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ABSTRACT

We consider the Riemann zeta-function {(s) as an outer function in Hardy spaces
defined by an ergodic flow on T%, the infinite dimensional torus. This enables us
to investigate collectively some properties of Dirichlet series of the form 3(z,s) =
11, (1- a(p)p‘s)_1 , {a(p)} € T, where p ranges over primes. We then discuss
sequences of rectangles in the strip 1/2 < ¢ < 1 free from zeros of {(o + it), with
the aid of nomal families argument. By using them it is shown that a mean-value
theorem for all powers of ((s) holds in a weak sense.

1. Introduction.

A Dirichlet series has the form

(1.1) fs) =3 ar) syt

ns

n=1

where the coefficients a(n) are given complex numbers, and such a series converges in a
half-plane o > o.. Then f(s) is said to have an Fuler product if there is a representation

fo = T (142204 252 ),

where p runs through all primes. The most important Dirichlet series is the Riemann
zeta-function given by

(s) = nf;ni = H(l—%)*l, o>1.
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It can be analytically continued over complex plane C except at s = 1, where it has a
simple pole with residue 1, and satisfies the functional equation

(1.2) C(s) = 237rs_lsin%sw P(1 = s)C(1—s).

Thus the Riemann hypothesis amounts to the assertion that ((s) has no zeros in the
half-plane ¢ > 1/2.

In what follows, we are concerned with a certain class of Dirichlet series with Euler
products associated with ((s). Let T be the infinite-dimensonal torus, the complete
direct sum of countably many copies T, of the unit circle T, where T, are indexed by
primes p. The dual group of T* is the direct sum Z* of countably many copies Z, of the
group Z of integers (see [18, 2.2.5]). We denote by o p the normalized Haar measure on
T¥. On the other hand, the fundamental theorem of arithmetic asserts that each integer
n > 1 can be expressed as a product of prime factors,

n = plfl .p§2...p§e7
in only one way apart from the order of the factors. This implies that each z = {a(p)}
in T¢ induces a strongly multiplicative function a(n) defined by

(1.3) a(n) = a(p)™ - a(p2)™ - - a(pe)*™.
We thus obtain a Dirichlet series with Euler product

(1.4) 3(z,s) = Z aig) = H (1—(1—](??)_ , o > 1,

n=1 p

which is intimately akin to ((s). Indeed, in a suitable sense, such a Dirichlet series may
be regarded as a limit of translations of ((s).

Our objective in this note is to investigate some properties of ((s) as an element of the
class of all 3(z, s). By extending {(s) to an analytic function on a compact abelian group
with ordered dual, it is shown that 3(x, s) is analytically continued to and has no zeros on
the half-plane ¢ > 1/2, outside o p—null set in T¥. Although ((s) is exceptional in some
ways, it inherits a certain measure of properties common to the class. This fact provides a
method of investigating the asymptotic behavior of ((s) in the critical strip. With the aid
of the ergodic theorem, we also give another approach to the mean-value theorems of {(s).
Our direction stems from the theory of invariant subspaces based on uniform algebras,
and some of the ideas are especially motivated by [8] and [15]. Throughout the paper we
restrict our attention to the case of ((s) for simplicity, although most of our techniques
are applicable to more general class of Dirichlet series, containing Dirichlet L-functions.
In [1] and [2], the Riemann zeta-function is also discussed in connection with functional
analysis.

In the next section, we establish notation and present some known lemmas about an-
alyticity on almost periodic flows, which are modified to suit our purposes. In Section 3,
((s) is extended to an outer function in Hardy spaces on a compact abelian group. We
develop our techniques in Section 4 to investigate the outer function obtained by ((s).
In Section 5, after preparing some lemmas, we prove our mean-value theorem in a weak

sense. We close with complementary remarks in Section 6.
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2. Analyticity on compact groups.

Let I" be a dense subgroup of the real line R, endowed with the discrete topology, and
let K be the dual group of I'. For each t in R, e; denotes the element of K defined by
e:(A) = e for any X in I". Then the map of £ to e; embeds R continuously onto a dense
subgroup of K. Define a one-parameter group {7;};cr of homeomorphisms of K onto
itself by

(2.1) Tix = x+e, €K,

Then the pair (K, {T;}:cr) is a uniquely ergodic flow, of which the unique invariant
probability measure is the normalized Haar measure o on K. Let C(K') be the space of
all continuous complex-valued functions on K. A trigonometric polynomial p is a function
of the form

N
p(ﬂ?) = Z anXAn(x)a T € K7
n=1

where x, is the character on K defined by xa(z) = z()). Since

N

n=1

the Stone-Weierstrass theorem assures that C(K) may be identified with the space of
all uniformly almost periodic functions with exponents in I'. Then the continuous flow
(K,{T:}icr) is called an almost periodic flow.

A function ¢ in L!(o) is analytic if its Fourier coefficients

ax(6) = /Kmda

vanish for all negative A in I". The Hardy space H(o), 1 < g < 00, is defined to be the
space of all analytic functions in L9(o). We also denote by A(K) the uniform algebra of
all analytic functions in C(K). Then it is easy to see that A(K') is a Dirichlet algebra
on K and o is a representing measure for A(K). If 1 < ¢ < oo, H%(o) is the closure
of A(K) in Li(o), while H*(o) is the weak-* closure of A(K) in L*(o). In analogy
with the classical theory, an analytic function of modulus one is said to be inner, and a
function ¢ in H%(eo) is called outer if ¢ satisfies

log lao(¢)| = /K log |¢|do > —oo.

It follows from Szegd’s theorem that a function ¢ in H%(o), 1 < ¢ < 00, is outer if and
only if the invariant subspace generated by ¢ equals H%(o), that is, the closure of A(K)-¢
in LI(o) equals H%(o). When q = oo, the same result holds with respect to the weak-*
topology in L*®(o).

We denote by H*(dt/m(1+t?)) the space of all the boundary-value functions of bounded
analytic functions in the upper half-plane R2. The closure of H*(dt/m(1 + t?)) in
La(dt/m(1 4 t?)), 1 < q < 00, is denoted by H¥(dt/m(1 + t*)). The Poisson kernel P,(t)
for R? is defined by P,(t) = v/m((u—1)*+v?), where z = u+iv with v > 0. We usually
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identify each f(t) in H(dt/m(1+ £2)) with its analytic extension f(z) to R? obtained by
the convolution

f(z) = fxPu(u) = /_Oo F(t) P(t) dt.

Recall that a function f in H9(dt/m(1 +t?)) is outer in the ordinary sense if and only if
log|f(2)| = / log | f(t)| P.(t)dt > —oo,

and any outer function does not vanish on R?.

It is known that & function ¢ in L4(c) is analytic if and only if ¢ — ¢(z + e;) lies in
HYdt/m(1 + t?)), for 0 —a.e.z in K (see (10, 3.2]). Using this pointwise criterion, we
characterize the outer functions in H%(o) as follows:

LEMMA 2.1. Let ¢ be a function in Hi(e),1 < ¢ < 0o. Then ¢ is outer in H(o) if and
only if ao(¢) # 0 and t — ¢(z + e;) is outer in Ha(dt/m(1 + %)) for o —a.e.x in K.

Proof. Since H'(o) N L(o") = H(o) by [10, 1.6 Lemmal], it suffices to show the case
where ¢ = 1. Suppose that A(K) - ¢ is not dense in H'(o). Then there is a nonconstant
function ¢ in H* (o) which is orthogonal to A(K ) - ¢, that is,

/Kg¢Eda =0, geAK).

Since ¢ is in H'(o), we see that almost every ¢ — d(z+e)b(z + e) lies in H (dt/m(1+
£2)). Since t — ¥(z + e;) is not constant, ¢ — ¢(x + e;) cannot be an outer function in
HY(dt/w(1 +t?)) for ¢ —a.c.z In K.

For the converse, suppose that the set E of all z in K such that

log [+ Pi(z)| < / " log |9 + e)| P(1) dt

—00

has positive measure. We notice that Jensen's inequality holds for P;(t) dt = di/ m(1+¢%).
On the other hand, since ¢ * P; lies in H (o), we also obtain

logi/ ¢xPdo| < / log |¢ * B;| do
K K

by Jensen’s inequality. Observe that

al@) = /qua - /Kma-da.

It follows from Fubini’s theorem that
oglao(@)] < [ log [¢ldor
K

thus ¢ cannot be an outer function in H (o). O

There is a local product decomposition which is useful for understanding the structure
of K. Fix an ¢ > 0 and suppose 2m/¢ lies in T'. Let Kone be the subgroup of all

r in K such that xor¢(z) = 1. Then K may be identified measure theoretically, and
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almost topologically, with Kor/e X [0,£) via the map of y + e, to (y,u). Let T be the
homeomorphism of K./, onto itself by

(2.2) Ty =y + e, Y€ Korse

Then the dynamical system (Karse, T) is uniquely ergodic, where the normalized Haar
measure 7 on Ko/ is the unique invariant probability measure. Let mgr be Lebesgue
measure on R, and let m; be the restriction of (1/¢)dmg to [0,¢). Then o is carried by
+ x my. The flow (K, {T;}+cr) is also represented as

(2.3) Tz = Ti(yu) = (T Ay ¢4 u—[(t+u)/L]l), = (y,u) € K,

where [t] denotes the largest integer not exceeding ¢.
A Borel function f on K¢ X R is automorphic if

(24) f(y)t+ E) - f(Tya t) ) T X MR — a.6. (yat) € K27r/€ X R
Then each function ¢ on K has the automorphic extension ¢* defined by

(25) (z)u(y’t) - ¢(T[t/e]y’t - [t/ﬁ]é) J (ya t) € KQW/K x R.

We next introduce several notions of density (refer to {4, Chapter 3]). The cardinality
of finite set S is denoted by |S|. Let J be a subset of the set 7" of all nonnegative integers.
Then the upper Banach density BD*(J) of J is defined by

I
BD*(J) = limsup 0
oo ]

where T ranges over intervals of Z". The upper density D*(J) of J is defined by

JN[O,N —1
D*(J) = limsup 7010, I
N—oo N
and the lower density D,(J) is defined similarly. When D*(J) = D.(J), the value D(J)
is called the density of J. It is easy to give examples of J with D*(J) < BD"(J).
For a given e in Kax/e, let E(J) be the closure of {Tme; n € J} in Kaqye. Then we have

(2.6) D*(J) < BD*(J) < T(EW))

Indeed, for each € > 0, there is a function p in C(Kare) with 0 < p <1 such that p=1
on E(J) and

)

T(E(J)) < / pdr < T(E(J))+e

Konye
Since (Kar/e, T') is uniquely ergodic, we see

N-1
—]%ZpoT”——» pdr, as N — 00,
n=0

K27r/£

uniformly on Ko /e- This implies that

N-1
1
lim sup {sup N Z T (TE™ e)} < T(E(J)) +¢,
n=0

N—oo k>0
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where Iz denotes the characteristic function of E(J). Thus the desired inequality (2.6)
follows immediately.

The following lemma plays an important role in the proof of our mean-value theorem
for ((s).

LEMMA 2.2. Let J, e, and E(J) be as above. Suppose that, for each ¢ > 0, there is a
subset J, of Z*\ J such that T(E(J) N E(J)) = 0 and DHZT\ (JU J1)) < €. If po
lies in C(E(J)), then

. 1 ny
(2.7) NN nZ po(T"e) = /E(J) podT,

where po s extended to Korpe by setting po = 0 outside E(J). We also have D(J) =

T(E(J)).

Proof. We may assume that po is nonnegative and E(J) N E(J;) = 0. Indeed, when

E(J)NE(J;). A), we choose a neighborhood V of E(J)NE(J;) such that 7(V) is sufficiently

small, where V denotes the closure of V. Then we replace J; with Ji \ {n € Ji;ne € Vi
Let ¢ > 0 be given, and choose a subset J; of 7+ \ J such that E(J)NE(J) = 0 and

DHZH\ (JUJ)) < €/llpoll ey, where \lpoll 2(s) denotes the uniform norm of po on E(J).

It follows from Tietze’s extension theorem that po extends to a nonnegative function p in
C(Kary¢) with the same norm such that p = 0 on E(J;). Since

1 < DHZT\(JUL)) + D(JU L),

we obtain by (2.6) that
€

1= S < D)+ D (D) £ T(BW) +T(E)).
HPOHE(J)

This shows that ¢

T((E(J)UE(L))) < 7
llpoll )
Since (Kan/e, T') is uniquely ergodic, we observe
N-1 N-1

1
lim sup N z po(Te) < A}im N p(T"e)

N—oo n=0 n=0

On the other hand, it is easy to see that
N-1

. 1 ) *
lim sup N }: I(E(J)UE(Jl))C(T e) <D (ZF\ (JUR))-

N—oo n—0
since p IgyuEn) is the extension of py and

p < plewueu + Ipollew) IEwuey
6



we have

= L Nl
Al{l_l}noo N nz:% p(T"e) — € < thrLloréf N ; po(Te),

thus the equation (2.7) holds.
The last statement follows from (2.6) and the inequality

D.(J) = 1 =D (Z"\J)
> 1-—7(E()) —¢
> 1(E(J)) — ¢

d

We refer the reader to [10] and [5, Chapter VII] for further details of analyticity on
compact abelian groups, and to [4] and [19]for required results in ergodic theory. Besides,
3] and [6] are useful references for the classical theory of Hardy spaces.

3. Extension of the Riemann zeta-function.

From now on we assume that I is the discrete group of all logr where r runs through
positive rationals. If G is the subset of T' of all logp where p is prime, then G is an
independent set generating I'. Let T*, Z* and op be as in Section 1, and let 7 be the
group isomorphism of Z* onto I' by

r({ny}) = Y mplogp, {n} € Z%.

Then the dual group K of I is isomorphic to T via the adjoint map 7* of 7 defined by

(T (2), {mp}) = (&, 7({np})), 2 €K,

so we may identify T% with K. Since e;(logp) = e*1o8P  the one-parameter group
{T:}ier by (2.1) is concretely represented as

Tt({eiep}) — {ez’(Oertlogp)}, {ewp} c T,

We note also that
1
dO’ P = | I -2—7r—d9p

p

Using the flow (T%,{T;}ter), We can extend Dirichlet series to analytic functions on
T under suitable conditions. Let f(s) be a Dirichlet series by (1.1). Suppose that
a(n) = O(nf) for any € > 0. Fix u > 1/2, and write formally

fusi) = 3 A gmion
n=1

7



Notice that if u > 1, then t — f(u — it) is an analytic almost periodic function on R. We
define the analytic function F, on T* by

F,(x) = Z aT(Ln) Xiogn(Z), €T,

n=1

Since a(n) = O(n¢), we observe that

g = 35 {01} < o

n=1

Then F, lies in the Hardy space H?(o p) defined in Section 2. We need to strengthen this
fact as follows:

LEMMA 3.1. Let F, be as above, and let 1 < g < o0o. Then F, belongs to H(op).
Proof. Let

— b(n)
Gu - Z FXlogna

n=1

with b(n) = O(n®) for any € > 0, and put
n
cn) = Y a(dp(5),
din

where d|n means that d is a divisor of n. It is known that the number dy(n) of divisors
of n satisfies that dao(n) = O(n) (see [7, Theorem 315] for a proof). This shows that
¢(n) = O(n°), so the product

o~ <(n)
FuGu = Z n Xlogn

u
n=1

lies also in H%(op). Since by induction F™is in H 2(op) for each integer m 2> 1, F,
belongs to H4 (o p). O
We note that the class of all such F, makes a subalgebra of the algebra Mi<g<co Hi(op).

Let

=1
(31) Zu = Z; ;;Xlogn:
and

- — Hn)

(32) Zu I — Zl o Xlogn »
where pu(n) is the Mobius function defined by

1, ifn=1,

p(n) = (—=1)¥, if n is the product of k diffrent primes,
0, otherwise.

8



It follows from Lemma 3.1 that both Z, and Z;! lie in H¥(op),1 < ¢ < 0o. Restrictiong
Z, to the orbit O(0) = {e;; t € R} of the unit element 0 = {1} of T, we can represent
((s) on ¢ > wu. More precisely, let us denote by Xiogn(€.) the analytic extension of
t — Xiogn(€:) to RL. Then we have formally

o0

1
Zu(ez) - Z ﬁXlogn(ez)

n=1

— Z _1;6i(logn)z
n=1 n

= 11

- n¥ % ’
n=1

If we put z = is = —t + o, that is, the 7/2 rotation of the right half-plane o > 0, then
Z.u(e,) represents ((u + s) = (((u+ o)+ it). Thus Z,(z) is regarded as an extension
of (s) to T¥, and each z — Z,(z +e¢,), Imz > 0, is analogous to ((s) by its almost
periodicity. In particular, since Z,(z + e;/2) lies in A(T*), (((u+1/2) + s) is completely
determined by the restriction of Z,(z + e;/2) to the orbit O(0). Similarly Z;* may be
regarded as an analytic extension of {7(s) to T.

LEMMA 3.2. Let u > 1/2, and let 1 < q < oo. If Z, and Z;' are the functions by
(3.1) and (3.2), respectively, then both Z, and Z;' are outer functions in H%(op).

Proof. Since Z, and Z;! lie in HY(op) by Lemma 3.1, we see that t — Z,(z + e;) and
t — Z7'(x + e;) lie in HY(dt/w(1 + t?)), outside op—null set in T*. Recall that

IR S W)
¢(s) n®

n=1

This shows that Z,(z +e,)Z;(x +e,) = 1 on Imz > 1/2 for each z in T*. From this
fact the equation Z,(z)Z,(z)~* = 1 follows. Therefore, since A(T*) is dense in H¥(o p),
it is easy to see that both A(T¥)- Z, and A(T*)- Z;! are dense in HY(op). O

, o >1.

It follows from Lemma 2.1 that almost every t — Z,(z+e;) is outer in H9(dt/m(1+t?)),
so it has no zeros in R%. However, since ((s) has a pole at s =1, 1 — Z.(e;) may not
lie in H9(dt/w(1 +t%)). Then the orbit O(0) must be contained wholly in the exceptional
null set in Lemma 2.1, although we always consider t — Z,(e;) as the boundary function
of the meromorphic function z — ((u — iz) on R%. For op —a.e. x in T*, we see that

Zu(z+e) = Zux Polz) = / Zu(x+e)Pull)d, o >0,
and if ¢ > 1 —u, then Z,(z + ¢;,) represents a function in A(T*). We also notice that
when 1/2 < u < 1, Z, cannnot be in H*(op).

