~ o0 t=0 i=1
1 T—-1 N

Wy = lim = Y U@Uo) =Y, fi UD®:(Ddl,
T (=0 i=1

(30)

where ®;(I) = x; is a density function defined over
the partition, I;. We call the profit that a firm
obtains at the stationary state the stationary state
profit and the utility that a consumer obtains at the
stationary state the stationary state utility, and de-
note those by

nf = n(l%) and uf = u(l}), (31

where I% is the fixed point of @(]).

5. Simulation results

In this section, we present one numerical
example concerning the long-run average behavior
of consumers and firms. We distinguish two cases
depending on the relative magnitude between the
upward shift of ©,(l,), od —(a + bd), and the
downward shift of @5(,), a. We call the case in
which 8d — (a + bd) < a holds upper-constrained
and the case in which éd — (a + bd) > a lower-con-
strained. Following the procedure given above, we
construct density functions of chaotic trajectories
and calculate the long-run average profit and utility
in each case. @(I,) is nonlinear (i.e., piecewise linear)
and its nonlinearity becomes more pronounced as
the slope of @,(I) gets larger in absolute value.
Among the salient features of generations of
complex dynamics is the steepness of the slope. For
notational simplicity, we denote it by B = bf/d —
b(1 + p).

5.1. Condition for eventual convergence

This example deals with a period-I cycle (ie,
N = 1) where the kinked point of (1) eventually
converges at the stationary state. We consider the
upper-constrained case first. As illustrated in F ig. 1A
where the upward shift of @,(I,) is less than the
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downward shift of @5(1,), éd — (a + bd) < a, a tra-
jectory starting from I, passes through Iwax =
(1), the local maximum, then visits a point,
In2 = O,(Iuax), and finally converges at the sta-
tionary point, I*. Since the local maximizer is mapped
to the local maximum by definition, the kinked point,
I, converges to the steady state if ©([5;) =I*
holds. Alternatively put, @((0,(0,(Ix)) = I* or
more generally, @*(I,) = I* is the condition under
which ©(I,) generates a period-1 cycle in the upper-
constrained case. Returning to (11)-(13), we have,
after rearranging terms,

(ch*~a-~bd)(B2 — B —1)
1+ B ’

OIy) — I* = (32)

Solving B> — B — 1 =0 gives the slope of ®,(1,)
being equal to By =(1 + \/g)/Z where the sub-
script indicates the number of periods.'® Therefore,
for B = B,,I; is mapped to [* with the third
iterations (i, @3Iy)=1I%). We call the set
{Inr, Inaxs In2, I*} @ stationary trajectory of
I, under @. Since.it can be shown that
Ins < O"(I) < Inyax holds for any initial point
I, if n is large enough, an interval Iy =
[1a32, Inax] can be the trapping interval which all
trajectories eventually enter and cannot leave. As
far as the asymptotic or long-run behavior is con-
cerned, it is enough to consider a restriction of the
dynamic equation to I, that will be denoted by
U, Vs = I

By the same token, we can clarify the condition
under which ©(I,) generates the period-1 cycle in
the lower-constrained case. As seen from Fig. 1B
where &d — (a + bd) > a, I, converges to the
steady-state passing though the local minimum,
Iin = O3(1,,), and a point I, = @3([nmin)- Thus
@,(0,(05(,,) = I* or ©(1,,) = I* is the condi-
tion for the generation of period-1 cycle. Solving
@3(1,,) = I* yields the same steepness of the slope
B; =1+ \/3/2 in the lower-constrained case as
one in the upper constrained case. An interval
U,, = [Imin, Im2] can be the trapping interval and

12 Although B2 — B — | = 0 has a positve root and a negative
root, B must be positive by Assumption 5.



A. Matsumoto [ Int. J. Production Economics 71 (2001) 31-43 39
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Fig. 1. Period-1 cycles.

Fig. 2. Nonperiodic fluctuations and numerical histogram for @(1,).

a restriction of the dynamic equation to ,, is de-
fined, @(I }yp : 1, = 1,,. It is possible to transform
O(1,), to ©,), through a coordinate change.
That means that @(I,),, generates essentially the
same dynamics as @(I,);,,. To avoid unnecessary
repetition, we choose @({,);;,, as the canonical map
for a while. However, as we will see, the same
dynamics has different economic implications un-
der different economic circumstances.

Fig. 2A shows a return map in which we fix the
parameters a =02, b =075, d=0=1, and § =
(/5 = 1)/6.'% There, O(l,),, generates a cobweb

14 The choice of the parameters a.b,d and & is the same as the
one Hommes [3] set out in his numerical investigations. Rear-
ranging the definition of B yields f = B{d — b)/(1 + By )b where

By =(1+ \/5/2) in this example.
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type trajectory that apparently alternates non-
periodic ups and downs within the trapping inter-
val. Fig. 2B shows the histogram obtained from
100,000 iterates of ©(I} under the same parameters
values on the intervals of width 5. It can be seen
that inventories are distributed through the full
range of the trapping interval. Two horizontal lines
in Fig. 2B indicate the heights of the density func-
tion that is analytically derived below.

5.2. Construction of density function

5.2.1. The upper-constrained case

We proceed to determine an explicit form of
a density function in the upper-constrained case.
Points, Iy5, 1y, 1* and Iyax, can be the partition
points of the trapping interval so that I, is divided
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into three subintervals, [, = [Ip5., {31, 0o = [Lp, I*]
and I3 = [I* Iyax]- Since 13 < (), I3 <
6(,), and 0,0, = (3}, a matrix version of
the Frobenius-Perron operator is

0 0 1

M, =10 0 | (33)
.
B, B,

The equations xM, = x, x = (x;)€ R® has a solu-
tion, x = (X, X,B; X). X is then determined by
solving ¥ 7—; [, @:(1)dI = 1 where &;(I) = X on [y,
@,(I)=X on l,, and &3(I) = B; X on [;. We find
that the density function is a step function with
constant step on the intervals, I;, i = 1,2,3,

1

D) = 55Tt £ ba)

for Ieﬂi == [IAIZ,':IIW]?

@2(1) = 5

1 *
m for I€B2~[1A[,I ],

B,

P5(l) = 2(5d — (a + bd))

fO[' IEH3 = [I*?IMAX]'
(34)

We are now ready to investigate the long-run
average behavior. The long-run average profit and
utility can be computed explicitly by substituting
the explicit form of the density function @;(I) in (34)
and the piecewise linear profit function, I1;(I) in
(24), respectively, the piecewise linear utility func-
tion U;(I) in (29), into the most right expressions of
(30 ’

4 =j H1(1)¢1(I)dI+J ,()®,(1)dl
+ j (), dl,

uy :J U, (o (Hdl +J U,(®,(Iydl
t

[
+ j U, ()5 (I)dl. (35
B3

The difference between the long-run average profit
and the stationary state profit, the long-run average

utility and the stationary utility are computed as

follows:

7 — 7 = (a + bd — db){3B,y — afa + bd — dd)}
12B(1 + B,)

< 0,

ot = ox*(1 — x)! 7*M$
e p(6 — b)

The direction of inequality in the first equation of
(36) 1s due to Assumption 6, and indicates that the
stationary state profit is greater than the long-run
average profit. The second results imply that the
long-run average utility is the same as the station-
ary utility.

(36)

5.2.2. The lower-constrained case

In the lower-constrained case, using the same
procedure as in the upper-Constrained case, we
have the following density function:

@1(1)=~g for 1e[ ., 1*], .
1
4)2(1)7——2—& for Teli*,1,],

1
@3(1) = “2“& for IE[IHH ImZ]s (37)

and the following computational results:

, . a{3Byy —an}
Ty — N = L
12B,(1 + By)

according to 3B;y — an =0,

i = ox*(1 — x)! "*Ms
PR (8 —b)

The equality in the second line of (38) implies that
the consumer, again, has the same utility. The in-
equalities in the first line imply that the firm can
yield a larger long-run average profit than a
stationary state profit. To clarify the direction of
inequality, we note the following relationships:

£0

(38)

a = — where
p
bp- -

x =P and y =P (39)
w d—b

49
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where a and x are set to induce the macro demand
function from the utility maximization and the last
is due to Assumption 8. Substituting those relation-
ships into 3B; — yaxZ 0 and then rearranging the
expression yield

(40)

6 — b > 0 by Assumption 5 and the positive mar-
ginal future revenue dV/dl,,, =y >0 implies
w — pb > 0. Further it is reasonable to assume that
the marginal productivity is greater than the real
wage rate so as to induce a positive level of produc-
tion, 0 > w/p. In order to see the effects caused by
the changes in parameters’ values on the direction
of inequalities in (40), we differentiate 4 with
respect to w, ¢ and b:

Given « and M, (40) and (41) imply that a higher
wage rate, a lower marginal productivity and
a lower propensity to consume lead to =} > n§,
that is, the long-run average profit is larger than the
steady-state profit.

Those results are summarized as follows:

Theorem. If the slope of ©,(1,) in absolute value is
equal to By =1 + \/—5—/2, the kinked point converges
at the stationary state, and the dynamic equation ©(1,)
generates chaotic fluctuations if the initial level of
inventory is not on the stationary trajectories. The
long-run average profit is smaller than the stationary
state profit in the upper-constrained case; 1y < n§ if
od — {a + bd) < a, and can be larger in the lower-
constrained case; Ty S5 if 8d — (a + bd) > a. The
long-run average utility is the same as the stationary
state utility.
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5.3, Interpretation: Disequilibrium dominates
equilibrium

We attempt to explain intuitively why the long-
run average profit can be larger than the steady-
state profit in the lower-constrained case but not in
the upper-constrained case. To this end, we juxta-
pose the graphs of the profit function defined in (34)
and the density functions defined in (34) and (37).
Fixing the parameters b = 0.75, d = 0 = 1, we set
a = 0.2 in Fig. 3A that corresponds to the upper-
constrained case (ie, 0d—(a+ bd)=0.05<
0.2 = a)and a = 0.08 in Fig. 3B that corresponds to
the lower-constrained case (i.e., éd — (a + bd) =
0.17 > 0.08 = a). In both figures, the heights of the
density (step) functions are appropriately ad-
justed.We observe that the profit function is in-
creasing for I,. We also observe from Fig. 2A that

04 bMu 3B, .

Fiates 5—b>0 ifd—~b>0,

94 3By(pb —w) .

- o—bF O if w—pb >0, (41
84 — Ma(d — b)* — 3B, w(pd — w) , W

F 6=b <0 1f<3>p.

the inventory dynamics is characterized by regular-
ly alternating behavior with respect to the station-
ary level of inventory, I*, that is, if the level of
inventory is smaller than I'*, it is mapped to a point
larger than I'*; if the level of inventory is larger than
I*, then it is mapped to a point less than I*. Conse-
quently the corresponding profit also alternate with
respect to the stationary-state profit; the profit in
one period is smaller than the steady state profit
while the profit in the next is larger than the sta-
tionary state profit. If we denote 7, as the average
profit for a two-period iteration {I,, @)} (ie,
n, = [} + II(©(,))/2) and =° the stationary
state profit for I* (i.e,, n° = II(I*)). Then the differ-
ence between the average profit and the stationary
profit is

ny —nt =3{(II(1,) — %) + ((O(1,) — n%)}.  (42)
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Suppose I,el;ul, for a moment'® Then

(I, — =% < 0 and (II(©(1,)) — =) > 0. The sum
of those terms can be positive if I, is close to I* (i.e.,
(I(I,) — %) < O is small) and &(I,) is close to Iyax
(TI(O(1,)) — =°) > 0 is large). It may be negative if
I, is close to Iy, (ie., (II(I,) — nf) < 0 15 large) and
©(1,) is close to I* ({(II(O(1,)) — n°) > 0 is small).
The long-run average profit is the average of
1, over the entire period and inventory trajectory
visits whole the interval [I,,,Imax] chaotically.
Thus it depends on the shape of the density func-
tion whether the long-run average profit is larger or
smaller than the stationary state profit. In Fig. 3A,
the length of the interval 0 is shorter than the
length of the interval, §;Ul,. Since (II(®(,)) —
7%} > 0 on 13 and (JI(I,) — 7®) < 0 on [, Ul,. This
means n, — n° < 0 on average, which the first line
of (36) indicates. On the other hand, in Fig. 3B,
(II(1,) — %) < 0 for I, e [l i, [*] and (I(O())) —
n%) > Ofor I, e[I* I,,] where |, — I*| > |I* — .l
n, — n° could be positive on average, which the
first line of (38) indicates. '

6. Concluding remarks
This study presents a disequilibrium macro

dynamical model constructed on the basis of
a firm’s profit maximizing behavior and a con-

15 The similar results hold if we choose I, &l;.
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sumer’s utility maximizing behavior. Transactions
in markets are determined by the minimum of
supply and demand. The differences are stored as
inventory which” serves as the main source of
dynamics. In this study, we focus on a case where
inventory fluctuations are chaotic and analyze the
qualitative properties of such fluctuations. In par-
ticular, we construct densities of chaotic inventory
trajectories and calculate the long-run average
profit and utility. We demonstrate, with the aid of
numerical examples, that the firm could earn
a higher long-run average profit than the steady-
state profit in the lower-constrained case under
some parameter constellations, while the con-
sumer’s long-run average utility is the same as the
stationary state utility. These results suggest that
even in a disequilibrium market, there is a possibili-
ty that perpetual disequilibrium can be preferable
to the steady state.

The fact that our model can justify the persistent
and chaotic fluctuations in a disequilibrium econ-
omy is itself worthy of note. Although we present
only one example in this study, it can be verified
that qualitatively similar results hold in all other
cases in which the kinked points are eventually
fixed or periodic.
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A New Perspective on the Generating Mechanism

of the Business Cycle

Kazuyuki SASAKURA*

Abstract

This paper presents a new perspective on the generating mechanism of the
business cycle. In the new perspective the economic system has a stable equilib-
rium and gives rise to undulatory processes with the help of small disturbances.
But a certain once-and-for-all shock can trigger a persistent periodic oscillation.
This corresponds to the case of a hard generation oscillation in the dynamical sys-
tems theory. It is shown that a subcritical Hopf bifurcation is useful to explain
such a phenomenon. Existing business cycle models can be reinterpreted in the
new perspective. As examples of application Kaldor’s model and Benassy’s model
are considered. ‘

1. Introduction

For a long time there have been two conflicting perspectives on why economy
fluctuates periodically. Needless to say, one is formally called the exogenous busi-
ness cycle theory, while the other the endogenous business cycle theory. In the
first perspective the economic system has a mechanism which is being subjecfed
to damped vibrations of a periodic character and to causal disturbances accumu-
lating energy just sufficient to counterbalance the damping (Slutzky (1937, p.
131)). In fact, most macroeconomists now share this perspective (Blanchard and
Fisher (1989, p. 277)).

Frisch (1933), though advocate of the first perspective, also suggested the
analytical usefulness of the second perspective, i.e., the idea of an auto-maintained
oscillation in mathematical language. In the second perspective the economic sys-
tem itself can generate a periodic fluctuation without disturbances from outside.
Recent revival of the perspective is due to the deepened knowledge of the chaotic

* This paper was first presented in the 1995 annual meeting of the Japan Association of
Economics and Econometrics (now the Japanese Economic Association). 1 benefited
from comments of Professor Teruo Kojima, Josai International University. The usual dis-
claimer applies, however. [ also gratefully acknowledge financial support from the Japan
Society for the Promotion of Science (grant no. 11630020).
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~dynamics.! The most conspicuous distinction between the first and second per-
spectives in model building appears as the stability of the economic system in
question. Of course, the equilibrium of the economic system ought to be stable in
the first perspecitve, while unstable in the second.

This paper points out a possibility of the third perspective, so to speak, a mix-
ture of the first and the second. In this perspective the economic system has a
stable equilibrium and gives rise to undulatory processes with the help of small
disturbances. But a certain once-and-for-all shock can trigger a persistent peri-
odic oscillation. From the dynamical system’s point of view, this third perspective
corresponds to the case of a hard generation oscillation, while the second per-
spective to that of a soft generation oscillation. In economic literature sufficient
conditions for the occurrence of a hard generation oscillation are not discussed in
detail. Thus, in Section 2 such conditions are considered in rather general cir-
cumstances. In Section 3 existing business cycle models are reinterpreted in the
third perspective. Section 4 reviews economic literature on a hard generation
oscillation and Section 5 concludes this paper.

2. Subcritical Hopf Bifurcation and Stable Limit Cycle

To obtain a stable limit cycle from an economic system with a stable equilib-
rium point, we look at the Hopf bifurcation theorem and the Poincaré-Bendixson
theorem at once. Although each theorem is not new in the business cycle theory,
they have been used only separately. Furthermore their use has been limited to
the case of a soft generation oscillation where a stable limit cycle appears from an
economic system with an unstable equilibrium. It is their joint use that is pro-
posed here.?

Consider the following planar dynamical system with a bifurcation parameter

u .
x=f(x,y,u),

) A
y=g(x,y, ). (A)

Assume system (A) to be nonlinear and the equilibrium point of (A) to be the ori-
gin for all 1.> Expanding (A) around the equilibrium point, we have

! For a survey of chaotic economic dynamics, see Grandmont and Malgrange (1986),
Boldrin and Woodford (1990) and Scheinkman (1990).

2 For example, only the Poincaré-Bendixson theorem is used in Varian (1979), Schinasi
(1982) and Benassy (1984), whereas only the Hopf bifurcation theorem in Torre 1977,
Semmler (1987) and Lux (1992).

3 If the equilibrium point (x*, y*) is not the origin (0, 0), it can be transferred to the origin
by the transformation X =x — x*, Y=y — y*,
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kﬁax+by+p(x,y),
y=cx+dy+q(x,y).

where p(x, y) and g(x, y) are analytic functions
plx, )= .Zzaijx"y"
: 472
= Qo X” + A%y + Ay’ + g X + Ay 8y +aLxyt +agyt + -,
q(x, y)= .Zzbﬁx"y’
i+jz
= by %" + by xy + by’ + by x° + by X7y + bpxy® + by’ -
Coefficients a, b, ¢, d, a,; and b; may be functions of y. Suppose @ and/or d to be
so and write D,(u) = ad — bc and T,(u) = a + d. Moreover make a formula o, ()
as follows:

0 (1) ==37(2bD, (1) *[{ac(a + a, by, + ab,,) + ab(b,: + ayb,, +ayb,,)
+€*(@y g, + Agobyy) — 206l — Ayyfary) - 2ab(a; — byoby,) — b (2ayby,
+by,by) + (be — 2a*) (byyby, — @,,a5) } - (@° + be) 13(chy, — bay,)
+2a(a,, +b,,) +(ca, —bby,) 1.

Now the Hopf bifurcation theorem can be stated correctly (see Perko (1991)).

Hopf bifurcation theorem: Assume that the following three conditions
hold.

H1. There exists y, such that D, (1,) >0 and T, (x,) = 0.

H2. T4 #0.
du | 1= p,

H3. o,(1,)#0.

Then at y = p, the Hopf bifurcation occurs in (A). If o,(u,) <0, itisa
supercritical bifurcation. If o,(1,) > 0, it is a subcritical bifurcation.

As can easily be seen, the equilibrium point is a focus when g is close to y,. Con-
dition H3 implies that the equilibrium point is also a focus at y = y,* If o, () <0,
it is stable. On the other hand, if o,( 1, > 0, it is unstable. Figures 1(a) and (b)

4 Such an equilibrium point is called a weak focus of multiplicity one. In a nonlinear
dynamical system condition H3 generally holds. Non-zero o,(u,) is called the Liapunov
number.
15
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Stable limit cycle

x
u<0 u=0 1>0
(a) Supercritical case.
Unstable limit cycle
x

u<0 u=0

0

(b) Subcritical case.

Fig. 1. Hopf bifurcations.
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show typical examples of bifurcation processes. A supercritical case is character-
ized by a combination of an unstable equilibrium point and a stable limit cycle,
while a subcritical case by that of a stable equilibrium point and an unstable limit
cycle.

In the second perspective or endogenous business cycle theory only a super-
critical case is regarded as useful to explain business cycles since a stable limit
cycle matters.” In fact the formula o,(u) is very complicated and we can hardly
interpret it from the economic point of view. Attempts have been made to estab-
lish the occurrence of a supercritical Hopf bifurcation, e.g., by a mere assumption
of o,(uy) < 0 as in Torre (1977), by computer simulation as in Semmler (1987),
and by relative simplification of functions as in Lux (1992).

It should be emphasized, however, that the Hopf bifurcation is a local bifur-
cation, i.e., it takes place near the equilibrium point. Thus the Hopf bifurcation
theorem does not provide global information by itself unlike the Poincaré-Bendix-
son theorem. To see this, I would like to introduce an interesting example
reported by Kohda et al. (1984):

x=9,

! B
y=—x—7yy-px’ —axy—qx’ —bx’y, ®

where it is assumed that @ > 0, b > 0, p > 0 and p° < 4¢. The last assumption guar-
antees the origin to be a unique equilibrium point. With y as a bifurcation
parameter we can confirm by the Hopf bifurcation theorem the occurrence of a
supercritical (subcritical) bifurcation at y =0 for ap — b < (>) 0.6

Using the Hopf bifurcation theorem, a stable limit cycle can be found only for
ap — b < 0 (supercritical case). But Kohda et al. (1984) also shows by the Poincaré-
Bendixson theorem alone the existence of a stable limit cycle for ap — b > 0
(subcritical case).” Figure 2 illustrates the relation between the stable and unsta-

5 See, for example, Lorenz (1993, p. 105).
6 The following conditions obtain:

H1. D,(0)=1,T,(0)=0,
e, 4L _
dy |y=0
H3. 0,(0)=37 {ap-b}S0 for ap-bS0.

7 For ap — b > 0 an unstable limit cycle found by the Hopf bifurcation theorem can also be
proved by the Poincaré-Bendixson theorem, but the stable limit cycle found by the Poin-

caré-Bendixson theorem is not covered by the Hopf bifurcation theorem. See Kohda et al.
(1984).
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Stable limit cycle Unstable limit cycle

y<0 O<y<y, Y=1,

Fig. 2. Subcritical Hopf bifurcation and hard generation oscillation.

ble limit cycles for ap — b > 0. For y < 0 a soft generation oscillation is observed.
At y = 0 a subritical bifurcation occurs and for 0 < y < ¥, a hard generation oscilla-
tion is observed, where the stable and unstable limit cycles coexist with the
former outside the latter. At y= y, the two merge into a semistable one.

From the above arguments a subcritical bifurcation should not be disre-
garded because it generates no stable limit cycle. It is closely related to a hard
generation oscillation. In my view it would be easier to prove the occurrence of a
hard generation oscillation using the Hopf bifurcation theorem and the Poincaré-
Bendixson theorem jointly than separately. In the next section I show this.

3. Reinterpretation in the Third Perspective

Existing business cycle models are based on the first perspective or the sec-
ond. The formal distinction appears as the stability of an equilibrium point.
Therefore, as far as existing business cycle models are concerned, it may safely
be said that the models with a stable (an unstable) equilibrium point are based on
the first (second) perspective. In the third perspective, however, such a distinc-
tion does not hold true any longer. In what follows I reinterpret well-known
endogenous models in the third perspective. They are the Chang and Smyth’s
(1971) version of Kaldor’s (1940) model and Benassy’s (1984, 1986) non-Walrasian
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model.® Note that the construction of the former and the latter is respectively
before and aftre Torre (1977) introduced the Hopf bifurcation theorem to eco-
nomics for the first time, but both use only the Poincaré-Bendixson theorem.

3. 1. Kaldor’s model .
Chang and Smyth (1971) analyzed Kaldor's (1940) model in the following
form:

Y =all(Y,K)-S(Y,K)},

7 ©
K=I1(Y,K),

where Y, K, I, S and o are national income, capital stock, ex-ante net investment,
ex-ante savings and the speed of adjustment, respectively. As is well known, the
essence of Kaldor’s model lies in a sigmoid shape of investment function I(Y, K).
The assumptions made are as follows: '

ClL I,>0,S,>0 and I, <S; <0.

C2. There exists the equilibrium point (V¥ K¥) in the positive
orthant such that o{I,*~S,*}+ 1, > 0 and I, S,*<S* I,*.

C3. There exists a finite ff > 0 such that 1(0, K) =0, and also a finite
Y, > Osuch that I(Y,,0)=S(Y}, 0). Furthermore, whenever I(Y,
K)=SY ,K),K »>~asY —0.
 On these assumptions a soft generation oscillation occurs in (C).
As is suggested in Section 2, however, there is also a possibility of a hard gen-
eration oscillation in (C). To confirm this let us regard « as a bifurcation
parameter and put o, = -1, /(I,"-S,). Assume

C4. o.(e) >0,
and, instead of C2,

C2’. there exists the equilibrium point (Y*, K*) in the positive
orthant such that I,*—S,* >0 and I~ S,*<S,* I,*.

Then it is easy to check that under Cl, C2" and C4 a subcritical Hopf bifurcation
occurs at a = «,, i.e., an unstable limit cycle emerges for a < oy,
Next consider a compact region P={(¥, K)|0<Y<Y,, 0 <K<K} such that

8 For the books dealing with both models, see Gabisch and Lorenz (1987), Sordi (1990)
and Dore (1993).
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Fig. 3. Kaldor’s model in the third perspective.

I(Y,, K}) = 0. Then it can be proved from C1, C2’ and C3 that all positive semi-
orbits starting from the boundary of P enter the interior of P and do not leave P,
so that the positive limit set is contained in P. However, in a subcritical case, nei-
ther the stable equilibrium point nor the unstable limit cycle can be the limit set.
According to the Poincaré-Bendixson theorem, therefore, the limit set is a stable
limit cycle. Figure 3 shows the stable limit cycle outside an unstable limit cycle.
If ecomony starts from the neighborhood of the equilibrium or inside the unstable
limit cycle, the first perspective is useful for understanding the generating mech-
anism of the business cycle. On the other hand, once economy is thrown out of

the absorbing region, the second perspective wins. As a whole the third perspec-
tive enters the business cycle theory.

3. 2. Benassy’s model

‘The business cycle in Benassy’s model is described as a succession of short-
run non-Walrasian equilibria, which are represented by the solution (y, 7, p) of the
following simultaneous equations.
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y=C(y, p)+1(x,7),
L(y,7,p)=M, (D)
y=F[F " (w/p)], '

where y, 7, p, x and w are respectively output, interest rate, price, expected
demand and money wage. x and w are assumed to be constant in the short run.
Functions C, I, L and F represent consumption, investment, demand for money
and production, respectively. The quantity of money in the economy is always
fixed. The first two equations represent the equilibrium of demand and supply in
the goods and money markets. On the other hand, the last equation implys the
excess supply in the labor market, i.e., it is assumed that F "w/p) < l,, where [,
is the total supply of labor.

By solving (D), y can be written as the function of x and w, i.e., y = Z(x, w). In
the short run, since x and w are constant, so is Z(x, w). In the long run, however,
they vary over time. Expected demand x adaptively adjusts towards the current
demand y = Z(x, w). Money wage w evolves according to a traditional Phillips
curve w = H(u), where u represents the level of unemployment. Therefore the
business cycle is described by the long-run dynamic relationship between x and w

x=pl{Z(x, w)—x},

w=GlZ(x,w)], ®)

where y is the adjustment speed and G(3) = H [[,-F () ].
The following are assumed in (D) and (E):

El. O<Cy< 1, Cp<0, 1>0,1<0, Ly>0, L,<0,L,>0, F’>0and F”<0.

E2. H'<0, H(u)— « as u— 0, and there exists # >0 such that
H@)=0.

E3. ~1}L13D(p, 0) >y, and PrEOD(p, y,)<¥=F(,-u), where y,=F(,)

and D(p, x) is the traditional aggregate demand function derived
from the first two equations of (D).

E4. At the equilibrium point («*, w*) of (E), u(Z*-1)+G"*Z,*>0.
E5. Whenever Z(x,w)=x, w — o as ¥ — 0.

It can be proved on these assumptions that the long-urn model (E) has a stable
limit cycle based on the Poincaré-Bendixson theorem. .

As shown in the previous subsection, we can show that (E) can also have a
hard generation oscillation. Take u as a bifurcation parameter and put gy, =
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~G*Z}/(Z*-1). Assume
E6. o, (1,)> 0,
and, instead of E4,
E4’. at the equilibrium point (x*, w*) of E), Z*~1>0.

Then, under E1-3, E4’ and E6 the Hopf bifurcation theorem warrants the occur
rence of a subcritical bifurcation at M = U, i.e., an unstable limit cycle appears for
H< U,

Moreover consider a compact region € = (o w)| 0<x<y, w<w, Z&x, w) <
¥}, where Z(y,, 1) < § and G(9) >-uy, Z,./Z,. It has been ingeniously checked by
Benassy (1984) that under E1-3 and E5 every positive semi-orbit starting from the
boundary of @ enters the interior of © and does not leave Q. Following the same
line as in the preceding subsection, we can say that (E) has also a stable limit
cycle for i < u,. Figure 4 illustrates both limit cycles in a subcritical case.® If econ-
omy starts from outside the unstable limit cycle, a periodic fluctuation persists
without disturbances and the second perspective applies for the time being. How-
w
N =0 Q

!
1
i
!
|
!
1
i
(

—= X

X =y Yo
Fig. 4. Benassy’s model in the third perspective.
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ever, a certain once-and-for-all shock can shift economy to the domain of attraction
bounded by the unstable limit cycle and then the first perspective seems to be
more suitable. Nevertheless this phase will not last forever, either. It is the third
perspective that is capable of capturing both the phases at the same time.

4. Hard Generation Oscillation in Economic Dynamics

The case of a hard generation oscillation has not extensively treated to under-
stand economic phenomena. There are only a limited number of works
concerned. As far as I know, a possibility of a hard generation oscillation in eco-
nomic dynamics was mentioned for the first time by Medio (1980), where only the
Poincaré-Bendixson theorem is used. Using the Hopf bifurcation theorem alone,
Benhabib and Miyao (1981) related a subcitical bifurcation to the “corridor” con-
cept proposed by Leijonhufvud (1973). According to the concept, the economic
system is likely to behave differently for large than for moderate displacements
from the equilibrium path. Whithin some range from the path (called the corri-
dor), the system’s homeostatic mechanisms work well. The system tends to
home in on the ideal path and, in the absence of disturbancés, to stay on it. Out-
side the corridor, multiplier-repercussions are strong-enough for effects of shocks
to the prevailing state to be endogenously amplified. Up to a point, multiplier-coef-
ficients are expected to increase with distance from the ideal path. Applying the
concept to the results in the last section, the inner unstable limit cycle corre-
sponds to the wall of the corridor, while the outer stable limit cycle can be
interpreted as the set of “a point” outside the corridor.

The only example suggesting the joint use of the Hopf bifurcation theorem
and the Poincaré-Bendixson theorem is Mas-Colell (1986) who studied the price
and quantity tAtonnement dynamics with one input and one output.’ Since there
is not trade out of equilibrium in Walras’ titonnement theory, however, a limit
cycle lacks any real singnificance. Puu (1986) provided a simulation result
exhibiting a hard generation oscillation by the singular perturbation method.
Grasman and Wentzel (1994) also presented a numerical example of a hard gen-

9 In Figure 4 it is assumed that Z—-1 > 0 for ¥ > x* as in Benassy (1984). This leads to the
upward slope of the x = 0 locus for x > x*. The one-bend shape of the locus, a kind of the
Goodwin characteristic, is a remarkable feature of Benassy’s model. However, the
assumption is not necessary to obtain the compact region Q. Even if there exists x, > x*
such that Z-1 < 0 for x > x,, we have @. In such a case investment function I(x, #) may
have a sigmoid shape as I(Y, K) in Kaldor’s model.

10° A computer simulation of the price and quantity dynamics can be found in Flaschel et al.
(1997, pp. 41-43).
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eration oscillation in Kaldor’s model with a sufficiently large."

5. Conclusion

This paper proposed a new perspective on the generating mechanism of the
business cycle based on the standard dynamical systems theory. This perspective
is, so to speak, a mixture of the traditional two perspectives and also resembles
the above-mentioned corridor concept. It has been shown that a subcritical phe-
nomenon during a bifurcation process is useful to explain the perspective.

To conclude, I point out two characteristics of the business cycle in the new
perspective. First, the amplitude of the business cycle depends on from which
side of an unstable limit cycle or the corridor economy starts. Of course, the
amplitude of the business cycle represented by a stable limit cycle is larger than
that of the business cycle generated by disturbances hitting damped vibrations
inside an unstable limit cycle. Thus we can see the present phase of the economy
by examining the amplitude of the cycle, not the stability of the economic system.
Second, the business cycle with a larger amplitude is robust to structural change.
Consider, e.g., a parameter ¢ in model (C). Everyone agrees that o is not always
constant. So imagine the situation where « varies across the bifurcation value o,
i.e., the occurrence of structural change. This paper concentrated on a subcritical
case for a < «,. However, a stable limit cycle alsd exists for o > a,, which is the
case of a soft generation oscillation (see also Figure 2). Thus structural change
does not necessarily leads to the extinction of the present endogenous business
cycle. On the contrary, the amplitude of the cycle may be increased.
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Abstract

This paper investigates the global dynamics of a two-dimensional Diamond-type
overlapping generations model extended to allow for government intervention. Using
a singular perturbation method, we identify conditions under which transverse homo-
clinic points to the golden rule steady state are generated. For a parametric example with
a CES production function, the occurrence of complicated dynamics (e.g. strange attrac-
tors) associated with homoclinic bifurcations 1s demonstrated. © 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In the recent literature on economic dynamics it has been widely recognized
that a variety of fluctuating patterns in economic variables can emerge even in
deterministic systems. In particular, beginning in the 1980s, many economic
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models exhibiting periodic as well as more complicated motion such as so-called
chaos have been studied.' Overlapping generations (OLG) models have played
an important role in the development of chaotic nonlinear business cycle theory
compatible with the competitive framework. See Benhabib and Day (1982) and
Grandmont (1985) for one-dimensional (1-D) OLG models, which are early
examples of the use of chaos in economics.

In this paper we study the dynamics of a standard discrete-time two-dimen-
sional (2-D) OLG model with a Cobb-Douglas utility function, inelastic labour
supply, productive capital, and the government following a balanced budget
policy. Our model is based on that of Farmer (1986), which is, in turn, a version
of the seminal model of Diamond (1965) extended to two dimensions. Farmer
aimed to derive, using local bifurcation theory, a necessary condition for his 2-D
OLG model to generate persistent cycles on an invariant closed curve around
the golden rule steady state. He showed that such cycles appear, in his setting,
only if the net worth of the government is positive at the golden rule steady
state.” Our main interest, however, is in the global and complicated behaviour of
the model, rather than the local and regular behaviour.

Several numerical results suggesting the occurrence of chaos in 2-D OLG
models have appeared in the economic literature; Medio (1992), Bohm (1993),
and Medio and Negroni (1996) have provided interesting simulation results for
2-D OLG models in various settings. Such numerical experiments have given
rise to the question whether these models displaying seemingly complicated
behaviour would really be chaotic in a certain strict sense. While dynamical
systems theory explains that so-called homoclinic points, and in particular their
creation and destruction are responsible for chaotic dynamics,® it is, in general,
very hard to detect them in higher-dimensional concrete systems.

De Vilder (1996; also 1995) has offered, however, a promising approach for
studying higher-dimensional nonlinear systems; he has presented a ‘computer-
assisted proof that an explicit 2-D OLG model with elastic labour supply and
Leontief technology, essentially based on that of Reichlin (1986), can really
exhibit complicated dynamics generated by homoclinic bifurcation* associated
with the stable and unstable manifolds of the autarkic steady state. Although his

! See e.g. Boldrin and Woodford (1990), Hommes (1991), Lorenz (1993) for general surveys and
examples of chaos in endogenous economic dynamics.

2 For other related production 2-D OLG models exhibiting periodic or quasi-periodic fluctu-
ations, see e.g. Reichlin (1986) and also Jullien (1988).

3See e.g. Palis and Takens (1993) for recent dynamical systems theory with an emphasis on
homoclinic bifurcations.

4 For an excellent analysis concerning homoclinic and heteroclinic bifurcations in a 2-D cobweb
model with heterogeneous beliefs, see Brock and Hommes (1997), who proved, using a geometric
configuration of the stable and unstable manifolds in a ‘limiting case’ where all agents choose the
optimal predictor, that their model undergoes homoclinic bifurcations.

68



M. Yokoo [ Journal of Economic Dynamics & Control 24 (2000) 909-934 911

method is based on numerical computations, the proof itself is rigorous because
of his accurate estimation of computational errors.

As a complementary approach to that of de Vilder, we use a singular
perturbation method suggested by Marotto (1979); see also van Strien (1981).
Without requiring a computer and numerical specification of parameter values,
this approach allows us to rigorously establish the occurrence of horseshoes
(topological chaos). These horseshoes are assured by the presence of a transverse
homoclinic point to the golden rule steady state for our 2-D model with a small
constant rate of savings. This is done by finding a transverse homoclinic point
(or a ‘snap-back repeller’) for the reduced singular (i.e., 1-D) system and then by
perturbing the latter again into the corresponding nonsingular 2-D (but nearly
1-D) system without destroying the transverse homoclinic point.” Moreover, in
analyzing a parametric example with a CES production function, the perturba-
tion technique is used to detect not only horseshoes but also strange attractors
(observable chaos) as well as infinitely many coexisting periodic attractors which
are created by homoclinic bifurcation.

This paper is organized as follows: Section 2 introduces the basic model. In
Section 3 conditions and implications of the existence of transverse homoclinic
points are discussed. In Section 4 we consider the complicated dynamics of
a parametric example with a CES production function. In Section 5 some
concluding remarks are given. Proofs of lemmas and propositions are assembled
in the Appendix.

2. Basic model

We introduce a 2-D version of a Diamond-type OLG model, which is
essentially based on that of Farmer (1986). See also Azariadis (1993) for intensive
studies of models of this type and Jullien (1988) for a similar OLG model with
productive capital and money.

We are concerned with a discrete-time OLG economy with productive capital
and government intervention. The population is constant over time. The repre-
sentative consumer lives for two periods and he supplies his labour inelastically

5 Various strategies to establish the occurrence of chaos in discrete-time 2-1) models are presented
by several authors: Jullien (1988) restricts his 2-D OLG model with real money balances onto a 1-D
invariant curve on which chaotic behaviour is possible. In Hommes (1991), a return map technique
reduces a 2-D piecewise linear inventory cycle model to circle maps which exhibit (quasi-)periodic as
well as chaotic attractors; in de Vilder (1995), a similar method is applied to a 2-D OLG model with
an investment constraint. Dohtani et al. {1996) use a 1-D reduction and perturbation method, similar
to ours, to prove the occurrence of topological chaos in a 2-D discrete version of Kaldor-type
business cycle model. For a 2-D ‘addiction’ model, Feichtinger et al. (1997) use a 1-D reduction
method to show the existence of horseshoes, and then use a perturbation method to show that the
horseshoes are preserved {or nearby 2-D systems.
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only in youth. In order to emphasize the role of the production side, the
consumer at period t is assumed to have a simple linearly homogeneous
Cobb-Douglas utility function with constant weight s€(0, 1) on his consump-
tion in old age:

u(cl,ncz,r+1)3= aC%;SCsz,Hh a>0, (1)

where ¢; ;, i = 1,2, denotes the quantity of consumption by the young and old
at period j, respectively. Given the wage rate at period z, w,, and the gross real
interest rate at the next period, r,,, utility maximizing behaviour yields the
savings function represented by

S(w) 1= {Z:E[O,WJI max  u(w _Zt’rﬁ-lzz)}

0z, <w i
= SW,. (2)

By our choice of the utility function, this savings function is independent of the
interest rate, and the parameter s can be referred to as the savings rate, i.¢., the
propensity to save out of wage income in youth.

