
Waseda University Doctoral Dissertation

Study on Genetic Network Programming

with Variable Size Structure and Genotype/Phenotype

Mapping Mechanism

Bing LI

Graduate School of Information, Production and Systems

Waseda University

June 2013

I would like to dedicate this thesis to my loving

parents and wife.

Acknowledgements

I would like to express my gratitude to all those who helped me during

the writing of this thesis.

My deepest gratitude goes first and foremost to my supervisor Profes-

sor Hirasawa, who has provided me with valuable guidance in every

stage of the writing of this thesis. It is my honor to study in his lab.

He is a good professor, and give me many advices on my research.

When I got confused, he can always show me the path to right way.

He taught me how to analyze a problem, describe my points and give

a good presentation. Without his enlightening instruction, impressive

kindness and patience, I could not have completed my thesis. His

keen and vigorous academic observation enlightens me not only in

this thesis but also in my future study.

I would like to thank Professor Takayuki Furuzuki, Professor Osamu

Yoshie and Professor Shigeru Fujimura for their some valuable advice

on improving the quality of this thesis.

I would like to appreciate Dr. Mabu for giving me a lot of supports

on my research. Having discussion with him is very useful for his

abundant experiences on evolutionary computation. His invaluable

suggestions and kindness are very important for the completion of my

doctor courses.

I would like to thank Waseda University and JSPS for supporting me

to do the research in Japan.

To all my friends and classmates, my life in Japan will not be so happy

without you.

Thank you. And thank you very much for what you have done for

me. Thank you to you all.

Abstract

In the research field of Artificial Intelligence, Evolutionary Algorithms

(EAs) are subset of important optimization technologies, which are in-

spired by the Darwin’s theory of evolution. EAs are kinds of effective

algorithms for solving very large search space problems with less prior

knowledge and human intervention. Starting from the 1950s, a lot of

EAs are developed, such as Evolution Strategies (ES), Genetic Algo-

rithm (GA), Genetic Programming (GP) and Evolution Programming

(EP). They have been successfully applied to many fields such as en-

gineering, biology, economics, marketing, robotics, physics, chemistry,

education and so on.

After investigating the benefits and shortcoming of GA and GP, Ge-

netic Network Programming (GNP) was proposed around 2000. The

directed graph structure of GNP extends the chromosome represen-

tation of strings in GA and trees in GP, which makes it have high

expression ability with relevant small size of individuals, and con-

sequently GNP has the better performance than other evolutionary

algorithms. Nowadays, GNP is not only used to solve benchmark

problems but also applied to many real world applications such as

elevator supervisory control systems, stock market prediction, data

mining and traffic prediction.

Since GNP was proposed, many methods have been developed to im-

prove the performance of GNP such as combining GNP with reinforce-

ment learning, introducing symbiotic learning in GNP, upgrading the

structure of GNP by defining macro node and rule accumulation. Al-

though these methods have been proved to improve the performance

of GNP by combing some other machine learning methods, some use-

ful prior knowledge of biology: variable length of gene, evolution by

gene duplication and genotype-phenotype mapping, are not well con-

sidered. Therefore, in this research, two kinds of methods and their

extensions have been proposed to improve the performance including

the expression and generalization ability of GNP by upgrading the

structure of GNP using the above theories, and to solve two problems

of GNP, i.e., “the node size of GNP is fixed” and “an individual is a

solution”.

One of the methods is Variable Size Genetic Network Program (GN-

Pvs) and its extension GNPvs with Replacement (GNPvs-R), which

simulates the variable length of gene and gene duplication, and solve

the problem that the node size of GNP is fixed. The other is Genetic

Network Programming for Automatic Program Generation with Map-

ping Mechanism (GNP-APGm) and its extension Subroutine embed-

ded GNP-APGm (GNPsr-APGm), which implements the genotype-

phenotype mapping process, and solve the problem that an individual

is a solution.

The above methods are verified on the tileworld benchmark problem.

The simulation results shows these proposed methods increase the

performance of GNP exactly.

Contents

Contents v

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Background . 1

1.1.1 Evolutionary Algorithms 1

1.1.2 Related biology knowledge 2

1.1.3 Genetic Network Programming 3

1.1.3.1 Basic structure of GNP 4

1.1.3.2 Genetic operators of GNP 5

1.2 Research objective . 7

1.3 Organization of the thesis . 8

2 Variable Size Genetic Network Programming (GNPvs) 9

2.1 Introduction . 9

2.2 Variable Size Genetic Network Programming with Binomial Dis-

tribution . 11

2.2.1 Structure of GNPvs . 12

2.2.2 Foundation of GNPvs . 12

2.2.3 Crossover of GNPvs . 14

2.2.4 Example of crossover in GNPvs 16

2.2.5 Flowchart of GNPvs . 18

v

CONTENTS

2.3 Simulations . 19

2.3.1 Simulation environments 19

2.3.2 Simulation I . 20

2.3.3 Simulation II . 22

2.3.4 Simulation III . 27

2.3.5 Simulation IV . 28

2.4 Conclusions . 31

3 Variable Size Genetic Network Programming with Replacement

(GNPvs-R) 32

3.1 Introduction . 32

3.2 GNPvs with Replacement . 33

3.2.1 Outline of replacement . 35

3.2.2 Procedure of replacement 35

3.3 Simulations . 36

3.3.1 Simulation environments 36

3.3.2 Simulation I . 38

3.3.3 Simulation II . 41

3.4 Conclusions . 47

4 Genetic Network Programming for Automatic Program Gener-

ation with Mapping Mechanism (GNP-APGm) 48

4.1 Introduction . 48

4.2 GNP-APGm . 50

4.2.1 Basic structure of GNP-APGm 50

4.2.2 Procedure of program generation 53

4.2.3 Flowchart of GNP-APGm 55

4.2.4 Advantages of GNP-APGm 56

4.3 Simulations . 58

4.3.1 Simulation environments 58

4.3.2 Simulation configurations 59

4.3.3 Simulation results . 62

4.3.4 Simulation analysis . 66

vi

CONTENTS

4.3.5 Parameters discussion . 67

4.4 Conclusions . 70

5 Subroutine embedded Genetic Network Programming for Auto-

matic Program Generation with Mapping Mechanism (GNPsr-

APGm) 71

5.1 Introduction . 71

5.2 Subroutine embedded GNP for APG with Mapping Mechanism . 73

5.2.1 Basic structure of Subroutine embedded GNP for APG

with Mapping Mechanism 74

5.2.2 Procedure of program generation 75

5.2.3 Genetic operator of Subroutine embedded GNP for APG

with Mapping Mechanism 80

5.2.4 Flowchart of Subroutine embedded GNP for APG with

Mapping Mechanism . 81

5.2.5 Advantages of Subroutine embedded GNP for APG with

Mapping Mechanism . 82

5.3 Simulations . 83

5.3.1 Simulation on artificial ant problem 83

5.3.1.1 Simulation environments 83

5.3.1.2 Simulation configurations 83

5.3.1.3 Simulation result and analysis 86

5.3.2 Simulation on the tileworld problem 87

5.3.2.1 Simulation environments 89

5.3.2.2 Simulation configurations 89

5.3.2.3 Simulation results and analysis 92

5.3.2.4 Parameters discussion 95

5.4 Conclusions . 98

6 Conclusions 99

References 101

Research Achievements 108

vii

List of Figures

1.1 Basic structure of conventional GNP 4

1.2 Representation of GNP structure 5

1.3 Crossover of GNP . 6

1.4 Mutation of GNP . 7

2.1 Schema of cut and splice coordination in mGA 11

2.2 Basic structure of GNPvs . 12

2.3 Representation of GNPvs structure 12

2.4 Binomial distribution of the number of nodes selected 13

2.5 Schema of crossover in GNPvs . 14

2.6 Parents before crossover in GNPvs 17

2.7 Node selection and movement in crossover of GNPvs 17

2.8 Offspring after crossover in GNPvs 18

2.9 Flowchart of GNPvs . 19

2.10 Example of tileworld used in simulations 20

2.11 Curves of the number of dropped tiles in simulation I 22

2.12 Average number of dropped tiles over the best individuals in the

training phase . 24

2.13 Average size of the best individuals 25

2.14 Average number of dropped tiles over the best individuals in the

validating phase . 25

2.15 Average number of dropped tiles of Case 2 in the validating phase 26

2.16 Average size of individuals of Case 2 in the validating phase . . . 27

2.17 Average number of dropped tiles over the best individuals in the

training phase . 27

viii

LIST OF FIGURES

2.18 Average number of dropped tiles over the best individuals in the

validating phase . 28

2.19 Ratio of judgment and processing nodes 30

3.1 Outline of replacement . 34

3.2 Example of tileworld used in training phase 37

3.3 Example of tileworld used in testing phase 37

3.4 Average fitness of the best individuals in training phase

of simulation I . 40

3.5 Average fitness of the best individuals in testing phase of simula-

tion I for world 1 . 41

3.6 Average fitness of the best individuals in testing phase of simula-

tion I for world 2 . 42

3.7 Average fitness of the best individuals in testing phase of simula-

tion I for world 3 . 42

3.8 Average fitness of the best individuals in testing phase of simula-

tion I for world 4 . 42

3.9 Average fitness of the best individuals in testing phase of simula-

tion I for world 5 . 43

3.10 Average fitness of the best individuals in testing phase of simula-

tion I for world 6 . 43

3.11 Average fitness of the best individuals in testing phase of simula-

tion I for world 7 . 43

3.12 Average fitness of the best individuals in testing phase of simula-

tion I for world 8 . 44

3.13 Average fitness of the best individuals in training phase of simula-

tion II . 44

3.14 Average fitness of the best individuals in testing phase of simula-

tion II for world 1 . 44

3.15 Average fitness of the best individuals in testing phase of simula-

tion II for world 2 . 45

3.16 Average fitness of the best individuals in testing phase of simula-

tion II for world 3 . 45

ix

LIST OF FIGURES

3.17 Average fitness of the best individuals in testing phase of simula-

tion II for world 4 . 45

3.18 Average fitness of the best individuals in testing phase of simula-

tion II for world 5 . 46

3.19 Average fitness of the best individuals in testing phase of simula-

tion II for world 6 . 46

3.20 Average fitness of the best individuals in testing phase of simula-

tion II for world 7 . 46

3.21 Average fitness of the best individuals in testing phase of simula-

tion II for world 8 . 47

4.1 Genotype-phenotype mapping of GNP-APGm 50

4.2 Basic structure of GNP-APGm 51

4.3 Representation of GNP-APGm 52

4.4 Small but complete example of GNP-APGm 52

4.5 Flowchart of GNP-APGm . 55

4.6 Two different GNP-APGm individuals with different connections . 58

4.7 Tileworlds for training phase . 59

4.8 Changes of Tileworld for testing phase 59

4.9 Simulation result of training phase 63

4.10 Program length of training phase 63

4.11 Simulation result of testing phase when the location of holes is

changed . 64

4.12 Simulation result of testing phase when the location of agents is

changed . 64

4.13 Tileworld with different obstacle configurations 65

4.14 Simulation result of Tileworld with different obstacle configurations 65

4.15 Fitness value of programs with different number of transitions and

different maximum length of programs 68

4.16 Length of programs with different number of transitions and dif-

ferent maximum length of programs 68

4.17 Fitness value of programs with different number of subprograms . 69

4.18 Length of programs with different number of subprograms 69

x

LIST OF FIGURES

5.1 Overall structure of the program generated by GP with ADFs . . 72

5.2 Basic structure of Subroutine embedded GNP for APG with Map-

ping Mechanism . 75

5.3 An example of the main function part in Subroutine embedded

GNP

for APG with Mapping Mechanism 77

5.4 Flowchart of Subroutine embedded GNP for APG with Mapping

Mechanism . 81

5.5 The nine parts of the San Mateo trail for the artificial ant problem 84

5.6 Success rate of GNPsr-APGm and GNP-APGm 88

5.7 Trajectories of the artificial ant for the third and seventh trails . . 88

5.8 Tileworld in training phase . 88

5.9 Changes of Tileworld in testing phase 89

5.10 Average fitness value in the training phase 94

5.11 Average usage time of subroutines over 30 trials 94

5.12 Usage time of subroutines in one trial 95

5.13 Average length of programs . 95

5.14 Testing result for changing the location of holes 96

5.15 Testing result for changing the location of agents 96

5.16 Simulation results for different number of subroutines 96

5.17 Simulation results for crossover rate 0.1 and mutation rate 0.01 . 97

5.18 Simulation results for crossover rate 0.3 and mutation rate 0.03 . 97

5.19 Simulation results for crossover rate 0.5 and mutation rate 0.05 . 98

xi

List of Tables

2.1 Functions of judgment nodes and processing nodes 21

2.2 Parameters of simulation I . 22

2.3 Parameters of simulation II . 23

2.4 Average number of dropped tiles in the training phase 24

2.5 Average number of dropped tiles in the validating phase 26

2.6 Average number of dropped tiles in the training phase 29

2.7 Average number of dropped tiles in the validating phase 29

2.8 Parameters of verifying the optimal ratio 30

2.9 Average number of dropped tiles for verifying the optimal ratio . 31

3.1 Functions of judgment nodes and processing nodes 38

3.2 Parameters of simulation I . 39

3.3 Standard deviations of node visiting times 40

4.1 Functions of processing nodes . 53

4.2 Functions of judgment nodes . 53

4.3 Argument numbers of actions . 54

4.4 Pseudocode of sp2 . 55

4.5 Basic action set . 60

4.6 Functions of judgment nodes in simulations 60

4.7 Parameters of simulations . 61

4.8 Statistical fitness values of training phase 66

4.9 Statistical fitness values of testing phase when the location of holes

is changed . 67

xii

LIST OF TABLES

4.10 Statistic fitness values of testing phase when the location of agents

is changed . 67

5.1 Description of symbols in GP . 73

5.2 Node type of GNPsr-APGm . 77

5.3 Functions of processing nodes . 77

5.4 Functions of judgment nodes . 78

5.5 Argument number of actions . 79

5.6 Pseudocode of the program . 79

5.7 Basic action set of artificial ant problem 84

5.8 Functions of judgment nodes of artificial ant problem 85

5.9 Parameters of artificial ant problem 85

5.10 Code of subroutine . 87

5.11 Basic action set of tileworld problem 90

5.12 Functions of judgment nodes of tileworld problem 91

5.13 Parameters of simulations of tileworld problem 91

xiii

Chapter 1

Introduction

1.1 Background

1.1.1 Evolutionary Algorithms

Darwin’s theory of evolution firstly gives a convincing explanation of the origin

of creatures, and shows the fantastic power of nature selection. Inspired by the

theory, Evolutionary Algorithms (EAs) are developed by computer scientists,

which is a kind of meta-heuristic optimization algorithm for solving the problem

with very large search space by improving the candidate solution iteratively. The

essential advantage of EAs is to solve the particular problem with less prior

knowledge and human intervention.

Starting from the 1950s, the study of computer simulations of evolution be-

gan [1, 2, 3, 4], but this kind of research was not widely noticed. Until the 1960s

and early 1970s, the work of Ingo Rechenberg and Hans-Paul Schwefel on solving

complex engineering problems by Evolution Strategies (ES) [5] and Fogel on pre-

dicting environments through Evolutionary Programming [6] made evolutionary

algorithm well recognized. After that, the most popular algorithm in particular

for solving optimization problems – Genetic Algorithm (GA) was proposed by

Holland on 1975 [7]. Moreover, Holland and his successors attempted to explain

the working principle of EA by proposing the building block hypothesis [8]. This

hypothesis supposes that the ”building blocks”, i.e., low order, low defining-length

schemata with more than the average fitness is the key of candidate solution im-

1

provement. By implicitly and efficiently identifying and recombining ”building

blocks”, EA continuously upgrades the candidate solution. Through this original

work, the behaviors and the effectiveness of EA became more understandable.

Besides, as another branch of EA, Genetic Programming (GP)[9, 10] was de-

veloped around 1990s by Koza. The major challenge of GP is to find proper

computer programs according to the user-defined task in order to make comput-

ers automatically solve problems. For example, in symbolic regression problems,

GP builds up a function close to the target function by combining math operators

called function set (‘+’, ‘-’, ‘sin’, ‘cos’...) and variables or constants called termi-

nal set (‘1’, ‘x’, ‘y’, ‘z’...) [9]; actually, in an artificial ant application, GP creates

a program through function set (‘if Food Ahead’, ‘prog2’, ...) and terminal set

(‘move To Nest’, ‘pick Up Food’, ...) to teach the artificial ants to search food and

take the food to their nest [9]. GP has been proved to be completive with human

performance on some problems like cellular automata, circuit design, controller

design, etc [11, 12]. Inspired by GP, more and more evolutionary algorithms for

automatic programming have been proposed. Some successful paradigms are list

as follows.

• Cartesian Genetic Programming (CGP) - This algorithm is directed graph

structure and optimized to design circuit [13, 14].

• Gene Expression Programming (GEP) - The essential point of the algorithm

is to use linear chromosome to generate tree-structure programs [15, 16]

• Grammatical Evolution (GE) - This method combines the grammar of pro-

gramming languages and bit strings of GA to produce programs [17, 18].

1.1.2 Related biology knowledge

Since EAs are loosely based on nature precedent [19], some prior knowledge of

biology could be used to improve the performance of EAs. Firstly, it is a common

sense that the length of gene in spices is evolved from short to long over long pe-

riod, i.e., there are about 2 million DNA base pairs in some bacterial, in contrast

to about 3 billion in human. Obviously, human are much more complex and

2

functional than bacterial, which means that longer gene could have more expres-

sion ability to generate more functions for dealing with problems in nature. On

the other words, it is possible to improve the performance of EAs by increasing

the length of chromosome. Secondly, the theory of Evolution by gene duplication

[20, 21] describes that the gene duplication is a major driving force of evolvabil-

ity. In this theory, it can make the individual survive under the selection pressure

and eventually might accumulate mutations on duplicated gene, which produces

new features of individuals for adapting to the new environments by copying a

part of gene. By this point of view, the gene duplication operation could be

included in EAs to increase the generalization ability of the algorithms. Finally,

in biological systems, there is a genotype-phenotype mapping mechanism, which

explains the procedure of protein generation from the sequence of gene. With

the working principle of this mechanism, alleles [22] will be translated to the

same amino acids, and consequently build the same protein, which makes two

individual with different chromosome have the same phenotype. Therefore, EAs

can keep the diversity of individuals for enlarging the search space by introducing

this mechanism.

1.1.3 Genetic Network Programming

Genetic Network Programming (GNP) [23, 24] is a kind of evolutionary algorithm

with directed graph structure, which is an extension of GA and GP. The novel

structure of GNP makes it have high expression ability with relevant small size of

individuals, and consequently has the better performance than other evolutionary

algorithms [23, 25, 26]. It has following advantages [23].

1. Partially observable systems. GNP can realize the partially observable sys-

tems by setting any flexible simple judgment and processing nodes and

combining them by evolution.

2. Building block function. When GNP is executed, some parts of the struc-

ture will repeat several times, which means these parts are memorized as

some useful functions. These functions work like the Automatic Defined

Functions (ADFs) in GP, which improves the performance of the algorithm

[10].