Let us look into the relation between Z, and the class of 3(z,s) by (1.4). Let a(n) =
Xiogn(). Since a(n) is strongly multiplicative, a(n) is of the form (1.3). Then z equals

{a(p)} in T*. Conversely, each z = {a(p)} in T determines Xlogn{Z) by putting
9



Xiogp(Z) = a(p). Therefore each 3(x,s) is obtained by restrictiong Z, to the orbit
O(z) = {z + et € R} of z. Precisely, we have

Zy(z +eis) = 3(z,u+s), s=o+it
Thus Lemmas 2.1 and 3.2 provide the following:

THEOREM 3.3. Let u and 3(x,s) be as above. Then there is a op—null set N = N(u,q)
in T such that, for each z in T \ N, both 3(z,s) and 3(x,s)™ are analytic and free
from zeros on o > u. Moreover, t — 3(z,u —it) and t — 3(x,u — it)~" belong to
H(dt/n(1+1%)),1 < ¢ < 0.

In practice, it would be difficult to decide whether a given {a(p)} in T* lies in the null
set N or not.

We know analogous methods, dealing with Dirichlet series, have been developed in [12],
[16] and [13]. Nonetheless, our approach is essentially due to Helson (see (8], [9], and [10]),
which enables us to utilize advantageously the theory of Hardy spaces based on uniform
algebras. We also note that a part of Theorem 3.3 has been obtained in [13, Chapter 5]
by a probabilistic method.

Although almost every 3(z, s) extends analytically to the half-plane o > 1/2 and has
no zeros, there are many sorts of exceptions in the class of 3(z,s). Indeed, we know that
3({1},s) = ((s) has a pole at s = 1. Since 3({—1},s) behaves like ((s)7, it has a zero
at s = 1. Let S be the subset of all z = {a(p)} in T* of which all but finite number of
terms a(p) are 1. Then S is a dense subgroup of T¥. If a(p) = 1 for p > m, then

Therefore 3(x, s) is similar to ¢(s) for each z in S, and oppositely 3(z, s) has the only zero
at s = 1 for z in {~1} + S. Furthermore, by using a property of alternating series, it is
not difficult to find 3(x, s) having zeros, or poles, or both in the strip 1/2 < ¢ < 1.

PROPOSITION 3.4. Let 1/2 < o < 1, and let m be a positive integer. Then there is a
dense subset E of T on which each 3(z,s) extends analytically to o > 1/2 and has a
zero of order m at s = «.

Proof. For a given z = {a(p)} in T¥, it is easy to verify the inequality

for each prime p. This implies that 3(z, s) is represented as

(3.3) 3(x,s) = exp {Z a(p)} - h(z,s),

» P

o> 1/2,

— pZU’

where h(z, s) is analytic and free from zeros on o > 1/2.
Let 0 < B < 1/2. We then obseve that

. m m .
i pﬁ+<1—a)pﬂ =0 and 3 i) %
p

10



If we choose a suitable sequence {p(j)} of primes and put
m
s(p(k)) = > i B2
p(k—1)<p<p(k)

then the sequence {s(p(k))} has the property

J J—1
1 1
(3.4) 0 < s(p(k)) — < ==
2wk = D am < iy
Then the inequality (3.4) shows that the Dirichlet series
>y - X g
0 2 k)

converges on o > . Let {q(j)} be the remaining primes outside {p(j)}. A property of
alternating series asserts that the Dirichilet series

©, (1)
2o 07

also converges. We observe by (3.3) that the behavior of

—m
exp {Zp(—l—T)-l'_s}’ 0'>]./2,

P

=1

is similar to (((1 — &) + s)™™. Define

€ — —17 lfp:p(])a
2 {(—1)3', itp = 40)).

Then 3({e(p)}, s) has a zero of order m at s = a. Let S the dense subgroup of T* above.
Then the coset £ = {e(p)} + S satisfies the desired property. O

Let us make some remarks on Proposition 3.4. Using the same notation, we observe
that 3(z,s) has a pole of order m on the dense subset {—1} + E. Next we divide m as
m, 4+ ms. Then we may choose a subsequence {p;(j)} of {p(j)} such that

my 1 = 1
Z 1-a) s Z s
— p= pt L p(k)

converges. Define

—eloe?,if p = pi(j),
alp) = q 1, if pis in {p(5)} \ {P1(4)},
(=17, ifp=q()
Then 3({a(p)},s) has a zero of order m; at s = « + it as well as a pole of order m;
at s = a. By extending this method, it is not difficult to construct a 3(z, s) with the

property that

lim j3(z,0+ir) =0, r€Q,
og—oa+0
11



where Q denotes the set of all rationals. This asserts that the line s = a+1t is the natural
boundary of 3(z, s) (compare with Proposition 6.4 in Section 6). However, replacing m
with 1/2 in Proposition 3.4, we find a §(z, s) which cannot be extend meromorphically
across the line s = o + #t. Indeed, since

lim (0 — a)Y%3(z, 0)

o—a+0

exists, such 3(z, s) cannnot be analytic at s = a.

We now point out other properties of Z,. As we have seen in the above proof, 3(z +

{—1}, s) behaves like 3(z, s)™*. Since xiogp({—1}) = —1 for each prime p, we see that
CC((QSS)) = H (1 — _Xlogp;{s_l})> , s =o0+it
P
and
00 2
Zg—ul(Qx) — Z /;‘f;i) Xlogn H ( <Xlogn( )> ) 7
n=1 p

It follows from them that
Zu(z) Zgt(2x) = Z7 Yz +{-1}).

Since Z;.!(2x) has an absolutely convergent Fourier series, Z,,, (2z) is an outer function in
A(T®). Therefore Z,(z) plays as if it were self-reciprocal by the translation z — z4{-1}.
The set of zeros of Z,(x + e,) corresponds to the one of poles of Z,(z + {—1} +e.), and
vice versa, although both are generally empty. The exceptional null set N in Theorem
3.3 is closed under the translation by {—1}. Incidentally, since ((s) = C(3) by the
reflection principle, the equation Z,(z) = Z,(—z) follows. This shows that Z,(z +e;) =
Z.(—z + e;5), thus N is also closed under the inverse operation on T*.

4. Normal families and value-distribution.

We now turn to the distribution of values of {(s) in the strip 1/2 < ¢ < 1. In the
previous section, the extension Z, of ((s) is defined by the Fourier series (3.1). Let
us reconstruct Z, by using certain normal families. This enables us to investigate the
asymptotic behavior of ((s) from another point of view. For instance, one of our tech-
niques runs as follows: Let 1/2 < u < 1. Since {(s) extends to an outer function Z,
in H(op),1 < q < oo, the function z — Z,(x + e,) is usually analytic and free from
zeros on R2. Then it is shown that almost all such functions are represented as limits of
translations of ((u — iz + it) in a sense. Thus if {(s) should have zeros in u < o <1, the
distribution would be very rare by Hurwitiz’s theorem.

One can find in [17, Chapter 7] for information about normal families and related topics.

Let ¢ > 0. For each n in Z*, define the rectangles Q(u,n) and D(u,n) by

(4.1) Qlu,n) = {o+it;u<o <2, <t<(n+1)l}
12



and
(4.2) D(u,n) = {o+it;u—86 <o <2, -6 <t<(n+1)l+6},

where 0 < 6 < min(¢/3,u — 1/2).
We need a relation between the mean-value theorems for ((s) and certain normal fam-
ilies. It follows from [22, Theorem 7.2(A)] that

T
1
/ |C(o +it)|*dt < AT min (log T, ——1>
1 g—3
uniformly for 1/2 < o < 2, where A is a constant. Let 1/2 < a < u — 4. Then the
mean-value theorem [22, Theorem 7.2] implies that

(4.3) Thm —/ dt/ ((o+it)|Pdo = / ((20)d

with the aid of the bounded convergence theorem. Let

- {//Q(am ¢(o + it)|* do x dt}%,

where Q(a,n) is the rectangle by (4.1) with u replaced by . Then B(n) is the Bergman
L?—norm of {(s) on Q(a,n). We represent (4.3) as

(4.4) lim — Ni 1B(n)2 = / : ((20) do
Nooo N £ 4 «
For a given M > 0, we denote by J(M) the set of all n in Z* such that
ICllpeum = sup {I¢(s)|;s € D(u,n)} < M
LEMMA 4.1. If € > 0, then there is an My > 0 for which
D(J(M)) > 1-€e, M2 M,
where D, (J(M)) is the lower density of J(M).

Proof. By (4.4) we choose an L > 0 so large that D, ({n € Z¥;B(n) < L}) > 1—¢/3.
This implies that

D, ({ne€Z"B(n—1), B(n), and B(n+1) < L}) > 1-e¢
On the other hand, since
D(u,n) C Qla,n—1)UQ(a,n) UQ(a,n+ 1),
Bergman'’s inequality [17, p 155] yields

1
SO € oo

Thus My = {V/m(u—6— Oz)}_l 3L satisfies the desired property. O
13
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Define the rectangle D by
D= {t+ioc;-6<t<{f+60<0<2—(u—90)},
and, let
Fo.(2) = C(u—6—iz—ind).
Then F,(z) is analytic on D for each n > 1. If nis in J(M), then
[Eallp = [Cllp@m < M,

because ((o — it) = ((o +1it). Therfore ¥ = {F,;0 < n € J(M)} makes a normal
family on D. We eliminate Fp from F since Fy has a pole at z = (1 — u + 0).

THEOREM 4.2. Let 1/2 < u < 1, and let Q(u,n) and J(M) be as above. Define Jy be the
set of all n in Z* for which ((s) has zeros in Q(u,n). Then we have

(4.5) BD*(JyNnJ(M)) = 0,

for each M > 0. Consequently, Jy has density zero, that is, D*(Jy) = 0.

Proof. We first assume that 27 /¢ lies in I'. Then the dual group T¢ of I is identified with
Koo % [0,€) as we have seen in Section 2. Since 1/2 < u — 6, ((s) extends to an outer

function Z,_s in H%(op), 1 < q < 0o, by Lemma 3.2. Let Z'_s(y,2) be the automorphic
extension of Z,_s to Kor/e X R%. Restricting Zi_é(y, z) to Kar/e X D, we observe that
Z'_(neg,z) = ((u—6—iz—inb) = Fy(z), ze€0D.

For each € > 0, we choose an M > 0 by Lemma 4.1 such that D.(J(M)) > 1 —e€. If
E(J(M)) denotes the closure of {ne¢; n € J(M)} in Karse, then T7(E(J(M))) > 1—¢
by (2.6). :

We note that

00

1
Zu-s(T + i) = Z WXlogn(ﬂf)

converges uniformly on T“. If n;e, tends tg ; in Ko, then Fy, (2) converges uniformly
to Z%_,(y, 2) on the subregion

{t+ioc; —6<t<l+6,1/2<0<2—-(u—-10)}
of D. Furthermore, when each n; lies in J(M), that is, y is in E(J(M)), F,,(2) converges
uniformly to Zﬁ_ s(y, z) on every compact set in D, because the family F above is normal.

Then we see that Zﬁ_ s(y, 2) is represented as a limit of subsequence of F on E(J(M)) x D.
Define the subregion Dy of D by

2" 2

Notice that, for each n in Jy, F,(2) has zeros in Dy. It then follows from Hurwitiz’s
theorem that if v is in the closure F(JoNJ(M)) of JoNJ(M) in Kor/¢, then 2 — 7t s(y,2)
must have zeros in D. Since Z,_s is outer in H4(o p), we thus have

T(E(JoNJ(M))) = 0.
This yields (4.5) by applying (2.6) again.

Dy = {t—l—ia; -g < t <€—|—§, —6—< o < 2——(u—6)}.

14



Let us show that Jy has density zero. Let € > 0 be given. It follows from Lemma 4.1
that D*(Z*\ J(M)) < € for some M > 0. Since

D*(Jo) < D*(JoNJ(M)) + D (JoN(ZT\ J(M))) < ¢,
we see that D*(Jy) = 0.

When 27 /¢ does not lie in T', we let ['* be the discrete group generated by 27 /¢ and T
Then Z, can be interpreted as an outer function in the Hardy space HY(o),1 < ¢ < oo,
on the dual group K* of I'*. Since {neg;n € Z*} is also dense in K3, )i we obtain the
same conclusion by the same way as in above. O

It is customary to denote by N(T') the number of zeros of {(s) in the region {oc+it; 0 <
o <1,0 <t < T} It follows immediately from Jensen’s theorem that

N(T+4)— N(T) = O(logT) as T — oo,

and it is also well-known that N(T) = O(TlogT) (see [22, 9.2 and 9.4] for details).
Similarly, N(o,T) denotes the number of zeros 8 + #y of ((s) such that # > o and
0 <y <T. Thus our result assures that if 1/2 < ¢ < 1, then

(4.6) N(o,T) = o(TlogT) as T — oo.

However, from a point of view, Theorem 4.2 seems to carry new information on the
distribution of zeros of {(s). Indeed, rapidly as g(i) increases, there is a sequence {n;}
with n; = o(g(7)) such that 7(E({n;}) N E(J(M))) > 0. Therefore Jy N J(M) never
contains such sequences. Furthermore (4.5) shows that the numbers in Jy may not be in
long succession. These observations would restrict the behavior of N(o,T) when T tends
to infinity.

With the aid of functional equation (1.2), we may strengthen (4.6) as follows (refer to
(22, 9.24)).

COROLLARY 4.3. There is a positive decreasing function f(t) tending to zero such that
all but an infinitesimal proportion of zeros of ((s) in R2 lie in the region

{o+it; |a—%| < f(t)}.

By the argument preceding Theorem 3.3, we see that almost all 3(z,s) extends ana-
lytically to ¢ > 1/2. The following theorem should be compared with the ‘universal’
property for ((s) (see [22, 11.11}).

THEOREM 4.4. For op —a.e.z in T¥, there is a sequence {15} such that

(47) C(S + 7’Tn) - 3(:1;7 S), as mn— 0o,

uniformly on each compact set in the half-plane o > 1/2.

Proof. Fix an £ > 0 such that 27/ is in . Since T is identified with Ky x [0,£), we
obtain 3(z,s) = 3(y,s — iu) for some (y,u) in Kor/e x [0,£€). So it suffices to show that
(4.7) holds for T — a.e.y in Karye. Let 1/2 <u < 1, and let ¢ > 0. We denote by Z8(y, 2)

the automorphic extension of Z, to Kor/ x R as usual. Notice that Zi(ne,z) =

((u — iz — inf). For any positive integer k, we choose M large enough in Lemma 4.1 and
15



putFE(k,e) = E(J(M)). By the same argument as used in the proof of Theorem 4.2, we
make E(k,¢) satisfy that 7(F(k,¢)) > 1 —¢ and

(48) Z’ﬁ(njef’ Z) - Zﬁ(y) Z), .7 — 00,
uniformly on
D) = {t+io; k€ <t < kl, 0 >0},
where {n;e,;} is a sequence in E(k, €) that tends to y. This shows that there is a 7—null set
N(u) in Ko/ on which (4.8) holds uniformly on D(k) for all k. Let {u;} be a decreasing

sequence that tends to 1/2. Let us define the 7—null set N by N = UN(w;). Then if y
is not in NV, then

1 , 1 ,
((§+a—zt—nj£) — 5(y,§+a—zt)

uniformly on each compact set in o > 0. Taking the complex conjugate and replacing —y
with y, we observe easily that the property (4.7) holds. O

From Jensen’s inequality, it is derived that the number of zeros of ((s) in Q(v,s) is
uniformly bounded on Jy N J(M). However, this fact also follows from the following
property of Gleason parts of A(T¥): Let ¢ be a function in A(T*). Then ¢ = O on a
part {z +e,;z € R2} if and only if ¢ = 0 on T* (refer to [5, Chapter VI] for Gleason
parts).

PROPOSITION 4.5. Let D be a domain in o > 1/2 such that DN {c > 1} # 0, and let
E be a compact subset of D. Suppose that there is a constant M > 0 for which

Il p+ir, = sup{[¢(s +iT,)|; s€ D} < M

for a sequence {T,,} in R. Then the the number Ng(n) of zeros of ((s) in B+ T, s
bounded.

Proof. Suppose on the contrary that Ng(n) is unbounded. On passing to a subsequence,
we assume Ng(n) diverges and —er, converges to a point x in T*. This implies that
((s+1T,,) converges to Z,(x + €;s—y)) uniformly in compact subsets of D. It follows from
Hurwitz’s theorem that Z,(z + e;s—v)) = 0on D. Then z — Z,y1/2(x + ¢.) is identically
zero on R2. Since Z,41/2(z) = Z,(x + ei/2) lies in A(T¥), the above remark shows that
Z.{x) = 0, which is a contradiction. O

We observe that Proposition 3.4 assures the existence of a sequence {7} for which
{¢(s+1iT,)} is not a normal family on D. It is well-known that if a family F of analytic
functions omits two fixed values in C, then F is normal. This yields directly a version of
[22, Theorem 11.1].

ProPOSITION 4.6. Let D be a domain as in Proposition 4.5. Then there is a sequence
{T.} with the property that {(s) takes every value, with one possible exception, an infinity
of times in

EOJ D +1T,,.

n=1
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5. Weak mean-value theorem.

It is known that under the Riemann hypothesis

T dt ¢(20)

o1 | werar ~ G = T

for a fixed o > 1/2 (as discussed in [22, 14.2]). In this section, by discarding a small part
of [1, c0), we show these kinds of limits always hold. Let —co < k < o0, and fix u > 1/2.
Since both |Z,| and |Z;!| lie in L?(op), log |Z,| lies in L*(op). This shows that the
conjugate function V,, of log | Z,| is also in L%(op) (see [5, Chapter IV, §1] for conjugate
functions). Recall that both Z, and Z_! are outer functions in H¥(op), 1 < ¢ < 00, by
Lemma 3.2. Hence Z* is defined by

(5.2) 78 = exp{k(log |Z,] + iVL)},

where

ao(Vu) = / VudO'P = 0.

