
Waseda University Doctoral Dissertation

A Study of Routing Algorithms for PCB Design

Ran ZHANG

Graduate School of Information, Production and Systems

Waseda University

February, 2016

i

Abstract

A printed circuit board (PCB) supplies the connections of electronic components with tracks,

pads and other features. It is almost used in all the electronic products and plays a very

important role. The complexity of PCB becomes higher and higher since the integrated circuit

technology advances rapidly. Such high density of pins makes the routing of PCB a time

consuming and error-prone work. Therefore the routing in PCB design is usually dealt with by

electronic design automation (EDA) tools to achieve optimizations.

In recent PCB design, due to the high density of integration, the signal propagation delay or

skew has become an important factor for a circuit performance. We can control the signal

propagation delay by adjusting the wire-length. If the routing area is large enough, it is not

difficult to control the wire-length of the net. However, the routing area is usually limited and

multiple nets should be considered in the dense area. Hence, how to balance the wire-length of

the multiple nets becomes a very difficult problem. Moreover, for river routing problems, in

general the positions of pins are fixed on the components, and usually the source and target pins

are disordered. Therefore, multi-layers are used for routing disordered pins, and a practical

problem that how to assign layers for these pins and in what order to route them needs to be

solved.

Besides, in a modern PCB, a flip-chip package is widely used to meet the higher integration

density and the larger I/O counts of circuits. In the flip-chip design, redistribution layer (RDL)

is often used to redistribute the I/O pads to the bump balls without changing the placement of

them. For the pre-assignment RDL routing problem, how to assign the I/O pads to bump balls

and minimize the total wire-length are usually focused on. Furthermore, 3D IC has become the

good choice for high-performance circuits, since recently it is hard to solve some

interconnection problems by traditional 2D IC. Thus, the I/O pad assignment and RDL routing

problem in both 2D and 3D IC should be solved to improve the whole circuit performance.

In this research, we propose a series of routing algorithms for PCB design to solve the

ii

above-mentioned different problems. This thesis mainly includes the following three points.

Firstly, to assign layers for disordered pins and get equal-length routing results, a

region-aware routing algorithm in PCB design is proposed. In the layer assignment process, the

longest common subsequence (LCS) algorithm is adopted between source and target pin sets to

determine the layers for pins. In the routing process, virtual boundaries need to be set if the pins

sequence does not satisfy trunk routing topology condition. The base routes for multiple nets are

generated by the single commodity flow method. In addition, considering target length

requirement and routing region coefficient , R-flip and C-flip techniques are used to adjust the

wire-length. This proposed routing algorithm is able to obtain the routes with better wire-length

balance and smaller worst length error in reasonable CPU time.

Secondly, to minimize the total wire-length, a sorting-based I/O pad assignment and

non-Manhattan RDL routing algorithm are proposed for area I/O flip-chip design. By sorting the

Manhattan distance between I/O pads and bump balls, the pre-assignment and its revision are

carried out to determine the initial assignment. Three kinds of pair-exchange procedures for

shortening wire-length, overlapping and crossing connections are proceeded out respectively to

improve the initial assignment. The exchange order is according to the descending Manhattan

distance between the assigned I/O pad and bump ball pairs. To shorten the wire-length,

non-Manhattan RDL routing with 90 degrees and 45 degrees wire segments is adopted to

connect the I/O pads and bump balls. Moreover, some un-routed connections should be

ripped-up and rerouted. The proposed design method is effective on reducing total wire-length

no matter of the I/O pad locations and package sizes, and improves the routability.

Finally, we apply the same sorting method in the above to the I/O pad assignment and RDL

routing method in 3D IC design. Similarly, we assign the same numbered I/O pads in two RDLs

to micro-bumps by sorting the sum of Manhattan distance between them. A pair exchange

modification of a route is considered for shortening wire-length, and the single layer routing in

two RDLs are carried out respectively. Some un-routed connections are ripped-up and rerouted

at last. This method for 3D IC is also able to obtain the routes with shorter total wire-length in

reasonable CPU time.

In conclusion, the equal-length routing problem for disordered pins and the RDL routing

problem for flip-chip in PCB design can be well solved using the proposed routing algorithms.

Furthermore, some optimizations, such as better wire-length balance, smaller worst length error

and shorter total wire-length, can be well realized by using them.

This thesis is organized as follows:

In Chapter 1, the architecture and package of PCB and the structure of RDL are firstly

iii

summarized. Then three typical routing problems in PCB design are introduced, and the

research proposals of this paper are given.

Chapter 2 reviews some fundamentals of PCB routing for discussion at the succeeding

chapters. Firstly, four types of signal net routing problems are explained. Then, two kinds of

basic routing method and their representative algorithms are respectively discussed.

Chapter 3 describes a proposed routing method called a region-aware layer assignment and

equal-length routing method for disordered pins in PCB design. By using this algorithm, it is

able to obtain the routes with better wire-length balance and smaller worst length error. The

experimental results show that, the proposed method could be applied in both no-obstacle

routing and obstacle-ware routing problems. Compared with another greedy method for

disordered pins, the proposed method gets a smaller standard deviation, in other words, a better

wire-length balance among the nets, by adopting coefficient to adjust the wire-length skew.

Besides, our method is effective in reducing worst length error, and the average reduction is

36.69%.

Chapter 4 introduces the second proposed method which is a sorting-based I/O pad

assignment and non-Manhattan RDL routing method for area I/O flip-chip design. Our proposed

method is effective on reducing wire-length no matter of the I/O pad locations and package

sizes. Compared with a partition-based method, the proposed method can reduce the total

wire-length by 23.4% using Manhattan routing, and 39.6% using non-Manhattan routing.

Compared with another Delaunay-triangulation method, the proposed method can reduce the

total wire-length by 3.8% using Manhattan routing, and 20.0% using non-Manhattan routing in

the reasonable CPU time.

Chapter 5 presents an application of I/O pad assignment and RDL routing method to 3D IC,

on the basis of the sorting method in Chapter 4. Compared with a matching-based method, the

proposed method is able to obtain the routes with shorter total wire-length in reasonable CPU

times. For small scale package, the average wire-length reduction is 17.52%. Then for large

scale packages, the maximum and minimum wire-length reductions are 23.66% and 14.87%,

respectively.

Chapter 6 concludes this thesis and discusses the future work.

iv

v

Acknowledgements

I spend five years on studying towards Ph.D. at Graduate School of Information, Production and

Systems, Waseda University. It is a long way filled with complex emotions. This thesis can

their consistent support.

First of all, I would like to express my deepest gratitude to Prof. Takahiro Watanabe. His

enthusiastic guidance helps me through all the stages of completing this thesis. He is not only

my supervisor, but also my father and friend. His respectable personality and erudite knowledge

will guide me in my whole life.

I also want give my deep thanks to Prof. Takeshi Yoshimura and Prof. Shinji Kimura for their

valuable comments on my study. Their precise attitude and professionalism of research is

worthy for us to study.

I am grateful to Dr. Xin Jiang and Dr. Candidates Tieyuan Pan, Yang Tian, Lian Zeng and

Huatao Zhao for their constructive discussions of my research. Thanks are also due to all my

friends in Watanabe Lab, and many other students and faculty for their constant encouragement.

Finally, my thanks would go to my parents, who support me all the way. They always

encourage me and stand at my back whenever I meet difficulty. Thank you.

Ran ZHANG

Kitakyushu, Japan

February, 2016

vi

vii

Table of Contents

Abstract i

Acknowledgements v

Table of Contents vii

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Overview of PCB and Flip-chip.. 1

1 1

1.1.2 Flip-chip Architecture4

1.2 Typical Routing Problems ...7

1.2.1 Escape ...7

1 ..8

1 ...8

1.3 Research Proposals9

1.4 ...10

2 Fundamentals of PCB Routing 11

2.1 11

2.1 .. 11

2.1.2 Detailed ...13

2.1.3 Timing-driven ..13

2.1.4 Specialized Routing .14

2.2 Basic Routing Methods.. ... 16

viii

2.2.1 Depth- ..16

2.2.2 Breadth-first R ...18

2.3 Conclusions ...20

3 Region-aware Layer Assignment and Equal-length Routing 21

...21

3.3 Problem

.26

.28

...30

3.4.3 Wire-length34

...37

...38

...45

4 Sorting-based I/O Pad Assignment and Non-Manhattan RDL Routing 47

...47

4.4 Design Algorithm..

4.4.2 Pair- ..54

4.4.3 Non- ..59

4.4.4 Rip-up and Reroute64

...64

4.5 Experimental ...65

...72

5 Application of I/O Pad Assignment and RDL Routing to 3D IC 73

...73

5.2 Related

5.4 Design Algorithm

.

ix

5.4.2 Pair- .79

5.4.3

5.4.4 Rip-up and Reroute ...

...80

...81

...84

6 Conclusions 85

Publication List 87

Bibliography 89

x

xi

List of Tables

3.138

3.2 Experimental . .39

3.3 Experimental results on different utilized coefficient for Data00 (lt = 130) . ..40

3.4 Experimental41

4.1 First loop of pre-53

4.2 ...54

4.366

4.4 ..66

4.569

5.1 Experimental results in two RDLs on the same package size but different location ..82

5.282

xii

xiii

List of Figures

1.1 PCB2

1.2 .. .2

1.3 PCB package.4

1.4 Flip-chip structure. 6

1.5 RDL structure. ...6

1.6 Escape routing7

1.7 River routing ...7

2.1 Example of g ...12

2.2 Example of detailed12

2.3 Example of timing- ...14

2.4 ..15

2.5 Non-Manhattan maze ..16

2.6 Depth- ..17

2.7 ...18

2.8 Breadth- .. .19

2.9 Maze ...20

3.1 22

3.2 Comparison with BSG routing method ...24

3.3 Balance wire-length .24

3.4 Routing m .25

3.5 .26

3.6 Flow chart of layer assignment and equal-length r ..27

3.7 ...29

3.8 ..31

xiv

3.9 ..32

3.10 . 33

3.11 .33

3.12 Wire-length36

3.13 Adjusted routing result ..37

3.14 Routing results of lt = 130 without obstacles in Experiment 1 ..39

3.15 Routing results of lt = 130 with obstacles in Experiment 1 ...39

3.16 Length comparison for Data00 in Experiment 3 ...41

3.17 Length comparison for Data01 in Experiment 3 ...41

3.18 Length comparison for Data02 in Experiment 3 .. .42

3.19 Length comparison for Data03 in Experiment 3 ...42

3.20 Length comparison for Data04 in Experiment 3 ...42

3.21 Length comparison for Data05 in Experiment 3 ...43

3.22 Worst length error comparison at each target length... .. 43

3.23 Routing results of layer1 in Experiment 344

4.1 ...50

4.2 Flow chart of I/O pad ..51

4.3 Initial I/O pad53

4.4 Pair- .55

4.5 Pair-exchange for shortening wire-length ... 56

4.6 Pair-exchange for releasing overlap... .57

4.7 Pair-exchange for avoiding cross58

4.8 Pair- .58

4.9 Combination of ..59

4.10 Wire direction ..61

4.11 Configuration of ..61

4.12 Non- 62

4.13 .63

4.14 ...64

4.15 Wire-length comparison in ..67

4.16 Wire-length comparison in Experiment 2 ..68

4.17 Wire-length ..69

4.18 Routability comparison in Experiment 3 ..70

xv

4.19 Non-Manhattan routing results for Data05 in Experiment 370

4.20 Non-Manhattan routing results for Data08 in Experiment 3 .71

5.1 RDL and micro-bump structures in 3D IC.. 74

5.2 Comparison with matching-based method . .75

5.3 Problem definition in .77

5.4 Flow chart of I/O pad assignment and RDL routing for 3D IC.. .77

5.5 Initial assignment result ...78

5.6 Pair-exchange modification result ...79

5.7 RDL routing result in two layers .80

5.8 Total wire-length comparison in Experiment 1 ... 83

5.9 Total wire-length comparison in Experiment 2 ...83

5.10 Routing results for Data06 in Experiment 2 ..84

xvi

1

Chapter 1

Introduction

This paper focuses on the study of routing algorithms for printed circuit board (PCB) design.

Three major items relating to PCB routing problems are presented. In this chapter, firstly the

architecture and package of PCB and the structure of redistribution layer (RDL) are summarized.

Then three typical routing problems in PCB are introduced, and the proposals of this paper are

described. The organization of this thesis is also shown in this chapter.

1.1 Overview of PCB and Flip-chip

A PCB is a board made of fiberglass, epoxy or other materials, and supplies the connections of

electronic components with tracks, pads and other features. It is almost used in all the electronic

products and plays a very important role. In recent PCB design, since the integrated circuit

technology rapidly advances, the complexity of PCB becomes higher and higher. Such high

density of pins makes the routing of PCB a time consuming and error-prone work [1]. Thus,

recently a variety of researches have focused on the PCB routing problems. To precisely

understand PCB routing problem, some fundamentals of PCB are firstly introduced in this

section.

1.1.1 PCB Architecture

In the modern PCB design, it usually hosts several components such as multi-chip modules

(MCMs), memories, and I/O modules [2]. These components are mounted onto the board as a

set of dense pin arrays, as shown in Figure 1.1. These pin arrays should be connected by some

non-crossing wire segments [1].

2

Figure 1.1 PCB architecture

(a) Single-sided board

(b) Double-sided board

(c) Multi-layer board

Figure 1.2 Three types of PCB [3]

3

According to the layer number of board, there are three types of PCB: single-sided board,

double-sided board, and multi-layer board, as shown in Figure 1.2 [3].

Single-sided Board

In the single-sided board, the routing wires are concentrated only in one side, as shown in Figure

1.2 (a). Since there are many strict restrictions of the routing designs, for example, the wire

segments on the board cannot cross with each other, the routing on single-sided board often fails.

Furthermore, the high density of pins in modern routing designs makes the routing on

single-sided board more and more difficult. Thus, only early circuit uses this type of board.

Double-sided Board

Different from single-sided board, double-sided board has wire segments on both sides of it, as

shown in Figure 1.2 (b). It is a two-layer board, and the conductors on different layers are

connected by the through holes. These through holes are usually called vias, which are coated

with metal. Since the routing area of double-sided board is larger, and the wires can be routed in

different layer through vias, some problems of single-sided board, such as crossing wires,

routing resource limitation, can be solved by double-sided board. It is usually used in more

complex circuits.

Multi-layer Board

Multi-layer board uses more single-sided boards or double-sided boards to increase the

available area, as shown in Figure 1.2 (c). All the outer and inner layers can be used to route

wires. Same as double-sided board, multi-layer board uses vias to connect the conductors on

different layers. In present applications, the most common PCBs have 4-10 layers. The

multi-layer boards allow for higher density of components and pins.

Recent years, because of the increasing of pins number and strict design rules, the routing

resource for the components is usually limited, both within the pin arrays and between different

components [2]. Thus, multi-layer PCBs are widely applied. In this paper, our research on PCB

routing designs also relates to multiple layers.

4

1.1.2 Flip-chip Architecture

In the PCB manufacture, the components should be packaged onto the board. Since the shorter

wire connections produces higher performance of the circuit, there is a package technique that

directly mounts the chips onto the board to connect with other conductors [3]. This technique is

called bare chip package, and it includes three patterns: wire bonding, tape-automated bonding

and flip-chip, as shown in Figure 1.3 [3].

Wire Bonding

Wire bonding is a method that makes the interconnection between device and substrate during

(a) Wire bonding

(b) Tape-automated bonding

(c) Flip-chip

Figure 1.3 PCB package [3]

5

fabrication, as shown in Figure 1.3 (a). It is a main technology for electrical connections

between components and board in PCB package. In the wire bonding, the chip is upright

mounted, and lead wires are used to interconnect the components to external conductors [4].