3

3. Fixed number of nodes and reusability of nodes. The number of nodes

in a GNP individual is fixed. And, during the transitions, the nodes in

GNP structure can be visited many times, which makes the GNP structure

compact. Therefore, GNP can avoid the bloating problem [23, 27, 28] while

still keeping high expression ability.

4. Easy to implement. Although the structure of GNP seems complicated, it

can be easily represented by a list of nodes. Moreover, genetic operations

like crossover and mutation on the list of nodes are implemented simply.

Therefore, GNP has been successfully applied to many real world applica-

tions like elevator supervisory control systems [29], stock market prediction [30],

association rule mining [31], and traffic prediction [32].

1.1.3.1 Basic structure of GNP

0

21

5

7 8

4

3

9

6

Start Node

Processing Node

Judgment Node

Figure 1.1: Basic structure of conventional GNP

As mentioned before, GNP has a directed-graph structure which is different

from strings in GA and trees in GP. The basic structure of GNP is shown in

Fig.1.1. The structure of GNP contains three kinds of primary nodes: start

node, judgment node and processing node. These nodes are connected by directed

links shown with arrows. The square represents the start node which just points

the first node to perform. The hexagon stands for judgment nodes. Judgment

nodes have several branches connected to the other judgment nodes or processing

nodes. When the judgment node is executed, it collects the information from

4

environments, then analyzes the current situation, finally decides the next node

to move depending on the result of judgments. The circle describes the processing

node. Processing nodes only have one branch linked to the other node. Each

processing node will make an agent take an action when the processing node is

visited. After the action, the environment might be changed. In practice, the

number of branches of judgment nodes, the functions of judgment nodes and

processing nodes are determined by designers according to the problem.

node i NTi ID i di Ci1 d i1 Ci2 d i2 ... Cik d ik

Node Gene Connection Gene

node 0

node 1

node 2

node 5

node 9

...

...

0 0 0 1 0

1 2 0 2 0 4 0

2 1 0 3 0

...

1 3 0 1 0 4 0 8 0

...

2 2 0 5 0

Figure 1.2: Representation of GNP structure

Fig.1.2 shows the representation of GNP structure. An integer array is used

to describe the gene of a node. The gene contains two part: node gene and

connection gene. The node gene stores three kinds of data, and they are NTi,

IDi, and di. NTi represents the type of node i. The three options 0, 1, and

2 means the start node, judgment node and processing node, respectively. IDi

means the identity of node i which shows the index of functions. di is used to

describe the time delay for judgments and processings. Time delay describes

the time cost when GNP executes the judgment or processing. The connection

gene keeps the connection information from node i, where Ci1, Ci2... represent the

index of the connected nodes and di1, di2... show the time delay for the transition

of these connections. In this thesis, time delay is always 0.

1.1.3.2 Genetic operators of GNP

Like other evolutionary algorithms, GNP uses selection, crossover and mutation

to evolve the GNP individuals.

5

GNP provides elite selection and tournament selection. Elite selection is sim-

ple, it picks up the best individuals and move them to the next generation directly.

Tournament selection chooses several individuals from the current population ran-

domly, then runs several “tournaments”. The winners of all the individuals are

selected for crossover and mutation.

Crossover is performed between two parents and generates two offspring. Two

parents are selected through tournament selection. During crossover, the corre-

sponding nodes have the probability Pc to swap each other. After crossover, two

new individuals are produced and moved to next generation. Fig.1.3 shows a sim-

ple example of crossover. In the example, node 3, node 4 and node 9 marked with

grey color are decided to exchange. The black arrows describe the connections of

these nodes to the other nodes. After crossover, these connections are swaped,

and the structures of offspring become different from their parents.

0 21

5

7 8

4

3

9

6

0 21

5

7 8

4

3

9

6

parent 1 parent 2

0 21

5

7 8

4

3

9

6

0 21

5

7 8

4

3

9

6

offspring 1 offspring 2

Figure 1.3: Crossover of GNP

Mutation occurs on one individual. All data in the gene except NTi have

the mutation rate Pm to change randomly. After mutation, a new individual

is created. There are two kinds of mutations in GNP: connection mutation and

function mutation. Connection mutation changes the connections between nodes,

in concrete, the values of Ci1, Ci2... are altered. Function mutation means the

function of the individual is changed, which implies the value of IDi is updated.

6

The left part of Fig.1.4 shows the connection mutation and the right part shows

the function mutation, where the black arrows are changed to point the other

node in the connection mutation, while the ID of node 4 turns to 3 from 2 in the

function mutation.

0 21

5

7 8

4

3

9

6

parent

0 21

5

7 8

4

3

9

6

parent

ID=2

0 21

5

7 8

4

3

9

6

offspring

0 21

5

7 8

4

3

9

6

offspring

ID=3

Figure 1.4: Mutation of GNP

1.2 Research objective

After GNP was proposed, many methods have been developed to improve the

performance of GNP such as combining GNP with reinforcement learning [23],

introducing symbiotic learning in GNP [24], upgrading the structure of GNP by

defining macro node [33] and rule accumulation [34]. Although these methods

have been proved to improve the performance of GNP and are applied to many

real world applications successfully, two problems of GNP have not been solved,

i.e., “the node size of GNP is fixed” and “an individual is a solution”. The first

problem indicates that the predefined number of nodes is used, and it is difficult to

set the optimal size of an individual in the beginning. The second problem means

that it is hard to design and evolve a complicated individual as the sophisticated

solution for solving a difficult problem.

Therefore, the objective of this research is to solve both problems by enhancing

the structure of GNP using the above theories.

7

1.3 Organization of the thesis

Besides the introduction, the rest of thesis is organized as follows.

Chapter 2 introduces Variable Size Genetic Network Programming (GNPvs),

which changes the size of the individuals and obtain the optimal size of them

during evolution. The proposed method will select the number of nodes to move

from one parent GNP to the other parent GNP in crossover to implement the new

feature of GNP. The probability of selecting the number of nodes to move satisfies

the binomial distribution. The proposed method can keep the effectiveness of

crossover, improve the performance of GNP and find the optimal size of the

individuals.

Chapter 3 describes the improvement method of GNPvs - GNPvs with Re-

placement (GNPvs-R), in which a kind of replacement mechanism is firstly pro-

posed in GNPvs. Inspired by the theory of Evolution by Gene Duplication, in the

proposed method, the non-frequently used nodes are replaced with the frequently

used nodes, on the other words, a part of nodes are copied, which makes the

algorithm has higher generalization ability than former algorithms.

Chapter 4 presents GNP for Automatic Program Generation with Mapping

Mechanism (GNP-APGm), in which a kind of genotype-phenotype mapping pro-

cess is introduced in GNP to create programs. In this method, an individual of

GNP is a solution generator, and it is only used for the mapping process to create

the solutions for the problem. After evolution, a better solution generator can be

obtained.

Chapter 5 shows Subroutine embedded GNP for Automatic Program Genera-

tion with Mapping Mechanism (GNPsr-APGm), which improves the performance

of GNP with Mapping Mechanism. The proposed method automatically defines

the main function and usage of the potential useful subroutines during evolution.

By using subroutines, a complex program can be decomposed to several simple

programs which are obtained more easily. Moreover, these subroutines are called

many times from the main program, which results in reducing the size of the

program significantly.

Chapter 5 is devoted to conclusions.

8

Chapter 2

Variable Size Genetic Network

Programming (GNPvs)

2.1 Introduction

As described in the introduction, GNP uses the directed graph chromosome as its

basic structure, which is extended from the strings in GA and trees in GP. With

the help of high expression ability of graph structures, GNP has some valuable

features like partially observable systems, building block functions, fixed number

of nodes and reusability of nodes [23], which improves the performances of the

algorithms and avoid the bloating problem.

Since the feature of the fixed number of nodes for avoiding the bloating prob-

lem [23], most GNP and GNP based methods do not change the size of the

individuals during evolution. Fixed number of nodes means that a predefined

number of nodes is used, which needs prior knowledge of the problems or needs

to try different sizes of GNP. However, when the problem is complicated, it is

impossible to get enough prior knowledge or try many different sizes of GNP.

Moreover, if the size is defined too small, the individual will be lack of the ex-

pression ability, while if the size is too large, it needs a large search space and

the individual will be overfitting easily. Therefore, a new type of GNP is needed,

in which the size of the individuals is variable. Besides, more nodes mean much

higher expression ability which is necessary for solving complicated problems,

9

while too large number of nodes lack the generalization ability. For these rea-

sons, Variable Size Genetic Network Programming (GNPvs) is proposed, which

changes the size of the individuals and obtain the optimal size of them during

evolution. The proposed method defines a new type of crossover to implement

the new feature of GNP. The new crossover will select the number of nodes to

move from one parent GNP to the other parent GNP. The probability of selecting

the number of nodes to move satisfies the binomial distribution. Besides, the new

crossover can prevent the bloating problem which may occur in GNPvs, since the

difference between the number of nodes selected from two individuals is small,

i.e., the size of offsprings will not increase dramatically..

On the other hand, there are some research have been conducted on variable

reforestation of chromosome. Messy Genetic Algorithm is one of them. At first,

most research on GA uses fixed-length strings, however variable-length strings are

more close to nature, i.e., the genotypes of lives evolved from simple to complex in

nature [19]. Therefore, in [19], a messy genetic algorithm (mGA) was proposed,

which defines messy strings, and its operators permit the algorithm to exploit and

form higher-performance building blocks than simple GA with fixed length. Since

the chromosome in mGA is variable, simple crossover no longer works, two simple

operators: cut and splice are used to replace crossover. Fig.2.1 shows the schema

of cut and splice coordination in mGA. The cut operator divides the individuals

into two parts and the splice operator joins the different parts from parents to

generate new individuals. By combining both operators, the parents can exchange

the gene like crossover. As noted in [19], mGA works better than simple GA with

fixed coding. The crossover in the proposed method is inspired from this method,

that is, different numbers of nodes in GNP from both individuals are swapped

by crossover. It is the first time in this thesis to introduce this kind of crossover

to the graph-based evolutionary algorithm, since other graph-based evolutionary

algorithms like Evolution Strategy and Cartesian Genetic Programming only use

mutation to generate new individuals [35, 36].

Obviously, GP is developed to evolve programs, therefore, GP has variable

gene structures. As described in [12], “GP now routinely delivers high-return

human-competitive machine intelligence”. However, GP suffers from the bloating

problem which will affect the performance of the algorithm [27, 28, 37]. Derived

10

Figure 2.1: Schema of cut and splice coordination in mGA

from GP, Gene Expression Programming (GEP) [15, 16] and Grammatical Evo-

lution (GE) [17, 18] are proposed to generate programs automatically. Different

from GP, both methods introduce genotype-phenotype mapping mechanism [38]

to generate programs, by which fixed length genes can be translated to variable

length programs. Moreover, both methods can alleviate the bloating phenomenon

[39, 40] and get better performances than GP.

Besides, the paper [41] is the first attempt to develop a variable size GNP.

In this paper, the contribution of each kind of nodes for the fitness value is

calculated, then the algorithm determines whether one particular kind of node

is to be added to all the individuals or is to be deleted from them depending on

the contribution of it to the fitness value. Although the algorithm implements

the variable size GNP and has proved its good performances, all the individuals

in the population still have the same number of nodes, which limits the ability of

keeping the diversity of chromosomes and enhance the exploration ability of the

algorithm by containing different sizes of individuals in the population.

2.2 Variable Size Genetic Network Programming

with Binomial Distribution

Different from the algorithm in [41], Variable Size Genetic Network Programming

(GNPvs) with Binomial Distribution implements the feature of changing the size

of the individual and obtaining the optimal size of it during evolution in a more

natural way.

11

0

21

5

7 8

4

3

9

6

Start Node

Processing Node

Judgment Node

Figure 2.2: Basic structure of GNPvs

node i NTi ID i di Ci1 d i1 Ci2 d i2 ... Cik d ik

Node Gene Connection Gene

node 0

node 1

node 2

node 5

node 9

...

...

0 0 0 1 0

1 2 0 2 0 4 0

2 1 0 3 0

...

1 3 0 1 0 4 0 8 0

...

2 2 0 5 0

Figure 2.3: Representation of GNPvs structure

2.2.1 Structure of GNPvs

Although GNPvs is a new type of GNP, the phenotype and genotype of GNPvs is

the same as GNP, which are shown in Fig.2.2 and Fig.2.3. Therefore, the individ-

ual of GNPvs also contains three kinds of primary nodes: start node, judgment

node and processing node, and each node has its node ID, node function, and

connections, which are described in the introduction.

2.2.2 Foundation of GNPvs

The main difference between GNPvs and GNP is that the size of the individuals

in GNPvs is variable and GNPvs allows the individuals to change the size during

evolution. In order to implement the above features, a new type of crossover

is introduced in GNPvs to replace the normal uniform crossover in GNP. The

crossover of GNPvs is an extension of uniform crossover. In uniform crossover,

the corresponding nodes have the probability, i.e., crossover rate of Pc to swap

12

0

0.05

0.1

0.15

0.20

0.25

0 10 20 30 40

Pr
ob

ab
ili

ty

Number of nodes (n)

Pc=0.5,N=20
Pc=0.7,N=20
Pc=0.5,N=40

Figure 2.4: Binomial distribution of the number of nodes selected

each other. Since uniform crossover randomly picks up the nodes from the in-

dividual at crossover rate of Pc, the probability f(n;N,Pc) of choosing n nodes

from the total N nodes equals Cn
NP

n
c (1 − Pc)

N−n, which satisfies the following

binomial distribution Eq.(2.1). However, in the crossover of GNPvs, each parent

has its own crossover rate, for example, parents GNPvsA and GNPvsB have

crossover rate of PA and PB, respectively. PA and PB could be the same or dif-

ferent. Besides, each parent selects the nodes to move independently. Therefore,

GNPvsA and GNPvsB have their own binomial distributions like Fig.2.4. When

performing crossover, two GNPvs individuals may choose different number and

different kind of nodes to move, even when the crossover rate is the same.

f(n;N,Pc) = Cn
NP

n
c (1− Pc)

N−n

n = 0, 1, 2, ..., N, where,

Cn
N = N !

n!(N−n)!

n : the number of nodes selected to move

N : total number of nodes in an individual

Pc : crossover rate of the individuals

(2.1)

13

Figure 2.5: Schema of crossover in GNPvs

2.2.3 Crossover of GNPvs

As described above, crossover is the most important genetic operator to realize the

proposed method. Fig.2.5 shows the schema of crossover in GNPvs. In Fig.2.5,

two offspring GNPvsA
′ and GNPvsB

′ are generated by parents GNPvsA and

GNPvsB.

where,

GNPvsA(a): the remaining part of GNPvsA during crossover;

GNPvsB(a): the remaining part of GNPvsB during crossover;

GNPvsA(b): the moving part of GNPvsA during crossover;

GNPvsB(b): the moving part of GNPvsB during crossover;

NA: the number of nodes of GNPvsA;

Na: the number of nodes of GNPvsA(b);

NB: the number of nodes of GNPvsB;

Nb: the number of nodes of GNPvsB(b);

GNPvsA = GNPvsA(a) +GNPvsA(b);

GNPvsB = GNPvsB(a) +GNPvsB(b);

GNPvsA
′ = GNPvsA(a) +GNPvsB(b);

GNPvsB
′ = GNPvsB(a) +GNPvsA(b).

In Fig.2.5, GNPvsA(b) and GNPvsB(b) are selected to move, then new in-

dividual GNPvsA
′ is generated by combining the remaining part of GNPvsA(a)

and moving part of GNPvsB(b), and GNPvsB
′ is obtained by combining the

14

remaining part of GNPvsB(a) and moving part of GNPvsA(b), respectively. As

described above, the probability of selecting the number of nodes to move, i.e.,

Na and Nb follows the binomial distribution.

Based on the basic concept of crossover in Fig.2.5, the algorithm of crossover

is shown as follows. The detail of the algorithm is described in the next subsection

by a simple example.

Procedure 1: Algorithm of crossover

Input: Two individual GNPvsA and GNPvsB

PA, PB: crossover rate of GNPvsA and GNPvsB

NA, NB: size of GNPvsA and GNPvsB

Na, Nb: size of GNPvsA(b) and GNPvsB(b)

S(A), S(B): sets of moving nodes

Output: Two new individual GNPvsA
′ and GNPvsB

′

#Determine the number of nodes to move

1: Na ← 0, Nb ← 0

2: for i = 1 to NA do

3: if random value < PA then

4: Na ← Na + 1

5: end if

6: end for

7: for i = 1 to NB do

8: if random value < PB then

9: Nb ← Nb + 1

10: end if

11: end for

#Select nodes to move

12: S(A)← Ø, S(B)← Ø

13: for i = 1 to Na do

14: if S(A) = Ø then

15: Randomly choose a node from GNPvsA and set the chosen node as nodei

16: else

17: Select the node connected from the last node in S(A) and set the selected node

as nodei

18: end if

15

19: S(A)← S(A) ∪ nodei, delete nodei from GNPvsA

20: end for

21: for i = 1 to Nb do

22: if S(B) = Ø then

23: Randomly choose a node from GNPvsB and set the chosen node as nodei

24: else

25: Select the node connected from the last node in S(B) and set the selected

node as nodei

26: end if

27: S(B)← S(B) ∪ nodei, delete nodei from GNPvsB

28: end for

#Move nodes

29: GNPvsA
′ ← S(B) ∪GNPvsA

30: GNPvsB
′ ← S(A) ∪GNPvsB

#Update connections of GNPvsA
′ and GNPvsB

′

31: for i = 1 to NA −Na +Nb do

32: Update connections of nodei

33: end for

34: for i = 1 to NB −Nb +Na do

35: Update connections of nodei

36: end for

37: return GNPvsA
′, GNPvsB

′

2.2.4 Example of crossover in GNPvs

Two simple individuals of GNPvs are used as an example in Fig.2.6, in order to

show the procedure of crossover and explain Procedure 1. GNPvsA and GNPvsB

are individuals consisted of 5 and 6 nodes, respectively. The upper part of Fig.2.6

is the genotype of two individuals, and lower part is the representation of geno-

types.

As shown in Procedure 1, the first step is to determine the number of nodes to

move. In this example, the algorithm decides 1 node and 2 nodes from GNPvsA

and GNPvsB to move, respectively. Fig.2.7 shows the next two steps for selecting

and moving nodes described in the above procedure. Since GNPvsA only need

to choose one node to move, node4A is picked up randomly. While, GNPvsB is

16

required to select two nodes. Therefore, it firstly chooses node1B randomly, then

picks up node4B connecting from node1B. The rules to select the next node to

move as S(A) or S(B) is shown as follows.

• If the current node is a processing node, then just select the node connected

from the current node.

• If the current node is a judgment node, then choose one branch from the

current node to select the node randomly.

• If the next node is already in the moving set, then pick up another node

randomly.

The moving nodes are copied to set S(A) and S(B). After that, node4A is inserted

into index1 of GNPvsB to generate GNPvsB
′, and node1B and node4B are put

into index4 and index5 of GNPvsA, respectively, to create GNPvsA
′.