Since ZF lies in H%(op), it follows from the individual ergodic theorem that

T
(5.3) lim %/ |Zy(z — e)|** dt = / | Zy|** dop,
1 W

T—o00

for op — a.e. x in T. Observe that

1 ¢(2u)
Z25 = 1+— ) = .
Since Z,(z — e;) = 3(z,u + it), (5.1) holds with 3(z, o + it) in place of {(o + it) broadly
by putting k = —1. Although Z,(—e;) = ((u+it) is exceptional, we next show a similar
result with the aid of the argument in the preceding sections.
Incidentally, we make a remark on the value of the last integral in (5.3). Since ZF lies
in H%(op), ZF is also expressed as

2, dip(n
ZS = Z “I’cn(_)‘Xlogna

U

n=1
for a suitable sequence {dr(n)}. When k happens to be in Z*, di(n) coincides with the
number of decompositions of n into k factors. Then we have

%) d n 2
1252 = / Zdop = Y {L)} |
Tu} n

n=1
For an ¢ > 0, define the compact rectangle D; by
Dy = {t+ic;0<t<l,0<0<2—-u}.

If u > 1, then Z* is continuous on T, so Z%(—e,) = (*(u+1iz) is completely determined
on R?. In case of 1/2 < u < 1, ¢¥(u + iz + inf) is analytically continued suitably to Dy,
whenever ¢(u+ iz -+ inf) does not vanish on it. Regarding Theorem 4.2, we may consider

ZE(—e) = Flu+it), nl <t < (n+1)
17



for each n in Z* \ Jy, where Jy is the subset of Z* of density zero.
Let S be a subset of Z". Then )4 denotes the sum of terms with indices in S.

THEOREM 5.1. Let —0o < k < 00, and let £ > 0. For a fived u > 1/2, there is a subset
J = J(k,t,u) of Z* of density zero such that

. 1 n+1)¢ ok 12
(5.4) dm o, [ i a = 1203
=0
and
. (4 2%
(5.5) 1&1_1)1100 WZZ+\J/ Clutit)dt = 1.

In order to prove Theorem 5.1, we require two lemmas.

Considering the discrete group I'* generated by I" and 27 /¢, we may assume that 27 /¢
lies in ' as discussed before. Let (ZF)¥(y,t) be the automorphlc extension of ZF to
Korje x R. Note that Kar/e is metrizable. It then follows from Theorem 4.2 that, for
T —a.e.y in Kor e, ZE(y, z) does not vanish on Dy and there is a sequence {nje,} tending
to y in Ko/ such that

Zh(njee, z) = C(u—i(z+ nl))
converges uniformly to Z#(y, z) on D;.
Let M > 0, and define
1
M S
Then the closure of {ne;; n € I(M)} in Ky, is denoted by E(I(M)) as before. The
following is a minor variation of Lemma 4.1.

I(M) = {n <WAR < |(ZFY(ney, 2)| < M for each z € Dl} .

LEMMA 5.2. Let € > 0 be given. Then there is an My > 0 for which
(5.6) D, (I(M)) > 1—€, M > M,
Consequently, we have
T(E(I(M))) — 1, as M — .

Proof. 1t suffices to consider the case where k = 1. Let

LMY = {neZ%(Z) e, o, < M}
Then we have by Lemma 4.1 that

DY(Zt\ L(M)) — 0, as M — co.

On the other hand, it follows from Theorem 4.2 that z — Z(y, 2) is analytic and never
vanishes on D; for 7 — a.e. y in Kyr/p. This shows that if we set

B(M) = {n e 2% (2 ew, llmy < M}



then
T(E([y(M))) > 1—k¢,
for M large enough, since Z;* lies in L!(op). Then we have
D*(ZT\ L(M)) =0, as M — oo,
Therefore, since
0 < DY(ZF\I(M)) < D(ZF\ L(M))+D(Z7\ L(M)),

we obtain the property (5.6) immediately. The last statement follows from (2.6). O

We notice that if Z%(y, z) happens to have a zero in Dy, then

1(Z ) (nzee, - )lv, — 00,

for any sequence {nje,} tending to y. Since (Z¥)¥(y,z) is determined completely on
Konse x {Re z > 1 — u}, it follows from a normal families argument that the restriction
of (Z¥)¥ to E(I(M)) x [0,£) is continuous on E(I(M)) x [0,£).

LEMMA 5.3. Let I(M) and E(I(M)) be as above. Then there is a divergent increasing
sequence {M;} with the following properties:

(i) Let I, = I(My) and I; = I(M;)\I(M;_1), 1 > 2. Then we have T(E(L;)NE(I;)) =

0, provided i # j.

(i) Regarding E(1;) x

—

0,4) as a subset of T, we have

N-1 Y]

1
5.7 lim — / ZFVe (ney, t)|? dt :/ |ZE|2dop,
o Nz NESZH o (et B(1:)x[0,0) o

and

1 N-1 ¢
5.8 lim — / Zikﬂne,t dt :/ Z*dap.
o Voo NE gli 0 (et B(I1)x[0,0) "

Proof. (i) Define the increasing function F'(M) on (0,00) by

F(M) = / |ZE>dop .
E(I(M))x[0,6)

Recall that | Z%| lies in L%(op). It follows from Lemma 5.2 that

M—oo

lim F(M) = / |ZF?dop < .

Since F'(M) is increasing, the set of points of (0,00) at which F'(M) is discontinuous is at
most countable. Then we choose a divergent increasing sequence {M;} such that F(M)
is continuous at each M;. It is easy to see that
Jim T (BI(M,+0))) = Jim 7 (BU(M: - ).
from which we obtain 7 (E([;) N E(I;41)) = 0for 1 <j <.
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(i) Since D.(I(M;)) > 1—e for large j by Lemma 5.2, if we set S = U{l,; m #
i, 1<m<j}, then DY(Z*T\(L;US)) < e. We also see by (i) that 7(E(;) N E(S)) = 0.
Define

ni) = 7 [ WZFR@0 @, ye ),

which is continuous on E(7;). Thus (5.7) follows from Lemma 2.2. The case of (5.8) is
similarly obtained. a

We are now in a position to prove the theorem.

Proof of Theorem 5.1. In order to show (5.4), observe that

(59 AEED S
: ; E(1:)x[0,8)
It is easy to choose a subset J; of I; of density zero such that
1 N-1 ¢
510) Y [ @ e < [ (zERdoy,
Nt nz:;’i\Ji 0 E(I)x[0,0)

for all N, and (5.7) holds with [; \ J; in place of ;. Let

- ((’jj)u(z(‘jz)

Since U{J,, ; m > i + 1} is contained in Z* \ I(M;), we obtain

D (J) < D*(Z*\I(Mi))+i:D*(Jk)—>0, as 1 — 09,
k=1

thus J has density zero. It follows from (5.9), (5.10) and Lemma 5.3 that
1 N-1 (n+1)l i 9 112
Jm o Y, [ 17 = 12005
n=0

Since | Z,(e;)| = |C(u + it)|, we obtain (5.4). We note that J may be replaced by another
subset of Z* of density zero containing J.

To show (5.5), we first note that

ao(ng) - / ZdeO'p = 1.

This implies that

> [ o ztder =1,
n=1 7 E:)x[0,%)
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which converges absolutely. Choose a subset J; of I; of density zero with the property
that

N-1 Y
1 / K ,
— (Z2Vh(ney, t) dt| < / Z*dop |,
NY g’i\"i 0 E(L)x[0,0)

for all N. Let J be as above. By the similar way, we then obtain

1 N-1 (n+1)¢ o
1\171—I>noo mZZ+\J /ne Clu—it)™dt = 1.
n=0

By taking the complex conjugate, (5.5) follows immediately. Replacing J with a larger
one, if necessary, we find a set J = J(k,£,u) of density zero for which both (5.4) and
(5.5) hold at the same time. O

Let us describe a remark on the ordinary mean-value theorems, which is sometimes
useful for extending them (compare with [22, Theorem 7.11]).

PROPOSITION 5.4. Let 0 < k < 0o, and let 0 > 1/2. Suppose that

(5.11) Jim %/IT Cot+i =3 {d’;ff)}Q.

n=1

If 0 < X <k, then (5.11) holds with k replaced by X.

Proof. By virtue of Theorem 5.1 we see that (5.11) holds if and only if, for each subset J
of Z* of density zero,

1 N-1 (n+1)€ ok
(5.12) lim m;J/M IC(o + it) >k dt = 0.

Since 0 < X\ < k, we observe

(nt+1)¢ (n+1)£
/ (o +it)|Pdt < / {1+|¢(o +it)[*} dt.

£ né

Thus (5.12) holds with k replaced by A. O]
Under the Reimann hypothesis, Proposition 5.4 extends naturally to the case where
—00 < k < 0. By regarding the proof of Proposition 5.4, the set J = J(k,¢,u) in

Theorem 5.1 may be chosen so that J(k,¢,u) is increasing with respect to |k|. This
enables J to be independent of k.
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6. Complementary remarks.

We discuss briefly a relation between the abscissa of convergence for a Dirichlet series
and Hardy spaces H(dt/n(1+t?)),1 < q < co. Let f(s) be a Dirichlet series of the form
(1.1), and let

logn<A

If F(logn) = O(n"*), then f(s) converges for ¢ > u, and t — f(o — it) lies at least in
H'(dt/7(1 +t*)), since f(s) = O(|t|°) for some 0 < § < 1 ( see [21, 9.14 and 9.33] for
details).

PROPOSITION 6.1. Let f(s) be a Dirichlet series of the form (1.1) for which the abscissa
of convergence o. is finite. Suppose that f(s) extends analytically to ¢ > 0o (> 0) and
t — flog—it) € H'(dt/n(1+1t%))
for somer > 2. Then f(s) converges for o > oo+ 1/r, that is, oo+ 1/r > o..
Proof. For each ¢ with 2 < ¢ < 7, we choose p such that 1/p+ 1/q = 1. Since
o+t = |o+it|* - |o+itfP(-7)

and r/p > 1, Holder’s inequality implies
r—p

0 P [ee} . r E [e'e) —p(r— r
[ e {7 el {7 el

Since r > ¢ = p/(p — 1), we obtain easily p(r — 2)/(r — p) > 1. This assures that the
last integral converges. Because of our assumption, we also see

[ S T S

oo o Fit]? 0 J_o

00 .
sup / e —
ag>og —00

the Paley-Wiener theorem shows that

flo +1it)
o+t

On the other hand, since

f(U +Zt) — L/ G(A)e—k(o‘ﬁﬂlt) d)\
a + Zt 27r 0

for some function G()) in L%(0,00). Recall that f(s) is absolutely convergent whenever
g > 0.+ 1 (see [21, 9.13]). From this fact, we see easily that F(A\) = G()). Therefore
the Fourier transform of A — e 7 F'(\) is f(o +it)/(c + it). It then follows from the
Young-Hausdorff theorem that

/ e M F(\)|%d) < oo.
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This can be written as

S eonioB | F(logn)|7 {log(n + 1) ~logn} < oo.

n=1
Since the terms of this series tend to 0, we have easily
F(logn) = 0(no*1/9y,
so f(s) satisfies the desired property. O
Together with Lemmas 2.1 and 3.2, we obtain the following:

COROLLARY 6.2. Under the assumptions of Theorem 3.3, each Dirichlet series 3(X,s) by
(1.4) converges on o > 1/2, outside a o p—null subset of T*.

We know little about the relation between the exceptional null sets in Theorem 3.3 and
Corollary 6.2. In this connection, 1t should be noted that Littlewood’s theorem (22, 14.25]
states that the convergence of ((s)™* for ¢ > 1/2is equivalent to Riemann hypothesis
(so is the convergence of 3({—1}, s)). By virtue of Proposition 6.1, an argument similar
to the proof of [22, Theorem 14.2] provides some information:

PROPOSITION 6.3. Let u > 1/2. Ift — 3(z,u—1t) is an outer function in H(dt/m(1+
t?)), then for each € > 0

3(z,0 —it) = O(Jt|°) and sz, —it)"h = O(Jt]), o > u.
Consequently, both 3(z,s) and 3({—1} + z,s) converges for o > u.

We now describe a few applications of some properties of Rademacher functions. Recall
that Rademacher functions ¢1(r), pa(r), ... are defined by

on(r) = sgn(sin(2"wr)), 0<r<1l

Let M be the set of all dyadic rationals in [0, 1], which is countable. Denote by {p(n)}
the increasing sequence of all primes, and put

& = () = @alr).
Each 7 in [0, 1] \ 9 determines a sequence {€,; €, = 41} in T* not eventually constant.

For the theory of Rademacher functions, [3, Appendix 1] and [11, Chapter 5] may be
consulted, and the following results are largely motivated by [12] and [16].

We give another proof of Lemma 3.2. Let v > 1/2. Since

log((s) = ZZ m;ms, o>1,
m=1 p

there is an outer function H, in A(T*) with which

1
(6.1) Z. = €exp {Z;}; Xlogp} -H,.
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Define
1

Fu(ryz) = Y l(r) Ju Xogp(@), (r,3) € [0,1] x T
p
By [3, Theorem A.1], if 2 lies in T*, then F,(r,z) converges for m; — a.e. r in [0,1],
where my denotes Lebesgue measure on [0, 1] as before. Moreover, Khinchin’s inequality
[3, Theorem A.2] asserts that

1
/]Fu(r,m)lkdrg (§+1> AW, k=1,2,---,
0

where

Let —co < A < oo. Then we have

/wda'p/ol |exp {AFyu(r,z) }|dr < /wdap/l exp {|A\Fu(r,z)| } dr

)\k
H/dp/ W (ry 2)|F dr

< Eoo l)\lk + 1 A(u)]C

- K \2
k=0

< 00.

It follows from Fubini’s theorem that there is an r in [0, 1] \ 2R such that

exp {AF,(r,z)} = exp {)\Z — Xlogp(Z + {Ep})}

lies in L'(op). Notice that +F,(r,z) lie in H(op). Taking ¢ = ||, we thus see that
both Z, and Z;! are outer functions in H%(op), 1 < g < oo.

Although 7, itself is meaningless, we may consider z — Z; s2(x +e,) as a function on
R?, outside a o p—null set in T. Indeed, we can define
Zip(x+e.) = Zijogs(T + erio-p)), 2z=1t+10,
where 0 < # < o, which is independent of 8. Let us show next the nonexistence of

Jim, Bl )

mgr ~ a.e.t in R. Therefore, unlike the case of ((s), usually 3(z, s) may not admit any
kind of functional equation (1.2).

PROPOSITION 6.4. Let 3(x, s) be a Dirichlet series of the form (1.4). Then forop—a.e.x
in T¥, 3(z, s) has the limits,

lim 3(z,0 +it),
o— 5 +O
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almost nowhere on R. In particular, the line o = 1/2 is the natural boundary of 3(z, s).

Proof. Since Z12(z+€14i0) = 3(2,1/2+0 —1t), we restrict our attention to the boundary
behavior of z — Z1j2(z +e,) on R%. For 0 <o <1, let

Qote) = {t+iv;to<t<to+1,0<y<1}.
We also put

1
gp(2) = 1—35 Xiogp(ZT+€2), 2 € R?,
which is continuous on Qq(ts). Then the sequence {g,} satisfies the following two condi-
tions:
(i) If we put

Glrz) = ) e(r)gp(z), 2 € Qulto)
P
then, for m; — a.e.7in [0,1] and 0 < o < 1, G(r, z) converges uniformly on Qo (to)-

(ii) For each N,

> lgpl(t +i0)P =00, as o — +0,
p>N

converges uniformly on [tg, to + 1].

Indeed, (i) follows immediately follows from Fubini’s theorem and a fundamental prop-
erty of Dirichilet series [21, 9.11], and (ii) is a direct consequence of the fact that

Therefore an argument entirely similar to the proof of [3, Theorem A.4] shows that

lim > 6(r)gy(t+i0)

p

may not exist for m; x m; — a.e. (r,t) in [0,1] X [to, o + 1]. With the aid of Fubini’s
theorem again, we see easily that

. 1
all»nﬁo eXp {Z E Xiogp(Z + eia)}

p

does not exist for op — a.e.  in T%. Since Z;, is represented as

1
Z1/2($ + Cz) = €Xp {Z -1 Xlogp(l” + 6z)} : H1/2(93 + 62)
p2
P

for some outer function H,/; in H*(o p), the desired conclusion follows. O
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Extension of Almost Periodic Functions
and Analyticity on Flows

Jun-ichi Tanaka

1. Introduction

Let D be the unit disc {|z] < 1]} in the complex plane C, and let zp be a point
on the unit circle T. Supposc that w = f(z) is an analytic function on D. It is
then important to investigate the distribution of values as well as the behavior of
f(z) around the boundary point zy. Awareness of such subjects is old in function
theory, and it seems to be an origin of value distribution theory and the theory of
cluster sets.

In the 1940s, I. M. Gelfand and his coworkers built a theory of commutative
Banach algebras. As one branch. theories of function algebras began to develop in
the early 1950s, which formed a new link between classical function theory and func-
tional analysis. Thus, for example, the theory of Hardy spaces has been extended
to an abstract setting.

In this note, by considering the uniform algebras induced by flows, the boundary
behavior of f(z) is investigated in the region between the two circles tangent to T
at 2, although a certain growth restriction of |f(z)| is required by the Phragmén-
Lidelof principle.

The outline of our method runs as follows. Suppose, for simplicity, that f(z) is
bounded in D and z5 = 1. Let 2(w) be the conformal map of the upper half-plane
R? onto D by

w—1

w1

We then put g(w) = f(z(w)). Since z(w) maps oo to 1, we want to look into the
behavior of g(w) around infinity. Let 3Z be the Stone-Cech compactification of the
integer group Z. Divide R% into the countably many strips [n.n 4 1) x (0, oc) for
n in Z. Since {g(n+w);n € Z} is a bounded sequence for each w in [0, 1) x (0, 00),
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FIGURE 1

g(w) extends to a continuous function on 37 x [0,1) x (0.oc), which represents
coneretely a portion of the cluster set of g{w). The shift operator Son = n+1
on Z extends to a homeomorphism S on BZ. We denote by X the quoticnt space
obtained from 3Z x [0, 1] by identifying (y. 1) with (Sy,0). By regarding the real
line R as Z x [0. 1], the translation on R, induces a continuous flow on X. Thus.
using ergodic theory, we try to study the behavior of g(w) on the growth X \ R
(sce Figure 1).

In the next section we establish the notation and discuss briefly the principal
techniques of Hardy spaces in certain settings. Section 3 treats the uniform algebras
induced by flows and, as an application, we deal with a negative answer to a question
posed by Forelli [10]:

Is the uniform algebra induced by a minimal flow o Dirichlet algebra?