Wire bonding has fast bonding process, excellent electrical and chemical property, and it is

considered as a flexible and cost-effective interconnect technology. Great majority of PCB

packages use this technique.

Tape-automated Bonding

Tape-automated bonding (TAB) is a process directly placing the chips onto PCB by using

etched copper beam, as shown in Figure 1.3 (b). One end of the etched copper beam leads to the

conductors while another end leads to the PCB [5]. TAB is created as an alternative of wire

bonding and finds its common use in the display driver circuits. TAB offers some advantages

such as smaller bonding pad, less molding and lower costs. In addition, it improves the heat

transfer, performs high frequency, and requires for less PCB surface area [6].

Flip-chip

Flip-chip is a method for interconnecting components to external conductors by using bump

balls. The structure of flip-chip is shown in Figure 1.3 (c), where the active side of the chip is

faced down towards and mounted onto a substrate [7]. The bump balls are deposited on the

bump pads on the top side of the chip. The chip is flipped over to align with the matching pads

on the board for connection.

The flip-chip structure can be classified into two types: a peripheral I/O flip-chip and an area

I/O flip-chip, illustrated in Figure 1.4 [8]. In the peripheral I/O flip-chip, the I/O pads are placed

along the boundary of a die, and the I/O pads should be routed from boundary to the bump balls

inside. While in the area I/O flip-chip, the I/O pads are placed in the whole area of the flip-chip

package. Compared with a peripheral I/O flip-chip, an area I/O flip-chip can generate shorter

wire-length and smaller package size, so it is more popularly applied.

Compared with the conventional package technologies, flip-chip offers a number of

advantages: higher I/O density, higher throughput, better heat dissipation, shorter interconnects,

smaller footprint, lower profile and so on. These strong points have made flip-chip one of the

most attractive techniques in modern package for PCB design [9].

6

Redistribution Layer

Although flip-chip technology is widely used in the PCB designs, sometimes the placement of

I/O pads cannot be well mapped onto the bump balls [10]. As a result, a top metal or an extra

metal layer, RDL is used to redistribute the I/O pads to the bump balls without changing the

placement of the I/O pads, as shown in Figure 1.5 [11]. Bump balls are placed on the RDL and

used to connect to I/O pads. In a RDL, the wires can be routed in either 90 degrees or 45

degrees wire segments by current technology.

Re-distributing the I/O pads to the bump balls offers higher density, greater flexibility and

lower cost, and improves the circuit performance. Besides, it is an effective method to contact

the power and ground in some applications, and transform off-chip connections from chip scale

to board scale.

Recently, because of the increasing I/O pads in the large scale flip-chip package, only single

RDL may be not enough to complete the routing. Furthermore, routing in a single RDL may

bring out longer wire-length. Therefore, the multiple RDLs have been considered for the

Figure 1.5 RDL structure [11]

(a) Peripheral I/O flip-chip (b) Area I/O flip-chip

Figure 1.4 Flip-chip structure [8]

7

connection between I/O pads and bump balls in some researches [12]. In this paper, our research

on flip-chip designs relates to both single RDL and multiple RDLs.

1.2 Typical Routing Problems

Based on the fundamentals of PCB described above, we discuss the PCB routing problem in this

section. A modern PCB usually hosts several chip packages whose footprints are pin arrays

which are expected to be routed by non-crossing nets [1]. Three typical routing problems of

PCB are introduced: escape routing, river routing, and RDL routing.

1.2.1 Escape Routing

Escape routing is a routing problem among pin arrays inside the components. As illustrated in

Figure 1.6, it is to route the pins from inside of the pin arrays to the boundary, just like helping

Figure 1.6 Escape routing problem

Figure 1.7 River routing problem

8

s.

The major task of escape routing is to escape a set of pins using as few layers as possible

because it usually dominates the number of layers. Moreover, sometimes it should offer the

matching pin order along the boundaries of two components for later river routing. There are

mainly three types of escape routing problem: unordered escape routing, ordered escape routing

and simultaneous escape routing [1], and they are all applied in PCB routing but not discussed

in this paper.

1.2.2 River Routing

Relative to escape routing, river routing is a routing problem between two or more components.

It is to connect the escaped pins on the boundaries of components with some length constraints,

as shown in Figure 1.7. Usually the obstacles are aware in the river routing problem.

R

maintaining the planar topology generated by the escape routing. There are two typical

categories of river routing problem: min-max length routing and equal-length routing. In the

min-max length routing, each wire-length should meet the given minimum and maximum length

bounds. While the equal-length routing aims to generate wires with the same length.

In recent PCB design, due to the high density of integration, the signal propagation delay or

skew has become an important factor for a circuit performance. We can control the signal

propagation delay by adjusting the wire-length. If the routing area is large enough, it is not

difficult to control the wire-length of the net. However, the routing area is usually limited and

multiple nets should be considered in the dense area. Hence, how to balance the wire-length of

the multiple nets becomes a very difficult problem. Moreover, for river routing problem, in

general the positions of pins are fixed on the components, and usually the source and target pins

are disordered. Therefore, multi-layers are used for routing disordered pins, and a practical

problem that how to assign layers for these pins and in what order to route them needs to be

solved.

1.2.3 RDL Routing

Besides, as a special structure in flip-chip, the routing in RDL is also often discussed for PCB

design. It is to connect the I/O pad to the bump ball with wire-length minimization.

There are two main RDL routing problems. One of the problems is free-assignment routing

9

problem, in which any I/O pad is not assigned to any bump ball before routing. Another

problem is pre-assignment routing problem. In this problem, the connections between the I/O

pads and the bump balls are defined before routing. Since the pre-assignment of the connections

has more routing constraints, the pre-assignment routing problem is much harder than the

free-assignment one.

For the pre-assignment RDL routing problem for area flip-chip, how to assign the I/O pads to

bump balls and minimize the total wire-length are usually focused on. Furthermore, 3D IC has

become the good choice for high-performance circuits, since recently it is hard to solve some

interconnection problems by traditional 2D IC. Thus, the I/O pad assignment and RDL routing

problem in both 2D and 3D IC should be solved to improve the whole circuit performance.

1.3 Research Proposals

In this paper, we propose a series of routing algorithms for PCB design to solve the

above-mentioned different problems. This thesis mainly includes the following three points.

Firstly, to assign layers for disordered pins and get equal-length routing results, a

region-aware routing algorithm in PCB design is proposed. In the layer assignment process, the

longest common subsequence (LCS) algorithm is adopted between source and target pin sets to

determine the layers for pins. In the routing process, virtual boundaries need to be set if the pins

sequence does not satisfy trunk routing topology condition. The base routes for multiple nets are

generated by the single commodity flow method. In addition, considering target length

requirement and routing region coefficient , R-flip and C-flip techniques are used to adjust the

wire-length. This proposed routing algorithm is able to obtain the routes with better wire-length

balance and smaller worst length error in reasonable CPU time.

Secondly, to minimize the total wire-length, a sorting-based I/O pad assignment and

non-Manhattan RDL routing algorithm are proposed for area I/O flip-chip design. By sorting the

Manhattan distance between I/O pads and bump balls, the pre-assignment and its revision are

carried out to determine the initial assignment. Three kinds of pair-exchange procedures for

shortening wire-length, releasing overlap and avoiding cross are proceeded out respectively to

improve the initial assignment. The exchange order is according to the descending Manhattan

distance between the assigned I/O pad and bump ball pairs. To shorten the wire-length,

non-Manhattan RDL routing with 90 degrees and 45 degrees wire segments is adopted to

connect the I/O pads and bump balls. Moreover, some un-routed connections should be

ripped-up and rerouted. The proposed design method is effective on reducing total wire-length

10

no matter of the I/O pad locations and package sizes, and improves the routability.

Finally, we apply the same sorting method in the above to the I/O pad assignment and RDL

routing method in 3D IC design. Similarly, we assign the same numbered I/O pads in two RDLs

to micro-bumps by sorting the sum of Manhattan distance between them. A pair exchange

modification of a route is considered for shortening wire-length, and the single layer routing in

two RDLs are carried out respectively. Some un-routed connections are ripped-up and rerouted

at last. This method for 3D IC is also able to obtain the routes with shorter total wire-length in

reasonable CPU time.

In conclusion, the equal-length routing problem for disordered pins and the RDL routing

problem for flip-chip in PCB design can be well solved using the proposed routing algorithms.

Furthermore, some optimizations, such as better wire-length balance, smaller worst length error

and shorter total wire-length, can be well realized by using them.

1.4 Organization of This Thesis

The rest of this paper is organized as follows:

Chapter 2 reviews some fundamentals of PCB routing. Firstly, four types of signal net routing

problems are explained. Then, two kinds of basic routing method and their representative

algorithms are respectively discussed.

Chapter 3 describes a region-aware layer assignment and equal-length routing method for

disordered pins in PCB design. By using this algorithm, it is able to obtain the routes with better

wire-length balance and smaller worst length error.

Chapter 4 introduces a sorting-based I/O pad assignment and non-Manhattan RDL routing

method for area I/O flip-chip design. The proposed method is able to obtain the routes with

shorter wire-length in reasonable CPU time.

Chapter 5 presents an application of I/O pad assignment and RDL routing method to 3D IC,

on the basis of the sorting method in Chapter 4. This method can also reduce the total

wire-length by comparing with other design method.

Chapter 6 concludes this thesis and discusses the future work.

11

Chapter 2

Fundamentals of PCB Routing

This chapter reviews some fundamentals of PCB routing. Firstly, four types of signal net routing

problems are explained. Then, two kinds of basic routing methods and their representative

algorithms are respectively discussed. Based on these routing architectures and methods, we do

our research for PCB routing design.

2.1 Signal Net Routing

In the modern PCB routing design, since the complexity becomes higher and higher, electronic

design automation (EDA) has been widely used to automate optimizations. EDA is a class of

software tools to design the electronic systems. It is heavily depended on in the complex PCB

routing design process [13]. After the placement process, all the nets should be routed in the

routing area. A net is a set of pins with the same electric potential that should be connected. For

the signal nets, the routing usually includes three stages: global routing, detailed routing, and

timing-driven routing. In addition, some specialized routing problems are also considered in the

routing process.

2.1.1 Global Routing

In general, the pins on the component should be globally routed before detailed routing. The

global routing does not route wires but just plans the connections [14].The input of the global

routing are the locations of the components and pins. During global routing, the wire segments

of the net are tentatively assigned in the routing area. Usually, coarse grids are used to represent

the routing area. The edges in the grid graph represent the available routing resources, which are

12

then used to assign the nets.

Global routing aims to provide detailed routing with where to route the nets. Typically, the

objectives of global routing are to reduce the total wire-length, reduce the routing delay, or

improve the probability for further detail routing. In the modern designs, due to millions of nets,

the global routing has become a major challenge.

The global routing flow includes three steps. Firstly the routing area is formed as some region

types, such as channels, switchboxes and so on. Then nets are mapped to the routing area.

Finally some cross points are assigned. As shown in Figure 2.1 [13], there are four components

and three nets to be routed, and the routing area is represented as coarse grids. The

diagrammatic presentation of net1, net2 and net3 are globally routed in the divided routing

regions.

Figure 2.1 Example of global routing [13]

Figure 2.2 Example of detailed routing [13]

13

2.1.2 Detailed Routing

After the global routing, the routing regions for nets have been determined. The detailed routing

uses this information to decide the exact wire connections and layers for each net [14]. During

detailed routing, the wire segments of the nets are assigned to specific routing tracks. In addition,

the design rules must be considered in the detailed routing.

Detailed routing aims to complete the wire connections between the components. Commonly,

its objectives are to reduce the total wire-length, layer number, or the routing delay. As the

increasing of modern IC scaling, the impact of manufacturing faults, such as via defects

[15]-[16], interconnect defects [17], etc., also should be considered during the detailed routing

process.

Detailed routing depends on the global routing result that, usually the configuration of nets is

not changed. Thus, if the global routing result is good, the detailed routing result will be good

likewise. For example, based on the global routing result in Figure 2.1, the detailed routed paths

are shown in Figure 2.2 [13]. This detailed routing result assumes that, the horizontal wires and

vertical wires are on the separate two layers, and vias are used to connect the wires in different

layers.

2.1.3 Timing-driven Routing

Sometimes, timing-driven routing is necessary since the interconnection delay is concerned in

the routing stages. The objectives of timing-driven routing are to reduce the maximum

source-sink delay or the total load-dependent delay.

Usually, the source-sink delay is reflected by the source-sink wire-length, and the

load-dependent delay is expressed as total wire-length [13], and we use depth and cost in name

of them respectively. Therefore, an ideal routing tree could reduce both the maximum

source-sink wire-length and the total wire-length. However, it is difficult to minimize these two

items at the same time in most cases.

Figure 2.3 [13] illustrates a tradeoff of maximum source-sink wire-length and total

wire-length. In the figure, s0 is the source pins, and the black points stand for the sinks. The

routing tree in Figure 2.3 (a) obtains the minimum depth = 8. It is a shortest-paths tree that is

constructed by [18]. However in this tree, the cost = 20 is very large. In

Figure 2.3 (b), the routing tree obtains the minimum cost = 13, and it is a minimum spanning

tree (MST) constructed by [19]. But the depth = 13 in this tree becomes larger.

14

Figure 2.3 (c) shows a routing tree compromising of depth and cost, since no matter large cost

or large depth in the routing tree are undesirable in practice.

2.1.4 Specialized Routing

Besides of global routing, detailed routing and timing-driven routing, some specialized routing

problems are considered in modern PCB routing design. Two typical specialized routing

problems, net order in area routing and non-Manhattan routing, are discussed in this subsection.

Net Order in Area Routing

In some types of design, the global routing and detailed routing are not performed separately.

Instead, the area routing connects signal pins directly, and it aims to achieve crossing

minimization. Area routing is usually constrained by the technology, electricity, and geometry

factors [13], such as layer number, signal integrity and so on.

When multiple nets are routed, the net order in area routing will affect the final routing results

and the total runtime. Greedily route multiple nets by minimizing each net s wire-length at a

time may lead to a number of un-routable nets or large total wire-length. Moreover, relative to

two-pin nets, the complexity of routing for multi-pin nets increases, which is more dependent on

the net order. For example, in Figure 2.4, there are two nets to be routed. If we route one net at a

time to optimize its wire-length, no matter net1 (Figure 2.4 (a)) or net2 (Figure 2.4 (b)) is firstly

routed, it may fail to route another net because of the routing area limitation. However, these

two nets can be routed at the same time if we do not minimize wire-length for each net, as

(a) Shortest-paths tree (b) Minimum cost tree (c) Compromise of depth and cost

Figure 2.3 Example of timing-driven routing [13]

15

shown in Figure 2.4 (c).

As a result, usually the net order in area routing is determined by some routing algorithms in

advance. Different applied routing algorithms may cause different of net order. Some Steiner

tree-based algorithms [20]-[21] that resolve the multi-pin nets into two-pin nets, and some

geometric criteria are used to optimize the net order. For instance, the nets can be ordered

according to the x-coordinate of pins, and then be routed from left to right.

Non-Manhattan Routing

In the traditional Manhattan routing, it allows vertical and horizontal wire segments only.

However, using diagonal wire segments may generate shorter wire-length. Since the diagonal

wire segments cannot be arbitrary, in general 45 degrees or 60 degrees wire segments are added

to horizontal and vertical wire segments. Such routing models are commonly described by a

, which indicates the number of routing directions and the angle of wire segments.