Figure 2.6: Parents before crossover in GNPvs

Figure 2.7: Node selection and movement in crossover of GNPvs

17

Figure 2.8: Offspring after crossover in GNPvs

The final step is to update connections. Two kinds of connections need to be

updated. One is the connections of the moved nodes, the other is the connections

of all the nodes in the individual, which links to the deleted nodes. For the

moved nodes, since the indexes of nodes are changed, the connections of these

nodes should be changed in order to keep the building blocks of these nodes.

For example, in Fig.2.7, node1B connects to node4B, and after crossover, node1B

and node4B become node4′A and node5′A, respectively, therefore the connection

of node4′A should be changed to node5′A, which is shown in Fig.2.8. Because the

nodes will be deleted from parents GNPvs, the connections of the nodes linked to

the deleted nodes need to be updated. For example, in Fig.2.7, node5B connects

to node4B, while in GNPvsB
′, node4B is deleted, therefore, the connection of

node5B is changed from node4B to node1B as described in Fig.2.8. When the

updating is finished, two new individuals GNPvsA
′ and GNPvsB

′ are obtained,

which is represented in Fig.2.8.

2.2.5 Flowchart of GNPvs

Fig.2.9 shows the following steps of the flowchart of GNPvs.

Step 1: Parameters are set, especially crossover rate, mutation rate and so on.

And hundreds of individuals of GNPvs are generated randomly.

Step 2: Evaluate each individual using the current environment to get the fitness

of the individual.

18

Figure 2.9: Flowchart of GNPvs

Step 3: Execute genetic operations, i.e., elite selection, crossover and mutation.

The new crossover is deployed in this step.

Step 4: A number of top individuals are picked up to validate the generalization

ability of individuals, since the proposed method should find the optimal

size of the individual.

Step 5: Determine whether it is the last generation or not. If the answer is yes,

then the algorithm ends, otherwise, go to step 2.

Step 6: Check the performance by validation data and find the optimal size of

the individual.

2.3 Simulations

In this section, the performances of the proposed method are evaluated and com-

pared with the conventional GNP using Tileworld [42].

2.3.1 Simulation environments

Tileworld is a famous agent-based test bed with time dependent and uncertain

features, since the current action taken by the agent depends on its previous

actions, and different agents cannot communicate with each other, which means

that they cannot predict the actions taken by the other agents [42, 43, 44, 45].

Tileworld consists of agents, floor, tiles, holes and obstacles. The agents need

19

Figure 2.10: Example of tileworld used in simulations

to move round the obstacles and to push all the tiles into the holes as soon as

possible. Once a tile is pushed into a hole, the hole becomes the floor. An agent

can only push one tile at a time. Fig.2.10 shows an example of the tileworld used

in the simulations. In each tileworld, there are three agents, 30 holes and 30 tiles.

2.3.2 Simulation I

As noted in [37], the effectiveness of crossover will decrease during evolution.

Therefore, the effectiveness of crossover in GNPvs and GNP is studied in this

simulation by removing mutation from genetic operators.

The functions of judgment nodes and processing nodes are described in Table

2.1. JF, JB, JL, JR, JT, JH, JHT and JST are 8 kinds of judgment nodes, while

MF, TR, TL and ST are 4 kinds of processing nodes in both algorithms. Moreover

JF, JB, JL and JR return the floor, obstacle, tile, hole or agent; JT, JH, JHT and

JST return the forward, backward, left, right or nothing. Thus, each judgement

node has 5 branches. Besides, there are totally 60 nodes (12 kinds of nodes × 5

for each kind of node) in each individual at first. In order to avoid the bloating

problem, the maximal number of nodes is set at 180.

The parameters used in the simulations are described in Table 2.2. The pop-

ulation size is 300, and during reproduction, the top 10 individuals are copied

to the next population. Since there is no mutation, all the other 290 individuals

20

Table 2.1: Functions of judgment nodes and processing nodes

NT ID Symbol Function

1 1 JF Judge Forward
1 2 JB Judge Backward
1 3 JL Judge Left
1 4 JR Judge Right
1 5 JT Judge the nearest Tile
1 6 JH Judge the nearest Hole
1 7 JHT Judge the nearest Hole from the nearest Tile
1 8 JST Judge the second nearest Tile
2 1 MF Move Forward
2 2 TR Turn Right
2 3 TL Turn Left
2 4 ST Stay

are generated through crossover. In this simulation, the crossover rate of two

individuals in GNPvs is the same, i.e., PA=PB. The algorithms need to iterate

1000 generations. The fitness function is f =
∑N

w=1 DroppedT ile(w)+ NJ

NT
, where

N is the number of tileworlds, DroppedT ile(w) is the number of dropped tiles in

tileworld w, NJ is the number of judgment nodes and NT is the total number of

nodes, respectively. The fitness function calculates the total number of dropped

tiles in the tileworlds and the ratio of the judgment nodes and processing nodes.

In this simulation, N = 1. For each agent, there are 200 time steps. Each pro-

cessing node and judgment node takes 1 time step and 0.2 time step, respectively.

Fig.2.11 shows the average number of dropped tiles of the best individuals

over 30 random trials in each generation of GNPvs and GNP. It is found from

Fig.2.11 that although the increasing speed of the fitness of GNPvs is slower than

GNP at first, GNPvs still gradually improves the structure of individuals, while

GNP is trapped into the local optimum around 150th generation. Therefore,

GNPvs gets the number of dropped tiles of 12.4 and 14.5 at the last generation

when the crossover rates are 0.1 and 0.2, respectively, while GNP only gets 9.5

and 11.4.

21

Table 2.2: Parameters of simulation I

Parameter Name GNPvs GNP

Initial Size 60 60
Number of Individuals 300 300

Number of Elite 10 10
Crossover Size 290 290
Crossover Rate Case 1: PA = PB = 0.1 0.1

Case 2: PA = PB = 0.2 0.2
Number of Generations 1000 1000

0

2

4

6

8

10

12

14

16

18

20

1 200 400 600 800 1000

N
um

be
r o

f d
ro

pp
ed

 ti
le

s

Generation

GNP PC=0.1
GNP PC=0.2

GNPvs PA=PB=0.1
GNPvs PA=PB=0.2

Figure 2.11: Curves of the number of dropped tiles in simulation I

It is found from Fig.2.11 that GNPvs works better than GNP with no muta-

tion, which shows the effectiveness of crossover in GNPvs. Although the crossover

in GNPvs can change the structure of individuals, i.e., change the number of

nodes and the proportion of judgment nodes and processing nodes, the proposed

method might be trapped into local optima, however it has the strong ability of

generating new individuals by exchanging different number of nodes. That’s why

the crossover in GNPvs is better than uniform crossover in GNP.

2.3.3 Simulation II

In this simulation, three different tileworlds are used to train GNPvs and GNP

and to validate the generalization ability of the algorithm, that is, 2 tileworlds

22

Table 2.3: Parameters of simulation II

Parameter Name GNPvs GNP

Initial Size 60 60
Number of Individuals 300 300

Number of Elites 10 10
Crossover Size 170 170
Crossover Rate Case 1: PA = PB = 0.1 0.1

Case 2: PA = PB = 0.2 0.2
Case 3: PA = PB = 0.3 0.3
Case 4: PA = PB = 0.4 0.4
Case 5: PA = PB = 0.5 0.5
Case 6: PA = 0.1, PB = 0.3
Case 7: PA = 0.2, PB = 0.4
Case 8: PA = 0.4, PB = 0.5

Mutation Size 120 120
Mutation Rate 0.05 0.05

Number of Generations 1000 1000

for training and 1 tileworld for validating. From the validation data, the optimal

size of GNPvs under particular parameters will be obtained.

The functions of judgement nodes and processing nodes, the initial number

of nodes, the fitness function and the total time steps are the same as those of

simulation I, while the number of tileworld is 2 in the training phase and 1 in the

validation phase. The other parameters are shown in Table 2.3. The population

size is 300, and during reproduction, the top 10 individuals are copied to the next

population and these 10 individuals are picked up to validate in another tileworld

to check the generalization ability. 170 individuals are generated by crossover.

In this simulation, 8 different pairs of crossover rate in GNPvs are used to show

the performances of GNPvs. Since the crossover rates of the last three cases are

different, there are no simulation results of GNP in these cases. Besides, 120

individuals are created through mutation. The mutation rate is 0.05.

Fig.2.12 and Fig.2.13 shows the average number of dropped tiles and the

average size of the best individuals over 30 random trials in the last generation

of GNPvs and GNP in the training phase. It is found from Fig.2.12 that the

23

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8

N
um

be
r o

f d
ro

pp
ed

 ti
le

s

Cases of crossover rate pair

GNPvs
GNP

Figure 2.12: Average number of dropped tiles over the best individuals in the
training phase

Table 2.4: Average number of dropped tiles in the training phase

Case GNP GNPvs
1 21.9 27.4
2 23.4 29.1
3 25.5 27.8
4 28.0 25.0
5 24.9 23.5

Average 24.7 26.6

crossover rates of the best GNPvs and GNP are different. It is because when

the crossover rate is small, the exploration ability of GNP is low, which means

that GNP cannot find more candidate solutions in the search space, while if the

crossover rate is large, GNPvs individuals may exchanges too many nodes for

individuals, which makes it hard to keep useful building blocks of individuals.

Although the performance of GNPvs and GNP depends on the crossover rate,

GNPvs has the highest performance when the crossover rate is 0.2, and GNPvs

can increase the average number of dropped tiles by 7.7% over 5 cases, which is

shown in Table 2.4. Therefore, it is confirmed that GNPvs has better performance

than GNP, when the number of the training tileworlds is 2.

Besides, the growth of the size of individuals is a basic feature of GNPvs [37],

however it is found from Fig.2.13 that the size of the individuals does not increase

24

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8

Si
ze

 o
f i

nd
iv

id
ua

ls

Case of crossover rate pair

GNPvs
GNP

Figure 2.13: Average size of the best individuals

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8

N
um

be
r o

f d
ro

pp
ed

 ti
le

s

Cases of crossover rate pair

GNPvs
GNP

Figure 2.14: Average number of dropped tiles over the best individuals in the
validating phase

rapidly from case 1 to case 5. From this point of view, the proposed method can

alleviate the bloating phenomenon.

Fig.2.14 and Table 2.5 show the average number of dropped tiles of the best

individuals in the last generation over 30 random trials in the validating phase. It

is found from Fig.2.14 and Table 2.5 that GNPvs can push more tiles than GNP in

most cases, and the average number of dropped tiles of both methods are 5.3 and

6.6, respectively, which means GNPvs can improve the performance by 24.5%.

Therefore GNPvs has more generalization ability than GNP, because GNPvs can

optimize the proportion between judgment nodes and processing nodes during

crossover.

Moreover, the validation data is used to determine the optimal size of the

25

Table 2.5: Average number of dropped tiles in the validating phase

Case GNP GNPvs
1 5.0 5.2
2 4.5 8.5
3 5.6 7.0
4 5.7 6.9
5 5.7 5.2

Average 5.3 6.6

0

1

2

3

4

5

6

7

8

9

10

1 200 400 600 800 1000

N
um

be
r o

f d
ro

pp
ed

 ti
le

s

Generation

GNPvs PA=PB=0.2

Figure 2.15: Average number of dropped tiles of Case 2 in the validating phase

individuals by checking the peak of the curve of the number of dropped tiles,

since the individual has the highest generalization ability around this point. For

example, Fig.2.15 and Fig.2.16 describe the curves of the average number of

dropped tiles and the average size of individuals of Case 2 in the validating

phase, respectively. By analyzing both figures, it is firstly found from Fig.2.15

that the best performance occurs around 660th generation, then the optimal size

of the individual is obtained from Fig.2.16, that is, the number of nodes in the

individual is 71.

The proposed method should be compared with other methods in order to

show the effectiveness of it, on the other hand, GNP and other methods have

been compared fully in the paper [23]. Since the simulation environments and

parameters in the paper [23] are different from those of our paper, it is difficult

to compare the performances between the proposed method and other methods

26

50

60

70

80

1 200 400 600 800 1000

Si
ze

 o
f i

nd
iv

id
ua

ls

Generation

GNPvs PA=PB=0.2

Figure 2.16: Average size of individuals of Case 2 in the validating phase

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5

N
um

be
r o

f d
ro

pp
ed

 ti
le

s

Case of crossover rate pair

GNPvs: 60 node
GNP: 72 node

Figure 2.17: Average number of dropped tiles over the best individuals in the
training phase

directly. But, roughly speaking, in the paper [23], GNP can increase the number

of dropped tiles by 14.3%, 22.2% and 9.4% compared to GP-ADFs, GP and

EP, respectively. While the proposed method can improve the performances

compared to GNP by 7.7% and 24.5% in the training phase and validating phase,

respectively, in this simulation. Therefore, the proposed method can improve the

performance effectively.

2.3.4 Simulation III

Since the proposed method will increase the size of individuals and a good number

of nodes means the higher expression ability of individuals, the different initial

27

 0

 2

 4

 6

 8

 10

1 2 3 4 5

N
um

be
r o

f d
ro

pp
ed

 ti
le

s

Case of crossover rate pair

GNPvs: 60 node
GNP: 72 node

Figure 2.18: Average number of dropped tiles over the best individuals in the
validating phase

number of nodes of GNPvs and GNP should be tested for confirming the effec-

tiveness of the proposed method further.

From the former simulations, when the initial number of nodes of GNPvs is

60, the optimal size approaches to 71, therefore the initial number of nodes of

GNP is set at 72 in this simulation, which means there are 6 nodes for each kind

of nodes. 5 cases are studied in which the crossover rate changes from 0.1 to 0.5

like simulation II.

Fig.2.17 and Fig.2.18 show the average number of dropped tiles of the best

individuals over 30 random trails in the training and validating phase . It is found

from both figures that GNPvs still has better performances than GNP, because

GNPvs can change the ratio of judgment nodes and processing nodes, even if the

initial number of nodes of GNP increases. Therefore, it is confirmed that the

proposed method can obtain the optimal size of the individuals.

2.3.5 Simulation IV

For further study, different initial number of nodes and the change of the ratio

of judgment nodes and processing nodes are studied. In this simulation, 5 cases

of the initial size are studied, which are 36, 48, 60, 72 and 84 nodes, respectively.

For each case, the average number of dropped tiles are calculated over 5 different

crossover rates, i.e. 0.1, 0.2, 0.3, 0.4 and 0.5, where each crossover rate has 30

random trials. The results are shown in Table 2.6 and Table 2.7. It is found from

28

Table 2.6: Average number of dropped tiles in the training phase

Initial size GNP GNPvs
36 23.1 25.0
48 24.3 26.9
60 24.8 26.6
72 25.9 25.8
84 23.3 25.3

Table 2.7: Average number of dropped tiles in the validating phase

Initial size GNP GNPvs
36 5.0 6.3
48 5.4 6.3
60 5.3 6.5
72 5.2 6.3
84 4.9 6.2

both tables that GNPvs has better performance than GNP on different initial

sizes. Therefore, the proposed method can stably improve the effectiveness and

efficiency of GNP.

Moreover, the evolution of the ratio of judgment nodes and processing nodes

for these cases are shown in Fig.2.19, where the ratio is NJ

NP
, NJ is the number

of judgment nodes and NP is the number of processing nodes. It is found from

Fig.2.19 that the ratio of judgment nodes and processing nodes decreases for all

cases. Because the total steps of agents are fixed and the actions taken by agents

are followed the processing nodes, which means that more processing nodes in the

individual, more actions the agent may take to push tiles into hole, consequently

the individual will have high fitness value. Therefore, the ratio of judgment nodes

and processing nodes decrease. However, since the simulation environment is dy-

namic, the agent needs to analyze the information collected from its surrounding

for taking proper actions, which means that a number of judgment nodes is nec-

essary. Therefore, when the simulations are terminated, the ratios stay between

29

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

1 200 400 600 800 1000

R
at

io
 o

f J
ud

gm
en

t a
nd

 P
ro

ce
ss

in
g

N
od

es

Generation

36 nodes
48 nodes
60 nodes
72 nodes
84 nodes

Figure 2.19: Ratio of judgment and processing nodes

Table 2.8: Parameters of verifying the optimal ratio

Case Initial Size Ratio

1 56 1.33
2 72 1.25
3 84 1.33

1.2 and 1.5.

In order to verify the validity of the obtained optimal ratio, three other cases

of GNP are tested, where the initial size of GNP and the ratio of judgment nodes

and processing nodes are described in Table 2.8. Since the number of nodes must

be integer, the ratio in Table 2.8 cannot be exactly the same as Fig.2.19. However,

the ratio is in the same range as Fig.2.19 from 1.2 to 1.5, which keeps the fair

comparison. Table 2.9 shows the average number of dropped tiles in both the

training phase and validating phase. Comparing Table 2.9 with Table 2.6 and

Table 2.7, it is found that the number of dropped tiles by GNP increases, which

means that the performance of GNP can be improved by using the optimal ratio.

Therefore, it is confirmed from the simulations that the proposed method can

obtain the optimal ratio, which is also helpful to the evolution of GNP.

30

Table 2.9: Average number of dropped tiles for verifying the optimal ratio

Case Training phase Validating phase
1 26.6 5.9
2 26.1 5.1
3 26.5 5.6

2.4 Conclusions

In this chapter, a new type of Genetic Network Programming (GNP)– Variable

Size Genetic Network Programming (GNPvs) with Binomial Distribution is pro-

posed. The size of the individuals in GNPvs is variable, as a result, GNPvs allows

the individual to change its size during evolution. For implementing this feature,

a new crossover is developed to replace the uniform crossover in GNP. The new

crossover makes some nodes to move from one parent GNP to another parent

GNP following binomial probability distribution. It is found from simulations

that the proposed method can enhance the effectiveness of crossover during evo-

lution in terms of obtaining the better performance than the conventional GNP

and obtaining the optimal size of the individuals by introducing the validation

mechanism. The performance of the proposed method is proved to be fairly good

on agent-based problems.

31

Chapter 3

Variable Size Genetic Network

Programming with Replacement

(GNPvs-R)

3.1 Introduction

After GNP was proposed around 2000, many methods have been developed to

improve the performance of GNP such as combining GNP with reinforcement

learning [23], introducing symbiotic learning in GNP[24], upgrading the struc-

ture of GNP by defining macro node [33] and rule accumulation [34]. Recently,

another improvement method named Variable Size Genetic Network Program-

ming (GNPvs) [46] has been proposed. Since GNPvs is an extension of GNP,

the basic structure of GNPvs is the same as GNP, i.e., a directed-graph repre-

sentation with plural nodes of different functions. The main difference between

GNPvs and GNP is that the size of individual is changeable in GNPvs, while it

is fixed in GNP. Therefore, the size of each individual in GNPvs can be different

and updated during evolution. In order to implement this feature, a new type of

crossover is developed in GNPvs, which selects a number of nodes to move from

one parent individual to another parent individual, then generate two new off-

spring. The advantage of GNPvs is that it can keep the effectiveness of crossover,

which eventually improve the performance of GNP [46].