The representative firm is characterized by a well-behaved production func-
tion f(k,) defined on R, where k, € R, stands for the capital-labour ratio at
period t. Using capital and labour, the firm produces a single perishable
commodity (e.g. rice) which depreciates totally in one period. We assume that
the production function f satisfies the following:

Condition (A):

(A.1) fis C* on R,

(A2) f(0) =0, f(x) > 0, f'(x) > 0, and f"(x) < O for all x >0,

(A.3) f(0) > 1, and limy_, 1 o, f"(x) = 0,

(A.4) f'(x) = x<>x = 1, (normalization)

(A5) (1) < =2,

(A.6) the elasticity of marginal production function #(x):= — xf" (x)/f (x) 1s
strictly increasing with respect to the capital-labour ratio.

Conditions (A.1)~(A.3) are standard in economics. Condition (A.4) is justified by
Condition (A.3). Conditions (A.5) and (A.6) look a bit unusual. These last two
conditions will be discussed later.

Competition implies that the marginal product of each factor is equal to its
factor price (w, or r,), that is,

re = f" (ki) (3)
we = f(k) — ke f'(ke)- 4)
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According to Farmer (1986), we will assume that the government follows
a policy maintaining a zero budget deficit at all times. This implies, from the
government budget constraint, that

bt+l = "rbza (5)

where b, € R denotes the debt-labour ratio (i.e., the government debt per worker)
at time t. Requiring that the asset market be cleared, we have

kivy + bevy = S(wy). (6)

Combining Egs. (3)-(6), we obtain a second-order difference equation which
characterizes the system

Blky, ket 1) = ['(ki)Blke= 1, k), (7)

where

Bk, ke 1) = s(flke) = ko f/(ke)) — ke 1 t)

This expression represents the net indebtedness of the government to the
private sector.

Note that b, is negative if B(k,_ ,k;) < 0, i.e., if the economywide capital stock
exceeds net private ownership. In this case the government is a net creditor to
the private sector.

Let

g(x):=xf(x), wx):=f(x) —xf(x) and h(x,y):=w(y) — [ (wx),
©)
then (7) is transformed into
kivy — glk,) — shik,— 1, k) = 0. (10)

We see that f(k,) = g(k.) + w(k;). Given the capital-labour ratio k,, w(k,)
represents the competitive wage rate or the share of labour in output per worker
f(k,), while g(k,) can be viewed as the share of capital. We will call this function
g the capital-share function.

Setting k, = x, and k.4, = y;, we obtain a second-order difference equation
with one parameter equivalent to (7):

(xl+1:yt+1) :Fs(xn%)’ (11)
where
Fy(x,y) = (v, g(y) + sh(x, y)).

Suppose now that not only the initial capital-labour ratio, ko € R, but also
the initial debt-labour ratio, by € R, are given historically. This pair of initial
states (ko,bo) determines (ko, ki) = (xg,0) by ki = sw(ko) — f'(ko)bo. Because
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of the nonnegativity of the capital-labour ratio, we have to restrict ourselves to
the set of initial states whose iterates by F; will never leave the nonnegative
quadrant, ie.,

X, :={(x,y)eR: | Fi(x,y)e R} for all n > 0}. (12)

Hence, for each parameter value se (0, 1), the difference equation (11) induces
a map from X, to itself:

Fo X, cRL - X, (13)

The set of initial states X, might be very small. Nevertheless, as Lemma 2
below indicates, this is not the case at least when the parameter s is small.

Before ending this section, we will give some remarks on steady states
(i.e., fixed points) of (11). The set of steady states of (11), denoted by Fix(Fj), is
defined as

Fix(F,):= {(k* k*)e R3 | B(*, k*)(f'(k*) — 1) = O}. (14)

Since f'(k*) = 1 if and only if k* = 1 by Condition (A.4), the golden rule steady
state p = (1,1)e R% is well-defined and independent of the parameter s. Since
B(1,1) = s(f(1) — 1) — 1, the government is a net creditor at the golden rule
steady state whenever the propensity to save is sufficiently small. In this paper
we do not take account of balanced steady states® satisfying B(k* k*) =
swk*) — k¥ = 0.

3. Characterization of global dynamics
3.1. Preliminaries

In this subsection, we briefly discuss some notions and implications of
homoclinic points and homoclinic bifurcations, which will be used in what
follows. Guckenheimer and Holmes (1983) and Palis and Takens (1991) offer
mathematical treatments of the subject. For a discussion of these topics in an
economic context, the reader is referred to de Vilder (1995, 1996) and Brock and
Hommes (1997).

For simplicity, we mostly treat here differentiable invertible maps (i.e. diffeo-
morphisms), but some similar results are provided even for differentiable nonin-
vertible maps. Let F:R? - R? be a differentiable invertible map and peR? be
a hyperbolic fixed point for F (i.e., where the Jacobian matrix evaluated at p,

6 The autarkic steady state (0,0) e Fix(F;) may well be very influential for the complicated global
dynamics in our model. See de Vilder (1996) for the creation of homoclinic points to the autarkic
steady state.
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D, F, has no eigenvalues with norm 1). If p is a periodic point of period k, then we
may replace F by G = F*. For a small neighbourhood U of p, the local stable and
unstable manifolds of p are defined as

foc(P) = {x eU

lim F¥x)— p},

k= o0

lim F~¥x)— p},

k-0

foc(P) = {Y eU

respectively. Even if F is not invertible, such invariant manifolds do exist. The
global stable and unstable manifolds of p are then defined as

o0

Wip) = {J F7(Wie(p)),
n=0

Wi(p) = U F'(Wi(p)),
n=0

respectively. Note that if F is not invertible, then W*(p) and W"(p) may no longer
be manifolds in the global sense (see e.g. Palis and Takens, 1993 for more
information). A point g€ W(p)nW™p)\{p} is said to be a homoclinic point to p.
If W5(p) and W*(p) intersect transversely at this homoclinic point g, then we say
that q is a transverse homoclinic point to p, and the orbit of g, 0(q):= {F(q)}icz, is
called a transverse homoclinic orbit. If W*(p) and W*(p) intersect tangentially at
this homoclinic point g, then we say that g is a homoclinic tangency. The
Homoclinic Point Theorem’ assures that a transverse homoclinic orbit to
a hyperbolic fixed point p implies the existence of a horseshoe near the homo-
clinic orbit. This is defined as a Cantor set which is invariant under (some iterate
of) the map G = F" and on which G is topologically equivalent to a shift map
with a countable infinity of periodic orbits, an uncountable infinity of aperiodic
orbits, topological transitivity, and sensitive dependence on initial conditions. In
addition, horseshoes as well as transverse homoclinic orbits to a hyperbolic
fixed point (more generally, hyperbolic sets) have a kind of semi-local structural
stability, that is, they are persistent against small perturbations of the map.

The existence of horseshoes does not imply that a typical trajectory exhibits
complicated long-run dynamical behaviour, since a horseshoe will not attract
nearby points in the phase space. Topological chaos in the sense of horseshoes
is, therefore, not observable in general.® To describe the asymptotic behaviour

7 See e.g. Smale (1967), Guckenheimer and Holmes (1983), Palis and Takens (1993) for various
versions of this theorem; for noninvertible maps, see e.g. Marotto (1978).

8 This does not mean that topological chaos would be empirically insignificant at least in the short
run. In fact, it is very likely to generate long-lasting complicated transient motion, which will be often
sustained under the influence of very small noise. See e.g. Dohtani et al. (1996) for the effect of noise
on a chaotic Kaldor-type business cycle model.
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which can be observed in the long run, we need some notions concerning
‘attractors’. A compact invariant set 4 of the map F is called an astractor if it
contains a dense orbit (ie, F|A4 is topologically transitive) and its basin of
attraction, ie., a set of points x such that dist(F"(x),4) »0 as n— oo, has
nonempty interior. An attractor A of the map F is said to be strange if F|A4 has
sensitive dependence on initial conditions. Contrary to the case of the horseshoe,
chaotic dynamics will be observed in the long run for a large set of initial states if
strange attractors are present in the system.

Now consider a one-parameter family of maps {F,: pel = R} with a hyper-
bolic saddle p = p(u). We say that the family of maps {F,} exhibits a homoclinic
bifurcation, associated with p, at yu = 0 if

(1) for u <0, W¥(p) and W"(p) have no intersection;
(1) for p =0, W¥p) and W"(p) have a tangency at q # p;
(1ii) for p > 0, W*(p) and W"(p) have a transverse intersection.

Furthermore, if we can choose a py-dependent local coordinate (x, y) near g so
that W(p) is given by y =0 and W(p) by

y=ax>+by, a+#0andb#0,

then we say that the tangency g is quadratic (a # 0) and unfolds generically
(b # 0). Some results of dynamical systems theory guarantee that for the families
of maps {F,} exhibiting a generically unfolding quadratic homoclinic tangency
at i = 0, several interesting dynamical complexities arise for u-values near u = 0
such as

O creation (or destruction) of horseshoes;

O coexistence of infinitely many periodic attractors or repellers (Newhouse,
1979);

O existence of strange attractors or repellers for a positive Lebesgue measure set
of y-values (Mora and Viana, 1993).

3.2. Chaotic dynamics

In the present section we try to identify a sufficient condition under which the
dynamics of Fy in (11) are topologically chaotic in the sense that the system has
a horseshoe. To this end, we will use a perturbation method (see e.g. Marotto,
1979; van Strien, 1981; Palis and Takens, 1993) to detect a transverse homoclinic
orbit to the golden rule steady state when the system is 2-D but nearly 1-D.

As a first step, it is convenient to consider the extreme case in which s = 0 in
(11). This corresponds to a world in which generations do not virtually overlap
because the representative consumer consumes all his income in youth and
nothing in old age. Consequently, all the capital needed for production is owned
by the government, i.e., k, = — b,. In this limiting case, the two-dimensional
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map (11) collapses, formally, to a singular map from R3 onto the graph of g, i.e.,
C = {(x,y)eR% |y = g(x),x > 0}, as follows:

Fo:Ri = CcRY; Folx,y) = (190), (15)
whose dynamics are clearly governed by an equivalent one-dimensional map
g: R_{_ - R+ . (16)

Hence, the system F in (11) with small s > 0 can be regarded as a perturba-
tion of Fy in (195).
By Condition (A), the following properties of the map g can be easily checked:

Lemma 1. Under Condition (A), the following statements hold.

(L11) g:R, - R, is C..
(L1.2) ¢g(0) =0 and ¢g'(0) > 1.
(L1.3) g(x)=x as x<1 (x = 1 is a fixed point).
(L1.4) g'(1) < — 1 (the fixed point x = 1 is a repeller).
(L1.5) there exist unique points q and 0€ R, ; such that
(L1.5.1) ¢'(x)20 as x< 0 (unimodality),
(L1.5.2) g(g) = 1,
(L153) 0<g< 0 <1<g®and0<g*h) <1.

Assertion (1.4) in Lemma 1 follows from Condition (A.5), and (1.5) essentially
follows from (A.6). From Lemma 1, we see that the graph of the marginal
production function y = f(x) satisfying Condition (A) must have two and only
two intersections with the hyperbola of y = 1/x, at x = 1 and at x = q. On the
interval [g.1] the graph of f’ is located above the hyperbola, and below
otherwise. A typical situation with a ‘reversed sigmoidal’ marginal production
function® is depicted in Fig. 1.

It is worth noting that the capital-share function g is not monotone'? with
respect to the capital-labour ratio, whereas both the wage function
w (W(x) = — xf"(x) > 0 for x > 0) and the production function f are strictly
increasing (see Fig. 2). Nonmonotonicity of the function g requires that the
elasticity of marginal production function # straddles unity because for
x>0, n(x) = 1 if and only if g'(x) = f"(x)(1 — 5(x)) = 0. In case that Condition
(A.6) is not satisfied, the function g may have more than one hump. Moreover,
even if neither Condition (A.5) nor (A.6) is satisfied, g cannot be a monotone
function as long as sup..p, n(x) > L.

° Figs. 1 and 2 are drawn based on a CES production functjon satisfying Condition (A), which will
be discussed in Section 4.

10 For a similar 2-D OLG model, Jullien (1988) assumed that the function g is nondecreasing.
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fl=)

1/z

z
q 1

Fig. 1. Nonlinearity in the marginal production function f".

f(z)
w(z)
1
9(z)
T
qg O 1

Fig. 2. Graphs of the functions f, w, and g.

In order to guarantee the existence of bounded and positive-valued equilib-
rium paths in terms of the capital-labour ratio {k,}:>0 for a large set of initial
states, it is meaningful to show that, on the strictly positive phase plane, we can
find a compact region M such that the forward orbit of every initial state
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in M cannot escape from there. We will then show that F, has a trapping region
in R 4.

Lemma 2. Suppose Condition (A) holds. Then there exist a compact region
M < R%, (peint M) and a number & > 0 such that for every s€(0, €) the following
assertions hold.

(L2.1) M is a trapping region for F, i.e., F{(M) < intM,

(L2.2) FM:M — M is a C'-diffeomorphism onto its image,

(L2.3) p is a hyberbolic saddle, i.e., the Jacobian matrix D, F evaluated at p has
two real eigenvalues 1,(s) and L,(s) with 12:8)] > 1 >14:(9] >0,

(L2.4) p is dissipative, i.e., |det D, Fyl =1A1(s)2(s)] < 1.

Of course, for every se(0,¢), the trapping region M is contained in X.

We first attempt to identify conditions under which F, has a transverse
homoclinic point to p. To do this, it suffices, using the argument presented by
Marotto (1979), to identify conditions under which the 1-D map g has a so-
called snap-back repeller, introduced by Marotto (1978), for x = 1:

Lemma 3. (Marotto, 1979, Lemma 2.2). If g has a snap-back repeller, then
Fo(x,y) = (y,9(y)) has a transverse homoclinic point. -

Note that the fixed point x =10f g is a hyperbolic repeller, ie., lg'(D)] > 1,
from (1.4) in Lemma 1. In order to show that the fixed point x =1 of g is
a snap-back repeller, it is then sufficient to find a point z€ Ry (z # 1) which has
an orbit 0(z) = 07 (z2)u0 " (z) satisfying the following:

(S1) 0%(z) = {xieRy [x0 =z, g"(%0) = 1 for some m > 1, and x;1; = g(x;) {
ori>0},

(S2) 07 (z) = {x_;€R4 |x0 =2, X s1lasi— oo, and x_; =g(x—;-1) fori
> 0},

(S3) g'(x) # 0 for each x € 0(z).

In addition to Condition (A), we impose further conditions on g:
Condition (B):

(B.1) g%() < g,
(B.2) ¢*(x) # x for any x&(6,1),

where @ and g are unique points with g@ =0and glq) =1(0<g< 0 < 1)as
given in Lemma 1. '

Note that the statement of (B.1) can be replaced by g>(6) < 1. Condition (B.2)
requires that the map g has no periodic point of period two on the interval (6, 1).
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We can see that, under Conditions (A) and (B), the map g has a snap-back
repeller, which implies that the singular map F, has a transverse homoclinic
point.

Lemma 4. Under Conditions (A) and (B), the map F(x,y) = (v,9(»)) in (15) has
a transverse homoclinic point to the golden rule steady state p.

This situation is depicted in Fig. 3.The stable ‘manifold’ for F,, W¥(p, F o)
consists of horizontal line segments passing through points which are eventually
mapped onto the golden rule steady state p. In particular, W*p, F,) contains
a horizontal line segment y° = {(x,y)eR: |xe[g%(0),9(6)],y =1} passing
through p. Furthermore, the unstable manifold W¥(p, F,)) contains an arc on the
graph C of g, y" = {(x,y)e C = R} |xe[g*(0),9(0)],y = g(x)}, because each
point on this arc y* has a backward orbit converging to p (see the proof of
Lemma 4 in the Appendix).

By the perturbation argument of invariant manifolds (see e.g. Palis and
Takens, 1993, Appendices 1 and 4), we can perturb the singular map F, with
a transverse homoclinic point, by making the parameter s slightly bigger than
zero, so that every nearby nonsingular map F, retains a transverse homoclinic
point. Hence, by applying the Homoclinic Point Theorem, we obtain the
following result:

q 0 1

Fig. 3. Transverse homoclinic orbit for the singular map F,.
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Proposition 1. Under Conditions (A) and (B), there exists ¢ > O such that for every
se€(0,¢), F; has a horseshoe A; = M with pe A, where M = R% . is a trapping
region for F.

3.3. Asymptotic behaviour near homoclinic orbits

Before proceeding to the next section, we will briefly discuss the asymptotic
behaviour for a large set of initial states when homoclinic orbits exist and the
dissipativity of the system is strong. Since M = R% . in Proposition 1 is
a trapping region containing a horseshoe A, every positive orbit of a point
starting in M is indeed bounded and does not leave M. But this fact does not
imply that the asymptotic behaviour of every such orbit would be approximated
by F|A, because /A, itself is not an attractor even though it may be a part of such
a set. Some points in M might settle down to periodic attractors. We can,
however, show at least that there is an open set surrounded by the segments of
the stable and unstable manifolds of p such that every point in the set is drawn
near the unstable manifold by the iteration process provided the dissipativity is
strong enough,'’ i.e.,, provided |det D, F,| < 1 for every xe M. More precisely,
there is an open set U; « M (depending on s) such that the w-limit set of each
point xe U, w(x):= {ye M |3n; > + oo; Fy(x) —> y}, is contained in the clos-
ure of the unstable manifold W"(p) of the golden rule p. This implies that certain
- attractors are contained in W"(p).

Proposition 2. Let Conditions (A) and (B) hold, and let M = R34 ;. be a compact
region as in Proposition 1. Then there is € > 0 such that for every se(0,¢), M

contains an open set Ug with w(x) = W¥(p) for every xe Us.

4. Example with CES production function
4.1. Horseshoes and homoclinic tangles

In this section we give an example with a constant elasticity of substitution
(CES) production function fz(x) with two parameters: one is the distribution

factor, 0(0,1), and the other is the substitution factor, fe( — 1,0)u(0, ),
which is related to the elasticity of factor substitution. The CES production

' A similar result for a different 2-ID OLG model with strong dissipativity has been shown by de
Vilder (1995).
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function is assumed to be of the following form:
1 ~B1-1/B
fp(x):= &[1 — o+ ax *]

X
T af(1 — oxf 4 o]t

17
where the elasticity of substitution is given by (1 + )~ . The first and second
derivative of f; and the elasticity of f; are calculated as follows:

fio) = Lo+ (1 = )]0,

p (1—o)(1+px"t
fﬁ (x)= — [0 + (10{_ a)xﬁ](§ﬂ+1)/ﬁ’

O R
fix) e+ —axf

p(x) =

One can easily see that if § > (o + 1)/(1 — &) > 1 then the production function
f satisfies Condition (A). The functions gs(x):= x fp(x) and hy(x, y):= wg(y) —
f3(y)ws(x) are then represented by

gp(x) = x[or + (1 — oP ]~ TPF (18)
and

(1 — oLy’ " "[o + (1L — o]0 D — X
Ryl V) = T = a1 o+ (1 — )y PO

(19)

The point 6 at which g, attains its maximum can be calculated by solving
ng(0) = L.

o 1/8
Gﬁ@%@—ﬁ'

Note that 6(f)e (0, 1) whenever B > /(1 — o) and that 6(8) — 1 as f— 0.
The dynamics of this economic system can then be characterized by

Fyp(x.y) = (0,95(y) + shg(x. y)). (20)

It can be shown that g, satisfies Condition (B) for every sufficiently large B (see
Appendix). According to Proposition 1, we can therefore state the following
proposition:

Proposition 3. Fix a.€(0,1). Then there exists f* > (o + 1)/(1 — o) such that, given
B > p*, F,p in (20) has a horseshoe for every s€(0,¢) for some & = g(p) > 0.
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Fig. 4. Homoclinic tangles: the wildly winding stable und unstable manifolds of the golden rule
steady state have infinitely many intersections for («, B,5) = (0.5,7.5,0.1).

Proposition 3 says that if the elasticitiy of substitution between capital and
labour is sufficiently small and the representative consumer consumes “too
much” out of his wage income in youth, then the economic system given by (20)
may give rise to topological chaos.

For example, given o = 0.5 fixed, one can numerically derive that f* = 4.851s
sufficient. So, given f > 4.85, topological chaos occurs for every sufficiently
small s. The parameter s may have to be very small indeed for chaos to occur.
However, the simulation results illustrate that the system Fy, can have a
transverse homoclinic point to the golden rule even for relatively large values of
s: Fig. 4 illustrates the case of so-called homoclinic tangles for the parameter
set (2,f,5) = (0.5,7.5,0.1). These appear as a result of the infinitely many
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intersections of the stable and unstable manifolds of the saddle-type golden
rule*? and the resulting wild oscillations of these manifolds.

4.2. Homoclinic bifurcations and complicated dynamics

The singular perturbation argument developed in Section 3 to detect horse-
shoes can be extended to establish the occurrence of homoclinic bifurcations
and the resulting complex dynamics for (20) (see e.g. van Strien (1981) for
a similar argument). This allows us to find S-values for which Fsp has a
quadratic homoclinic tangency which unfolds generically, associated with the
hyperbolic and dissipative saddle golden rule steady state p for small s.
Applying the theorems of Newhouse (1979, Theorem 3) and Mora and Viana
(1993, Theorem A) (see also Palis and Takens, 1993) yields the following
proposition:

Proposition 4. Fix v.€(0, 1) arbitrarily. Then there exists ¢ > 0 such that for each
se(0,¢) and for some f = f(s), F s, has a quadratic homoclinic tangency, unfolding
generically, associated with the golden rule steady state p. Thus the Sfollowing
assertions hold for all 6 > 0:

(i) Coexistence of Infinitely Many Periodic Attractors: There is a nontrivial
subinterval I < [ — 6,8 + 8] and a dense subset J <= I such that Jor each
BeJ, F has infinitely many coexisting periodic attractors of arbitrarily large
period (The Newhouse Phenomenon).

(i) Abundance of Strange Attractors: There is a positive Lebesgue measure set of
B-values E < [p — 6,8 + 6] such that F s.p €xhibits a strange attractor for each
feE.

While the occurrence of horseshoes in Proposition 3 does not assure the
observability of chaotic behaviour in F ; in the long run, the second assertion in
Proposition 4 does, even for a measure-theoretically large set of parameter
values. In this sense, the occurrence of observable chaos is one of the typical
dynamical phenomena for system (20).

However, the coexistence of infinitely many periodic attractors demonstrated
in the first assertion of Proposition 4 might be a rare phenomenon; the set of
parameter values for which F;  has infinitely many coexisting periodic attrac-
tors is conjectured to be of measure zero (see Tedeschini-Lalli and Yorke, 1986).
Nevertheless, as is known (see e.g. van Strien, 1981; Guckenheimer and Holmes,

12 For o = $ and fe(3,9), one may easily check that the golden rule steady state p = (1,1) of F, ; in
(20} is a hyperbolic saddle if 0 <s < spp = (8 — 3)/3(L + f), and it is a hyperbolic attractor if
spp < 5 < sns = 2/(1 + f), where spp denotes the period-doubling bifurcation point and syg denotes
the Neimark-Sacker (or Hopf) bifurcation point {8 # 5, 7).
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1983, Chapter 6), Newhouse Phenomena cannot occur for the singular (i.e., 1-D)
map F, s This fact implies that, however small the savings rate s > 0 may be,
there will be a big qualitative difference in the global dynamics between the
singular (s = 0) and nonsingular (s > 0) maps.

4.3. Multiple attractors for a large savings rate: Numerical observation

Even though the infinitely many attractors associated with homoclinic bifur-
cations may hardly occur, the coexistence of a finite number of attractors is
certainly a common feature of nonlinear systems (see e.g. Hommes, 1991). In this
subsection, we observe using computer simulations that the system F;; in (20)

1.6
1.54
1.4
Py
13 o~ \ift‘*
1.2 / \‘:\
/ W
1.1 i
1 .
o \\
;/A // %v:}% \
IR . Ny
/ AN

' 7
o /

Fig. 5. Three coexisting attractors: attracting golden rule, periodic attractor of period eight, and
three-piece strange attractor coexist simultaneously for (a, f, s} = (0.5,6.5,0.23).
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A}

Fig. 6., Bifurcation diagram: multiple attractors are observed.

can simultaneously exhibit stationary, periodic, and chaotic attractors for cer-
tain parameter values.
Let us fix the parameter values as follows:

=05 f=65 and s=023.

Then at least three coexisting attractors can be observed numerically (see Fig. 5).
Plotting a bifurcation diagram'® by computer helps us find these attractors
(Fig. 6). In fact, from Fig. 6 we can see multiple attractors appearing in an
overlapping way around s = 0.23. The first attractor is the attracting golden
rule steady state p = (1, 1). Recall that, as mentioned previously in the footnote,
if the savings rate s lies between the period-doubling and Neimark-Sacker
bifurcation points, ie, if s€(sep,Sns) = (B — 3)/3(1 + ), 2/(1+pB) =
(0.156,0.267), then the golden rule p is an attractor. The second is a periodic
attractor of period eight. The third is (probably) a strange attractor, which may
be called a “three-piece” strange attractor because it seems to consist of three
isolated pieces.

13 The initial points are randomized for every increment of the parameter value s.
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Fig. 7. Basins of attraction for three attractors (blue: attracting golden rule; red: period eight
attractor; yellow: strange attractor) and fractal basin boundaries.

Since an attractor will attract all its nearby points, it is interesting to know by
which attractor the initial points randomly given on the phase plane are
attracted; Fig. 7 depicts how the basins of attraction of these three attractors
share the phase plane. The boundary of the closure of a basin is called a basin
boundary. One can see that the structure of some basin boundaries looks very
complicated. Such so-called fractal basin boundaries may arise due to homoclinic
or heteroclinic bifurcations to some periodic points; Brock and Hommes (1997)
have presented a computer assisted proof that in a cobweb model with hetero-
geneous beliefs, fractal basin boundaries are created by heteroclinic bifurcation
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between the stable and unstable manifolds of two different saddles of period
four. Fractal basin boundaries may obstruct the precise prediction of final states
for given initial states (see e.g. McDonald et al. (1985) for more details about
these topics). In this sense, the complexity of basin boundaries provides another
type of unpredicability different from that of chaos, defined as the sensitive
dependence on initial conditions.

5. Concluding remarks

We have investigated the dynamics of a simple 2-D OLG model with produc-
tion and government intervention. Using a singular perturbation technique, we
have derived conditions under which topological chaos occurs due to transverse
homoclinic orbits to the golden rule steady state when the constant propensity
to save is small enough, or in other words, when the 2-D system is nearly 1-D. It
turns out that a high elasticity of marginal production function may lead to
strong nonlinearity in the capital-share function, which is responsible for the
chaotic dynamics of (at least) nearly 1-D systems. We have also given a useful
parametric example with a CES production function which exhibits observable
chaos associated with homoclinic bifurcations for a large set of parameter
values. From a methodological viewpoint, there are several advantages in the
perturbation method presented here. This method allows us to prove the
existence of transverse and/or tangential homoclinic points in 2-D or even much
higher-dimensional systems without the use of a computer, provided the sys-
tems can be transformed into tractable 1-D. Furthermore, it may require less
specification of function forms or parameter values than other computer-
assisted methods. Of course, we should also point out that our method, so far,
does not take account of the global dynamics far from nearly 1-D. For instance,
geometric structures and generation mechanisms for fractal basin boundaries as
observed by computer simulations in our OLG model are not well analyzed yet.
This will be an important topic for future research.

Appendix

Proof of Lemma 1. (1.1} Obvious from (A.1). (L1.2): From (A.3). (L1.3): From
(L1.2)and (A.4). (L1.4): Since g'(x) = f'(x) + xf"(x), it follows from (A.4) and (A.5)
that g'(1) = 1 + f"(1) < — 1. (L1.5): Note first that ¢g'(x) = f'(x)(1 — 5(x)). Since
7(1) = 2 and n(0) = 0, and # 1s strictly increasing by (A.6), there is a unique point
# (0, 1) such that #(6) = 1, implying (L.1.5.1). Since g is unimodal with its global
maximum at 0e(0,1) and g(x) >0 for all x >0, it follows that g(0) =
0<6<1<g(®and0 < g*0) < 1. Thus there is a unique point g with g(g) = 1,
which proves (1.1.5.2) and (L.1.5.3). U
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Proof of Lemma 2. (L2.1): First, consider the case when s = 0. Putting a = g*(6)
and b = g(f), we have 0 <a <1 <b. We prove the case when a <6 (the
argument for the case when 6 < a < 1 is similar). Note that [a, b] is invariant
under g, i.e., g([a.b]) = [a, b]. Given ¢, €(0,a), we can choose ¢; > 0 such that
gb+e)>a—egy Let I,:=[a—e9,b+¢]cR,,, then g(I,) = intl,. Sim-
ilarly, given & €(gq,a), we can choose &; > &; such that g(b + &) > a — &.
Then I,.:=[a — ¢y, b + ;] = R, satisfies I, < intl, and g(I,) < intl,. Let
M < R%, be a compact rectangle defined by M:=1,x1,, then Fo(M) =
I, xg(,) cintl, xintl, = int M. By definition of M, p = (1,1)eint M. Since
h(x, y) is continuous on the compact set M, we see that, for any sufficiently small
s> 0, F(M) < int M.

(L2.2): Since h(x,y) is obviously C* on R% ., Fy(x,y) = (y,9(y) + sh(x,y)) is
C! on R2 .. Therefore it is sufficient to show that F is injective (one-to-one) on
R2 . and that the Jacobian matrix of F is nonsingular, ie., det D, F, # 0 for
xeR% ..

Suppose that F; is not injective. Then there exist two distinct points
a=1(ay,a,)eR:, and b=(by,by)eR%, (a#b) such that Fyay,a,)=
F(by,b,). This implies that a, = b, and h(a;,a,;) = h(by,b,). Thus ha,,b,) =
h(by,b,), which implies w(a, ) = w(b,). But the function w(x) is strictly increasing,
since w/(x) = — xf"(x) >0 for x > 0. Hence a, = by, which contradicts the
hypothesis. '

On the other hand, the Jacobian matrix of F, at every point z = (x,y)e R% , is
given by

DZFS:[ 0 ! J 1)
shi(x,¥)  g'(y) + shy(x,y)

Hence we have det D, F, = — shy(x,y) = — sxf'(y)f"(x) > 0. ;

(L2.3) and (L2.4): Let 4,(s) and A,(s) with [A,(s)| = |4,(s)| be the two eigen-
values of (21) at p = (1, 1), then lim .o 41(s) = g'(1) < — 1 and lim, ¢ 45(s) = 0.
By continuity of ZA(s) (i =1,2) with respect to s and by |detD,F | =
[21(5)22(5)] > O (s # 0), the claims follow. [l

Proof of Lemma 4. According to Lemma 3, it is sufficient to prove that the 1-D
map ¢ has a snap-back repeller for x = 1. By Condition (B.1) and (1.5.3)
in Lemma 1, the ordering 0 <g*(f) <qg<60<1<g() holds. Let I:=
[¢%(0), g()], I :=[g%(6),0], 1,:=1[0,1], and I:=[1,9(6)] be intervals with
[ =\J2_,I;, then g is striclty increasing on I, and g is strictly decreasing on
I,ul5. We claim that

(C1) every xeI has a backward orbit which is contained in I and converges to
1, and

(C2) every xel,ul;\{6,g(0)} has a backward orbit which is contained in
I,ulI3\{0,9(6)} and converges to 1.
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(C1): since g(I,) = I3 and g(I3) = g*(I,) = I, UI,, it follows that for every xel
there is a point yel, with g"™(x) = y for some 2 > m > 0. Hence it suffices to
verify that every x e I, has a backward orbit for g* which is contained in I, and
converges to 1. Condition (B.2), together with (g%)(1) = (¢g'(1))> > 1 and
g*(0) < 6, implies that g*(x) < x holds for every xeI,\{1}. Since g*(x,) < X,
and g*(1) = 1 > x, for every xo €I,\{1}, it follows that there is x_; €(xo, 1)
with xo = ¢g*(x_), and, inductively, that there is a strictly increasing sequence of
points {xo,X_1,X-5,... } © I, such that g*(x_;_ ;) =x; for i >0 and x_; — 1
asi— o0. This proves (C1). (C2): recall that g is strictly monotone on I, Ul and
maps I, onto I; homeomorphically; then (C2) is obvious from the proof of
(C1).

On the other hand, it follows by Condition (B.1) and (1.5.3) in Lemma 1, that
g*(0) < g and g*(1) = 1 > q. So there is a point ¢’ € [,\{6,1} such that g*(q") = q.
By (C2), ¢' has a backward orbit 07 (q) = I,ul;\{0,9(0)} satisfying (S2). Since
the forward orbit of ¢', 07(q') = {¢,9(¢) € I5.9%(q") = ¢,9°(q') = 1}, satisfies (S1)
and does not contain 6, the so obtained orbit of ¢, O(q) = 0" (¢)v0~(q)
satisfies (S1)-(S3). U

Proof of Proposition 1. By Lemma 4, some compact parts y* of the stable und
unstable manifolds W**(p,F,) have a transverse intersection. In particular,
W¥(p,F,) contains a parabolic arc y* = {(x,y)e R% | xe[¢*(0),g(9)],y = g(x)}
and W¥p,F,) contains a compact horizontal line segment °= {(x,y)e
R | xe[g?(0),9(0)],v = 1}. Clearly, y" and y" have a transverse intersection at
(g,1) e R% . By the perturbation argument of invariant manifolds for noninvert-
ible maps (see Palis and Takens, 1993, Appendices 1 and 4), we see that the
compact arc of W¥(p, F) and the compact arc consisting of regular points'* of
W3(p,F,) vary continuously on the map in the C' sense. This means that, for
every sufficiently small s > 0, some compact arcs $** sufficiently C’-close to
y*/" are contained in W¥"(p, F,), respectively. Since transverse intersections are
stable in the C* sense, * and 9" above do have a transverse intersection. Since for
all sufficiently small s > 0, the fixed point p is hyperbolic and the homoclinic
orbit to p, obtained above, is contained in int M by Lemma 2, the map F| has, by
the Homoclinic Point Theorem, a horseshoe A, « M for each se(0, ¢), for some
e>0. O

Proof of Proposition 2. Note that detD,.F; = — sxf'(y)f"(x). We can pick
a small number 6 > 0 so that 1 > ¢ max yem X' () f"(x)] > 0. Let ¢ > 0 be as
in Proposition 1 and let ¢ = min{e, 6}; then for every se(0,¢'), M is a trapping

14 See Appendix 4 in Palis and Takens (1993). Let K « W¥(p) be any compact set. Then, for some
n, F(K) c Wi.(p). We say that the points of K are regular points of W=(p) if for each
xe K, Im(D,F") + Tp(Wie(p)) = R% So the arc y° contains only regular points of W*(p).
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region for F; and F |M satisfies the following:

e Wip)nW p)\{p} # ¢,
o W'p) < M, and
e |det D, F | < 1 for every xe M.

We can take a bounded region U, =« M whose boundary consists of segments of
W*(p) and W*(p), and now apply Proposition 1 in Appendix 3 in Palis and
Takens (1993). O

Proof of Proposition 3. We know that if > (1 + a)/(1 —«) then f; satisfies
Condition (A). By Proposition 1 in Section 3, all we need is to verify that the
function g, satisfies Condition (B) for every sufficiently large §. In what follows,
we assume f§ > (1 + o)/(1 — x).

(B.1): We first note that f3(0) =gs(0)=0 and f5(0)=a ®*"" Since
w(x) = f5(x) — gp(x)is strictly increasing and fj is strictly concave, it follows that
g5(x) < f5(x) < x/o' "V for x > 0 and 0 < o' " < g(B), where g,(q(B)) = 1 and
g(B)e(0,08(p). Since limg., o' =0, it is sufficient to show that
limg-. , g5(6(B)) — 0. Considering that

awtopy = a1 = (5] | o2 aspoon

and that lim,., ., gg(x) — 0 holds for each x > 1, we obtain the last claim.
(B.2): Since

(1= o)1 + " "' [B — ox” — oL + B)]

[OC + (1 — O()X‘B](3B+ 1)/ ’

gg(x) =

it follows that g, has a unique inflection point

~ o (ol + PN
np) = <ﬁ(1 - a)> > 0(B),

sothat gp(x)=0asx=2 8(p). Note for future reference that the critical point 6(f) is
quadratic, i.e., gg(0(fB)) # 0.

Let us define a continuous piecewise linear map ¥, ,:R — R with two para-
meters a > 0 and b > 0 by

—alx — )+ 1=lj(x) forx<1,

Yap(x)i= { —b(x — 1) + 1 =11,(x) for x> 1.
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By virtue of the uniqueness of the inflection point, one can check that if we let

a(f):= min{ig/ﬁ(l)l, i"%)@}%—l} and
R g(0(B) — 1
b(p):= mln{[gﬁ(l)l, W‘}’

then Yraqp,u(x) = 11 (x) < gg(x) for x €(8(8), 1) and Yrags, pis(x) = L(x) > g5(x) for
xe(1,g5(0(F)). We claim that if a(f)b(f) > 1 then gs(x) < xforall xe 6(p),1). To
see this, note first that for xe(6(f),1), we have Y2 (%) = Lol (x) >
1,095(x) > gj(x). And note that if a(f)b(f) > 1 and x < 1, then Y24 5 (x) — x =
lyoly(x) — x = (1 — a(f)b(P))1 — x) < 0. Combining these inequalities, we get
the claim.

To complete the proof, it is then sufficient to show that a(B)b(f) > 1 for f large
enough. But this follows from the fact that

lim |gg(1)] = lim o — (1 — )] > oo, lim |6(B) — 1] =0,

B0 f~ 0 p—

: : 1 :
lim |g5(6(8) ~ 1/ ="—= and lim [g}0F) ~ 1| =1. O

B0 v B0

Proof of Proposition 4. Given a€(0,1), let > p*, where f* is as given in
Proposition 3. Note first that the unstable manifold W*(p, F, 4) contains a com-
pact parabolic arc y*(f) = {(x,y)eR% | xe[q(B), 1],y = gs(x)}. Next, we can
observe that there is a sequence of points, depending upon B, which are
eventually mapped to the fixed point x = 1: ‘

O(B) = {a:(P) e [0,0(8)]14:(B) = gp(gi+1(B)) for ieN,
gq=4q; >qy > ---,q;>0asi— o0}

Since for every x€(0,1), g4(x) = x/o as f — oo and so the increasing part of the
graph of g, converges to the line segment y = x/a as f— oo, we have
4:(B)e Q(B) — o as B — oo . On the other hand, by the proof of Proposition 3, we
have g;(0(f) —~0 as B—0. Hence, given B, > f* there is keN with
95,(0(B1)) > qi(By), and there is B, >, with 95, (0(B2)) < qu(B2)- So
g7, (8(83)) = qi(B3) for some B3 e(By,B,). Consequently, W(p, Fy ) contains
a horizontal compact line segment y*(f) such that (i) y*(8;) and y%(8,) have no
intersection, (i) y"(f,) and y(f,) have two transverse intersections, and (iii)
7"(B1) and y*(f3) have a quadratic tangency at (6(f5), g, (0(83)) e R3 .