When = 2, there are four routing directions and wires are 90 degrees, and it is the traditional

Manhattan routing. When = 3, there are six routing directions and wires are 60 degrees, and it

is called Y-routing. When = 4, there are eight routing directions and wires are 45 degrees, and

it is called X-routing. The latter two types of routing are non-Manhattan routing [13].

(a) (b)

(c)

Figure 2.4 Net order in area routing

16

The advantages of non-Manhattan routing model are reflected in the reduction of total

wire-length and via number. However, the long time physical verification and optical

lithography limitations make non-Manhattan routing difficult to achieve. Thus non-Manhattan

routing is mainly adopted in PCB routing problems.

For example, Figure 2.5 illustrates a non-Manhattan maze routing method. This method is

based on the traditional maze routing algorithm [22], but expands nodes in eight directions

instead of four directions. It starts from source pin S and marks all unsearched neighbor grids

with number 1 (Figure 2.5 (a)). Then, it restarts from each node marked by number 1, and marks

all unsearched neighbor grids with number 2. This expansion continues until the target pin T is

reached. Finally, from the target pin T to source pin S, a path including 45 degrees wire

segments is traced back, as shown in Figure 2.5 (b).

2.2 Basic Routing Methods

During the PCB routing design, graph traversal based routing methods are usually considered.

Graph traversal visits the vertices of a graph in some order [23]. Depth-first search (DFS)

method and breadth-first search (BFS) method are two kinds of basic techniques to solve the

graph-related problems. Both of these two methods construct the spanning trees in certain

manners [24]. Based on them, a number of routing algorithms are proposed.

2.2.1 Depth-first Routing Method

DFS is a method for traversing a finite graph. For routing problems, it starts at the source vertex,

and iteratively explores from current vertex to the unvisited neighbor vertex, until target vertex

is reached or no unexplored vertex left. Then it backtracks along the visited vertices to the

(a) (b)

Figure 2.5 Non-Manhattan maze routing

17

original source vertex. For example in Figure 2.6 (a), there are six vertices in a finite graph

including the source S and target vertex T. DFS starts at S, and explores to its neighbor vertices

1 and 3. Then respectively from 1 and 3, the search continues to their next unvisited adjacent

vertices. This exploration is carried on until T is reached or no unvisited vertex left. The

spanning tree of this DFS is shown in Figure 2.6 (b). From this spanning tree, we can get all the

possible paths from S to T.

The time analysis of depth-first search method is according to its applicated graph. The

iterative deepening increases the running time, due to the geometric growth vertex number.

Given a graph G(V, E), the time complexity of DFS is O(|V|k), where V represents for the

number of vertices, and k is the depth of spanning tree. Appling DFS, all the possible paths can

be listed. In addition, it is effective in solving length-matching routing problems, which is a

sub-problem of k-path problem [25]. A typical depth-first search based routing algorithm is

color coding routing algorithm.

Color Coding Routing Algorithm

Color coding is a randomized method to find a path in graph with fixed length [26]-[27]. It

firstly paints the vertices of the graph with random colors. The number of colors is equal to the

fixed length, and one color should be used at least once. Then an improved depth-first search is

carried on. Once the path with target length is found, the process is over.

Take an example for illustration. Figure 2.7 (a) shows a grid routing problem with a required

(a) (b)

Figure 2.6 Depth-first routing method

18

length five. Firstly we mark all the grids with different numbers (Figure 2.7 (b)), and this

problem can be represented as the graph shown in Figure 2.7 (c). The vertex of this graph stands

for the grid and the edges shows the connection relationship between these grids. Then we paint

the vertices with five colors randomly. DFS starts from S, and iteratively explores to the

unvisited neighbor vertex. If one vertex has the same color with previous visited vertex, such as

vertex 5 and 1 with the same color yellow, the exploration of this path will stop. This process

continues until the first T is reached, as shown in Figure 2.7 (d), or no unexplored vertex left.

Then it tracks back from T to S, and the routing path with the target length five can be generated

(Figure 2.7 (e)).

2.2.2 Breadth-first Routing Method

BFS is another method for traversing a finite graph. For routing problems, it starts at the source

vertex, and explores first to the unvisited neighbor vertex in the same level, then to the next

level neighbors. This level depends on the distance between the current vertex and the source

(a) (b) (c)

(d) (e)

Figure 2.7 Color coding routing algorithm

19

vertex. The exploration ends if target vertex is reached or no unexplored vertex left. Then it

backtracks along the visited vertices to the original source vertex. BFS is often used to find the

shortest path. For the same example in Figure 2.6 (a), BFS starts as S, and since there is only

one vertex in the first level (Distance = 0), it explores to vertices 1 and 3 of the next level. This

exploration is carried on until T is reached or no unvisited vertex left. The spanning tree of this

BFS is shown in Figure 2.8. From this spanning tree, we can get the shortest path from S to T.

The time analysis of breadth-first search method is according to the number of vertices and

edges of the graph. Given a graph G(V, E), the time complexity of DFS is O(|V|+|E|), where V

and E represents for the number of vertices and edges respectively. A typical breadth-first search

based routing algorithm is maze routing algorithm to find the shortest path.

Maze Routing Algorithm

Maze routing algorithm aims to solve the shortest path in the grid routing problem [22]. It starts

at the source vertex, and marks current vertex s neighbor grids in four directions with number

from small to large. Once the target vertex is reached, the process is over.

For example in Figure 2.9, there is a grid routing problem to find the shortest path from

source S to target T. In this example, the obstacles, indicated as black blocks, are also taken into

consideration. The algorithm starts from S and marks all unvisited neighbor grids in four

directions with number 1 (Figure 2.9 (a)). Then, it restarts from each grid marked by number 1,

and marks all unvisited neighbor grids with number 2. This expansion continues until T is

reached. Finally, from T to S, a shortest path is traced back, as shown in Figure 2.9 (b).

Both DFS and BFS have their advantages and disadvantages. Although DFS can find all the

Figure 2.8 Breadth-first routing method

20

possible paths or generate a path with fixed length, the time complexity of it is very large. On

the other hand, the running time by BFS is short, but it usually consumes more computer

memory. Some researches about combining BFS with DFS have been studied in recent years

[28]-[29]. For our research in this paper, breadth-first search based routing algorithms are

mainly adopted.

2.3 Conclusions

In this chapter, some fundamentals of PCB routing are reviewed. Four types of signal net

routing problems are explained firstly. Then two kinds of basic routing methods and their

representative algorithms are discussed respectively. Based on these points, we develop the

routing methods for PCB design.

(a) (b)

Figure 2.9 Maze routing algorithm

21

Chapter 3

Region-aware Layer Assignment and

Equal-length Routing

In this chapter, a region-aware layer assignment and equal-length routing method for disordered

pins in PCB design is proposed. The approach initially checks the longest common subsequence

of source and target pin sets to assign layers for pins. Single commodity flow is then carried out

to generate the base routes. Finally, considering target length requirement and available routing

region, R-flip and C-flip are adopted to adjust the wire-length.

3.1 Introduction

In recent PCB design, the routing is still achieved manually to meet the high performance. As

integrated circuit technology advances rapidly, the dimensions of packages and PCBs are

reduced while the pin counts and routing layers keep increasing [1]. Due to the high density of

integration, the signal propagation delay or skew has become an important factor for a circuit

performance. In addition, in PCB, a lot of cells are required to receive the signal at the same

time point. Hence, the signal propagation delay and skew have been taken into consideration in

the PCB routing designs [30]-[31]. For one net, the signal propagation delay includes the

routing delay and the gate delay, and is decided by lots of parameters. As the gate delay is often

fixed in the PCB design, we can control the signal propagation delay by adjusting the routing

delay. As the routing delay is proportional to the wire-length, the controllability of the

wire-length is usually focused on. If the routing area is large enough, it is not difficult to control

the wire-length of the net. However, the routing area is usually limited and multi-nets should be

considered in the dense area. Hence, how to balance the wire-length of the multi-nets becomes a

22

very important problem, which is formulated as equal-length routing problem in PCB design.

For river routing problems, in general the positions of pins are fixed on the component before

routing starts. If the order of source pins around a component is reverse of the order of target

ure 3.1 (a)); otherwise, called

ure 3.1 (b)). Assuming routing area is large enough, if the source and target

pins are ordered, the routing can be completed in single layer without crossing. However, as

usually the source and target pins are disordered, some inevitable crossing cannot be solved in

single layer, as the example of net 2 in Figure 3.1 (b). Therefore, multi-layers are adopted for

routing disordered pins, and a practical problem that how to assign layers for these pins and in

what order to route them needs to be solved.

In this chapter, we consider the multi-layer equal-length routing problem for disordered pins

in PCB. The objective of this problem is to minimize the wire-length skew between obtained

routes and reduce the worst length error. In other words, we aim to get a better wire-length

balance. The whole design process is composed of three phases. In the first phase, we assign

layers for pins by checking the longest common subsequence (LCS) between source and target

pins. In the second phase, single commodity flow is used to generate the base routes and the

components are merged. This routing is carried out for multi-nets simultaneously. Finally,

considering the equal target length requirement and available routing region, R-flip and C-flip

[32]-[34] are employed to adjust the wire-length. The experimental results show that the

proposed method is able to obtain the routes with better wire-length balance and smaller worst

length error in reasonable CPU time.

The remainder of this chapter is organized as follows: Section 3.2 describes some previous

works related to this study. Section 3.3 describes the problem definition of this work. Section

3.4 details the three phases of proposed routing algorithm. Section 3.5 illustrates the

experimental results and analysis. Finally, the conclusion is given in Section 3.6.

(a) Ordered pins (b) Disordered pins

Figure 3.1 Order of pins

23

3.2 Related Works

Some researches for river routing problem have been proposed. [35] proposed an automatic bus

planner for dense PCBs. In [36] and [37], a Lagrangian-relaxation framework was used to

allocate routing resources during routing to control the length of each net. In [38] and [39], a

river routing based algorithm was proposed to detour the net inside its bounded area. The length

matching routing inside a channel was considered in [40], which used symmetric-slant grid

interconnect to transform the length matching problem into a general grid routing problem. In

[41], a length matching routing method was presented with no restriction on routing topology

using bounded slice-line grid [42]. However, these works mentioned above do not consider the

obstacles in routing area.

In fact, there are several obstacles in PCB routing area, such as device and IC package, etc.

Thus, consideration of obstacles is important in PCB design. For obstacle-aware routing

problems, [43] explored a length matching routing method based on region partition. A

transactional parallel routing algorithm was studied in [44]. In [32]-[34], an obstacle-aware

routing algorithm was proposed to expand the wave-front of all nets to obtain routes with target

wire-lengths. However, they are adopted in single layer routing and do not work well in the case

of disordered pins.

In [45], a length matching routing method was presented with no restriction on routing

topology using bounded slice-line grid (BSG) in multi-layer. This BSG routing method firstly

embeds the given topology onto a BSG, and then sizes the cells to make the total area of the

cells occupied by a net satisfying its target length. When in the routing area there is no obstacle,

BSG routing method is able to achieve the target length by sizing cells and performing detail

routing inside each cell to turn the assigned area into the expected length. However, if obstacles

exist, the target length may not be achieved, because the embedded topology onto the BSG

dominates the available wire-length, where not only obstacles but also other nets would impact

on the sizing of the BSG cells. For example in Figure 3.2 (a), an input topology is embedded

onto BSG with obstacles. In this case, the longest wire generated by BSG routing method is

shown in Figure 3.2 (b), which cannot make full use of routing space. Hence, achieving the

target length seems difficult when obstacles exist, and this defect is also discussed in [34].

A practical approach to solve the fixed disordered pins routing problem was discussed in

[46]-[47]. However, this work used a greedy way to assign layers for pins and merge all

multi-

wire-length balance between nets in dense routing problems. For example, in Figure 3.3 (a),

24

given a target length as 19, for the periphery nets, net 0 and net 1, there are enough area for

detouring to achieve the target length. But for the inner net, net 2, whose routing area is

insufficient, it only reaches length 13. It leads to a worst length error as 6 and unbalanced nets

routing result.

In this chapter, we focus on the routing for disordered pins in dense routing problems, where

the target length requirement and available routing region are taken into consideration.

Compared with BSG routing method, our method can take advantage of efficiently using

routing area to achieve a longer target length when obstacles exist, as shown in Figure 3.2 (c).

Moreover, we balance the nets by revising the adjusted wire-length. The proposed method can

(a) BSG embedding (b) BSG route with obstacles

(c) Routing by our method

Figure 3.2 Comparison with BSG routing method

(a) Unbalanced routing (b) Balanced routing

Figure 3.3 Balance wire-length of nets

25

generate routes with better wire-length balance as shown in Figure 3.3 (b), all the nets are with

the same length 17 and the worst length error is reduced to 2. The following sections discuss the

proposed method in detail.

3.3 Problem Definition

In this chapter, the multi-layer equal-length routing problem is defined as follows: the input

includes a grid graph G(V, E), pins on each component, obstacles, and target length; it outputs

the routes of pin pairs. The objective is to effectively assign layers for the disordered pins and

generate routes with a better wire-length balance of all the nets. In this study, standard deviation

is used to evaluate the routing results, which shows how much dispersion exists from the

expected value (the value of average length of each net). It is defined as Eq. 1, where x1 xN

are the values of sample items, x is the average value of x1 xN, and N stands for the size of

the sample.

N

1

2

)(
1

i
N xxS iN

(1)

We give an example in Figure 3.4 (a), where the routing area is defined by routing grids. The

white and black grids stand for the available routing resource and obstacles, respectively. The

gray grids represent the components with pins on their boundaries. Let C1, C2, , Cn be n

components and Pi be a set of pins on Ci (i n

same labeled elements in different sets should be connected, called pin pairs. As illustrated in

Figure 3.4, there are three sets of pins, P1 = {0, 1, 2}, P2 = {2, 3}, P3 = {0, 1, 3}. A net consists

of a sequence of grids, and the wire-length is defined as the number of grids used in the path.

(a) Single layer (b) Multi-layers

Figure 3.4 Routing model

26

Basically, the proposed method proceeds routing in single-layer. However, if net crossing is

unavoidable, another layer should be used. In such a multi-layer model, to simplify the problem,

the components are mapped to the added layer as obstacles and the impact of via included in the

route is not considered in the wire-length (Figure 3.4 (b)). In this study, at most three layers are

permitted, as adding layers without limitation is not much sense.

In this study, trunk routing problem between two components is dealt with. Trunk routing

problem is introduced in [32]-[34], which is a sub-problem of river routing problem, The trunk

routing topology condition is defined as follows: (1) all the pins are put on the boundary of the

routing area; (2) the boundary pins sequence can be divided into the source pins sequence and

the target pins sequence, where source pins sequence is in the reverse order of target pins

sequence and vice versa. In this study, all the pins are on the boundaries, but the pins sequence

do not satisfy the above-mentioned topology condition. Therefore virtual boundaries are

introduced to solve this problem. For example in Figure 3.5, after adding the virtual boundaries,

represented by dotted lines, source pins sequence is 0 1 2, and target pins sequence is

2 1 0, which satisfy the trunk routing topology condition.

3.4 Routing Algorithm

In this study, since multi-components are given, the routing for multiple pin sets is considered.