32

On the other hand, generalization ability is one of important criteria to mea-

sure the effectiveness of artificial learning systems, especially for supervised learn-

ing [47]. An algorithm of high generalization ability means that it can adapt to

new environments as desired after training on a number of environments. In

GNP, since the processing node is not compulsorily transferred to the start node

and the transitions of the nodes follow the flow of network, it is possible that only

a small part of individual will be well evolved, which might causes the reduction

of generalization ability [48]. For solving this problem, GNP with Control Node

and Multi-start nodes GNP are proposed in [48] and [49], respectively. The idea

of both methods is to artificially separate the whole structure into several parts

according to the number of additional nodes (control nodes in [48] and plural start

node in [49]) and activate one part by one of these node under specific conditions.

Although the above methods certainly improve the performance of GNP, it

might not be applied to GNPvs successfully. Since the performance of both meth-

ods depends on the cooperation of the partition of individuals and the connection

of nodes in each partition, it is reasonable to find out the best combination of

partitions and connections, considering that the number of nodes and the ra-

tio of judgment nodes and processing are fixed in GNP. Otherwise, the number

of nodes and function of nodes may rapidly change in GNPvs, which makes it

difficult to evolve a good combination of partitions and connections. Therefore,

a new method that is insensitive to the changeable number of nodes should be

developed for improving the effectiveness of GNPvs.

Inspired by the theory of Evolution by Gene Duplication [20, 21], a kind of

replacement mechanism is firstly proposed in GNPvs. In the proposed method,

the non-frequently used nodes are replaced with the frequently used nodes in good

individuals, i.e., building blocks, which can make the individual survive under the

selection pressure and eventually might accumulate mutations that produce new

features of individuals for adapting to the new environments.

3.2 GNPvs with Replacement

The basic idea of the proposed method is to replace the non-frequently used

nodes with frequently used nodes in good individuals, thus the proposed method

33

is named GNPvs with Replacement (GNPvs-R). This method is proposed based

on two points of view: building block hypothesis [8] and evolution by gene dupli-

cation [20, 21].

1. In GNP, since the behavior of the agent is controlled through the transi-

tions of nodes, the performance of the agent is mainly depended on the

blocks of the frequently used nodes, i.e., building blocks, while the non-

frequently used nodes are barely contributed to the fitness of individuals.

Therefore, the replacement can speed up the search by combing building

blocks explicitly.

2. By the theory of evolution by gene duplication, the replacement is also a

kind of duplication and deletion, i.e., copy the frequently used nodes and

delete non-frequently used nodes, therefore, it can keep the competitiveness

of the individual, and make the individual have the potential to accumulate

mutations for generating new features to adapt new environments.

Figure 3.1: Outline of replacement

34

3.2.1 Outline of replacement

Fig.3.1 shows the outline of the replacement mechanism, in which the circle rep-

resents the individual of GNPvs-R and the circle with larger radius means the

larger size of individuals, and the hatching in the pool of frequently used nodes

blocks shows the set of frequently used nodes and different types of hatching mean

different combinations of nodes.

3.2.2 Procedure of replacement

The arrow flow of Fig.3.1 explains the following procedure of replacement.

Step 1: From current population, N elite individuals are selected for extracting

blocks of frequently used nodes.

Step 2: For each selected individual, a set of frequently used nodes is extracted

by Procedure 2, and put to a pool of frequently used nodes blocks PF .

Step 3: From current population, an individual I is selected by tournament se-

lection for replacement

Step 4: Randomly pick up a set of frequently used nodes F , i.e., building block,

from PF .

Step 5: Combine I and F by Procedure 3 to generate a new individual In.

Step 6: Put the new individual In to next population.

Step 7: Repeat Step 3 to Step 5 until a predefined number of individuals are

generated by replacement.

After replacement, some new individuals are generated, in which the non-

frequently used nodes are replaced with frequently used nodes from elite individ-

uals, in other words, the most useful blocks of nodes are contributed to evolution,

which increases the search speed. Moreover, the extraction of blocks of frequently

used nodes is executed every generation, which means that pool PF will update

the information of individuals generation by generation for avoiding the prema-

ture.

35

Procedure 2 Algorithm of frequently used nodes extraction

Input: individual I
V T : threshold of visiting times

Output: A set of frequently used nodes F
1: F ← Ø
2: for nodei in I do
3: if visiting time of nodei > V T then
4: F ← F ∪ nodei
5: end if
6: end for
7: return F

Procedure 3 Algorithm of new individual generation

Input: individual I
F : a set of frequently used node

Output: A new individual In
1: Rank the nodes in I by the visiting time in ascending order
2: Remove the worst |F | nodes from I to create a new individual In
3: for nodei in F do
4: In ← In ∪ nodei
5: end for
6: Update the connections of In
7: return In

3.3 Simulations

In this section, the performances of the proposed method are also evaluated and

compared with the GNP and GNPvs using Tileworld.

3.3.1 Simulation environments

Since the purpose of the proposed method is to increase the generalization ability

of GNPvs, the simulation environment is a little different from that in chapter 2.

In the training phase, the same type of the tileworld is prepared as chapter 2 like

Fig.3.2. However a new pair of hole and tile will be randomly generated when the

agent pushes a tile into a hole in the simulations which is different from the fixed

number of tiles and holes in chapter 2. Besides, in the testing phase, randomly

36

Figure 3.2: Example of tileworld used in training phase

Figure 3.3: Example of tileworld used in testing phase

37

generated tileworld like Fig.3.3 is introduced, in which the locations of obstacles,

holes and tiles are totally randomly created, therefore the tileworld may have big

difference from the one in the training phase.

On the other hand, the functions of judgment nodes and processing nodes are

the same as in chapter 1, which are described in Table 3.1 for convenience. JF,

JB, JL, JR, JT, JH, JHT and JST are 8 kinds of judgment nodes, while MF, TR,

TL and ST are 4 kinds of processing nodes in both algorithms. Moreover JF, JB,

JL and JR return the floor, obstacle, tile, hole or agent; JT, JH, JHT and JST

return the forward, backward, left, right or nothing. Thus, each judgement node

has 5 branches. Besides, there are totally 60 nodes (12 kinds of nodes × 5 for

each kind of node) in each individual at first.

Table 3.1: Functions of judgment nodes and processing nodes

NT ID Symbol Function

1 1 JF Judge Forward
1 2 JB Judge Backward
1 3 JL Judge Left
1 4 JR Judge Right
1 5 JT Judge the nearest Tile
1 6 JH Judge the nearest Hole
1 7 JHT Judge the nearest Hole from the nearest Tile
1 8 JST Judge the second nearest Tile
2 1 MF Move Forward
2 2 TR Turn Right
2 3 TL Turn Left
2 4 ST Stay

3.3.2 Simulation I

In this simulation, the performances of GNP, GNPvs and GNPvs-R are com-

pared using 2 training tileworlds and 8 testing tileworlds. The parameters used

in the simulations are described in Table 3.2. The population size is 300, and

during reproduction, the top 10 individuals are directly copied to the next gen-

38

Table 3.2: Parameters of simulation I

Parameter Name GNPvs-R GNPvs GNP

Initial Size 60 60 60
Number of Individuals 300 300 300

Number of Elite 10 10 10
Crossover Size 120 170 170
Crossover Rate 0.1 0.1 0.1

Replacement Size 50
Mutation Size 120 120 120
Mutation Rate 0.05 0.05 0.05

Number of Generations 500 500 500

eration, on the other hand, these 10 individuals are used for frequently used

nodes extraction. Besides, for GNP and GNPvs, the number of individuals gen-

erated by crossover is 170, while its number is 120 for GNPvs-R, since there

are 50 individuals are produced by replacement. The mutation number for

these methods is 120. In this simulation, the crossover rate is 0.1 and muta-

tion rate is 0.05. The algorithms need to iterate 500 generations. The fitness

function is f =
∑N

w=1 DroppedT ile(w), where N is the number of tileworlds and

DroppedT ile(w) is the number of dropped tiles in tileworld w, respectively, i.e.,

the fitness function calculates the total number of dropped tiles in the tileworlds.

In this simulation, N = 2 for the training phase and N = 1 for each tileworld

in the testing phase. For each agent, there are 200 time steps. Each processing

node and judgment node takes 1 time step and 0.2 time step, respectively.

Fig.3.4 shows the average fitness of the best individuals in the training phase

over 30 random experiments. Since a pair of hole and tile will be created after

pushing one tile into the hole by the agent, the fitness curve is fluctuated. From

Fig.3.4, it is found that the proposed method GNPvs-R has the fastest search

speed and get the highest fitness value among three methods. Finally, the agents

controlled by GNPvs-R push around 29 tiles, while GNPvs and GNP push 26

and 23, respectively. As a result, GNPvs-R can improve the performance by

about 11.5% and 26% comparing GNPvs and GNP, respectively. Therefore, the

proposed method can improve the performance by increasing the search speed

39

Figure 3.4: Average fitness of the best individuals in training phase
of simulation I

Table 3.3: Standard deviations of node visiting times

1st generation last generation Reduction
GNPvs-R 93.7 38 59.4%
GNPvs 123.9 57.2 53.8%
GNP 120.5 79.9 33.8%

when the useful blocks of nodes are extracted and combined with other individuals

explicitly.

Moreover, Table 3.3 shows the standard deviations of node visiting times of

three methods. The larger value in Table 3.3 means that the smaller part of

nodes in the individual is used. Therefore, it is found from Table 3.3 that the

standard deviations of all methods are reduced, which means that more nodes

become used during evolution. More used nodes of the individuals could mean

that the individual has more potential to evolve new features for dealing with

new environments. In order to confirm the above, the generalization ability of

these methods are tested using 8 different tileworlds.

Fig.3.5 to Fig.3.12 shows the average fitness value of the best evolved individ-

uals generation by generation in the training phase using 8 different tileworlds

when they are evolved in training phase. From these figures, it is found that

GNPvs-R obtains the highest fitness value among three method in all 8 cases.

40

Therefore, GNPvs-R increases the generalization ability compared with GNPvs

and GNP by duplicating the frequently used nodes, which can keep the compet-

itiveness of the individual making it have the potential to accumulate mutations

for generating new features to adapt new environments.

3.3.3 Simulation II

In this simulation, it is studied how the number of individuals produced by re-

placement affects the results using the same tileworlds as simulation I, i.e., 2

training worlds and 8 testing worlds. Therefore, the simulation parameters in

this simulation is also the same as simulation I, except the replacement size R

and crossover size C, i.e., R = 30, C = 140; R = 70, C = 100 and R = 90, C = 80,

respectively.

Fig.3.4 shows the average fitness of the best individuals in the training phase

over 30 random experiments, and from Fig.3.5 to Fig.3.12 shows the average fit-

ness value of the best evolved individuals generation by generation in the training

phase using 8 different tileworlds. It is found from these figures that the perfor-

mance among three different parameter settings are not significantly different. In

other words, the proposed method is not sensitive to the replacement number.

Therefore, the performance of GNPvs-R can improve the performance of GNPvs

even if there are not so many individuals generated by replacement.

Figure 3.5: Average fitness of the best individuals in testing phase of simulation
I for world 1

41

Figure 3.6: Average fitness of the best individuals in testing phase of simulation
I for world 2

Figure 3.7: Average fitness of the best individuals in testing phase of simulation
I for world 3

Figure 3.8: Average fitness of the best individuals in testing phase of simulation
I for world 4

42

Figure 3.9: Average fitness of the best individuals in testing phase of simulation
I for world 5

Figure 3.10: Average fitness of the best individuals in testing phase of simulation
I for world 6

Figure 3.11: Average fitness of the best individuals in testing phase of simulation
I for world 7

43

Figure 3.12: Average fitness of the best individuals in testing phase of simulation
I for world 8

Figure 3.13: Average fitness of the best individuals in training phase of simulation
II

Figure 3.14: Average fitness of the best individuals in testing phase of simulation
II for world 1

44

Figure 3.15: Average fitness of the best individuals in testing phase of simulation
II for world 2

Figure 3.16: Average fitness of the best individuals in testing phase of simulation
II for world 3

Figure 3.17: Average fitness of the best individuals in testing phase of simulation
II for world 4

45

Figure 3.18: Average fitness of the best individuals in testing phase of simulation
II for world 5

Figure 3.19: Average fitness of the best individuals in testing phase of simulation
II for world 6

Figure 3.20: Average fitness of the best individuals in testing phase of simulation
II for world 7

46

Figure 3.21: Average fitness of the best individuals in testing phase of simulation
II for world 8

3.4 Conclusions

In this chapter, the replacement mechanism is introduced in the Variable Size

Genetic Network Programming (GNPvs) in order to improve the generalization

ability of GNPvs. The proposed method is named GNPvs with Replacement

(GNPvs-R), in which the sets of frequently used nodes are extracted from elite

individuals and these sets are used to replace the non-frequently used nodes of

individuals. By this mechanism, the whole structure of the individual is evolved

and the most valuable information from elite individuals contributes to the evo-

lution of the individuals. The effectiveness of the proposed method is verified on

the dynamic environments of tileworlds, and it is proved to increase the general-

ization ability of GNPvs exactly.

47

Chapter 4

Genetic Network Programming

for Automatic Program

Generation with Mapping

Mechanism (GNP-APGm)

4.1 Introduction

The center to Artificial Intelligence is to make computers automatically solve

problems. Therefore, there could be methods to generate computer programs

automatically corresponding to problems i.e. Automatic Program Generation

(APG). Automatic program generation, in other words, automatic programming

or program induction is a way to obtain a program without explicitly program-

ming it. Then, the program becomes the solution to cope with specific prob-

lem. Several evolutionary algorithms like Genetic Programming (GP) [9, 10, 11],

Cartesian Genetic Programming (CGP) [13, 14], Gene Expression Programming

(GEP) [15, 16] and Grammatical Evolution (GE) [17, 18] have been proposed

with much success in this research field. In these methods, GP is the most well-

known and widely used one. For example, in symbolic regression problems, GP

builds up a function close to the target function by combining math operators

called function set (‘+’, ‘-’, ‘sin’, ‘cos’...) and variables or constants called termi-

48

nal set (‘1’, ‘x’, ‘y’, ‘z’...) [9]; actually, in an artificial ant application, GP creates

a program through function set (‘if Food Ahead’, ‘prog2’, ...) and terminal set

(‘move To Nest’, ‘pick Up Food’, ...) to teach the artificial ants to search food

and take the food to their nest [9].

Nowadays, some studies on GNP for automatic program generation (GNP-

APG) has been conducted, and the simulation result shows good performances

of it [50, 51]. But, in these papers, only static problems are used to verify the

performance of GNP-APG. Therefore, the objective of this chapter is to improve

GNP-APG to deal with the time dependent environment problems like Tileworld

and to solve the problem that an individual is a solution.

The improved GNP-APG algorithm is named GNP-APGm, in which a kind

of genotype-phenotype mapping process is introduced to create programs [38] .

Fig.4.1 describes the outline of the mapping process and comparison between

GNP-APGm and biological systems. During the procedure of the program gen-

eration, the graph structure of GNP-APGm (genotype) is firstly transcribed into

a sequence of processing nodes. Then, this sequence is translated into program

fragments by applying mapping rules. Finally, these fragments are assembled

together as an executable program (phenotype). As noted in [17] and [38], a

mapping process can separate the search space and solution space, which makes

the search of the genotype unlimited, while still keeping the legality of the pro-

gram. With the mapping process, genetic operations are not performed on the

programs, but on GNP structure which works as a program generator. This is a

key point on how the proposed method is different from GP.

Though GNP-APGm extends from the conventional GNP, but there are many

differences between them.

• An individual of GNP-APGm is a solution generator, and it is only used

for the mapping process to create the solutions for the problem. After

evolution, a better solution generator can be obtained. But, the individual

of the conventional GNP is a solution for the problem.

• GNP-APGm only communicates with the outside memory, where its indi-

viduals get primary elements or subprograms from the memory and put

subprograms to the memory. While the conventional GNP individuals di-

49

Figure 4.1: Genotype-phenotype mapping of GNP-APGm

rectly probe the information from environments, then use this information

to make a decision and tell agents what to do.

• GNP-APGm has the outside memory for the generated programs, which

can save more information explicitly. While the conventional GNP keeps

the information in the network flow implicitly.

4.2 GNP-APGm

In this section, the concepts of the improved GNP-APGm for agent control are

described in detail.

4.2.1 Basic structure of GNP-APGm

It has been mentioned in section 4.1 that GNP-APGm has the outside mem-

ory and exchanges the information with it, which makes the basic structure of

GNP-APGm a little different from GNP. Fig.4.2 shows the basic structure of

GNP-APGm. Compared with Fig.1.1, the outside memory is added. In Fig.4.2,

although there are only node 8 and node 9 pointing to the memory, in fact, all the

processing nodes can read from the memory like white arrows and write to the

memory like black arrows. These other arrows are just omitted in order to keep

the figure clear. The memory structure is different from previous GNP-APG.

50

It consists of two parts. One is read only and shared by all individuals, which

contains the basic actions of agents depending on the problem. In other words,

the basic action set consists of two sets which are called terminal set and function

set like GP. The other is named subprogram pool which can be read and written.

Each individual has its own subprogram pool used to store subprograms when the

procedure of the program generation is carrying out. In the individual evaluation

procedure, each subprogram in the pool is picked up as one program. Then, the

programs are evaluated in order to calculate the fitness of the individual.

S 21

5

7 8

4

3

9

6

S Start Node

Processing Node

Judgment Node

a1 a2 ... an sp1 sp2 sp3 ... spk

read

write

Memory

Bacic Action Set Subprogram Pool

Figure 4.2: Basic structure of GNP-APGm

In addition, there are also three kinds of nodes in GNP-APGm, but the roles of

judgment nodes and processing nodes are not the same as GNP. In GNP-APGm,

the role of judgment nodes is to select the next node in turn. For example,

suppose a judgment node has two branches, and when the judgment node is

visited for the first time, it selects the node connected from the first branch, and

selects the second branch for the second visit, then return to the first branch

for the third visit, and so on. By this way, all branches of the judgment node

can be selected, which make the sufficient search of the graph structure. In

one individual, there are several kinds of judgment nodes, such as 2-branches,

3-branches and 4-branches in order to connect them to enough processing nodes

and give different probabilities by which the next nodes are selected. The role of

processing nodes is to create programs. A processing node gets the basic actions

or subprograms from the memory, then combines them following some mapping

rules to create a more complex subprogram and puts it to the subprogram pool.

51

Fig.4.3 shows the representation of GNP-APGm. The chromosome of GNP-

APGm has two more segments compared to GNP. One segment contains Ri1...Rip

which means the addresses of the reading memory of node i. If p = 4, the node

reads the fourth basic actions or subprograms from the memory. For example,

node 2 is this kind of processing node in Fig.4.3. The other segment contains

Wi1...Wiq which means the addresses of the writing memory of node i. Usually,

the subprogram only needs to be stored once, so q always equals to 1. In Fig.4.3,

the write address of node 9 is 20.