Restricting our attention to the case of alinost periodic flows, we diseuss in
Section 4 analytic functions on a quotient of the Bohr group. After preparing
some lemmas, we study Dirichlet series obtained as the limits of translations of the
Riemann zeta-function in Section 5. which contains some results published here for
the first time.

2. Rudiments of Hardy spaces

We deal with certain subspaces of analytic functions with growth conditions.
together with some basic results on boundary behavior. Let 1 < p < o¢. A function
f(z) analytic in D is said to belong to the Hardy space HY (D) if

H| N 71¥ . - ,(‘1'9 Y g
I = sup - / Fre P < .

o

O<r<t 27,
while H> (D) is defined to be the space of all bounded analvtic functions J(z) on
D normed by

I~ = sup{|f(=):= € D}
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Let HP(df/2m). 1 < p < oo, be the space of all functions f(#) in LP(df/27) that
have Fourier series of the form
f(@) ~ Z a, e

n={

Fatou's theorem then enables us to identify HP(D) and HP(d6/2w). The disc
algebra A(T) is the algebra of all continuous functions in H>(df/27). which is a
commutative Banach algebra with the uniform norm. Then HP(df/27), 1 < p < .
is also obtained as the closure of A(T) in LP(df/27), while H>(d#/27) is the weak-*
closure of A(T) in L™>(d6/2w).

The Hardy space HP(REL), 1 < p < oc. on RY is defined similarly to be the
space of all analytic functions on Ri such that

1y = sw [Py < x.
O<y<oo J—xc

while H %(Ri) is the space of all bounded analytic functions on Ri. We denote

by HP(dt) the subspace of LP(dt) of all the boundary-value functions of HP(R?),

and identify HP(R2) with HP(dt) as usual. A function f in LP(dt) lies in HP(dt)

if and only if the Fourier transform of f vanishes on (—oc,0), in a suitable sense.

There is a simple relation between HP(D) and HP(R?). Each function g in H?(D)

is transformed by the lincar fractional map z = (w — i)/(w + ¢) into an analytic
function f on R%. Since t = (e —i)/(e'” + i) implies
1 1 dt

—df = — .

o1 ¢ 71412
we denote by HP(dt/m(1+?)) the space of all the boundary-value functions of such
transformed functions. It is known that f(¢) lies in HP(dt/m(1 + t2)) if and only if
(1+2)72/7 f(t) lies in HP(dt) (see [25, Chapter 3]).

The Poisson kernel P.(t) for R is defined by
1 v )
Pz(f):;m, z=u+1v., v>0.

For f(t) in H?(dt/m(1+ t?)). the analyvtic extension f(z) to R2 is obtained by the
convolution

16 = fepao = [ swra

R
and we sometimes identify f(t) with its extension f(z) in what follows.

A nonzero function in a Hardy space can be factored into a function of modulus
one and a function that has no zeros. We restrict our attention to the case of
HP(dt)7(1 + t2)). An inner function is a function in HP(dt/m(1 + %)) that is of
modulus one. If w is a nonnegative function in LP(d#/7(1 + ?)) such that

"
/ log w(t) L > -
o 1+ 12

and if

: 1 ™ 14tz 1t A
(2.1) hz) = 7 exp {m ./756 - . log w(t) 17;? } S Ri .
for some v in R., then A(2) is called an outer function in HP(dt/7(1 + t%)). It can

be shown that |h(t)| = w(t) on R.
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Let 2, (# ) be a sequence in R2 such that

¢

Z—L < 00, Zp =z, iy,
1+ 12,2 i ‘

n=1

Then the inner function defined by

2—i\" _ |22 4+ 1]z — 2,
Bz) = <z+i> 711-:11 241 23,

is called a Blaschke product. If v is a positive singular measure on R such that
>
—5dv(t) < o,
./ﬂo 1+1¢2

then the inner function defined by

S(z) = exp {l (@”/j@ 1;22 d”(t)>}

is called a singular inner Sfunction, where o > 0.
The following canonical factorization theorem is fundamental to the theory of
HP? spaces (as discussed in (8], [13], [14], for instance).

THEOREM 2.1. Every nonzero function f(z) in HP(dt/7(1 +12)) has a unique
factorization of the form

f(z) = B(2)S(2)h(z),
where B(z) is a Blaschke product, S(z) is a singular inner function, and h(z) is the

outer function in H?(dt /(1 +12)) defined by (2.1) with w(t) = If(t)]. Conversely,
every such product B(z)S(z)h(z) belongs to HP(dt/m(1 + ?)).

Let A be a commutative Banach algebra with identity 1. Then the class of
all maximal ideals of A is called the mazimal ideal space of A, and denoted by
M(A). Since there is a one-to-one correspondence between the nonzero complex
homomorphisms of A and the maximal ideals in A, it is customary to identify each
maximal ideal in 9(A) with the complex homomorphism that it determines. This
allows us to identify IN(A) with a subset of the unit sphere of the conjugate space
A" of A. We then define the topology of M(A) to be the weak-* topology that 971(A)
inherits from A*, which is the so-called Gelfand topology of DM(A). Then M(A) is
a compact Hausdorff space. The Gelfand transform of fin A is the continuous
function f on OMN(A) defined by

f&) =€), cema),

Thus the study of certain properties of A reduces to studying the structure of M(A).

We see easily that the maximal ideal space M(A(T)) of the disc algebra may
be considered as the closed unit disc D. However, when we regard H (d/27) as
a Banach algebra, the structure of DM(H>(df/27)) is very big and complicated. If
z = re’ lies in D, then each

. 1 2 v \
G = S0 = o [ PO~ nan fe B ()
0
determines a point in 9M(H *(df/27)), where P(0) is the Poisson kernel for D.
This implies that D is naturally embedded as an open subset in IM(H>(dO/27)).
Carleson’s corona theorem [5] states that D is dense in M(H>(df/2n)).
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For o in T, the fiber M, of M(H>(d/27)) over « is defined to be
Mo = {E€MH>(d/27)):£(z) = al.
where z is the coordinate function. Then we have the decomposition

M(H>(d6/2r)\ D = ] M.

Je]=1

It is shown that the various fibers 9, are homeomorphic to one another. If f lies
in H*>(df#/2m), then the cluster set of f at « is

Cl(f,e) = () F(DOAa.1)).

r>0

where A(a, r) is the open disc with center o and radius . Then we obtain

Cl(f,a) = f(Ma).

Various aspects of HP theory have been generalized to the abstract setting of
uniform algebras, and we give a brief outline. Let Y be a compact Hausdorff space,
and let C(Y') be the algebra of all complex-valued continuous functions on Y. We
say that a subalgebra A of C(Y) is a uniform algebra on Y if A is complete under

the uniform norm, contains the constants, and separates the points of Y. A subset
E of Y is called a boundary for A if

[fllsc = sup{[f(x)];z € E}, feA

There is a smallest closed boundary, which is called the Silov boundary of A. Each
complex homomorphism £ in 9(A) is represented by a probability measure g on
Y, that is,

i) = /Y fdu., fe A,

which is called a representing measure for £&. Then the Hardy space HP(u).1 <
p < oc, is defined to be the closure of A in LP(u), while the weak-* closure of A in
L% () is H> (). We recall that, in the case of the disc algebra A(T), HP(d8/2r)
is also obtained in this manner. To use the tools by functional analysis suitably, we
need some conditions that assure a certain size of HP(u) in LP{u). So a uniform
algebra A is called a Dirichlet algebra on Y, if ReA = {Re f; f € A} is uniformly
dense in Cr(Y), the space of all real-valued continuous functions on Y. We say A
is a logmodular algebra on Y if

log |[A7] = {log|f|: f€ A™"}

is uniformly dense in Cr(Y'), where A™! denotes the set of invertible elements of
A. As is casily seen, every Dirichlet algebra is a logmodular algebra, and A(T) is
a Dirichlet algebra on T. However, the uniform algebra of Gelfand transforms of
functions in H>(df/2m) is not a Dirichlet algebra, but a logmodular algebra on its
Silov boundary.

More generally, let A be a subalgebra of L> () containing the constants. Then
A is called a weak-* Dirichlet algebra if 1 is multiplicative on 4 and A + A4 is dense
in L>(u) in the weak*® topology. Many theorems, such as Szegd’s theorem and
the factorization theorem, have been extended to the context on weak-* Dirichlet
algebras. We refer the reader to [16], [17], [40], [45] for further details on weak-*
Dirichlet algebras.
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Let A be a weak-* Dirichlet algebra in L> (). A closed subspace A of LP(p)
is snwvariant if AM is contained in A/, An invariant subspace M of LP(j) is simply
invariant if M is not of the form I'g LP(i2). where I is the characteristic function
of a set E. We denote by Ay the subspace of A of all functions f such that

Flp) = /1 fdp = 0.

[f AgAM is not dense in A, then A is simply invariant. It is known that. for each
hoin HP (), h satistics Jensen's inequality:

log [h(1)] < / log | k] dy.
Jy

When equality holds in finite values, £ is called an oufer function in H?(u). It
follows from Szegd’s theorem that h is outer if and only if the invariant subspace
generated by h equals HP (), that is, the closure of Ahin LP(u) is HP(u). As before,
functions in H> (1) of unit modulus are called inner functions. It is also known that
if f is a function in HP(u) such that log|f] lies in L*(p), then f can be factored into
the form f = ¢h, where ¢ is inner and h is outer. However, factorization theorems
have not yet been completely developed, especially for functions f such that log | f|
is not in L (p).

As before, M(A) denotes the maximal ideal space of a uniform algebra A. For

& and v in M(A), we put
E~r = vl <2

where || -] is the norm on A*  in other words, whenever the distance from € to v in
A* is less than 2. Gleason showed that ~ is an equivalence relation on 9M(A4). An
equivalence class under ~ is called a Gleason part of IM(A). Wermer [58] proved
that if A is a logmodular algehra. and if a Gleason part P is not a point, then there
is a continuous map 7(z) of the open unit disc D onto P such that f(T(z)) is a
bounded analyvtic function on D for each f in A.

Let {z,} be a sequence in D. We call {z,} an interpolating scquence if for each
bounded sequence {q, } in C, there is a function f in H>(d0/2r) such that f(z,) =
ay, .no=1,2,.... By Carleson’s characterization [4] of interpolating sequences, they
play an important role in unraveling the structure of M(H>(d#/27)). A Blaschke
product is called an interpolating Blaschke product if it has distinct zeros and if these
zeros form an interpolating sequence. Using factorization theorems for Blaschke
products, Hoffman [26] showed that & lies in an analytic disc in 9M(H>(d#/27))\ D
if and only if € is in the closure of some interpolating sequence. In view of the size
and intractability of 9MM(H>(d#/27)), this would be a great accomplishment.

More information on IMM(H>(df/27)) and related results can be found in
[zuchi’s series of papers [27], [28], [29], [30]. In particular, he showed in [28]
the existence of certain representing measures on a fiber MM, under the contimuun
hypothesis. It would be interesting to investigate cluster sets under this hypothesis.

3. Analytic functions on flows

Let © be a compact Hausdorff space on which R acts as a transformation group.
This means that there is a one-parameter group {U: ber of homeomorphisms on
{2 such that the map (w.t) — Usw is continuous on 2 x R. The pair (Q.{U; }1er)
is referred to as a (continuous) flow. For simplicity. the translate Usw of w by ¢ is
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denoted by w + f. A subset Al of Q is invariant il M contains Uy A for all t in R.
Then Zorn's lemma assures that there is a minimal one in the class of all nonempty
closed invariant sets. If Q itself is minbmal, then (Q.{U;}ier) is called a minimal
flow. A ow (2. {U;}ier) is minimal if and only if the orbit of w,

Ow) = {w+t:teR}.

is dense in € for each w in Q. On a minimal flow (Q. {U;}+cr). each function ¢ in
C'(€2) is the extension of the uniformly continuous function ¢ — o(w + 1) on R: so
such a function on R may be regarded as an almost periodic function in a sense.

By the Markov-Kakutani theoremn, there is at least one invariant probability
measure on €. An invariant measure is said to be ergodic if every invariant subset
of © either is negligible or has negligible complement. We use the symbol £ for
the set of all invariant probability measures on 2. Then K is a nonempty compact
convex set in the weak-* topology. Since a measure in £ is ergodic if and ouly
if it is an extremec point of X, the Krein-Milman theorem assures the existence of
an ergodic measure in K. A minimal flow (2, {U; }ier) is called strictly ergodic if
there is exactly one invariant probability measure on Q. A function ¢ in C'(Q) is
analytic if t — ¢(w + t) lies in H>(dt/7(1 + t?)) for each w in Q. Let A(Q) be the
algebra, of all analytic functions in C'(€2). When (Q,{U;}ier) has no fixed points,
A(Q) becomes a uniform algebra of €2, which is called the uniform algebra induced
by (2, {U; }ter). Many results have been obtained about such uniform algebras
(sec [9], [35]. [39]. and [52]).

Wermer's maximality theorem [57] states that the dise algebra A(T) is a max-
imal closed subalgebra in C(T), that is, every closed subalgebra of C'(T) that
properly contains A(T) equals C(T). As a generalization of it. Forelli [11] proved
the following.

THeoREM 3.1. If (2. {U; hier) is minimal, then the induced uniform algebra
A(Q) is a mazimal algebra in C'(2).

In connection with this result, he asked the question stated in the Introduction
(see {36, §6] for a nice account of related topics). In responce to the question. Muhly
[35] gave, among other things, a suflicient condition for A(£2) to be a Dirichlet
algebra.

THEOREM 3.2. If (Q.{U:}ier) is strictly ergodic, then A{Q) is a Dirichlet al-
gebra on ).

THEOREM 3.3. Let j be an invariant. ergodic. probability measure on 2. Then
it is a representing measure for A(Q) and A(Q) is a weak-* Dirichlet algebra in
L> ().

These results are iportant. Indeed, under these conditions we can discuss
Hardy spaces and invariant subspaces by applying the general theory of wuniform
algebras. It long remained unknown. however, whether A(€2) is a Dirichlet algebra
for a minimal flow (Q,{U;}rer). We finally found in [48] an example of A() that
is not a Dirichlet algebra.

On one hand, the mintimal flows that arc not strictly ergodic have loug heen
investigated in ergodic theory (see. for example, {42]). On the other hand. the
difference between Dirichlet algebras and logmodular algebras. just like A(T) and
H>(d#/27), has been discussed. It may be interesting that these two independent
areas are related to cach other, via the induced uniform algebras.
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Let us mention briefly the maximal ideal space M(A(S2)) of A(Q). For ¢ in
A(Q2) and r > 0, the convolution of ¢ with the Poisson kernel Pi(1),

oC
oz, r) = ¢ Py(x) = / oz + )P (t)dt, xeQ,

—
is a complex homomorphism of A(€2). This shows that Q x [0,0¢) may be con-
sidered as a subset of M(A(S2)). As r tends to oc. {(z.7)} accumulates to points
in MM(A(S2)) for which representing measures are invariant. In particular. when
(2 AUt }rer) is strictly ergodic, IM(A(Q)) is the quotient space obtained from by
€ x [0, 0¢] by identifying the slice 2 x {oc} to a point. Some results relating to
the corona theorem have also been obtained. We refer to (36], [47], and [59)] for
details.

In the rest of this section, we devote ourselves to the construction of an induced
uniform algebra that is not a Dirichlet algebra. Let 8Z,S, and X be as in the
Introduction, and let {St}ier be the one-parameter group of homeomorphisms on
X defined by

(31) St(yvs) - (S[t+S]y7t+ s = [t + 5})7 (yas) € X,

where [t] denotes the largest integer not exceeding t. Then (X, {S;}ier) is a flow,
which is a special case of the so-called flows built under functions in ergodic theory.
Let Xy be the quotient space obtained from Z x 0,1] by identifying (n.1) with
(n+1,0). Then X, is a dense invariant set in X that is homeomorphic to R. Sec
[34] or [55] for Stone-Cech compactifications.

Let Cuy(R) be the C*-algebra of all bounded uniformly continuous functions
on R. Then we casily obtain the following proposition.

PROPOSITION 3.4. Let X be the compact Hausdorff space defined above. Then
Cup(R) is isometrically isomorphic to C(X). In particular, X is the maximal ideal
space of Cp(R).

Let us consider the uniform algebra A(X) induced by (X, {S;}ier). Let f be
a function in H*(dt/n(1 + t?)), and let > 0. Since f(t +ir) is the convolution
of f(t) with Py,.(t), t — f(t + ir) lies in Cup(R). By Proposition 3.4, this extends
to a function ¢(z,r) in A(X). Conversely, since R is dense in X, each [unction
in A(X) is determined by its restriction to R. Therefore, A(X) is generated by
the family {¢(x,7):r > 0}. We next regard ¢(z,7) as a function on X x (0, 00).
Then a function in H*°(dt/x(1 + t2)) appears on each orbit by Fatou’s theorem.
Let H>(X) be the space of all boundary functions of @(z,7). Then H>®(X) is
isometrically isomorphic to H*(dt/m(1 4 t2)). We see also that each point in X x
(0,00) determines a complex homomorphism for H>(X). Since H>(dt/7(1 + t2))
and H>(df/2r) are isomorphic, X x (0, oc) corresponds to a portion of the maximal
ideal space MM(H>(df/2m)). Tt is easy to sec that Xy x (0,00) and X\ Xy x (0, )
determine D and the union of the accumulation points of the regions between two
circles tangent to T at 1, respectively.

The maximal ideal space M(A(X)) contains X x [0,00), which is dense in
M(A(X)) by the corona theorem. Each accumulating point of X x [0,20) is a
complex homomorphism of A(X) whose representing measure is invariant. This
observation suggests a relation between the corona theorem and the individual
ergodic theorem. Indeed, it follows from Wiener's Tauberian theorem that the
existence of one side of the following limits implies the existence of the other, and
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the two are equal:
1 (T
rlggc o P (z) = TIEI; or |, Ol + t) dt.

Then the individual crgodic theorem assures the existence of the right side. Recall
that each invariant ergodic probability measure is a representing measure for A(X)
by Theorem 3.3. With the aid of the ergodic theorem, we may show directly that
such representing measures are accumulating points of Xy x (0,0c). Let K be as
above. Then such measures consist of the extreme points of K. Thus if Choquet
theory could be developed further, there would be another way to prove the corona
theorem.