By the same perturbation argument used in the proof of Proposition 1, for
every sufficiently small s > 0, the stable and unstable manifolds W**(p, F, ;)
contain arcs §/%(f), sufficiently C-close (r > 1) to y¥%(f). These satisfy the
‘inevitable tangency’ condition (see Takens, 1992 for weakened generic
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conditions for real-analytic difftomorphisms):

(i) 9%B1) = W3p,Fsy,) and (1) = W¥(p, Fy 4,) have no intersection;
(i) #%(B,) = Wi(p, F,) and $%(B,) < W¥(p, F; 5,) have two transverse intersec-
tions.

Hence, for s> 0 small enough, we get a homoclinic bifurcation value
B = B(s)e(B1,B2) at which $%(B) = W(p,Fy5) and $*(B) = W*(p, F,p) have a
homoclinic tangency.

Since Takens’ generic conditions (inevitable tangency, analyticity of the map,
and non-constantness of — log(4;(f))/log(A,(B)) with respect to f, where 4,(f)
and A,(p) are eigenvalues of D,F,,) are satisfied, the homoclinic tangency
obtained above is quadratic and unfolds generically. Recall that the fixed point
p is hyperbolic and dissipative for every sufficiently small s > 0 by Lemma 2.
Now apply Theorem 3 from Newhouse (1979) for the first assertion of Proposi-
tion 4, and Theorem A from Mora and Viana (1993) for the second asser-
tion. [ '

References

Azariadis, C., 1993. Intertemporal Macroeconomics. Blackwell Publishers, Cambridge, MA.

Benhabib, J., Day, R.H., 1982. A characterization of erratic dynamics in the overlapping generations
model. Journal of Economic Dynamics and Control 4, 37-55.

Bohm, V., 1993. Recurrence in Keynsian macroeconomic models. In: Gori, F., Geronazzo, L.
Galeotti, M. (Eds.), Nonlinear Dynamics and Economics and Social Sciences. Springer, Berlin,
pp. 69-94.

Boldrin, M., Woodford, M., 1990. Equilibrium models displaying endogenous fluctnations and
chaos: a survey. Journal of Monetary Economics 25, 189-222.

Brock, W.A., Hommes, C.H., 1997. A rational route to randomness. Econometrica 65,
1059-1095. .

Diamond, P.A., 1965. National debt in a neoclassical growth model. American Economic Review 55,
1126-1150. ‘

Dohtani, A., Misawa, T., Inaba, T., Yokoo, M., Owase, T., 1996. Chaos, complex transients, and
noise: illustration with a Kaldor model. Chaos, Solitons & Fractals 7, 2157-2174.

Farmer, R.E.A., 1986. Deficits and cycles. Journal of Economic Theory 40, 77-88.

Feichtinger, G., Hommes, C., Milik, A., 1997. Chaotic consumption patterns in a simple 2-D -
addiction model. Economic Theory 10, 147-173.

Grandmont, J-M., 1985. On endogenous competitive business cycles. Ecomometrica 53,
995-1045.

Guckenheimer, J., Holmes, P., 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields. Springer, New York.

Hommes, C.H., 1991. Chaotic Dynamics in Economic Models: Some Simple Case Studies. Wolters-
Noordhoff, Groningen.

Jullien, B., 1988. Competitive business cycles in an overlapping generations economy with produc-
tive investment.. Journal of Economic Theory 46, 45-65.

Lorenz, H.-W., 1993. Nonlinear dynamical economics and chaotic motion, 2nd Edition. Springer,
Berlin.

91



934 M. Yokoo [ Journal of Economic Dynamics & Control 24 (2000) 909-934

Marotto, F.R., 1978. Snap-back repellers imply chaos in R". Journal of Mathematical Analysis and
Applications 69, 199-223.

Marotto, F.R., 1979. Perturbations of stable and chaotic difference equations. Journal of Mathemat-
ical Analysis and Applications 72, 716-729.

McDonald, S.W., Grebogi, C., Ott, E., Yorke, J., 1985. Fractal basin boundaries. Physica 17D,
125-153.

Medio, A., 1992. Chaotic Dynamics. Cambridge University Press, Cambridge.

Medio, A., Negroni, G., 1996. Chaotic dynamics in overlapping generations models with production.
In: Barnett, WA, Kirman, A.P., Salmon, M. (Eds.), Nonlinear Dynamics and Economics.
Cambridge University Press, Cambridge, pp. 3-44.

Mora, L., Viana, M., 1993. Abundance of strange sttractors. Acta Mathematica 171, 1-71.

Newhouse, S., 1979. The abundance of wild hyperbolic sets and non-smooth stable sets for
diffeomorphisms. Publications Mathématiques IHES 50, 101~151.

Palis, J., Takens, F., 1993. Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurca-
tions. Cambridge University Press, Cambridge.

Reichlin, P., 1986. Equilibrium cycles in an overlapping generations economy with production.
Journal of Economic Theory 40, 89-102.

Smale, S., 1967. Differetiable dynamical systems. Bulletin of the American Mathematical Society 73,
741-817.

van Strien, S.J., 1981. On the bifurcations of creating horseshoes. In: Rand, D.A., Young, L.-S. (Eds.),
Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Vol. 898. Springer, Berlin,
pp. 316-35L.

Takens, F., 1992. Abundance of generic homoclinic tangencies in real-analytic families of diffeomor-
phisms. Boletim da Sociedade Brasileira de Matematica 22, 191-214.

Tedeschini-Lalli, L., Yorke, J.A., 1986. How often do simple dynamical processes have infinitely
many coexisting sinks?. Communications in Mathematical Physics 106, 635-657.

de Vilder, R., 1995. Endogenous business cycles. Thesis, Department of Economics, Tinbergen
Institute Research Series 96, University Amsterdam.

de Vilder, R., 1996. Complicated endogenous business cycles under gross substitutability. Journal of
Economic Theory 71, 416-442.

92



R EIISE TR 45305 (1999) pp. 63-77

BT ERERTAS

EEFIBH O~ 7 QBFAN - A AWEE & A ATR

EEH-R - BT B M EBRR

B
.ELoi
. EFAVOERL
. EToEFNT 7a—F
O HEYIalL—Ya vt
4-1 [78—A b} oW EHH
4-2 [#] ORE
5. % E

5

W W N

1.8 U ® K

*ﬁﬂ,ﬁﬁﬁmﬁbtvx?ATm&<,ﬁémﬁﬁ%@wﬁf&z%At®ﬁﬁ¥%
mé%énfmé.:@%%ﬁ,@ﬁ@ﬁit@ﬁﬁ@%m%ﬁ%&ﬁﬁﬁ%%ﬁﬁ?é@
PR 52 %0 HUIBAR B 2 O BN R - EIERIRFIRICL o THICEE TH 5. Asada (1995) 13,
ﬁwFTﬂwﬁﬁﬁ%ﬂ%KE%E%tﬁﬁﬁﬁﬁﬁ%ﬁkttmE%&%%@?7mﬁ%
EFLAEM LY, Asada (1995) 1F, MESEAYRBEATEAE L7 VIEGERE T TV (B
FEXEFL) 07 L—nrT—r0b LT, B L EHRBHORT O —A &0
LCwa. B - - =@ (1998) 13, MRNGEEE&CRIRMET )V @EEDT
ﬁﬁ%?»)@7»-A7~7@§&T@%ﬁ%ﬁ@ﬁ~x%ﬁﬁvs;v~&ayu;o
T%ﬁb,:@&x%Aﬁﬁix%@ﬁ@wfﬁﬁﬁéﬁ%%t%?:t%ﬁtt.
KETL, HEGEE 42 2abliET s Ve A OMNERBREFO A VT
FBSEBREF VA ZET 54, KBTI, EHRSHOY AT LIIERONRIHOND.
T ld, BEEAESL - ESAVESEIRESICE - TEBL, R O R R BE y AR
%ﬂmégénfwé:&%ﬁﬁﬁé.ﬁ&@vx%A@,3%@@#%%%%%ﬁﬁﬁﬁ
Kitb%ﬂé.&ﬁ-ﬁﬁ-i%(w%)m,@%ﬁ%ﬂ9X%AK£mC[74f®
ﬁﬁmﬁ%m@wﬁihfwé%ﬁ%&%ﬁ%$%ﬁﬂ?%@%%ﬁoTw%ﬁﬁf@ﬁ
<,%éﬂloTﬁﬁﬂ%&ﬂ%éﬂf@é%ﬁ%ﬁ#@iﬁ%@éCtﬁ%%J@J&)

93



64 RK AR FRTCT %305

EwAa ek, 1222, T8 oORBEOBRCENIFZA - T VI 25— %B2U LIS
EHIEFHNES, L) I LERLL KETR, BEHESHI D AT L1081 2 5EY
Jab—varilioTUTOZLE2RT. (I K/3T A —F— (BMHBCBT 2 -850
FEEE) o BBEMT A ONTRERBESEL - EOEHBASEIEKT 2 [N—2Z |
(burst, JB%) LW IBBPRET LY, /A AL THLAEBEL—FD [)3—Z ]
AU EIA T L H D85, QEMNERO (%] (windows) 35/ 4 X2 & »TH SR,
B A ABNEEPEELES, (3)“;;-??’ CBRENTBEN /A AL TEIPTLELELZ LD D
N#g5.

2. EFLOERE
FROEF VBT 2 BRI FRRERE, BTO L) CERMEsh 3,

Vi1 = Y=« [CHL+GH] =Y 5 « >0 (1)
Kt+l_Kt=It (2>
Ci=c(Y,—T) +Cqy: 0<c<, Cy=20 (3)
, al, a1, o1, '
L=1(Y.K,r) ; Iy= >0, Ix= <0, L= <0 (4)
‘ a2y, oK, a1,
T,= 1Y, Ty 0< 7 <1, Ty=0 . (5)
M oL oL,
=LY, 1) } Ly=—>0, L=—<0 (6)
P 2Y, or;
2], o]
JtzJ(Ytq Et) ;JYE <O, JEE >O (7>
oY, t
E%—E, ‘
Q= f 1 s B>0 (8)
t
A=l +Q (9)
A=0 (10
ES, —ES=(y+0e) (E~ED; y>0, 020 ()
M,=M>0 12

ST, BEOEKE, UToeBhThHs. Y=HERMEE, C=(HHEXL,
[=E£BERBMBEELY, G=FHEBUFXH (B8, K=%E W) EXXA by 7, T=%
%%%ﬁ,M=%E%%m%yP=%ﬁ*ﬁ(%ﬁ%§fWﬁ@T%%vub(ﬂﬁlﬁ
fi=MEEHM), E=MFA%L—F GEVWRRICRHT S L A4 ICHIRE NS EOBR
), J=.ERFIE (M), Q=FHERINX, A=FEHREIK, o« =HHHIIBY
LEHEEERDOT T A—F —, [ =EHEEABEORBHEOBREL RO T /NI A -5 —,

94



1999 EERBH O~ 7 OBE5W | A AWER L A FRGRE - =8 - ) 65

) =HIRABL - OMERELRDTNTA—F —, ¢ = LSS BWEEN (O, 1),
o=/ AXDRKEEREDTERRENTA—F—. ¥TA7 YT Mtid, BEzEbT.
(L, BHECBILHERE o2 2 KA L Tvb. 2, TEREERAFRER]
ThHY, MEEPERZ by 7OBICEL VI L ERL T, B~B0 & idEh£h,
HEEH, e MEHEKETHL. (6, TR BT EEGTH L. (1L,
RN LY A TOREICEECH L. B, BRESR LNEEFOIGEEDENENE
PICE U CERIGENEPEPPFRELILERLTVS. URETRIEREVIEILE, B
BEABEIIERICR S, (9T, BREWNZoEEXNTH 5. 10x0id, ZEHEEGHI > 2 7 A
WCBIEABL-MEEAI AL EERDLLTWA., 20X, BRENI2HHSIEEL L)
WABL-FEPHAENICHRELZ LA RL TS, (xS, HIFAEL— BT 5
Fﬁmﬁﬁﬁﬁj%%ﬁmbfwé.%%wﬁﬁﬁﬁyﬁ/4z Ko THENIIEEHT S
CEPREINTVS., QRF, ZEEGEH S A7 28w TCdBEYRI EHRMHEEL I
PO—AFBIENRTELDT, MEBRERIC K > THRESNAIMEERE A% Tk
RTEBIEERLTWS?,
FRAGRO~0%, UTOLIRIDar R bV AT AT EDBI LN TE
Y,
(1) Yo~ Y= alc(= 7)Y +cTy+ Co+ G+I(Y,, K, r (Y, M))
+JYLE) —YJ: « >0
(i) Koy~ K =1(Y, K, r(Y, M))

— Et
(m).&=JWbﬂ)+ﬁ{ngM)-q~ Et‘1}=0

t
(iv) E?H“Eeg:()f +o 8t> (Et’Eet) .
19 GEF EWBELTES LY, UTOER4ES

oFE -}y fr m-— fr
Et=E(Yt’E$;; ﬁ) ;EYE ; = b eY > - Y 2 §O
oY, Jg+ B (EY/ED T+ B (EL/E;
m JE B
©BE——, Ege= Z= ;>0 (14)
Ty JE} JeE:+ B (ES/E?)

TIT, mE~-Jy=-23]/0Y,>0, ry=0r/08Y,>0, Jg= 8]/ OE >0 Th2Y. 1a3ti3,
BEABBOWENE B 25N STNITE R Y, OBMERICR Y, g2 kE g
ERY, OBVBEHICAEBLI EEFRLTWEY,
W ZRITRATIIE, ROL I % 3EBOFEETRREESHRAERZEES
(1) Yie1=Ye+ a lc(Q— 7)Y, +CTy+ Co+ G+1(Y, Ky, r (Y, M)
- +J(YLE(NYLES: 8)) -YJ=F, (Yo Ko ESS «, B) (Sy)

95



66 th S KR E AT SRR SR #£30%5

(i) K1 =K+1Y, K, r(Y, M) =F, (Y, K

(iii) E4,=Ei+(y + 0 e ) {EYLES; B) ~EYl =F, Y, E$; B, v, 0)
75, Asada (1995) K& o TERL SN/ A ADPFEEL T VERKBEEF Y (M5 H
BREFL) 1, WTFOL) 2B,

(i) Y=alcQ- r>Y+¢TO+CO+G+I(Y,K,r(Y,"M>>

+J(Y,E(Y,E®; 8)) -Y)=f, Y,K,E®; «, B)

(i) K=1(Y, K, r(Y,M)) =, (Y,K)

(i) E°=y [E(Y,E®; B)-EY =6, (V,E°; B, »)
Asada (1995) i3, YA F & (Sy) 2"—BHRHHEL (Y*, K*, E*) >0, 0, 0) ¥
Dk EEOREDD L THER LN, YAFA (S) OBWEMIES AT A (S) O
HEFA—THLIEDPEZHITOPL. KBOLTOESTIE, AT A (S) PEFHICE
BERAPHESLZROLEREL T2 EDS.

(S

3. BETOB/RN 7T SO0—-F
Asada (1995) &, ROFEMEZTHL /2.

(1) bLAHFTFICRETFNE, VAT A (S) DB NEWIIRETHS.

(2) BEHIZBNT G+ g>1-c(l~ 1) THHERELLI. TOEE, BHTHITM
BT o AFFERETIE, VAT L (Sy) D EIINERCY FIVEL ¥ Mk 5.
IS OFEMEE, HerDOEFTNVOERKKEY 7 — Y YT, B (i3 oMo

EABBOBCRBIEL Y AT AORELMERTHH I L2 BHRL TS, JOKHIE, £

7 LCEBEMES L (EOFRREFTNV) KD TUITE0THA ) . FEid, BEHEFHE

EFVICBVWTR, [F—"N—=Ya— A ] OFELZERTEZT, I HITHHFRE

BAIIZY AT A (S) OBEEIARRELCEDOT, LBOFELIE, YAFA5 (S) I

WHEETEZVOTHA, KRiZ, 0=0 BENBEPFELZ) EERELT, HBLEoE

A7+ —<MIFEHATAIEICLES.

YA (S) OHEEATHEESZYa—CRF]E, BT0L)CHET 5.
Fi(a, B) Fip(a) Fis(a, B)
= Fa Fy 0 ' (15
Fs (B, 7) 0 Fss (B, )

::f,Fuu,ﬁﬁq+a[%+&{%—necu—r)+ﬁ}+hg%(ﬁn,mﬂa)=

a Ixg<0, Flg(a,ﬂ>=a;g§§}e(ﬁ)>0, F21=£Y>+(I_r) f'}'), F22=1+%E{)1 Fgl(ﬂa }’):‘7}::;{)
(B), Fw(ﬁ,y>=1+yiEw(ﬁ)-l}=1—({§Ey)/(k%E+lﬂ

926



1999 EERGH O~ 7 085 @ 4 AWER L ) 4 XHRGRH - =& - %) 67

Thdb. ZOVATLAOHEERRERI,
AL =[AT-Jl= 13 +a, A% +a, 1 +a;=0 (16)
EhAb, TITT, a~aid, UTOXH 1252605,
(i) a;= —trace],
=-Fn(a, B)~Fpp—Fs(f, y)
Fg, 0 Fyy Fiz|+ | Fiy Foo
0 Fs3| [Fz Fai |Fay Fy
=FooFs3 (B, v) +Fy (a, B)Fs3(B, y) —Fis(a, BIF5 (B, ¥) an
+Fy (e, B) Fp=Fip(a, f) Fy
(i) ag= —det];
==Fyy (a, B)Fy Fa3(f, y) +Fi3(a, fIFp Fy (B, y)
+Fpp (a)Fy Fos (B, ¥) ‘
%ﬁﬁﬁﬁﬁ%?é:—y=v1—7®%%%ﬁmih@,&2%A(&>ﬁ$ﬁ%ﬁ§

......

EI B0 OLETSEMR, UToLdiIc52615Y,

+ +

(li) as =

(i) 1+ag_‘al+agi>0 l
(i) 1-ay+ajaz—a3>0 | 18
(i) a,<3 {

BoT, L a>3RbiEY AT A (S) RNRIICRERIZR S, UTFICIRET 2 4H
i, COEEOHMERATHS.

(o) |
+ 1-c ﬁ—r) 3& O -1 252 STLTE =R Z

MLTwBERELL). oL E, RO (A) 7213 B) OWTFhroLHRE-sh
TORE, YAFA (S) OWE A MIIRERICRS.

(A) NFRA=F— BBV o H+HITKE N,

B) /NFX—=F— BB Iy HHHFITRE W,

(REFH)

195X, F3y (B, ) BLUF5(F, 7)) OERBIUBHH BV CE=ELAbZL%H
WhiE, ROBR*HE5.

lim JeEy =l m- by J.E<0 | 19
1m =lim = - 19
=B S 14 (B /15E) e

. . }’(m"ﬁry) . \
%gFm(ﬁ,Y)~k§——3;:2?——~—)ny<0 0

97



63 TR KRR E BSR4 R 305

. . B
I}QFgg(ﬁ’y}“%{{g{lﬁy%EE‘*ﬁ —1)}=1 | @

o T, RAPHILT 5.

Azlﬁig},az:Qﬁﬁf&<a>££‘%§zzl—§fg<a>lj_§‘l(y>—gﬂ«)gz)l | 2
CCT,F§=EQEP8F;hU/8a<Q OF,(a)/8 a<0, 8F5(a)/3 a >0,
OFy(9)/07y<0TH5A. @RLY (i) BLaDBTHIEREVEED, Ho5id (i)
B ey THICRECEAICE, A>3ERY, YATL (S) BNERNIIAEEILRSZ
EhSbhr s,

; GERRT)

CORER, BB RCHEEE (o) $RAMELEL— OB HLERE
(y) LHEUC-ERERABSHOBVEENE (8) &, F—"—Ta2—ROLDIZY
2575 (S) OBEEEIRENLEEEILE, HETOBMBIEEDD L TRLTVA.

4. BiE>IaL—2a
AE T, B CRESNEZEFVOETOREY I 2L—Ya VORBRE\ANTEZL
L&, Beid, UTOX)CHERBLURI A=y —fEERHELLTYI2b—T =
v ERfTIR o7z,

I(Yt, Kt’ I‘t) = f(Yt> - OSKt - I‘t + 100 (23)

80 2.25%3.1416 '

HY) = Arctan] | “m2 "2 | (Y~ 112) 1+ 35 24
3.1415 20

r.=1(Y, M) =10./Y,~ M 9
100

J(Y, E) = —0.3Y,+ 100~ 29
t

c=08, 1 =02, r;=6, cTy+Co+G=238, M=100, B =15, y =12 09

Mﬁm,ﬁwF7ﬂ®8$ﬂ&§%ﬁ%7—7yyvlyb%&f%ﬁtfwa.mﬁ
roosta ERIGEo®E &S (936D ) ITRATRIE,

100 _ES :
~0.3Y,+100-——+15 10¢Y;—E ~105 | =0 29

t t
PR AEL, ORFECHELTRETE, DToX)2BEEL - EORBRAFRELN
3.

100+ 15K

- 0.3Y,+ 150, — 1475

E, 0)

98



1999 EEHRGRI O~ 7 OB | F AMESE /4 AR GER - 28 - FE) 69

INLDOF—FERAWT, REAZBEIYI2b—Ya v ifihol. Sl 2% —¢
LCid, BHBICB I 2MBERE . 2BA L. BENEIADEELZY (0=0 BHEIT
&, WA (YS, K*, BES") =(Y", K*, E*) = (112, 450, 1.56) L 7% 5745, Zhb
DIEIR, T X =5 — o PHIIMIZITRT B,

) A XHBREGT B0, BFEBL - FORBRE (y) 27/ 4 AL > TEHT
BT EMNRESN, —RNICEZE, 28B4 X, T4hbb, [MEK A X
(additive noise) & [7SF X FY v & - 2 4 X ] (parametric noise) A EFET 5. Mk /
A ADBHEIE, ABOFRAI /A APRLEORTMA GRS, ST A Ny s )
4 ZDHEIE, FRRICBILH B85 2 —F =3 4 22X > TEET 5. Crutchfield
etal. (1982) &, BV RF 4 v 7 HFBRRIIBIB /A XBEZHHL, ST A M) vy - )
AXEMER ) A ZDEECRDZE®R L. LaL, ZofRE, BT (HEH o
PAFRIIIDOWTELT LIS TEE SR, REBEOMRICBVLTIE, & L, SHEBEL
— DA Rk o TEBT 2RRASHTH720I0, NTAPY v s - )L ADr—R%
EOBITFBI LT A BEREICBIANTA NI vy - V4 X EME) IV FTRIBSAAE
BETVORMEY I 2L —¥ 3 YOFEMIZOWTIE, Dohtani et al. (1996) #&Hsh/z
. '

FADHEYIaL—TYa VOERBRIT, UTOIHICEHENS.

(1) JAXDPERELEVY AT L (6=0) KBV THHBORABERELEDLT ST A—¥
—a BWIMT HICONT, BEL—F EOEFEIEREBERT S [N—2 ] Lw)
HARPHET B.

(2) JAXICEoT 82 ] HH&NBE. BETHE, /A BB BEE T
DELERLEDL T LN HA. ,

(3) FYFERESED (8] /4 XX o THEN, BRICESA: D+ A
HbhaZhds.

4-1 [N—Z ] oW L Bl

K1, /AXPFELZVHBEONEABEL - FEOFERTH L. TS5 2 -5
—@, BRI BTARERE « THB. M2k, TOYATAIBIARKY ¥ 7/ T
BERLTWAY., ThHdEID, ¢ =03312BWT [/N—Z M) ML, «=0330
HERCTHEL T ANLRERVPRET LI E0bh»2Y, W31, « =033 1080244
AT E5245 =% E-YFPHRLIIHECZLDOTH S,

EZAT, JAXZLoTAHBRL—-MD [N—ZA M PEHSRAEZ L2 H0ESL. K4
d, «=033DLELTLD/ AKX (0=001) IZLo TENLP LS XN E-Y FELED

99



70 , ' K SRR BT FERT R 3 5305

FrS I —ThbH. ZOTII758—1%, /AXBPFEELEVEED«=0321C8BF57
N2 H—EPTEYE, ZOT NI 25 —GRBKTHY, [N—A ] bHELTHE
. BFEENZEESS IO EERRTAE, UTOLI a5 ThHs . HENLEE
(V4 2) BB EAREEL — FABLCEHT 258 Th, 2OHRLVERSDT
PO AR E S THHENBLOTHS. M5 ER6E, o =033 1CBI2B%L—10
WEE A AHRCES (0=0) £bThrD/ 4 APHEETHHE (0 =001) 2HFT
ELTwA, f

PEORIE, 7 4ZDBYAF AR REILEEHBDLEVI ZLERLTVS. LAL, 20
i, JAAHYAT ARBEEEASED L) IERERT 2D TRE V. BT
813, BAKER A (0 =005) FHEETIBEOMEERD 200PTHE. 20
Blig, /A ANY AT AR TREMASEBIELHIBHLEVITERRL TS, B9,
e =033BLP o =000 X IHBBALALEYFHRLOT NS5 —ThHAH. ZDOT LT
2E—ZAFANTHY, JAZXDPEELZVEED « =034 1XBIET M52 5 =BT
Vo, BEORBEFEHTE /A ZRBENEREEPTLESLREIENHYED,
WA EIIRBETHAI.

M1 JA4AXPHFELEVESEDE O5EKN

12 it M o jrasearsasassseseees :

10

0 0.1 0.2 0.3 04 o«

100



1999 EEMBH O~ 7 TBIRSH - h A ANEB L /4 AZR EH - =#F - %)

2 JAXFEELEZVEHEORK) v 7/ TR

05 ...................... ........................

-05 ........................

B3 /A XBEELZVBEOE- Y FHEDT 527 %— (4 =033)

Y
140 « .................. .‘ .................. ..................

) S — S S— A—

120 | A S B

100 . .................. ......... ¢ .................. ..................

90 Lo SR N S R |

101

71



FRIR SERE T FE T SR i 305

4 JAXPBFEETHEHBEDE-Y PHEDT +527 % — (« =033, o =001

Y :
140 .................. .................. , .................. ey , ..................

130 | S A— — —

120

110

100 |1 PE— S— A—

I S

Hs JAZXPHFERELEZVEEDOE O#HE (« =033, ¢ =001

E
10 ‘.:Av:...~....i,. ........ ,

O ) N N N : N M < . N :
800 820 840 860 880 900 920 940 960 980 1000 t

102



1999 EHMBH o~ 7 gy 2o . A4 ANEEE 4 AR GEH - =8 - TRE) 73

6 JAXDPHEETBHHEDE O#E (o =033, o =001

0 : : : : : : : 5 : :
300 820 840 860 830 900 920 940 960 980 1000 t

7 JAXDPEETHEEDE OBE (o =033, ¢ =005

hE z : : : : : : : é :
800 320 840 860 880 900 920 940 960 980 1000 t

103



74 » R E BT U4

8 JAAPHATHHEDEDHE (« =033, ¢ =005)

E
10 ..............................................................................................
3 .......................................................................................
6 .....................................................................
s
K : : 5 : : : : : : :
800 820 840 860 880 900 920 940 960 980 1000 t
0,05
9 JAAPHEETEIHBEODEYFEHLEDT FF 7 ¥~ (a =033, ¢=08)
Y
4o e
130 eemreomenenaes s ................ ‘
120
110
100
90 :
0 2 4 6 8 10 E

104

%305



1999 EEHBF O~ 7 BN - A ANEB L 4 AR GRE - =% - TR 75

4-2 [B] OHRE
A ZXDPBETLIESOSEHERERY v 77 7K (M08 L URID) %4 A3

10 /4 APFEHETE2EE5DE 09I

12 .........-.......--..-5 ...................... s. ..................... 5 ......................

10

0 0.1 0.2 0.3 04 a

B11 /A XPEETHHEEORK) v 7 78K

73 PPN AR S —— A—

205 oo (T

105



76 - SR A AT ST 4 5305

LZvHenthso (M1BLUK2) EBTAILICZEY, /7403, B%L—}+E
CETAEMRO TR] 2HEESBLI b2, CoZkid, ERFAEYICELT
bHTIEEDL, ZOWE, /4 ZXPHFELEVIBED Y AT AOEEBFEMN TH o725 L
Th, WRIIEN A AMBHEED ) A 2L o CTEPTLEND Z EDDD, L5k
ZRLTWAS,

5. #% 5%

R B TS, ZEAHEHT OMEBBREEICBI 55 L F7EBSERE L OB
%%67~Va>%mw5:tuib,/4%%%@%@%%%Lt.:@%?»@,Ei
P2 IR D B DR 7 TR BIAR & 59974 5 70 DB LCHE, e BEn 5
YOTHAS. Lal, MEFREEEFVIZBWTE, AEOERFECHTED LS 4
BELERVIMELERE LTHROITWS &S BT, 70547 ORISR & LT
B. WEMOBEN R HEREREY ST 572010, SHEETL (35 3% 5
TN FRETHS9. SZHEETVORIEML Y7 — Vs id, 2EEFLVCHD.
B % 2 T 5L OREE R HE, BAIEINIROBRETH 5.

(FRE) AR, FRIEEXFRASHFMEER SRS CHAWNE [FEESHEOFEICL S
HHEEBOME] ORRO—MTHE, b, FFIL, 1999 7 BISHERO Y 7 VCHEX R
PRSCO16 (The 16th Pacific Regional Science Conference) T 1723 “Chaotic Dynamics in
a Flexible Exchange Rate System : A Study of Noise Effects” 2E-T T3,

P

1) COBmIOWESINLTr—V = ik, #H (1997) F3&LLTHEHESh TV,

2) BB ETIE, BERMRE BBRREX BN FELEIIS U TESTLHELE
BiCZ B, Asada (1995), {EH (1997) #3E, {&H - f%E - =& (1998) #BE I iz,

3) WREBOT, r(Y,M) i, OREZ R CELTHRCEICL-oTELRS [IM HER] Th 5.

4) ORE LU TRTE, r=r(Yo M) ;1= 3r/8Y,= ~Ly/L,> 0%18%. 72731, Ly=3aL/
3Y,>0, LL=2L/0r<0Th5. o

5) COR/FORFENLERIE, BOTHERTH L. Y 2T, BAOBNE & TEEIL
XIS T 525, EANFEO LA 2@ CEANE Q EMT 5. b L g4/ siThi,
[N R] A TEANGHR] 2EELT, RENZARBITE. ZoBe, A%l
POk o TRENZOWHE (A=0) ZEET S0, HERTEEL— b E ZH
Ladiudzsiv, 7, BAREVHEE, [ERNEDE] EBICE L 0T AN
T5., COBAICA=0FEET A0, ERBRBRILEFIER S0,

6) ZOEMHIZDWVTIE, 72& 21 Gandolfo (1996) chap. 7 Z SR S fu7-v, EEIZIE, %09 ()
3, MO 2 2O0FRERNLCEHEMNICERINLIDT, £0%b0LALTIENTELN, B
DFRAOEMIZE > TIHENZEBETH S,

7 mARY YT 7EREIIOWTE, EEH - FE - =8 (1997), Lorenz (1993) chap. 6 ¥ BB X s
vy,

8) BAUN T/ 7EIDZ 02 LEELEE, YAFLEIILT AWM THEEALLESL. Lorenz

106



1999 EEMIBEI O~ 7 UEZESH © H 4+ AWER L ) 4 AR KHE - =& - WP 77
(1993) chap. 6 8.

ZEZXHB

[1] Asada, T. (1995) : “Kaldorian Dynamics in an Open Economy.” Journal of Economics / Zeitschrift fiir
Nationalokonomie 62, pp. 239-265.

(2] HmESE—EE 1997) : [RELERO~ 7 v ] HARHF WL

[3] EBE&E—R - fREfck - SBEH (1998) @ [RBEFICBIT 2RI~ 7 n@FET L ! HAE
Tal—va vl REERE] (hiuks) $38%%56 505, 181-200%—2.

[4]1 Crutchfield, J. P, J. D. Farmer, and B. A. Huberman (1982) : “Fluctuations and Simple Chaotic
Dynarmics.” Physics Reports 92, pp. 45-82.

[5] Dohtani, A., T. Misawa, T. Inaba, M. Yokoo, and T. Owase (1996) : “Chaos, Complex Transients and
Noise : Mlustrations with a Kaldor Model.” Chaos, Solitons and Fractals 7, pp. 2157-2174.

[6] Gandolfo, G. (1996) : Economic Dynamics (Third Edition). Berlin, Heidelberg, New York, and
Tokyo : Springer-Verlag. :

[7] Kaldor, N. (1940) : “A Model of the Trade Cycle.” Economic Journal 50, pp. 78-92.

[8] Lorenz, H. W. (1993) : Nonlinear Dynamical Economics and Chaotic Motion (Second Edition).
Berlin, Heidelderg, New York, and Tokyo : Springer-Verlag.

107



Discrete Dynamics in Natwre and Society. Vol. 40 pp. RACART]
Reprints available directly {from the publisher i
Photocopying permitted by license only

© 2000 OPA (Overseas Publishers Association) NV,
Pubiished by license under

the Gordon and Breach Scicace

Publishers imprint.

Printed in Malaysia.

A Nonlinear Macrodynamic Model with Fixed
Exchange Rates: Its Dynamics and Noise Effects

TOICHIRO ASADA®* TOSHIO INABA® and TETSUYA MISAWA®

A Faculty of Economics, Chuo University, 742-1. Higashinakano. Hachioji. Tokyoe 192-0393. Jupan: b Sehool of Education,
Waseda University, 1-6-1, Nishiwaseda. Shinjuku-ku, Tokvo 1690031, Jupan, € Faculty of Economics,
Nagoya City University. Mizulio=cho, Mizuho-ku. Nagoya 467-0001. Japan

{ Received 21 October 1998 In final fornt 20 June 1999 )

In this paper, we formulate a discrete time version of the Kaldorian macrodynamic model ina
small open economy with fixed exchange rates. The model is described by a system of the
three-dimensional nonlinear difference equations with and without stochastic disturbances
(noise effects). We study the local stability /instability properties analytically by using the
linear approximation method, and chaotic dynamics with and without noise effects are
investigated by means of numerical simulations. In general, it is believed that the'effect of the
noise is to obscure the basic structure of the system. But, this is not necessarily the case. We
show by means of numerical analysis that the noise can reveal the hidden structure of the
model contrary to the usual intuition in some situations.

Keywords: Fixed exchange rates, Noise effects. Nonlinear macrodynamics, Small open cconomy

1. INTRODUCTION

The purpose of this paper is to formulate a
macrodynamic model which is described by a sys-
tem of the three-dimensional nonlinear difference
equations with and without stochastic disturbances
(noise effects), and to investigate its behavior by
means ol analytical method and numerical simula-
tions. The model presented in this paper is a discrete
time version of the Kaldorian business cycle model
in an open economy which was formulated by

* Corresponding author. E-mail: asadatamacc.chuo-u.acjp.

Asada (1995) as a continuous time model.! Con-
trary to Asada (1995)'s original model, we intro-
duce the noise effects.

Generally speaking, the economy is not isolated
system, but it is subject to the interactions with
other subsystems of the society. One of the effective
methods to mode! such influences is to introduce
the ‘noise’ (stochastic disturbance). In our model,
it is supposed that another subsystem named
‘foreign country’ exists outside the system, and the
dynamics of the economy are alfected by the

' The original version of the Kaldorian business cycle model in a closed cconomy was presented by Kaldor (1940)’s classical paper.
and it was later refined by several authors. See, for example, Chang and Smyth (1971). Gabisch and Lovenz ( 1989), and Lorenz (1993).
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transactions with ‘foreign country’. We assume that
the parameter 3 which reflects the ‘degree of capital
mobility’ is subject to the stochastic disturbances,
and study the effects of the noise on the dynamics of
the system by means of numerical simulations.

A seminal paper which introduced noise into the
Kaldorian business cycle model in a closed econo-
my is Kosobad and O'Nell (1972)'s model. Dohtani
et al. (1996)'s work is a more recent contribution.
In particular, Dohtani er al. (1996) introduced the
noise effects into the Kaldorian business cycle
model which is described by the two-dimensional
nonlinear difference equations, and showed by
means of numerical experimentation that the noise
can reveal rather than obscure the hidden structure
of the system in some situations contrary to the
usual intuition. In this paper, we show that such
a conclusion also applies in an extended version of
the three-dimensional Kaldorian system in an open
economy with fixed exchange rates. In particular,
it is shown by means of numerical approach that
the noise can reveal the hidden chaotic attractors
at the vicinity of the ‘window’, and two separate
chaotic attractors can be combined under the
influence of the noise.

2. THE MODEL

Asada (1995) tried to extend the Kaldorian type of
the nonlinear business cycle model to the small open
economy by using the deterministic continuous
time model. In Asada (1995). both the system of
fixed exchange rates and that of flexible exchange
rates were formulated and investigated by analy-
tical method and numerical simulations. In parti-
cular, the effect of the change of the parameter g
which represents the ‘degree of capital mobility’
were analyzed, and it was shown by means of the
Hopf bifurcation theorem that the cyclical fluctua-
tion can occur at some parameter values in the
system of fixed exchange rates.

T. ASADA ¢1 al.

In this paper, we shall consider a stochastic
version of Asada (1995)’s model of fixed exchange
rates.i We can describe the basic system of
equations as follows:

Yoo = Y =alCi+ L, +G+J, = Y], a>0 (1)
Koo —= K =15 (2)
C,=clY, = T)+Co: 0<c<l1, Co>0; (3)

L =HY K, [y=01/0Y >0,

Iy = 01,/OK, <0, I, = 8l,/0r, <0; (4)

T,=7Y,-Ty, 0<7<,Tp>0 (5)
M p=L(Y,.r), Ly=0L/3Y, >0,

L= 0L, /Or <0 (6)

Jo=JY E). Jy=08J/0Y, <0, )

Jg= O, JOE, > O;
Q= (B +oy)r —r— (Ef = E)/E}; ()
B3>0, 02>0;

A/:JI+Q.’; (9)

E =FE, (10)

Ef = E, (11)

Moy — M, = pA;; (12)

where the meanings of the symbols are as follows:
Y = net real national income, C = real consumption
expenditure, / = net real private investment expen-
diture, G =real government expenditure (fixed),
K =real physical capital stock, T'=real income
tax, M =nominal money supply, p=price level

' The model of flexible exchange rates will be considered separately in another paper.
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(fixed), r=nominal domestic rate of interest,
foreign interest  (fixed),
[ =value ol a unit of forcign currency in terms of
domestic currency (exchange rate), £°=expected
exchange rate of near future, J = balance of current
account (net export) in real terms, Q = balance of
capital account in real terms, A = total balance of
payments in real terms, «v = adjustment speed in the
goods market, 8 = parameter which represents the
“degree of capital mobility” (4> 0). v=normal
pseudo-random number N(0, 1), ¢ = standard devi-
ation parameter (o >0). The subscript ¢ denotes
time period.

Equation (1) formulates the quantity adjustment
process in the goods market, ie., Y, fluctuates
according as the excess demand in the goods market
is positive or negative. Equation (2) is the capital
accumulation equation. Equations (3)—(5) are con-
sumption function, investment function, and income
tax function respectively. Equation (6) is the
equilibrium condition in the money market. Equa-
tion (7) is the current account function. Equation
(8) says that the balance of capital account depends
on the difference between the rates of return of
domestic and foreign bonds. It is assumed that the
parameter § (degree of capital mobility) is fluctu-
ated by noise. Equation (9) is the definition of the
total balance of payments. Equations (10) and (11)
express the institutional arrangement of the system
of fixed exchange rates. Equation (12) says that
money supply endogenously fluctuates according
as the total balance of payments is posilive or

rr= nominal rate  of

negative under the system of fixed exchange rates.