Node Gene Connection Gene Read Address Write Address

NTi ID i Ci1 Ci2 ...C ik Ri1 Ri2 ...R ip Winode i

node 0 0 0 1

node 1 1 2 2 4

node 2 2 1 3 3 4 12 10 16

node 5 1 3 1 4 8

node 9 2 2 5 2 9 20

Figure 4.3: Representation of GNP-APGm

0

4

1 3

2

a1 a2 a3 a4 sp1 sp2Memory

1 2 3 4 5 6

1
2

1

2 3

node 0 0 0 1

node 1 1 2 2 4

node 2 2 0 3 2 1 5

node i NTi ID i Ci1 Ci2 ...C ik Ri1 Ri2 ...R ip Wi

node 3 1 3 1 2 4

node 4 2 1 3 4 5 2 3 6

Figure 4.4: Small but complete example of GNP-APGm

52

4.2.2 Procedure of program generation

Usually, a program consists of sequential, conditional and loop statements. Since

the created program will repeat several times in the proposed method as a kind of

loop, so only sequential and conditional statements are necessary. In the proposed

method, two key words “ACT” and “IF” are used to represent sequential and

conditional statements, respectively. The procedure of the program generation of

the proposed method is also different from previous GNP-APG.

Table 4.1: Functions of processing nodes

ID Name Function

0 ACT Create sequential statement
1 IF Create conditional statement

Table 4.2: Functions of judgment nodes

ID Function

2 2-branches
3 3-branches

Fig.4.4 is a small but complete example of GNP-APGm. The number on the

arrows means the index of branches. Table 4.1 shows the function of processing

nodes, Table 4.2 describes the function of judgment nodes and Table 4.3 represents

the argument number of actions. The detail of each node is shown in Fig.4.4.

For example, NT2 and ID2 of node 2 are 2 and 0, respectively, therefore node 2

is a processing node which is used to create sequential statement. It connects to

node 3 according to the connection gene. Moreover, it reads from location 2 and

1 of the memory, then write to location 5 of the memory depending on the read

addresses and write address, respectively.

Beginning from the start node, node 1 is the first node to execute. Node 1 is a

judgment node, and its first branch connects to node 2, so the next node to visit is

node 2. As the node type of node 2 is 2 and its identity is 0, it is a processing node

53

Table 4.3: Argument numbers of actions

Action Argument number

a1 0
a2 0
a3 0
a4 3

and the function is “ACT”. The function “ACT” is used to create the sequential

statement. Suppose there are two actions “action1” and “action2” obtained from

the memory, and the rule to create the statement is “ACT(action1, action2)”

which means that the agent take “action2” followed by “action1”. The read

addresses of node 2 are 2 and 1, so actions a2 and a1 are picked up. According to

the rule, a subprogram “ACT(a2, a1)” is generated. After that, the subprogram is

written to location 5 of the memory, and sp1 in the memory changes to “ACT(a2,

a1)”, since the write address of node 2 is 5. Then, the next node becomes node

3. Like the same as node 1, node 3 is a judgment node, and it selects the branch

depending on the times of the visits. This is the first time for node 3 to visit, so it

chooses node 1 as the next node to visit. At this time, node 1 determines node 4 to

execute because this is the second visit to node 1. Node 4 is a processing node and

used to create conditional statements. The function of the conditional statement

is “IF”, and the rule is “IF(action1, action2, action3, ...)”. In this statement,

“action1” should be a judgment action which is like a function in the function

set of GP. The argument number of “action1” determines the number of actions.

In this case, node 4 gets a4 as a judgment action. From Table 4.3, a4 needs three

arguments, so sp1, a2 and a3 are picked up depending on the read addresses of 5,

2, and 3, respectively. Then, a subprogram “IF(a4, sp1, a2, a3)” is created and

stored at location 6 of the memory, because the write address of node 4 is 6. By

this way, sp2 changes to “IF(a4, sp1, a2, a3)”. For sp1 has become “ACT(a2, a1)”,

the entire representation of sp2 is “IF(a4, ACT(a2, a1), a2, a3)”. It can be seen

as a program including sequential and conditional statements. The pseudocode

of sp2 is shown in Table 4.4. GNP-APGm repeats this kind of procedure until

the predefined number of transitions is reached. After finishing the procedure,

54

the subprograms of the subprogram pool are picked up as the programs to solve

the problem.

Table 4.4: Pseudocode of sp2

Suppose a4 has three judgment results v1, v2 and v3
Let re be the return value of a4
if re == v1:

a2;
a1;

else if re == v2:
a2;

else if re == v3:
a3

4.2.3 Flowchart of GNP-APGm

Start

End

Initialization

Program Generation

Program Evaluation/Fitness Calculation

Elite Selection

Crossover

Mutation

Last
Generation

Yes

No

Figure 4.5: Flowchart of GNP-APGm

Fig.4.5 shows the flowchart of GNP-APGm.

1) Parameters are set. Hundreds of GNP-APGm individuals are generated ran-

domly.

55

2) Each individual of the population creates programs by performing the above

procedure.

3) Each individual evaluates the programs in its own subprogram pool. The

best evaluation value among these programs becomes the fitness value of the

individual.

4) The individual which has the highest fitness value is copied to the next gen-

eration directly.

5) Two individuals are selected by tournament selection as parents. These in-

dividuals exchange their nodes by the crossover rate. After the crossover,

not only the connections are exchanged, but also the addresses of reading

memory and writing memory are exchanged. Therefore two new individuals

are generated and moved to the next generation.

6) One individual is selected by tournament selection as a parent. The indi-

vidual randomly changes its gene according to the mutation rate, i.e., the

connections, the addresses of the reading memory and the writing memory

randomly change their values. After mutation, one new individual is gener-

ated and moved to the next generation.

7) Determine whether it is the last generation. If the answer is yes, then the

algorithm ends, otherwise, go to step 2.

4.2.4 Advantages of GNP-APGm

GNP-APGm uses genotype-phenotype mapping to create programs, which en-

ables the genotype search without limitation, while still keeping the legality of

the program. The following shows an example of program generated by the pro-

posed method.
[’ACT’, [’JF’, [’JL’, [’ACT’, [’HD’, [’TL’], [’JF’, [’TR’], [’JL’, [’TR’], [’TL’], [’TL’]], [’ST’]], [’TD’, [’JR’, [’THD’, [’JB’, [’TL’],

[’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TR’]], [’TL’], [’ST’], [’TR’], [’ST’]], [’ST’], [’TR’]], [’TL’], [’MF’], [’JL’, [’JB’, [’TL’],

[’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TR’]], [’TL’], [’TR’]], [’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]]], [’ST’], [’TR’]],

[’JL’, [’TR’], [’TL’], [’TL’]]], [’TL’], [’TR’]], [’ACT’, [’JF’, [’JL’, [’JB’, [’TL’], [’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TR’]],

[’TL’], [’TR’]], [’HD’, [’MF’], [’TR’], [’TR’], [’TR’], [’ST’]], [’TL’]], [’MF’]], [’TL’]], [’MF’]]

GNP-APGm has other important advantages. These advantages rely on the

structure of the algorithm.

56

• More solution candidates. Since the individual of GNP-APGm is a program

generator, it can create several candidate programs stored in the memory.

These programs are selected as solution candidates and evaluated. Then,

the best one is picked up as the solution. Therefore, GNP-APGm can

increase the probability to find better solutions.

• Sufficient use of the graph structure. As noted in [48], the conventional

GNP cannot use the whole graph structure, because the judgment nodes

usually select only several specific branches. But, GNP-APGm selects the

branches in turn, as a result, each branch has the same chance to select.

By this way, GNP-APGm can make full use of the graph structure.

• Keeping the diversity of the genotype. Fig.4.6 shows two different GNP-

APGm individuals. The memory is omitted. During program genera-

tion, the transition sequence of the left individual is node 1⇒node 2⇒node

3⇒node 1⇒node 4⇒node 3⇒ node 2, while the sequence of the right in-

dividual is node 1⇒node 3⇒node 2⇒node 3⇒node 4⇒node 1⇒node 2.

Although the entire sequences between two individuals are different, the

sequences of processing nodes are the same as node 2⇒node 4⇒node 2. As

long as the read addresses and write address of both individuals are the

same, the two different individual can create the same program. Since the

fitness value of individuals comes from the evaluation value of the program,

the individuals have the same fitness value. Then, when the selection oc-

curs, both individuals have the same probability to be selected as a parent.

In this way, GNP-APGm keeps the diversity of the genotype.

• Making the building blocks and subroutines. When the procedure of the

program generation is carried on, the subprograms stored in the memory

might be used many times. These subprograms work as building blocks and

subroutines.

57

0 41

32

1

2

1

2

3

0 41

32

1

2
1

2
3

Figure 4.6: Two different GNP-APGm individuals with different connections

4.3 Simulations

In this section, the performances of the proposed method are evaluated and com-

pared with the conventional GNP using Tileworld.

4.3.1 Simulation environments

Tileworld is a famous agent-based test bed with time dependent and uncertain

features, since the environment always changes and agents cannot get all the

information of the environments [42]. Tileworld consists of agents, floor, tiles,

holes and obstacles. The agents need to move round the obstacles and to push

all the tiles into the holes as soon as possible. Once a tile is pushed into a hole,

the hole becomes the floor. A agent can only push one tile at a time.

Since the purpose of the proposed method is very different from the previous

chapter, i.e., to propose a new method on automatic program generation, the

simulation environment is also a little different from before, in order to focus on

a new method. In the training phase, 10 different Tileworlds are used to train

the agents’ behavior. Each world has 3 agents, 3 holes and 3 tiles. The position

of obstacles, holes and agents are the same. However, the position of tiles are

different from each other. Fig.4.7 shows the training environments.

Two kinds of changes are introduced in the testing phase. The first kind is

to change the location of holes. The upper part of Fig.4.8 shows this kind of

change. The difference is the position of the holes. The holes are moved a little

farther away from the tiles compared with the training phase. The other kind is

to change the location of agents which are shown in the lower part of Fig.4.8. The

difference is the position of the agents. The agents are moved to the corner of the

environments. These kinds of changes are applied to the training environments,

58

so there are 10×2 testing environments.

A A
T

T T

A

Hole

T Tile

AgentA

Obstacle

Floor

A A

T T

T
A

A A
T

T
T

A

A A

T T

T
A

A A

T T

T

A

A A
T

T

T

A

A A

T
T

T

A

A A
T

T

T
A

A A
T

T

T
A

A A

T

T

T
A

Figure 4.7: Tileworlds for training phase

A A

T T

T
A

A A

T T

T
A

A A

T T

T
A

A A

T T

T
A

Hole

T Tile

AgentA

Obstacle

Floor

Training Environment Testing Environment

Figure 4.8: Changes of Tileworld for testing phase

4.3.2 Simulation configurations

The basic action set of GNP-APGm is described in Table 4.5, the functions of

processing nodes is the same as Table 4.1 and the functions of judgment nodes

are shown in Table 4.6. JF, JB, JL and JR return the floor, obstacle, tile, hole or

agent; JT, JH, JHT and JST return the forward, backward, left, right or nothing.

MF, TR, TL and ST do not have the return value. While JF, JB, JL, JR, JT,

JH, JHT and JST are 8 kinds of judgment actions, while MF, TR, TL and ST

are 4 kinds of processing actions in GNP.

59

Table 4.5: Basic action set

Symbol Action Argument
JF Judge Forward 5
JB Judge Backward 5
JL Judge Left 5
JR Judge Right 5
JT Judge the nearest Tile 5
JH Judge the nearest Hole 5
JHT Judge the nearest Hole from the nearest Tile 5
JST Judge the second nearest Tile 5
MF Move Forward 0
TR Turn Right 0
TL Turn Left 0
ST Stay 0

Table 4.6: Functions of judgment nodes in simulations

ID Function

4 4-branches
6 6-branches
8 8-branches

60

Each individual of GNP-APGm contains 60 nodes including 15 judgment

nodes (3 kinds of nodes × 5 for each kind) and 45 processing nodes (5 for “ACT”

processing node, 40 for “IF” processing node). Each individual of GNP has also

60 nodes (12 kinds of nodes × 5 for each kind of node).

The parameters used in simulations is described in Table 4.7. The population

size is 301, and during the evolution procedure, the best individual is copied to

the next population. 120 individuals are generated through crossover, while 180

individuals are created through mutation. The crossover rate is 0.2 and mutation

rate is 0.03. The program needs to iterate 500 generations. During the program

generation, the maximum number of transitions is 60, i.e., starting from the start

node, 60 nodes are visited, and the maximum length of programs is 6000 bytes

in GNP-APGm. The number of subprograms is 12.

Table 4.7: Parameters of simulations

Parameter Name GNP-APGm GNP

Number of Individuals 301 301
Number of Elites 1 1
Crossover Size 120 120

Crossover Rate Pc 0.2 0.2
Mutation Size 180 180

Mutation Rate Pm 0.03 0.03
Number of Generations 500 500
Number of transitions 60

Maximum length of program 6000 bytes
Number of subprograms 12

The fitness function of each Tileworld is defined by Eq. 4.1.

Fitness = Ctile ×DroppedT ile

+Cdist ×
∑

t∈T (InitDi(t)− FinDi(t))

+Cstp × (TotalStep− UsedStep)

(4.1)

where, DroppedT ile is the number of tiles the agents pushed into the holes.

InitDi(t) is the initial distance between tth tile and the nearest hole, while

FinDi(t) represents the final distance between tth tile and its nearest hole. T

is the set of suffixes of tiles. TotalStep is a predefined maximal number of time

61

steps all the agents can take, and UsedStep represents the number of time steps

which the agents have taken. Ctile, Cdist and Cstp are rewards when an agent

drops the tile into the hole, moves the tile near to the hole and takes less steps

than the total steps when finishing the job. In the simulations, Ctile, Cdist, Cstp

and TotalStep are set at 100, 20, 1 and 180 (60 numbers of time steps for each

agent), respectively. In the simulations, the average of the fitness values over ten

Tileworlds is calculated to show the performances of GNP-APGm and GNP.

4.3.3 Simulation results

Fig.4.9 shows the average fitness value of the best training results of GNP-APGm

and the conventional GNP over 50 random seeds. In the 500th generation, the

average of the best fitness values of GNP-APGm and GNP are 319.71 and 297.30,

respectively. At first, the fitness values of GNP-APGm and the conventional

GNP increase at the same speed. Then, after 50 generations, the evolving speed

of both methods decrease. But, the evolving speed of GNP-APGm is higher than

the conventional GNP, since GNP-APGm can use of the graph structure fully

and keep the diversity of the genotype. At last, GNP-APGm can gain a larger

fitness value obviously than the conventional GNP.

Fig.4.10 shows the average length of the best programs of GNP-APGm in

the training phase. As noted in [52], the growth of the length of the program is

inherent in the proposed methods, since the length of the program is not fixed

but varies. Fig.4.10 confirms this tendency, i.e., the average length over the best

programs grows from 1954.1 to 4001.1. But, the length does not always increase,

instead, it is fluctuated during the evolution. It is found from Fig.4.10 that

the growth of the length is far below the maximal allowable value in the last

generation. From this point of view, the proposed method does not suffer from

the bloating problem.

Fig.4.11 and Fig.4.12 show the average fitness value of each Tileworld of GNP-

APGm and the conventional GNP in the test cases, where the best 50 individuals

from the training phase are used to test these new environments. When changing

the location of holes, the average fitness values are 58.2 in GNP-APGm and

25.2 in the conventional GNP, respectively. It can be seen from Fig.4.11 that

62

GNP-APGm performed a little worse than the conventional GNP only in world

1. While GNP-APGm is much better than the conventional GNP in world 9 and

10. When changing the location of agents, the average fitness values are 170.7

in GNP-APGm and 84.1 in the conventional GNP, respectively. It is also found

from Fig.4.12 that GNP-APGm can get more rewards in each world, especially

in world 2, 6, 7 and 10, where the fitness values are twice than the conventional

GNP. Therefore, the proposed method has more generalization ability than the

conventional GNP to deal with time dependent environment problems, which

means the robustness of the proposed method is better than the conventional

GNP.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 100 200 300 400 500

Fi
tn

es
s

va
lu

e

Generation

GNP-APG
Conventional GNP

Figure 4.9: Simulation result of training phase

0

1000

2000

3000

4000

5000

6000

1 100 200 300 400 500

P
ro

gr
am

 le
ng

th
 (b

yt
e)

Generation

GNP-APG

Figure 4.10: Program length of training phase

63

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10

Fi
tn

es
s

V
al

ue

Index of Tile-worlds

Conventional GNP
GNP-APG

Figure 4.11: Simulation result of testing phase when the location of holes is
changed

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8 9 10

Fi
tn

es
s

V
al

ue

Index of Tile-worlds

Conventional GNP
GNP-APG

Figure 4.12: Simulation result of testing phase when the location of agents is
changed

64

In addition, another set of Tileworld with different obstacle configurations are

used to verify the performance on GNP-APGm and the conventional GNP. The

ten different types of obstacles are shown in Fig.4.13. In each type, there are ten

worlds with different configurations on holes or tiles. Therefore, there are totally

100 worlds. Fig.4.14 shows the average of the best fitness values over 10 random

seeds and 100 worlds (totally 1000 cases simulations). It is found from Fig.4.14

that GNP-APGm can also have better performance than the conventional GNP

in many kinds of worlds.

A A
T

T T

A

A
T

T

T

A A

A

T

T
T

A A

A

T

T
T A

A

A
T

T

T
A A

A

T

T

T

A A

A

T

T

T

A A

A A

T

T T

A

A
T

T

T
A A

A

T

T

T
A A

Hole

T Tile

AgentA

Obstacle

Floor

Figure 4.13: Tileworld with different obstacle configurations

0

50

100

150

200

250

300

350

400

1 100 200 300 400 500

Fi
tn

es
s

va
lu

e

Generation

GNP-APG
Conventional GNP

Figure 4.14: Simulation result of Tileworld with different obstacle configurations

65

4.3.4 Simulation analysis

It is found from the training results that GNP-APGm could get higher fitness

values than the conventional GNP. In addition, because the individual of GNP-

APGm is a program generator, it can create several candidate programs stored

in the memory, and they are evaluated to pick up the best one, which increases

the probability to find better solutions. Besides, GNP-APGm can sufficiently use

the graph structure since the branches of judgment nodes in GNP-APGm have

the same probability to select, which also helps to improve the performance of

the proposed method. Table 4.8 shows the mean, standard deviation and p-value

of the training fitness results. The p-value of t-test of the mean fitness values is

much smaller than 0.05 which means the means of GNP-APGm and GNP are

statistically different from each other. The conclusions derived from the above

results are convincing.