As mentioned in Section 3.2, [46] and [47] introduced a method to solve the fixed disordered

pins routing problem, which routes nets as many as possible in a current layer, and then routes

crossing nets in added layers to release the crossings. In this study, we adopt the similar idea but

implement in different way. Instead of dealing with the routing among all the components at the

same time, our basic idea is to firstly handle the routing problem between two components and

merge them as a new one. Then this process is repeated until all the pins are handled. It is easier

Figure 3.5 Example of trunk routing topology

27

to implement the crossings minimization between two components than that among all the

components by adopting LCS (longest common subsequence) algorithm [48]-[49]. Another

difference is that, in the initial routing phase of [46] and [47], against-the-wall routing method is

adopted, which may generate some long wires, and it increases the workload for wire-length

adjustment. In our method, single commodity flow is used for initial routing, and it makes the

initial routing result easier for further adjustment. The proposed routing algorithm includes three

phases: pin sets selection and layer assignment, initial routing, and wire-length adjustment. The

flow chart of the whole routing process is shown in Figure 3.6. Algorithms 1 to 4 are described

in detail in the following subsections.

Figure 3.6 Flow chart of layer assignment and equal-length routing process

28

3.4.1 Pin Sets Selection and Layer Assignment

Given the placement of components and disordered pins, initially we assign layers for pins in

this phase. Note that, if there are two or more than two parts of components not related with

each other, in other words, there are no nets to be routed between them, they are considered as

two or more than two sub-problems. The layer assignment is processed by the following two

steps:

Step 1: Select two pin sets;

Step 2: Find longest common subsequence between two sets to determine layer for pins.

[Step 1] Initially, if there are more than two pin sets in one sub-problem, these sets should be

handled one by one. Hence, in Step 1 we need to select which two pin sets to be handled. To

make full use of the available routing area, we need to assign the pins as much as possible in

current layer. Hence the two pin sets selected to construct a new set should include pins as much

as possible. However, if no nets to be routed between the selected two pin sets, it is impossible

to merge them by routing. Hence, the selected two pin sets should have common elements. The

pseudo-code of this process is shown in Algorithm 1.

In Algorithm 1, P1, P2, , Pn are the pin sets of components. The two pin sets to be handled

are noted as Ps and Pt. Pi Ps means the intersection set of Pi and Ps.

Algorithm 1. Pin sets selection

Input: Pin sets
Output: The two sets to be handled
begin

if n>2 then
for i=1 to n do

calculate the quantity of elements of Pi;
end for
Ps = Pi who is the largest set;
for i=1 to n do

if Pi Ps =

Pt = Pi whose Pi - Pi Ps is the largest set;
end if

end for
else

Ps = P1;
Pt = P2;

end if
end

29

If there are more than two pin sets, to construct a new set including more pins, we need to

find Ps Pt includes most elements in any two Pi, under the condition of Ps and Pt having

common elements. Ps Pt means the union set of Ps and Pt. Firstly compare the number of

elements in each Pi, and the largest set is selected as Ps. Then, for other sets, if their intersection

set with Ps is not empty, the set whose Pi -Pi Ps includes most elements is selected as Pt. When

comparing the elements number of pin sets, if there are more than one set have most elements,

the smaller label set is chosen. If there are only two pin sets, they are noted as Ps and Pt.

Take the example in Figure 3.7 to explain Algorithm 1. As there are three pin sets, we need to

select which two to be first handled. Each set is as follows: P1 = {0, 1, 2, 3, 4, 5}, P2 = {0, 6, 7},

and P3 = {1, 2, 3, 4, 5, 6, 7}, and they are related with each other. We calculate the quantity of

elements of each component set: P1 is 6, P2 is 3, and P3 is 7. According to Algorithm 1, P3 is

determined as Ps. Then by calculating, both P1 Ps = {1, 2, 3, 4, 5} and P2 Ps = {6, 7} are not

empty, and the quantity of elements of P1 - P1 Ps is 1, P2 - P2 Ps is 1. Since the number of

elements is the same, according to the algorithm, we choose the smaller label set P1 as Pt.

[Step 2] Then, the longest common subsequence between two pin sets is used to determine

layer for pins. The pseudo-code of this process is shown in Algorithm 2.

In Algorithm 2, Q is a set of the elements common in Ps and Pt. S is defined as an array of

elements in Q arranged in counterclockwise order of pins on the boundary of Ps

Similarly, T is an array of elements in Q, arranged in clockwise order of pins on the boundary of

Pt S and T have the same elements but different order. Here, the

boundary of a component is defined as the passed path that starting from any point on the

component, going along the edge of this component or the merged components and the

Figure 3.7 Placement of components and disordered pins

30

periphery routed wires and ultimately returning to that point. L is a set of longest common

subsequence of elements of S and T. QL stands for the complementary set of L in Q.

Because of the disordered pins, the longest common subsequence between two components is

used to determine a layer for pins. First we store the same labeled elements of Ps and Pt in Q. In

trunk routing topology, the source pins sequence should be the reverse ordering of the target

pins sequence. Hence, the elements of array S is in counterclockwise order of pins on the

boundary of a component having Ps, while the elements of array T is in clockwise order of pins

on the boundary of a component having Pt. Note that, the first element of S and T are the same.

Then we obtain the longest common subsequence of elements in S and T by LCS algorithm

[48]-[49], and put the result into set L. LCS algorithm is a well-known method to find the

longest common subsequence in two sequences. The reason why we find the longest common

subsequence is to make full use of the available routing area in the current layer. Finally, assign

pins in L to the current layer, and reserve pins in QL for other layers.

We also take the case in Figure 3.7 to explain Algorithm 2. From the last step, we know Ps =

{1, 2, 3, 4, 5, 6, 7} and Pt = {0, 1, 2, 3, 4, 5}. According to Algorithm 2, we can obtain Q = {1, 2,

3, 4, 5}, and then S = [1, 3, 5, 4, 2], T = [1, 2, 3, 4, 5]. By LCS algorithm, we can get the longest

common subsequence is L = {1, 3, 4} and then QL = {2, 5}. As a result, we assign net1, net3

and net4 in layer1, and reserve net2 and net5 to layer 2.

3.4.2 Initial Routing

After layer assignment for some pin pairs, single commodity flow is used to generate the path of

assigned pin pairs in current layer. This routing is carried out for multi-nets simultaneously. The

pseudo-code of this phase is shown in Algorithm 3.

Algorithm 2. Layer assignment

Input: Ps, Pt

Output: Layer assignment for pins
begin

Q = Ps Pt;
S = elements in Q arranged in counterclockwise order of

component;
T =
L = longest common subsequence of S and T by LCS algorithm;
assign pins in L to current layer;
reserve pins in QL for other layers;

end

31

The routing by single commodity flow method is shown in Figure 3.8. All the available

routing grids are treated as the vertices and the edges connected vertices are represented in

bi-direction. The capacity of each direction is set as 1, shown in Figure 3.8 (a). Augmenting

paths are explored by breadth first search, shown as net 1 in Figure 3.8 (b). In the path, the

Algorithm 3. Single commodity flow

Input: Pin pairs in L, obstacles
Output: Initial path of pin pairs
begin

flag = 0;
for i=1 to n do

set virtual boundary before the i-th element of L;
generate path between pin pairs by single commodity flow method;
if routing is feasible then

flag = 1;
break;

end if
end for
if flag = 0 then

reserve the last pin in L to other layers;
repeat the process until routing is feasible;

end if
end

(a) (b)

(c) (d)

Figure 3.8 Single commodity flow method

32

residual capacity of directions from source to target is changed to 0. Then, repeat this process

until no augmenting path exists. If it crosses with the already existing nets, the reverse flow is

applied as shown in Figure 3.8 (c). The edge whose both bi-directions are used needs to be

deleted and non-crossing nets can be generated, shown in Figure 3.8 (d). In this way, we obtain

the base routes of pin pairs.

In addition, before the routing, virtual boundaries need to be set if the pins sequence do not

satisfy trunk routing topology condition. Virtual boundaries are added as paired straight lines

between the source or target components and edge of routing region, shown as dotted lines in

Figure 3.9. The function of virtual boundary is to cut off the connection between the two grids

in the right and left sides of it. We set the virtual boundaries in a greedy way. Initially, the virtual

(a)

(b)

Figure 3.9 Virtual boundary setting

33

boundary is set between the two pins same numbered with the first one and last element in array

L. The position of virtual boundary is on the counterclockwise side from the first one to last one

of source pins, and clockwise side of target pins. If the component corner exists between these

two pins, the virtual boundary is set on the corner. The direction of a virtual boundary

(horizontal or vertical) is decided by whose capacity is less. If there is more than one corner, the

first one is chosen (Figure 3.9 (a)). If between two pins no component corner exists, the virtual

boundary is set in the middle of them (Figure 3.9 (b)).

Then, we generate routes by a single commodity flow method. If the routing cannot be

completed using current virtual boundary, we reset another virtual boundary between the two

pins same numbered with the second element and first one in L (Figure 3.9 (b)), then between

the third and second one, and so on, until the routing is completed. In addition, if the routing is

not feasible with any virtual boundary, we should reserve the last pin in L to other layers and

repeat the process until the routing between selected two pin sets Ps and Pt is completed. After

the routing, the first chosen two pin sets are merged as new pin set, as shown in Figure 3.10. For

the new pin set, its component is in irregular shape, and the pins of it do not include the routed

pins and reserved pins. The area surrounded by peripheral routed wires, illustrated as the shaded

Figure 3.10 Pin sets merging

Figure 3.11 Initial routing

34

part in Figure 3.11, is treated as the interior of the new component.

We repeat first two processes of layer assignment and initial routing for other pin sets until all

the routing in current layer are accomplished.

Take the example of Figure 3.7 again. Since L = {1, 3, 4} in the last phase, we set the virtual

boundary between pin pair 1 and 4, as shown in Figure 3.9 (a). Then the routes are generated by

single commodity flow method. After the routing between P1 and P3 is finished, they are then

treated as a new pin sets P1

handled.

3.4.3 Wire-length Adjustment

Based on the generated paths of all the nets, we need to adjust the wire-length of each net to

satisfy the length constrains. Both the target length requirement and available routing region are

considered. The pseudo-code of this phase is shown in Algorithm 4.

In Algorithm 4, lt stands for the given target length and A means the available routing area

after routing; Li and Lai represent the current wire-length and the wire-length skew of net i

respectively; means utilized coefficient of A.

To leave space for other nets, the peripheral nets are firstly handled. An array Ni stores the

nets id sorted according to position from periphery to the inner counterclockwise. The net

closest to the up border of the routing area is first stored, then the net closest to the bottom

border. If there is more than one net has the same vertical ordinate, we choose the net whose

horizontal ordinate is smaller. Then store the second closest nets and continue this process until

all the nets are completed. For the wire-length adjustment of each net, it is processed by the

following three steps:

Step 1: Reroute wires along the boundary of routing area;

Step 2: Adjust length by R-flip or C-flip;

Step 3: Revise adjusted wire-length.

[Step 1] Initially, we extend the source pin and target pin to the outer boundary of a routing

region. If the pin is on the horizontal boundary of the component, the extend direction is

horizontal, otherwise, the extend direction is vertical. Then the wires are rerouted along the

boundary. This process can reserve space for the succeeding inner nets. If we directly adjust the

wire-length based on the initial path, there may be not enough space for other nets.

For the example in Figure 3.12, Ni = [1, 0, 3, 6, 4]. So, the first net to be adjusted is net 1, and

the last one is net 4. The extend wire of net 1 is shown in Figure 3.12 (a).

35

[Step 2] Then, based on the extended wires, we adjust the wire-length to meet the target

length using R-flip or C-flip operations [32]-[34]. R-Flip detours a partial route of length two to

four by searching a rectangle along the initial route from the source to target. C-Flip, a

generalization of R-Flip, replaces a partial route by another route with the same terminals to

increase the wire-length, and vice versa to shorten length. Note that, either lengthening or

shortening a wire is a first-go-then-back process, where the adjustment of wires takes even

Algorithm 4. Wire-length adjustment

Input: Initial path of pin pairs, obstacles, lt, A
Output: Adjusted path of pin pairs

begin

Ni= an array of nets id stored according to position from periphery to the inner

counterclockwise;

for i=1 to n do

reroute wire along the edge;

Li = current length of net i;

Lai = [(lt -Li)/2]*2;

adjust Lai units of length by R-flip or C-flip;

end for

calculate SN0;

if SN0 >1.15 then

for j=10 to 1 do

if []/n < lt then

for i=1 to n do

Lai = [([]/n -Li)/2]*2;

revise wire-length with Lai;

end for

calculate SNj;

end if

end for

end if

output the result with smallest SNj;

end

36

number not odd. Hence, the wire-length skew Lai is calculated by [(lt-Li)/2]*2 ([] means omit

decimals). If Lai is negative, then we need to shorten the wire. Otherwise, we lengthen the wire.

For the example in Figure 3.12 (a), lt is set to 25, L1 = 46. According to the definition, La1=

[(25-46)/2]*2=-20. So, the wire-length of net 1 is shortened by seven times R-flip and once

C-flip operations. The adjustment result is shown in Figure 3.12 (b). Similarly, the other nets as

adjusted one by one until all the nets are completed.

[Step 3] As the aim of this study is to generate routes with a better wire-length balance of all

the nets, after the adjustment, we check the standard deviation SN0 of wire-lengths

according to Eq.1, to decide whether further revise. As mentioned above, the adjustment of

wires takes even number not odd, therefore sometimes one unit length error is inevitable, where

(a) Extend wires

(b) Adjust wires

Figure 3.12 Wire-length adjustment

37

length error is defined as | Li - lt |. As a result, even though all the nets are successfully adjusted,

SN0 may be not 0, and the maximum value is 1.15. If SN0 > 1.15, we revise adjusted wire-length.

In this study, for equal-length routing, a coefficient the

wire-length skew between nets. The coefficient represents the utilized region, since not all the

available routing grids can be used due to the position of components and obstacles. Then the

wire-length skew is revised as Lai = [([*A]/n -Li)/2]*2. Under the condition of []/n < lt,

apply different to get a smaller SN.

Also for the example in Figure 3.12, Figure 3.13 shows the final adjusted routing result. By

calculating, SN0 = 0.84 < 1.15, hence we do not further revise. Then similarly, the other nets as

adjusted one by one until all the nets are completed. After completing the routing in Layer 1, we

should check if there are any non-routing pins left. If there are, repeat the whole process above

in next layer until all the pins are routed.

3.4.4 Discussion on Time Complexity

As mentioned above, the proposed routing method is divided into three phases: layer

assignment, single commodity flow, and wire-length adjustment. For layer assignment, based on

LCS algorithm, the time complexity of this phase is O(m2), where m is the number of the total

pins for routing. Since the complexity of one net flow in a grid graph is O(n), where n is the

number of grids, the time complexity of routing all nets is O(mn). In wire-length adjustment, for

one net the adjusted length is O(n) in the worst case. So the time complexity of modifying all

nets is O(mn). Therefore, the total time complexity of the proposed routing method is O(mn).

Figure 3.13 Adjusted routing result

38

3.5 Experimental Results and Analysis

We implemented our proposed method in C language, which is compiled by MinGW Developer

Studio 2.06, and executed on a PC with 2.66GHz Intel Core 2 CPU and 2GB RAM. Six

experimental data named from Data00 to Data05 for evaluation are synthesized by referring the

test cases in [46]. We narrow the range of the routing area to simulate a dense routing problem.

10% of the routing area is randomly set with obstacles. The properties of each experimental data

are listed in Table 3.1, where Grid size is the scale of the routing problem, and #Obstacle

denotes the number of obstacles, #Component is the quantity of components, #Nets is the

number of two-pin nets, and A means the available routing area after initial routing. Three

experiments are carried out. Experiment 1 is executed on obstacles, Experiment 2 is on the same

target length but different utilized coefficient , and Experiment 3 is on comparison with

another greedy routing method based on [46] followed by some adjustment.