These equations can be reduced to the follow-
ing set of three-dimensional nonlinear difference
e:quations:'H

(i) Yo=Y +afc(l-—1)Y,+cTo+ Co
+ G+ 1Y, K, r(Y,, M))
+ (Y, E) — Y]]
= F (Y, K. M; o)

321
(il Ky =K + 1Y, K, (Y. M)

= (Y, K. M) (S)
(i) M,y =M, +pJ(Y.E)

+ (B + oy)plr(Y,, M) — 1,}

Fy(Y, M, B.0).

We shall call the system (S§;) ‘model I’. By the
way, Chang and Smyth (1971)'s version of the
Kaldorian business cycle model adopts the follow-
ing type ol the saving function:

S =S(Y.K), 1 >8,=05/0Y, >0, -
Sy =0S,/0K, < 0. (13)

Since the saving S, is the difference between the
disposable income and the consumption C,, Eq. (13)
implies the following type of the consumption
function:

C=C(Y,K), 1 >Cy=09C/0Y, >0,

Cr = 0CJOK, > 0. (14)

This consumption function represents a sort of
the ‘wealth effect’, i.e., the increase of the real
capital stock stimulates the consumption expendi-
ture. If we adopt this type of consumption function,
we must replace Eq. (S))-(1) with the following
equation:

Yoo =Y, 4+ alC(Y K) + (Y, K /(Y M)

+ G+ IV E)=Y). (15)
In this case, we have
Y
= a(Cg + Ik v T 16
K, alCx +1x) > a I (16)

) =) =)
In particular, in the special case of Cx =[], we
obtain

0Y/+l
K,

=0. (17)

T The expression s(¥,. M) is the 'LM cquation” which is derived from Eq. (6). It is casy to sce that ry=9dr/0Y, >0 and ry, =

I fOM, < 0.
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In other words, the negdlive effect of the change
of K, on Y, through the negative cffect on the
investment expenditure tends to be canceled out by
the positive effect on the consumption expenditure
when the ‘wealth effect’ exists. If Eq. (17) is
satisfied, the system (S;) must be modified as
follows:

(i)
(i)
(lll) M,,J:F}(Y,.M,;ﬂ.o).

Yr+l =F1(Y,,M,;a);

Ky :Fz(Y,,K,,M,); (S2)

In this system, Y, is independent of K, so that
the system becomes ‘decomposable’. In other
words, the path of K, depends on the paths of ¥,
and M, but the movements of Y, and M, are
independent of the path of K,. We shall refer to the
system (S,) as ‘model 2.

3. LOCAL STABILITY-INSTABILITY
ANALYSIS OF ‘MODEL P

First, let us consider the local stability—instability
analysis of ‘model 1’ by assuming o=0 (no
stochastic disturbance). Asada (1995) proved that
the system (S,) has the unique equilibrium point
(Y*, K*,M*)>(0, 0, 0) under some reasonable
conditions. In this paper, we shall assume that such
an equilibrium point in fact exists. The Jacobian
matrix of this system which is evaluated ar the
equilibriunt point can be written as follows:

F”(Oé) F]Q(Q') F13(a)
Ji= 1| Iy Fn Fa3 (18)
F31(8) 0 F33(8)

where

Fi{a)=l+ally+ Ly = {l —c(l —=1) + i},

(+) (=)(+) (+)
Fale) = alp <0, Fi{o) = adyry > 0,
(-) (—)(=)

T. ASADA ¢1 al.

Foy =1y + Loy, Foo= 1+ 1g, Foa= Ly >0,

(+H)(=)(+) (=) (=)(=)
Fa (8) = p{—=m + Ory),
(+) (+)
fn(ﬁ) == 1 + /3]7I'M.
(=)
In these expressions. /m = —Jy > 0 1s the ‘marginal

propensity to import’. The characteristic equation
of this system is expressed as

AN = M = i

=N 4 @A N+ ay =0, (19)

where

;= —~trace ./; = -—F]]((V) - Fgg - ]733([3). (20)

F‘W’?

0

Fay
Fy3(0)
Fii(a)
I

FH((\')
+
| F31(8)
Fia(a)
Fas
= FnF33(8) + Fi(a)F(B) - Fia(a)F3(8)
+ Fri{a)Fay — Fra(a) Fay,

F‘g((‘«) !
Fi(5)

(1)

ay = —det Jy
—Fii(e)FaFa(f) — FiaFafa(B)
+ Fia(a)FaFa(8) + Fia(a) Fai F3(6).

(22)

The Cohn—-Schur conditions for local stability
can be expressed as follows:"

V4 as — Jay +az] > 0. (23)
| —ary + ayas — a_% > 0, (24)
as < 3. (25)

i See Gandolfo (1996), p. 90. In fact. the condition (25) is redundant because this condition can be derived {rom other two conditions.

However. for our purpose, this expression is convenient.
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NONLINEAR MACRODYNAMIC MODEL 323

From these local stability conditions we can
derive a very simple sufficient condition for local
instability, i.e., ay > 3. By using this local instability
condition, we can derive the following proposition.

ProrosiTION | Suppose that Iy <1 —c(l —7)+
m. Then, the equilibrium point of the systenm (Sy) is
locally unstable if o >0 and $>0 are sufficiently
large.

Proof Differentiating Eq. (21). we have

Jus /O
= {F + F3(8) HOF (o) /0c}
— F () {0F3(«)/0a} — Fo {IF 2 (v)/Dv}
= (204 Ix + Opra)[Iy + Loy
—{l —c(l =7)+m}
— pl=in + BryYorar — (Iy + Liry) g
= fruplly — {1 —c(1 = 7) + m}

(=) (=)
+pt— (Iy + Lry) g + (2 + 1g)
x Iy = {1 = c(l =7y +m}+ Lyl (20)

From Eq. (26) we have lim ., Jua /0 = 400

so that da-/0a becomes positive lor sufficiently
large 3> 0. In this case, a» > 3 for sufficiently large
o and 3.
Proposition | implies that under certain conditions,
the increase of the adjustment speed in the goods
market (o) and the degree of capital mobility (3)
tends to destabilize the system under the system of
fixed exchange rates. This conclusion is in line with
the result which was derived by Asada (1995)’s
continuous time version of the model of fixed
exchange rates.

4. LOCAL STABILITY-INSTABILITY
ANALYSIS OF ‘MODEL 2

Next, we shall consider the local stability—instabil-

ity analysis of ‘model 2°. We also assume in this
section that o =0 (absence of noisc effect). The

¥ See Okuguchi (1977), p. 238.
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Jacobian matrix of the system (S,) becomes

Fri(e) 0 Fra(e)
Ja = Fo Fan  Fao, (27)
() 0 Fa(o)

where the meanings of the symbols are the same as
those of the previous chapter. The characteristic
equation of this system is

As(N) = AT~ o] = (A= F) (A + hiA+ba) =0.
28)

—~

where

/)1 = ~F]]((1’) — Fn(ﬂ), (29)

by = Fii(a) Fraa() — Fiale) Fai(0). (30)

We can express the Cohn-Schur conditions for

local stability as follows:!

[Faal < 1. (31)
L+ by > by, (32)
by < 1. (33)

Equation (31) is equivalent to the condition
[[x] < 1. We assume that in fact this condition is
satisfied. By the way, we can easily see that by > | is
a sufficient condition for local instability.

Differentiating Eq. (30), we have

Oby/ O = Fx(B){0F (o) /0a}
— Fa(B){0Fx(a)/9a}
C=0raplly — {1 = (1 = 1)} + m]
() (=)
+pm+y {1 - c(l =7)+m}p+ Lryl
(34)
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From Eq. (34), we have limy_. « Oh2/da = 400
so that we have by > | for sulficiently large a >0
and @>0. This proves that Proposition 1 also
applies to the system (Ss).

5. NUMERICAL EXPERIMENTATION OF
‘MODEL I’

Analytical approach by means of linear approx-
imation of the system without stochastic distur-
bance which was developed in the previous sections
gives us relatively little information on the behavior
of the original nonlinear system with stochastic
disturbance. Numerical approach will provide us
some useful insight, which cannot be obtained if
we stick to the analytical approach. In this section,
we shall summarize the results of our numerical
experimentation of ‘model 1.

We specify the functional forms of the relevant
functions and the parameter values as follows:

(Y, K. r)=f(Y)—=03K —r+147. (35

7(Y,) = (80/m) Arc tan{(2.257/20)
x (Y, — 165/0.66)} + 35; (36)

re=r(Y . M) =10y Y, - M; (37)

J(Y, E)=-03Y,+50: (38)
c=08, 7=02, p=1 r=6 (39)
¢To+ Co+ G =115 (40)

The function f(Y,) in Eq. (36) represents the
Kaldorian S-shaped investment function (see
Fig. 1). Equation (37) is the LM equation which
describes the equilibrium condition in the money
market, and Eq. (38) is the current account
function.” Substituting Eqs. (35)-(40) into the

60
fLY) 40
20
___-——-/
i 180 200 220 240 260 280 300
Y
FIGURE |

system (S;) in Section 2, we obtain the following
expression:

(i) Ypi— Y, =a{=0.66Y,+/(Y)— 03K,
147 = 10/Y, + M, + 165,

(i) K — K =f(Y) = 03K, — 10/,
+ M, + 147,

(iii) My — M, =-03Y,+50+ (B+0v)
x (10/Y, — M, — 6). (41)

In this system, it is assumed that the ‘degree of
capital mobility” (3) is fluctuated by noise, and we
select the parameters « and § as the bifurcation
parmueters.”

If we assume that 3= 1 and o =0, the equilibrium
solution of the system (41) becomes (Y* K*,M*)
~ (250, 503, 127). The equilibrium national income
Y* is independent of the values of o and §. On the

“other hand, K* and M * depend on the values of o

and 8. Our numerical simulation shows that the
behavior of this model can be very complex even if
the noise does not exist (¢ =0), and the hidden
structure of the system may be sometimes revealed
rather than obscured when the system is fluctuated
by noise.

# Note that under the system of fixed exchange rates £ is fixed. so {hat we need not explicitly introduce E as a variable into the model.
In other words, in this model the noise effect is modeled by means of the ‘parametric noise’ rather than usual additive noise.
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NONLINEAR MACRODYNAMIC MODEL 325

5.1. Dynamics of National Income

In this subsection, we shall consider the dynamics
of national income (Y). First, let us consider the
case without noise (¢ =0). Figures 2 and 3 are
the bifurcation diagrams of national income with
respect to the parameters o and /3 respectively. 99
Figure 2 shows that the period of income fluctua-
tion increases rapidly as the adjustment speed in
the goods market («) increases. and eventually
the chaotic behavior emerges. However, as the
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FIGURE 2 Bifurcation diagram of ¥ without noise (param-
eter: o).
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FIGURE 3
eter: ).

Bifurcation diagram ol ¥ without noise { param-

parameter o increases. furthermore, the ‘window’
which represents the periodical behavior emerges,
and then the chaotic region reappears. We can
confirm this statement by observing the largest
Lyapunov exponent (see Fig. 4). Figures 5 and 6
are the bifurcation diagram and the largest
Lyapunov exponent with small stochastic distur-
bance (0 =0.01). We can see from these figures that
the window of periodical solution disappears and

~0.5

0 0.5 1 1.5 2 2.5 3

FIGURE 4 The largest Lyapunov exponent ()\) without
noise.
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FIGURE 5 Bifurcation diagram of Y with noise (¢ =0.01).

91t is assumed that F=1 when « is selected as a bifurcation parameter, and o= 1 is assumed when j is selected as a bifurcation

parameter.
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FIGURE 6 The largest Lyapunov exponent with noise
(7 =0.01).

the behavior of the system becomes more chaotic
because of the noise effects.

Now. let us compare the system with noise effects
and that without noise effects. Figures 2 and 4 show
that the behavior of the system withoul noise is
chaotic when «=2.0, while the ‘window’ of the
periodical solution appears when o =2.1. However.
the behavior of this system becomes chaotic again
when a = 2.2. Figures 7-9 give the attractors of the
system in K- Y plane in these three cases. Figure 10
is the attractor of the system with small noise effects
(0 =0.01) when o = 2.1. The shape of the attractor
in Fig. 10 is similar to that in Fig. 7 or 9. 1l there is
no stochastic disturbance, the periodical trajectory
is stable and chaotic trajectory is unstable at the
‘window’. This implies that the chaotic structure is
invisible and hidden at the *window” if there is no
stochastic disturbance. However, our numerical
experimentation shows that the stochastic noise
can make visible this hidden chaotic structure in
some situations. Hence, it is not correct to say that
the noise only obscures the basic structure of the
system.

Figure 11 is the bifurcation diagram of ¥ with
respect Lo the parameter § when /3 is subject to the
small stochastic disturbance (¢ = 0.01). Also in this
case, some ‘windows’ of the periodical solution
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FIGURE § Atiractor in ¥—K plane without noise when
a=21.

disappear because of the noise effects (compare
Figs. 3 and 11).

5.2. Dynamics of Capital Stock

Dynamics of capital stock are given by Figs. 12-15.
Figures 12 and 13 compare the bifurcation diagram
of K with respect to o without noise and that with
small noise. Figures 14 and 15 are bilurcation
diagrams of K with respect to fJ.
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FIGURE 9 Attractor in Y-K plane without noise when
a=22.

400

370

340

310

280

220

190

160

130

100
300 340 380 420 460 500 540 580 620 660 700
K
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6. NUMERICAL EXPERIMENTATION OF
‘MODEL 2

We can construct a numerical example of ‘model 2°
by slightly modifying Eq. (41). In fact, we can
obtain such a model by replacing 0.3 K, in Eq. (41)(1)
with zero and keeping other two cquations of
(41)(i) and (iii) However, this slight
modification changes the behavior of the system
considerably.

intact.

116

130

100
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Bifurcation diagram of K without noise (param-

Figure 16 is the bifurcation diagram of Y with
respect to the changes of the parameter « without
noise effects, and Fig. 17 shows the largest
Lyapunov exponent in this case. The equilibrium
point is stable when « is small, but it becomes
unstable and two period cycle becomes stable when
v exceeds 2.25. Then, the period-doubling bifurca-
tions occur rapidly, and the behavior of the system
becomes chaotic.

It is worth to note that this system has two
equilibrium points. In fact, we obtained Fig. 16 by
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FIGURE 14 Bifurcation diagram ol K without noise (param-
cler: /7).

adopting the initial condition (Yg, Ko, Mo). which is
near from the equilibrium point of ‘model I’ i.c.
(Y*, K*, M*)~ (250, 503, 127). I we adopt another
initial condition, we can obtain another attractor
and another bifurcation diagram. However, Fig. 16
shows that the fusion of two attractors occurs so
that the fluctuating area of Y expands suddenly
when o exceeds 2.5, Figure 17 shows that there are
several ‘windows’ of periodic solutions in the area
of @>2.5.

Bifurcation diagram of K with noise (param-
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FIGURE 15 Bilurcation diagram of K with noise (param-
eter: ) (o =0.01).
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Figure 18 is the bifurcation diagram which is
fluctuated by noise (o =0.08). This figure shows
that the ‘windows™ of the periodic solutions dis-
appear because of the noise effect. Furthermore, in
this figure the fusion of the attractors occur even if
@ < 2.5. We can interpret this phenomenon that the
hidden structure of the system is revealed because of
the noise effects. For convenience, let us say that the
economy is in ‘boom’ when Y,>250 and it is in
‘slump’ when Y, < 250. Comparing Figs. 16 and 18,
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FIGURE 18 Bifurcation diagram of Y with noisc (a=10.08).

we can conclude that even if the economy is in
boom, some stochastic disturbance can bring abut
slump if the depressing structure is hidden in the
system.

Figures 19 and 20 compare the trajectories of Y,
without noise and that with noise in the case of
a=2.5. Figures 21 and 22 show the result of the
similar experimentation in the case of a=2.55.
These examples show that the noise may transform
the lasting booms into the violent alternations of
booms and slumps, but the opposite case is also
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(7 =10.08).

Trajectory of ¥ with noise when a=2.5

possible. This is one of the important lessons of our
numerical simulations.

7. COMPARISON WITH ASADA (1995)’s
VERSION

Before closing this paper, let us make 4 comparison
between the model in this paper and Asada (1995)'s
original version with continuous time without
noise. Asada (1995)’s system of equations, which
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corresponds to Eq. (S)) in this paper, is given as
follows:
(i) dY/di=alc(l =7)Y+ Ty
+ Co+ G+ I(Y,K (Y, M))
+J(Y,E) = Y]
=filY, K. M),

(i) dK/dr=I(Y,K,r(Y,M))
= (Y. K. M),

## See Asada (1995).
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(Git)  dM/de = pJ(Y E) + Bp{r(Y. M) =y}
=Y. M) ()

Asada (1995) derived the following results
analytically under some assumptions:

(1) The equilibrium point of the system Si is
locally stable if 3> 0 is sufficiently small, and it
becomes a saddle point if 3 is sufficiently large.

(2) There exists the parameter value Bo>0 at
which the Hopf bifurcation occurs. In other
words. there exist some nonconstant periodic
solutions at some values of @ which is suffi-
ciently close to /.

Asada (1995) also presented some numerical
simulations which support the above analytical
results. However, Asada (1995)s original version
could not produce chaotic motion, but it produced
rather ‘regular’ movement. Compared to Asada
(1995)'s version, the-discrete time version with and
without noise which is presented in this paper can
produce much complex and richer behavior, and it
provides us a foundation to further research.

8. CONCLUDING REMARKS

in this paper, we investigated the discrete time
version of the Kaldorian business cycle model in an
open economy with and without noise effects by
means of analytical method and numerical simula-
tions. As a result, we could find some interesting
behaviors of the system including chaotic move-
ment. However, the model which was presented in
this paper is restricted to the system of fixed ex-
change rates. While in the system of fixed exchange
rates the money supply becomes an endogenous
variable, in the system of flexible exchange rates we
can consider the money supply as the exogenous
variable which is controlled by the central bank ##
Obviously, the next step must be the analysis of the
system of flexible exchange rates. This is the theme
which we shall study in another paper.
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In this paper, we investigate by means of analytical method and numerical simulations the
properties of three-dimensional business cycle model, in which foreign exchange rate is
flexible and a parameter is fluctuated by noise. The model is a discrete time version of Asada
{(Journal of Econemics, 62, 239269, 1995)’s continuous time open economy model without
noise. We show (1) noise may suppress the burst of flexible foreign exchange rate when its
behavior begins to burst as a bifurcation parameter (adjustment speed of the goods market) is
increased, (2) the windows of cycles can be broken by noise, and (3) noise may reveal the

hidden structures.

Kewwords: Chaotic dynamics, Flexible exchange rates, Noise effects, Small open economy

1. INTRODUCTION

In general, an economy is not an isolated system but
it is subject to the disturbances from other subsys-
tems of the society. This observation is particularly
important for theoretical and empirical investiga-
tions in international economics or regional
sciences, which study the economic interactions
between several regions. Asada (1995) presented a
dynamic model of small open economy by introdu-
cing international trade and international capital
movement into the Kaldorian business cycle theory.

* Corresponding author. E-maik: asada(@ tamacc.chuo-u.ac.jp
¥ E-mail: misawa@econ.nagoya-cu.ac.jp
* B-mail: inaba@mn.waseda.ac.jp
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Asada (1995) investigated both of the fixed
exchange rate system and the flexible exchange rate
system in a framework of the continuous time
model without stochastic disturbance (noise).
Asada et al. (1998) studied a discrete time version
of the fixed exchange rate system with noise effects
by means of numerical simulations, and showed
that such a system can produce very complex
behavior including chaos.

This paper also considers a discrete time version
of the Kaldorian business cycle model in a small
open economy with noise effects, but in this study
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we concentrate on the system of flexible exchange
rates. We investigate by means of analytical method
and numerical simulations the properties of three-
dimensional system, in which a parameter which
represents the adjustment speed of the adaptive
expectation of exchange rate is fluctuated by noise.
Asada er al. (1998) showed in a framework of the
fixed exchange rate system that the noise may not
only obscure the underlying structures, but also
reveal the hidden structures, for example, chaotic
attractors near the window. In this paper, we show
(1) noise may suppress the burst of flexible ex-
change rate when its behavior begins to burst as a
bifurcation parameter (adjustment speed of the
goods market) is increased, (2) the windows of
cycle can be broken by noise, and (3) noise may
reveal the hidden structures.

2. FORMULATION OF THE MODEL
The basic system of equations is given as follows*:

Yt+]—-yff:Of[Cf—*_][‘*—G—‘“J[_}ff]; OJ>0,

Ky - K, =1. (2)
Co=cY, =T)+Co: O0<ec<l, Co>0, (3)

I = I( YnKra"z)l
]K = a],/aKf < O.

Iy = 81,/9Y, > 0,

I, = 81,/r, < 0,
T,=7Y,—Ty; 0<7<1, Ty>0, (5)

M,/p=L(Y.r); Ly=aL/dY,>0,

(6)
L, =08L,/dr; <.
J,=J(Y,E): Jy=8J,/dY, <0, -
Jg = J,/0E, > 0,
Q= 0{r,—r—(Ef = E)/E}; 8>0, (8)

A, =Ji+ 0y, (9)
Az = 0, (10)

Elp—Ef=(y+oe)(E~Ef); v>0, 020,
(11)
M, = M, (12)

where the meanings of the symbols are as follows.
Y =net real national income, C = real consumption
expenditure, /= net real private investment expen-
diture, G =real government expenditure (fixed),
K =real physical capital stock, T=real income
tax, M =nominal money supply, p=price level
(fixed), r=nominal domestic rate of interest,
re=nominal foreign rate of interest (fixed),
E =value of a unit of foreign currency in terms of
domestic currency (exchange rate), E° =expected
exchange rate of near future, J = balance of current
account (net export) in real terms, Q = balance of
capital account in real terms, A = total balance of
payments in real terms, « = adjustment speed in the
goods market, § = parameter which represents the
‘degree of capital mobility’, = parameter which
represents the “speed of adaptation” of the expected
exchange rate, ¢ = normal pseudo random number
N(0,1), o=standard deviation parameter. The
subscript ¢ denotes time period.

Equation (1) represents the quantity adjustment
process in the goods market. Equation (2) says that
the physical capital stock increases or decreases
according as the net investment is positive or nega-
tive. Equations (3), (4), and (5) are consumption
function, investment function, and income tax
function respectively. Equation (6) is the equili-
brium condition for the money market. Equation
(7) says that the current account is determined by ¥,
and E,, which is a standard type of the current
account function. Equation (8) formalizes the idea
that the capital account becomes positive or
negative according as the difference between the
rates of return of domestic and foreign bonds is
positive or negative. We can consider [ as the index
of the degree of the capital mobility. Equation (9) is

* Equations (1)—(7) in this paper are identical to those in a fixed exchange rate system which was presented in Asada et al. (1998).
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the definition of the total balance of payments.
Equation (10) is a characterization of the flexible
exchange rate system, i.e., it is assumed that the
exchange rate is adjusted instantaneously to keep
the equilibrium of the total balance of payments
(4,=0). Equation (11) is a formalization of the
‘adaptive expectation hypothesis’ concerning the
expected exchange rate. It is assumed that the speed
of adaptation is fluctuated by noise. Equation (12)
says that under flexible exchange rate system the
domestic monetary authority can control money
supply contrary to the case of fixed exchange rate
system, so that we can consider the money supply
(M) as an exogenous variable.!

We can reduce the above system (1)—(12) to the
following system of equationsi:

(i) Yipi — Yi=a[l = 7)Y+ cTo + Co
+ G+ I(Y, K,r(Ye, M))
+ (Y E) — Yils
(i) Ky — Ko = 1Y, Kor(Y, M),
(i) 4, = J(V, E)+ p{r(¥. M)
—re—EJJE + 1} =0,
(iv) Efy — Ef = (v + oe)(E — E7).

a >0,

(13)

Solving Bq. (13)(iii) with respect to E,, we obtain

E = E(Y,ES; ),

Ey = 8E,/8Y, = (—Jy — fry)/(Je + BE{ [ E})
= (m— pry)/(Je+ BES/E])

%O = /3§m/ry,

(14)

ES = E,/OEF = B/(JgE, + BE:/E) > 0,

where m=—Jy=-0J,/0Y,>0, ry=0r/0Y.>0,
and Jp=0J,/0FE, > O.ﬂEquation (14) implies that
E, is an increasing function of ¥, when the degree of
capital mobility () is sufficiently small, but it

becomes a decreasing function of Y, when § is
sufficiently large.§

Substituting Eq. (14) into (13). we obtain
the following system of ‘fundamental dynamical
equations’

() Y=Y, +e[(l-71)Y, +cTh
+Co+ G+ (Y, K, r(Y, M))
+J(Y,, E(Y,, Ef; 8)) — Y]
=F(Y,, K, Ef; 0, 5),
(i) Koot = Ko + 1Yy, Kr(Yo M) = Fo(Y,, Ko,
(ifi) Efy = B + (v +oe){E(Yn E;8) - Ef}
= F(Y, Ef; B, 0),
(S1)

On the other hand, the continuous time version
without noise effect which was formulated in Asada
(1995) is read as

(i) dY/dl= a[(l —T)Y+(?T0 + Co

+G+I(Y,K (Y, M))
+J(Y, E(Y,E%;5)) — Y]
=fi(Y, K E 0, ),

(i) dK/dt = I(Y, K. r(Y, 1)) = oV, K),
(iii) dE®/dt = y{E(Y,E%8) — E°}
= f3(Y, E%; 5,7)-
(S2)

It is easily shown that the equilibrium point
(Y*, K*, E°*) of the system (S;) is identical to that
of the system (S,), and Asada (1995) showed that
there exists an equilibrium point (Y *, K*, E®*) >
(0,0,0) in the system (S;) under some reasonable
conditions. From now on, we assume that there
exists an economically meaningful equilibrium
point in the system (Sy).

t Under the fixed exchange rate system, money supply endogenously fluctuates according as the total balance of payments is positive

or negative. See Asada (1995) and Asada et al. (1998).

t 1n Eq. (13), r(¥,, M) is the ‘LM equation’ which is the solution of Eq. (6) with respect to r..
Solving Eq. (6) with respect to r,, we haver, = oY, M) ry=0r/0Y = — Ly/L,> 0, where Ly=09L,/8Y,>0and L, = 8L,/0r, <0.
The economic implication of this result is very clear. When Y, increases, the current account (J;) decreases through the increase of
the import, while the capital account (Q;) increases through the increase of the domestic rate of interest. If #is small, the ‘current account
effect” dominates the ‘capital account effect” so that the total balance of payments (4,) decreases. In this case, the exchange rate (£,) must

increase to keep the equilibrium of the balance of payments (4,

=0). On the other hand, if 3 is large, the ‘capital account effect’

dominates so that 4, increases. In this case, E, must decrease to keep 4,=0.
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3. LOCAL STABILITY - INSTABILITY
ANALYSIS

Asada (1995) proved the following propositions.

(1) The equilibrium point of the system (S,) is
locally stable if 3 is sufficiently large.

(2) Supposethat Iy+Lry>1—c(1 —7)at the equi-
librium point. Then, the equilibrium point of the
system (S,) becomes locally unstable when 3 is
sufficiently small and « is sufficiently large.

This proposition implies that in a continuous
time version of our model, large capital mobility
between countries (or regions) tends to stabilize the
system. Does this conclusion also apply to the
discrete time version? In fact, proposition (1) does
not apply to the system (S;), because in the discrete
time version the ‘overshooting phenomena’ are not
negligible so that the system becomes unstable
when the degree of capital mobility is too large.
Now, let us prove this assertion formally by
assuming o =0 (no stochastic disturbance).

We can write the Jacobian matrix of the system
(S)) which is evaluated ar the equilibrium point as
follows:

Fi(a,8) Fra(a) Fi(a,8)
Jy = | Iy Fy 0 ., (15)
Fy(8,v) 0 F3:(3,7)
where

FU(OJ,,B) =l+4+ally+ I ry
(+) (=)

~{l—c(l—7)4+ m}+JeEy(3)].
(+) M

(+) (%)
Flz(a’) = Ct‘][( < 0, Fm(@,/j) = QJEEE(ﬁ) > 0,
(+) (+)
Fo=Iy+ 1 ry, Fo=1+Ik,

() (=1 ()
F31(8.7) = v Ey(8).
(7}

Fs3(B,y) = 1 +y{Ex(3) - 1}
=1~ (JeEy)/(JEE+B).
(+) {+)

We can write the characteristic equation of this
system as

PN =M =Ty =X +a P +ad+a; =0,
(16)

where
(i) a1 = —trace J;
= —Fu(a, 8) — Fo — F3(B,7),
Fpn 0 Fu  Fis
0 Fs F3  F3
Fu Fp
Fyn Fp
= FpnF3(B,7) + Fule, 8)F3(8,7)
= Fi3(o, B)F31(8,7) + Ful(e, B)Fxn
— Fiz(e, B)Fa,
(iil) a3 = —detJ,
= —Fyi (o, B)FnF3(8,7)
+ Fiz(e, B)FF3(8,7) (17)
+ Fuo(@)Fa1 F33(8, )

It follows from the Cohn—Schur conditions for
local stability that the system (S;) is locally stable if’
and only if the following conditions are satisfied!

(ii) ay =

1) 1+a —lar +a3] >0,

(i) 1 —ay +aia3 — al >0, (18)
(iii) ap < 3.

Therefore, the equilibrium point of the system
(S;) becomes locally unstable if the inequality a; > 3

is satisfied. The following proposition is a simple
corollary of this fact.

PROPOSITION  Suppose that

O<Iy+Lry<l—c(l=7)+m
(+) (=) {+) “""‘(\’)‘—’ )
+

I See, for example, Gandolfo (1996) Chap. 7. In fact, the inequality (18)(iii) is redundant because this inequality can be derived from
other two inequalities. Nevertheless. the inequality (18)(iil) as a necessary condition for local stability is useful for our purpose.

124



CHAOTIC DYNAMICS IN A FLEXIBLE EXCHANGE RATE SYSTEM 313

and
Iy < ~1.

Then, the equilibrium point of the system (S;) is
locally unstable when either of the following condi-
tions (A) or (B) is satisfied.

(A) The parameters 8 and o are sufficiently large.
(B) The parameters 3 and ~ are sufficiently large.

Proof From Eq. (14), the definitions of Fi31(5,7)
and Fi3(f5,7), the fact that E®= [ at the equilib-
rium point we have the following relationships:

lim JgEy = ﬂlinl (m—pry)/(1+ 3/JEE)

G—soc
= —ryJgE <0, (19)
/3lim F(0.7) = 3lim y(m— Bry)/(Je+8)
e O [sastee
= —qry <0, (20)

Jim Fa3(8,7) = ﬂli_{go{l + B/ (JeE+ B) — 1}]

=1 (21)
Therefore, we obtain the following expression _

A= lim a, = F» —}-Fl*] (Oz) (1 +F23)
P—oc (=) (=) e
=)

~ Fiy(c) F51(v) = Fia(=)(a) Fay
(+) (- (+)

(22)

where Fj; = limg oo Fyj, OF}, (o) /0 < 0, OF (5 (ar)/
da < 0, OF;;(a)/0c > 0, and OF3,(v)/dy < 0. It
follows from Eq. (22) that we have A4 >3 for suf-
ficiently large @ and «, or alternatively, for suffi-
ciently large 3 and ~. This proves the proposition.

This proposition shows that under some addi-
tional conditions the high degree of capital mobility
() combined with high adjustment speed in
the goods market («) or high speed of adaptation
of the expected exchange rate (-y) tends to destabilize
the system (S;) because of the overshooting phe-
nomena contrary to the continuous time model.
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4. NUMERICAL SIMULATIONS

In this section, we shall present the results of some
numerical simulations of the model which was for-
mulated in the previous section. We adopt the fol-
lowing specifications of the functions and parameter
values:

(Y, Ki,r) = f(Y;) — 03K, —r, + 100,  (23)

f(Y) = (80/3.1415)Arctan{(2.25 x 3.1415/20)

x (Y, — 112)} + 35, (24)
ro=r(Y, M) =10/, — M, (25)
J(Yi, E) = —03Y,+100— 100/E,,  (26)
Ef —Ef = (v+oe)(E—Ef),  (27)

¢c=08, 7=02, rr=26,
M =100, B=15,

cTy+ Co+ G =238,

y=12. (28)

Equation (24) is a formalization of the Kaldorian
S-shaped investment function. Substituting Egs. (25)
and (26) into the equilibrium condition of the
balance of payments (Eq. (13)(iii)), we have

— 0.3, + 100 — 100/E,
+15(10y/Y; — Ef/E,~ 105) = 0. (29)

Solving Eq. (29) with respect to E,, we obtain the
following expression for the exchange rate

E, = (100 + 15E°)/(—0.3Y,

+ 150+/Y, — 1475). (30)

By using these data, we studied the numerical
simulation. We selected the parameter « as a
bifurcation parameter. When there is no stochastic
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disturbance (o =0), the equilibrium point is (¥ *,
K* E**)y=(Y* K* E*)~(112,450,1.56), which
is independent of the value of the parameter o.

In order to investigate the noise effect, the speed.
of adjustment in adaptive expectation hypothesis of
exchange rate () is fluctuated by noise. In general,
there are two types of noise, i.e., additive noise and
parametric noise. In the case of additive noise, noise
18 added to a certain deterministic equation, and in
the case of parametric noise, a certain parameter of
a deterministic equation is fluctuated by noise.
Crutchfield et al. (1982) studied the effect of noise
for logistic equation and showed that the effect of
parametric noise is equivalent to that of additive
noise. However, it is not always true for high
dimensional system. In this study, we treat with
the case of parametric noise because it is likely for
the foreign exchange rate to be fluctuated by noise.
For the details of numerical simulation of the
Kaldorian business cycle model with parametric
noise in a closed economy, see Dohtani er al. (1996).
The following statement summarizes the results of
our numerical simulation:

(1) The behavior of flexible foreign exchange rate
(E) begins to burst as the adjustment speed in
the goods market () is increased in the
system without noise.

Noise may suppress the burst of exchange rate,
in other words, noise may reveal the hidden
structures.

The windows of periodic solution can be
broken by noise and the hidden chaotic
structure may appear.

4.1. The Appearing and the
Suppressing of Burst

Figure 1 is the bifurcation diagram of the foreign
exchange rate (E) without noise. The bifurcation
parameter is the adjustment speed in the goods mar-
ket (o). Figure 2 shows the largest Lyapunov
exponent in this system. These figures indicate that
the behavior of the exchange rate begins to burst
and chaotic behaviors appear frequently when
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FIGURE 1 The bifurcation diagram of E without noise.

FIGURE 2 The largest Lyapunov exponent without noise.

@ >0.33. Figure 3 is the chaotic attractor in the
E—7Y plane without noise when a=0.33.

However, noise can suppress the burst of the
exchange rate. Figure 4 is the attractor which is
revealed by the small noise (0=0.01) when
o =0.33. This attractor is similar to that in the case
of a=0.32, which is cyclical and not burst. From
the economic point of view, this means that even if
the foreign exchange rate fluctuates heavily when
there is no stochastic disturbance, this heavy
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FIGURE 3 The attractor in E-Y plane without noise
(e =0.33).

4o

130

120 ot
Y v

110

100

80
0 2 4 6 8 10

FIGURE 4 The attractor in E-Y plane with noise
(«=10.33, 0=0.01).

fluctuation may be suppressed by a small noise.
Figures 5 and 6 compare the trajectory of the
exchange rate when «=10.33 without noise to that
with small noise (c="0.01).

The above example shows that the noise may
stabilize the system. But, this does #ot mean that the
noise ahvays stabilize the system. Figures 7 and 8
are two examples of the experiments with somewhat

larger noise (o= 0.05). These examples show that

the noise can destabilize rather than stabilize the

127
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FIGURE 5 A trajectory of E without noise (cx=0.33).
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FIGURE 6 A trajectory of E with noise (& =0.33, c=0.01).

system in some situations. Figure 9 is a revealed
attractor in the E-Y plane when a=0.33 and
o =10.05, which is chaotic and similar to that for
a = 0.34 without noise. To sum up, noise can reveal
the hidden structures.

4.2. The Broken Windows

By comparing the largest Lyapunov exponent and
bifurcation diagram without noise (Figs. 1-and 2)
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FIGURE 7 A trajectory of E with noise (@ =0.33, 0=0.05).

0 : i H :
800 820 840 860 880 900 920 940 960 980 1000
t
FIGURE 8 A trajectory of E with noise (¢ =10.33, 0=0.05).

with those with noise (Figs. 10 and 11), we can see
that noise may obscure the windows of cycle for the
exchange rate (E). This is also true for the behavior
of national income (Y). This example shows that
noise can reveal the hidden chaotic structure even if
the behavior of the system without noise is periodic.

5. CONCLUDING REMARKS

In this paper, we studied the economic implica-
tions of the noise effects by using an analytical
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FIGURE 9 The attractor in E-Y plane with
(@=0.33, 0 =0.05).
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FIGURE 10 The bifurcation diagram of E with noise.

framework of the discrete time version of
Kaldorian business cycle model in a small open
economy with flexible exchange rates. This is a
good starting point to the study of the economic
interactions between countries or regions. The
effective range of the model of small open economy
is, however, rather restricted, because many vari-
ables such as national income or rate of interest of
foreign country-are supposed to be given outside of
the system. Multi-country or multi-regional model
may be more appropriate for the study of the
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FIGURE 11 The largest Lyapunov exponent with noise.

dynamic interactions between regions. The simplest
version of such a model is two country model. The
analysis of such a complicated system is beyond the
scope of the present paper and it is left for our
research in future.
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Abstract

In this paper, “composition methods (or operator splitting methods) "for autonomous
stochastic differential equations (SDEs) are formulated to make numerical approximation
schemes for the equations. In the methods, the exponential map, which is given by solution
of a stochastic differential equation, is approximated by composition of the stochastic flows
derived from simpler and exact integrable vector field operators having stochastic coefficients.
The local errors of the numerical schemes derived from the stochastic composition methods
are investigated in detail. The new schemes are advantageous to preserve the special char-
acter of SDEs numerically and are useful for approximations of the solutions to stochastic
non-linear equations. To examine the superiority, several numerical simulations on the basis
of the schemes are carried out for stochastic differential equations which are treated in the
mathematical finance and stochastic Hamilton dynamical systems.

Key words. stochastic differential equations, Lie algebra, composition methods {operator
splitting method), mathematical finance, stochastic Hamilton dynamical systems, stochastic
non-linear system
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1 Introduction

The theory of stochastic differential equations is understood as a fundamental tool for the
description of random-phenomena treated in physics, engineering, economics and mathe- matical
finance. However, it is often difficult to obtain the solutions of stochastic differential equations
explicitly. Hence, there has been increasing interest in numerical analysis of stochastic differential
equations, and many numerical schemes for stochastic differential equations has been formulated
(e.g. Gard (1988), Kloeden and Platen (1992), Saito and Mitsui (1993)).
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The purpose of the present paper is to propose some new numerical schemes for autono-
mous stochastic differential equations on the basis of “composition methods ”. The reasons why
we address such a topic are as follows:

In numerical analysis for deterministic ordinary differential equations, whether or not some
special character or structure of the equations is preserved precisely is an important point in
performing reliable numerical calculations. From this point of view, various numerical meth-
ods to realize the characters of differential equations have been investigated. Indeed, we can
find out such examples as energy conservative methods (Greenspan (1984), Ishimori (1994)),
symplectic integrators for Hamilton dynamical systems (Suzuki (1990), Forest and Ruth (1990),
Yoshida (1990)), and composition methods (McLachlan (1995), Moreau and Vandewalle (1996)).
Particularly, the composition methods are useful to make numerical schemes which leave some
structure or character of general differential equations numerically invariant. Hence, it seems to
be quite natural that we investigate the methods for stochastic differen- tial equations to make
numerical schemes having the conservation properties; this is the first reason for setting up the
purpose mentioned above.