Table 4.8: Statistical fitness values of training phase

GNP-APGm GNP

Mean 3197.12 2973.04
Standard deviation 385.65 402.36
p-valve (t-test) 5.89E-06

Moreover, it is found from the testing results that GNP-APGm is much better

than the conventional GNP. There are 8 kinds of judgment nodes and 4 kinds of

processing nodes in the conventional GNP, as a result, the proportion of judgment

nodes and processing nodes is 2:1, which means the average number of judgment

nodes needed for processing is 2. In other words, the agent judges two kinds of

situations, then take an action. But, many kinds of Tileworlds are to be dealt

with in many cases, thus two judgments are not enough. While there are 40 “IF”

processing nodes in GNP-APGm, then the program generated by GNP-APGm

will contain many judgments. Therefore, GNP-APGm works better than the

conventional GNP in the testing phase. Table 4.9 and Table 4.10 describe the

statistical values of the fitness in the testing phase, where the location of the holes

and agents are changed, respectively. In each testing case, the p-value of t-test of

66

the mean fitness values is much smaller than 0.05, which implies the performance

of GNP-APGm and GNP are significantly different.

Table 4.9: Statistical fitness values of testing phase when the location of holes is
changed

GNP-APGm GNP

Mean 582.00 251.60
Standard deviation 421.12 289.37
p-valve (t-test) 0.0064

Table 4.10: Statistic fitness values of testing phase when the location of agents is
changed

GNP-APGm GNP

Mean 1707.18 841.22
Standard deviation 609.17 497.97
p-valve (t-test) 0.0008

4.3.5 Parameters discussion

GNP-APGm has more parameters than GNP, i.e., the number of transitions,

maximum length of program and the number of the subprograms. These param-

eters influence the length and the fitness value of the program. Simulations on

Fig.4.7 are used to study the effect of different parameters.

The number of transitions and the maximum length of the program are used

to study controlling the size of the program. If the number of transitions and

the maximum length of the program are small, the length of program is small,

and GNP-APGm cannot generate a complex program to deal with complicated

environments, therefore the fitness becomes low; on the other hand, if they are

large, the search space increases rapidly, then it is also very hard to find a good

solution, so the fitness value becomes also low. Fig.4.15 and Fig.4.16 show the

average fitness values and lengths of programs by different parameter settings over

67

0

50

100

150

200

250

300

350

400

1 100 200 300 400 500

Fi
tn

es
s

va
lu

e

Generation

T:30; L:3000
T:60; L:6000
T:70, L:9000

Figure 4.15: Fitness value of programs with different number of transitions and
different maximum length of programs

10 random seeds. T and L mean the number of transitions and the maximum

length of programs, respectively. It is found from Fig.4.15 and Fig.4.16 that when

T equals 60 and L equals 6000, the algorithm can get the highest fitness value

and proper size of the programs, which confirms the previous description.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 100 200 300 400 500

P
ro

gr
am

 le
ng

th
 (b

yt
e)

Generation

T:30; L:3000
T:60; L:6000
T:70, L:9000

Figure 4.16: Length of programs with different number of transitions and different
maximum length of programs

The number of subprograms is an important parameter for the fitness values

and the length of the programs. If the number of subprograms is small, the old

subprograms are mostly replaced by the new one, and some useful subprograms

may be lost, so the fitness becomes low, besides the processing nodes always read

the subprogram from the same memory, as a result, the length of the program will

68

0

50

100

150

200

250

300

350

400

1 100 200 300 400 500

Fi
tn

es
s

va
lu

e

Generation

N: 4
N: 8
N: 12
N: 16
N: 20

Figure 4.17: Fitness value of programs with different number of subprograms

0

1000

2000

3000

4000

5000

6000

7000

8000

1 100 200 300 400 500

P
ro

gr
am

 le
ng

th
 (b

yt
e)

Generation

N: 4
N: 8
N: 12
N: 16
N: 20

Figure 4.18: Length of programs with different number of subprograms

69

increase quickly. On the other hand, if the number of subprograms is large, some

subprograms may not be selected to generate statements, by which the fitness

values are also affected. But, as the processing nodes read different subprograms

from different memories, the growth rate of the length of the program will de-

crease. Fig.4.17 and Fig.4.18 describe the average fitness values and lengths of

programs by different number of subprograms over 10 random seeds. N means

the number of subprograms. It is found from Fig.4.17 that when N equals 12,

the algorithms can get the highest performance compared with other settings.

Fig.4.18 confirms the tendency described before, i.e., when N is small, the length

becomes large, while when N is large, the length becomes small.

4.4 Conclusions

In this chapter, automatic program generation with Genetic Network Program-

ming using mapping mechanism has been proposed and applied to the Tileworld

problem for agent control. The proposed method introduces two functions ”IF”

and ”ACT” to create conditional statements and sequential statements which are

two basic statements in a program. The proposed method introduces a genotype-

phenotype mapping technology to generate legal programs. Through the tran-

sition of nodes, it does not only create simple statements, but also create some

complex programs to deal with the problem. Since the proposed method has the

advantages of using graph structures fully, keeping the diversity of the genotype

and using the building blocks, it can find better solutions than the conventional

GNP. The simulations confirms that the proposed method is more robust than

the conventional GNP.

70

Chapter 5

Subroutine embedded Genetic

Network Programming for

Automatic Program Generation

with Mapping Mechanism

(GNPsr-APGm)

5.1 Introduction

In the real world, a three-step method is often employed to solve complex prob-

lems, which first tries to break the given problem into several subproblems, then

finds solutions to cope with each subproblem, finally seeks a way to assemble

the solutions of the subproblems into a solution for the original problem. Like-

wise, the programming task is usually divided into several steps to discover a

main function and some meaningful subroutines for finding a useful complicated

program effectively to deal with the overall problem.

The advantages of decomposing a program into subroutines are:

• Breaking a complex programming task into some simpler steps. In other

words, a high dimensional problem is divided into some low dimensional

problems which can be solved more easily.

71

• Reusability of the existing codes. Sometimes, different problems might have

an identical part. If a subroutine is obtained for the identical part, it can

be invoked by other problems, which increases the efficiency of finding a

solution to the overall problems.

• Decreasing the size of the program. By calling subroutines, some duplicate

codes are not necessary in the program, so the size of the program is reduced

significantly.

Figure 5.1: Overall structure of the program generated by GP with ADFs

GP also implements the subroutine mechanism by Automatic Defined Func-

tions (ADFs) [10]. Fig.5.1 shows an example of the program generated by GP

with ADFs, which contains one function-defining branch and one result-producing

branch.The left part of the figure is the definition of a subroutine and the right

part is the main function. Table 5.1 shows the description of the symbols used

in Fig.5.1, which are the keywords of programming language Lisp. As noted in

[10], GP with ADFs can significantly improve the performance of the algorithm.

Besides, Gene Expression Programming (GEP) [15, 16, 53] and Grammatical

Evolution (GE) [17, 18, 54, 55] have been also proposed as new evolutionary al-

gorithms to evolve computer programs. GEP encodes a program into a string,

and translates it into expression trees, while GE defines some grammars, and uses

a binary string to generate the program by matching the grammars. Moreover,

there are subroutine mechanisms in both methods, which are Automatically De-

fined Functions in GEP [53], Dynamically Defined Functions [54] and Grammar

based function definition [55] in GE.

72

Table 5.1: Description of symbols in GP

Symbol Description

PROGN A special form that makes each of its ar-
guments to be evaluated in sequence and
then returns the value of the last one

DEFUN Define a function
ADF0 The name of the function

VALUES Return values after evaluating the body of
the function

Based on these advantages, some research on Genetic Network Programming

with Automatic Program Generation (GNP-APG) have been also conducted. In

[50, 51], the symbolic regression problems are studied and in [56, 57], the dynamic

environment problem like Tile-world [42] is discussed. GNP-APGm introduces a

kind of genotype-phenotype mapping process to create legal programs [17, 38].

Since the environment in Tile-world always changes and the agents should work

together to finish the mission, the search space of the problem is large. In addition,

there are several repeated procedures used by agents during the execution in the

Tile-world problem like how to move to the nearest tile. These procedures could

be considered as subroutines. From this point of view, GNP-APGm should be

improved. Therefore, subroutines are introduced to enhance the performances

of GNP-APGm in this chapter and a new method named Subroutine embedded

Genetic Network Programming for Automatic Program Generation with Mapping

Mechanism (GNPsr-APGm) is proposed.

5.2 Subroutine embedded GNP for APG with

Mapping Mechanism

Subroutine embedded Genetic Network Programming for Automatic Program

Generation with Mapping Mechanism (GNPsr-APGm) is an extension of the

algorithm of GNP-APGm, which implements the subroutine mechanism. GNPsr-

73

APGm can generate a program containing a main function and some subroutines.

5.2.1 Basic structure of Subroutine embedded GNP for

APG with Mapping Mechanism

In order to generate a main function and several subroutines, more than one

directed graph structure (GNP structure) are needed in GNPsr-APGm. Fig.5.2

describes the basic structure of GNPsr-APGm. The circle represents the directed

graph structure, which has been shown in Fig.4.2. The left part of Fig.5.2 is the

main function part, which is designed to create the main function of a program.

The main function contains the control logic of an agent, and it might also call

subroutines to finish specific tasks. The right part of Fig.5.2 is the subroutines

part, which is used to create subroutines. In this part, there are several inde-

pendent GNP structures, where each structure works in the same way as the

individual of GNP-APGm (Fig.4.2) to generate its own subroutine. Right now,

the subroutines cannot call each other. These subroutines would be invoked by

the main function.

In addition, the structure of memory of GNPsr-APGm has been also changed

compared with Fig.4.2. The memory consists of three parts: basic action set,

subroutine set and subprogram pools. Firstly, there is only one basic action

set, which is shared by the main function part and subroutines part. This set

contains the basic actions of agents like “Move Forward”, “Turn Right”, etc. It

is immutable, which means the elements in this part are only read. Secondly, the

subroutines set is also exclusive and immutable. It stores the name of subroutines

like “SR0” and “SR1”, i.e., subroutine0 and subroutine1. Only the main part has

a chance to read these elements. During the procedure of the program generation,

the way to deal with these elements is the same as the one in the basic action

part. The third part is the subprogram pools which are mutable. Each GNP

structure has their own subprogram pool to store subprograms generated during

the procedure of the program generation. Generally, the main function part reads

elements from the basic action set, subroutine set or its own subprogram pool,

then writes the generated subprogram to the subprogram pool, meanwhile, each

GNP structure in subroutines part reads elements from the basic action set or

74

its own subprogram pool, then write the created subroutines to the subprogram

pool. When the main function invokes the subroutines, the subroutines stored in

the subprogram pools of the subroutines part are picked up and executed.

Moreover, the arrows in Fig.5.2 explains the relationship between GNP struc-

ture and the memory as follows.

1. Arrow with line - GNP structure can read contents from memory.

2. Arrow with dash line - GNP structure can read contents from the memory

and write generated subprograms to the memory.

3. White arrow - Subroutine set can call the subprograms in the subprogram

pool.

Figure 5.2: Basic structure of Subroutine embedded GNP for APG with Mapping
Mechanism

5.2.2 Procedure of program generation

Since GNPsr-APGm is derived from GNP-APGm, it also uses the genotype-

phenotype mapping to generate programs, which is mentioned in chapter 3.

Fig.5.3 is an example of the main function part of GNPsr-APGm. The upper

part of the figure shows the structure of the main function part, while the lower

part is the genotype. The number on the arrows means the index of branches.

Table 5.2 represents the meaning of NT . Table 5.3 shows the function of pro-

cessing nodes, Table 5.4 describes the function of judgment nodes and Table 5.5

75

represents the argument number of actions. The detail of each node is shown in

Fig.5.3. For example, NT4 and ID4 of node 4 are 2 and 1, respectively, so node

4 is a processing node which is used to create conditional statement. It connects

to node 3 according to the connection gene. Moreover, it reads from location 2,

3, 1 and 6 of the memory, then write to location 4 of the memory depending on

the read addresses and write address, respectively. Besides, as mentioned above,

the memory is divided into three part. The left part is basic action set, which

contains three basic actions of agent, i.e., a1, a2 and a3. The middle part is

subprogram pool, which stores subprograms generated by the proposed method.

In the example, there are two subprograms obtained during the procedure of

program generation, i.e., sp1 and sp2. The right part is subroutine set. The

length of subroutine set is 2, which means that the individual of GNPsr-APGm

has two subroutine GNP structure. The symbols SR0 and SR1 are the labels of

subroutines, by which GNPsr-APGm can call subroutines.

According to Fig.4.1, the first step of the program generation is transcription,

i.e., converting the graph structure of GNPsr-APGm to a sequence of processing

nodes. Beginning from the start node, node 1 is the first node to execute. Node

1 is a judgment node, and its first branch connects to node 2, so the next node

to visit is node 2. As the node type of node 2 is 2, it is a processing node, so

the first node in the sequence of processing nodes is node 2. Then, the next node

becomes node 3, because the connection gene of node 2 is 3. In the same way as

node 1, node 3 is a judgment node, and it selects the branch depending on the

times of its visits. This is the first time for node 3 to be visited, so it chooses node

1 as the next node to visit. At this time, node 1 determines node 4 to execute,

because this is the second visit to node 1. Node 4 is also a processing node and

it is appended to the sequence. Now, the sequence becomes node 2⇒node 4.

The transcription continues until the predefined maximal number of transitions

is reached. Suppose the transcription stops when node 4 is visited, the sequence

of node 2⇒node 4 is generated for the next step.

After the transcription is finished, the sequence of the processing nodes should

be translated into program fragments. The first node in the sequence is node 2.

Its identity is 0, so the function is “ACT”. The function “ACT” is used to

create the sequential statement. Suppose that two actions “action1” and “ac-

76

Figure 5.3: An example of the main function part in Subroutine embedded GNP
for APG with Mapping Mechanism

Table 5.2: Node type of GNPsr-APGm

NT Node Type

0 Start node
1 Judgment node
2 Processing node

Table 5.3: Functions of processing nodes

ID Name Function

0 ACT Create sequential statement
1 IF Create conditional statement

77

tion2” are obtained from the memory, and the rule to create the statement is

“ACT(action1|subprogram1|subroutine1, action2|subprogram2|subroutine2)” which
means that the agent takes “action2”, “subprogram2” or “subroutine2” followed

by “action1”, “subprogram1” or “subroutine1”. The read addresses of node 2

are 0 and 5, so actions a1 and SR0 are picked up. According to the rule, a

subprogram “ACT(a1, SR0)” is generated. After that, the subprogram is writ-

ten to location 3 of the memory, and sp1 changes to “ACT(a1, SR0)”, since

the write address of node 2 is 3. The next node in the sequence is node 4,

which is used to create conditional statement. The function of the conditional

statement is “IF”, and the rule is “IF(action1, action2|subprogram1|subroutine1,
action3|subprogram2|subroutine2, ...)”. In this statement, “action1” should be a

judgment action which is like a function in the function set of GP. The argument

number of “action1” determines the number of other actions. In this case, node

4 gets a3 as a judgment action. From Table 5.5, a3 needs three arguments, which

means that a3 has three return values x1, x2 and x3, so sp1, a2 and SR1 are picked

up depending on the read addresses of 3, 1 and 6, respectively. Then, a subpro-

gram “IF(a3, sp1, a2, SR1)” is created and stored at location 4 of the memory,

because the write address of node 4 is 4. By this way, sp2 changes to “IF(a3, sp1,

a2, SR1)”. As sp1 has become “ACT(a1, SR0)”, the entire representation of sp2

is “IF(a3, ACT(a1, SR0), a2, SR1)”. Node 4 is the last node in the sequence, so

the procedure of the translation of the main function part is completed. sp2 is a

main function containing sequential and conditional statements and invokes two

subroutines such as SR0 and SR1.

Table 5.4: Functions of judgment nodes

ID Function

2 2-branches
3 3-branches

The procedure of the subroutine generation is the same as the main function,

the only difference is that the GNP structure cannot read the elements from

subroutine set, but only communicates with its own subprogram pool. After the

78

Table 5.5: Argument number of actions

Action Argument number

a1 0
a2 0
a3 3

Table 5.6: Pseudocode of the program

Suppose a3 has three judgment results x1, x2 and x3
Let re be the return value of a3
Main function

if re == x1:
a1;
SR0;

else if re == x2:
a2;

else if re == x3:
SR1;

SR0

if re == x1:
a2;

else if re == x2:
a1;
a2;

else if re == x3;
a1;

SR1

a2;
a2;
a1;

79

procedure of the subroutine generation is accomplished, suppose subroutine0 is

“IF(a3, a2, ACT(a1, a2), a1)”, and subroutine1 is “ACT(a2, ACT(a2, a1)))”. The

pseudocode of the program is shown in Table 5.6.

5.2.3 Genetic operator of Subroutine embedded GNP for

APG with Mapping Mechanism

Like other evolutionary algorithms, GNPsr-APGm also introduces selection, crossover

and mutation to evolve the individuals.

GNPsr-APGm provides elite selection and tournament selection. Elite se-

lection is simple, and it picks up the best individual and move it to the next

generation directly. Tournament selection chooses several individuals from the

current population randomly, then runs several “tournaments”. The winners of

the individuals are selected for crossover and mutation.

Crossover is performed between two parents and generates two offspring. Two

parents are selected through tournament selection. During crossover, the corre-

sponding nodes have the probability of Pc to swap each other. Each part of the

individual exchanges its nodes independently, which means the main function

part swap nodes with the main function part of the other individual, while the

subroutines part exchanges nodes in the subroutines part of the other individ-

ual. After crossover, two new individuals are produced and moved to the next

generation.

Mutation just needs one individual which is picked up through tournament

selection. All data in the gene except NTi and IDi have the mutation rate of Pm

to change randomly. After mutation, a new individual is created. There are two

kinds of mutations in GNPsr-APGm: connection mutation and address mutation.

Connection mutation changes the connections between nodes, in concrete, the

values of Ci1, Ci2... are changed. But, the value should be in the range from 0

to (the total number of nodes - 1). Address mutation means the read address or

write address of the individual is changed, which implies the value of Ri1, Ri2 ...

, or Wi is updated. The values of the read address Ri1, Ri2 ... should be from 0

to (the length of memory - 1), i.e., from 0 to 6 in Fig.5.3. The number of write

address Wi should be in the range of the index of the subprogram pool, i.e., from

80

3 to 4 in Fig.5.3.

5.2.4 Flowchart of Subroutine embedded GNP for APG

with Mapping Mechanism

Figure 5.4: Flowchart of Subroutine embedded GNP for APG with Mapping
Mechanism

Fig.5.4 shows the flowchart of GNPsr-APGm.

Step 1: Parameters like crossover rate and mutation rate are set. Hundreds of

individuals of GNPsr-APGm are generated randomly. One action from

the basic action set is randomly assigned to all cells of the subprogram

pools. Any useful subroutine is not used from the start, and all the

subroutines are automatically generated by the proposed method, which

make the comparison fair.

Step 2: Let generation g = 0.

Step 3: Let individual i = 0.

81

Step 4: Individual i generates a main function based on the rules mentioned in

the previous subsection.

Step 5: Individual i generates several subroutines based on the rules mentioned

in the previous subsection. After finishing step 4 and 5, a program con-

taining a main function and some subroutines are obtained.

Step 6: The programs generated in step 4 and 5 are evaluated in the simulation

environment. Since one individual can create several programs, the best

evaluation value among these programs becomes the fitness value of the

individual.