Experiment 1

For Experiment 1, Data00 is executed without utilized coefficient . Cases without obstacles

and with obstacles are considered. The experimental results are listed in Table 3.2 and the

routing results of lt = 130 without and with obstacles are respectively shown in Figure 3.14 and

Figure 3.15. In this table, Std dev denotes the standard deviation of the wire-length, that shows

how much dispersion exists from the average length of nets. The wire-lengths are given in

accordance with the number of unit grid. From the table and figures, we note that, our proposed

method could be applied in both no-obstacle routing and obstacle-ware routing problems. When

obstacles are set, the maximum network becomes smaller, so some nets should be reassigned to

Layer 2, such as net 0 in Figure 3.14 (a) and Figure 3.15 (b). From Table 3.2, we also note that,

when target length is set larger, the standard deviation becomes larger, and the worst length

Table 3.1 Properties of experiment data

Grid size #Obstacle #Component #Nets A
Data00 30*20 60 2 5 411
Data01 40*30 120 2 8 962
Data02 45*30 135 3 12 1015
Data03 50*40 200 4 20 1554
Data04 55*40 220 5 28 1695
Data05 60*50 300 6 37 2215

39

error increases. The reason is that, as the peripheral nets are first adjusted, the inner nets do not

have enough area to detour, which leads to the larger differences among the nets.

Experiment 2

In Experiment 2, also for Data00, we change the value of from 1 to 0.1 to analysis of the

Table 3.2 Experimental results on different target length for Data00 (without)

Target
length

Without obstacle With obstacles

Std dev
Average
length

Worst
length
error

CPU
time

Std dev
Average
length

Worst
length
error

CPU
time

lt = 30 0.55 30.60 1 <1s 0.55 30.60 1 <1s
lt = 130 24.18 113.80 55 <1s 33.32 114.60 75 <1s

(a) Layer 1 (b) Layer 2

Figure 3.14 Routing results of lt = 130 without obstacles in Experiment 1

(a) Layer 1 (b) Layer 2

Figure 3.15 Routing results of lt = 130 with obstacles in Experiment 1

40

impact of on standard deviation, while target length is not changed. From the experimental

results in Table 3.3, when = 0.7, 0.6, 0.5, 0.3, 0.2, a minimum standard deviation can be

obtained. Moreover, when = 0.7, the worst length error is smallest, thus = 0.7 is considered

as an optimal coefficient for wire-length balance.

Experiment 3

We compare the proposed routing method with another greedy method [46] in Experiment 3.

Since the method [46] does not focus on the equal-length routing problem, we adopt R-flip and

C-flip to adjust its routing result as well. There are six data Data00 to Data05 with different grid

sizes from small to large. If we set the target length too small (less than the largest distance

among pin pairs of all nets) or too large (larger than the average routing area for each net), it

may make the achievement of the target length impossible for some nets. In this experiment, for

each data, we only test two bound target lengths, one is a smaller target length which is set as

the least common multiple of ten larger than the largest distance among pin pairs of all nets, and

another is a larger target length which is set as the largest common multiple of ten less than the

average routing area for each net, A/#Nets.

The experimental results are shown in Table 3.4. And the length comparison of each net is

illustrated in Figure 3.16 to Figure 3.21, where Y-axis means a resultant net length for each net

Li mapped on X-axis, and a dotted line represents the target length. The experimental results

show that, the method [46] has a smaller standard deviation for the small target length and a

larger standard deviation for the large one. However, our method has the smaller standard

deviation in spite of the target length. This mainly owes to the adoption of an appropriate .

Table 3.3 Experimental results on different utilized coefficient for Data00 (lt = 130)

Utilized
coefficient

Std dev
Average
length

Worst length
error

CPU time

= 1 43.61 117.00 91 <1s
= 0.9 28.40 109.80 71 <1s
= 0.8 20.35 99.40 67 <1s
= 0.7 0.55 94.60 36 <1s
= 0.6 0.55 81.40 49 <1s
= 0.5 0.55 67.40 63 <1s
= 0.4 0.84 53.80 77 <1s
= 0.3 0.55 41.40 89 <1s
= 0.2 0.55 27.40 103 <1s
= 0.1 4.76 17.80 117 <1s

41

(a) lt = 30 (b) lt = 130

Figure 3.16 Length comparison for Data00 in Experiment 3

(a) lt = 70 (b) lt = 190

Figure 3.17 Length comparison for Data01 in Experiment 3

Table 3.4 Experimental results on comparison with another greedy method

Method [46] + adjustment Proposed method

Target
length

Std dev
Average
length

CPU
time

Std dev
Average
length

CPU
time

Data00
lt = 30 0.55 30.60 <1s 0.55 30.60 - <1s

lt = 130 33.32 114.60 <1s 0.55 94.60 0.7 <1s

Data01
lt = 70 2.17 70.88 <1s 0.64 69.88 - <1s

lt = 190 54.50 165.63 <1s 0.52 152.38 0.8 <1s

Data02
lt = 70 12.74 66.42 <1s 4.93 49.92 0.4 <1s

lt = 120 42.33 96.58 <1s 4.93 49.92 0.4 <1s

Data03
lt = 40 2.34 39.70 <1s 1.48 33.10 0.3 <1s
lt = 110 39.77 83.70 <1s 0.83 76.80 0.7 <1s

Data04
lt = 40 7.80 37.39 <1s 0.61 35.18 0.4 <1s
lt = 80 23.34 68.89 <1s 0.61 35.18 0.4 <1s

Data05
lt = 60 15.96 52.32 <1s 7.42 31.73 0.3 <1s
lt = 110 40.02 81.46 <1s 7.42 31.73 0.3 <1s

42

(a) lt = 70 (b) lt = 120

Figure 3.18 Length comparison for Data02 in Experiment 3

(a) lt = 40 (b) lt = 110

Figure 3.19 Length comparison for Data03 in Experiment 3

(a) lt = 40 (b) lt = 80

Figure 3.20 Length comparison for Data04 in Experiment 3

43

Especially for the small target lengths in Data00 and Data01, we obtain an optimal result

without using coefficient . From the experimental results we also get that, for the same data

with the same target length, the standard deviation obtained by our method is always less than

or equal to that of the method [46], no matter the target length is small or large. As a result, our

method gets a better wire-length balance among the nets.

In addition, Figure 3.22 shows the worst length error comparison between the proposed

method and the method [46]. From this figure we obtain that, executed no matter by the method

[46] or our method, the worst length error is smaller when the target length is small, while it

becomes larger when the target length is large. The reason is that, when target length is larger,

some nets adjusted later do not have enough space to detour, which leads to the larger worst

length error of net. For each data, the worst length error obtained by our method is always less

(a) lt = 60 (b) lt = 110

Figure 3.21 Length comparison for Data05 in Experiment 3

Figure 3.22 Worst length error comparison at each target length

44

(a) Data01 of lt = 190

(b) Data04 of lt = 80

Figure 3.23 Routing results of layer1 in Experiment 3

45

than or equal to that by the method [46], which confirms that our method is effective in reducing

worst length error, and the average reduction is 36.69%. This means that the wire-lengths of all

nets obtained by our method are more concentrative. Though this concentration is at the expense

of average length error (that is, target length average length) increasing, our method is

effective in getting better wire-length balance, when we pay attention to the equal-length routing,

which is the main objective in this study.

Figure 3.23 (a) and (b) show the first layer routing results of Data01 of lt = 190 and Data04 of

lt = 80, respectively. Combining the results in Table 3.4 and Figure 3.23, we can get that, the

more intensive the pins are, the more difficult it is to get the ideal standard deviation of all the

wires. It is because of the interacting between wires and the limitation of R-flip and C-flip.

Hence, how to further optimize the sharing of limited routing region between nets, and how to

make much fuller use of the routing space remain for our future works.

3.6 Conclusions

In this chapter, a region-aware layer assignment and equal-length routing method for disordered

pins in PCB design is proposed, where the longest common subsequence (LCS) algorithm and

single commodity flow are effectively combined. The approach initially checks the LCS of

source and target pin sets to assign layers for pins. Single commodity flow is then carried out to

generate the base routes. Finally, considering target length requirement and available routing

region, R-flip and C-flip are adopted to adjust the wire-length. By using the proposed method, it

is able to obtain the routes with better wire-length balance and smaller worst length error in

reasonable CPU time. The experimental results show that, the proposed method could be

applied in both no-obstacle routing and obstacle-ware routing problems. Compared with another

greedy method for disordered pins, the proposed method gets a smaller standard deviation, in

other words, a better wire-length balance among the nets, by adopting coefficient to adjust the

wire-length skew. Besides, our method is effective in reducing worst length error, and the

average reduction is 36.69%.

46

47

Chapter 4

Sorting-based I/O Pad Assignment and

Non-Manhattan RDL Routing

In this chapter, a sorting-based I/O pad assignment and non-Manhattan RDL routing method is

proposed for area I/O flip-chip design. The approach initially assigns the I/O pads to bump balls

by sorting the Manhattan distance between them. Three kinds of pair-exchange procedures are

then carried out to improve the initial assignment. Then to shorten the wire-length,

non-Manhattan RDL routing is adopted to connect the I/O pads and bump balls. Finally some

un-routed connections are ripped-up and rerouted.

4.1 Introduction

In modern PCB design, flip-chip package is widely used to meet the higher integration density

and the larger I/O counts of circuits, which describes the method of electrically connecting the

die to the package carrier. Flip-chip technology becomes the choice in high-speed applications

because of its high speed, low power, smaller die size, higher signal density, lower thermal

effect and so on.

As we have introduced in Chapter 1, the flip-chip structures can be classified into peripheral

I/O flip-chip and area I/O flip-chip, and area I/O flip-chip is more popularly due to its shorter

wire-length and smaller package size. For the flip chip designs, RDL is often used to redistribute

the I/O pads to the bump balls and the wires can be routed in either 90 or 45 degrees wire

segments. For the pre-assignment RDL routing problem, where the connections between I/O

pads and bump balls are assigned before routing, wire-length minimization is usually focused

on to improve the whole circuit performance.

48

In this study, given a set of I/O pads and bump balls, we propose a sorting-based I/O pad

assignment and non-Manhattan RDL routing method in single layer for area I/O flip-chip design.

The primary objective of this study is to reduce the total wire-length, meanwhile improve the

routability as far as possible. The whole design process is composed of four phases. In the first

phase, we generate the I/O pad assignment by sorting the Manhattan distance between I/O pads

and their nearest bump balls. In the second phase, three kinds of pair-exchange procedures are

carried out to modify the initial assignment. The exchanges are used to shorten the total

wire-length and improve the routability. In the third phase, for each net, firstly the routing is

determined by maze routing algorithm, and then non-Manhattan modification is applied to

shorten the wire-length. Finally some un-routed connections are ripped-up and rerouted in the

last phase. The experimental results show that the proposed method is able to obtain the routes

with shorter wire-length in reasonable CPU time.

The remainder of this chapter is organized as follows: Section 4.2 describes some previous

works related to this study. Section 4.3 describes the problem definition of this work. Section

4.4 details the design algorithm of the four phases. Section 4.5 illustrates the experimental

results and analysis. Finally, Section 4.6 concludes this chapter.

4.2 Related Works

As mentioned earlier, flip-chip package is widely used in modern PCB design. A series of works

have been published to handle I/O pad assignment and RDL routing problems, for both a

peripheral I/O flip-chip and an area I/O flip-chip.

For peripheral I/O flip-chip designs, [50] adopted a weighted bipartite matching algorithm to

generate a set of I/O connections between I/O pads and bump balls. In [11] and [51], a network

flow algorithm was used to solve the assignment of wire-bonding pads to bump pads and then

complete the routing for each net. In [52], an integer-programming-based algorithm was

presented to find an optimal solution for the problem. In [53], a heuristic approach based on

routing sequence exchange for pre-assignment flip-chips was proposed.

For area I/O flip-chip designs, some researches focus on the chip-package co-design problem,

which considers both the package-level RDL routing and the chip-level routing. In [8] and [12],

a work to handle the multi-RDLs routing problem for chip-package co-design was introduced.

An area I/O RDL routing problem considering wire-length minimization and chip-package

co-design was discussed in [54].

Besides, for area I/O flip-chip designs, some researches talk about the package-level RDL

49

routing only. In [55], a partition-based assignment was proposed to assign I/O pads for a

flip-chip design. In this method, based on the recursive partition of I/O pads and bump balls, the

assignment can be obtained by using the geometrical mapping. However, this partition neither

consider the wire-length in the I/O assignment phase, nor take measures to improve the

assignment afterward, which may cause longer wire-length. In [56], a work used

Delaunay-triangulation method to assign all the I/O pads. Although some pair-exchange

modifications are carried out in this method, the ordering of the exchange is not so effective,

and there still remain some crossing connections after the pair-exchange, which may lead to

un-routable connections or redundant wire-length.

In this study, for the I/O pad assignment, we take the Manhattan distance between I/O pads

and bump balls into consideration. Then three kinds of pair-exchange procedures are carried out

to improve the initial assignment, meanwhile exchange order is considered. Moreover, as

mentioned above, the wires can be routed in either 90 degrees or 45 degrees in a RDL, thus we

adopt non-Manhattan routing to shorten the total wire-length. The following sections discuss the

proposed method in detail.

4.3 Problem Definition

In this chapter, the I/O pad assignment and RDL routing problem is defined as follows: the input

includes I/O pads and bump balls; it outputs the routes of assigned connections. The primary

objective of this study is to reduce the total wire-length, meanwhile improve the routability as

far as possible.

Let P = {p1, p2 pn} and B = {b1, b2 bm} be the set of n I/O pads and the set of m bump

balls (n<=m), respectively. There is capacity constraint in the space between any pair of adjacent

bump balls. Basically, each I/O pad should be assigned to a bump ball. Sometimes, two or more

I/O pads should be assigned to the unique bump ball. If one bump ball connects to the unique

I/O pad, this connection is considered as a two-pin net. On the other hand, if one bump ball

connects more than one I/O pad, the connection is called a multi-pin net. In this study, we

formulate that it is only allowed to route the wires in a single RDL.

As illustrated in Figure 4.1, there are 16 I/O pads and 16 bump balls for I/O pad assignment

and RDL routing. It is assumed that the capacity constraint is 2. Note that, there are two I/O

pads with the same number, p2, which must be assigned to the same bump ball. In this study, all

the distance and wire-length are defined as the number of grids.

50

4.4 Design Algorithm

In this study, the proposed method includes four sequential phases: initial I/O pad assignment,

pair-exchange modification, non-Manhattan RDL routing, rip-up and reroute. The flow chart of

the whole design process is shown in Figure 4.2. Algorithm 1 to Algorithm 5 are described in

detail in the following sub-sections.

4.4.1 Initial I/O Pad Assignment

Given the placement of I/O pads and bump balls, according to the location of them, initially the

I/O pads are assigned to the bump balls. The Manhattan distance between I/O pad and bump

ball is taken into consideration for the assignment. The pseudo-code of this phase is shown in

Algorithm 1. Note that, if there are more than one I/O pads should be assigned to the same

bump ball, we temporarily treat these I/O pads independently in this phase.

In Algorithm 1, P = {p1, p2 pn} is the set of I/O pads, and B = {b1, b2 bm} is the set of

bump balls. The set of bump balls assigned to P is noted as P.connectBall. We define MD(pi, bj)

as the Manhattan distance between I/O pad pi and bump ball bj. Thus, MD(pi, B) is the set of

Manhattan distances between pi and each bump ball. We use a set of T to represent the I/O pads

assigned to the same bj. Similar to the definition of MD(pi, B), MD(bj, T) is the set of Manhattan

distances between bj and each pad in the set T. Algorithm 1 is processed by the following two

Figure 4.1 Problem definition

51

steps.