Moreover, in the theory of differential equations, composition methods are also known as
operator-splitting methods, and they are often utilized for approximations of non-linear equa-
tion of which solutions are not obtained explicitly (Yanenko (1959), Iserles (1984)). In consid-
eration of this, we may expect that the methods bring us a convenient and powerful way of
approximations for “stochastic non-linear”differential equations, and this is another reason for

our purpose.

Here, we will outline the original composition methods for ordinary differential equations.
Let X denote vector fields on some space with coordinates z, with flows exp(¢X), that is,
the solutions of differential equations of the form #(¢) = X(z) are given by the form z(t) =
exp(tX)(z(0)). Then, the vector fleld X is to be integrated numerically with fixed time step
t. In the framework, we can apply composition methods to the differential equation, if one can
write X = A+ B in such a way that exp(tA) and exp(tB) can both be calculated ezplicitly
(more generally, this can be relaxed by approximations of the exponential maps). In the most
elementary case, the method gives the approximation for z(¢) through

#(t) = exp(tA) exp(tB)(z) = z(t) + O(t?);

the last equality is shown by using Baker-Campbell-Hausdorff (BCH) formula in Lie algebraic
theory.

Thus, in composition methods, we use the exponential representation of solutions to dif-
ferential equations as an important tool. To formulate the methods for stochastic differential
equations, therefore, one needs the same notion for the equations. In Kunita (1980), such a
topic has been investigated in detail. Hence, Section 2 is devoted to review his work and to
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set up some notations of stochastic differential equations and vector fields. In addition, to esti-
mate approximation errors of our new numerical schemes, we will prove some propositions with
respect to time asymptotics of multiple stochastic integrals.

On the basis of the results in Section 2, composition methods are formulated for autonomous
stochastic differential equations in Section 3. Through the methods, we will obtain some numer-
ical schemes for the stochastic equations. Then, the approximation-error of numerical solutions
derived from the schemes must be estimated. In this paper, as the first step, we apply the local
error estimation in mean-square sense, which has established by Saito and Mitsui (1993), to the
obtainable numerical solutions. BCH formula will be useful for calculating the errors as in case
of composition methods for deterministic differential equations.

In Section 4, to examine the superiority of the new schemes, we investigate some examples
of the numerical simulations on the basis of the schemes. In the first example, the following
non-linear scalar stochastic differential equation is treated, which is often adopted as a model

of an asset price process in mathematical finance (Geman and Yor (1993)):

dS(t) = S(t)dt + 2,/S(t) 0 dW (1), S(0) = s(> 0). (1.1)

It is known that a solution S(t) to this equation takes always a “non-negative ”value for any
t € [0,T]. Through the standard stochastic numerical schemes, however, such a character of
this equation is not always preserved numerically. In contrast with this, we will see that our
new schemes by composition methods leave the structure invariant numerically, and thereby we
can examine the first advantage of composition methods. In the second and third examples,
we investigate the second advantage of composition methods as a tool of approximation for
stochastic non-linear systems. Particularly, in case of deterministic differential equations, such a
superiority is often found out in Hamilton dynamical systems as dimensional splitting methods.
Therefore, in the third example, we treat the composition methods for “stochastic ”Hamilton
systems (Misawa (1999)). In the end of the section, we further touch upon a way to make
numerical schemes which realize the numerical preservation of conserved quantities for stochastic
systems (Misawa (2000)) .

Finally, some concluding remarks and future problems are given in Section 5.

2 Representation of solutions of SDEs

Now, we start with a review of representation of solutions of stochastic differential equations
(SDEs) in the framework of Kunita's work (Kunita (1980)). Let us consider an autonomous SDE
of Stratonovich type (e.g. Ikeda and Watanabe (1989), Arnold (1973)) under the probability
space (Q, F,P)

dS(t) = b(S(t))dt + Z 9;(S(t)) o AW (1) (2.1)
. i=1
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defined on a connected C°-manifold M of dimension d, where b = (b*)4_, and g; = (g});'i:l (=
1,---,7) are d-dimensional C* functions on M, respectively, and W(t) = (W'(t),---W'(¢)) is
a standard Wiener Process. Here S(t) is assumed to be adapted with a non-decreasing family
of sigma-algebra (F;)i>0 C F. Note that Eq.(2.1) is rewritten in the form of SDE of Ito type as
follows:

dS; = {b(S()) + 5 Zzgkﬁ k(S )}dt+Zgg £))dw (1), (2.2)

k-—-l =1

where 8; = 8/8S*. Using the coefficient-functions in (2.1), we define C*-vector fields Xo, X1, -+, X
as follows:

d d
XO:Zblai, Xj:Zg}.@i (j'—:l,”‘,’r')‘ (23)
=1 i=1

The proof of Kunita’s lemma (lemma 2.1 in Kunita (1980)) suggests that the solution of SDE
(2.1) with an initial value S(0) = s is formally represented as

S(t) = (expYy)(s), - (2.4)

where Y;(w) is the vector field for each ¢ and a.s. w € Q2 given by

Y, = ZW’(t VX + = }:Wz W) [ Xs, X5) + ZZtW’ 12X, X5, X5
=0 z<g =0 j=1
1 T
+ g 2 WL WL WX, X, Xl
<7,k
+ Z {Z*CAJWAJ(t)}XJ7 (i:O,l,"‘,T;j,k:1,"‘,T>- (25)
Ja<|Jl aJ

In (2.5), [Xi, X;] is the Lie bracket defined by X;X; — X;X;, and X = Xy, Xa) - 1Kl
(J = (j1, -, jm). Moreover, we set WO(t) =t and define [W?, W](t) and [[W*, W3], W¥|(t) as
multiple Wiener-Stratonovich integrals of degrees equal to 2 and 3 given by

(W, W / Wir) o dWi(r / Wir) o dWi(r),

and
W, W W = [ 07wl e aiwh() - [ whe) o dl, w9)(e),

respectively. Moreover, |J| denotes the length of a multi-index J; that is, if J = (j1,- -, Jm),
then |J| = m. W2J(t)} and cay are the multiple Wiener-Stratonovich integrals with respect to
(WO(t), Wi(t),---,W"(t)) and the constant coefficients which are determined from a single or
double divided index AJ of J, respectively, and 55" denotes the sum for all single and double
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divided indices of J; on the dﬂétails of the definitions of AJ, W27 (t) ana caJ, see pp.285-289 in
Kunita's paper (1980).

The equation (2.4) with (2.5) mean that the solution S(t,w) equals ¢(1,s,w) a.s., where
¢(7, s,w) is the solution of the ordinary differential equation

PO~ vy, 6(0)=s (26)

regarding ¢ and w as parameters.

Remark 2.1: If the Lie algebra generated by Xg, X1, -+, X is of finite dimension, Ben
Arous has proved that the stochastic infinite series in Eq.(2.5) actually converges before a stop-
ping time. Therefore, in the case, the representation of solution (2.4) with (2.5) is well-defined
(Theorem 20 in Ben Arous (1989)). We will see such examples in 4.1 and 4.2 of Section 4.

Now, in what follows, we suppose that one may obtain the explicit representation of solution
(2.4) with (2.5). Moreover, we restrict ourselves to the SDEs (2.1) with a one-dimensional

Wiener process; that is, we consider

dS(t) = b(S(t))dt + g(S(t)) o dW (1), (2.7)

where b and g are d-dimensional vector-valued C* functions. Then, we may rewrite (2.5) in the
more simpler form in terms of Kloeden-Platen’s representation for multiple Wiener-Stratonovich
integrals and multiple Wiener-1td ones (Kloeden and Platen (1989)); they are defined by

s+t Th ™ A . .
J(a)(t, 5) = / / / odY(Jl)(n) .o dY(Jk—-l)(Tk_l) o dY(Jk)(Tk) (2.8)
8 S S
s+t r7k 2 , ) .
fas)= [ [F o [T arim)ay e )ay B9 (), 29)
5 5 B
respectively, where « = (i, -+, jx), (i=0,1;i=1,---,k) and

du for j =0

dr(e) = { dW(u) for j=1

In what follows, we denote Ji4)(t,s) and Ia(t,s) by Jiq)(t) and Io(t), respectively, if s =0

Remark 2.2: Note that Ji(t,s) can be rewritten by [(4)(t,s) (see pp.174-175 in Kloeden
and Platen’s book (1992)). For example, we have

Jon =1gy (1=01) (2.10)

1 .
Jira2) = Lrg) + 5Ha=n=0l0 (1,72 =0,1) (2.11)

144



J1.d2,38) = LG1.g2.33) F %(1“1'—'-]'2:1}[(0,]'3) + 1{j2=j3=1}1(.7'1,0)) (1, g2, Ja = 0,1), (2.12)
where 17 denotes the defining function. In general, any multiple Stratonovich integral Ji,) can
be written as a multiple It6 integral I,y or a finite sum of I(,) and multiple Ito integrals I(g
satisfying

() +nla) < £(B) +n(B), (2.13)
where £(a) ={the number of elements of o} and n(c) ={the number of 0 in the elements of o}

(Remark 5.2.8 in Kloeden and Platen (1992)).

In terms of (2.8) and stochastic Stratonovich integration by parts formula for Wit) (i = 0,1)
and [W° W'](t), we can rewrite the equation (2.5) into the following form:

' 1
Vo= Jg(t)Xo + Juy () X1 + 5 (Jon(t) ~ Ji1,0) (1)) [Xo, X1]
1
+ 1—8{2»7(0,1,0)@) ~ 2J100)(t) + J0y () J1,0)(t) — 0y (1) J(0,1)(8) } [ X0, X1}, Xo]
) ,
+ '1‘5{2‘](0,1,1)(75) ~2J01.01) () + Ty () J(1,0y () = 1y (1) J(0,1y (1) H[ Ko, X1, X1

+ o o@PXe XX+ 3 KXY (214)
Ja<|J

Here in the last term of the right-hand side of the above equation, K7(t) = { ;" casWo7 (1)},
and J = (j1,---,4¢) (i =0,1;4=1,---,£¢ > 4). In terms of Remark 2.2, this can be described
by multiple Wiener-It6 integrals as follows:

1
Y, = 1(0)(t)X0+I(1)(t)X1+§(I(o,1)(t)—1(1,0)(75))[X0,X1}

+ 1i8 (2110.1,0)(t) — 20 (1.0,0) () + L0y (1) L(1,0) (1) = L0y (8L (0,1 () [[Xo0, X1, Xo]

+ Tlg{(?f(o,l,l)(t) — 21101 (8) + Ly ()1 (1,0) () — L1y (8) L0,1y (EN[[ Ko, Xa], X1

+ élg{f(o,m(t) + {Toy P HIXo, X1, X1) + > HI@WXY, (2.15)
Jia<)J|

where HY(t) is another version of K”(t) under each multi-index J, which is derived by trans-
forming multiple Stratonovich integrals in K (t) into Ité ones through Remark 2.2. Therefore,
for each multi-index J, H”(t) is described as a polynomial function of multiple-1t6 integrals. In
the next section, we will formulate the numerical schemes of SDE (2.7) on the basis of (2.4) with
(2.15).

Now, in the remainder of this section, as a preparation for the error estimation to the new
schemes in the next section, we will prove a proposition concerning with the coefficients H I(t)
of X7 for multiple indeces J in (2.15). For this purpose, we first give a lemma for multiple It6
integrals (2.9) proved by Kloeden and Platen (lemma 5.7.5 in Kloeden and Platen (1992); Gard

6

145



(1988)). Let E[-|F,] be the conditional expectation with respect to a non-decreasing family of
o-subalgebra Fj.

Lemma 2.1: Forany a = (j1,--,Jk), (i =0,1;4=1,---  k)and ¢=1,2, -,

E[I 1oy (At, )9 F] = O((at)1@rnedy  (A¢ | 0), (2.16)

where ¢(a) and n(a) are the indices defined in Remark 2.2; that is, £(e) ={the number of

elements of o} and n(a) ={the number of 0 in the elements of o}
Let F(t,s) be a function of multiple stochastic integrals I(4(t,s). Suppose that
B[{F(At,5)}2|F] = O((A)™) (At 1 0) (2.17)

holds. Then, in what follows, we call the real number m “mean-square order (MSQ) "of F(t,s).

From Lemma 2.1 we see that MSO of a multiple Itd integral I4)(t, s) is equal to £(a) +n(a).
Moreover, the following lemma shows MSO of I(4)(t, 5)I(g)(t, s) is given by £(a) 4+ n(a) +£(B8) +
n(B); that is, MSO of a product of multiple Itd integrals equals to the sum of MSOs of the each
stochastic integral.

Lemma 2.2 : For any multi-indeces o and g,
El[Lia)(At, 8)I(g) (At ) 7] = O((Ar) E@@+4ON) (A 10).  (2.18)
holds.

Proof: Through Schwartz inequality, we obtain

E[[I()(At, 5)(5)(At, 5)*| F] < VE[{I(Q)(AL8)}41fs]E[{I(a)(At,s)}4lf81~
The lemma is straightforwardly proved by this inequality and Lemma 2.1.

Remark 2.3: By Lemma 2.1 and Lemma 2.2 together with Remark 2.2, we may verify that
multiple Stratonovich integrals Ji4)(t, s) also satisfy the results in Lemma 2.1 and Lemma 2.2.
Hence, for a given a, we find that MSO of a multiple Stratonovich integral Jio)(t, s) is also equal
to £(a) + n(a); that is, MSO of Jio(t, s) agrees with that of [(4y(t,s) for the same multi-index
.

We are now to proceed to our purpose. Using Lemma 2.1 and Lemma 2.2, we can estimate
MSO of the each coefficient for X in (2.15) which is given by a polynomial function of multiple
1t6 integrals on [0,¢]. For example, in case of |J| = 1, MSOs of the coefficients for Xy and X7,
that is, MSOs of Iy(t) and I;(t) are equal to 2 and 1, respectively. In case of |J| = 2, MSO
of Irg1y(t) or I oy(t) in the coefficient for [Xo, X)) is given by 3, and thereby we can easily

7
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prove that MSO of the coefficient (Ig1)(t) — I(1,0)(¢))/2 itself is also equal to 3. In the same
manner, we find MSOs of the coefficients for XY when |J| = 3; that is, MSOs of the coefficients
for [Xg, X1], Xo| and [Xo, X1], X1] are given by 5 and 4, respectively. Hence, in this case, the
least value of MSOs of the coefficients for X7 equals 4. These facts suggest we may verify the
following proposition, and it is just one we want.

Proposition 2.1: Suppose that k is a given integer more than or equal to 2, and that the
multi-indices J satisfy |J| = k; that is, J = (j1,---, k) (Ji = 0 or 1;4 = 1,---,k). Then the
least value of MSOs of the coefficients H7(t) for X in (2.15) is equal to k + 1.

Proof: We may prove this by induction. From the above examples, this proposition is
obvious in case of |J| = 2,3. We assume that the assertion of this proposition holds for the
case of |J| = £(> 3). That is, the least value of MSOs of the coefficients H/(t) for X7 under
J = (J1,--+,js) in (2.15) equals £ + 1. Then, note that under for the same J, the least value of
MSOs of K7 (t) in (2.14) agrees with that of HY(t), since H”(t) is only another version of K7 (t)
in terms of multiple It6 integrals. '

Now, let us consider the coefficients K7 (t) for X J under |J] = £+ 1. According to Kunita
(1980) pp.285-289, one can obtain them by adding Stratonovich integral with respect to dw or d¢
to the multiple Stratonovich integrals in the coefficients K/(t) for |J| = £. From the assumption,
the least value of MSOs of K7(t) for [J| = £ is equal to £+ 1. On the other hand, the following
equations show that the MSOs for the integrals by increments dw and dt correspond to 1 and
2, respectively:

s+At 9 s+AL 9 9
B [T dwmPiRI =0, Bl [T aPiE] =o(an?) (At L)
8 S
Hence, in consideration these facts, one see that the least value of MSOs of K J (t) is given by
£+ 1+41=1{+2, and thereby, the least value of MSOs of H(t) is also so. Thus, the assertion

in our proposition is proved.

3 Composition methods for numerical integration of SDEs

Now, we proceed to the new stochastic numerical schemes of SDEs on the basis of composition
methods. We start with a numerical integration of the stochastic equation (2.7) on the discretized
time series in the framework of the previous results on representation of solutions to SDEs. It
adopts an equidistant discretization of the time interval [0, 7] with stepsize

T
At = —
N
for fixed natural number N. Let t, = nAt(n = 0,1,2,---,N) be the n-th step-point. Then, for

all n € {0,.--, N}, we abbreviate S,, = S(t,). Moreover, we use AW,, for n = 0,1,---, N to
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denote the increments W (tp+1) — W(t,); they are independent Gaussian random variables with
mean 0 and variance At, that is, N(0, At)-distributed random variables.
On account of (2.4), we may find the numerical solutions S,,(n = 0,1,---,N) to SDE (2.7)
by
Snt1 = exp (Yan)(Sn) (n=0,1,2,--- N — 1), (3.1)

formally, where Ypa: is a vector field derived by replacing all the multiple Wiener integrals
Iy (t) = I1o(t,0) in (2.15) by I(4)(At,nAt). In the followings, I(4)(At,nAt) is denoted by
I(qym(At). Moreover, we set Sp = S(0) = sg. According to the theory of ordinary differential
equations, exp (Y,at)(:) is often called the time-At map or exponential map. However, it is
usually difficult to find out the explicit form of the exponential map, and hence, we need to
build an approximation for (3.1).

To carry out this, we formulate a new stochastic numerical scheme as the following two
procedures, which are composed of the truncation of the vector field (2.15) and a composition
method (or operator splitting method) to the exponential map derived from the truncated vector
field:

Procedure 1: For the vector field Y; described by (2.15), we define a “truncated”vector
field Y; which is given by a truncation of the higher-order terms with respect to MSO of the
coefficients for XV in (2.15). Then, we define a numerical sequence (S'n)ff__.o through

Sng1 = exp()/nAt)(Sn) (TL =0,1,---.N - 1)) (32)
where Sy = S(0) = so.

Procedure 2: For S, = exp(YnAt)(Sn), we apply a “composition method "in a way
analogous to that in the theory of ordinary differential equations. Suppose that the vector field

Yoae is of the form

Y;;At - AnAt + BnAt» (33)

where exp(Ana:) and exp(Bpat) can both be explicitly calculated through (2.6). Then an ap-
proximation to the exponential map f’nAt is given by exp(A4,at) exp(Bnat). Hence, the sequence
of (Sn)f:’___o in Procedure 1 is approximated by

A’S“"n-)‘l = EXP(AnAt) eXp(BnAt)(Sn): (TL =0,1,---N ~ 1)7 (34>
where Sy = S§(0) = sg.

After all, we regard (S,L),’:’ZO as a numerical approximation to the exact discretized solutions
(511.)11;,:0

Next, we will turn to estimate local errors of mean-square sense for the numerical approx-
imation scheme mentioned above. For this purpose, in this paper, we use the notion of “local
error order "defined by Saito and Mitsui (1993).

9
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Definition 3.1: Suppose that S(t) and S, are an exact solution and the numerical approxi-
mation to SDE (2.7), respectively. Moreover, let E. ¢ be the expectation conditioned on starting
at £ at time 7. Then the local error order « is defined by

Bt sllSns1 = S(tas)F] = O((A0)FY), (At ] 0), (3.5)

where ty = kAt (k = n,n + 1), | - | denotes the Euclidean norm on the space R%, and we set
S(ty) = Sp = 5.

We note that the accuracy of a numerical scheme improves with increasing the local order.

Remark 3.1: In the framework of another definition of local error order by Kloeden and
Platen (1992), the local order of S, satisfying (3.5) is given by (« +1)/2, since the difference of
S’nﬂ and S(tn+1) is squared. Hence, if the above-mentioned local order for a certain numerical
scheme is equal to «, one can calculate Kloeden and Platen’s local error order 8 through 8 =

(a+1)/2.

Now, we will to apply thus local error estimation to our approximation procedures. In what

follows, we set S,, = s, where s is a given value,

Local error estimation for the truncation error in Procedure 1:

First, we investigate a truncation error in Procedure 1. Let H,’(At) be the coefficient for
X7 in Y,a; which is represented by a polynomial function of multiple-Ité integrals for a given
multi-index J as in (2.15).

Proposition 3.1: Suppose that a truncation vector field Y, a; is given in the following form:

Yoar= Y. H (at)x?, (3.6)
Jil<Ji<y

That is, we assume the terms in Y, satisfying |J| > v + 1 are neglected. Then,
- 2
B sllSnt1 = Supa| ] = O((A1)7F?), (At | 0). (3.7)
Proof: In terms of Proposition 2.1, we can easily show that the least value of MSOs of H,,Y (At)

in the neglected terms equals « + 2, since |J| > v + 1. This fact together with the definition of
exponential map (2.15) straightforwardly indicate (3.7).

Thus, we obtain the local order v+ 1 for numerical approximation solutions (S’n),[:,:o in the sense
of Definition 3.1.

Remark 3.2: If the Lie algebra generated by Xy and X, is of finite dimension, our error

estimation mentioned above agree with that on truncation of stochastic exponential maps by
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Ben Arous (1989), since the convergence of Eq.(2.14) (or (2.15)) is actually guaranteed (cf.
Remark 2.1). That is, under the assumption that such a convergence holds, the local error
estimation mentioned above exactly holds. In general, however, our result may give only a
formal error estimation. Indeed, according to Castell (1993), when the stochastic series does not
always converge, the asymptotic expansion of stochastic exponential maps is estimated only in
a “probability "sense. We will investigate this problem in future works.

Local error estimation for the composition scheme in Procedure 2:
Next, we will proceed to the local error estimation for Procedure 2. We can carry out it by
the Baker-Campbell-Hausdorff (BCH) formula (Bourbaki (1989)) together with Lemma 2.2; the

formula is given by the following form:
exp (A1) X ) exp (§(A1)Y) = exp(e(A) X + §(A)Y + %6(At)6(At)[X, Y]

P ((MPBAHLX, [X, Y]]+ (A5 TY, [V, X)) + -, (3.8)

where X and Y are C™ vector fields, and ¢(At) and §(At) are any functions with respect to At;
in our case, they are corresponding to polynomial functions of multiple It stochastic integrals

I(a),n (At) .

Proposition 3.2: Let Y,a; be a truncated vector field given by (3.6). Suppose that the
vector fields A,a; and Bpa; in a decomposition (3.3) for Y, a¢ are described by

Anat = Z FnJ(At)XJy Bhat = Z GnJ(At)XJy (39)
JigJ<y JiigJl<y

respectively, and that the least values of MSOs of F,,”(At) and G, 7/(At) in (3.9) are given by
a and f, respectively. If X i" and Xg,ﬁ , which are vector fields corresponding to the coefficients
with o and B as MSO, respectively, satisfy {Xi",Xéﬁ } # 0, then

Er, sllSns1 = Snaal’] = O((A1)*FF)), (At 10). (3.10)

Proof: Let F,’=(At) and G,,7#(At) be the coefficients in (3.9) of which MSOs are equal to «
and 3, respectively. Then, in an analogous way to that in Lemma 2.2, we can prove that

Bry [l B (B0G 7 (88)["] = O((80)°F) (A1 1 0). (3.11)

Therefore, on account of BCH formula (3.8), (3.11) and the assumption of a and 3, one may
find that

Ei slSn+1 — Suitl?) = B, sllexp (Anar + Buad)(s) — exp (Anae) exp (Bnat) ()]
2

1
Etn,sH €Xp (AnAt + BnAt)(S) — €xp (AnAt + Bn[_\.t + '2’[A11At7 BnAtJ + - )(S)‘ ]
o((At)**h)). (3.12)

Il

1
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Thus, the local order between (S,)Y_, and (S’n)f:’zo is given by a + 8 ~ 1.
Remark 3.3: By further manipulating the BCH formula to eliminate higher order terms,
we can obtain the schemes which give higher-order approximations to the exponential map.

k2]

For example, the scheme corresponding to “leapfrog ”, which is well-known in deterministic

numerical analysis, is given by

AtY ALY
exp (At} (X +Y)) =exp( 5 )exp (AtX) exp (~—§—) +0((Aat)®). (3.13)
In a way analogous to that in (3.4), we define a stochastic leapfrog scheme as follows:
~ B. 1 -
Sn+1 :exp( 2 5 At)(‘gn)i (TLZO,l,“',N‘“l). (314)

Jexp (Anae) exp (

Then, using BCH formula (3.8) and (3.11) repeatedly, we can estimate the local error for this
scheme as follows:
Eln,S“S,n—%—l - Sn+llz} = O((At)a+2ﬁ)- (3.15)

Thus, we can make another numerical scheme having the better local order than that of (3.4).
Moreover, using this scheme as a basis element for further leapfrog schemes, we may also produce
an approximation to exponential map up to any order in a similar way to that in ordinary

numerical analysis. This will be investigated in the future work.

Total local error estimation for the numerical scheme by Procedure 1 and 2:
Finally, we estimate the local error order between the exact discretized solutions (Sn),]yzo and
the numerical approximation solutions (Sn),’:’:(). This is easily carried out by using Proposition
3.1 and Proposition 3.2 (or Remark 3.3) for the local orders in the above two procedures together
with
B sl|Sni1 = Sns1l’) < EopsllSust = Suer |1+ EenllSnss = Sasall,  (3.16)

and thereby, we obtain the following theorem:

Theorem 3.1: Under the conditions of Proposition 3.1 and Proposition 3.2,

EusllSutt = Sunl’] < O((48)9) (At | 0) (3.17)

holds, where § = min{a + 3,7 + 2) in case of (3.4) and § = min(e, 3 + 2v) in case of (3.14).

We call a value of 6 — 1 the local order “of weak sense "for the scheme giving the numerical

approximation solutions (S5,,)1_, since the estimation of error order is indirectly derived from
the inequality (3.16).

In the followings, we will investigate some examples of new numerical schemes for (2.7) which
are derived from the procedures mentioned above, and estimate the local error on the basis of
Theorem 3.1.
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Example 3.1: Suppose that a truncated vector field Ynm in Procedure 1 is given by

Yoar = I(O),H(At)XO + I(l),n(At)Xb
= AtXo+ AW, X;. (3.18)

On account of (2.15), we see that v in Proposition 3.1 for this truncated vector field equals 1.
We further set A,a; = AtXg and B,ar = AW, X, in the decomposition (3.3), and assume that
the explicit forms of both exponential maps for them are obtained through (2.6). In this case, a
and £ in Proposition 3.2 become 2 and 1, respectively, because of Lemma 2.1. Then, the scheme
(3.4) is put into the following form:

Scheme 3.1:
gn—i—l = €Xp (AtXO) exp (AWnXl)(gn)' (319)

Assume that [Xo, X1] # 0. Then, Theorem 3.1 indicates
52
Eln,susn-H ~ Snt1] ] < O((At)s)' (3.20)

Thus, we find that the local order of weak sense for Scheme 3.1 equals 2, and this result shows
that the accuracy of this scheme corresponds to that of the stochastic Taylor schemes of local
order 2 (Saito and Mitsui (1993)).

Example 3.2: For Y,(At) in Example 3.1, we set Apa; = AtX 4 + AW, X4y and Buay =
AtXBy+ AW, X5, in (3.3), where Xy = X4 + XB and X; = X#; + XB;. We assume that
(X A1, XPB1] # 0 and that the explicit forms of both exponential maps for them are obtained.
In this case, o and 3 in Proposition 3.2 become 1 and 1, respectively, and hence the local error
order of (3.4) becomes 1; the accuracy for the scheme corresponds to that of Euler-Maruyama
scheme (Saito and Mitsui 1993). In order to make a scheme having better accuracy than that
of it, we use (3.14) instead of (3.4):

Scheme 3.2:

& BnAt

B'”.
Sn+1 = exp ( ) exp (Anat) exp (=28, (3.21)

2
where Ayn; = AtXAg + AW, XA, and Byay = AtXBo + AW, X B under Xo = X4y + X5,
and X; = X4, + X8,

Then, Theorem 3.1 indicates (3.20) also holds in this case; that is, the local error order of
this scheme is equal to 2. This means that the accuracy of Scheme 3.2 corresponds to that of

Taylor schemes of local order 2.

Example 3.3: We will make a scheme with more better accuracy than that of the schemes

mentioned above. For this purpose, we choose the following vector field as Yuat in (3.6):

1
Yone = Ot Xo + AW, X1 + 5(1(0,1),71(&) — Ity 0y (A1) [ Xo, X1]- (3.22)
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Then, from (2.15), we see that v in Proposition 3.1 for this truncated vector field becomes 2.
Moreover, we set
€xp (AnAt) = exp (AtXO) ~ (3-23)

and
1
exp (Bnat) = exp (AW, X, + 5o, (B8) = Li1,0),n(A8))[Xo, X1)). (3.24)

Assume that the explicit forms of both exponential maps for them are obtained through (2.6),
respectively. In this case, o and 3 in Proposition 3.2 become 2 and 1, respectively, because of
Lemma 2.1. Moreover, we adopt the scheme (3.14) for these vector fields:

Scheme 3.3:

- B B -
Sner = exp (—57%) exp (Anar) exp (—570)(Sn), (3.25)
where exp (Apat) is given by (3.23) and exp (Bpat/2) is derived from replacing Bpas by Baat/2

in (3.24).

Then, because of Theorem 3.1, we find that
% 2
Etn,s“Sn—i-l - Sn+1l } < O((At)4)) (326)

and hence that the local order of weak sense for Scheme 3.3 equals 3.

4 Examples

In this section, we will give several examples of applying our new stochastic numerical schemes

to stochastic differential equations concretely.

4.1 Numerical simulation to a non-linear asset price process in mathematical
finance

As was mentioned in Section 1, we first work with the following non-linear scalar SDE which
is often treated as a model of an asset price process of Bessel type in mathematical finance
(Geman and Yor (1993); c¢f. Remark 4.1):

dS(t) = S(t)dt + 2,/S(t) 0 dW (1), S(0) = s(> 0). (4.1)

This system has a structure that the value of solution becomes to be “non-negative”for any
t € [0,7]. In standard stochastic numerical schemes, however, this is not always preserved
numerical- ly; especially, if an initial value s is close to zero, the numerical solutions often go
into the domain of negative values in the midst of numerical simulations. Such a trouble will be

observed in the numerical results mentioned later. In contrast with this, through the results in
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previous section, we may obtain the scheme which leaves the structure of the stochastic system
(4.1) invariant numerically. We will examine it.
First, from the equations (2.3) and (4.1), we see that the vector fields Xo and X; become
Xo = 5-;5-,, X, = 2@%, (4.2)
respectively. Here, we note that [Xo, X1] = —X1/2, and the Lie algebra generated by Xp and X
is of finite dimension. Hence, Remark 2.1 indicates that Eq.(2.14) and (2.15) actually converge
in this case.
We proceed to investigate Scheme 3.1 in Example 3.1 to SDE (4.1). On account of (3.19),
we suppose that Apa¢ and Bpag In (3.3) are given by
Anae = AtXo = AS-L Buar = AW, X, = AW, 25 (4.3)
ds das
Then, in consideration of (2.6), we obtain the exponential maps for Anay and B, a; explicitly as

follows:
exp(Anat)(s) = sexp (At), exp(Brat)(s) = {AW, + V52, (4.4)

Inserting them into (3.19), we find that Scheme 3.1 for SDE (4.1) is given by
Sna1 = {AW, + /5,  exp (At), (4.5)

where So = S (0) = s. Evidently, the numerical solutions derived from our scheme “never "take

negative values, and this is just a result we want.

Next we will obtain Scheme 3.3 for (4.1). On account of (3.23), in this case, we also obtain
sexp (At) as exp (Anat)(s). In contrast with this, the equation (3.24) is put into

1
€Xp (BnAt) = €Xp {(AWn - Z(I(O,I),n(At) - I(l,O),n(At)))Xl}) (46)
since [Xo, X1] = —X1/2. In similar to way in that of Scheme 3.1, this is also calculated explicitly
as follows: 1
exp (Bnat)(s) = {AW, — Z(I(O,l),n(At) — I 0)n(A8)) + VO (4.7)
and thereby we obtain Scheme 3.3 for the SDE (4.1) as
~ AW, 1 =
Snt1 = {——2—1 - g(f(o,x),n(At) — Iy (A1) + V3) (4.8)
together with
N AW, 1 "
s = {—‘5—1_ - '8—(1(0,1),7L(At) - I(I,O),n(At)) + 511}2 exXp (At)a (49)

where Sy = S(0) = s. This also indicates that the numerical solutions derived from this scheme

take non-negative values.
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Now, we proceed to the numerical simulations of (4.1) on the basis of our schemes. As
mentioned in Section 3, Theorem 3.1 indicates the schemes (4.5) and (4.8) with (4.9) have the
local order of weak sense 2 and 3, respectively. To examine these results, we will compare
the numerical accuracy of our schemes with that of the standard numerical schemes. For this
purpose, we adopt here Euler-Maruyama scheme (Taylor scheme of local order 1) and Kloeden’s
Taylor scheme of local order 3 (Kloeden and Platen (1992), Saito and Mitsui (1993)); they are
given in the following forms for the SDE (4.1):

Euler-Maruyama scheme: _
Snt1 = Sp + (Sp + DAL+ 21/S, AW,,. (4.10)

Kloeden’s Taylor scheme of local order 3:

Il

Sp 4+ (S + DAL+ 2/8, AW,

{(AW,)? — At}

2V 50 1(1.0)n (D) + VSl 01y (A1)

%(Sn + 1)(At)?. (4.11)

Sn+1

+ o+ +

In the schemes (4.5), (4.8) with (4.9), (4.10) and (4.11), AW, I;; ). (At) and Tip,1)n(A1) are
numerically realized by the independent N(0,1) random numbers 7y, and 4, (n = 0,1,---) as
follows (Kloeden and Platen (1992)):

AW, = v, VAt

1 1 . :
ln0a(08) = 5(711+%77;)(At)3/2 (4.12)
1 1,
I(O,l,n)(At) = '2“(’Yn—% n)(At)S/QA

Moreover, we here choose T' = 1 and N = 1000, and hence the stepsize At = 1073,

Table 4.1 and Table 4.2 indicate the examples of the numerical solutions from these schemes
mentioned above (in case of Table 4.2, those schemes except (4.10)) with the initial value s = 0.01
and s = 0.001, respectively. Here we have used the same sequences of random numbers for each
scheme together with (4.12). As was mentioned in the introductory part of this section, from
these results we observe that the values of numerical solutions derived from the standard schemes
become to be negative in midst of their simulations, if their initial values are close to zero; in
contrast with these results, our each scheme is free from such a trouble. Thus, our scheme (4.5)
and (4.8) with (4.9) have a superiority with respect to numerical realization of the character of
(4.1), that is, of non-negativity of solutions than the standard schemes.

Table 4.3 indicates the results with the initial value s = 1. By the estimation of local order
with respect to these schemes, we see that the accuracy for the scheme (4.5) corresponds to that

for Taylor scheme of local order 2, and the accuracy for the scheme (4.8) with (4.9) corresponds
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to Taylor scheme of local order 3. We may consider that Table 4.3 supports such a result (note
that Euler scheme is just a Taylor scheme of local order 1).

Remark 4.1: Let us consider the following SDE:
1
dS(t) = S(t)dt+r:;{5(t)}70dW(t), S(O) :S(> 0),

where 0 < 7y < 1. This is also often treated as a model of an asset price process in mathematical
finance, which is a generalization of (4.1). For this process, we can also construct the numerical
schemes as mentioned above in a similar way. Indeed, Scheme 3.1 for this SDE, of which local
order equals 2, is given by

St = [[AW, + SL7)2P/ 207} exp (AL),
where S; = S(0) = s. Note that the numerical solutions derived from this scheme also satisfy
“non-negativity ”.
4.2 Example of Scheme 3.2 for a non-linear SDE

We now turn into the example of Scheme 3.2 given by (3.21). Let us consider the following

non-linear scalar SDE:

dS(t) = S(t)dt + {S(t) + 21/S(t)} o dW(t), S(0) = s(> 0). (4.13)

In this case, the vector fields Xy and X, are set by

d d
Xo =S54 X, =(5+2/5) = .
0="S75 Xi=(5+ ﬁ)ds (4.14)
respectively. Then, we remark that [Xo, X;] = —/5(d/dS), [Xo, [ X0, X1]] = —[Xo, X1]/2 and
(X1, [Xo, X1]] = —[Xo, X1)/2 hold, respectively; hence the Lie algebra generated by Xy and X,

is of finite dimension. Hence, as in 4.1, Eq.(2.14) and (2.15) also actually converge in this case.
We may regard the SDE (4.13) as a linear SDE with the random perturbation 2./5(t)odW (t).
On account of this, as A, a; and Bpa¢ in Example 3.2, we adopt

d d d
= — AW —_ = W VS —: 15
Anat AtS a5 + nSdS, Buar = AW L2 SdSv (4 10)

that is, we set X£ = S(d/dS), X{ = S(d/dS), Xf = 0 and XF = 2V/5(d/dS). Then, in
consideration of (2.6), we obtain the exponential maps for them explicitly as follows:

exp(Anat)(s) = sexp (At + AW,,),  exp(Bnat)(s) = {AW, + \/5}2 (4.16)

Inserting these equations into (3.21), we find Scheme 3.2 for the SDE (4.13); it is given by

Surt = (AW, /2 4 (AW, /24 /5, 2exp (B + AW, (417)
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where Sy = S(0) = s.

Now, in a similar way to that in Subsection 4.1, we will compare the numerical accuracy
of this scheme with that of the standard numerical schemes for (4.13). In this case, Euler-
Maruyama scheme and Kloeden’s Taylor scheme of local order 3 are written in the following
forms:

Euler-Maruyama scheme:

3
Sn-f—l =85, + {5(571 + v Sn) + I}At + (Sn + 2y Sn)AWn- (4'18)

Taylor scheme of local order 3:

Swit = Sut{5(Sn+VE) + DAL (S, + 25 AW,

+ S + 35, + 2){( — At}

+ S+ \/—+1 (1 0yn (A1) + 35”4- \/—+1 (0.1 (A1)

+ = Sn+~\/5—+3 Am)S_gmAwn}

+ (Sn+ \/—+ )At (4.19)

Therefore, inserting (4.12) into the schemes (4.17)-(4.19), we obtain numerical solutions through
the schemes.

Table 4.4 shows the results with the initial value s = 1, T'= 1, N = 1000 and At = 1073,
According to Theorem 3.1 and Example 3.2, we may expect the accuracy for our scheme (4.17)
is corresponding to that for Taylor scheme of local order 2. Table 4.4 indicates that such an
expectation is practically valid.