Step 7: Increase the index of the individual, i = i+ 1

Step 8: Judge whether the last individual has been evaluated. If the answer is

yes, go to the next step, otherwise, go to step 4.

Step 9: The individual which has the highest fitness value is copied to the next

generation directly.

Step 10: Two individuals are selected by tournament selection as parents. These

individuals exchange their nodes under the crossover rate. Two new

individuals are generated and moved to the next generation.

Step 11: One individual is selected by tournament selection as a parent. The

individual randomly changes its gene according to the mutation rate.

One new individual is generated and moved to the next generation.

Step 12: Increase the index of the generation, g = g + 1

Step 13: Determine whether it is the last generation. If the answer is yes, then

the algorithm ends, otherwise, go to step 3.

5.2.5 Advantages of Subroutine embedded GNP for APG

with Mapping Mechanism

The advantages of Subroutine embedded GNP for APG with Mapping Mechanism

are described as follows.

82

• The total number of nodes of GNPsr-APGm and GNP-APGm is the same.

Since the individual of the GNPsr-APGm is divided into two parts, the

number of nodes in each part becomes smaller, which reduces the size of

the search space and improves the efficiency of the global search .

• Because the subroutine part evolves independently, one subroutine can focus

on a specific subproblem, which makes it possible to obtain the solution of

the subproblem more easily.

• The repeatable parts of the program are picked up as subroutines, which

reduces the size of the program. It can also alleviate the bloating problem.

5.3 Simulations

5.3.1 Simulation on artificial ant problem

In order to show the effect of unique features of GNPsr-APGm, an artificial ant

problem is used firstly.

5.3.1.1 Simulation environments

The environment for the problem is the San Mateo trail [10], which consists

of nine parts, each made up of a square of 13-by-13 grid containing different

discontinuities in the sequence of food (black and grey grids represent food and

gap, respectively) like Fig.5.5. The goal of the problem is to find a program for

controlling the movement of an artificial ant to find and eat all the foods in all

nine parts of the San Mateo trail. The ant can only sense the food which is

located in the square in front of it. And the actions of the ant are limited to

moving forward, turning left and turning right.

5.3.1.2 Simulation configurations

The basic action set of GNPsr-APGm and GNP-APGm is described in Table 5.7.

The functions of processing nodes is the same as Table 5.3 and the functions of

judgment nodes are shown in Table 5.8. FA returns whether there is food in front

83

of the ant, i.e., ”True” and ”False”, while MV, TR and TL do not have the return

value.

Figure 5.5: The nine parts of the San Mateo trail for the artificial ant problem

Table 5.7: Basic action set of artificial ant problem

Symbol Action Argument

FA Judge whether there is food ahead 2
TR Turn Right 0
TL Turn Left 0
MV Move forward and pickup food 0

In order to make sure that the comparison is fair, the number of nodes of two

algorithms of GNPsr-APGm and GNP-APGm should be the same. Therefore,

each individual of GNP-APGm contains 35 nodes including 15 judgment nodes

(3 kinds of nodes × 5 for each kind) and 20 processing nodes (10 for “ACT”

processing node, 10 for “IF” processing node). On the other hand, because the

subroutine part of GNPsr-APGm contains only one GNP structure “SR0” in this

84

Table 5.8: Functions of judgment nodes of artificial ant problem

ID Function

4 4-branches
6 6-branches
8 8-branches

simulations, 14 nodes (6 judgment nodes and 8 processing nodes) are distributed

to the main function part and 21 nodes (9 judgment nodes and 12 processing

nodes) are distributed to the GNP structure of the subroutine part in order for

both algorithms to have the identical number of nodes.

Table 5.9: Parameters of artificial ant problem

Parameter Name GNPsr-APGm GNP-APGm

Number of Individuals 2001 2001
Number of Elite 1 1
Crossover Size 1000 1000

Crossover Rate Pc 0.2 0.2
Mutation Size 1000 1000

Mutation Rate Pm 0.03 0.03
Number of Generations 100 100

Number of Transitions in Main Function 50 50
Number of Transitions in Subroutine 20

Length of Subprogram Pool in Main Function 12 12
Length of Subprogram Pool in Subroutine 4

Maximal Length of Program 3000 bytes 3000 bytes

The parameters used in the simulations are described in Table 5.9. The pop-

ulation size is 2001, and during reproduction, the best individual is copied to the

next population, 1000 individuals are generated through crossover, while 1000

individuals are created through mutation. The crossover rate is 0.2 and mutation

rate is 0.03. The algorithms need to iterate 100 generations. During the pro-

gram generation, the maximum number of transitions in GNP-APGm and the

85

main function part of GNPsr-APGm is 50, while the number of transitions of the

subroutine part is 20. The maximum length of programs is 3000 bytes in both

GNP-APGm and GNPsr-APGm (1000 bytes for the main function and 2000 bytes

for the subroutine). The length of the subprogram pool of GNP-APGm and the

main function part of GNPsr-APGm is 12, while the length of the subprogram

pool of the subroutine part is 4. In each case of the San Mateo Trail, the ant can

take a total of 120 time steps, i.e., each action of ”TR”, ”TL” or ”MV” costs one

time step. The fitness value equals the total number of food left in nine parts of

the San Mateo Trail, therefore when the value becomes 0, the solution is found.

5.3.1.3 Simulation result and analysis

Fig.5.6 describes the success rate of GNPsr-APGm and GNP-APGm of the San

Mateo Trail based on 25 runs. It is found from Fig.5.6 that GNPsr-APGm and

GNP-APGm have the success rate of 96% and 80%, respectively in the last gen-

eration.

The following is a 1310 byte program generated by GNP-APGm, which makes

the ant eat all the food.
[’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’,

[’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]],

[’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’,

’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’,

[’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]],

[’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’,

[’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]],

[’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’,

[’IF’, ’FA’, [’ACT’, [’IF’, ’FA’, [’MV’], [’TL’]], [’MV’]], [’TR’]], [’MV’]], [’ACT’, [’IF’, ’FA’, [’IF’, ’FA’, [’MV’], [’TL’]], [’ACT’,

[’TR’], [’MV’]]], [’TL’]]]]]]]]]]]]]]

The following is a main function and a subroutine obtained by GNPsr-APGm,

which is a 326 byte program and accomplishes the target

Main function

[’IF’, ’FA’, [’MV’], [’ACT’, [’SR0’], [’IF’, ’FA’, [’MV’], [’ACT’, [’SR0’], [’IF’, ’FA’, [’MV’], [’ACT’, [’ACT’, [’ACT’, [’TL’],

[’TL’]], [’MV’]], [’ACT’, [’MV’], [’TR’]]]]]]]]

Subroutine

[’ACT’, [’MV’], [’IF’, ’FA’, [’MV’], [’ACT’, [’TL’], [’IF’, ’FA’, [’MV’], [’ACT’, [’ACT’, [’TR’], [’TR’]], [’IF’, ’FA’, [’MV’],

[’TL’]]]]]]]

Each square bracket pair of the program embraces a statement, i.e., basic

actions, subprograms or subroutines. Since the two basic statements of the pro-

posed method are ’IF’ and ’ACT’, the program consists of the statements like

86

[’IF’,’FA’,[...],[...]] and [’ACT’, [...],[...]]. The subroutine will be decoded in Table

5.10. This subroutine makes the ant detect the squares around it. When the

food exists, the ant will move to the food and eat it, otherwise it will keep stay.

By calling this subroutine, the main function can make the ant check the food

located two squares ahead of it.

Table 5.10: Code of subroutine

MV
IF FA

MV
ELSE

TL
IF FA
MV

ELSE
TR
TR
IF FA
MV

ELSE
TL

By comparing both programs, it is found that GNPsr-APGm can generate

much shorter programs than GNP-APGm for the same problems. Moreover,

it is found from the trajectories of the artificial ant for the third and seventh

trails by GNPsr-APGm in Fig.5.7 that GNPsr-APGm actually discovers a useful

subroutine for solving the artificial ant problem.

5.3.2 Simulation on the tileworld problem

For further verifying the effects of introducing subroutines to GNP-APGm, the

performances of the proposed method are evaluated and compared with GNP-

APGm and conventional GNP using the Tile-world.

87

Figure 5.6: Success rate of GNPsr-APGm and GNP-APGm

Figure 5.7: Trajectories of the artificial ant for the third and seventh trails

A A
T

T T

A

Hole

T Tile

AgentA

Obstacle

Floor

A A

T T

T
A

A A
T

T
T

A

A A

T T

T
A

A A

T T

T

A

A A
T

T

T

A

A A

T
T

T

A

A A
T

T

T
A

A A
T

T

T
A

A A

T

T

T
A

Figure 5.8: Tileworld in training phase

88

A A

T T

T
A

A A

T T

T
A

A A

T T

T
A

A A

T T

T
A

Hole

T Tile

AgentA

Obstacle

Floor

Training Environment Testing Environment

Figure 5.9: Changes of Tileworld in testing phase

5.3.2.1 Simulation environments

The simulation environment of tileworld in this chapter is the same as the one in

chapter 3. For convenience, it is explained as follows once more.

In the training phase, 10 different tile-worlds are used to train the agents’

behaviors. Each world has 3 agents, 3 holes and 3 tiles. The position of obstacles,

holes and agents is the same. However, the position of tiles is different from each

other. Fig.5.8 shows the training environments.

Two kinds of changes are introduced in the testing phase. The first kind is

to change the location of the holes. The upper part of Fig.5.9 shows this kind

of change. The distances between holes are larger compared with the training

phase. The other kind is to change the location of the agents which is shown in

the lower part of Fig.5.9. The agents are moved to the corner of the environments.

Both kinds of changes are applied to the training environments, so there are 10×2
testing environments.

5.3.2.2 Simulation configurations

The basic action set of GNPsr-APGm and GNP-APGm is described in Table 5.11.

The functions of processing nodes is the same as Table 5.3 and the functions of

judgment nodes are shown in Table 5.12. JF, JB, JL and JR return the floor,

obstacle, tile, hole or agent; JT, JH, JHT and JST return the forward, backward,

left, right or nothing. MF, TR, TL and ST do not have the return value.

89

In order to make sure that the comparison is fair, the number of nodes of two

algorithms of GNPsr-APGm and GNP-APGm should be the same. Therefore,

each individual of GNP-APGm contains 60 nodes including 15 judgment nodes (3

kinds of nodes× 5 for each kind) and 45 processing nodes (5 for “ACT” processing

node, 40 for “IF” processing node). Because the subroutine part of GNPsr-APGm

contains two GNP structures in this simulations, 36 nodes (9 judgment nodes and

27 processing nodes) are distributed to the main function part and 12 nodes (3

judgment nodes and 9 processing nodes) are distributed to each GNP structure

of the subroutine part. Besides, the number of the subroutines is two, i.e., “SR0”

and “SR1”. In addition, each individual of GNP has also 60 nodes (12 kinds of

nodes × 5 for each kind of node).

Table 5.11: Basic action set of tileworld problem

Symbol Action Argument

JF Judge Forward 5
JB Judge Backward 5
JL Judge Left 5
JR Judge Right 5
JT Judge the nearest Tile 5
JH Judge the nearest Hole 5
JHT Judge the nearest Hole from the nearest Tile 5
JST Judge the second nearest Tile 5
MF Move Forward 0
TR Turn Right 0
TL Turn Left 0
ST Stay 0

The parameters used in simulations are described in Table 5.13. The popu-

lation size is 301, and during reproduction, the best individual is copied to the

next population. 120 individuals are generated through crossover, while 180 in-

dividuals are created through mutation. The crossover rate is 0.2 and mutation

rate is 0.03. The algorithms need to iterate 500 generations. During the pro-

gram generation, the maximum number of transitions in GNP-APGm and the

main function part of GNPsr-APGm is 50, while the number of transitions of the

90

Table 5.12: Functions of judgment nodes of tileworld problem

ID Function

4 4-branches
6 6-branches
8 8-branches

subroutine part is 20. The maximum length of programs are 6000 bytes in both

GNP-APGm and GNPsr-APGm (4000 bytes for the main function and 1000 bytes

for each subroutine). The length of the subprogram pool of GNP-APGm and the

main function part of GNPsr-APGm is 12, while the length of the subprogram

pool of the subroutine part is 4.

Table 5.13: Parameters of simulations of tileworld problem

Parameter Name GNPsr-APGm GNP-APGm GNP

Number of Individuals 301 301 301
Number of Elite 1 1 1
Crossover Size 120 120 120

Crossover Rate Pc 0.2 0.2 0.2
Mutation Size 180 180 180

Mutation Rate Pm 0.03 0.03 0.03
Number of Generations 500 500 500

Number of Transitions in Main Function 50 50
Number of Transitions in Subroutines 20

Length of Subprogram Pool in Main Function 12 12
Length of Subprogram Pool in Subroutines 4

Maximal Length of Program 6000 bytes 6000 bytes

The fitness function of each tile-world is defined by Eq.(5.1).

Fitness = Ctile ×DroppedT ile

+ Cdist ×
∑

t∈T (InitialDist(t)− FinalDist(t))

+ Cstp × (TotalStep− UsedStep),

(5.1)

91

where, DroppedT ile is the number of tiles the agents have pushed into the holes.

InitialDist(t) is the initial distance between the tth tile and the its hole, while

FinalDist(t) represents the final distance between the tth tile and its nearest

hole. T is the set of suffixes of tiles. TotalStep is the predefined maximal time

steps all the agents can move, and UsedStep represents the used time steps by

all agents. Ctile, Cdist and Cstp are rewards when an agent drops the tile into the

hole, moves the tile near to the hole and takes less time steps than the total time

steps when finishing the job. In the simulations, Ctile, Cdist, Cstp and TotalStep

are set at 100, 20, 1 and 180 (60 time steps for each agent), respectively. In the

simulations, the sum of the fitness values of ten tile-worlds is calculated to show

the performances of three algorithms of GNPsr-APGm, GNP-APGm and GNP.

5.3.2.3 Simulation results and analysis

Fig.5.10 shows the average fitness value of the best individuals over 30 random

trials in the training phase in each generation of GNPsr-APGm, GNP-APGm and

GNP. From Fig.5.10, GNPsr-APGm and GNP-APGm works better than GNP. In

the 500th generation, the average of the best fitness values of GNPsr-APGm, and

GNP-APGm are 3334.9 and 3122.2, respectively. It is found from Fig.5.10 that

the average fitness value of GNP-APGm increases faster than GNPsr-APGm at

first, but the average fitness value of GNPsr-APGm surpasses that of GNP-APGm

around the 250th generation. Obviously, GNPsr-APGm gets higher fitness value

than GNP-APGm at the last generation. The reason why this phenomenon ap-

pears is that GNPsr-APGm decomposes a complex problem into some simpler

problems, then finds a main function and subroutines to cope with each subprob-

lem, finally seeks a way to assemble the main function and subroutines of the sub-

problems into a program for the original problem. In other words, GNPsr-APGm

needs not only to find a good main function and some excellent subroutines, but

also needs to combine them with a proper way, which is a more complicated work

than just finding a single program. Therefore, the speed of GNPsr-APGm is

slower than GNP-APGm at the beginning. But, GNPsr-APGm could improve

the main function and subroutines until it finds an appropriate combination dur-

ing evolution. At that time, GNPsr-APGm can generate better programs, which

92

gain higher fitness values. Fig.5.11 verifies this conjecture. During early genera-

tions of evolution, the usage time of subroutines changes rapidly. Then, after the

100th generation, the curve of the usage time becomes more smooth. Fig.5.11

matches the tendency of the fitness curve in Fig.5.10, where the speed of im-

proving the average fitness value in GNPsr-APGm increases around the 100th

generation compared with GNP-APGm. Besides, it is found from Fig.5.12 that

GNPsr-APGm could decide which subroutine to use and how many times to use,

which is also an advantage of GNPsr-APGm over GNP-APGm.

Fig.5.13 shows the average length of the best programs of GNPsr-APGm and

GNP-APGm over ten tileworlds. It is found from Fig.5.13 that GNPsr-APGm

significantly reduce the size of the program compared with GNP-APGm, i.e.,

from 4001.1 bytes to 2792.7 bytes. As noted in [52], the growth of the length of

the program is inherent in the proposed method, since the length of the program

is not fixed but varied. Fig.5.13 confirms this tendency, i.e., the average length

of the programs of GNPsr-APGm grows from 2341.1 bytes to 2792.7 bytes and

GNP-APGm increases from to 1954.1 bytes to 4001.1 bytes. But, the length

does not always increase, instead, it is fluctuated during evolution. It is found

from Fig.5.13 that the growth of the length is far below the maximal allowable

values, i.e., 6000 bytes, in the last generation. From this point of view, both

methods could alleviate the bloating problem. Moreover, the main function part

and subroutine part of GNPsr-APGm are evolved independently, therefore all

these parts have the tendency of increasing their program length. That is why

the length of the program of GNPsr-APGm is larger than GNP-APGm at first.

But, GNPsr-APGm has the ability to reduce the size of the program as long as it

finds good subroutines and reuses them. Therefore, GNPsr-APGm can avoid the

dramatic increase of its program, and obtains smaller program than GNP-APGm

at last.

Fig.5.14 and Fig.5.15 show the average fitness value of each test tile-world of

GNPsr-APGm and GNP-APGm in the test cases, where the best 30 individuals

from the training phase are used to test these new environments. When changing

the location of holes, the average fitness value is 68.5 in GNPsr-APGm and 58.2

in GNP-APGm, which shows the increase of 17%. It can be seen from Fig.5.14

that GNPsr-APGm performed a little worse than GNP-APGm only in world 3

93

and 9. While GNPsr-APGm is much better than GNP-APGm in world 4, 5 and

10, i.e., more than 30% increase. When changing the location of agents, the

average fitness value is 194.9 in GNPsr-APGm and 173.7 in GNP-APGm, which

shows the increase of 12%. It is also found from Fig.5.15 that GNPsr-APGm can

get more rewards in every world except world 4. Especially, in world 3, 5, 7 and

9, the average fitness value increases by more than 15%.

Figure 5.10: Average fitness value in the training phase

0

100

200

300

400

500

1 100 200 300 400 500

Ti
m

es

Generation

Subroutine 0
Subroutine 1

Figure 5.11: Average usage time of subroutines over 30 trials

Therefore, the proposed method has more generalization ability than GNP-

APGm to deal with dynamical environments, which means the robustness of the

proposed method is better than GNP-APGm. Because the subroutines generated

by GNPsr-APGm focus on specific subproblems which are the common to the

94

0

200

400

600

800

1000

1200

1 100 200 300 400 500

Ti
m

es

Generation

Subroutine 0
Subroutine 1

Figure 5.12: Usage time of subroutines in one trial

Tileworld, they are suitable for many kinds of tileworld environments. Therefore,

the GNPsr-APGm can create more robust programs than GNP-APGm.

Figure 5.13: Average length of programs

5.3.2.4 Parameters discussion

Parameters are very important in evolutionary algorithms. Therefore, more sim-

ulations on Fig.5.8 are studied to show the parameter sensitivity of the proposed

method.