[Procedure: Initial I/O pad assignment]

Step 1: Pre-assignment between I/O pads and bump balls;

Step 2: Revision for the pre-assignment to make the connection for each I/O pad uniquely.

[Step 1] Initially, we pre-assign the I/O pads to one bump ball. By calculating and comparing

the Manhattan distance between one I/O pad and each non-connected bump ball, we can get the

bump ball with the shortest Manhattan distance for this I/O pad. This bump ball is pre-assigned

to this I/O pad temporarily.

Figure 4.2 Flow chart of I/O pad assignment and RDL routing process

52

[Step 2] Then we revise the pre-assignment to make the connection for each I/O pad uniquely.

If there is just one I/O pad assigned to the unique bump ball, the connection pair can be

determined. Otherwise, if there is more than one I/O pad assigned to the same bump ball, we

should sort these I/O pads in ascending order according to the calculated Manhattan distances.

Then, choose the first I/O pad in the sequence since it is the nearest one to the same numbered

bump ball, and put the other I/O pads into the next loop until all the I/O pads are assigned to

non-connected bump balls.

Take the case in Figure 4.3 to explain Algorithm 1. As there are two I/O pads with the same

number p2, one of them is remembered as p16 to temporarily treat independently. In the first loop

of initial I/O pad assignment, after the process of Step 1, the I/O pads and their pre-assigned

bump balls are listed in Table 4.1. From this table we can obtain that p2, p5, p7, p10, p11, p13, p14

and p15 are assigned to their unique bump ball, so in Step 2, the connection of them can be

firstly determined. Then the sorting for the set of p9, p12 and p16 with the same b2, the set

Algorithm 1. Initial I/O pad assignment

Input: Placement of I/O pads and bump balls

Output: I/O pad assignment to bump balls

begin

for i=1 to n do

sort MD(pi, B) in ascending order;

pi.connectBall=the first bump ball in the sequence;

end for

for j=1 to m do

for i=1 to n do

if pi.connectBall is bj then

put pi into a set T;

end if

end for

sort MD(bj, T) in ascending order;

assign bj to the first I/O pad in the sequence;

end for

delete assigned I/O pads and bump balls from both sequences;

repeat the process until all I/O pads are assigned;

output P and P.connectBall;

end

53

of p1, p3 and p4 with the same b9, and the set of p6 and p8 with the same b13 are shown in Table

4.2. According to the algorithm, we can determine the connection of p9, p4 and p6 that are first in

sequence. After the first loop, five I/O pads p1, p3, p8, p12 and p16 have not been assigned, which

are put into next loop. Finally after three loops, all the I/O pads are assigned to different bump

balls.

Table 4.1 First loop of pre-assignment

P P.connectBall MD(P, P.connectBall)

p1 b9 2

p2 b7 1

p3 b9 2

p4 b9 1

p5 b14 3

p6 b13 2

p7 b3 1

p8 b13 2

p9 b2 1

p10 b8 3

p11 b10 2

p12 b2 3

p13 b5 3

p14 b11 1

p15 b15 2

p16 b2 1

Figure 4.3 Initial I/O pad assignment

54

4.4.2 Pair-exchange Modification

To make the routing result better, the initial I/O pad assignment result should be further

modified. Three kinds of pair-exchanges are carried out to modify the assignment. The

exchange order is according to the descending Manhattan distance between the assigned pad

and ball pairs. In other words, we first handle the connections whose distance is longer, then the

shorter ones. The reason is that, when longer connections are exchanged, some other shorter

connections that also should be exchanged may be solved in advance, especially for the crossing

exchange. This exchange order may reduce the number of pair-exchange. For example in Figure

4.4 (a), there are three crossing connections. We first exchange the longer pairs, and after only

once pair-exchange, all the crossing connections are solved, as shown in Figure 4.4 (b).

However, if we first exchange the shorter pairs, there is still one crossing connection after once

pair-exchange, as shown in Figure 4.4 (c), and then once more pair-exchange should be carried

out. According to this pair-exchange order, we make the modification.

The first modification is pair-exchange for shortening wire-length, whose pseudo-code is

shown in Algorithm 2.

Take the example in Figure 4.5 to illustrate this algorithm. We compare the sum Manhattan

distance of every two assigned pairs with the sum Manhattan distance of these two pairs after

pair-exchange. If the sum Manhattan distance after pair-exchange is less than the previous one,

this pair-exchange is accepted. In this example, the sum Manhattan distance of the pair is 1+5=6,

shown in Figure 4.5 (a). As the distance after exchange is 2+2=4, which is less than 6, the

exchange for this pair is carried out as shown in Figure 4.5 (b).

The second modification is pair-exchange to release the overlap of the connection regions,

and the pseudo-code is shown in Algorithm 3.

Table 4.2 First loop of revision

P.connectBall P MD(P, P.connectBall)

b2

p9 1

p16 1

p12 3

b9

p4 1

p1 2

p3 2

b13

p6 2

p8 2

55

Algorithm 2. Pair-exchange modification for shortening wire-length

Input: I/O pads, assigned bump balls

Output: new I/O pad assignment to bump balls

begin

for i=1 to n do

Sort pi in descending order of MD(pi, pi.connectBall);

end for

for i=1 to n do

for j=1 to n do

if MD(pi, pj.connectBall)+MD(pj, pi.connectBall)<MD(pi, pi.connectBall)+MD(pj,

pj.connectBall) then

exchange the pair of pi and pj;

end if

end for

end for

output P and P.connectBall;

end

(a) (b)

(c)

Figure 4.4 Pair-exchange order

56

The region of connection is defined as a rectangle whose one pair of diagonal vertices are the

I/O pad and the bump ball of this connection. The overlap of the regions of two connections will

affect the routability in the single layer routing. As a result, the pair of overlap should be

exchanged. In Algorithm 3, we define OL(pi, pi.connectBall, pj, pj.connectBall) as the overlap

relation between the region of pi and pi.connectBall, and the region of pj and pj.connectBall. If

the regions of two connections overlap with each other (Figure 4.6 (a)), but after pair-exchange

this overlap can be reduced (Figure 4.6 (b)), the pair-exchange for these two connections is

(a) Before pair-exchange (b) After pair-exchange

Figure 4.5 Pair-exchange for shortening wire-length

Algorithm 3. Pair-exchange modification for releasing overlap

Input: I/O pads, assigned bump balls

Output: new I/O pad assignment to bump balls

begin

for i=1 to n do

for j=1 to n do

if OL(pi, pi.connectBall, pj, pj.connectBall) is true && OL(pi, pj.connectBall, pj,

pi.connectBall) is false then

exchange the pair of pi and pj;

end if

end for

end for

output new P and P.connectBall;

end

57

carried out. Otherwise, if the overlap cannot be solved after the pair-exchange, we do not any

process.

The third modification is pair-exchange to avoid crossing connections, and the pseudo-code is

shown in Algorithm 4.

As mentioned earlier, we formulate that it is only allowed to route wires in single RDL in this

study. If there are crossing connections, it will lead to un-routable result or detoured result with

redundant wire-length. Hence, the pair of crossing connections should be exchanged. To solve

the crossing problem, first we compare the slopes of every two connections line segments. If

the slopes are not the same, it means that the straight lines of these two connections may have

(a) Before pair-exchange (b) After pair-exchange

Figure 4.6 Pair-exchange for releasing overlap

Algorithm 4. Pair-exchange modification for avoiding cross

Input: I/O pads, assigned bump balls

Output: new I/O pad assignment to bump balls

begin

for i=1 to n do

for j=1 to n do

if connections of pi and pj have crossing point then

exchange the pair of pi and pj;

end if

end for

end for

output new P and P.connectBall;

end

58

crossing point. Then we check whether the crossing point is on these two I/O connections line

segments. If the crossing point is on the line segments as shown in Figure 4.7 (a), the

pair-exchange should be done to remove the crossing, shown in Figure 4.7 (b). Otherwise, we

do not any process.

Refer to the initial I/O pad assignment result in Figure 4.3, by Algorithm 2, the pair of p1, p3,

p5, p6, p8 and p14 are exchanged, the modified result is shown in Figure 4.8 (a). Then by

Algorithm 3, the result does not change for this example. Finally by Algorithm 4, the pair of p1,

p5, p11 and p15 are exchanged, the modified result is shown in Figure 4.8 (b).

(a) Before pair-exchange (b) After pair-exchange

Figure 4.7 Pair-exchange for avoiding cross

(a) Shortening wire length (b) Releasing crossing connections

Figure 4.8 Pair-exchange modification

59

After completing the I/O pad assignment, we should solve the problem in the very beginning:

combine the connection of the I/O pads which should be assigned to the unique bump ball. For

the example above, p2 and p16 are combined to b7 as shown in Figure 4.9.

4.4.3 Non-Manhattan RDL Routing

In recent PCB technologies, non-Manhattan routing is usually utilized to reduce wire-length

[57]. As we mentioned in above sections, in a RDL, the wires can be routed in either 90 degrees

or 45 degrees by current technology. In this phase, we finish the RDL routing with

non-Manhattan wires to get shorter wire-length. For all assigned connections, the routing order

is determined by the calculated Manhattan distances between I/O pads and bump balls in

ascending order. Algorithm 5 shows the pseudo-code of the routing procedure for each net.

In Algorithm 5, we define S = {s1, s2 sn} is the set of bending points in the initial

connection path obtained by maze routing algorithm, c0, c1 and c2 are defined as the crossing

points of 45 or 135 degrees line segments generated from T (same as T in Algorithm 1) and the

initial connection path. Algorithm 5 is processed by the following four steps.

[Procedure: Non-Manhattan RDL routing]

Step 1: Wire direction decision;

Step 2: Setting escape points for I/O pads and bump balls if necessary;

Step 3: Generate the initial connection path by maze routing algorithm;

Figure 4.9 Combination of some connections

60

Step 4: Utilize non-Manhattan modification to shorten the wire-length.

[Step 1] Initially, to avoid the congestion area for RDL routing, we decide the wire direction

by global routing. As the I/O pad assignment has been obtained, according to the region overlap

relation among all the connections, we assign the wire direction for each connection to avoid the

congestion area. Take Figure 4.10 for example, assuming that the bump ball is in lower right of

the I/O pad, as shown in Figure 4.10 (a), if there are obstacles (routing region of other

the direction is decided as vertical-horizontal from pad to ball. Similarly, if there are obstacles in

left side, the direction is decided as horizontal-vertical (Figure 4.10 (b)). Moreover, if both sides

are obstructed, as shown in Figure 4.10 (c), it is decided as vertical-horizontal-vertical, in the

middle of the region. Otherwise, the wire direction is decided as vertical-horizontal. By the

same method, the wire direction of other positions of I/O pads and bump balls also can be

decided.

[Step 2] Then, we set escape points for some I/O pads and bump balls if necessary. Figure

Algorithm 5. Non-Manhattan RDL routing

Input: I/O pads, assigned bump balls

Output: connection path between I/O pads and bump balls

begin

wire direction decision;
set escape points;
initial connection path generated by maze routing;
for i=1 to number of inflection points in connection path do

generate 45 and 135 degrees lines from si;
if c0 on connection path then

if obstacle on the line segment between si and c0 then
parallel shift the crossing line;
if crossing point c1 and c2 on connection path then

add 45 or 135 degrees line segment between c1 and c2 into connection path;
delete previous 0 and 90 degrees line segment between c1 and c2;

end if
else add 45 or 135 degrees line segment between si and c0 into connection path;

delete previous 0 and 90 degrees line segment between si and c0;
end if
update S;

end if
end for
output connection path between P and B;

end

61

4.11 (a) shows an example where the I/O connections for P and B have been assigned.

According to the routing order, p1, p2 and p3 are first routed as shown in Figure 4.11(b). Then we

can find that it is un-routable for p4 as the V-H routing should be initially carried out. But we

can apply the non-Manhattan wires, so we do a pretreatment before routing. For one I/O pad or

(a) I/O connection assignment (b) Un-routable connection

(a) Escape point p4 (b) Route by p4

Figure 4.11 Configuration of escape points

(a) (b) (c)

Figure 4.10 Wire direction decision

62

a bump ball, if its 0 degree and 90 degrees directions are blocked by other pins, we set an escape

point in its 45 degrees or 135 degrees direction to make the wire routable. As shown in Figure

4.11 (c), for p4, its 0 degree and 90 degrees directions have been blocked, so we set an escape

point p4 in its 135 degrees direction, which is in the direction of target b4. Then we can obtain

the connection path by the help of p4 as shown in Figure 4.11 (d).

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.12 Non-Manhattan modification

63

[Step 3] In this step, we generate the initial connection path by V-H routing, according to the

wire direction obtained by the first step. As the scale for each pair of I/O pad and bump ball is

not too large, maze routing algorithm is adopted for this initial routing. After V-H routing from

P to B, the bending points in connection path are stored in S.

[Step 4] Finally, we utilize non-Manhattan modification to shorten the wire-length. We also

use an example to illustrate this modification. As shown in Figure 4.12 (a), the initial V-H

routing path is generated by the last step. There are five bending points of this path, marked as

s1 to s5. Then in Figure 4.12 (b), we draw 45 and 135 degrees lines from s1. As there is a

crossing point c0 on the existing path, we add the 45 degrees line segment between s1 and c0 into

connection path. Then delete previous 0 and 90 degrees line segments between s1 and c0 and

update the set of S, as shown in Figure 4.12 (c). Next, we make the modification for s2 by the

same method. From Figure 4.12 (d) we can find that this time there is an obstacle on the line

segment between s2 and c0, so the crossing 135 degrees line is shifted in parallel to find whether

there exist other crossing points. As a result, the new crossing points, c1 and c2 can be obtained,

as shown in Figure 4.12 (e). Then this new 135 degrees line segment between c1 and c2 is added,

the previous 0 and 90 degrees line segments between them are deleted and the set of S is

updated (Figure 4.12 (f)). Next, s3 are modified as shown in Figure 4.12 (g) and the result is

shown in Figure 4.12 (h). Finally we make the modification for the last s4 but there is no

crossing point on the connection path, so we do no process on it. Until here, this step is over.

Refer to the I/O pad assignment result in Figure 4.9, by Algorithm 5, the RDL routing

(a) Non-Manhattan routing (b) Manhattan routing

Figure 4.13 RDL routing result

64

result is shown in Figure 4.13 (a). From this figure we can obtain the total wire-length is 45 by

non-Manhattan routing. Compared with Manhattan routing in Figure 4.13 (b), whose total

wire-length is 54, the non-Manhattan routing is effective for shortening wires.

4.4.4 Rip-up and Reroute

In this study, since single RDL routing is considered, if the routing paths of some connections

are intersected by other routed wires, these connections may fail to route. Therefore, finally we

rip-up and reroute these un-routable connections to improve the routability, if any.

The rip-up and reroute is realized by exchanging the un-routable connection and its adjacent

connection, which are introduced in [55]. The exchange order depends on the Manhattan

Distance between the un-routable I/O pad and other bump balls in ascending order. In other

word, the bump ball which is nearest to the un-routable I/O pad is first to be exchanged. As

shown in Figure 4.14 (a), the connection of p3 cannot be routed. Hence, we rip-up the nearest

connection b4, exchange it with p3, and reroute them respectively. The routing result is shown in

Figure 4.14 (b). For one un-routed connection, the rip-up and reroute may be executed several

times until it is routable or all the exchanging cases are tried. However, there may remain some

un-routable connections in the end. By this rip-up and reroute procedure, we improve the

routability as far as possible.