Let M be a minimal set in (X, {St}+er). Restricting S; to M, we have a
minimal flow (M, {S;}icr), which has the strongest topology in the class of all
minimal flows. There are consequently a great many invariant probability measures
on M.

PROPOSITION 3.5. Let (M,{Si}ier) be as above. Then (M, {Si}ier) is uni-
versal, meaning that every minimal flow is a factor of (M, {St}ier).

Outline of Proof. Let (. {U;}ier) be a minimal flow, and fix an w in €. The
C*-algebra generated by {t — ¢(w+1) ;¢ € C(2)} is a closed subalgebra of Cy(R).
It follows from the Banach-Stone theorem that there is a continuous map 7 of X
onto §2 such that

ToS{z) = Uor(z), x€lX.
Then the restriction of 7 to M is the desired map of M onto (2. O

THEOREM 3.6. Let A(M) be the uniform algebra induced by the above flow
(M, {Si}1er). Then A(M) is a logmodular algebra that is not a Dirichlet algebra.

Outline of Proof. As is casily seen by the relation to H°°(dt/m(1+1%)), A(X) is
logmodular on X. Since the restriction Ay of A(X) to M is a subalgebra of A(M ),
A(M) is also a logmodular algebra on M. We then see that 9(A(M)) is the closure
of M x[0,00) in M(A(M)). To choose a suitable interpolating sequence, we find by
Hoffman’s theorem a Gleason part P in M x {oc} that is homeomorphic to D. Let
P denote the closure of P in MM(A(M)), and let A5 be the algebra of all restrictions
of Gelfand transforms of functions in A(M). Then Ai? is isometrically isomorphic
to H>(df/2m). As is stated above, H>(df/2m) is not a Dirichlet algebra on its
Silov boundary. This implies that there is a nonzero real measure v on P\ P that
is orthogonal to Ajps. Define

(3.2) L(¢) = / SO dulE), b e C(),

P\P

where (ﬁ({) denotes the integral with respect to the representing measure for £.
Then L is a bounded lincar functional on C(M). It follows from the Riesz-Kakutani
theorem that there is an invariant real measure that is orthogonal to A(M). Thus
Re A(M) cannot be dense in Cr(M). O

We note that the above v may be chosen as a measure on the Silov boundary
of A(M), each of which has a representing measure that is invariant and ergodic. It
therefore might be interesting to study the relation between (3.2) and the ergodic
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decomposition of invariant measures. Check F igure 1 again for places of A and P,
and (48] for the detailed proof of Theorem 3.6 and related topics.

4. Analytic functions on compact groups

In this section we will be concerned with Hardy spaces of analytic almost pe-
riodic functions of the form

fi) = Z cie™t e R,
J
where the A; belong to the positive half of a subgroup T’ of R. If I' is the group Z
of integers, then f may be regarded as an analytic function on D.

We now assume that I' is a dense subgroup of R but endowed with the discrete
topology. Let K be the dual group of I', and let ¢ be the normalized Haar measure
on K. When X in I' is considered as a character on K. it is written yy. A function
[ in LY(o) is analytic if its Fourier coeflicients

) = [ s dote)

vanish for all negative A in I'. The Hardy space HP(0),1 < p < o0, is defined to be
the space of all analytic functions in L? (o). Similarly, A(K) denotes the algebra
of all analytic functions in C(KX). Then A(K) is a Dirichlet algebra on K and o
Is a representing measure for A(K). We notice that HP (o) is also obtained as the
closure of A(K) in L”(s) as in Section 2.

For each t in R, e; is the element, of K defined by e:(A) = e for any A in
I'. Then the map t — ¢, embeds R continuously onto a dense subgroup of K. We
then define the one-parameter group {7} }ter of homeomorphisms on K by

Tiv = 2+e. z€kK.

The flow (K, {7} }ieRr) is strictly ergodic, and ¢ is the unique invariant probability
measure on it. Since

N (Tir) = xale+e) = ey (a),

Xa(x) is an eigenfunction with eigenvalue A. We remark that the discrete spectrum
theorem characterizes ergodic flows that arc conjugate to (K, {T}};er) (sec [15],
[56]).

Fix a positive v in T, and lot K., be the subgroup consisting of all » in K
such that x,(x) = 1. Then K may be identified witl, K, x[0,27/v) via the map
Yy+s = (y,s). When 2r lies in I, we fix a homeomorphism on K, by Sy = y+e.
Then {Ti},er may be represented in the form (3.1).

We sec casily that a function Jin LP(o) is analytic if and only if t — f(z +#)
lies in HP(dt/m(1 4 t2)), for a.c. = in K. Using this fact, we characterize outer
functions in H2(o) as follows.

LEMMA 4.1. A function h in H?*(o) is outer if and only if i](()‘) # 0 and
t— h(x +t) is outer in H*(dt /(1 4+ 2)) for ace. r in K.

Qutline of Proof. Suppose that A(K)h is not dense in H?(o). Then there
Is a nonconstant function ¢ in H?(o) that is orthogonal to A(K)h. Since t —
gz +t)h(z + ) lies in H! (dt/m(L4+1%)).t — hix + t) cannot be an outer function
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in H2(dt/m(1 +t?)) for a.e. z in K. Conversely, suppose that the sct of all z in K

such that
o]

log |h * P ()] < / log |h(x + )| P (1) dt

—OoC

has positive measure. Since h * Py.(z) lies in H?(o), we obtain

log| | hx* Pp(z)do(z)] < . log |h * Py.(2)] do(z)
K K

by Jensen’s inequality. This implies that

log |h(c)] < / log |h(z)] do(x).
K
Thus h cannot be outer in H?*(o). O

Let f be a function in C'(K) with Fourier scries
f@)~ Y anxa, (@)-

Then f is uniformly approximated by a sequence of trigonometric polynomials on
X by the Stone-Weicrstrass theorem. This implies that Fi.(t) = f(z +1) is a
uniformly almost periodic function (in the sense of Bohr) with exponents in I,

F.(t) = Z a77,XAn(a:)ci’\’lt.

If y + e, tends to z for a fixed y in K, then F, (1) may be regarded as a kind of limit
of translations F,(t 4+ t;). The same relation holds between L?(o)-functions and
almost periodic functions in the sense of Besicovitch, if we exclude an exceptional
null set.

Since the 1950s, A(K) and HP (o) have been explored as extensions of A(T) and
HP(d#/27) to functions of several variables. In particular, the invariant subspace
theory has flourished in this setting. Each invariant subspace in L?(o) corresponds
to a function of modulus one on K x R. which is called a cocycle. However, there
remain many interesting problems; for example, we do not know whether every
simply invariant subspace can be generated by one of its elements.

Let T« be the complete direct sum of countably many copies of T. If T" is
countable, then K is a closed subgroup of T% (see [44] for details). We now adduce
an example that plays an important role in the next section.

EXAMPLE. Let Z> be the direct sum of countably many copies of Z, that is,
the group of all sequences of which all but a finite number of terms vanish. Taking
primes p as indices, we denote Z* by

2° = 722623 9L - OLy S,

where Z, = Z. Then Z™ has a natural order, and its dual group is identified with
T«. Indeed, let 7 be the isomorphism of Z* into R by

T({n,}) = Z nplogp, {ny} € Z™.
P prime

We sce that 7(Z>) is the dense subgroup I' = {log ;7 is positive rational} of R,
and that the dual group K of I' is isomorphic to T* via the map 7° defined by

(r"(@). {np}) = (2. 7({np}))-
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We also let
" =ToT;eoTs2 9T, - |

where T, = T. Since ci(logp) = etlogp  the one-parameter group {7} };cg of
homeomorphisms on T% is defined by

T({e™}) = {e'O¥tlosn) (o) ¢ o

We note that the normalized Haar measure op on T is given by

1
dop = ] 5 @y

P prime

We identify K with T as usual.

Analyticity on compact groups with ordered duals is developed in [13, Chapter
V1], [22], and [44, Chapter g].

5. Extension of the Riemann zeta-function
and Dirichlet series with Euler products

By a Dirichlet series, we mean a series of the form

oC
(5.1) o) =3 " s ot

—n
where {a,} is a sequence in C. Then the series converges on a right half-plane
o > 09, on which the sum f(s) of the series is an analytic function. The most
important Dirichlet scries is the Riemann zeta-function, which is the case when
a, = 1:

o0

<(s>:2%: [T a-2)1 os1.

n=1 p; prime p5
This infinite product is called the Euler product. The function ¢ (s) can be analyti-
cally continued over C except when s = 1, where there is a simple pole with residue
1. The Riemann Hypothesis amounts to the assertion that {(s) has no zeros in the
half-plane o > 1/2. If we assume that {an} is bounded and Umn = @0, in (5.1),
then f(s) is also representable as an Euler product:

a
5.2 (s) = I Y
(5.2) for = I a-21 o
i prime
In particular, when |a,,| = 1, (5.2) is deeply connected with ¢(s). Indeed, such an

f(s) may be obtained as some kind of limit of translations of ((s) in a vague sensc.
Using the flow (T*, {7} };cr) in the above example, we first extend ¢(s) to an
analytic function on T%. Let u > 1/2. Since
1
Clutit) = e logn
n=1
t — ((u —it) can be considered as an analytic almost periodic function on R. So
this may be extended to an analytic function on Tw by

(5.3) Zy(x) = Z — Xlogn(2), z&T¥,
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-1

1)

Since

X

. 1
ZJE =Y 0 < >

n=1

Z,(x) lies in the Hardy space H?(op) defined in Section 4. Restricting Z, () to the
orbit O(0) = {e;:t € R} and extending it to {Imz > 1/2}, we have ((s), o0 > 1.
To state things more precisely, we denote by Z,(z + z) = Z,(z + ¢.) the analytic
extension of ¢ — Z,(x + €;) to R3. Then we obtain

1
;L’u“ Xlog n(ez)

NE

Z.(e,) =

3
il
—

T e’i(log nyz
nv

|
¢

‘,

2
il

—

1 1

nu iz

I
Nk

3
I
—_

If we put z = is (the 90° rotation of the right half-plane), then Z,(e.) represents
¢(s +u). Thus Z,(x) is regarded as an extension of {(s) to T*, and each z —
Zy(x + 2),Imz > 0, is analogous to ((s) by its almost periodicity. In particular,
if Imz > 1/2, then Z,(x + 2) is continuous on T* as a function of z; so ((s) is
determined completely by z — Z,(z + z) (see Figure 2).

|

b9

1 - ‘ !

o

——— A : |
*{S-) 0 0 ¢ N
........................ 1wl
1 4 P

5 U . |

b

oo

T

FIGURE 2

LEMMA 5.1. Let w > 1/2, and let Z,(x) be the function in (5.3). Then both
Zu(2) and Z, ()" are outer functions in H%*(op).
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Outline of Proof. Recall that the Mobius function u(n) is defined by

1, ifn=1,
wn) = ¢ (=1)", ifnis the product of k different primes,
0, otherwise,
Then
1 >\ u(n)
5.4 — = , o > 1.
&4) G T2
If we put
_ — 1(n) ‘
Zy(x b= ognl\T) , 7€Twa
(x) T; b (), a

then Z,(x)~" lies in H?(op) and Zu(2) Zy(x)™1 = 1. From these facts, it follows
that both subspaces H>(op) Z, (z) and H>(op) Zu(x)"" are dense in H2(op). [

By Lemmas 4.1 and 5.1, z — Zy(x+2) is an outer function in H?(dt/m(1+1t2))
for a.c. z in T%; so it has no zeros. The restriction of Zu(x + 2) to the orbit O(0)
of 0 represents ((s) as mentioned above. Since ((s) has the pole s = 1, 0(0) is
contained wholly in the exceptional null set in Lemma 4.1.

Let us look into a property of Z, (x + z) precisely. Since

o0
ZH(I + Z) = Z 71—" .Xlogn(-'[ + Cz)
n=1 "
|
los
= D oo Xiogalw)ellem>
n=1
- U gy —iz
— n*n
where we put a,, = Xlogn (), it follows that the sequence {a,} satisfies |a,| = 1
and @, - G, = @, by the definition of characters. If n = pi’l ~p§2 ~~pf‘ is the
factorization of n in prime numbers, then we obtain
(5.5) Gn = af}l : (1;’)2 - af,’,
Conversely, each z = {ap} in T decides Xiogn(Z) by (5.5). Thus we have the
following.

THEOREM 5.2. Define a, by (5.5) with a gen {ay} in T, and let

oo

Ly ap . _ .
(5.6) fls) = In ” (1~2) Yos = o +it,
ns » s
n=1 p: prime
which is absolutely convergent on o > 1. Then, for a.e. {ay} in T, f(s) extends
analytically to o > 1/2 and has no zeros.

In a similar way, we sce that Z,(z)"! has the same property. However, when
{ap} in T¥ is given concretely, we have no idea for deciding whether f(s) in (5.6)
satisfics the conclusion of Theorem 5.2.
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Let 29 = {~1} in T*. Since Xiogp(zo) = —1, we see that

, 8§ = o-+it.

C(g) . _Xlogp(-TO)
¢(2s) Il o )

This implies that

p: prime

Zy() ZQu(2I)*l = Zy(x + TU)i]‘

Since Zg,, (22) 7! is represented as an absolutely convergent Fourier scries, Za, (22) 7

is a continuous outer function on T¢. So Z,(x) acts as if it were self-reciprocal by
the translation # — x + 2¢. The set of zeros of Z,(x + z) corresponds to the set
of poles of Z,(z + xy + z), although both are empty for a.e. x, by Theorem 5.2.
However, using a property of alternating series, we can casily find Dirichlet serics
of the forms (5.6) that have zeros, poles, or both in 1/2 < o < 1.

The Rademacher functions seem to be useful. Indeed, in a way similar to 8,
Appendix A], it can be shown that, for a.e. {a,} in T*, the Dirichlet scries f(s) of
the form (5.6) has the property that the limit

lim f(o +it)

o1
does not exist for dt-a.e. t. Thus, unlike the case of {(s), such Dirichlet series cannot
satisfy any kind of functional equation and cannot even extend analytically across
the line ¢ = 1/2. Moreover, a property of the Rademacher functions enables us to
show that both Z,(z) and Z,(z)" " liein H?(op),1 < p < 00 (see [20] for another
proof).

There is a relation between the abscissa of convergence for Dirichlet series and
Hardy spaces on R. Let f(s) be a Dirichlet series of the form (5.1). It follows from
(50, 9.14] that if the function

F\) = Z an

log n<A

satisfies F(logn) = O(n"), then f(s) converges for o > u.

THEOREM 5.3. Let f(s) be a Dirichlet series of the form (5.1). Suppose that
f(s) extends analytically to o > oo (> 0) and

t— flog —it) € H"(dt/m(1+1%))

forr > 2. Then f(s) converges for o > oo+ 1/r.

Outline of Proof. For each ¢ with 2 < ¢ < r. we choose p such that 1/q +
1/p = 1. Since

27
=

lo +itl? = |o+it E la+it|p“*%)_

we obtain by Holder's inequality that
ep

> P DG . r p/r X T p
dt < / M dt / o+ it = dt
J - J—x i(f + I,f‘z e

Since r > q = p/{p — 1), we see that p(r —2)/(r —p) > L. This assurcs that the
last integral converges. On the other hand, we may sce that the Fourier transform

of X\ — e 2 F()\) is

flo+it)
o+it

flo+it)
o+it
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Then it follows from the Young-Hausdorff theorem that

/x e PN Td)N < .

oC

This implies that

Z e~ ol (1o n)|" {log(n+1) ~logn} < ~.
n=1

Since the terms of this scries tend to 0, we have
[Fllogn)] = O(n7+1/9).
so f(s) has the desired property. U

As we mentioned above, Zy () liesin HP(0p).1 < p < oo. Thent — Z,(x+t)
lies in HP(dt/m(1 + t?)). We thus obtain the following.

PROPOSITION 5.4. Under the hypotheses of Theorem 5.2, the Dirichlet series
of the form (5.6) converges on o > 1/2, for a.e.{a,} in T,

We know little about the relation between the exceptional null sets in Theorem
5.2 and Proposition 5.4. Littlewood’s theorem [51, 12.25] states that the conver-
gence of (5.4) is equivalent to the Riemann Hypothesis. Regarding this, it would
be interesting to investigate such null sets in further detail.

Finally, we would like to make a remark on mean values of negative powers of
C(s). Let 0 < p < oc and let u > 1/2. Since Z,(x)~! is outer by Proposition
5.1, we see easily that Z,(x)"? is defined and lies in H'(op). It then follows from
the individual ergodic theorem that

1 T .
lim f/ |Zu(z+1)|7Pdt = / | Zo(z)| 7P dop(2)
Jo w

holds for a.c. 2 in T%, Although we do not know whether this holds on the orbit
0(0), it is possible to show a weak version with the aid of a normal family argument
and Rouché’s theorem. A subset .J of the nonnegative integers Z* has density zero
if
1
N
We fix an ¢ > 0. Then there is a subset .J of Z+ of density zero such that

(JN{0,1,2,--- . N—-1})—0 (as N — oc).

1 N—-1 (n+1)¢ .
All_rpxm “go /n[ IC(u+it)| P dt = /t |Zu(x)| P dop(x).

JIn

Of course, we can derive the counterpart for the case of positive powers of ¢(s).
For the proof, see our subsequent note, Dirichlet series induced by the Riemann
zeta-function.

In [1], [3], and [41], the Riemann zeta-function is discussed in connection with
functional analysis. In Helson's series of notes [18]. [19]. [20], [21]. one can find a
modern treatment of Dirichlet series by the methods of functional analysis.