4.3 Composition method to stochastic Hamilton dynamical systems

As mentioned in Section 1, composition methods (or operator splitting methods) are not
only a superior integrating method for differential equations in preserving the special character
or structure of the equations, but also often useful for approximations of non-linear equations of
which solutions are not obtained explicitly. The examples of 4.1 and 4.2 mentioned above show
that these facts are also true in case of stochastic systems. As also mentioned, such a advantage is
remarkable in case of dynamical systems with multiple space dimensions or Hamilton dynamical
systems as standing for dimensional splitting methods (e.g. Yanenko (1959); Iserles (1984)).
In consideration of this, we will investigate numerical schemes by composition methods for
stochastic dynamical systems with “Hamiltonian structure ”(Misawa (1999),(2000)).

First we review stochastic Hamilton dynamical systems (Misawa (1999)). Let us consider

the following 2/-dimensional stochastic dynamical systems:

' (t) \ _ [ OepiHo(z(2)) Opti Hy (z(t)) L
d( zti(t) ) - ( —8; Ho(z(t)) )dH < —8; H\ (z(t)) ) cdW(), (=10 (420
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where z = (%)%, and 8; = 8/32% (j = 1,2,---2£), respectively. In (4.20), Ho(z) (a=0,1)
are smooth scalar functions on R?. Formally, one may regard this as a Hamilton dynamical

d :L‘i . ag+if{($) . o
dt ( gt ) B ( —8;H (z), ) (=10

with a “randomized "Hamiltonian H given by

system

H = Ho + Hiv,

where 7, is a one-dimensional Gaussian white noise. On account of this fact, we call (4.20) and
H, (a =0,1) an (f-dimensional) stochastic Hamilton dynamical system and the Hamiltonian.
Now, we proceed to an example of our new scheme for stochastic Hamilton systems. For
simplicity, we set £ = 1 and denote z'(t) and z*(t) by q(t) and p(t), respectively. Let us
consider the class of Hamilton systems with the typical Hamiltonian Hy = p?/2 + Vp(q) and
Hy = p?/24Vi(q), where Vp(g) and Vi(g) are any potential functions. Then the equation (4.20)

turns to be
a1 ) _ < p(t) ) J ( p(t) ) . |
( p(t) —V{(q(t)) t+ ~V(q() W(t) (4.21)

In general, this is a stochastic “non-linear”system. For this system, the vector fields X and X3
become
Xo =pdy — V5(9)8p, X1 = pdq — V{(q)0p, (4.22)
respectively.
We are to apply our scheme to this system. As an important example of the decomposition
of (3.3) for the above system, we choose the following splitting of Scheme 3.2 type:

Anat = p(Dt + AW,)0y,  Buar = ~(Vg(@) At + V(@ AW)0,. (4.23)

This corresponds to the decomposition mentioned in Example 3.2; that is, x4, X{, X and
XPF in Example 3.2 are given by pdy, pdy, —V5(q)0p and —V{(q)3p, respectively. Then we note
that exp(Ana¢) and exp(Bpat) are exponential maps which correspond to the flows of solutions
to the following SDEs, respectively:

q(t) \ _ [ p(®) p(t) )
d(;;(t))”( . >dt+< . ) dW (¢).

q(t) \ _ 0 0 od
d( p(t) ) < Vi) )dt * < _Vi(q(t)) ) W,

Therefore, we can obtain the explicit forms of them; this may be regarded as an example of

dimensional splitting. The results are given by

In ) _ ( pn(At + AWn) + agn )

Dn

Pn

exp(Anat) <
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n \ _ n
w00 (2 )= _tanton + amstan v )

Inserting these equations into (3.21), we finally find the numerical scheme 3.2 for this system as

follows:
( Tt ): ( T . ) (4.24)
Dn+1 —5 (AtVG(Gn) + AWLV(Gn)) + Pn
where |
( 6 ) _ ( POt + AW, + Gn ) (4.25)
ﬁn ‘“%(Atvﬂl(‘jn) + AWnVll(‘jn)) +]3n

As in the example in Subsection 4.2, this scheme has the local order of weak sense 2. Thus,
for the class of stochastic Hamilton dynamical systems with typical Hamiltonians mentioned
above, we can numerically approximate them through our scheme (4.24) with (4.25) having the

accuracy corresponding to Taylor scheme of local order 2.

4.4 Remark on composition methods and conserved quantities in stochastic dy-

namical systems

Finally, we remark on numerical schemes for stochastic dynamical systems which preserve
“conserved quantities "of the systems. It is well-known that conserved quantities play an es-
sential role to determine the structure of dynamical systems; hence, it is important to find a
numerical scheme which has the conservation properties on the quantities for stochastic systems.
On the other hands, composition methods often give such schemes in deterministic systems.
Therefore, we may expect that one may obtain the schemes through our results, which have the
advantageous to preserve them for stochastic systems, and in the remainder of this section, we
will briefly examine it.

Let us consider d-dimensional stochastic dynamical systems (2.7). Suppose that a smooth
function I = I(.S) satisfies

Xol =0, X;I=0, (4.26)
where Xy and X are the vector fields given by (2.3). According to Misawa (1999), I(S) becomes
a constant quantity; that is, I(S(t)) = constant holds on the diffusion process S(t) governed by
(2.7).

Under some conditions, we may straightforwardly make a stochastic scheme satisfying nu-
merical preservation of conserved quantities. Assume that the exponential maps of A,a; = AtXp
and Bpa; = AW, X, are explicitly calculated. Then, it is obvious that Scheme 3.1 preserves the
conserved quantity / numerically, because of the definition of exponential map and (4.26).

Now, we investigate a trivial example of a stochastic dynamical system with a conserved

quantity and the numerical scheme through composition methods. Let us consider
St S2(t 2(t
d 2< ) = ®) dt + 55 o dW(t); (4.27)
S4(t) ~S1) —S(t)

20

159



this is a stochastic system with the conserved quantity I(S) = 3((5?)? + (8%)?), since (4.26)
holds. However, as mentioned in Misawa (2000), the ordinary schemes do not conserve I(S)
numerically. On the other hand, for this system, we adopt Scheme 3.1 with A, a: = AtXg =
At(5%8; — 518;) and Byar = AW X, = AW, (528, — S'8,); then through (2.6), the numerical
scheme is explicitly given by

Sl \ [ cos(At) sin(At) cos (AW,)  sin(AW,,) 3 L2
5',21“ ~\ —sin(At) cos(At) —sin (AW,) cos(AW.) 5,121 . (4.28)

Therefore, for any n, the numerical solutions (4.28) satisfy [ (51, 52) = constant. Thus, our

n?
scheme numerically preserve a conserved quantity I of the stochastic system (4.27), and this

fact also shows the superiority of the scheme derived through composition methods.

5 Concluding remarks

In this paper, we have formulated composition methods for stochastic differential equations
(SDEs), and thereby we have made some stochastic numerical schemes. Then, the several
examples have indicated that the new schemes have a superiority in conservation properties on
character of SDEs and they are useful for approximations of the solutions to SDEs. Moreover,
we have estimated local error orders for our schemes within the framework of Saito and Mitsui's

definition. Finally, we give some remarks and future problems concerning with this work.

(i) As mentioned in Remark 3.2, we should carry out a more analytical error estimation for our
schemes through the result on time asymptotics of exponential maps for SDEs by Castell (1993),

since the stochastic series (2.14) is only a formal representation.

(ii) In our error estimation, we have addressed “local error order "for our schemes. In general,
it is more important to estimate “global error order "for numerical schemes. In Burrage and
Burrage (1999), the relationship between local order and global one has been discussed in some

detail. Using the results, we may carry out global error estimation for our new schemes.

(iii) In this paper, we have treated the SDEs with one-dimensional Wiener process. On the
other hand, it often happens that the error order of a numerical method collapses, if there is
more than 1 Wiener process. Hence, we should investigate the error orders of our schemes in

the case of SDEs with multi-dimensional Wiener process.

(iv) Moreover, Li and Liu (1997) and Kunita (2000) have studied on stochastic exponential maps
for a more general class of stochastic processes, e.g. Lévy processes. Hence, through the works,

we may formulate stochastic composition methods for such general stochastic processes.

The author will report these subjects in future works.
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n

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
184
195
196
197
198

273725
03816406
.B576633
. B580603
.Bb12129
.B586316
2561177
0478918
. @bB7206
.B462954
373854
8459159
8428106
.B524778
. 0365604

- p1oeess

.B120115
7. 86052E-04
2.07421E-03

—-9. 479435

Euler-Maruyama Taylor of order 3

8185996
183733
0323048
0265831
0262494
0318198

. B28b882
LBee3TeT
.B236332

. 0200634
014018
.B196RY
0164982
.Bee3eTs
.8126323

4. 07906E-03
1.20801E-03
4. 42925E-04
6.8570TE-04
7. 45417E-05

Scheme (4.5)

0185927
. 0183659
0323008
.Besbre2
8262425

.B318131

. 0285888
Be2237
0236273
020576

. 0140885
0198538
.01648
.B2e2g9e
.b1es217
.BR4BT24
1.20498E-03
4. 46361E-04
6. 89868E-B4
7.31484E-05

Scheme (4.8)

0185912
0183624
.0322983
0265694
.0262353
.031804
0285826
022363
.0236186
.0208496

. 0148059
0190461
.0164839
0222907
.B126192

4. 07239E-03
1.28484E-03
4. 45822E-04
6. 8875E-04
7.327T05E-85

Table 4.1: An example of numerical solutions from Euler-Maruyama scheme

n

348
3498
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

Taylor of order 3

012517
0128065

8. 45901E-83
4. 89666E-03
.pE6811
0119832

. 0180548
.71649E-83
. 17@94E-03
. 1BT5SE-B3
. 28647E-B3
. 0B959E-B3
. 92672E-04
. T6257E-04
.57@58E-83
.09359E-083
. 2PTP4E-04
.12819E-04
. 3766E-04
—2 . 97TT6E-B7

IO WM TN N &= 1O

Scheme (4.5)

8126881
812981
8.68197E-03
5.080384E-03
6.93784E-03
0121529
.0102105

. 85315E-83
. 28222E-13
.58249E-03
. 38672E-03
. 19804E-03
.21066E-04
. 15458E-04
.B5334E-03
. 18363E-03
.BET7H8E-1B4
. 908 T3E-B4
.B19o6E-84
.5e643E-07

U= 0 WN O W 01T0T

Scheme (4.8)

. 0124984
0127872

8. 44348E-03
4.88441E-03
6.79605E-03
.0119632
.018036
7.69978E-03
5. 15692E-83
5. 45263E-03
4.27267E-03
7.85171E-03
0082912
5.7371E-@4
2.56494E-03
3. @8695E-03
8.17091E-04
2. 14876E-84
5. 40526E-04
7.81725E-10

(4.10), Taylor scheme of local order 3 (4.11), Scheme (4.5) and
Scheme (4.8) with (4.9) for (4.1) with an initial value s=0.01.

Table 4.2: An example of numerical solutions from Taylor scheme of local
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order 3 (4.11), Scheme (4.5) and Scheme (4.8) with (4.9) for
(4.1) with an initial value s=0.001.



n

980
981
8982
983
984
985
986
987
988
989
990
991
992
983
984
985
996
997

- 908

999
1008

Euler-Maruyama Taylor of order 3  Scheme (4.5) Scheme (4.8)

3.72261 3.88752 3.68641 3.68752
3.7145 3.67843 - 3.67732 3.67843
3.73492 3.69778 3.69667 3.68778
3.82852 3.89192 3.88084 3.89182
4.10458 4.06816 4.06707 4.06816
4.21854 4.18242 4.18134 4.18242
4.19385 4,15585 4.15479 4.15586
4.30738 4.,26862 4.26757 4.,26862
4.4813 4.36165 4.3606 4.36165
4.460873 4., 42002 4.41896 4. 42002
4. 46056 4.-41882 4.41777 4.41882
4.33234 4.291083 4.29002 4.29189
4.25444 4.21288 4.2118 4.21288
3.97583 3.9382 3.93813 3.8302
3.'72468 3.69204 3.69895 3.69204
3. 48053 - 3.4518 3. 450881 3.4518
3.64687 3.61833 3.61729 3.61834
3.79678 3.76838 3.76736 3.76838
3.74771 - 3.71863 3.7176 3.71863
3. 72407 3.69411 3.69387 3.69412
3.62125% 3.5914 3.59035 3.59141

Table 4.3: An example of numerical solutions from Euler-Maruyama scheme

n

980
981
982
983
984
985
986
987
988
988
990
991
992
993
994
995
996
98T
988
989
1080

(4.10), Taylor scheme of local order 3 (4.11), Scheme (4.5) and
Scheme (4.8) with (4.9) for (4.1) with an initial value s=1.

Euler-Maruyama Taylor of order 3 Scheme (4.17)

8.8134 9.51844 9. 52098
8.09664 8.813 9.81558
9.33128 18.8542 10.0568
10.5972 11.4613 11.4644
11.3247 12.2459 12.2492
11.4263 12.3423 12.3456
18.7926 11.6704 11.6735
18. 4671 11.3161 11.3191
18.1213 18.8412 1@.9441
8.46724 18.2515 18.2542
9.778748 10. 4991 10.582
9.@7412 9.83114 9.83382
8.77413 10.5897 18.5826
9. 35542 10.1398 18. 1426
9.79685 10.6885 18.6114
9.86074 10.6656 18.6686
8.91146 10.7086 18.77115
9.57355 10.3428 - 18.3456
8.275081 10.8183 18.821
9.64218 10. 4042 10. 407
9.47959 18.2216 18.2244

Table 4.4: An example of numerical solutions from Euler-Maruyama scheme

(4.18), Taylor scheme of local order 3 (4.19), Scheme (4.17) for
(4.13) with an initial value s=1. ‘ -
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A LIE ALGEBRAIC APPROACH TO NUMERICAL INTEGRATION
OF STOCHASTIC DIFFERENTIAL EQUATIONS"

TETSUYA MISAWAT

Abstract. In this article, “composition methods (or operator splitting methods)” for au-
tonomous stochastic differential equations (SDEs) are formulated to produce numerical approxi-
mation schemes for the equations. In the proposed methods, the exponential map, which is given by
the solution of an SDE, is approximated by composition of the stochastic flows derived from simpler
and exactly integrable vector field operators having stochastic coefficients. The local and global er-
rors of the numerical schemes derived from the stochastic composition methods are investigated. The
new schemes are advantageous to preserve the special character of SDEs numerically and are useful
for approximations of the solutions to stochastic nonlinear equations. To examine their superiority,
several numerical simulations on the basis of the proposed schemes are carried out for SDEs which
arise in mathematical finance and stochastic Hamiltonian dynamical systems.

- Key words. stochastic differential equations, Lie algebra, composition methods {operator split-
ting method), mathematical finance, stochastic Hamiltonian dynamical systems, stochastic nonlinear
system

AMS subject classifications. 65C30, 17B66, 91B28, 70-08, T0H33

PII. S106482750037024X

1. Introduction. The theory of stochastic differential equations (SDEs) is un-
derstood as a fundamental tool for the description of random phenomena treated in
physics, engineering, economics, and so on. Particularly, as the famous Black-Scholes
option pricing model, the stochastic equations are used to describe the price process of
underlying asset in mathematical finance. However, it is often difficult to obtain the
solutions of SDEs explicitly, and hence there has been increasing interest in numerical
analysis of SDEs. Indeed, many numerical schemes for SDEs have been proposed
(e-g., [8], [15], [23]).

The purpose of the present article is to propose some new numerical schemes
for autonomous SDEs on the basis of “composition methods.” The reasons why we
address this topic are as follows.

In numerical analysis for deterministic ordinary differential equations, whether
or not some special character or structure of the equations is preserved precisely is
an important point in performing reliable numerical calculations. From this point
of view, various numerical methods to realize the characters of differential equations
have been proposed. Indeed, we can find such examples as energy conservative meth-
ods [10], [13], symplectic integrators for Hamiltonian dynamical systems [24], [7], [26],
and composition methods [19], [22]. In particular, the composition methods are useful
to produce numerical schemes which leave some structure or character of general dif-
ferential equations numerically invariant. Hence, it seems to be quite natural that we
investigate the methods for SDEs to produce numerical schemes having the conserva-
tion properties; this is the first reason for setting up the numerical schemes proposed
here.

*Received by the editors April 5, 2000; accepted for publication (in revised form) May 22, 2001;
published electronically August 29, 2001. This work was supported by Grant-in-Aid for Scientific
Research 11640132 from the Japan Society for the Promotion of Science.
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TFaculty of Economics, Nagoya City University, Nagoya 467-8501, Japan (misawa@econ.nagoya-
cu.ac.jp)-
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LIE ALGEBRAIC APPROACH TO NUMERICS OF SDES 867

Moreover, in the theory of differential equations, composition methods are known
as operator splitting methods, and they are often utilized for approximation of non-
linear equations to which solutions are not obtained explicitly [25], [12]. From this
viewpoint, we may expect that the methods bring us a convenient and powerful way
of approximations for “stochastic nonlinear” differential equations, and this is the
second reason for our investigation.

We will first outline the original composition methods for ordinary differential
equations. Let X denote vector fields on some space with coordinates z with flows
exp(tX); that is, the solutions of differential equations of the form #(t) = X (z) are
given in the form z(t) = exp(tX)(z(0)). Then, the vector field X is to be integrated
numerically with fixed time step t. In this framework, we can apply composition
methods to the differential equation if we can write X = A + B in such a way that
exp(tA) and exp(tB) can both be calculated exrplicitly. More generally, this can be
relaxed by approximations of the exponential maps. In the most elementary case, the
method gives the approximation for z(t) through

#(t) = exp(tA) exp(tB)(z) = z(t) + O(t?);

the last equality is obtained by using Baker—-Campbell-Hausdorff (BCH) formula,
which is well known in Lie algebraic theory.

Thus, in composition methods, we use the exponential representation of solutions
to differential equations as an important tool. To formulate the methods for SDEs,
therefore, one needs a stochastic version of the notion of exponential representation
of solutions. In {16}, this topic has been investigated in detail. Hence, in section
2, we first review Kunita’s work on an explicit expression of solutions of SDEs as a
functional of multiple Wiener integrals. We next give a formal extension of Kunita’s
explicit expression of solutions of SDEs, and on the basis of the formal result, we
will propose new schemes for SDEs. Moreover, to estimate the error for the new
schemes, we touch upon some lemmas and a proposition concerning mean-square
order of multiple Wiener integrals.

In section 3, on the basis of the results in section 2, composition methods are
formulated for autonomous SDEs with a one-dimensional Wiener process. Through
these methods, we will obtain some numerical schemes for the stochastic equations.
Then, the approximation error of numerical solutions derived from the schemes must
be estimated. In this paper, we first apply the local error estimation in mean-square
sense to the obtainable numerical solutions. The BCH formula will be useful for cal-
culating the approximation error in a way analogous to that in the deterministic case.
Using the result on local error estimation, we next address global error estimation
for our new schemes. At the present stage, we obtain only local and global error
orders through indirect estimation, and hence such orders will be said to be “in a
weak sense.” :

In section 4, in order to examine the superiority of the new schemes, we investigate
some illustrative examples of the numerical simulations using the proposed schemes.
In the first example, the following nonlinear scalar SDE is treated, which is often
adopted as a model of an asset price process in mathematical finance [9]:

(1.1) dS(t) = S(t)dt + 2+/8(t) o dW(t), S(0) = s(> 0).

It is known that the value of the solution to this equation is “nonnegative” for any
t € [0, T]. Through the standard stochastic numerical schemes, however, such a char-
acter of this equation is not always preserved numerically. In contrast with this, we
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868 TETSUYA MISAWA

will see that our new numerical schemes by composition methods in section 3 leave
the structure invariant numerically, and thereby the first advantage of composition
methods is revealed. In the second and third examples, we examine the second ad-
vantage of composition methods as a tool of approximation for stochastic nonlinear
systems. Particularly, such a superiority is often found in Hamiltonian dynamical
systems through the dimensional splitting methods. Therefore, in the third exam-
ple, we treat the composition methods for “stochastic” Hamiltonian systems. At the
end of that section, to show the advantage of composition methods, we further touch
upon a way to produce numerical schemes which realize the numerical preservation
of conserved quantities for stochastic systems {20], [21].

Some concluding remarks and a discussion of future problems are given in section
5.

Finally, we note the recent remarkable work by K. Burrage and P.M. Burrage /4]
as another numerical approach to SDEs through Lie algebra.

2. Representation of solutions of SDEs. In this section, we first review
Kunita's work mentioned in section 1 [16]. Next we will give a formal extension
of Kunita’s explicit expression of solutions of SDEs. On the basis of this formal
expression, our new schemes for SDEs are formulated in the next section. At the end
of this section, as a preparation for the error estimation of the new schemes, we will
discuss mean-square order of multiple Wiener integrals dealt with in the representation
of solutions of SDEs.

2.1. Review of Kunita’s explicit expression of solutions of SDEs. In
order to explain Kunita’s main result, we first address Campbell-Hausdorff formula
for n vector fields. Let Yi,...,Y, be n C> vector fields on a connected C>-manifold
M of dimension d. Suppose that Yé i = [[...[Y;,,Y3,].. Y3, ], m=1,2,..., and
their sums are all complete vector fields, where {X,Y7] is the Lie bracket defined by
XY -~ Y X. Moreover, we assume that the power series

o
(2.1) 7= ¢, Y0
m::](il...im)

is absolutely convergent and defines a complete vector field. Here, for a given multi-
index I = (41, . ..,im), each coefficient c;,...;,, is determined through (2.3) given below.
Then (2.2) holds

(2.2) expYn - -expY =expZ.

This is the Campbell-Hausdorff formula for n vector fields [16].

We will touch upon the explicit form of the coefficients ¢;,..;,,. Let us divide
the multi-index I = (iy,...,1m) into a sequence of shorter ones Ij,j=1,...,¢ and
denote it by I ;

f: (Il7* . >Ik1)(1k1+13 .. 'aIkg) e (Ik,‘_1+17 .. ':Ik1)7

where each I consists of the same number i, and the numbers %k,k‘ = 1,..., kg,
satisfy

13 > g > e > gy <ik1+l>"‘>'ik2"'<7:k,-_1+1>"'>ik,»~

We call [ a natural division. Moreover, we denote the number of elements in Ir by
ny, where ZZ’:I ny = m. Divide again each index Iy into ji indices, each of which
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LIE ALGEBRAIC APPROACH TO NUMERICS OF SDES 869

consists of nﬁc’)(z = 1,...,jk) elements (hence E{f__l ngf) = ng). Then according to
[16], the coefficients ¢;,..;,, are given by (2.3):

01
1 e, —8—1( . -
Cirvin = T E E o1 C(=1)Fike =31 (G o g, — )7

s=0 =*
1
(2.3) X - —
nir. . nng)! .. .na)g ) ""ECJ;)!
where the sum ¥, is taken for all subdivisions of I(k = 1,..., ke), that is, for positive
integers ng)(i =1,...,5kk=1,...,ke) under 375, ng) = ng.

Let I’ be another multi-index of length m such that the natural division is given
by I' = (H""vl;lc;) e (I,‘2_1+1""’I’/“2)' We say I and I’ are equivalent if for cach
k, I, and I/, contain the same number of elements and kj = k;(j = 1,... ,£) hold.
Then we note that ¢; = ¢ holds.

Now, we proceed to our stochastic systems governed by SDEs. Let us consider
an autonomous SDE of Stratonovich type (e.g., [11], [1]) under the probability space
(Q,F,P):

(2.4) dS(t) = b(S(t))dt + Z g;(8(t)) o AW (¢)
j=1

dofined on a connected C°°-manifold M of dimension d, where b = (b¥)¢_, and
g9; = (qg 4., (j =1,...,r) are d-dimensional ¢ functions on M, respectively,
and W(t) = (Wl(t),...,W"(t)) is a standard Wiener process. Here S(t) is assumed
to be adapted with a nondecreasing family of sigma-algebra (Fi)e>0 C F. Note that
(2.4) is rewritten in the form of SDE of 1td type as follows:

r d T
(25)  dS = {B(SE) + 5 33 slOiar(SE) Mt + 3 g, (SO)AW 1),
j=1

k=11i=1

where 8; = 9/85*. Using the coefficient-functions in (2.4), we define C* vector flelds
Xo,X1,...,X, as follows:

d d
(2.6) Xo=) b, X;= Sgio (G=1....7)
=1 i=1

We will now review Kunita’s result (Lemma 2.1 in [16]). For this purpose, we
begin with notations on multi-index. Let us divide a multi-index I = (i1,...,%m)
(B1,...,tm € 0,1,... ,7) into shorter ones Iy - -« Iy(g < m), where each I consists of
the same element zJ For given positive integers ky < kg < -+ < kg = q, we define a
division of I as

(2.7) Al = (Il, .. ~aIk1)(Ik1+17 cee ,Ik.z) s (Ikg_1+1, .. .,Ike).

We call A single or double when each I contains a single element or at most two.
Here we remark that Al may not be equal to a natural division of I; but if there is
an index I such that its natural division is equivalent to Al, we set cas = ¢y in (2.3)
for convention.
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Now suppose that we are given an index I and a divided index AI. Moreover,
we set WO(t) = ¢. For a single divided index AI, we define the multiple Wiener-
Stratonovich integral W2{(t) as

(2.8) walgy = o D oqwiny). . o dwin (8,
A

where A = {tg, < - <ty <tyooo by < oo <tp41 <y, <tp1(i=1,...,0}
On the other hand, if AT is a double index, we define

(2.9) wary = [l oqwh) - o dwh (1),
A

where

(2.10) Wi (t) = W (t) (I : single; I = {ix})
=t (I :double; I = {ik,ik} and i # 0)
=0 (Ix ={0,0}).
Under the notations defined above, Kunita proved the following lemma.
Kunita’s lemma. Suppose that the Lie algebra L = L(Xj,...,X,) generated by

Xo,..., X, is nilpotent of step p. Then the solution S(t) of (2.4) with S(0) = s is
represented as

(2.11) S(t) = exp(¥3)(s),
where Y;(w) is the vector field for each t and almost surely (a.s.) w € Q given by
T f— 1
(2.12) V=S wiex,+ S Y W) X7,
i=0 Jeslisp  AJ
and X7 = [[---[X},, X5, 1X;.] (J = (J1,-...Jm)). Here, Y7 ; is the sum for all

single and double divided indices of J, and ca s are the coefficients determined through
(2.8) for the divided indices of J. Moreover, |J| denotes the length of a multi-index
J.

We remark that (2.11) with (2.12) means that the solution S(t,w) equals ¢(1, s, w)
a.s., where ¢(7, s,w) is the solution of the ordinary differential equation

do(T ,
(21 ) < v, 9(0) =,
regarding t and w as parameters.
The proof of Kunita’s lemma is outlined as follows. For a fixed positive integer n
and positive time ¢, we define W} = Wi(£¢t) — W’(Q”—;—Qt) (i=1,...,r) and define
Zj=:Xo+ Y SWHHX: (j=1,...,n). We further set

(2.14) S™(t) = (exp Zn - - -exp Z1){s).

Then, there is a subsequence of S™(t) converging to S(f) a.s.. On the other hand,
applying the Campbell-Hausdorff formula to the right-hand side of (2.14), we obtain

Z ZCAJ Z MV"L'];"’M'Vi]:,n x7,
J AJ

LieAdg
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where 3.7 0a7 6Wijl‘ e éWzJ " means the sum for all indices I such that the natural
division [ is equivalent to AJ. Then the sum converges to W47 (t) if AJ is a single
or double index, and it converges to 0 if AJ is more than double. Note that the
last assertion corresponds to the following result from formal calculus with respect to
stochastic differentials d¢ and dW? (i =1,...,r) [11]; AW dW7 = §&;dt, dtdW* = 0,
dtdt = 0, and dW'dWIdW* = 0. Finally, we can also prove that the sum converges
to the right-hand side of (2.11) with (2.12) a.s..

Remark 2.1. According to Lemma 2.2 in Kunita’s paper {16], we can calculate
the coefficients of X7 in the case of |J| = 2,3. On account of these results, the vector
field (2.12) is rewritten as

(2.15) Y; = ST‘W"(t)Xi +1 i[Wﬂ W(8)[Xi, X;]

, 2~
1=0 1<j

A S X, )
i=0 j=1
ST (W WL WR )X, X, X

18 &
i<}k

+ Y {Z*CAJWAJ(T?)}X‘](izo,l,..‘,r;j,k‘:1,‘..,7').

Ja<ini<p Lag

In (2.15), we define [W?, W)(t) and [[W?, W], W¥](t) as multiple Wiener-Stratonovich
integrals of degrees equal to 2 and 3 given by

(W, Wo(t) = /[; W) o dW7 (1) — /0 W (7)o dW*(r)
and

t t
(W, w7, w¥(t) = / (W*, W)(r) 0 dWH(r) - / W¥(r) o d[W*, W)(7),
0 0
respectively.
Note that the condition that Lie algebra L is nilpotent of step p is required only
in order to make the sum in {2.12) finite. This suggests that if L is general, we may
formally represent the solution S(t) of (2.4) as

(2.16) 5(t) = (expY;)(s),

where

(2.17) }"t:zr:Wi(t)Xi—{— Z {Z*cAJWAJ(t)}XJ,
i=0 J2<ig) Ladg

and this is just the formal expression we want. In what follows, we suppose that one
may obtain the explicit representation of solution (2.16) with (2.17).

Remark 2.2. If the Lie algebra generated by Xg, X1, ..., X, is of finite dimension,
Ben Arous has proved that the stochastic infinite series in (2.17) actually converges
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before a stopping time. Therefore, in such a case, the representation of solution
(2.16) with (2.17) is well-defined (Theorem 20 in [2]). We will see such examples in
subsections 4.1 and 4.2 of section 4.

Moreover, we restrict ourselves to the SDEs (2.4) with a one-dimensional Wiener
process; that is, we consider

(2.18) dS(t) = b(S(t))dt + g(S(t)) o dW (£),

where b and g are d-dimensional vector-valued C>° functions. Then, we may rewrite
(2.17) in a simpler form in terms of Kloeden-Platen’s representation for multiple
Wiener-Stratonovich integrals and multiple Wiener-It6 ones [14]; they are defined by

/S+t /TL, /'TZ . . .
(2.19) J(t,s) = o b edy U () o dY U= (1) 0 dY UR (1),

s 8 8

/s+t /-Tk /-‘rz . ) )
(2.20) Iin(t,s) = s gy U () dY =) ()Y R (1),
8 s 8
respectively, where a = (j1,...,78) (i =0,1;¢=1,...,k) and

Gyon | du  forj=0,
dYV7(u) = dW (u) for j = 1.

In what follows, we denote J(o)(t,5) and I(o(t, s) by J(ay(t) and I(4)(t), respectively,
if s=0.

Remark 2.3. Note that Ji,)(¢,s) can be rewritten in terms of Ii,y(t,s) (see
pp- 174-175 in [15]). For example, we have

(2.21) Jioo = 1gny (i =01),
1 o
(2:22) Ti132) = L6132 + 5l =n=1t9 (1,52 = 0,1),

12,05 = LG1gzia) T 5 - (1{11—J2-1}I(0 jo) T Lga=ja=1}(j1, o) (J1,J2,73 =0, 1),
(2.23)
where 17} denotes the defining function. In general, any multiple Stratonovich in-
tegral Ji,) can be written as a multiple Itd integral I(o) or a finite sum of I(,) and
multiple It6 integrals I(g) satisfying

(2.24) £a) +n(a) < €(B) +n(B),
where £(c) ={the number of elements of a} and n{a) ={the number of 0’s in the
elements of a} (Remark 5.2.8 in [15]).
In terms of (2.19) and stochastic Stratonovich integration by parts formula for
Wi(t) (i = 0,1) and [W?, W(t), we can rewrite (2.17) in the following form:
1
(225)  Yi=Jio(t)Xo+ Ty (0} Xn + 5 (o () = J,0)(8)) [ Ko, X
1
+15 1270100 = 270,00/ ) + J0) (1) 0,0/(1) ~ Ty () Jo,1) (O} X0, X1], Xo]
1
+E{2J(0’1’1)(t) -_ 2.](1,0’1)@) + J(l)(t)J(lyo)(t) —_ J(l)(t)J(g!l)(t)}[[Xo, X1], Xl]

sl IO (X0 X, Xl + Y K

J4<]J|
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Here, in the last term on the right-hand side of the above equation, K7(t) =
{SaScasWa7 ()}, and J = (j1,...,Je) (i = 0,154 = 1,...,4; £ > 4). In terms
of Remark 2.3, this can be described by multiple Wiener-It6 integrals as follows:

1
(2.26) Y = Iigy(t)Xo + Iy() X1 + 5(1'(0,1)(?5) — I{1,0)(t))[ X0, X1]
1
+1§{21(0,1,0) (t) — 211.0,0) (&) + L0y () (1,00 (8) = L0y (1) L(0,1) (8) HIX o, X1, Xo]
1
+1g {2 oan(t) — 20110, (t) + Ity (O (1.,0) () — L2y () 0,1y (8) HIXo, X1, X

+é%{1(0,0)(t>+{I(o)(t)}Q}[[Xo,Xﬂle]+ > H/ @)X,

Jia<|T|

where HY (t) is another version of K7 (t) under each multi-index J, which is derived by
transforming multiple Stratonovich integrals in K7(t) into Itd ones through Remark
2.3. Therefore, for each multi-index J, H J(t) is described as a polynomial function of
multiple 1t6 integrals. In the next section, we will formulate the numerical schemes
for the solution of SDE (2.18) on the basis of (2.16) with (2.26).

2.2. Mean-square order of multiple Wiener integrals. Now, in the re-
mainder of this section, as a preparation for the error estimation for the new schemes
in the next section, we will prove a proposition concerning the coefficients H I(t) of
X7 for multiple indices J in (2.26). For this purpose, we first touch upon a lemma
for multiple Itd integrals (2.20) proved by Klocden and Platen (Lemma 5.7.5 in [15]).
Let E[-|F,] be the conditional expectation with respect to a nondecreasing family of
o-subalgebra F;.

LEMMA 2.1. Forany o = (j1,...,Jk), Ji =0,1;i=1,...,k), andg=1,2,...,

(2.27) E[(a)(At, 8)]X|F] = O((At)ate=+neD)y (A | 0),

where £(c) and n(a) are the indices defined in Remark 2.3; that s, £() ={the number
of elements of a} and n(a) ={the number of 0’s in the elements of a}.
Let F(t, s) be a function of multiple stochastic integrals I,y (t,s). Suppose that

(2.28) E{F(At,9)}?|F] = 0((An)™) (At 1 0)

holds. Then, in what follows, we call the real number m “mean-square order (MSO)?
of F(t,s).

From Lemma 2.1 we see that MSO of a multiple 1t6 integral Iy (t, s} is equal to
¢(a) + n(c). Moreover, the following lemma shows that MSO of Iy (t, 8)I(3)(t, 5) is
given by £(a) +n(a)+£(8) +n(8); that is, MSO of a product of multiple Itd integrals
equals the sum of MSO of each of the stochastic integrals.

LEMMA 2.2. For any multi-indices o and 3,

(2.29) Ell(a)(At, 8)I(g)(At, 8) 1] = O((Ar) U +r(@+LE+ED) (AL | 0)

holds.
Proof. Through the Schwartz inequality, we obtain

Lo (A, 5)I 3y (8, 9) 21 Fe] < /Bl Loy (B8, 8)Y | ) B L) (At 5)} 1 7o)

The lemma is straightforwardly proved using this inequality and Lemma 2.1.
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Remark 2.4. By Lemmas 2.1 and 2.2 together with Remark 2.3, we may verify
that multiple Stratonovich integrals Ji)(t,s) also satisfy the results in Lemmas 2.1
and 2.2. Hence, for a given o, we find that MSO of a multiple Stratonovich integral
J(a)(t, s) is also equal to £(a) + n(a); that is, MSO of J(4)(t,s) agrees with that of
Ioy(t, s) for the same multi-index a.

We now proceed to our goal. Using Lemmas 2.1 and 2.2, we can estimate MSO
of each coefficient of X7 in (2.26) which is given by a polynomial function of multiple
Itd integrals on [0,t]. For example, in the case of |J| = 1, MSOs of the coefficients of
Xo and X, that is, MSOs of I(t) and I;(t) are equal to 2 and 1, respectively. In the
case of |J| = 2, MSO of Ig 1y{2) or Ij1,0)(t) in the coefficient of [Xg, X1] is given by
3, and thereby we can easily prove that MSO of the coefficient (I(o,1)(t) — I(1,0)(t))/2
itself is also equal to 3. In the same manner, we find MSOs of the coefficients of
X7 when |J| = 3; that is, MSOs of the coefficients of [Xj, X1}, Xo] and [ X, X1}, X1]
are given by 5 and 4, respectively. Hence, in this case, the least value of MSOs of
the coefficients of X7 equals 4. These facts suggest that we may verify the following
proposition which we wish to establish.

PROPOSITION 2.1. Suppose that k is a given integer greater than or equal to 2,
and that the multi-indices J satisfy |J| = k; that is, J = (j1,-..,Jx) (i =0o0r ;i =
1,...,k). Then the least value of MSOs of the coefficients H”(t) of X7 in (2.26) is
equal to k + 1. :

Proof. We may prove this by induction. From the above examples, this propo-
sition is obvious in the case of |J| = 2,3. We assume that the assertion of this
proposition holds for the case of |J| = £(> 3). That is, the least value of MSOs of
the coefficients H7(t) of X7 under J = (jy,...,j¢) in (2.26) equals £+ 1. Then, note
that under the same J, the least value of MSOs of K7(t) in (2.25) agrees with that of
HY(t), since H7(t) is only another version of K”7(t) in terms of multiple 1td integrals.
Now, let us consider the coefficients K7 (t) of X7 under |J| = £+ 1. On account of the
definition of multiple integrals W27 (¢) (2.8) or (2.9) with (2.10) in the coefficients,
one may obtain K7 (t) by adding a stochastic integral with respect to dW or dt to each
multiple integral in K7 (¢). Moreover, the following equations show that the MSOs
for the integrals with increments dW and dt correspond to 1 and 2, respectively:

e I awemp —owe, B wrE) = oan® o)

8 8§

Hence, the least value of MSOs of K 7 (t) is equal to £+ 2, and thereby, the least value
of MSOs of H(t) is also so. Thus, the assertion in our proposition is proved. i)

3. Composition methods for numerical integration of SDEs. In this sec-
tion, we will formulate some new stochastic numerical schemes for SDEs on the basis
of composition methods and estimate the approximation errors for the schemes in the
local and global senses.

3.1. Procedures of composition methods for SDEs. We start with a nu-
merical integration of the stochastic equation (2.18) on the discretized time series
in the framework of the previous results on representation of solutions to SDEs. It
adopts a uniform discretization of the time interval {0, T'| with stepsize

T
At = —
N
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for fixed natural number N. Let ¢, = nAt(n = 0,1,2,..., N) be the nth step-point.
Then, for all n € {0,...,N}, we abbreviate S, = S(t,). Moreover, we use AW,
forn=0,1,..., NN to denote the increments W (t,41) — W(t,); they are independent
Gaussian random variables with mean 0 and variance At, that is, N(0, At)-distributed
random variables.

On account of (2.16), we may find the numerical solutions S,,(n = 0,1,..., N) to
SDE (2.18) by using

(3.1) Snt1 = exp (Yaa:)(Sn) (n=0,1,2,...,N = 1),

formally, where Y,a; is a vector field derived by replacing all the multiple Wiener
integrals Iio)(t) = I(4)(t,0) in (2.26) by I1o){At, nAt). In the following, I(o)(At, nAt)
is denoted by Ja) n{At). Moreover, we set Sp = S(0) = s9. According to the theory
of ordinary differential equations, exp (Yna¢)(+) is often called the time-At map or
exponential map. However, it is usually difficult to find the explicit form of the
exponential map, and hence we need to build an approximation for (3.1).