4.4.5 Discussion on Time Complexity

As mentioned above, the proposed method is divided into four phases: initial I/O connection

assignment, pair-exchange modification, non-Manhattan RDL routing, rip-up and reroute. For

initial I/O connection assignment, as we assign the I/O pads to bump balls by sorting the

(a) (b)

Figure 4.14 Ripping up and rerouting

65

Manhattan distance between them, the time complexity of this phase is O(mn), where m, n are

the number of bump balls and I/O pads, respectively. Since the pair-exchange modification is

carried out between any pair, the time complexity of this phase is O(n2). In non-Manhattan RDL

routing, for one connection the wire-length is O(u) in the worst case, where u is the number of

grids. So the time complexity of routing all connections is O(nu). For rip-up and reroute, in the

worst case, all the connections should be ripped-up and exchanged with each other, so the time

complexity of this phase is O(n2). Since u is much larger than m and n, the total time complexity

of the proposed method is about O(nu).

4.5 Experimental Results and Analysis

We implemented our proposed sorting-based I/O pad assignment and non-Manhattan RDL

routing method in C language, which is executed on a PC with 3.40GHz Intel Core 2 CPU and

8GB RAM. The partition-based method in [55] and Delaunay-triangulation method in [56] for

I/O pad assignment with V-H routing are also implemented for comparison. Moreover, for the

proposed method, both Manhattan routing and non-Manhattan routing are executed respectively.

Three experiments are carried out. Experiment 1 is on comparison with method [55] and [56],

which executed on the same package size but different pad location. Experiment 2 is also on

comparison with method [55] and [56], but on different package sizes from small to large.

Experiment 3 is executed on obstacles for our method.

Experiment 1

For Experiment 1, there are five test data named Data01 to Data05 with the same package size

5*5 and fixed location of bump balls. For each data, the location of I/O pads is randomly set,

and the capacity constraint is set as 2. The experimental results are listed in Table 4.3, where

P denotes the number of I/O pads B denotes the number of bump balls. Wire-length

is given in accordance with the number of unit grid, and the routability and execution time of

these four methods are also listed in this table. Take the wire-length of the proposed method

followed by Manhattan routing as basal value 100%, the wire-length percentage of all methods

is illustrated in Figure 4.15. From the experimental results we can see that, all methods achieve

100% routability for all test data. Compared with method [55], our proposed method, no matter

followed by Manhattan routing or non-Manhattan routing, obtains shorter wire-length within a

small CPU time. And relative to Manhattan routing, non-Manhattan routing can get much

66

T
ab

le
4.

3
E

x
p

er
im

en
ta

l
re

su
lt

s
o

n
th

e
sa

m
e

p
ac

k
ag

e
si

ze
b

u
t

d
if

fe
re

n
t

lo
ca

ti
o

n

P
ro

p
o

se
d

M
et

h
o

d
+

N
o

n
-M

an
h

at
ta

n
R

o
u

ti
n

g

C
P

U
T

im
e

0
.0

1
5

s

0
.0

1
6

s

0
.0

1
5

s

0
.0

1
6

s

0
.0

1
6

s

0
.0

1
6

s

T
ab

le
4

.4
E

x
p

er
im

en
ta

l
re

su
lt

s
o

n
d

if
fe

re
n

t
p

ac
k

ag
e

si
ze

s

P
ro

p
o

se
d

M
et

h
o

d
+

N
o

n
-M

an
h

at
ta

n
R

o
u

ti
n

g

C
P

U
T

im
e

0
.0

7
8

s

0
.2

9
9

s

0
.8

8
0

s

2
.0

8
4

s

4
.2

4
4

s

W
ir

e
L

en
g

th

7
1

.2

6
8

.4

5
3

.6

6
7

.4

6
5

.9

6
5

.3

W
ir

e
L

en
g

th

3
1

0
.6

5
9

2

1
0

2
3

1
7

7
5

2
5

3
2

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

P
ro

p
o

se
d

M
et

h
o

d
+

M
an

h
at

ta
n

R
o

u
ti

n
g C
P

U
T

im
e

0
.0

1
4

s

0
.0

1
5

s

0
.0

1
4

s

0
.0

1
4

s

0
.0

1
5

s

0
.0

1
4

s

P
ro

p
o

se
d

M
et

h
o

d
+

M
an

h
at

ta
n

R
o

u
ti

n
g C
P

U
T

im
e

0
.0

6
8

s

0
.2

6
1

s

0
.7

5
9

s

1
.8

1
0

s

3
.6

6
9

s

W
ir

e
L

en
g

th

9
0

8
3

6
3

8
2

8
0

7
9

.6

W
ir

e
L

en
g

th

3
6

9

7
0

3

11
9

0

2
11

3

2
8

2
5

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

M
et

h
o

d
[5

6
]

+
M

an
h

at
ta

n
R

o
u

ti
n

g C
P

U
T

im
e

0
.0

2
4

s

0
.0

2
8

s

0
.0

2
4

s

0
.0

2
6

s

0
.0

2
6

s

0
.0

2
6

s

M
et

h
o

d
[5

6
]

+
M

an
h

at
ta

n
R

o
u

ti
n

g C
P

U
T

im
e

0
.0

8
6

s

0
.2

9
8

s

0
.8

2
2

s

1
.9

2
7

s

3
.8

7
0

s

W
ir

e
L

en
g

th

8
8

9
3

6
5

8
2

8
2

8
2

W
ir

e
L

en
g

th

3
7

3

7
3

1

1
2

1
4

2
3

3
0

2
9

6
9

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

M
et

h
o

d
[5

5
]

+
M

an
h

at
ta

n
R

o
u

ti
n

g C
P

U
T

im
e

0
.0

1
5

s

0
.0

1
4

s

0
.0

1
5

s

0
.0

1
4

s

0
.0

1
4

s

0
.0

1
4

s

M
et

h
o

d
[5

5
]

+
M

an
h

at
ta

n
R

o
u

ti
n

g C
P

U
T

im
e

0
.0

6
0

s

0
.2

5
1

s

0
.7

3
3

s

1
.7

5
3

s

3
.5

5
4

s

W
ir

e
L

en
g

th

11
4

9
1

8
9

8
8

11
2

9
8

.8

W
ir

e
L

en
g

th

4
3

0

8
8

3

1
5

2
7

2
6

0
6

3
3

8
6

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

#
B 2
5

#
B

1
0

0

2
2

5

4
0

0

6
2

5

9
0

0

#
P 2
5

#
P

1
0

0

2
2

5

4
0

0

6
2

5

9
0

0

D
at

a0
1

D
at

a0
2

D
at

a0
3

D
at

a0
4

D
at

a0
5

A
v

er
ag

e

D
at

a0
6

D
at

a0
7

D
at

a0
8

D
at

a0
9

D
at

a1
0

67

shorter length. This mainly owes to the our adoption of pair-exchange modification, since

method [55] takes no measure to reduce the wire-length, and the average wire-length reduction

is 24.1% by Manhattan routing, and 42.1% by non-Manhattan routing as shown in Figure 4.15.

Then compared with method [56], our proposed method followed by Manhattan routing

obtains a little shorter wire-length, except for Data01. Then by non-Manhattan routing, the

wire-length is much reduced for all five test data. In addition, the execution time of method [56]

is a little larger than ours, which is mainly because of its constructing graph. The average

wire-length reduction in our method is also shown in Figure 4.15, which is 3.0% by Manhattan

routing, and 21.0% by non-Manhattan routing.

Experiment 2

For Experiment 2, there are five test data Data06 to Data10 with different package sizes from

small (10*10) to large (30*30), the location of I/O pads is also randomly set, and the capacity

constraint is set as 2. The experimental results are listed in Table 4.4. Same as Experiment 1, we

take the wire-length of the proposed method followed by Manhattan routing as basal value

100%, the wire-length percentage of all methods is illustrated in Figure 4.16. The experimental

results show that, all the design methods achieve 100% routability for all test data. The

comparison results with method [55] and [56] are similar with Experiment 1. The proposed

method can generate shorter wire-length not only in small scale but also in large scale packages

in reasonable CPU time. Although the execution time of our method by non-Manhattan routing

is larger, it is acceptable for practical use. Compared with method [55] and [56], the wire-length

reduction in our method are 22.7% and 4.5% on the average by Manhattan routing, and 37.1%

Figure 4.15 Wire length comparison in Experiment 1

68

and 18.9% on the average by non-Manhattan routing, respectively.

Then, combing the results of Experiment 1 and Experiment 2 for ten test data, we can

calculate the overall average wire-length reductions compared with methods [55] and [56] are

23.4% and 3.8% by Manhattan routing, and 39.6% and 20.0% by non-Manhattan routing,

respectively. Obviously, the experimental results show that our proposed sorting-based I/O pad

assignment is effective on reducing wire-length for flip-chip designs in the reasonable CPU

time.

Experiment 3

Finally we test our proposed method for dense routing area in Experiment 3. A small package

size Data05 (5*5) and a large package size Data08 (20*20) are tested. For each data, 5%, 10%

and 15% of the routing area is randomly set with obstacles respectively, and the experimental

results are listed in Table 4.5. In this table, the experimental result without obstacle is also listed.

Respective for two package size data, we take the wire-length without obstacle of the proposed

method followed by Manhattan routing as basal value 100%, the length percentage of other

wires are illustrated in Figure 4.17 (a) and (b). And the routability of all data is illustrated in

Figure 4.18. Figure 4.19 and Figure 4.20 give the non-Manhattan routing results for Data 05 and

Data08 without obstacles and with 15% obstacles, respectively.

The results in Table 4.5 and Figure 4.17 show that, either the small package size or the large

one, the wire-length increases with the increasing of obstacles both by Manhattan routing and

non-Manhattan routing, apart from Data08 with 15% obstacles. This exception dues to some

un-routable connections. When the obstacles are added, more connections should detour wires

Figure 4.16 Wire length comparison in Experiment 2

69

(a) Data05

(b) Data08

Figure 4.17 Wire length comparison in Experiment 3

Table 4.5 Experimental results on setting obstacles

#P #B
obsta

cles

Proposed Method +

Manhattan Routing

Proposed Method +

Non-Manhattan Routing

Routabil

ity

Wire

Length

CPU

Time

Routabil

ity

Wire

Length

CPU

Time

Data05 25 25

0% 100% 80 0.015 s 100% 65.9 0.016 s

5% 100% 80 0.015 s 100% 67.1 0.016 s

10% 100% 84 0.015 s 100% 71.7 0.016 s

15% 100% 86 0.015 s 100% 75.5 0.016 s

Data08 400 400

0% 100% 1190 0.759 s 100% 1022.5 0.880 s

5% 99.75% 1263 0.797 s 99.75% 1089.3 0.900 s

10% 99.50% 1379 0.865 s 99.50% 1185.1 0.982 s

15% 98.75% 1378 0.965 s 98.75% 1232.4 1.104 s

70

to complete the routing, and this detouring results in the increasing of wire-length.

For the routability, combining Figure 4.18, Figure 4.19 and Figure 4.20, we can see that, for

small package size, the routability retains 100%. However, if package size is large, because of

the large quantity of connections and less available routing area, the routability decreases. When

15% obstacles are set, the routability is reduced to 98.75%. Hence, how to further optimize the

I/O pad assignment and improve the routability in the dense routing area remains for our future

works.

(a) Without obstacles (b) With 15% obstacles

Figure 4.19 Non-Manhattan routing results for Data05 in Experiment 3

Figure 4.18 Routability comparison in Experiment 3

71

(a) Without obstacles

(b) With 15% obstacles

Figure 4.20 Non-Manhattan routing results for Data08 in Experiment 3

72

4.6 Conclusions

In this chapter, we proposed a sorting-based I/O pad assignment for area I/O flip-chip design

instead of traditional methods such as partition-based one, and non-Manhattan RDL routing

method was applied to reduce the total wire-length. The approach initially assigns the I/O pads

to bump balls by sorting the Manhattan distance between them. Three kinds of pair-exchange

procedures are then carried out to improve the initial assignment. Then to shorten the

wire-length, non-Manhattan RDL routing is adopted to connect the I/O pads and bump balls.

Finally some un-routed connections are ripped-up and rerouted. The proposed method is

effective on reducing wire-length no matter of the I/O pad locations and package sizes.

Compared with a partition-based method, the proposed method can reduce the total wire-length

by 23.4% using Manhattan routing, and 39.6% using non-Manhattan routing. Compared with

another Delaunay-triangulation method, the proposed method can reduce the total wire-length

by 3.8% using Manhattan routing, and 20.0% using non-Manhattan routing in the reasonable

CPU time.

73

Chapter 5

Application of I/O Pad Assignment and

RDL Routing to 3D IC

In this chapter, an application of I/O pad assignment and RDL routing method to 3D IC is

proposed on the basis of the sorting method of Chapter 4. The approach initially assigns the

same numbered I/O pads in two RDLs to micro-bumps by sorting the sum Manhattan distance

between them. A pair- exchange modification is then carried out to improve the initial

assignment. Then single layer routing in two RDLs are carried out respectively. Finally some

un-routed connections are ripped-up and rerouted.

5.1 Introduction

In recent circuit design, because of the increasing of circuit complexity, the propagation delay

and energy consumption have become important problems in the interconnection. However, it is

difficult to solve these problems by traditional 2D IC. Therefore, 3D IC has become the choice

for high-performance circuits because of its high signal processing speed and low power

consumption [58]-[60].

In 3D IC, between two adjacent dies, through silicon vias (TSV) are widely used to connect

two I/O pads that belong to the same signal [61]-[62]. However, the two I/O pads need to be

aligned in the same vertical position, which is difficult to achieve. As a result, micro-bumps and

RDLs are often adopted [63]. Micro-bumps are used to connect two adjacent die, and RDL is

used to redistribute the I/O pads to the micro-bumps. As shown in Figure 5.1, by attaching RDLs

on the adjacent dies, the I/O pads can be distributed on RDLs. Then two I/O pads can be assigned

74

to a feasible micro-bump and connected in upper layer and lower layer, respectively. Thus, the

same signal between two dies can be connected.

In this study, given a set of I/O pads in two RDLs and micro-bump for 3D IC design, we

propose a sorting-based I/O pad assignment and RDL routing method by extending the method

described in Chapter 4. The objective of this study is to reduce the total wire-length, meanwhile

improve the routability as far as possible. The whole design process is composed of four phases.

In the first phase, we generate the I/O pad assignment by sorting the sum Manhattan distance

between the same numbered I/O pads in two RDLs and their nearest bump balls. In the second

phase, pair-exchange is used to shorten the total wire-length. In the third phase, connect the I/O

pads and micro-bumps by maze routing algorithm. Finally some un-routed connections are

ripped-up and rerouted in the last phase. The experimental results show that the proposed

method is able to obtain the routes with shorter total wire-length in reasonable CPU time.

The remainder of this chapter is organized as follows: Section 5.2 describes some previous

works about this study. Section 5.3 gives the problem definition of this work. Section 5.4 details

the four phases of design algorithm. Section 5.5 illustrates the experimental results and analysis.

Finally, Section 5.6 concludes this chapter.

Figure 5.1 RDL and micro-bump structures in 3D IC [63]

75

5.2 Related Works

As mentioned earlier, micro-bumps and RDLs are often used in recent circuit designs. Several

works have been published to solve the I/O pad assignment and RDL routing problem for 3D IC

design.

In [63], an inter-die RDL routing method is proposed based on the integer linear

programming. An I/O pad assignment method using order relation was proposed in [64].

However, these works with non-

single RDL routing.