The author would like to express his sincere gratitude to Professor Koji Mat-
sumoto for his useful comments. He was kind enough to inforin us that methods
similar to those of Section 5 are used in the value distribution theory of the Rie-
mann zeta-function, and also to introduce Laurinéikas’ book [33] as a good reference
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source in the field. He also gave another proof of Theorem 5.2. Thanks are due to
the referee as well, for valuable suggestions that improved the first version of this
paper.
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SINGULAR COCYCLES AND THE GENERATOR PROBLEM

HENRY HELSON and JUN-ICHI TANAKA

ABSTRACT. This is another in a series of papers about function theory on
compact abelian groups dual to subgroups of the line. A theorem of Tanaka
about cocycles of invariant subspaces generated by one element is reproved;
it is shown that singular cocycles come from simply generated subspaces;
and a new class of cocycles is shown to intersect every cohomology class of
cocycles.
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1. INTRODUCTION

Let (X, B, 7, u) be a dynamical system, with x4 a probability measure invariant
under the flow (7;). A function f on X (bounded, or belonging to some appropriate
function space) is said to be analytic if f(7;z) is analytic in ¢ for a.e. () z (that
is, it is the boundary function of an analytic function on the upper halfplane).
Function theory on the line can largely be extended to this setting (among many
papers we cite [1], [7] and [9].) Since the operator T; that sends f(z) to f(r:z) is
unitary in the space L?(X, 1), the spectral theorem can be combined with function
theory to study the flow ([3]).

Take for X a compact abelian group K whose dual I is contained and dense
in the real line R. A natural flow is induced in K by the immersion of T' in
R: 1z = z + ey, where e, is the element of K defined by: e;(\) = exp(itA) for A
in I'. The elements (e;) form a dense subgroup Kp of K. The study of analyticity
on flows began in this context. The central problem became the extension to
K of the description of the closed subspaces of L2(T) that are invariant under
multiplication by expiz, where T is the circle group. The analogous subspaces on
K are in correspondence with certain functions defined on R x K called cocycles.

The theory to 1975 is expounded in [3], except for the study of Blaschke
cocycles in [2]. One of the problems still unsolved is the question whether every
simply invariant subspace of L?(K) is generated by one of its elements (as is the
case, trivially, on the circle group). We know that two elements always suffice.
Tanaka ([8]) showed that a subspace is simply generated if and only if its cocycle
is cohomologous to a Blaschke cocycle whose zeros are all equidistant from the real
axis, and distributed in a regular way. This result makes it interesting to know
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when two Blaschke cocycles are cohomologous, and this appears to be a difficult
problem.

Section 3 of this paper presents the techniques to be used afterwards. In
Section 4 the main result of 8] is reproved. The basic Lemma 3.2 is applied in
Section 5 to show that every cohomology class of cocycles contains one of a new
kind. Finally, in Section 6 the structure of singular analytic cocycles is studied. It
is proved that a normalized invariant subspace whose cocycle is a singular cocycle

2. BACKGROUND

This section summarizes some of the definitions and results of [3].

K is a compact abelian group dual to I, a dense subgroup of R carrying the
discrete topology. The character of K associated with an element )\ of I' is called
X, 80 that xx(z) = z(\). Normalized Haar measure on K is 0. For each real
t, e is the element of K defined by e:(A) = exp(itA), A in T'. We construct the

Lebesgue spaces L?(K) (p > 1) by means of 0. A function fof LK) is analytic
if its Fourier coefficients

(2.1) ay = / f(@)xa(x) do(z)
K

vanish for all negative A in . The Hardy space HP(K) is the subspace of LP(K)
consisting of its analytic functions; HEY(K) is the space of such functions for which
also ag = 0.

Let v be the measure ;gd:fT on the line. We form the spaces L? of functions
on the line with this measure. HP° is the space of boundary functions on R of
bounded analytic functions on the upper halfplane, and for p > 1, H? is the closure
in LY of H®. A function f of LP(K) lies in HP(K) if and only if f(z + ¢;) is in
HE as a function of ¢ for a.e. z.

An invariant subspace is a closed subspace M of L%*(K) such that xXx- fis
in M for each f in M and all positive A in T'. That is, the family of subspaces
(xax M=M ) decreases. If the inclusion is strict (for one, and therefore for all
such A), we say that M is simply invariant. Then

(2.2) My =(0), M, is dense in L¥(K).

Denote the orthogonal projection onto M) by P, (Ain T). For A not in I, define
Py as a limit. The family (I — Py) determines a spectral measure in L?(K), so we
can define the unitary group

o0
(2.3) Vi = — / et dp,.
-0

This group has a particular form. Define the translation operators: T; f(z) =
f(z + e;) for any function fon K, and real t. If M is H%*(K), then V, is T;.
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Otherwise there is a function A; of modulus 1 such that V; = A,T; for each ¢, and
thus A; = V;1 (where 1 is the constant function). The mapping from R to L?(K)
that carries t to A; is continuous. Finally, the family (A.) satisfies the cocycle
identity

(2.4) At = AT Ay

for all real ¢t and u. (For each ¢ and u the equality holds a.e. on K.) By adjusting
null sets, we can find a measurable function A(¢,z) on R x K such that A;(z) =
A(t,z) a.e. for each ¢, and

(2.5) Alt +u,z) = A(t,2)A(u, z + €;)

for all real t,u and all z in K.
Conversely, every cocycle is obtained in this way from a simply invariant
subspace M, but the correspondence is not quite one-one. Define

(2.6) M, = () My; M_ = closure of |J M.
A>0 A>0

These are invariant subspaces; either they are identical and equal to M, or they
are exactly one dimension apart and one of them equals M. For example, H%(K)
and H2(K) are two versions of this sort. If the versions of M are unequal, they
lead to the same spectral measure, unitary group, and cocycle. If M is M, , then
M is normalized. The correspondence between normalized subspaces and cocycles
is one-one.

If M, and M_ are not the same, then M, = ¢- H>(K) and M_ = q -
HZ(K) for some unitary (that is, unimodular) function q. We call these Beurling
subspaces. Their cocycle is q—(ﬂz%—i—t—); this is a coboundary. Otherwise M cannot
have this form, and the structure of invariant subspaces is more complicated than
on the circle.

We say that the simply invariant subspaces M and N are equivalent if M =
g - N for some unitary function q. Then their cocycles are cohomologous; the

cocycle of M equals the cocycle of N multiplied by the coboundary q(‘i(:it).

The cocycle associated with a simply invariant subspace was defined by
means of the spectral theorem. There is another, function-theoretic connection.
On the circle, f belongs to the subspace ¢ - H? if and only if §f is in H2. On K,
f belongs to the subspace M, whose cocycle is A if and only if A(t,z)f(z +e;) is
in H? as a function of ¢ for a.e. z. Further, f generates either M, or M_ if and
only if this product is an outer function of ¢ (relative to the upper halfplane) for
a.e. .

A function f in L%(K) generates a simply invariant subspace if and only if

oo

(2.7) / log|f(z + e:)|dv(t) > —o0

—00

a.e.. (The integral is finite for a.e. z, or else equals —oo for a.e. z.) This condition
is satisfied if log|f] is summable, but it is weaker. If f belongs to L? (K) and
log |f| is summable, then the invariant subspace M generated by f is normalized
and is a Beurling subspace ¢- H?(K). If log | f| is not summable, but satisfies (2.7),
then M = M_. It is known ([6]) for certain f of this kind that M, = M_, but
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not whether this is the case for all such f. It is not known whether HZ(K) has a
generator.

A cocycle A is analytic if for fixed z, A(t,z) is the boundary function of
an inner function A(z,z) on the upper halfplane. The cocycle identity for real ¢
extends to

(2.8) A(z +t,2) = A(t,2)A(z,z + et).

The zeros of A(z,z) can be thought of as a subset of Ry x K. If t and u are real
numbers with u positive, z = ¢ + iu, we shall write z + z to mean (u,z+e;) in the
product space.

A Blaschke cocycle is an analytic cocycle A such that A(z,z) is a Blaschke
inner function for a.e. z. A singular cocycle is an analytic cocycle that is a singular
inner function for a.e. z. Every analytic cocycle is the product of Blaschke and
singular cocycles (which may be trivial).

A function f(t,2) of the special form 9(z + e;) will be called automorphic.
It obviously has the property that ft+u,z) = f(t,o + ey) for real t,u. If f is
a measurable function on R x K such that this equality holds a.e. in z for each
real ¢,u, then there is a measurable function g on K, namely f(0,z), such that
f(t,z) = g(z + &) a.e. in z for each real ¢.

3. CONSTRUCTION OF COCYCLES

In this section we deal with cocycles in the strict sense; the defining equation (2.5)
should hold everywhere on R x K. And we shall also use additive cocycles: real
functions v(t, z) defined on R x K such that

(3.1) v(t+u,z) =v(t,z) + v(u, z + et)

almost everywhere in z for each real t,u. The additive cocycle is strict if the
equality holds for all t,u,z. vis a coboundary if it has the form w(z + ;) — w(z)
for a measurable real function w. Obviously expiv is a multiplicative cocycle; and
if v is an additive coboundary, the exponential is a multiplicative coboundary.
For notational simplicity we assume henceforth that 27 belongs to I. Denote
by K the subgroup of K consisting of all z such that z(2m) = 1. The intersection
of K, and K, consists of all the points (e,). More generally, K; intersects each
coset (z + e;) in a discrete set of points. This copy of the integers has no natural
origin, however, unless the coset is Ky itself, because the flow has no measurable
cross-section. Each z in K can be written uniquely as z; + e, where z; is in K 1

and -1 S u < 3. Thus K is represented as K 1 X [~ 2,1}, and this identification
is a Borel isomorphism.

Normalized Haar measure on K 1 will be oy; then o is the product of o1 and
Lebesgue measure on [ — 33)-
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LEMMA 3.1. Ifv is an additive cocycle and v(1,2) = 0 for all z in K, then
v is an additive coboundary.

Define w(z + e;) = v(t,z) for z in K; and 0 < ¢t < 1. Then w is defined
unambiguously on all of K, and vanishes on K;. The hypothesis and (3.1) imply
that equality holds for all real ¢, with z in K;. Now v(t,z) = w(z + ;) — w(z)
for all real ¢t and z in K because w(z)} = 0; the same is true for all z in K by the
cocycle identity.

The same proof shows for multiplicative cocycles that if A(1,z) =1 for z in
K, then A is a coboundary.

Let a be a measurable real function on K;, which will be required to satisfy
the condition

la(z + en)|
(32) Z—W <OO,V V.’EEKI.

The formula

n

(3.3) v(t,z) = Za(a: +en) / k(u)du, z€ Kj,

n—t

where k is a real function on the line that is not too large, defines a function on
R x K, that satisfies

(3.4) v(t+1,z) =v(1,z) +v(t,z +e1).

Any such real function can be extended, in a unique way, to an additive cocycle
on Rx K.

LEMMA 3.2. Let k, = [ k(u)du with |k,| = O(n™3) as n > +oo, and

n—1
let v be given by (3.3). If Yk, = 0, then v is an additive coboundary. If 3k,
is a multiple of 2w, and « takes integral values, then expiv is a multiplicative
coboundary.

Assume first that >k, = 0. In (3.3) take t = 1:
(3.5) v(1,2) =) a(z + en)kn.

Set s, = Y k;. Then (3.5) can be written
—o0

(3.6) v(l,z) = Z[a(z +en) —afz + eny1)])sn.

This rearrangement is valid because s, = O(n~2) as n tends to —oo; and since
>k, = 0, the same holds as n tends to co. Let

(3.7 w(z) = Za(x +en)sn, =€ Kj.

Then v(1,2) = w(z) — w(z + e;) for z in K;. Extend w to all of K by setting
w(z+e) = w(z) for z in K7 and 0< t < 1. Then w(z) —w(z+e;) is a coboundary
that matches v on K; for ¢t = 1, so by Lemma 3.1 v is a coboundary.
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Under the second hypotheses, the sum (3.7) need not converge because s,, is
not small for positive n. But if o takes integral values and Sn tends to a multiple
of 27, then the sum converges modulo 27, so expiw is defined, and expiv is a
coboundary.

A Blaschke cocycle A will be called special if for z in K 1 its zeros all lie in
the set K; +i. Then the cocycle can be written for z in K;

n+l-t n’—ia(z"'en)
| o) = [ [IEit 2oy
(38) Alt,2) H n—-1—t n+4i
where a is a non-negative integer-valued function defined on K, that satisfies the
Blaschke condition (3.2). The cocycle equation determines A(t,z) for all 7 in K.
If o is summable on K, (a stronger condition than (3.2)) then A is a cobound-
ary. To prove this, define

(3.9) wz+e) =] [

t—n)2 a(z+e,)
(t—n) J e K,

1+ (t—n)2

(We check that the right side is automorphic, so that « is a positive function
on K.) Now logu is summable; hence v generates a Beurling subspace. Also
u(z + e;)A(t, x) is an outer function of ¢ for each z, so A is the cocycle of this
subspace. This means that A is a coboundary.

The cocycle (3.8) can be written as the exponential of an additive cocycle:
expiv, where (after some calculation)

n

ds
(3.10) v(t,x)=22a(x+en)/sz+1, z€ K,

n—t

If a is not integer-valued, (3.10) can serve to define A. Generally, if & is any real
function on R that is not too large, and o merely satisfies (3.2), the same formula

(3.11) w(t,x):2Za(z+en)/k(s)ds, ze K,

defines a function on R x K- 1 that can be completed to be an additive cocycle.

Lemma 3.2 enables us to replace the function under the integral in (3.10) by
a more convenient one k. Let k, = nl“fﬁ for each n except 0; and kg = 1 — ~,
where v is chosen so that

(3.12) Y ka=m.

Set k equal to k,, on each interval (n—1,n). By Lemma 3.2, the additive cocycle w
determined by (3.11) is cohomologous to v. This is true even if o takes non-integral
values.
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4. SIMPLY GENERATED SUBSPACES

This section reproves a main theorem from [8] in a different way.

THEOREM 4.1. ([8]) A normalized simply invariant subspace M is simply
generated if and only if its cocycle A is cohomologous to a special Blaschke cocycle.
If a Blaschke cocycle has zeros with bounded imaginary part, then the corresponding
normalized subspace is simply generated.

Let A be any Blaschke cocycle whose zeros have bounded imaginary part,
and M the normalized invariant subspace whose cocycle is A. If M is not equal
to M_ there is no problem; M is generated by a unitary function and A is a
coboundary. We assume that M, = M_. Choose a positive number u and define

A(t + iu, z)
A(t,z)

The cocycle identity shows that h is automorphic. If u is large enough, A(t+iu, z)
has no zeros in the upper halfplane of ¢t. It is smooth for real ¢, and so is not
divisible by a singular inner function, unless perhaps by expist for some positive
s. If this were the case, A(t,z) would be divisible by the singular cocycle expist
(constant in x for each t), contrary to the assumption that A is a Blaschke cocycle.
Thus h(z + e;)A(t, z) is outer in ¢ for a.e. z, proving that h generates M.

A singular cocycle of the form expist is called a weight at infinity.

The proof that every simply generated subspace has cocycle cohomologous
to a special Blaschke cocycle requires several steps.

Let M be generated by f. After multiplying f by an outer function (which
does not change M), we may assume that f is bounded. Then multiplying f
by a unitary function makes f positive, and the product generates a subspace
equivalent to M. Thus we may assume that f is positive and bounded by 1.

f must satisfy (2.7). If log f is summable, then M is a Beurling subspace,
its cocycle is a coboundary, and there is nothing to prove. We suppose that log f
is not summable, so that M, = M_.

First we replace f by an average. Define a negative function on Kj:

1
2

(4.2) T(z) = / log f(z + ey,) du

1
)

(4.1) h(t,z) =

and extend 7 to all of K by setting 7(z + €;) = 7(z) for —§ <t < . We say that
T 18 constant on intervals centered on K;. Set g =exp7t. Then 0 < g <1l and g
satisfies (2.7) in place of f, so that g generates a simply invariant subspace N.

LEMMA 4.2. M and N are equivalent.

With z fixed, the function log f(x + e;) has a conjugate function v(t,z),
determined up to an additive constant ([5]). It can be defined, and the constant
specified, by the formula

o

(4.3) v(t,z) = % / log f(z + €4) [t_—l_ﬁ + -11;] du.
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For every t this integral exists as a principal value for a.e. z. It satisfies the
functional equation of a real additive cocycle: for all ¢,u we have

(4.4) v(t +u,z) = v(t,2) + v(u,z + et)

a.e.. By Fubini’s theorem, for a.e. z, v(t, ) exists for a.e. ¢, and this function is
conjugate to log f(z + e;) in t for a.e. z. Thus f(z + e;) expiv(t,z) is an outer
function of ¢ for a.e. z.

Also f(z+e;)A(t, z) is outer in ¢; hence for each z, A(t, ) is a constant times
expiv(t,z). At t = 0 the two expressions are both 1 a.e.; hence the exponential is
equal to the cocycle A.

Similarly, log g(z + e;) has a conjugate additive cocycle w(t,z), and the
cocycle of the invariant subspace N generated by g is expiw. In order to show that
M and N are equivalent, it will suffice to prove that expi(v —w) is a coboundary;
and for this, that v — w is an additive coboundary.

Write u = log f — log g, so that the additive cocycle conjugate to u is v — w.
Note that

(4.5) u(z +e,)du =0

\ (.

1
-3
for z in K. The proof of Lemma 4.2 is completed by

LEMMA 4.3. Let k be a real function on K that satisfies
(4.6) / Ik(z + )] du(t) < oo

and (4.5). Then the additive cocycle conjugate to k is an additive coboundary.

We need to find a real function & on K such that h(z + e;) is conjugate to
k(z+€;) in t for each z in K, or equivalently in K, because then h(z+e:) — h(z)
is the coboundary conjugate to k. If we can show that the improper integral

N+3
(4.7) h(t,z) = = lim / Mdu
—Uu
—N—%

exists for z in K and a.e. t, then it defines an automorphic function h with the
required property.

With N and z fixed, the principal value of the integral exists for a.e. t. Write
the integral in (4.7) as

%" e e
T+ e,
(4'8) Z / Tdu

n"
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Perhaps for one value of n, say for no, the integral is singular (we suppose that ¢

is not of the form n + %), that integral exists as a principal value for a.e. ¢, and
the others can be integrated by parts:

n+}
(49) e -w ) [
w4

where k*(u,z) is the indefinite integral of k(z + e,) that vanishes when u is an
integer plus 3. (k* is well defined on account of (4.5).) The bracket vanishes. The
modulus of k* satisfies (2.7) in place of log|f| (this requires a little thought), so
the sum of the integrals in (4.9) (excluding no) converges. That is, (4.7) has a limit
h(t,z) for a.e. t as N tends to oc. It is easy to verify that h has the automorphic
property h(t + 1,z) = h(t,z + e1) (z in K). If we define h(z + eu) = h(u,z) for
z in K1, then h is defined on K. It is easy to verify that h is conjugate to u as
asserted.
Let 3(z) be 2#[%}, where the bracket is the greatest integer function.