Fig.5.16 shows the simulation results for different number of subroutines of

GNPsr-APGm compared with GNP-APGm. It is clear from Fig.5.16 that GNPsr-

APGm has better performance than GNP-APGm, even the number of subroutines

95

Figure 5.14: Testing result for changing the location of holes

Figure 5.15: Testing result for changing the location of agents

Figure 5.16: Simulation results for different number of subroutines

96

Figure 5.17: Simulation results for crossover rate 0.1 and mutation rate 0.01

is changed. Moreover, GNPsr-APGm with two subroutines works better than

that with one subroutine, because the Tileworld problem is a difficult problem,

where more than one repeated procedures can be found.

Fig.5.17, Fig.5.18 and Fig.5.19 show the performances of GNPsr-APGm and

GNP-APGm by using different crossover rates and mutation rates. In each figure,

GNPsr-APGm are better than GNP-APGm. From the results, it can also be

found that the changes of the crossover and mutation rate do not affect the fitness

values of GNPsr-APGm so much. Therefore, GNPsr-APGm is not so sensitive to

the crossover and mutation rate.

Figure 5.18: Simulation results for crossover rate 0.3 and mutation rate 0.03

97

Figure 5.19: Simulation results for crossover rate 0.5 and mutation rate 0.05

5.4 Conclusions

In this chapter, Subroutine embedded Genetic Network Programming for Auto-

matic Program Generation with Mapping Mechanism (GNPsr-APGm) has been

proposed. The proposed method tries to decompose a complex problem into some

simpler problems, then finds a main function and subroutines to cope with each

subproblem, finally seeks a way to assemble the main function and subroutines

of the subproblems into a program for the original problem. Since the program is

decomposed into a main function and subroutines, each part of the program can

deal with one specific subproblem, which makes the proposed method find a bet-

ter solution more effectively and efficiently. Moreover, the subroutines obtained

by the proposed method are called many times in the program, which results in

decreasing the size of the program.

In addition, it is found from the simulation results that the proposed method

can find useful subroutines and get higher fitness values both in the training phase

and testing phase, and can decrease the size of the program significantly. Besides,

the changes of the crossover and mutation rate do not affect the fitness values of

the proposed method so much. Therefore, it is found the proposed method is not

so sensitive to the crossover and mutation rate.

98

Chapter 6

Conclusions

In this research, the structure of Genetic Network Programming (GNP) is studied

by making some changes to both the phenotype and genotype of GNP. Two kinds

of methods and their extensions are proposed guided by some prior knowledge on

biology systems and problem solving technologies. One of the methods focuses

on improving the effectiveness and the generalization ability of GNP, the other

one is to extend the application field of GNP to automatic program generation.

All these methods changes the structure of GNP to make it have better search

ability.

The first method is a new type of GNP – Variable Size Genetic Network

Programming (GNPvs), which inspired by the increasing length of gene in species.

In this method, the size of the individuals in GNPvs could be changed by evolution

by a new crossover developed to replace the uniform crossover in GNP. The new

crossover makes some nodes to move from one parent GNP to another parent

GNP following binomial probability distribution. At last, the new method can

obtain the optimal size and optimal ratio of judgment nodes and processing nodes

of individuals, which results in improving the effectiveness of GNP.

Moreover, in order to improve the generalization ability of GNPvs, a kind

of replacement mechanism is developed by learning the concept of build block

hypothesis and evolution by gene duplication. The extension method of GN-

Pvs is named GNPvs with Replacement (GNPvs-R), in which the blocks of fre-

quently used nodes are extracted from elite individuals and these blocks are used

to replace the non-frequently used nodes of individuals. With the help of this

99

mechanism, the whole structure of the individual will be evolved and the most

valuable information from elite individuals will be contributed to all individuals

to population. Finally, this method increases the generalization ability of GNPvs.

On the other hand, the structure of GNP is modified using the adapting

genotype-phenotype mapping mechanism to cope with automatic program gen-

eration task. The proposed method called GNP-APGm develops two functions

”IF” and ”ACT” to create two basic statement in a program, i.e., conditional

statements and sequential statements. Through the transition of nodes and the

mapping process, it does not only create simple statements, but also create some

complex programs to deal with the problem. Since the proposed method has

advantages of using graph structures fully, keeping the diversity of the genotype

and using the building blocks and subroutines, it can find better solutions than

GNP.

Besides, the three steps problem solving methodology, i.e., decompose a com-

plex problem into some simpler problems, then finds solution to cope with each

subproblem, finally seeks a way to assemble these solution of the subproblems

into one solution for the original problem, is introduced in GNP-APGm. Since

the program is decomposed into a main function and subroutines, each part of

the program can deal with one specific subproblem, which makes the proposed

method find a better solution more effectively and efficiently. Moreover, the size

of the program is decreased by reusing the subroutines obtained by the proposed

method.

In the future, these methods can be combined together to further enhance the

structure of GNP and improve the effectiveness and efficiency of GNP.

100

References

[1] R. M. Friedberg, “A learning machine: Part i,” IBM Journal of Research

and Development, vol. 2, no. 1, pp. 2–13, 1958. 1

[2] R. M. Friedberg, B. Dunham, and J. H. North, “A learning machine: Part

ii,” IBM Journal of Research and Development, vol. 3, no. 7, pp. 282–287,

1959. 1

[3] N. Barricelli, “Esempi numerici di processi di evoluzione,” Methodos, pp.

45–68, 1954. 1

[4] ——, “Symbiogenetic evolution processes realized by artificial methods,”

Methodos, pp. 143–182, 1957. 1

[5] I. Rechenberg, Evolutionsstrategie. Fromman-Holzboog, 1973. 1

[6] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through

Simulated Evolution. John Wiley, 1966. 1

[7] J. Holland, Adaptation in Natural and Artificial Systems. University of

Michigan Press, 1975. 1

[8] D. E. Goldberg, Genetic Algorithm in Search Optimization and Machine

Learning. Addison-Wesley, 1989. 1, 34

[9] J. R. Koza, Genetic Programming, on the Programming of Computers by

Means of Natural Selection. MIT Press, 1992. 2, 48, 49

[10] ——, Genetic Programming II, Automatic Discovery of Reusable Programs.

MIT Press, 1994. 2, 3, 48, 72, 83

101

REFERENCES

[11] ——, Genetic Programming III, Darwinian Invention and Problem Solving.

Morgan Kaufmann, 1999. 2, 48

[12] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, and J. Yu, Ge-

netic programming IV: Routine human-competitive machine intelligence.

Springer, 2005. 2, 10

[13] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in Proc. of

the 3rd European Conference on Genetic Programming, 2000, pp. 121–132.

2, 48

[14] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and

reuse of modules in cartesian genetic programming,” Evolutionary Compu-

tation, IEEE Transactions on, vol. 12, no. 4, pp. 397–417, Aug. 2008. 2,

48

[15] C. Ferreira, “Gene expression programming: a new adaptive algorithm for

solving problems,” Complex Systems, vol. 13, no. 2, pp. 87–129, 2001. 2, 11,

48, 72

[16] ——, Expression Programming:Mathematical Modeling by an Artificial In-

telligence. Angra do Heroismo, 2002. 2, 11, 48, 72

[17] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions on

Evolutionary Computation, vol. 5, no. 4, pp. 349–358, 2001. 2, 11, 48, 49,

72, 73

[18] ——, Grammatical Evolution. Evolutionary Automatic Programming in an

Arbitrary Language. Kluwer Academic Publishers, 2003. 2, 11, 48, 72

[19] D. E. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Motiva-

tion, analysis, and first results,” Complex systems, vol. 3, pp. 493–530, 1989.

2, 10

[20] S. Ohno, Evolution by Gene Duplication. New York: Springer-Verlag, 1970.

3, 33, 34

102

REFERENCES

[21] J. Zhang, “Evolution by gene duplication:update,” Trends in Ecology and

Evolution, vol. 18, no. 6, pp. 292–298, 2003. 3, 33, 34

[22] W. G. Feero, A. E. Guttmacher, and F. S. Collins, “Genomic medicine – an

updated primer,” New England Journal of Medicine, vol. 362, no. 21, pp.

2001–2011, 2010. 3

[23] S. Mabu, K. Hirasawa, and J. Hu, “A graph-based evolutionary algorithm:

Genetic network programming (gnp) and its extension using reinforcement

learning,” Evolutionary Computation, vol. 15, no. 3, pp. 369–398, 2001. 3,

4, 7, 9, 26, 27, 32

[24] T. Eguchi, K. Hirasawa, J. Hu, and N. Ota, “A study of evolutionary mul-

tiagent models based on symbiosis,” IEEE Trans. on Systems, Man and

Cybernetics, Part B, vol. 35, no. 1, pp. 179–193, 2006. 3, 7, 32

[25] H. Katagiri, K. Hirasawa, and J. H, “Genetic network programming - appli-

cation to intelligent agents,” in Proc. of the IEEE International Conference

on Systems, Man and Cybernetics, Nashville, TN, USA, 2000, pp. 3829–3824.

3

[26] K. Hirasawa, M. Okubo, H. Katagiri, J. Hu, and J. Murata, “Comparison be-

tween genetic network programming (gnp) and genetic programming (gp),”

in Proc. of the IEEE International Congress on Evolutionary Computation,

Seoul, South Korea, 2001, pp. 1276–1282. 3

[27] W. Tackett, “Genetic programming for feature discovery and image discrim-

ination,” in Proc. of the 5th Int. Conf. Genet. Algorithms, Evanston, IL:

Morgan Kaufmann, 1993, pp. 303–309. 4, 10

[28] W. B. Langdon, “Evolving data structures using genetic programming,” in

Proc. of the 6th Int. Conf. Genetic Algorithms, Pittsburgh, PA: Morgan

Kaufmann, 1995, pp. 295–302. 4, 10

[29] K. Hirasawa, T. Eguchi, J. Zhou, J. H. L. Yu, and S. Markon, “A double-

deck elevator group supervisory control system using genetic network pro-

103

REFERENCES

gramming,” IEEE Transactions on Systems, Man and Cybernetics, Part C,

vol. 38, no. 4, pp. 535–550, 2008. 4

[30] Y. Chen, S. Mabu, K. Shimada, and K. Hirasawa, “Trading rules on stock

markets using genetic network programming with sarsa learning,” Journal

of Advanced Computational Intelligence and Intelligent Informatics, vol. 12,

no. 4, pp. 383–392, 2008. 4

[31] K. Shimada, K. Hirasawa, and J. Hu, “Genetic network programming with

acquisition mechanisms of association rules,” Journal of Advanced Compu-

tational Intelligence and Intelligent Informatics, vol. 10, no. 1, pp. 102–111,

2006. 4

[32] H. Zhou, S. Mabu, W. Wei, K.Shimada, and K. Hirasawa, “Time related

class association rule mining and its application to traffic prediction,” IEEJ

Transactions on Electronics, Information and Systems, vol. 130, no. 2, pp.

289–301, 2010. 4

[33] H. Nakagoe, K. Hirasawa, and J. Hu, “Genetic network programming with

automatically generated variable size macro nodes,” in Proc. of the IEEE

International Congress on Evolutionary Computation, San Diego, CA, USA,

2004, pp. 713–719. 7, 32

[34] S. Mabu, F. Ye, S. Eto, X. Fan, and K. Hirasawa, “Genetic network pro-

gramming with rule accumulation and its application to tile-world problem,”

Journal of Advanced Computational Intelligence and Intelligent Informatics,

vol. 13, no. 5, pp. 551–572, 2009. 7, 32

[35] H. G. Beyer and H. P. Schwefel, “Evolution strategies: A comprehensive

introduction,” Journal Natural Computing, vol. 1, no. 1, pp. 3–52, 2002. 10

[36] J. F. Miller, “Cartesian genetic programming,” Natural Computing Series,

pp. 17–34, 2011. 10

[37] W. B. Langdon and R. Poli, “Fitness causes bloat,” Technical Report CSPR-

97-09, 1997. 10, 20, 24

104

REFERENCES

[38] W. Banzhaf, “Genotype-phenotype-mapping and neutral variation – a case

study in genetic programming,” Lecture Notes in Computer Science, vol.

866, pp. 322–332, 1994. 11, 49, 73

[39] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving accurate

and compact classification rules with gene expression programming,” IEEE

Transactions on Evolutionary Computation, vol. 7, no. 6, pp. 519– 531, 2003.

11

[40] M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico, “Crossover in grammat-

ical evolution,” Genetic Programming and Evolvable Machines, vol. 4, no. 1,

pp. 67–93, 2003. 11

[41] H. Katagiri, K. Hirasawa, J. Hu, and M. Junichi, “Variable size genetic

network programming,” IEEJ Trans. EIS, vol. 123, no. 1, 2003. 11

[42] M. E. Pollack and M. Ringuette, “Introducing the tileworld: Experimentally

evaluating agent architectures,” in Proc. of the Eighth National Conference

on Artificial Intelligence, 1990, pp. 183–189. 19, 58, 73

[43] C. V. Goldman and J. S. Rosenshein, “Emergent coordination through the

use of cooperative state-changing rules,” in Proc. of the 12th National Con-

ference on Artificial Intelligence, 1994. 19

[44] S. Hanks, M. E. Pollack, and P. R. Cohen, “Benchmarks, test beds, con-

trolled experimentation, and the design of agent architectures,” AI Maga-

zine, vol. 14, no. 4, 1993. 19

[45] H. Iba, “Emergent cooperation for multiple agents using genetic program-

ming,” Lecture Notes in Computer Science, pp. 32–41, 1996. 19

[46] B. Li, X. Li, S. Mabu, and K. Hirasawa, “Variable size genetic network

programming with binomial distribution,” in Proc. of the IEEE International

Congress on Evolutionary Computation, New Orleans, LA, USA, 2011, pp.

973–980. 32

[47] T. Mitchell, Machine Learning. McGraw Hill, New York, 1996. 33

105

REFERENCES

[48] S. Eto, S. Mabu, K. Hirasawa, and T. Huruzuki, “Genetic network program-

ming with control nodes,” in Proc. of the IEEE Congress on Evolutionary

Computation, 2007, pp. 1023–1028. 33, 57

[49] S. Mabu and K. Hirasawa, “Efficient program generation by evolving graph

structures with multi-start nodes,” Applied Soft Computing, vol. 11, no. 4,

pp. 3618–2624, 2011. 33

[50] S. Mabu, K. Hirasawa, Y. Matsuya, and J. Hu, “Genetic network program-

ming for automatic program generation,” Journal of Advanced Computa-

tional Intelligence and Intelligent Informatics, vol. 9, no. 4, pp. 430–436,

2005. 49, 73

[51] S. Mabu and K. Hirasawa, “Evolving plural programs by genetic network

programming with multi-start nodes,” in Proc. of the IEEE International

Conference on Systems, Man and Cybernetics, 2009, pp. 1382–1387. 49, 73

[52] W. Langdon and R. Poli, “Fitness causes bloat,” 1997, technical Report

CSPR-97-09,University of Birmingham. 62, 93

[53] C. Ferreira, N. Nedjah, L. de M. Mourelle, and A. Abraham, “Automatically

defined functions in gene expression programming,” Genetic Systems Pro-

gramming: Theory and Experiences, Studies in Computational Intelligence,

vol. 13, pp. 21–56, 2006. 72

[54] R. Harper and A. Blair, “Dynamicall defined functions in grammatical evo-

lution,” IEEE Transactions on Evolutionary Computation, pp. 2638 – 2645,

2006. 72

[55] M. O’Neil and C. Ryan, “Grammar based function definition in grammatical

evolution,” in Proc. of the GECCO, 2000, pp. 485–490. 72

[56] B. Li, S. Mabu, and K. Hirasawa, “Genetic network programming with au-

tomatic program generation for agent control,” Transaction of the Japanese

Society for Evolutionary Computation, vol. 1, no. 1, pp. 43–53, 2010. 73

106

REFERENCES

[57] ——, “Automatic program generation with genetic network programming

using subroutines,” in Proc. of the Society of Instrumentation and Control

Engineering International Annual Conference, Taipei, 2010, pp. 3089–3094.

73

107

Research Achievements

Journals

1. B. Li, S. Mabu and K. Hirasawa, “Evolving Graph-based Chromosome by

means of Variable Size Genetic Network Programming”, IEEJ Transactions

on Electrical and Electronic Engineering, 2013 (accepted).

2. B. Li, S. Mabu and K. Hirasawa, “Genetic Network Programming with

Subroutines for Automatic Program Generation”, IEEJ Transactions on

Electrical and Electronic Engineering, Vol. 7, No. 2, pp. 197-207, 2012/3.

3. X. Li, S. Mabu, B. Li and K. Hirasawa, “Probabilistic Model Building Ge-

netic Network Programming using Reinforcement Learning”, Transaction

of the Japanese Society for Evolutionary Computation, Vol. 2, No.1, pp.

29-40, 2011.

4. B. Li, S. Mabu and K. Hirasawa, “Genetic Network Programming with

Automatic Program Generation for Agent Control”, Transaction of the

Japanese Society for Evolutionary Computation, Vol. 1, No.1, pp.43-53,

2010.

International Conference papers

108

1. B. Li, X. Li, S. Mabu, and K. Hirasawa, “Towards automatic discovery

and reuse of subroutines in variable size genetic network programming”, in

Proc. of the IEEE Congress on Evolutionary Computation (CEC 2012),

pp. 485-492, Brisbane, Australia, 2012/6.

2. X. Li, B. Li, S. Mabu, and K. Hirasawa, “A continuous estimation of dis-

tribution algorithm by evolving graph structures using reinforcement learn-

ing”, in Proc. of the IEEE Congress on Evolutionary Computation (CEC

2012), pp. 2097-2104, Brisbane, Australia, 2012/6.

3. B. Li, X. Li, S. Mabu and K. Hirasawa, “Analysis of Crossover Rate in

Variable Size Genetic Network Programming with Binomial Distribution”,

in Proc. of the SICE International Annual Conference 2011, pp. 155-160,

Tokyo, Japan, 2011/9.

4. B. Li, X. Li, S. Mabu and K. Hirasawa, “Variable Size Genetic Network

Programming with Binomial Distribution”, in Proc. of the IEEE Congress

on Evolutionary Computation (CEC2011), pp. 973-980, New Orleans, USA,

2011/6/6.

5. X. Li, B. Li, S. Mabu and K. Hirasawa, “A Novel Estimation of Distribu-

tion Algorithm Using Graph-based Chromosome Representation and Re-

inforcement Learning”, in Proc. of the IEEE Congress on Evolutionary

Computation (CEC2011), pp. 37-44, New Orleans, USA, 2011/6.

6. B. Li, S. Mabu and K. Hirasawa, “Tile-world - A case study of Genetic

Network Programming with Automatic Program Generation”, in Proc. of

109

the IEEE International Conference on Systems, Man, and Cybernetics, pp.

2708-2715, Istanbul, Turkey, 2010/10.

7. B. Li, S. Mabu and K. Hirasawa, “Automatic Program Generation with

Genetic Network Programming using Subroutines”, in Proc. of the SICE

International Annual Conference 2010, pp.3089-3094, Taipei, Taiwan, 2010/8.

110