To do this, we formulate a new stochastic numerical scheme as the following two
procedures, which are composed of the truncation of the vector field (2.26) and a
composition method (or operator splitting method) applied to the exponential map
derived from the truncated vector field.

Procedure 1. For the vector field Y; described by (2.26), we define a “truncated”
vector field ¥; which is given by a truncation of the higher-order terms with respect
to MSO of the coefficients of X7 in (2.26). Then, we define a numerical sequence
(8,)N_, through

(32) S’n+1 = exp(YnAt)(Sn) (n - 0> 13 tery N - 1)7

where Sy = S(0) = so. . X A

Procedure 2. For Spq1 = exp(Yaa:)(Sn), we apply a composition method in a
way analogous to that in the theory of ordinary differential equations. Suppose that
the vector field YnAt is of the form

(33) YnAt = AnAt + BnAt;

where exp(Ana:) and exp(Bna:) can both be explicitly calculated through (2.13).
Then an approximation to the exponential map of Y, is given by exp(Anat) exp(Bnat)-

Hence, the sequence of (Sy,)Y_, in Procedure 1 is approximated by
(3.4) Spi1 = exp(Anas) exp(Bna)(Sn) (n=10,1,...,N — 1),

where Sy = S(0) = s0.
We regard (S, )., as a numerical approximation to the exact discretized solutions
(Sn)n=o- '

3.2. Local error estimation for the new numerical scheme. We will es-
timate the approximation error of the numerical scheme described above. For this
purpose, we first examine “local errors in the mean-square sense” for the scheme.
Using this result, we will finally address the “global” error estimation in the next
subsection.

We start with the definition of “local error order” in a manner analogous to that
in [15].
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DEFINITION 3.1. Suppose that S(t) and (Sp)io are an exact solution and the
numerical approzimation solutions to SDE (2.18), respectively. Let E.: be the expec-
tation conditioned on starting at € at time T. Then the local error order o is defined

by
(3.5) Er, s[l8ns1 — Snsal’] = O((AL)) (At ] 0),

where t, =nAt (n=0,...,N=1), S, = S(nAt), and |-| denotes the Euclidean norm
on the space R%. Note that the condition in the ezpectation (3.5) means Sy, = S, = s.

We note that the accuracy of a numerical scheme improves with increasing local
order.

Remark 3.1. In the framework of local error order defined by [23], the local order
of S, satisfying (3.5) is given by 2a — 1.

On the basis of this definition of local error estimation, we will investigate the
error estimation of our approximation procedures. In what follows, we set S, = s,
where s is a given value.

Local error estimation for the truncation error in Procedure 1. First,
we investigate the truncation error in Procedure 1. Let H. »” (At) be the coefficient of
X7 in Y,a; which is represented by a polynomial function of multiple 1t6 integrals
for a given multi-index J as in (2.26). A ,

PROPOSITION 3.1. Suppose that a truncation vector field Yoa¢ is given in the
following form:

(3.6) Voar= Y H,J(an)X’.

J<iaisy

That is, we assume the terms in Ynar satisfying |J| > v+ 1 are neglected. Then,
. 2
(3.7) By, sl18n41 = Snial ] = O((AL)+2) (At L 0).

Proof. In terms of Proposition 2.1, we can easily show that the least value of
MSOs of H,”(At) in the neglected terms equals v + 2, since |J | > v+ 1. This
fact, together with the definition of exponential map (see 2.11 with 2.13 [16], [3]),
straightforwardly shows (3.7). Thus, we obtain the local order (v/2)+1 for numerical
approximation solutions (8,)X_, in the sense of Definition 3.1.

Remark 3.2. If the Lie algebra generated by X; and X is of finite dimension, our
error estimation derived above agrees with that of truncation of stochastic exponential
maps by [2], since the convergence of (2.17), and hence (2.26), are actually guaranteed
(cf. Remark 2.2). That is, under the assumption that such a convergence holds, the
local error estimation derived above holds exactly. In general, however, our result may
give only a formal error estimation. Indeed, according to [6], when the convergence is
not guaranteed, the asymptotic expansion of stochastic exponential maps is estimated
only in a “probability” sense.

Local error estimation for the composition scheme in Procedure 2.
Next, we will proceed to the local error estimation for Procedure 2. We can carry this
out using the BCH formula [3] together with Lemma 2.2; the formula is given by the
following form:

(3.8) exp (e(At)X)exp (6(A1)Y) = exp(e(At)X + S(AL)Y + %e(At)é(At)[X, Y]

+—11§(6(At)26(At)[X, (X, Y]]+ e(A)S(AL)PY, [Y, X]]) + - ),
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where X and Y are C* vector fields, and ¢(At) and §(At) are any functions of At; in
our case, they correspond to polynomial functions of multiple It6 stochastic integrals
I(a),n(At).

PROPOSITION 3.2. Let Yyua; be a truncated vector field given by (3.6). Suppose
that the vector fields Anpay and Bpat in a decomposition (3.3) for V.a: are described
by
(3.9) Aonc= S EJADXT, Buar= Y Gl (AnXY,

Ji1g(J Ly T <y

respectively, and that the least values of MSOs of F,7(At) and G,7 (At) in (3.9) are
given by a and B, respectively. If Xj\“ and X };" , which are vector fields corresponding
to the coefficients with o and B as MSO, respectively, satisfy [Xi",X]J;] # 0, then

(3.10) Ey, s[18n+1 — Sns1l?] = O((A)*H7)) (At | 0).

Proof. Let F,”* (At) and G,,7?(At) be the coefficients in (3.9) whose MSOs are
equal to o and 3, respectively. Then, in an analogous way to that in Lemma 2.2, we
can prove that

(3.11) By, P (A0)GA %7 (AD)]"] = O((A)2F8) (At 1 0).

Therefore, on account of the BCH formula (3.8), (3.11), and the definition of o and
3 given above, one may find that

(3.12)
Et,,,sHSnJrl - §n+1|2] = By, sllexp (Anat + Brat)(s) —exp (Anat)exp (BnAt)(S)lz]

2}
Thus, the local order between (S,)Y_, and (SN, is given by (o + 3)/2.

Remark 3.3. By further manipulating the BCH formula to eliminate higher-order
terms, we can obtain various schemes which give higher-order approximations to the

exponential map. For example, the scheme corresponding to “leapfrog,” which is well
known in deterministic numerical analysis, is given by

=FE, s 1’ exp (Anat + Brat)(s)

1
— exp /AnAt + Bpae + §[AnAt» Bpat] + -+ ) (s)

= O((At)**7).

(3.13) exp((At)(X +Y)) =exp (—A—%Z> exp (AtX) exp (é—;—):) +O0((At)?).

In a way analogous to that in (3.4), we define a stochastic leapfrog scheme as follows:

_ . B, _
(3.14) Sp4q = exp (BQM> exp (Anat) exp ( 2“) (Sp) (n=0,1,...,N —1).

Then, using the BCH formula (3.8) and (3.11) repeatedly, we can find that the local
error for this scheme is given by (@ + 23)/2 as follows:

(3.15) By, s[|Sne1 — Sns1l?] = O((A1)>28),

176



878 TETSUYA MISAWA

Thus, we can produce another numerical scheme having a better local order than
that of the scheme (3.4). Moreover, using this scheme as a basis element for further
leapfrog schemes, we may also produce an approximation to exponential map up to
any order in a similar way to that in ordinary numerical analysis.

Total local error estimation for the numerical scheme of Procedures
1 and 2. Finally, we estimate the local error order between the exact discretized
solutions (S, )Y, and the numerical approximation solutions (Sp)N_,. This is easily
carried out by using Propositions 3.1 and 3.2 (or Remark 3.3) for the local orders in

the above two procedures together with

= 2 ~ 2 P =~ 2
(3.16) Ey, s[1Snt1 = Snt1l] < Bt sl|Sn41 = Sntal 1+ B, sl[Sna1 — Sl ],

and thereby we obtain the following theorem.
THEOREM 3.1. Under the conditions of Propositions 3.1 and 3.2,

(3.17) By, o[1Sns1 — Snp1l’] < O((AYP) (At | 0)

holds, where § = min(a + 3,y +2) in the case of (3.4) and § = min(a + 28,7 +2) in
the case of (3.14).

On account of Definition 3.1, if (3.17) holds, we may regard (6/2) as a local order
for the scheme giving the numerical approximation solutions (Sn)Y_,. In this article,
however, we call the value a local order in a “weak sense” for the scheme, since the
estimation of error order is “indirectly” derived from the inequality (3.16).

3.3. Global error estimation and some examples for the new schemes.
Now, we proceed to global error estimation for our schemes. We start with the
definition of “global error order” in a manner analogous to that in [15] mentioned in
Definition 3.1.

DEFINITION 3.2. Suppose that S(t) and (S,)i_o are an ezact solution and the
numerical approzimation solutions to SDE (2.18), respectively. Moreover, let Eo¢ be
the ezpectation conditioned on starting at & at “initial time” 7. Then the global error

order X is defined by
(3.18) Eo,sl15v — Snl'] = 0((at)*) (At | 0),

where Sy = S(NAt), NAt =T and |- | denotes the Euclidean norm on the space R%.

Note that the condition in the expectation (3.18) means Sy = Sy = s. It is obvious
that the accuracy of a numerical scheme improves with increasing global order.

Remark 3.4. In the framework of global error order defined by {23}, the global
order for the numerical solutions S, satisfying (3.18) is given by 2A.

Using Theorem 3.1, we can prove the following lemma and thereby find the global
order of our schemes in a weak sense. B

LEMMA 3.1. Suppose that the numerical approzimation solutions (Sp)N_o to SDE
(2.18) given by (3.4) or (3.14) satisfy (3.17); that is, the local order in o weak sense
for the solutions is equal to (6/2). Then

(3.19) Eo.s[1Sns1 — Snr1l’] < (n+1) x O((AL)) (At | 0).

Proof. Here, we treat only the case of (Sp)N_, given by (3.4) because we can
prove (3.19) for the case of numerical solutions by (3.14) in a way analogous to that
shown below.
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We prove this lemma by induction. First, if n = 0, the inequality (3.19) is obvious,
since it reduces to (3.17). We assume that (3.19) holds in the case of n = k—1. Then,
for n = k, we rewrite the left-hand side of (3.19) as follows:

(3.20) By s||Sk+1 ~ §k+1!2]
= B [|Sk+1 — exp (A1) at) exp (Bri1)ad) (Sk)
+exp (Ager1)ar) exp (Bra1)a)(Sk) — Sk41l]
< Eo,s[|Sk+1 — exp (Ag+1)At) €XP (Birs1yae) (Se)l?]
+ Eo.s]| exp (Agk+1)at) €xp (Bir+1)ae)(Sk) = Senll,
where exp (Ax+1)at) €Xp (Brr1)ae) is the composition exponential map given by

(3.4). Using (3.4) for n = k, that is, Sg41 = exp (Agesnar) exp (Bier1yat)(Se),
we may rewrite the first term on the right-hand side in (3.20) in the following form:

~ 2 ~
Eo.o[|Sks1 — exp (Agernar) exp (B 1)ae) (Sk)|*] = BllSk1 — Skl 1Sk = Si]-

This fact, together with the assumption about the local order for (SN

=0 gives
Eo.s[|Ses1 — exp (Agesnyar) exp (Banad) (Sp)°] < O((A1)°).

In a similar manner, using (3.4), we can put the second term on the right-hand side
in (3.20) into the following form:

~ 2
Ey,s||exp (A(Ic+1)At) €xXp (B(k+1)At)(5k) - S]]

1.

Then, the definition of exponential map [16], {3}, together with (3.8) and the assump-
tion of the induction, proves

5 0.2
= Eo.s||exp (Az+1)at) XD (Br+1)at) (Sk — Skl

o[l exp (Ages1yae) xp (Bies 1yar) Sk — Si)l'] < k x O((A8)?).

Therefore, we find
(3.21) Eosl|Sks1 — Senal’] € (k+1) x O((AL®) (At L0),

and hence (3.19) holds for n = k, thus completing the proof. O

We note that NAt = T = constant. Therefore, Lemma 3.1, together with this
fact, straightforwardly proves the following theorem.

THEOREM 3.2. Suppose that the local order in a weak sense for numerical ap-
prozimation solutions (5,)N_, given by (3.4) or (3.14) is equal to (6/2). Then

(3.22) Eo.llSx — 8x['1 < O((AD)S) (At | 0).

Thus, we can estimate the global error order for our schemes, although the es-
timation is indirectly derived through the inequality (3.22). Hence, on account of
Definition 3.2, if (3.22) holds, we call the value (6 — 1)/2 a global order in a weak
sense for the schemes of (3.4) or (3.14).
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Now, in the following, we will investigate some examples of new numerical schemes
for (2.18), which are derived from the procedures given above, and estimate the local
and global errors on the basis of Theorems 3.1 and 3.2.

Brample 3.1. Suppose that a truncated vector field Y,.a: in Procedure 1 is given
by

YnAt - I(O).,n(At)XO + I(l),n(At)Xh
(3.23) = AtXy + AW, X;.

On account of (2.26), we see that v in Proposition 3.1 for this truncated vector field
equals 1. We further set Apar = AtXo and Bpae = AW, X7 in the decomposition
(3.3) and assume that the explicit forms of both exponential maps for them are ob-
tained through (2.13). In this case, o and § in Proposition 3.2 become 2 and 1,
respectively, because of Lemma 2.1. Then, the scheme (3.4) can be put into the
following form.

Scheme 3.1.

(3.24) gn-i—l = exp (At Xp) exp (AWnXl)(gn)

Assume that [Xo, X1] # 0. Then, through Theorems 3.1 and 3.2, we obtain

(3.25) Ee, s[1Sns1 — Sns1l’] < O((AD)®)
and
(3.26) EosllSn — Sni’] < O((a0)%).

Thus, we find that the local order and the global order in a weak sense for Scheme
3.1 equals 1.5 and 1, respectively.

Exzample 3.2. For f’n(At) in Example 3.1, we set Apar = AtX A0+ AW, X4, and
Boa: = AtXBo+ AW, X B, in (3.3), where Xo = X#4o+XFg and X; = X*; + X%,
We assume that [X 41, XP1] # 0 and that the explicit forms of both exponential maps
for them are obtained. In this case, ¢ and 3 in Proposition 3.2 are both equal to 1;
hence the local order of the scheme (3.4) for the above Apa: and Bya: becomes 1. In
order to produce a scheme having better accuracy than that of this scheme, we use
(3.14) instead of (3.4).

Scheme 3.2.

(3.27) Sp41 = exp /%éf> exp (Anat) €Xp (—B’—;A—ﬁ>,
where A a; = AtXAg + AW, X4, and Bpae = AtX By + AW, XE under Xy =
XAQ —!—XB() and X = XAl +XBl.
Then, Theorems 3.1 and 3.2 indicate that (3.25) and (3.26) also hold in this case.
- That is, the local error order and the global order of this scheme are equal to 1.5 and
1, respectively.
Ezample 3.3. We will formulate a scheme with better accuracy than that of the
schemes described above. For this purpose, we choose the following vector field as

}/TLAf in (36)

N 1
(328) Yoar = AtXg + AW, X, + -2-(‘[(071)771(At) - I(lyo)’n(Af))[XQ,Xl].
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Then, from (2.26), we see that v in Proposition 3.1 for this truncated vector field
becomes 2. Moreover, we set )

(3.29) exp (A?At) = exp (AtXo)

and
1
(330) exp (BnAt,> = eXp /AWan[ -+ 5(](0,1)’11(At) - I(l’o)’n(At))[Xo, Xﬂ) .

Assume that the explicit forms of both exponential maps for these are obtained
through (2.13). In this case, Lemmas 2.1 and 2.2 show that « and £ in Proposi-
tion 3.2 are equal to 2 and 1, respectively. Moreover, we adopt (3.14) for these vector
fields which leads to the following scheme.

Scheme 3.3.

. B, /B, N
(3.31) Sn+1=exp( ;i)expmnm)exp( 2“)(sn>,

where exp (Anay) is given by (3.29) and exp (Bna:/2) is derived by replacing Bna:
by Bnat/2 in (3.30).
Then, because of Theorems 3.1 and 3.2, we find that

(3.32) Br, s[1Sns1 = Snual'] < O((AD)Y)
and
(3.33) Bos[ISn = Swl’] < O((A0)%),

and hence conclude that the local order and the global order in a weak sense for
Scheme 3.3 equals 2 and 1.5, respectively.

4. Examples. In this section, we will give several illustrative examples of ap-
plying our new stochastic numerical schemes to SDEs.

4.1. Numerical simulation of a nonlinear asset price process in math-
ematical finance. As was mentioned in section 1, we first work with the following
nonlinear scalar SDE which is often treated as a model of an asset price process of
Bessel type in mathematical finance [9] (cf. Remark 4.1):

(4.1) dS(t) = S(t)dt +21/8() o dW(t), S(0) = s(> 0).

This system has a structure such that the value of solution remains nonnegative for
any t € [0,7]. In standard stochastic numerical schemes, however, this property is
not always preserved numerically; in particular, if an initial value s is close to zero,
the numerical solutions often go into the domain of negative values in the midst of
numerical simulations. Such troublesome behavior will be observed in the numerical
results given later. In contrast with this, through the results in previous section,
we may obtain a scheme which leaves the structure of the stochastic system (4.1)
invariant numerically. We will examine it now.
First, from (2.6) and (4.1), we see that the vector fields X and X become

—d—v Xl = 2\/_5_11_7

(4.2) Xo =S5 7
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respectively. Here, we note that [Xp, X1] = —X1/2, and the Lie algebra generated by
Xo and X is of finite dimension. Hence, Remark 2.2 indicates that (2.26) actually
converges in this case.

We proceed to investigate the application of Scheme 3.1 to SDE (4.1). On account
of (3.24), we suppose that Apa; and By, in (3.3) are given by

(4.3) Apar = AtXy = AtS(—;—Zg, Bpar = AW, X1 = Aanx/EE%.
Then, in view of (2.13), we obtain the exponential maps for A,a; and Bpas explicitly
as follows:

(4.4) exp{Anai)(s) = sexp (At), exp(Bnat)(s) = {AW, + NZI

Inserting these into (3.24), we find that Scheme 3.1 applied to SDE (4.1) leads to

(4.5) Spy1 = {AWn + \/,f;’—n}2 exp (At),

where Sy = §(0) = s. Clearly, the numerical solutions derived from our scheme never
take negative values, and this is just the result we want. Moreover, as mentioned in
section 3.3, the local and global orders in a weak sense for this scheme are given by
1.5 and 1, respectively.

Next we will apply Scheme 3.3 to SDE (4.1). On account of (3.29), in this case,
we also obtain sexp (At) as exp (Anar)(s). In contrast with this, (3.30) takes the
form

(46)  exp (Bune) = exp 4 [ AWn — (T oaym(At) = I oy (D)) ) X1 b,
i

since [Xo, X1] = —X1/2. In a way similar to that of Scheme 3.1, this is also calculated
explicitly as follows:

2
4T o (Basls) = { AT, = {0n(80) = Iugy (A0 + V)

and thereby we obtain the result of Scheme 3.3 applied to SDE (4.1) as

- AW, 1 ‘ 2
2 8 ’

(48) Sn+1 = - —(I(O,l),n(At) - I(l,O)n(At)) ‘i‘“ \/g}

together with

2
@9) =AW L (a8 = T (at) + /5. L exp (aD),
3 8 |

where Sy = S(0) = s. This also indicates that the numerical solutions derived from
this scheme take only nonnegative values. Then, as mentioned in section 3.3, the local
and global orders for this scheme are equal to 2 and 1.5, respectively.

Here, we will examine the numerical solutions of SDE (4.1) given by these schemes.
Then, we will compare these numerical results with those of several standard numerical
schemes. For this purpose, we adopt the Euler-Maruyama scheme (Taylor scheme of
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TABLE 1
An example of numerical solutions to SDE (4.1} from the Euler-Maruyama scheme (4.10),
Kloeden’s Taylor scheme (4.11), Scheme (4.5) and Scheme (4.8) with (4.9) for an initial value
s = 0.01.

n Euler—Maruyama  Kloeden’s Taylor Scheme (4.5) ~ Scheme (4.8)

189 0.0373054 0.014018 0.0140095 0.0140059
190 0.0459159 0.0190609 0.0190539 0.0190461
191 0.0428106 0.0164982 0.01649 0.0164839
192 0.0524778 0.0223075 0.0222992 0.0222907
193 0.0365604 0.0126323 0.0126217 0.0126192
194 0.0190258 4.07906E-03 0.0040724 4.07239E-03
195 0.0120115 1.20801E-03 1.20498E-03 1.20484E-03
196 7.86052E-04 4.42925E-04 4.46361E-04 4.45822F-04
197 2.07421E-03 6.85707TE-04 6.89868E-04 6.8875E-04
198 -9.47943E-05 7.45417E-05 7.31484E-05 7.32705E-05

global order 0.5) and Kloeden’s Taylor scheme of global order 1.5 [15], [23]; they are
given in the following forms for the SDE (4.1):
Euler-Maruyama scheme.

(4.10) Spi1 = Su + (S + 1AL + 21/S, AW,.
Kloeden’s Taylor scheme of global order 1.5.
Spsr =8 n+ (Sn + )AL +2¢/5,AW,
+{(AW,)? — At}
+ 2801 (1,0),0(B8) + V/SnI(0,1),n (A1)
(4.11) + é(sn + 1)(At).
In the schemes (4.5), (4.8) with (4.9), (4.10), and (4.11), AW, I1,0),n(At), and

I(0,1),n(At) are numerically realized by the independent N(0,1) random numbers v,
and 4, (n=0,1,...) as follows [15]:

AW, = 1, VAL,
1 1.
(4.12) a0 n(88) =5 (% + ﬁ%) (A)3/2,

1 1.
I(O‘l)*"(At) = 5 ('Yn - "\7—§"/n> (At)3/2.

Moreover, we choose T = 1 and N = 1000 here, and hence the stepsize At =1073.

Tables 1 and 2 display the results of the numerical solutions from these schemes
listed above for the initial value s = 0.01 and s = 0.001, respectively. (Note: in the
case of Table 2, the scheme (4.10) is excluded.) Here we have used the same sequences
of random numbers for each scheme together with (4.12). As was mentioned in the
introductory part of this section, from these results we observe that the values of
numerical solutions derived from the standard schemes become negative during their
computation if their initial values are close to zero. In contrast with these results,
all of our schemes are free from such problems. Thus, our scheme (4.5) and (4.8)
with (4.9) are superior with respect to numerical realization of the character of SDE
(4.1); that is, nonnegativity of solutions is preserved in contrast to the results of the
standard schemes.
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TABLE 2 4
An ezample of numerical solutions to SDE (4.1) from Kloeden’s Taylor scheme (4.11), Scheme
(4.5) and Scheme (4.8) with (4.9) for an initial value s = 0.001.

n Kioeden's Taylor  Scheme (4.5)  Scheme (4.8)
358 4.28647E-03 4.38672E-03  4.27267E-03
359 7.06959E-03 7.19804E-03 7.05171E-03
360 2.92672E-04 3.21066E-04 0.0002912
361 5.76257E-04 6.15458E-04 5.7371E-~04
362 2.57058E-03 2.65334E-03  2.56494E-03
363 3.09359E-03 3.18363E-03 3.08695E-03

364 8.20704E-04 8.66758E-04 8.17091E-04
365 2.12819E-04 1.90873E-04 2.14876E-04
366 5.3766E-04 5.01956E-04 5.40526E-04

367 -2.97776E-07 7.52643E-07 7.81725E-10

TABLE 3
An ezample of numerical solutions to SDE (4.1) from the Buler-Maruyama scheme {4.10),
Kloeden’s Taylor scheme (4.11), Scheme (4.5) and Scheme (4.8) with (4.9) for an initial value s = 1.

n Buler-Maruyama _ Kloeden's Taylor  Scheme (4.5)  Scheme (4.8)

991 4.33234 4.29109 4.29002 4.29109
992 4.25444 4.21288 4.2118 4.21288
993 3.97593 3.9392 3.93813 3.9392
994 3.72468 3.69204 3.69095 3.69204
995 3.48053 3.4519 3.45081 3.4519
996 3.6467 3.61833 3.61729 3.61834
997 3.79678 3.76838 3.76736 3.76838
998 3.74771 3.71863 3.7176 3.71863
999 3.72407 3.69411 3.69307 3.69412
1000 3.62125 3.5914 . 3.59035 3.59141

Table 3 displays the results for the initial value s = 1. In Table 3, it is observed
that numerical results of the schemes (4.5) and (4.8) are closer to those of Kloeden’s
scheme (4.11) than to the results of Euler’s scheme (4.10). In particular, the numerical
solutions from (4.8) are very similar to those of (4.11); from theoretical consideration
of local and global orders in section 3.3, these observations are as expected.

Remark 4.1. Let us consider the following SDE:

dS(t) = S(t)dt + i—é—;{S(t)}” o dW (), S(0)=s(>0),

where 0 < v < 1. This is also often treated as a model of an asset price process in
mathematical finance, and it is a generalization of (4.1). For this process, we can
also construct numerical schemes like those described above in a similar way. Indeed,
Scheme 3.1 for this SDE, of which local and global orders equal 1.5 and 1, respectively,
is given by

Sper = [{AW, + SL7Y M 20D} exp (At),

where So = S(0) = s. Notc that the numerical solutions derived from this scheme
also satisfy nonnegativity.

4.2. Example of Scheme 3.2 for a nonlinear SDE. We study an example
for Scheme 3.2 given by (3.27). Let us consider the following nonlinear scalar SDE:

(4.13) dS(t) = S(t)dt + {S(t) + 2/SE)} 0 dW (1),  S(0) = s(> 0).
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In this case, the vector fields Xy and X; are set as

d d
(4.14) Xo=85s, Xi=(S+ 2\/29‘)3—5,
respectively. Then, we remark that [Xo, X1] = —/5(d/dS), [Xq, [Xo, X1]] = ~[Xo,
X172, and [Xy,[Xo, X1]] = —[Xo, X1]/2 hold; hence the Lie algebra generated by

Xo and X; is of finite dimension. Therefore, as in section 4.1, (2.26) also actually
converges in this case.

We may regard the SDE (4.13) as a linear SDE with the additional random
perturbation 24/5(t) o dW(t). On account of this, as A,a; and Bha, in (3.27), we
adopt

d d
(4.15) Anar = AtS— + AW oS,

that is, we set X = S(d/dS), X{* = S(d/dS), XE = 0, and XF = 2/5(d/dS).
Then, in view of (2.13), we obtain the exponential maps for them explicitly as follows:

(4.16) exp(Anat)(s) = sexp (At + AW,,), exp(Bnat)(s) = {AW, + V5}>.

Inserting these equations into (3.27), we find Scheme 3.2 for the SDE (4.13); it is
given by

d
Boas = AW,12\/'521—§;

2

417) Sy = {AW”/Q + \/ (AW,/2+ /5,12 exp (At + AWn)} ,

where Sp = S(0) = s. Then, the theoretical consideration of error stimation in section
3.3 proves that the local and global orders for this scheme equal 1.5 and 1, respectively.
Here, in a way similar to that in section 4.1, we will observe the results of numerical
solutions through this scheme and compare them with the results of the following
Euler-Maruyama scheme and Kloeden’s Taylor scheme for (4.13):
Fuler-Maruyama scheme.

(4.18) Sps1=Sn+ {g(sn +/8,) + 1} At + (Sn +2/8) AW,

Kloeden’s Taylor scheme of global order 1.5.

(4.19) Snst = S + {g(sn /5 + 1} At + (S, +2/S0)A W,

1
+ 5 (Sn + 3\/ Sn + 2) {(AWn)Q - At}

3 5 3 11
+ 5 (Sn -+ 5\/ Sp + 1> 1(1‘0)1,1(At) -+ 5 (Sn + *—6-‘\/ Sn + 1) I(O,l),n(At)
+ é <Sn + ;/Sn + 3> {(AW,)® ~ 3AtAW .}

9 17 5 2
-+ —8’ <Sn+ﬁ\/5n+6> (At)*.

Finally, inserting (4.12) into the schemes (4.17)~(4.19), we obtain numerical solutions
which are shown in Table 4 for the initial value s = 1, T = 1, N = 1000, and
At =1073.
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TABLE 4
An ezample of numerical solutions to SDE (4.13) from the Euler—-Maruyama scheme (4.18),
Kloeden’s Taylor scheme (4.19) and Scheme (4.17) for an initial value s = 1.

n Euler-Maruyama  Kloeden’s Taylor  Scheme (4.17)

991 9.07412 9.83114 9.83382
992 9.77413 10.5897 10.5926
993 9.35542 10.1398 10.1426
994 9.79685 10.6085 10.6114
995 9.86074 10.6656 10.6686
996 9.91146 10.7086 10.7115
997 9.57355 10.3428 10.3456
998 9.27501 10.0183 10.021

999 9.64218 10.4042 10.407

1000 9.47959 10.2216 10.2244

From Table 4 it is also observed that the numerical results of the scheme (4.17)
are closer to those of Kloeden’s scheme than to the results of Euler’s scheme. On
account of local and global orders for each scheme, this is also to be expected.

4.3. Composition method applied to stochastic Hamiltonian dynamical
systems. As mentioned in section 1, composition methods (or operator splitting
methods) are not only a superior integration method for differential equations in
preserving the special character or structure of the equations but also often useful
for approximations of nonlinear equations whose solutions are not obtained explicitly.
The results in sections 4.1 and 4.2 given above show that this is also true in the case
of stochastic systems. As also mentioned, such an advantage is remarkable in the
case of dynamical systems with multiple space dimensions or Hamiltonian dynamical
systems using dimensional splitting methods (e.g., [25], [12]). To illustrate this, we
will investigate numerical schemes by composition methods for stochastic dynamical
systems with “Hamiltonian structure™ [20], [21].

First we review stochastic Hamiltonian dynamical systems [20]. Let us consider
the following 2¢-dimensional stochastic dynamical system:

z*(t) ) ( OrsiHo(z(1)) > < 3£+1H1 () )
420) d S dt + o dW (¢
) a5 ~0Ho(a (1)) ) )W
(i -
where z = (2")}L, and 9; = 8/0z7 (j = 1,2,...,2¢), respectively. In (4.20),
Ho(z) (o = 0,1) are smooth scalar functions on R*. Formally, one may regard
this as a Hamiltonian dynamical system

%( xﬁr ) - ( ?fgf(;”) ) (i=1,....6)
(z),

with a “randomized” Hamiltonian H given by
ﬁ =H o+ H 17ts

where <y, is a one-dimensional Gaussian white noise. With these definitions, we call
(4.20) and H,, (o = 0,1) an ({-dimensional) stochastic Hamiltonian dynamical system
and the Hamiltonian, respectively.

Now, we proceed to an illustration of our new scheme for stochastic Hamiltonian
systems. For simplicity, we set £ = 1 and denote z'(¢) and z%(t) by q(t) and p(t),
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respectively. Let us consider the class of Hamiltonian systems with the typical Hamil-
tonian Ho = p?/2 + Vo(g) and Hy = p?/2 + Vi(q), where Vy{q) and Vi(q) are any
potential functions. With this notation, (4.20) becomes

[a)N_( ) N, [ &) N
@2 Aty = i) BT vy 2

In general, this is a stochastic nonlinear system. For this system, the vector fields Xo
- and X become

(4.22) Xo = pd,; — W(Q)ap; X1 =pd; - Vll(‘I)ap;

respectively.
We will apply our scheme to this system. As an important example of the de-
composition of (3:3) for the above system, we choose the following splitting:

(4.23) Anat = DAt + AW,)8y,  Baar = —(Vi(q) At + V{(q)AW,) .

This corresponds to the decomposition mentioned in Scheme 3.2; that is, X&', X',
XB, and X¥ in Scheme 3.2 are given by pd,, pdy, —Vy(q)9,, and ~V{(q)0y, respec-
tively. Then we note that exp(Ana:) and exp(Bpa:) are exponential maps which
correspond to the flows of solutions to the following SDEs, respectively:

L UARY. (U}

[aON_( 0 Nyl 0 )
Tp T Ve T v

Therefore, we can obtain the explicit forms of them; this may be regarded as an
example of dimensional splitting. The results are given by

)/ g\ - { oAt + AW,) + ¢ \

An s
exp(Ana) [ O o
/Qn \ / dn \
B, = .
exp(Brat) © 7 (A (gn) + AWV (gn) + P

Inserting these equations into (3.27), we finally find Scheme 3.2 for this system as
follows:

(4.24) / qn-i-l \ — / qAn >
ﬁn—}-l ‘%(Atvo/((?n) + AWnV{(‘jn)) +ﬁn '
where
' P "%(Atv()/(Qn) -+ AWnVI/((in)) + Pn

As in the example in section 4.2, the local and global orders in a weak sense for
this scheme are equal to 1.5 and 1, respectively. Thus, for the class of stochastic
Hamiltonian dynamical systems with typical Hamiltonians mentioned above, we can
numerically approximate them through our scheme (4.24) with (4.25) and achieve an
accuracy corresponding to Taylor scheme of global order 1.
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4.4. Remark on composition methods and conserved quantities in sto-
chastic dynamical systems. Finally, we remark on numerical schemes for stochas-
tic dynamical systems which preserve “conserved quantities” of the systems. It is well
known that conserved quantities play an essential role to determine the structure of
dynamical systems; hence, it is important to find a numerical scheme which has the
conservation properties for the quantities related to stochastic systems. On the other
hand, composition methods often give such schemes for deterministic systems. There-
fore, we may expect that one may obtain such schemes through our results, which
have the advantage of numerically preserving the conserved quantities for stochastic
systems; and in the remainder of this section, we will briefly examine this feature of
our schemes.

Let us consider d-dimensional stochastic dynamical systems (2.18). Suppose that
a smooth function I = I(S) satisfies

(4.26) Xol =0, XiI=0,

where X and X, are the vector fields given by (2.6). According to [20], I(S) becomes
a constant quantity; that is, 7{S(¢)) = constant holds for the diffusion process S(t)
governed by SDE (2.18).

Under some conditions, we may straightforwardly formulate a stochastic scheme
satisfying numerical preservation of conserved quantities. Assume that the exponen-
tial maps of Apa; = AtXy and Byar = AW, X, are explicitly calculated. Then, it
is obvious that Scheme 3.1 preserves the conserved quantity I numerically because of
the definition of exponential map and (4.26).

Now, we investigate a trivial example of a stochastic dynamical system with a
conserved quantity and the numerical scheme through composition methods. Let us
consider

(4.27) al ‘;;gg A MS;% Var g _5;(2) N o aw (),

this is a stochastic system with the conserved quantity I(S) = 1((58%)% + (5%)%),
since (4.26) holds. However, as mentioned in [21], ordinary schemes do not conserve
I(S) numerically. On the other hand, for this system, we adopt Scheme 3.1 with
Anar = AtXp = At(S28; — §'8;) and Bpar = AW X1 = AW, (528 — §10,); then
through (2.13), the numerical scheme is explicitly given by

SL.v\ _( cos(At) sin(At) cos (AW,)  sin(AW,) st
( §2..) ( —sin (At) cos (At) ) —sin{(AW,) cos(AW,) s2 )
(4.28) o

Therefore, for any n, the numerical solutions (4.28) for (4.27) satisfy I(S%,S2) =
constant. Thus, our scheme numerically preserves a conserved quantity I of the
stochastic system (4.27), and this fact also shows the superiority of the scheme derived

through composition methods. .

5. Concluding remarks. In this article, we have formulated composition meth-
ods for SDEs, and through these we have proposed some stochastic numerical schemes.
Several illustrative examples show that the new schemes are superior in their conserva-
tion properties related to the character of SDEs, and they are useful for approximating
the solutions to SDEs. Moreover, we have investigated local and global error orders for
our schemes. Finally, we offer some remarks and note some future research problems
related to this work.
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(i) As mentioned in Remark 3.2, we plan to carry out a more detailed analytical
error estimation for our schemes using the result on time asymptotics of exponential
maps for SDEs by {6], since the stochastic series (2.26) is only a formal representation.

(i) In our error estimation, we have addressed local and global error orders “in a
weak sense” for our new schemes, since we have indirectly estimated the error orders
for numerical solutions using these schemes. To obtain a precise local or global error
order, it would be necessary to carry out a direct error estimation for such numerical
solutions.

(iii) In this article, we have treated the SDEs with a one-dimensional Wiener pro-
cess. However, it often happens that the error order of a numerical method collapses
if there is more than one Wiener process. Hence, it would be important to investigate
the error orders of our schemes in the case of SDEs with a multidimensional Wiener
process. Moreover, in any approach to this problem, account should be taken of the
remarkable work by K. Burrage and P.M. Burrage 4], [5]. In their papers, they have
developed stochastic Runge~Kutta schemes of higher order for such SDEs through
the Magnus formula related to Lie algebra. Therefore, based on their work, we should
be able to improve our composition methods and offer new schemes with high order
for SDEs with a multidimensional Wiener process.

(iv) It is to be noted that Li and Liu [18] and Kunita [17] have studied stochastic
exponential maps for a more general class of stochastic processes (e.g., Lévy processes).
Hence, using their results, it would be interesting to formulate stochastic composition
methods for such general stochastic processes.

The research on these topics will be reported in future papers.
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Itera;ted Elimination and No Trade Theorem

Hisatoshi Tanaka

Graduate School of Economics, Waseda University

Abstract

“No Trade Theorem,” presented by Milgrom and Stokey (1982), implies
that purely speculative trades are impossible. The basic idea is that, if the
participating agents are rational enough, each of them can reason that “the
trade is acceptable for all of them only if the trade is acceptable for all of
them only if - --,” and they will conclude that the trade is possible if and
only if all of agents are indifferent between accepting and rejecting the trade.
The rationality of the agents is usually represented by the assumption that
the acceptability of the trade is “common knowledge” between the agents.

However, the concept of common knowledge does not exactly correspond
to the iterated reasoning above. Common knowledge is knowledge without
uncertainty while the agent who reasons iteratedly “the trade is acceptable
only if ---” need not know whether the trade is actually acceptable or not.
In this paper, we will introduce notions of the iterated reasoning and the
acceptability of a trade instead of common knowledge, and show that our
results contain usual No Trade Theorem.

1 Introduction

Milgrom and Stokey (1982) show the impossibility of the purely speculative trade.
The main assumption used to derive their result is that it is common knowledge
between the pa‘rticipating agents that all of them expect some gain from trading.
In this paper, we will formulate the problem in another way, and generalize “No
Trade Theorem” for the case in which it may not be common knowledge that all
the agents prefer a given speculative trade. The basic idea is that while it is not
common knowledge that the trade is accepted by all, the iterated reasoning of the

type “if each agent still wants to trade even when he knows that I want to trade
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when [ know that he wants to trade when - --” may make it common knowledge.
This is illustrated by the following example, which is essentially the same as one
in Milgrom and Stokey (1982).

Suppose two agents to be risk-neutral. Let Q = {w;,w;,w;3} be a set of the
states of the world. Each agent gets private information, which has the following

structure:

‘¢l = {(wl) wg), (w3)}1
$2 = {(wl)’ ("'J?’ W3)}.