LEMMA 4.4. The invariant subspace Q generated by exp 3 is equivalent to
N generated by g = expT.

Since 0 < 7—8 < 2m h = exp(t — B) is bounded from 0 and oco. Write
h = gk where ¢ is unitary and k is outer. Then e” = ePqk. Since k- H? = H?, we
have N = ¢- @, as required.

The original generator f has now been replaced by exp B, where —2% is a
negative integer-valued function constant on intervals centered on K;. We want
to show that the cocycle of @ is cohomologous to a special Blaschke cocycle.

The cocycle of Q is expit(t, ) where ¥ is the additive cocycle conjugate in
t to B(x + e¢). That is,

1 1

(4.10) Y(t,z) = ;1r- / Bz + ey) [m + E] du,

where the principal value of the integral is meant. Since 8 is constant on intervals
centered on K, if z is in K; this value exists unless ¢ is an integer plus % For
any a, b not 0 we have the principal value

(4.11) /b%du =‘1og\%\.

Thus (4.10) can be written (for z in K;)

n+i
v(t,z) = -};Zﬁ(z%—en) / [% - ul—t] du
(4.12) 0 n—}

1 — n+i
;Zﬂ(w-}—en)log‘n_i.
2

1
n—"'i
1

n+i-t

Il
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This is to be compared with some special Blaschke cocycle. We choose the
same function 8 to determine the multiplicities of the zeros:

. . B(z+
n+i—t n—x]—%l

- — T € K;.
n—i—-t n+i ! !

(413)  A(t,2) = expip(t,2) = ] [
Thus from (3.10)

n

(4.14) 0(t,2) = —(2m)71 3" Bz + en)2 / ds

s2+1’
"t

so we have for z in K,

3 _ Bz +ey,) n+%'n—%—t /n ds
(415) ¥(t,2) — p(t,z) =23 = (logln_% ”*é‘th_tm)'

This is an additive cocycle, and we shall show that its exponential is a coboundary.
By Lemma 3.1, it is enough to show that for ¢ = 1 the cocycle is a coboundary
on Kj. A calculation shows that

n+i n-1-1 1
4.16 1 [ 2.2 _l-_ . om),
(4.16) Ogn—% n+i-1 a2 7O
r ds 1
1 == -3,
(4.17) [ 225= Lo

n—1
The sum of the quantities in (4.16) is 0, as we see most easily from (4.12); the
sum in (4.17) is 7. Lemma 3.2, in the second version, shows that expi(p — ¥) is
a coboundary.

We have shown that the cocycle of @ is cohomologous to a special Blaschke
cocycle; this completes the proof of Theorem 4.1.

5. ANOTHER EQUIVALENCE THEOREM

The formulas (3.8) and (3.10) define a cocycle even if o takes non-integral valuyes.
Of course such cocycles need not be analytic.

THEOREM 5.1. Every cocycle is cohomologous to a cocycle (3.8) with 0 <
a<l.

We know ([4]) that every cocycle is cohomologous to
t
(5.1), expi/m(z +e,)du
0

where m is a bounded real function, with bound as small as we please, and smooth

1
on cosets of Ko. Set g(z) = [m(z + ew)du for z in K. If o is a bounded
0
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function on K such that v(1,z), given by (3.10), equals g, then by Lemma 3.1 its
exponential is cohomologous to (5.1). We would like to show that for every such
function m, there is such an a. This may perhaps not be true; but if (3.10) is
modified by means of Lemma 3.2, then it is so.

Let &k, = -5514_—1 for n # 0; and ko = 1 — vy, where « is the number such that

(5.2) Zk"ZZ;LElTI_7:7r'

By Lemma 3.2, if we take t =1 in (3.10) and replace the integral by the numbers
(k), the new function v(1, z) is cohomologous to the old one. To prove the theorem
we shall show that if g is any bounded function on K, there is a bounded function
a on K such that

(5.3) glz) =2 Z a(z + en)kn.

Set h(et) = Y kne™. A calculation verifies the formula

(5.4) z (-1 eint ) (et +et), —m<t<m
' n?+1 em —e " ’ R

From this formula, with ¢ = 7, we find that v = 52%’-'3, just larger than 0.01.
The minimum of h is found by taking t = 0 in (5.4) and subtracting 7, which
gives the quantity 31(23,,7_112, equal approximately to 0.26. Thus h is a positive

e

periodic function with absolutely convergent Fourier series. By Wiener’s theorem,
—1,; has absolutely convergent Fourier series, whose coefficients we denote by (7).

The function o on K; has the Fourier series
(5.5) a(z) ~ Y axxal(@).

(The characters of K are the characters of K restricted to K, with identifications
modulo 2. Thus the sum in (5.5) can be thought of as a sum over the elements
of T satisfying 0 < A < 2m.) We see that

(5.6) 22&(:0 +en)kn = 2Za,\x,\(x)ei”)‘kn = QZakx,\(a:)h(ei)‘).
n n,A A

Thus the transform (5.3), which maps the space of bounded functions on K, into
itself, is inverted by the analogous transform with coefficients Z&. This shows
that the mapping covers the space, so that each function g is the image of some
bounded a.

Null sets can be neglected in this conclusion. In (5.1) only functions m
that are smooth on cosets of Ko need be considered, so that g in (5.3) is defined
everywhere; and the inverse transform, applied to a given function g, gives a
defined everywhere on K, and such that (5.3) holds everywhere.

We want to replace o by a non-negative function less than 1. Ifin (5.3) o
is increased by a positive number c, then the image m is increased by 2me. If 2mc
belongs to I, then exp 2mict is a coboundary (constant in x for each t). Thus «o
can be made to be positive.

Finally, o can be replaced by its fractional part, by Lemma 3.2.
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6. SINGULAR COCYCLES

The structure of Blaschke cocycles was described in [2]. For fixed z, the zeros of
the Blaschke product A(z,z) form a set E, in the upper halfplane; the cocycle
identity imposes the relation Eive, = E; +t. There are two more constraints on
these sets: each must satisfy the Blaschke condition; and they must fit together so
that A can be a measurable function of (2,z). The main result of (2] was that any
family of sets (E,) satisfying these conditions is the zero set of a Blaschke cocycle.

Let A be a singular cocycle without weight at infinity. For each 2 in K ,
A(z,z) is a singular inner function on the upper halfplane. This leads to the
formula

: 7 dus (1),

(6.1) A(t,z) = expivs(t,z), (tz) = / mos

where each u, is a positive singular measure on the line such that d—iﬁ‘gﬁi%) is a
finite measure. The cocycle identity means that for each subset E of the line,
Pate,(E) = po(E +t). For each real ¢ the integral exists as a principal value for
a.e. z. Each family of measures with these properties defines a singular cocycle,
provided that A is a measurable mapping from ¢ to L2 (K). For this it is necessary
and sufficient that yu,(E) be a measurable function of z for each subset E of the
line.

It is not possible for the Kz to be finite measures, but they can be pieced
together to define a measure on K that characterizes the cocycle and may be finite.
For E a Borel subset of K define

(6.2) W(E) = / / 15(z + ) dpto (u) dors (z)

where 1 is the indicator function of E. Then 4 is a o-finite measure on K ,
singular with respect to . It is easy to verify that 4 determines the measures [T
which are generated by a singular cocycle if they satisfy the conditions mentioned
above.

The singular cocycle is called special if each p, is a sum of point masses,
which for z in K lie in K 1- We have this analogue of Theorem 4.1.

THEOREM 6.1. A normalized invariant subspace is simply generated if and
only if its cocycle is cohomologous to a special singular cocycle. Any singular
cocycle without weight at infinity corresponds to a normalized invariant subspace
that is simply generated.

Let A be a singular cocycle without weight at infinity. If 4 is a coboundary
the corresponding normalized invariant subspace trivially is simply generated, so
we assume that A is not a coboundary. The singular inner function A(z,z) has no
zeros in the upper halfplane. As in the proof above for Blaschke cocycles, A(t+i, )
is an outer function, and A(t,z) = -‘% is automorphic. Thus h(z + et)A(t, z)

is outer in ¢ for each z, so h is a generator for the invariant subspace whose cocycle
is A (unique because 4 is not a coboundary).
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(This argument shows that if 4 in (6.2) is a finite measure, then the cocycle
is a coboundary. For then log || is summable and generates a Beurling subspace.)

We have to show, in the other direction, that any simply generated subspace
has cocycle cohomologous to a special singular cocycle. By Theorem 4.1, it is
enough to show that every special Blaschke cocycle B is cohomologous to a special
singular cocycle A.

A special Blaschke cocycle (3.8) is, for « in Ky,

ds
s2+1

(6.3) B(t,z) = expip(t,z), ¢(t,z)= 22 a(z +en) /

where a is non-negative, integer-valued, and satisfies the Blaschke condition.
In (6.1), let . carry point masses at points n + % (z in K1), of magnitudes
2a(x + en). Then (6.1) can be written, for z in Ki,

(6.4) Y(t,z) =) (

2ta(z + en)
Sy CES )

Take t = 1, and set 3, = EL_T Then 5 8, = E(—l—r - ——%—) = 0, and
4

n—3s n+3
|Bn —n~%| = O(n™3). Since a takes integer values, Lemma 3.2 applies to show
that expiy and expiy are cohomologous.

Translating the point masses from K; + ey to K, gives a cocycle cohomolo-
gous to A. This completes the proof.

These results enable us to answer a natural question. Let g be an inner
function on K: that is, ¢ is a unitary function in H*(K ). For each z in K,
q(z + e;) is an inner function on the line, with a factoring b(t)s(t) into Blaschke
and singular parts. Can b and s be chosen globally, to be inner functions on K?
The answer is that generally they cannot be. Here is how to construct an example.

Let S be any singular cocycle that is not a coboundary. Any cocycle is
cohomologous to a Blaschke cocycle ([3]); let T be cohomologous to the Blaschke

cocycle B. Thus BS is a coboundary 3(;”—(2%‘—). Then ¢ is an inner function, and its
Blaschke and singular factors are not inner functions on K. It remains to find a
singular cocycle that is not a coboundary.

There is a positive bounded function f that generates an invariant subspace
whose cocycle A is not a coboundary ([6]). By the result of this section, A is
cohomologous to a singular analytic cocycle S. This § is not a coboundary, and
the proof is complete.
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teR,aﬁathuKE?batwa.%f@w%ﬁ%iéﬁ@ﬁ%%m%b@m@$®u@
¢%ét@@n,hm@ﬁ%ﬂlof%@ﬁﬁﬁ%ﬁéné.t<KQE%ﬁ@¢ttéﬁn
m&amw%@mtﬁntma.%Lf@mamnt@éﬁg+ﬁ%ﬁuﬁ&f@wenmﬁb
# DHLE

0(w)={w+t: tER}

ﬁQT%%t&éZkfbé.:@ﬁE@%@¢&ﬁﬂ@%ﬁim%@bT%6n%RL@%&
i (AOERT) BERE RO S b,

$ﬁﬁ%ﬂtm%rﬁﬁwiﬁﬁﬁ@6%$%%@Lmuﬁm$§tﬁ$mgnﬁﬁ@?a
$§@%€MKNLT,MMFQ&R@O&&%&%,%@%Xmgﬂ%IWf—F%twi
Iwﬁ—F%$§%$ﬂ§@éwﬁ,$Eﬁ$ﬂ§é%@0<%uﬂﬁﬁijﬂ7bﬁ&$é@
a7 55, Krein-Milman OE# LY, *V 4 — R AETERRAE QRN RIS, &
PN B O I TR pSHE AR L TV LrErp@mILT—FRZRAEVD.

Maxmﬁﬁﬁmtm,?Nf@wenmﬁbftamw+neHﬁwmn+ﬁnﬁ&jf5
zttﬁa.%Lfﬁﬁﬁﬁﬁ%ﬁ@@%%A«nt%T.:@tgmﬁ&mﬁﬁ$@ﬁ%%t
twﬁ6,Aﬁvuﬂwﬁéﬁﬁbﬂﬁ®%ﬁ%tﬁé.Zﬁbf%%ﬂ%ﬁﬂ@%ﬁléhé%
ﬁ%A«DK%Lfﬁ%<@%%ﬁﬂ6n1wé.%Kwaw<o@%%ﬁbxa.QM,UH,
[50]%F&H.)

%mﬁ&tAﬂWucuvf@@kP,W%Auvm%@%@ﬁﬁ%ﬁ%HHMiféﬁén
6%&%@6Xﬂw~ﬁ¢é,tw5Wamawﬁﬁiﬁﬁﬂ®*&mtbfﬁ@%@ﬁ%én
z,

EESJ.KLHMmDﬁ@¢&ﬁh®t§,AKD@CGDT@ﬁ%tK%.

Oi0@$tﬁn®jﬁuA“D@%é%ﬁ@ﬁ%éﬁ%%én%.l@%%#6§1fﬁ&t
mmmﬁwﬁﬁ%ﬁum«to&ﬁofwot.%Lf:@ﬁ%mﬂbf,Buf,meRw
¥ 0 Dirichlet B ¥ 72 3 = » O+ &REN G2 SN,

$ﬂ32.mduhwﬁﬁle—Fmaﬁnag,AmwinimmmMa%ata

Eﬂ33.#%iwﬁ—F%K$§%$ﬂEt?6.Z@t%puAﬂD@%ﬁﬁﬁ&ﬁo,
A(Q) iz LP(p) T® w*-Dirichlet & %%,

TROOERIEET, Z0LD BIRED T AWQ) wEgEo—gERsE A T & Hardy 72
%Kﬁ%%%%@ﬁﬁ%ﬁb<ﬁu5:aﬁﬂ%taé.L@L@mf%le—F%Ttwﬁn
ﬁ%é,gkéh%%ﬁ%ﬁmmMa%ﬁgﬁﬂuﬁ@Oﬁwﬁﬂ@6&@ot.WM%%J
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2 LT46]T & 3 % S B/ fiig 5 BA S h 2 B#E T Dirichlet B T4 W b O DFFELHER S
niz,

T T — FEHTIE, UL VBN LT - PR DL GR#ESATE R, (I
v 2 L [41] 2208, ) M7 IS # < 1% Dirichlet B & logmodular BDZ & o7z 2 &8, oL X
EA(T) & H*(d0/20) DERD & 512, RULUVERSKTER, ZOXICRELFHO—
%&ﬁbk%ﬁﬁ,ﬁmm%@bf<é®uﬁa<,%ﬁ%mﬁwéle—Fﬂﬁwﬁmﬁﬁ@
Lohs,

CITHL AQ OBAA T T VERMAQ) IR TBI D, $€ A(Q) & Poisson #% Pir,
r>0, & DOERRHE,

Bz, )= 9Py ()= [ $a+O Pty 2EX

%%zétQXMwMWMAmD®%ﬁt&5:aﬁﬁmé.%Lfrawt?ét%®$%
ﬁt&%@%ﬁ@ﬁﬁ%wiﬁMEﬁ$§ﬁ$M§a@é.ﬁKﬁIWﬁ—F%ﬁnw%é
MAQ) DL E D Qx[0,0]Tax{o}&—HF—HLa¥ 7 P E ST
wé.iké%m:n%ﬁ@t@ﬁ@%b%cenfwa.&ﬁ,:n%wﬁﬂw%bfumﬂ,
[45], [B7]1RZBHE NIV,

DR/ B & < 5% BISERT Dirichlet BT WHIOMREHFLICEEET T O,

F 981 CHIES R0 Vo PRI E 2O EORN EERICERLEL, FohoB/NES
ALY, Sox Z LDy 7 MERE Son=n+1, n€Z, £tT5. SHEZOD Stone- Cech 0
9v 8y M BZ EORMERTE S N R TE 5. X & BZX[0,1]TOHRFHyERZ Ty, 1) &
w%m%ﬁ—ﬁbf%6n5jyﬁab§@tf%.XL@&HE%@o<%L%§ﬁ§@ﬁ
{Seier %, Gauss 5[] 2BV,

Si(y,s) = (St t+s—[t+s]), (g,9)€X (3.1
t?ét@ﬂ&ﬁﬂﬁ~v@ﬁn&&%,:@t%X@¢TZxMHKHE?%%ﬁXMﬂE
BHRREHESERD REFHENE, ZO&D ERhOEREZEHEO T2 snlkiih
(S-flow) L wbh 2 bOOBHLBETH S, £ Stone-Cech @ 1 > /¥ 7 MMuiz 2w Tix[33],
(53] EE L WL B B,

w2 Cu(R) % R FOBERR—RBEGRHEEDDL 2 C*RET S, ZOLERDIEDH
BloRana,

ﬁE&LCMMECQNM&M&%&L@E%&&%.LtﬁofX@CMM@@ﬁ
A TF7NEBERD,

z:Tﬁh@&L&Mﬂm%ﬁkéhé@ﬁ%Ah&mowT%i;5.ﬂDEFFQM%U+ﬂ»
% Poisson B3 T RE ~AEET 2, 2L Cr>0 2BEET B L & t—f(+in) & Co(R)CEBL X
L@@ﬁa%ﬁ%ﬁ¢unﬁ«%%éné.~ﬁxvﬁmu1kﬁ%ﬁuxofu5@6,Acm
OEBE R CHIET 2SO THRE->TLES, A5 L0 AX)EBEE 4(z, 1), 7>0, O
SHETERINAMBIRE 5 85, BUEEBREILT T ¢z, r) % X X (0,0) DR
tﬁt%ﬁ.X@%%ﬁLKH%wMH+ﬁn®%&ﬁmﬁof<5.RmmwﬁﬂﬁaﬁE¢
5.:n%w%ﬁ0ﬁﬁ%ﬁwé%H%ﬂ%%iét,anHﬂwMﬂ+ﬁntﬁ%t&a
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120 B B
X % (0,00) D & m I X H*X)0EZHREERBEHEA TS L, £ H>(dt/m 1+ &
H=(d0/2m) R0 5 X X (0,00) & H*(d6/27) DERA 77 V2 M (H=(d8/2r)) DERSY
ST B, Xox (0,00) BB BMARD CE £ 58S, 265 12 (X\ Xo) X (0, 0) D
M(H=(d6/27)) TOR/ALINET 2 HNOERE L LTEZ 28I LL> TS,

AX)OKA F7VERMAX) I Xx[0,0) &, ZLTEAPRELLE->TVRLC
LaanFEETRISAAS, 20k Xx[0,0) O%ERAL L TERS L BRBHERDS
BOEBAEITEAE 25, COfEPSIT FERE  EMN L T — FEHOBRNERFE N
3. EE, Wiener ® Tauber BIFH LY,

lim¢* P = 11m2T/ bzt 1) dt

L3 ERY, W —HOBRSEAET 5 L ERILL, BV T— N ER AL OFEZ R
F. IREDARL b T — FRTERRAE TE £ 2 ETEHEERTZ L XoX (0, ) DEH
HEenbIehErNS, T T— N R EREREE IR ERRRERAD DB wr-a /X7 b
BRSO b i B4 5, Choquet Bif7s EKIBICEER s g, I uFERAORDOT 7
o —F2SE[HED b L g,

K2 (X, {Sher) TORNESG M 2% 25, BOBOD S % M WHEIRL TE S 3B/ e ft
RO (S en) BB BB R EROBNOTN LS, 2L TZOMRELTEURELVED
FERALERES M ECFEL TL 5.

&E35. 0k d RSN M, (Sden) BEBELBNERA LSS, e § T O/
Foiz (M, {S.}cr) OF & 22 2 Hi (factor) TH 5.

GIHOBEE.)  (Q, (Uden) BRANEHAE LT 0€Q 2EET 5. t—dloth), $€CQD
SROERT 2 C*BIE Cu(R)DHHEIRER S, ZLCHE3 ALY X 25 Q LANOERE
%oT

oS () =Ueot(x), x€X
L2 b OO . % MICHEL THEBROBRIIRIL TS 5. (BbY. )

3.6, (M, (S} 5BASHZBEERAM X Dirichlet BT X %2 \» logmodular 22 T
bH5.

GEHOBNS.) H=(dt/z(1+)) £ OBff» S AX) D logmodular BB & 72 % Z L MHEND 5
Nz, £ AX)DOM~DHIR Al & AMOE B3, Zh &) AWM b %72 log
modular Br 2% Z 443 5E, ZLTMAM)IE MX 0,00) D MAX)) TORABEZSC
v 5, Hoffman O EEASEA T %, 47 #if% Blaschke fi & E 0, M X [0, 00) DEERD
o M x{o)iiz, H5 Gleason sy P #3#EL D & P AR 2o T b Z EBNZ B,
Kz AM) BB D Gelfand Z#1% P OFAE P CEIR LTS o B Al 28 H*(d0/21) &
B s e e2fErD5, Lz Lo H>(d8/2x) D% D Gelfand Z#1 % Silov BEHIC
SR U T3 5 12 B8R Dirichlet B2 137 5 &V & PP FOBRTRWESERE v T Al

WHERST 25OV HFET S, ZOEE

= [, $@ a9, s=cun (3.2)
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X C(M) FOBRSTRABBE 5%, 22 THEOREORRAFEICL L gOBFLET S, LT
25T Riesz-BDFREENS M LOBTHWERBAZHENEE D, AWM IKERT 5.
ZRED ReAM)1E Co(M) TRIZE L 3k D 5w, (bD.)

BROWE LD vid Alr 0 Silov BH FORE L Tx 5. Silov BRI TV T — FETE
RSl & RAHIE &+ 5 EHEBEE AR E G TEECH 575, (3.2) LA T—F5#E OB
EEF~D LEEVHD LA, Ee M P OMERRCEL TEEER ] THRREL TEL
.

§4. O /x7 FE OB
E R b CREEENE R RO SR e BI R FBE (A TEE B,
f( ZECJ-@“"‘, IER

FBITHBOLOTHS D, 0L D HEREIETOEKOBLY L IHEFOT TA» S ERER
ZEEBEED T 287 b RINEED OB LIEES RS, £ LT ™ ORS n 7B (R
Tt 5 5 EEEK L B U T R B U - 0 von-Neumann OB A =7 b NV ETE
<hn. ([15], (4] EER.) UTFTIE 420 LHIRLZ L 8B 5n 2 LEVE R BT 2 BT
ORI DVWTHET 5,

I % R OREREHEEE UCHSIAEE S 25, T OXGEHE K £ L o 2% O EOIES Haar
FELT 3. AT 2 K FOEEG abbEfin K»o TANORERARER L RaT L&,
() bEL R 2o D ICARCEASNBIEFEZRHY, BRBESERD LS CEET 2. €L (0)
PR & 1

ﬂx%w%gmﬂm

Y s 3 Fourier BRI &> 2 L T4, 2L T LY o), 1 <p<oo, BT B BITEKOL2E
H?(o) % K b @ Hardy 22f{ & FE58, ¥R EREE, > 2 5BBRE AK)EBL L,
AK) 3 K L Dirichlet Bx %0, 352 c 32D LORBFAF L %%, £ LTH ()32 T
TR T BIEEE A (K) & REHIE 012 X % Hardy ZRIOERE L —HT 5.

K EORRIEOWTELLD, EBEDIERICHL Ave™ BT LOEELE LS, Lo T
CEKHEED, e () =e™, A&, &#&H7F. 0k E{e ; tSRNE K 2B 5 &S H TR
T 5, v K LOMERRO D 5 1-BEAREMEH T cn ke

Tix=x+te, x€K
L E B LK, (Ten) & 0 #HE—DOAERHERAE L TRV T VBT E RS, LT
BOBOOEHEIC IXES e tER)OEIREMSHIGL TL %, BifED0 27T ZIRET 5,
ZUC Kon % yon(2) =1 £ 555 2EK OO 5 K DML T 2, ZOLE xEKR
x=ytes (¥,s)EKx[0,1)

B E R RS K Kax[0,) EA—HTE 3. %7 Sy=yte, yEK ZE2THR
50D Ko FOMHIET S %RV S L{T)-r FHIFG. D) TERE L7 1-BEABEHERE C AT b
DD,

CORNERGD L, fELP(0) DRI E kB LBEHHRMER, ce. xEKEHLT, -
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122 #
fu+ﬁeHNwmu+ﬁ»t&5:tﬁﬁ@5.:’T&u%méHﬂ@@%%%ﬁ@~o@
AT RIR R E D,

ﬁ%41.M$H%w@%%%ﬁt&éﬁg+ﬁ%#u,Mw¢0t&o,itwaxeKn
ﬁbftehu+ﬂﬁHﬂwmu+ﬂN®%%%ﬁttézt?%a

GEBOBIE.) AK) kb H (o) TRETRVERDS, »BERTR Y geH (o) AK)*h
a:ﬁ&?ﬁé.:o>k%ta?@¢ﬂ3mx+w6Hﬂdﬁnu+ﬂntz:D,tehu+tni
H2(dt/m(1+ %)) OB L e D 273\,

Wiz,

g&lé

log|h* Pir (2) 1< /_: loglh(x+ ) |Pir (£) dt

RIEORIE R OB FTRDIDET S, ZOLE WP ()3 H* (o)W CBT 5D T, Jensen O
READ» S,

logIﬁh*P,-r(x) da(x)léﬁlog\h*Pir(x)ldo(x)
LY, R
logl (o) |< | logli(z)1do (x)

BT E R ki H2(0) OAEBIRIc B DR, (DD
& f C(K) i Stone-Weierstrass O EHE 5 =ML EAO—BBRELTRES, V&
F Stz % f O Fourier B £ 35, =20 x€K prEw, Fo()=f(xte) ¥ %k Fe(h)
I IREM (frequency) 23 T BT % R £ (Bohr DR T D) A B,
Fe(t) = 2z (x) et

aaé.:n%ww%%%ﬁ@ﬁuuw:xemuﬁuﬁ:EMMMﬁem%biﬁ@ﬁ%ﬁo
EL,%Q@EtLT%6n6%ﬁ®$%k%iéné.%Lf%n%wwfnﬂ%WDK«%
%Ltb@ﬁf&ta.:@;5@ﬁzﬁuﬂﬁ%&wi%%%%@ﬁL%@u@?%%ﬁub
wWaeT, T OAEEEREL, L (o) #EfThiE Besicovitch O &bk T ORE BRSO K ~DIik
RERB,
cOk o LTEs NS A(K)® Hardy 2] H? (o) ZBAIMAE Eo A(T)® H? (d0/27)
kﬁmwﬁ%%%0%§ﬁ®%ﬁ%®EWWtLTwwiﬁ@6ﬁb<%&6nfét.tDb
F H2(0) B B AEERSY 22 HEBTFHBHRAOIEH» S Iy 7V iEhsd KXR EDOH
ﬁtﬁﬁéﬁfﬁb<ﬁ%éﬂf%t,L@bFT&T@K%%Q%%H%~$mﬁ%ﬁO@?J
am5$~$&ﬁmﬁagﬁénfuéﬁ%b9&<@w.QwL[nL[mL[BL[mL[M]
HLE,)
rﬁR@ﬂﬁ%ﬁﬁtaatg,K@ﬁ&ﬁ%T@ﬂﬁ@@ﬁﬁ?m@%%ﬁﬁaaa.ﬁﬁ
AL LT, T2TT & K 0bbEkaBAfl252 TH <.
WAZZWT%ﬁQW@o<éﬁZ@ﬂEM®Em,%éﬁﬁﬁ%%wfmm%t@égﬁw
DREET S, WAFELTERp MY, Zy=Z &L
2°=70DZLDZ:D - DZ,y D
LI L ET D, CDEE Z2 05 ROPAORBPER
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B R OHER & Fih O L O 123
r{nsh) = 32 nologp, {mp}E2Z”

v n L, ((ZVRROAERBAET={logr : r SEOHBEHIL & 2. T ORHE K
(@), ey =<z, t{mp)) D ko TEE 2 ABEHKR o* TERRT -7 AT & ¥ LB,
ELrERCERAERERp LT T=TEL
T*°=TQ TR TR QT
rEL . KOHHR»S T° FICERSI BTN, e:(logp) =e™®, LB LD
T, ({et)) ={ei®r+t8P}, (e} T™
CEoT5z 605, %7 T FOIES Haar 8IF o XREREALE

dor= TI ——dbp

P oprime 2 Ve

rin, BEKE T 2A—87 5.

§5. Riemann O+ — % BNk L Euler & %35 Dirichlet #&%L
la ) 2 EFEBHI LT 5 L&,

fls)=3% s=otit (5.1)

n=

% Dirichlet §# L /R, 7 LT 2 OBBUEH 5 H+-FH 0> 0o TINEE U e BER L e B, 2
noOR TR EEAHIL an #TRT1 L LTHESNS Riemann ¥ —5 B,

o o
JOESS| 25:%%(1—%) , o>1
k2>, ERESHRO—ELED» 5B 50D EROEMERE Euler I £ -5, e(s)ix s=1 %k
WL FE TSRS S N, s=1 CER 1 OBERD, 2L URREE0<o<11H 2 g(s) D%
HEFARCo=1/2 LWIER L HETHS I, LWIOVHEER Riemann FHTH 2, & T

G.DIBOT{adDBERHEL anan=am 2RET 2 L, THEET

fis)= T <1~ ‘;f;)_l, o>1 (5.2)

-
L3 Euler ECEETE S, LT RT lan=1 k5 & &iF L) riEuAEEEREDL, ()
OEFTREFOH LEOMR L L TEMN, £/2TDLD BB O R SBROPI () BRAT
¢ 3. BiIFOFl 4.2 TR T™ LoFinz v E) R 2O EOBBUCIRL TAHAL D,

¥ u>1/2%EET D, ZOLE

Eu+it) = ) 2,, e g it0BR

n=1

raaz g t— 8 (w—in) i R o (B SRR s Ly Reg T™ EAIERTE 5. EE,
= 1 2
2(7) <o

LD

Zu(l‘)ziﬁ'xmgn(x), reT” (53)

n=1
reE, COREKEHEmTESE L T Lo Hardy 24 Hi o) 1@+ 5, #LTZOREHZ 0
DB e | teR}n:%ﬂBﬂbLﬁﬁ%ﬁﬁﬁiczmﬁL*({Imz>1/2}’€a)41<m%%7:é rEsyBiEons,
11
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%ll

2%:3

Zy(ez) :?_;I%‘ Xlogn(ez) 1

i(logn)z ——, e e — e — -

|

|

|

e *i(s-u) 0 0 . !
----------------------- 1721 [u |1

|

|

|

Il
uMS

8

1 1/2-u

—iz

a1 n 7L
k0 z=is (B FE % 90 HER) £ 5 &

rhoTwd, LizhsT Zulx)id (s)
O T ~DPERE > TV T z2—Zu(x+2),
Imz>0, 1 £ OB RAE» > Zh
ML b D EMMEORm WK R T
2. rwwlme>1/20L 53 T LoHE
SRR L e B, TV T— R@mICi ® 2
C(s) ER—REREELTL, (M2E2R,)

BES1 VWEu>1/28T 5, ZOLEGDCED Zu(x)id H (op) BT LR L %
%,

GIEIORERE.) o>1 &3 % & & p(n) % Mobius BISE 3 hi,

1 it (n)
é‘(s) ) (5.4)

YR 5, 72721 Mobius BIS 4 (n) iZRD & D b:m%‘%én% :
(—1)" (e HMERL S FHOEROWO L &)
u(n) = 1 (n=10k %)
0 (Zoft).

M

&b

Zu( ) = 2#( ) Xlogn(l’), xeT™

Y32k, ZJx) 'eH (op) %25, ZLT Z,(2)+ Zu(2) =1 DRI FED O S H™ (0p) * Zu(X)
0 H(op) THIE L85, (bD.)

COWES ] LHEEL 2ADbE DY, ae. x€ETTIHLT 2~ Zulx+2) H¥(dt/m(1+ %))
DAERTES - 7 DB S AR, 2 LT 0 OB EROBRIC () ARRT B3 s=1 THER
Sz Eemd Hd/n(l+ ) @B TRE4 ] THEZ L LTSS h 8oL a5,

TITHIVUELL Zu(x) BRARTAL S,

Zu(I+Z) :’i%%'XIOgn(I+Qz)

i(logn)z

1u'X10gn(-r)'e
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eRU an=yosn(2) T2, 2O L XIEOWE L 0 EINaHid [a.=1 B L & antan=am % H
T2l, WE n=pirepdsptt % n OFRRESHEE T,
an= a3l afi-ap (5.5)
WEoTHhE ST A, HBOBOD x={ap)ETXHNL T, 6. I>T toen(X)DBEE -
< %, P E% Euler 8% FD Dirichlet iU LTV Wiz 2 &, ROEHEEBS.
FH5.2 g.e {ap) €T KL a2 (5.5) TED S, ZDOLE ¢>1 THMK T % Dirich-
let #&#%,

fls) =% 1 (1— “")Al, s=o+it (5.6)

At 0 pprime »°
X 0>1/2 ¥ TR I B L ERT 20,

I ED LEFET L (0 <1 OBHCHHEMATE 2500, FRABOFESD Zu(x) ' 220 T
bEVILH->TL B, EPHEDROREENIaeT 2EDREE, G.6IKLD fHBEHS.2
OFERE AT THEIPEBIZEHETERWLI L TH B,

RiZo={-1eTEBII, ZoLELIHAs>NIARK

L) _ 2o (X0)
§(25) _p:lp—,l,',m,<1 ﬁs

), s=cg+it
5

Zu(x)*Z2u22) ' = Zu(x+20) 7!
BEOND, Z.,Q2x) ' BHEGIGET 2 TRE N, T° L CTERESNEEKE RS, Licdio
T Zu(x) 13 x—x+x0 EVIBEC L > CTHHOH T OWEERF> T 5, 2% D Zu(xter)
£ Zu(xt+xote) OB TCEBIIBRCELEIBICE S Lo it >, bbHAEHS. 200
BEAEDZWH L TIRBHEBELHLEALALTI Ry, UL (5.6) TE S L2 Dirichlet oz
GRS U UM CE 1> 0> 12 KELACBE R D EAS 2, ZRABBONESFZ AV,
DL BIENTES,

& 512 Rademacher B#OFIF 6 Bi» b Lz, 72 & 213 Rademacher BABOER 2 1k
B 5 [8; Appendix Al EBELIOF I & - T(5.6) 17 & % Dirichlet fH# fF(s) i3 a.e. {ap}ET”
WXL T

lim f(o+it)

B df-a et CBWTEELZWI ENSD S, LN ->T—RICEBEESE 2S5,
o:% B2 TR T 5 TE RV,

B2 Dirichlet $R#OUHE & Hardy ZRE ORI O>WTHNLTB IS, f(s) %2 (G.1) TRRS
% Dirichlet i L 35, ZD& X —fH[48:9.14] kD
F(A) = 2 An

logn<i

EBWT, Flogn)=0m®) 2&78iE, o>u EWIFEFECIETSZ Z EWRENS,
FIE5.3. f(s), s=o+it, ¥(5.1) THERIN 3 Dirichlet Ffr & L, 0> 00(=0) & TR
WRENBET A, VWE2<r KRLT,
t—f(oo—it) € H'(dt/n(1+1%)
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126 2o
bR, f($)ido>o+1/r TPEET 5,
REBHOIRE. ) 2<q<r R 2{IED q LT, 1/g+1/p=1%2 p5EDS,
|0+itlp:|0+it|2p/"|o+itlp“‘z/”
& D Holder OFEHX» 5

=| fo+it) |P <{ =|f(a+it)|" }P/T.{-/w b2 }(f—ﬂ)/r
-/:uo o+it 1 4= lo+at? at ot i at

L5, TLTURE r>q=p/(p=1D &0, p(r=2/(r—p>1 %D, BEBEOBMZINET 2,
—J} e *F (1) ® Fourier Z#ias

Slotat)
o+t

%52 L X Y, Young-Hausdorff DEHE M S
[Cem e Fyrda<oo
285, Ihib
,gle‘gqmg("“)lF(logn) |"{log (n+1) —logn} <o

ERY, ZORBOEN O IIET BT ens,
|F (logn) |*=0(n"""9)
ERBIEDGND, (BbDY.)

Dirichlet B OB DIEE » & Zu(x) EH ™ (0p), 721, L% 3 L BHBIZ TSNS H 5,
Fubini DEHE % v, EH 5.2 OIS TRV 2.

W54, FEH5.2DEDFT, (3.4)® Dirichlet #8013 6>1/2 DEFATPKT 5,

EE5.2 L5 A THRASN S BOBOORERORELEEOBFRIIFEL AL ShH e 2, 2
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