For example, if w, is realized, then agent 1 gets ¢;(w;) = (w;, w;) and agent 2
¢2(w2) = (w2, ws) before the realized state is revealed. Assume that the probabil-
ity measure is uniform and that the following bet is proposed: if w = w; agent 2
pays one dollar to agent 1, if w = w3 agent 1 pays one dollar to agent 2, and if

w = w; the bet is drawn. The following table illustrates this bet.

Wy W w3
Agentl 1 0 | -1
Agent2 -1 | 0 1

The event “the trade is profitable for agent 1” is {w;, w,}, and the event “the trade
is profitable for agent 2” is {w;, w3}. Therefore, the event “the trade is profitable
“to both of them” is {ws} = {w;, w2} N {wq, w3}. It is, however, not common
knowledge because each agent cannot know {w,} from his>private information:
agent 1, who gets private information ¢;(w;) = {w;, wy}, does not know which
state has realized. Since it is not common knowledge that the trade is proﬁtablé
to both of them, we cannot apply “No Trade Theorem” to this bet.

As long as both of the agents are rational, however, they can reason whether
the bet is profitable or not. For example, agent 1 will reason as follows: “If w = wy,
agent 2 will refuse the bet. Therefore if my private information is (w;,ws) and
agent 2 accepts the bet, then the state is wy, at which I am indifferent between
accepting and rejecting the bet.” Agent 2 uses a similar reasoning, therefore the
bet is accepted by both only at w,.

Thus, the rational reasoning reveals that a trade is not strictly profitable if

the trade is accepted. Even for a more complicated trade, the iterated reasoning
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can eliminate states at which the bet will be rejected. For example, suppose the

following bet.

Wy Wy w3 27} Ws We w7
Agentl 1 -1 1 | -1 2 3 | -5
Agent2 | -1 1 | -1 1 | -2 -3 5
‘Then, the sequence of eliminatéd states is
wry = ws and wg = Wy = ws,

and w; and w, survive. As a result, the expected profits of the trade on (w, ws)
are 0 for both of the agents.
In the case of the following bet, all of the states are eliminated, and the trade

will be rejected.

Wy

(B ) Wy Ws We Wy
Agentl 1 -11 1 | -1 2 3 | -5
‘Agent2 -1 11 ] -1 1 | -2 -3 5

Therefore, we can derive the “no-trade” result from the iterated reasoning
even if the assumption of common knowledge is not satisfied. In this paper,
we will introduce a notion of the acceptability of a trade by using the iterated
reasoning. We also show that our result is more general than the usual No Trade
Theorem. Volij (2000) also formulates the iterated reasoning, but it assumes
unlimited communication among agents, while our definition does not need any
communication. |

The paper is organized as follows. Section 2 gives some basic notions, such
as common knowledge, é,n economy with asymmetric information, and the orig-
inal descriptioh of No Trade Theorem. Section 3 gives our main result, and the

acceptability of trades is formulated.

2 Common Knowledge and No Trade Theorem
— Preliminary Results

In this section, we give some basic concepts, such as information functions, knowl-

edge operators, and common knowledge. All propositions and lemmas are de-
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scribed without proofs. For more detail, see Fudenberg and Tirole (1991), Geanako-
plos (1994), or Osborne and Rubinstein (1996).

Definition 2.1 (Information Functions) : Let Q be a finite set and X a ran-
dom variable on (2,29). Q represents the set of states of the world, and X a

private signal. An information function ¢ : Q — 2% is a map defined by

o) =X oX(w) = {peQ|X(p) = XW)} weR). (1)

An information function ¢ gives a partition of Q: both
either ¢W)NP(W) =0 or dw)=¢(') (w,w' €Q)
and
U éw) =20

we
are always satisfied.

Definition 2.2 (Knowledge Operators) : 4 map K : 2% — 2% is5 a knowl-
edge operator defined by

K(E) ={weQ|¢w)C E} (Eec29). (2)

An agent knows event £ € 2% at w € Q if he knows that the true state
surely lies in E, that is, if #(w) C E. Since any information function must satisfy

w € ¢(w), F is always true when an agent knows E.

Proposition 2.3 (Basic Properties of Knowledge Operators) : For each
A B g2

[ K(Q) =0

)

K(A)NK(B) = K(AN B)

3. ACB = K(A)C K(B)-

BN

CK(A)C A
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5. Ko K(A)=K(A)

6. K(A) = K (K(A)).

" Definition 2.4 (Self-Evident) : E € 29 is self-evident if K(E) = E.

It is easy to see that B is self-evident if and only if
weEE=¢w)CE (3)
is satisfied. Moreover,

Proposition 2.5 : An event E € 29 is self-evident if and only if E satisfies

E=J ¢(w) (4)

weE

Definition 2.6 : Let T = {1,---,I} be a set of agents. The event “everyone

knows E” is a sel

Kz(E) == (| Ki(B) (5)

€T
where K; is the knowledge operator of agent i, whose information function is ;.
An event E € 2% is self-evident for every agent 1 € T if K¢(E) = E.

Proposition 2.7 : Foralli € Z,
Ki(E)=E <= K(E)=E = E=|J ¢i(w)
wEE

Definition 2.8 (Common Knowledge) : Let {KF(E)} v be a decreasing

sequence of events defined inductively by

Ki(E):=K(E), Ki(E)=KzoK;'(E) (n=1,23,"),

and K&(E) = N2, K2(E). Anevent E € 2" is common knowledge at w € 0
if '
w € K (E). (6)
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Note that K2(E) = K7(Kz(E)) means that “everyone knows that everyone
knows E,” and K% (E) is the event that “everyone knows that everyone knows
that everyone knows --- E.”

It is important that, if £ € 2% is common knowledge at w € 0, then w € E
must hold. This means that any events which are not true cannot be common

knowledge.

Lemma 2.9 : E € 2% is common knowledge at w. € Q if and only if there ezits
an event F' € 2% which satisfies both K¢(F)=F andw € F C E.

Definition 2.10 (An Economy with Asymmetric Information) : Consider
a pure ezchange economy with I agents in an uncertain environment (Q,29, P).
There are | commodities in each state of the world. Let LY (or L') be the set of
the R’ -valued (or R'.valued) random variables on (Q, 2%, P) and we assume that
the consumption set is L, .

A pure exchange economy with asymmeiric inférmation £ is de-

scribed by A :
£ = { (BEUi,e:, ¢:)iez, YV}, R )

where
e Y C (LY is the convez feastble set,
e T={1,2,---, I} ts the set of agents,
o U; : Rﬁr — R is the utility function of agent 1 € 7,
o ¢ € Ll+ 15 the initial endowment of agent 1, and
o &; - 2 — 2% is the information function of agent 1.

A net trade Y = (y;)ier € (L') is feasible if Y € Y. Usually, the feasible set Y is
specified by

Y= {Y=(y1,---,yr) e (Y| > w< 0}

i€l
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The expected utility function of agent i E[Ui(- +e:)] : L' — R is assumed to be
increasing for all i, and simply denoted by E[U](-). As a usual assumption, all

the agents have a common prior. Then, the value of E[U](-) is calculated by

Ul(w:) = ) Ui (4i(w) + &i(w)) P(w) (% € )

wel

Theorem 2.11 (No Trade Theorem, Milgrom and Stokey (1982)) : Ata
pure exchange economy with asymmetric information £® = {(E[U), ei, ¢i)iez, Y }
suppose that all the agents are weakly risk-averse (all the agents’ utility functions
are concave) and that a net trade Y = (§i)iez is Pareto-optimal ez ante.

If it is common knowledge at w* that each agent weakly prefers a feasible net

trade Y = (yi)iez €Y to Y, then every agent is indifferent between Y and Y.

Proof: See Milgrom and Stokey (1982) or Fudenberg and Tirole (1991).
(Q.E.D]

The event “each agent weakly prefers a feasible net trade ¥ = (y:)iez € Y to

~

Y?” is given as follows:

m=({ v e | BU ) 2 B 6 |

i€l

The assumption that II is common knowledge at w* implies w* € I1, namely, all

of the agents actually prefer ¥ to Y at w.

3 Iterated Elimination — Main Results

~ Theorem 2.11 assumes that the weak profitability of the trade is common knowl-

edge. This assumption implies that all of the agents know the trade is actually
profitable for all. We show this assumption can be relaxed since, as mentioned
in section 1, the rational agent can reason whether the trade is acceptable or not
for him without knowing the trade is profitable for the others. To this end, we
give an formal definition of the iterated reasoning process. First, we introduce

the desirability, which is used to judge whether the trade is profitable or not.
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Second, information functions and knowledge operators are extended on a fam-
ily of sets. Finally, the rational-reasoning process is formulated as a sequence of

iteratedly-refined knowledge operators.

Definition 3.1 (Desirébility) : Suppose that agent i is faced with two trades,
Y ={(t%)iez and Y = (§i)ier. |
At an event A € 29, Y is desirable for agent i relative to Y if

EU:, Al () 2 EUs, A] (%)

A set of all events which make Y desirable for agent i is denoted by A;(y:, §:), that
18, ' "

Ay, ;) = {A €2V | E[Us, Al(w) 2 EU:, Al (@)} - (8)

Definition 3.2 (Khowledge Operators on a Family of Sets) : A ﬁzap Ki

is Agent i’s knowledge operator on a family of sets defined by
KAl ={we Q| glw) e A} (YAcC27),
where ¢; is the information function of agent 1.

Proposition 3.3 : At w* € Q, agent i weakly prefers Y to Y if and only if
w' € Kl Ai(y:, 9:)]- |

Proof:
w' € KilAi(yi, 3)] &= $i(w") € Ay, %)
&= EUi, ¢:(w)] (%) > E[Us, ¢iw)] (%)
[0.E.D.]

Suppose that an event £ € 2% is revealed to all the agents. Then, each agent can

refine his private information. The refined information of agent ¢ is defined by the

189

cap product of his private information ¢;( - ) and the revealed information I, that -

iS, ¢,(>ﬂ2
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Definition 3.4 (Refinement of Knowledge Operators) : A knowledge op-
erator refined by an event X € 29 is the restriction of K; on T, and denoted
by Kily, that s,

Kl (A ={weT|aw)nTea} (AC2?).

Note that K;|4[A] is empty for any A C 2% by the deﬁnitién.

Definition 3.5 (Iterated Elimination) : A sequence of sets {Q"};EN is the

iterated-eliminating sequence if (1" 1s recursively defined as follows:

{ 00:=0 ©)
Q= (ier Kilge[Ai(90, 3] (n=0,1,2,--). |

By Proposition 3.3, the event Q! equals to the event “Y is desirable for all the
agents relative to ¥ " The event 2 means “Y is desirable for all the agents even
after their refining of their information functions by Q!,” and so on. The states
ehmmated at each step of reasoning are Q\Q!, RN\Q?, QNQ3, -

It is important that Definition 3.5 needs no communication between the par-
ticipating agents. Each agent can refine hypothetically his information function,

and decide Whether he accepts the trade or not.

Definition 3.6 (Acceptability) : At a state w € Q, o trade Y = (Yi)iez 1
acceptable for agent i relative to Y = ()i of

we Kl A d)]  (r=01,2). (10)
If (10) holds for alli € I, that is,

w € (K| [Ays, 92)] ) (=0v1)  (n=0,1,2,), (11)
1€l

then Y is acceptable for all the agents relative to ¥ at w.

The acceptability means that “all the agents don't refuse ¥ even though each
knows that all the agents don’t refuse Y’ even though each knows that all the agents
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don’t refuse Y ---.” By the definition, it is clear that the sequence {Q"} v is
decreasing. Therefore (11) equals to w € Q% (= N3, 2").

Note that agent ¢ needs only his private information ¢;(w*) in order to see that
the trade Y is acceptable at w*. In other words, he cannot predict that the trade

Y will be really accepted even when he knows the trade is acceptable.

Theorem 3.7 (No Trade Theorem under Acceptability) : At a pure ez-
change economy with asymmetric information £% = {(E[U}), e, $:)icz Y}, sup-
pose that all the agents are weakly risk-averse and that a net trade Y = (Fi)iez is
Pareto-optimal ez ante.

If Y is acceptable for all the agents relative to Y at w*, then every agent is
indifferent between Y and V.

Proof: GSince Y is acceptable, w* € Q™ holds for all n € N. It is clear that
Q=o' >02>...... 3 w*. Since Q) is finite, there is 1 € IN for which

QF = 0 = QM =30 (12)

Let Q* := Q% and ¢! 1= ¢; N Q*. Then Q* satisfies

0= K A 9] = N{w e 0 610) € Alw a0} (13)
i€z ieT
By Proposition 3.5,
ElUi(y:), ¢;(w)] > B[Ui(3:), ¢;(w)] (14)

forallw e Q* andi € I.
Suppose that the inequality in (14) is strict for agent j at w* € Q*. Since Q°
satisfies

Q= ¢iw) (€I)

wEeN*
by Proposition 2.5,

E(U(y:), Q'] .-_ E{Ui(yi), U ¢E(w)]

we®

= Z E[Uz(yx)v¢:(w)]

é;(w)
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> ¥ P66
= E[U), 2] (15)

holds for any 1, and the inequality is strict for j.

Constider a new trade Y* = (y} )iez defined by

@

¥; = yilae + Uil(ar)e (i € I), (16)

where 1q- is the indicator function, that 15,

V1 fweq
1“‘(“’)“{0 if wg Q.

Then, for any i,

BlUW) = E[Uiw), 2]+ EUi5), (@)
> E[Ui(5), 2]+ EUi(:),(Q")] = E[Ui(4:)] (17)

follows from (15), and the inequality is strict for j. This contradicts to our hy-
pothesis about the ez ante Pareto optimality of Y. '

[Q,ETD.]

In Theorem 3.8, we will show that acceptability is a weaker condition than
common knowledge. Therefore, our result Theorem 3.7 is a generalization of the

usual No Trade Theorem.

Theorem 3.8 : If it is common knowledge at w* that each agent weakly prefers

Y to Y, then Y is acceptable for all the agents relative to Y.

Proof: Observe first that the event “ each agent weakly prefers Y to Y7 is equiv-
alent to

Q= N K| (A, 99)]- | (18)

i€l

nO

By Proposition 3.3, ¢:(p) € Ai(yi, §:) holds for any p € Q' andi €.
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By Lemma 2.9, there is a set F' which satisfies w* € F C Q' and K¢(F)=F
since (18) is common knowledge at w*. Since F is self-evident, ;e F = ¢;(p) C
F C Q! for anyi € Z. Thus,

$:p)NQY = ¢u(p) € Ay, T:)
Rolds for anyi €T and p € F. Moreover,
pe K [ Ay, 9:)] = {we 0| lw)nat € 4} (19)
By Definition 8.5, |
W€ FC =K [, ), . (20)
€l
which means that Q? is also common knowledge at w*.

Thus, w* € F C Q" holds for any n € N. By definition, Y 1s acceptable for
all the agents. ' ‘

[Q.E.D)
4 Conclusion

In this paper, we formulate the iterated-eliminating reasoning and generalize No
Trade Theorem. We have shown that the agent can judge whether the newly pro-
posed trade is acceptable or not even when the assumption of common knowledge
1s not satisfied, and that the trade is accepted by all agents if and only if they are
indifferent between trading and not trading.

In order to represent the rationality of the agents, the concept of common
knowledge seems to be misleading and confusing. Common knowledge means
exact mutual understanding. In betting or the other games with asymmetric in-
formation, however, every agent does not have any incentives to communicate and
reveal his private information. In such cases, only from his private information,
he will reason on his expected gain. The definition of the iterated-eliminating
reasoning given in this paper is a little more complicated, but seems to be more

straightforward and appropriate than common knowledge.

219

193



194

References

(1] R.Aumann (1976), “Agreeing to Disagree,” Annals of Statistics, vol.4,
pp.1236-1239.

(2] P.Milgrom and N.Stokey (1982), “Information, Trade, and Common Knowl-
edge,” Journal of Economic Theory, vol.26, pp.17-27.

[3] D.Fudenberg and J.Tirole (1991), “Common Knowledge,” in Game Theory,
MIT Press. :

[4] J.Geanakoplos (1994), “Common Knowledge,” in Handbook of Game Theory

with Economic Applications, vol.Il, Amsterdam.

[5] M.Osborne and A.Rubinstein (1996), “Knowledge and Equilibrium,” in A
Course in Game Theory, 3rd ed., MIT Press.

[6] O.Volij (2000), “Communication, Credible Improvements and the Core of
an Economy with Asymmetric Information,” International Journal of Game
- Theory, vol.29, pp.63-79.

220



BREEEh O X—a L —3 3 V5L

Hf Ak~
BREAY  BUARE !

®E

BRI RO DA, ERDA IR TEVER (fat tails) 28> S I13EL @b
NTH5S. ZOmMITIE, BEORESNZZEOT—2 0 MR RBFMICHEER
TEHETNEEZ, T X o TSRS Dfat taillE 2 BET 2 2 L 2RAB 5.
ET MU H o TL, BEAEOFETH L/ S—ab—va v (BE)ERIAV O
. N=alb—va i, RTA—ZRERMEEZB2 5 LHEBER-T LV
BEibd. ZOMITE, ZOHREZHAVCTHEEORES D VZELZEREL, £
FEE 2L a Tk o THREN ORI L KEELES 5.

1 Introduction

Black-Sholes(1973)Z {3 U L ¢ DFHER R 7 7 A F L ABFHTIE, —RITHRMEERS, 0
IR CUIERSAED bOLRESNTVS. L LA S, Mandelbrot(1963)% 5
VW IFama(1965) LA DFE £ 2 T O EFEMHFIL, HREONRBERSHENERSHF LY bEVE
B (fat tails) ZHDZ L 2R LTS, B 1 LR 21XZ OI4ER(19914F 1 A-20014E9 8 )
REFHIOKIEL, TORBREROMEERIMA TH 5. KRITARTEH O K, WME
(IR~ DY - FEEFFOMBERIA TH 5. WRBOKRE EF 4 %22 2EBR T,
BERSMPERIHEREL EEloTWB Z R8s, ZOEEL, BEON YA
K& SEF LTV 2 BIRERSOMBEA FEERIC L > TER LEARZWERELFHOIENY
TR, BREDORLEREZEFMICERL TV A0 TYH 5. FlziE, “oO1ERTCH
NI T NULOEEZ 6 EREL TV AR, RICE(LENERSAICHKED LT545
(X, FEOEEN 6 B Z 5 7-0ITiTB L #2,000ERLETH .

*e-mail : hstnk@mn.waseda.ac.jp

TREHFERERREL -6 —1

221



300

250 !

200

150 ' ¥ W-"
100

050

000

1 : BEFIGKE (1991.1-2001.9)

U 1
—108% % L O E\TQ 10%

__8 -
_1 2 L

—Log of Empirical p.d.f —- Log of Gaussian

2 EBSHEOHLE

ORI, BEMAEFEBOSHROT— U Mobhh BRI N D BT
BEFAEEZ, =—T v MebOBFREEIEREE U ORI RS Ofat taill
NREBEIND L E2RT. EFMUICHT-> T, BAHBEOEERFHEOVLSTHD
S—mb—va v (BE)ERVEBRAINS. N—alb—va VEREIE, TOAPTTLD
12, HAKTOYERESEEOBFICEOLIICESE BRL TV 12T 2Eiwm T
HY, BEHEOLE LT, BYRRILAE, EHOMBIRY OBREDET NV OIICHICH
XHhTWa, Sblo—al—ia VR, GRERSLIBFRELZEZI D L EDOHKESE

2

222



THEROEHPERIFS LR BZLVIHERZEDESMER DY, - 0BEE Tk
TOEERD OMBREERONE L L THENITLBACHIE STV S (Grimmett,1999).
N b= a P IZETLHIVELVBRALR, E2ETE2 005,

N b—3 g VEREBRSHRICRE T AR 40T, Stauffer-Penna(1998)i & - TEEIZ
ﬁénrmé.&6@%%Mﬁmmk@ﬁﬁkﬁ%tf%5ﬁ,Lmbaﬁg%@%?w
®ﬁﬁﬁﬁ%$%ﬁﬁﬁm%%%%ﬁb,ikﬂ~nv~yay®§§&%@f%5m%
BEHRZ+DGA L TORVATHOREBIES. HBAHEL S—aL—v v b LTE
TMET %G, EREHEOBEZREOREEED D VZFRE LCERT - L g
<§%&%ﬁ?%é&%bhéﬁ,:@%?»@ﬁﬁwﬁafm:@%ﬁéﬁa:gﬁ%
LWDOTHD. FEMITREIZES.

IO TIE, Stauffer-Penna(1998) & IX B2 2 RECE S E-DES A2 ERT S,
F2BIIBNTA—ab—va VEROBHEEZ 2#IC, §3ECABRTOEF L EE
L, FEMY 2 IV —Va it doTat tails# HET 3. S\ CE4AECHRENOE
FERPABESIND. REDOFESFEIIRBVT, MRS BOBERR_LNS.

2 /N—3aL 3 Bt Stauffer-Penna® TIL

FFEEOESHTZ eE 2, TOFKCRBEMEZS. FA(0, 0T bk
HWKERRELLLE, ZORBBEIIEOBREOHEELHLFELI M2 L, —ADA
o Z OEBEOR 2\ IERET AHREpE T 5.1

L, MEIEFICBO T —a L— v a VER E TN S S B MBI AR EE O )
EOTHDL. —EORDDL, ABEDAROKRLCENENERp THENERY, X5
IR ZIED TR 2D, TDORY DA X ~LEEHICKEWNERL TN, DL 50
LT,%%%Kﬁ%ﬁ<éﬂk*#%&é%@@ﬁ”ﬂhﬂﬁ%ﬁénézkm&é.

© 0000 0O © 0000 0O
© 000 OO0 O o {8 08 8 0 o
©O 000 0 0O oie 8 e 0- 0 o
0 0 owdleo 0 o > o o :;q__‘@:"éi__g_ o
© 0O 00 0 o0 o0 © 0 cie ©_@: 0
© 0000 OO0 © 0 0ipy@ 0 O
© 000 o0 0O © 0 0o ofo oo

A cluster of burned trees

B3 lkEONN—aL—3

3

223



TDISAZIIEENDENLRDIEREC, TOYA RZ|CIERTEE, HDARNPDL
FEEDARNE FERET DREEp(—RITITRBEEEL WV O)PLIRLIE, |C]l=0d2d T LI
Ao THD., Hip=0201E, |C|=0L72%5. EiIp<1Th-TH, HDOLHEERTI T
A —DY A APNERKIRVED Z EABFENTERASINLTWS., T22bb ¢

Definition 1 X—= L —3 3 VHER(p) L 1L, BYFEEpD S & TRAPERY 7 A5 —
BT OHEETHY

6(p) = Py(|Cl=c0) =1-3_ P,(|C|=n), (1)
n=1
TEZBEIND. ZITP,(|C|=n)&iL, ppPERZLNILE YA AnDT T RS~
RENDHERTHD.

Theorem 1 &5 BRFEp° € (0, )P —BICHFEEL T, UT&®HALT.

=0 (p<p9)
o(p) (2)
>0 (p>p°)

I DOpBERHERE N,

(Proof)  Grimmett (1999), pp.15-19.

WAEEFADESRZ2ED/ A~ L —T a YOFEITIE
p° =0.592745 - - -

THHZENHEKY I 2L —2 g X o TFRINTH S (FEMIZGrimmett(1999) 2 2
B). ZOFEEND, N—al—varETAR—EORBEBOEEEZMA TVDL I LRy
5. TOWEND, N—al—i g VERIEIKHNIZEOSF CTERED o & BB
ENTVAEEETTLOVE DR TND.

Stauffer-Penna(1998)1%, /$—= L —i 3 VEHKAHHITICA L, #5DE7T /LD Hat tail
MEEHOD L A BEERIZL > TURLE. (5O, BEC—HTHERSN TWiCont-
BouchaudTEF WICEFFEEMAT D 2T, KEELHEH I I —Tal2BIRok
LD THD., EBEIE, b Eo7-Cont-BouchaudDiRLE AF L TWRV.) Z DStauffer-
Penna® 7 VOBREIUTO LRV THE. FEEILEEp € (0,1)To—Y=r bASFAL
TWB LT3, HOIAEPT—Yxy Meb LBREMRp TY TAZ—EFRL, 77
R A — IO FATE BT A LETH(FIE, &7 7 AFZ—ZEA—DOT FAA P

4

224



11 - b(p)

0

B4 :/N—aLb—a g

00000000000
ojeleleleolololololoXe
000000®B000
00000eeoo0o
0008008000 e
cooéeoceecee
oJololel ¥ X I-T-1-X-
0006000606600
008600000

00000008 ee6e0o000 O € 60000
0000066088 00000 ojolel Jol 1 1-1 leJeleJeleJe)
olejelelelel Jol 1-X-Jelelele] 0060860060000
00000068 eeov0o00n 0000068606060 06000
ejelejolelole] ToloYelololele) C000e00eevoeeved
ojelelelojelolololololelolele) cooéeeoooeocoreee

(i) A Finite Cluster: p < p° (ii) An Infinite Cluster: p > p°

B5:M"—aL—IavicBH3HEBES

225



DHEBET AL RAEH/HTVWD EEX D). BENICIE, &7 7 A5 —3#EE.T 1BV, a
TI58Y ), 1-2aT 88l ORTVar2ZWD. 1BV 252 F—%C1,C2,C3,---, T58
V) I TRE—FCL,CL,CP, . 2T B L, HROERIIBREEY, |C| - X, [CL|»
EEEL L TELLNDETH. T2

AS,

5 < Xlel=Xie 3)
Thsb.
ci
c?
o @O0 0000@OO00E

- r
oooooopooo.
o2
E 6 : Cont-Bouchaud®FJL
DT at tailllEZBFER L LW A THRIIL TWAR, =— TV habis
SAZ—FHERTHAEAPENE LV ONREETHD. TEIORET CIIREEREpE E

BedXAH5ET, R—al— 3 OREKOBITHHIEEBRBELET VICRY AT
T EMTERD,

226



3 ETFIL
COMXTIE, Y=2Ib—varORBES2EEB L TCUTOLIRMEEEBIRS.

yWA@inmVF&%&®%ﬁ%ﬁ%%i,%I“VIVF%@ﬂT§?@j=
1,2,---,N).

o HX—T =V MI, TNFHABWHOBRERAE L, E-E68MIL, 2h2hbd2
ADTE—V w2 MEFIE L > TRAE SN S, Iz —Y =2 b0, j)ix, 8MBIEY,
By, B, BIUBM_ #BETD. IALORIEOEKL, FTHRIZL-CR
ENTW3. Thbb, Frx—V=r MIEETIHREZE L UADEET—V =
VREBBoTWS. HEL, ZOXy NU—2 OBRIMBT AT~V M,
RABER EOT =Dz MEHREHLEI bO LTS, HlZE, =—J= ML)

1,2 13)
B((s,z)) . B((s,s))

1,3 (l,l)
B3 B 5

(1,2) (1,3)

B7 .-z bRy FITI—HHE (N=3)

HHABY, 2B LT —V = NN, j) L BB - TS, BVBRUE, =—V=y
MebiZ2WIE =T A EDEFBFFRY bU—2Z 2FR LTS,

7

227



o HT—Txr MIEIL, BODOBRETH48F2 —FIZEY, HDEWIIES. B4
METEFEVEWNWTAZ LTy, £, RETHHFEEETHIZ bW (T2
bbb, 2y FU—7 OEBEZITEE LR .

o B —Tx MI, BHDOHEETIEMOMEL, Y2 MERER G2 REY
B & 2V ME S & P500)DtRFRICE T 2 EEZGICER LTERREZITS. Likdio
T, HHT—TV 2 POV EWTL, TOERBOINOZ—V 2 MNETIZALNS.

UEDEEDS &, tHlIcB T ABRMHEEOES,BUTO XL S ICERMIZEED 55 (B
%m%ﬁ%&?%%

LHERICB VT, BBEICBENEE—V oV M, =a—XL(=+1)285. I, = +1
DEE, TOE—TVxr MNIFHORITEZ Z2RE L TRETHIHAETIC TEV ©
FEXEHT. #cL =10 X2, EEMCTRLT 1Y) oEXEITH.

2. ZDxT—T = FOITENE, BIBROREICLY, BUBERXEFLE> TV HITED4AN
Dx—Vx MebliZBEiHEDS, Fx—TVxr beblil, B0 —V =2 FOEWN
BESCITHR U CIdpesRpy CRBIZER L, MRl —p THRBOEETHH L T5. HIZ
BOOT—Vxzy FRFODEXEHE LEBEITE, Ry CHEENTEESRE, M
L] - p! TRFVEBTHILOLRETS. EVBINE, 8L EHEOREERT
FNFEhp, pTHD.

R, pl%, THhENRMEERSOBDBEEB I OMEETH 2 LRETS.
T

(4)

DL IEEMLLTEL.

1
pd
pu
0 - S
Big : BepEE

228



3. SBHIZEDEFEDT—V = bl BR - BROBEFPFERIEVIEEND. 20
R, BOOT—Vxr FIETRok=2—ALOEITSUT, EEMH D I3k
BHRFROVTNIEHET DI FRE—CB R END.

4 BRMFEH DI RILR, 7 T2 2= AITHBILTEES. TRbb

AS, |Cy] _
S, p><It><—N—2~ (5)

W& oT, t+ ISR SRMHEROES,  BEED. 2 2 TEHpIE, HRMEEER
DTFTT 4 VT 4 HDENMEBEIEOHEBTHY, BEEENMIRLTEICEZD
EEELEDD.

KENRNTA—BEa=14,6=044,p=35N=21 L LTV Ial—varyzBIhW, %
DFRERB/ L NTRMERE{S OV TN R L, TOBCEROMBIEE S S 7 % FIoRT.
EERENRE K RDICONT, ERSAPOOTERRKE L Bo TOLKEFBIE-E Y
ERSINTVA.

3.00
2.50 ﬂﬁm%

200 ,W\ W
,,WWWJ

1.00

B9 :YSal—Yav(a=14,6=044,p=235N=21)

229



10%

...12 L

— Sirrutation — Caussian

B10: ¥2alb—¥32(a=14,0=044,p=35N=21)

VI al—varEfEidNathematicaZ iV, 7077 I T H T o TIEKE D 2 Gaylord-
Wellin(1995)I2fK#L L 7. 70/ J ADAFEFEINDFIL, EERICA—NVEEDLN
Vil A

4 BBRT—S2ZRAVEIRFTA—SDRE

R—a b— g VIR BT OREIZL Y, ETAOFA ANBFZITRKRED
BHiE, TOEEI—EOOMIINKTEZ RO TS, LEdo-T, FIETE
ZLEEFNTE o TKERNRNAT A—HFIX, o,6,p P3OTHB. ZOETIE, 199141
A235H20014E10 £ TCORREHIREEZAVTINODEEZRDLZ L ER LS.

L LB s, N—al—va VdFEECEEEORNETATHY, TOHEZ#ENT
B D Z LB L. LR o T, BIETEA LEET VERFAICHES 2 LITHR
B TIEARTRRIZIEL, HFEBICIA VI 2L — v a L TELIBRERY. RNTA—FD
EERETDICHE->ThH, BFEORFNLRFELSATLIZEPELLD, ZTORXT
X, BF— X IGEWRFEE OV U TN REERT DRI A—EZBRONPLEETY I
L—ra U EBRYIRT, LD OENFBEHRFEIII s TRIA—FZHTILLTD.

3ODNRTG A—FEFRETHEDITE, BRT—FNOHEIETH 3 >DORHEEZ LY HY
VERDS. ZZTH, 1991418 5520014108 £ TO B TEHHEEDOTEHES = 1.8265(F
M), E#FEZE = 0.3205(FM)DEPI, UTTERSNDIZANDZ LIZTD. 7,
BRAENBRROSHIIEARNHTHD L L, NEEOHEITIBEOMICES 45, T4

10

230



Db, WEEOBERKf%
f(z):=P (}—ZE—S’ = ar;) = Coe™ (6)

ERENT D, Lo Tlog f(z) = co — 1z THBH, BBRF— 213 OBEEMICEL
T4y FLTWS., BEOERSHICLY, ¢ = 4.5769, ¥ = 90.9691 LHEEIND.

B r
4 -
w 2 F y
9 |
9 O — T 1 i
L0 002 004 T~ o

._4 L
BI11 - #5fE Ox BE BN (1991.1-2001.10)

LIEDfE, §=18265 6=03205 HL0%=90.9691%H\ T, EF/LDNT A —F
a, §, BEUpERDS. LHLRRES, EROLBY T X —FDHREIZV D) 5 81T
ERICE > TBIRI D, RETRERTA—ZHELEMIVES>THHED LTRBE~-
W, TIT, VIalb—vaOBENPLEBLNAUTOTFREEANT, BETNX S
A—FEEINPL2IWHTZ&ITT 5.

{¥H8) B LB OBEHERp: p! BN E L B 3HEESLETS. T4bb
PH(S) = e =1 — =5 = p4(5). (7)

IDEEVIalb—va UnbAERINDMBBR{S, HZ oW T

1z -
fm 72 5=5 (8)
BELY S0,
11

231



S 15T oD NRTG A —FZOMIZOWNWT, TNENDF T ARA ZLLTICRT.
WPFRLS = 12FLIEB L TWDS L SICRAD.

12 | | '
ol MMM I |WM*!I*NM!MW i
i H*m (VRN

(i) @ = 0.6,6 = 0.7959, p = 0.5, N = 441 = S =0.9773

16

14

12 - | :

il M kAR
i L

T "

(ii) & = 0.7,8 = 0.6863, p = 0.5, N = 441 = §=0.9925

12

232



) (i) @ = 0.6, & = 0.7959

(i) & = 0.7, § = 0.6863

0 S=1

12 : ¥—R () B &L U(H)ISBH ZBERET 5

IOFHEAELVLO L THIE, BBRF—ZOEHMES =1.82652 TS =35 ¢33
ZEIZEY, RIA—FEOELEOBOLTZERTES. T/4hdbb

e~ 182650 _ 1 _ ,—1.82656 (9)

ELTOICBLTHE, §=06(a)sT5.

> o

0

:nmib,:o@ﬂ?f~5am%,m&%ﬁwfmﬁﬁﬂﬁimzkmﬁé.utwﬁ
BOTT, N=21&1, £ak0.1%%, pZ0.5%4% TI0,0008i5 2 HE S, ok
Ehrb, BX*E

a=16, §=0030, p=6.5

13

233



ThAHAELHBEINS. MIZE4IT, ZDONRTA—FDLETOH T ANRRE, HEEE
TS 7 &R, IOV TN ADOERT1.8333, EERFEIT0.3032TH Y, EREOCHREFE
WOMES = 1.8265, 6 = 032051V, F, YIal—varitdoTHELN- X EE
BT IR, BBRT—HIZIK 74y FLTWVWLHZ LB RTERNS.

3.00

2.50
2.00

1.50

1.00

050

0.00

B13: ¥2ab—3Y (a=1.6,0=0.030, p=6.5)

3
4 \
0 1 I i
0% 2% 4% 6 8% 10%
-4

— Simulation — NIKKEI225

B4 : APHMESMICIHHE

14

234



5 XHEK
BRATESGEIE (S, } ORI LIRS, %, HRREsy % AT

PS8y =p°, p"(S.)=p° (10)
Lo TENEFNESETS.
1
0.592745 - |- ,//”’/’////”/”dﬁ ]
é f P
0 S. S S* Stock P;rice

bbb, 8> 5 LigoltBEITIEp! > pel B0, (580 | OERY T 27— 33
ETOWMEBEILRD. HITS, < S ERSFBEITIL, p* > prlhdd, BV OE
R T AL —BEDCDHETHRET LI LIZhD. TAPTROBEABHERTEEDKCERED S
WIIKBBIZHIEL TV B2 1T, FROERIIEATHS L EbIS.

L#L&ﬁ%,%ﬁ?ﬁbkﬂﬁi—&w%&ﬁf#k%%%%?é£9=%mmﬂﬁ
M), S, =0.3269(F )& o> THERBHE. ZHuE, F—F DS TEDEB = Ao
FARTELZLICHL—ERH DD LEDND. LER-T, SEEI20014ET LS 6 &
RAOD7—52%RTHHETA &

a=07, §=058 p=04 (11)
B, ZOEEORIFLERIZ, FhFh
S* =1.5489, S, =0.7471 (12)

&&D,;D%%%&ﬁ&&ofwé.ibﬁ#ﬁ%%%ﬁzﬁﬁtﬁmm,ﬁ%ﬁ?m
ZOXIRIVMPNT— 2 E2HVALERD S,

15

235



1.40
A
1.20 v K’k\
1.00 Wﬂﬂ
080
Bd15 : BREFH2001 ETHH
140
o /\“ﬂk\ W/VWAAUA\
M\ .
100 \J * o
080

16 : ¥2al—3y (@=07,0=058, p=04)

16

236



I~
\

0 1 1 ]
0% 1% 2% 3% 4%

- Simulation — NIKKEI225

B17 . HBHEESMIC LS HE

6 HRESHRORE

KX T, N—ar—varERnTHEXHEREZETEL, BERBF B> =— U
¥ OB ERFRRPHEMEO KB EE O—EIZ > T A HREESH D Z &
ZARLEZ. £, BRREEOBESEZSA L THRMEORF L EEERL, SHIZEFOELZBR
FHIREORBRT — 2 AW TER L. T742bb, 2001ETRHOT— 212X, K
IR L ET,500H, RFITHBL£15500H L7225,

I TRENTEETNVE, REBOBEETEEZ- Lo L bEEALALDOTHS. L
BoT, ZOETNEL LI LIEFRARILENBEZICEZ NS, F2IE, ABTIEYI=
L—a VDRGFEEBZTC2RIEDETAETESH LD, EVERITDEFNAEE
ZAHTLEHTED. HAHVIE, W - EEIRICED L AR —LBEE b OEFKFR Y
FU— 27 TR, BHCEOBEEZEALEZ TV T UF LRy NT—ZEFADIEH
B, BEIGENTHAS .

ETFAEDSDOOIRIENT T, BBRT—FZNDLEFADNRT A—2 ZHEST H5E
RRFELRETILEL DD, BE - BEOBRBRESRp p e T —ZnbEERD S 2 L
BTENL, DWEFELLEZ RS, £i2, =— V20 FOERBVKREOREA I =
ALICRBFNREREEZ DL LEETHS .

17

237



R Py

[1] Black F. and M.Scholes, “The Pricing of Options and Corporate Liabilities,” J. Polit-
ical Economy 81, 637-654 (1973)

[2] Broadbent S.R. and J.M.Hammersley, “Percolation Processes I,” Proceedings of the
Cambridge Philosophical Society 53, 629-641

[3] Fama E.F., “The Behavior of Stock Market Prices,” J. Business 38, 34-105 (1965)

[4] Gaylord R.J. and P.R.Wellin, Computer Simulations with Mathematica, Explorations
in Complex Physical and Biological Systems, Springer-Verlag, New York (1995)

[5] Grimmett G., Percolation, 2nd ed., Springer Verlag, Berlin (1999)

[6] Mandelbrot B.B., “The Variation of Certain Speculative Prices,” J. Business 36, 394-
419 (1963)

[7] Shiller R.J., Market Volatility, 6th ed., MIT Press, Cambridge, Massachusetts (1999)

[8] Stauffer D. and T.J.P.Penna, “Crossover in the Cont-Bouchaud Percolation Model for
Market Fluctuations,” Phisica A 256, 284-290 (1998)

[9] Stauffer D.,“Can Percolation Theory be applied to the Stock Market?” Ann. Physics
7, 529-538 (1998)

18

238