In [65], a matching-based I/O pad assignment method was presented. However, it just

considers the matching for micro-bumps that are inside the cover region of two I/O pads, which

may cause long wires of some connections. For example, in Figure 5.2 (a), as the cover region

of u3 and l3 (same signal I/O pads in two RDLs) does not include any micro-bump, the

(a) Cover region (b) Upper layer routing (c) Lower layer routing

(d) Upper layer routing by our method (e) Upper layer routing by our method

Figure 5.2 Comparison with matching-based method

76

assignment for them will be decided at the last. It causes long wires of connection between u3

and the assigned micro-bump b4, and connection between l3 and b4, as shown in Figure 5.2 (b)

and Figure 5.2 (c).

In this chapter, for the I/O pad assignment, we consider the sum Manhattan distance between

same numbered I/O pads in two RDLs and micro-bumps. Then pair-exchange procedure is

carried out to improve the initial assignment. Moreover, the exchange order is also considered.

Compared with the matching-based method in [65], our method takes advantage of generating

shorter total wire-length, as shown in Figure 5.2 (d) and Figure 5.2 (e). The total wire-length of

two layers can be reduced from 25 to 19. The following sections discuss the proposed method in

detail.

5.3 Problem Definition

In this study, the micro-bump assignment problem is defined as follows: the input includes the

same numbered I/O pads in upper layer and lower layer, and micro-bumps; it outputs the routes

of assigned connections in two RDLs. The objective is to reduce the total wire-length, meanwhile

improve the routability as far as possible.

Let U = {u1, u2 un} and L = {l1, l2 ln} be the set of n I/O pads in upper layer and lower

layer respectively, and B = {b1, b2 bm} be the set of m micro-bumps (n<=m). The same

numbered I/O pads, which are called I/O pad pair and represented as ni, should be assigned to the

same micro-bump. Besides, there is capacity constraint in the space between adjacent

micro-bumps. In this work, we formulate that it is only allowed to route wires in a single RDL.

As illustrated in Figure 5.3, there are 16 I/O pads in upper layer, 16 I/O pads in lower layer,

and 16 micro-bumps for connection. It is assumed that the capacity constraint is 2. In this study,

all the distance and wire-length are defined as the number of grids.

5.4 Design Algorithms

The proposed method includes four sequential phases: initial assignment, pair-exchange

modification, RDL routing, rip-up and reroute. The flow chart of the design process is shown in

Figure 5.4. The basic idea for I/O pad assignment and pair exchange is similar with the methods

adopted in Chapter 4

77

Figure 5.4 Flow chart of I/O pad assignment and RDL routing for 3D IC

(a) Upper layer (b) Lower layer

Figure 5.3 Problem definition in two RDLs

78

5.4.1 Initial Assignment

Given the placement of I/O pads in two RDLs and micro-bumps, according to the location of

them, the I/O pads with the same number are assigned to one micro-bump. The Manhattan

distance between I/O pad and bump ball is taken into consideration for the assignment. We

define MD(ui, bj), MD(li, bj) as the Manhattan distance between ui and bj, li and bj, respectively.

Similar with Algorithm 1 of Chapter 4, initially for each I/O pad pair ni = (ui, li), we can get one

micro-bump with the smallest sum of Manhattan distance by calculating and comparing MD(ui,

bj) + MD(li, bj). If there is just one I/O pad pair assigned to the unique micro-bump, the

connection can be determined; if there is more than one I/O pad pairs assigned to the same

micro-bump, we should sort these I/O pad pairs in ascending order according to the calculated

sum of Manhattan distances. Then, choose the first I/O pad pair in the sequence since it is the

nearest one to the same micro-bump, and put others into the next loop until all the I/O pad pairs

are assigned to non-connected micro-bumps.

Take the case in Figure 5.3 to explain this procedure. In the first loop of micro-bump

assignment, after the process of calculating and comparing the sum Manhattan distance MD(ui,,

bj) + MD(li, bj), I/O pad pairs n1, n2, n3, n6, n9, n10, n11, n12, n14, n15 and n16 are firstly assigned to

their unique bump ball. Then the sorting for the set of n4 and n7 with the same b1, and the set of

n5, n8 and n13 with the same b15 are carried out. Then we can determine the connection of n7 and

(a) Upper layer (b) Lower layer

Figure 5.5 Initial assignment result

79

n13 that are first in sequence. After the first loop, three I/O pad pairs n4, n5 and n8 have not been

assigned, which are put into next loop. Finally after three loops, all the I/O pads are assigned to

different bump balls, as shown in Figure 5.5.

5.4.2 Pair-exchange Modification

To make the routing result better, the initial assignment result should be further modified by

pair-exchange. This modification aims to shorten the total wire-length of two RDLs. Similar

with Algorithm 2 of Chapter 4, for every two connection pairs, we compare the total Manhattan

distance before and after pair-exchange. If the total Manhattan distance after pair-exchange is

less than the previous one, this pair-exchange is accepted.

Refer to the initial assignment result in Figure 5.5, after the modification, the pairs of n4 and

n7 are exchanged, and the modified result is shown in Figure 5.6.

5.4.3 RDL Routing

In this study, the connection path is determined by maze routing algorithm. The routing order in

each layer is determined by calculating the Manhattan distances between I/O pads and their

assigned micro-bumps in ascending order. Initially we assign the wire direction for each

(a) Upper layer (b) Lower layer

Figure 5.6 Pair-exchange modification result

80

connection to avoid the congestion area using the method mentioned in Section 4.3. Then the

single layer routing in each of two RDLs is carried out respectively. Refer to the pair-exchange

modification result in Figure 5.6, the RDL routing result in two layers is shown in Figure 5.7.

5.4.4 Rip-up and Reroute

Finally, if the paths of some connections are intersected by other routed wires, these connections

may fail to route. Therefore, we need to rip-up and reroute these un-routable connections to

improve the routability, if any. The rip-up and reroute is also realized by exchanging the

un-routable connection and its adjacent connection, which is mentioned in Section 4.4.

5.4.5 Discussion on Time Complexity

As mentioned above, the proposed method is divided into four phases: initial assignment, pair

exchange modification, RDL routing, rip-up and reroute. For initial assignment, as we assign the

I/O pad pairs to micro-bumps by sorting the sum Manhattan distance between them, the time

complexity of this phase is O(mn), where m, n are the number of micro-bumps and I/O pad pairs,

respectively. Since the pair-exchange modification is carried out between any pair, the time

complexity of this phase is O(n2). In RDL routing, for one connection the wire-length is O(u) in

the worst case, where u is the number of grids. So the time complexity of routing all

(a) Upper layer (b) Lower layer

Figure 5.7 RDL routing result in two layers

81

connections is O(nu). For rip-up and reroute, in the worst case, all the connections should be

ripped up and exchanged with each other, so the time complexity of this phase is O(n2). Since u

is much larger than m and n, the total time complexity of the proposed method is about O(nu).

5.5 Experimental Results and Analysis

We implemented our proposed I/O pad assignment and RDL routing for 3D IC in C language,

which is executed on a PC with 3.40GHz Intel Core 2 CPU and 8GB RAM. The matching-based

I/O pad assignment method in [65], which maintains routability for single RDL routing, is also

implemented for fair comparison. For each test data, the locations of I/O pads are randomly set.

Two experiments are carried out. Experiment 1 is on comparison with method [65], which

executed on the same package size but different I/O pad locations. Experiment 2 is also on

comparison with method [65], but on different package sizes from small to large.

Experiment 1

For Experiment 1, there are five test data named Data01 to Data05 with the same package size

and fixed location of micro-bump. For each data, the location of I/O pad pairs is randomly set.

The experimental results are listed in Table 5.1, #G

#N pair #B

micro-bumps, and #C capacity constraint. The wire-length is given in accordance

with the number of unit grid, and the routability and execution time of these two methods are

also listed in this table. Taking the total wire-length of method [65] as basal value 100%, the

wire-length percentage comparison is illustrated in Figure 5.8. From the experimental results we

can get that, both methods achieve 100% routability for all test data. Compared with method [65],

our proposed method obtains shorter total wire-length within a small CPU time, and the average

wire-length reduction is 17.52%.

Experiment 2

For Experiment 2, there are five test data named Data06 to Data10 with different package sizes

from small to large, and the location of I/O pad pairs is randomly set as well. The experimental

results are listed in Table 5.2. Same as Experiment 1, the wire-length percentage comparison is

illustrated in Figure 5.9. The experimental results show that, both methods achieve 100%

82

T
ab

le
5

.1
E

x
p

er
im

en
ta

l
re

su
lt

s
in

tw
o

R
D

L
s

o
n

th
e

sa
m

e
p

ac
k

ag
e

si
ze

b
u

t
d

if
fe

re
n

t
lo

ca
ti

o
n

P
ro

p
o

se
d

M
et

h
o

d

C
P

U
T

im
e

0
.0

2
4

s

0
.0

2
7

s

0
.0

2
5

s

0
.0

2
3

s

0
.0

2
4

s

0
.0

2
5

s

T
ab

le
5

.2
E

x
p

er
im

en
ta

l
re

su
lt

s
in

tw
o

R
D

L
s

o
n

d
if

fe
re

n
t

p
ac

k
ag

e
si

ze
s

P
ro

p
o

se
d

M
et

h
o

d

C
P

U
T

im
e

0
.0

5
1

s

0
.1

0
9

s

0
.2

9
0

s

0
.7

6
8

s

1
.5

1
3

s

W
ir

e
L

en
g

th

to
ta

l

2
5

2

3
4

7

2
9

6

1
9

9

2
2

9

2
6

4
.6

W
ir

e
L

en
g

th

to
ta

l

5
4

2

7
4

6

11
3

6

1
8

0
9

2
1

4
7

lo
w

er

11
3

1
5

5

1
0

4

9
4

1
0

6

11
4

.4

lo
w

er

2
5

8

3
9

1

5
5

2

9
4

8

1
0

6
0

u
p

p
er

1
3

9

1
9

2

1
9

2

1
0

5

1
2

3

1
5

0
.2

u
p

p
er

2
8

4

3
5

5

5
8

4

8
6

1

1
0

8
7

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

M
et

h
o

d
[6

5
]

C
P

U
T

im
e

0
.0

2
5

s

0
.0

2
8

s

0
.0

2
6

s

0
.0

2
4

s

0
.0

2
5

s

0
.0

2
6

s

M
et

h
o

d
[6

5
]

C
P

U
T

im
e

0
.0

5
6

s

0
.1

2
6

s

0
.3

3
3

s

0
.8

9
6

s

1
.8

6
6

s

W
ir

e
L

en
g

th

to
ta

l

3
3

2

3
6

7

3
6

3

2
4

3

2
9

9

3
2

0
.8

W
ir

e
L

en
g

th

to
ta

l

7
1

0

9
0

6

1
3

7
6

2
1

2
5

2
5

7
1

lo
w

er

1
6

5

1
9

1

2
1

0

11
8

1
3

6

1
6

4

lo
w

er

3
3

2

4
7

3

6
8

6

1
0

3
2

1
3

3
4

u
p

p
er

1
6

7

1
7

6

1
5

3

1
2

5

1
6

3

1
5

6
.8

u
p

p
er

3
7

8

4
3

3

6
9

0

1
0

9
3

1
2

3
7

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

R
o

u
ta

b
il

it
y

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

1
0

0
%

#
C 3 #
C 4 5 6 7 8

#
B 2
5

#
B 3
6

4
9

6
4

8
1

1
0

0

#
N 2
5

#
N 3
6

4
9

6
4

8
1

1
0

0

#
G

2
3

*
2

3

#
G

3
4

*
3

4

4
7

*
4

7

6
2

*
6

2

7
9

*
7

9

9
8

*
9

8

D
at

a0
1

D
at

a0
2

D
at

a0
3

D
at

a0
4

D
at

a0
5

A
v

er
ag

e

D
at

a0
6

D
at

a0
7

D
at

a0
8

D
at

a0
9

D
at

a1
0

83

routability for all test data. The comparison result with method [65] is similar with Experiment 1.

The proposed method can generate shorter total wire-length not only in small scale but also in

large scale packages in reasonable CPU time, and the maximum and minimum wire-lengths

reductions are 23.66% and 14.87% respectively. Obviously, the experimental results show that

our proposed method is effective on reducing total wire-length for 3D IC design in the reasonable

CPU time.

Figure 5.10 shows the routing result of Data6. Since the assignment and routing in two layers

are considered in this study and they are related to each other, to guarantee the routability, the

capacity constraint is not strict in this study. How to further improve the routability in the dense

routing area remains for our future works.

Figure 5.8 Total wire-length comparison in Experiment 1

Figure 5.9 Total wire-length comparison in Experiment 2

84

5.6 Conclusions

In this study, an application of I/O pad assignment and RDL routing method to 3D IC is

proposed on the basis of the sorting method of Chapter 4. The approach initially assigns the I/O

pad pairs to micro-bumps by sorting the Manhattan distance between them. A pair-exchange

modification is then carried out to improve the initial assignment. Then single layer routing in

two RDLs are carried out respectively. Finally some un-routed connections are ripped-up and

rerouted. Compared with the traditional matching-based method, the proposed method is able to

obtain the routes with shorter total wire-length in reasonable CPU time. For small scale package,

the average wire-length reduction is 17.52%. Then for large scale packages, the maximum and

minimum wire-length reductions are 23.66% and 14.87%, respectively.

(a) Upper layer (b) Lower layer

Figure 5.10 Routing results for Data06 in Experiment 2

85

Chapter 6

Conclusions

This thesis focuses on the equal-length routing for disordered pins and RDL routing for flip-chip

in PCB design. Some optimizations, such as better wire-length balance, smaller worst length

error or shorter wire-length, can be realized by the proposed routing algorithms.

Firstly, a region-aware routing algorithm to get equal-length routing for disordered pins in

PCB design is proposed. The approach initially checks the longest common subsequence of

source and target pin sets to assign layers for pins. Single commodity flow is then carried out to

generate the base routes. Finally, considering target length requirement and available routing

region, R-flip and C-flip are adopted to adjust the wire-length. Our proposed method could be

applied in both no-obstacle routing and obstacle-ware routing problems. Compared with another

greedy method for disordered pins, our method gets a smaller standard deviation, in other words,

a better wire-length balance among the nets, by adopting coefficient . Besides, our method is

effective in reducing worst length error, and the average reduction is 36.69%.

Secondly, we proposed a sorting-based I/O pad assignment and non-Manhattan RDL routing

method for area I/O flip-chip design. The approach initially assigns the I/O pads to bump balls

by sorting the Manhattan distance between them. Three kinds of pair-exchange procedures are

then carried out to improve the initial assignment. Then to shorten the wire-length,

non-Manhattan RDL routing is adopted to connect the I/O pads and bump balls. Finally some

un-routed connections are ripped-up and rerouted. The experimental results show that our

proposed method is effective on reducing wire-length no matter of the I/O pad location and

package size. Compared with a partition-based method, the proposed method can reduce the

wire-length by 23.4% using Manhattan routing, and 39.6% using non-Manhattan routing.

Compared with another Delaunay-triangulation method, the proposed method can reduce the

wire-length by 3.8% using Manhattan routing, and 20.0% using non-Manhattan routing in the

86

reasonable CPU time.

Finally, based on the sorting method, we extend the I/O pad assignment and RDL routing

method in 3D IC design. The approach initially assigns the I/O pad pairs to micro-bumps by

sorting the Manhattan distance between them. A pair-exchange modification is then carried out

to improve the initial assignment. Then single layer routing in two RDLs are carried out

respectively. Finally some un-routed connections are ripped-up and rerouted. Compared with a

matching-based method, the proposed method is able to obtain the routes with shorter total

wire-length in reasonable CPU time. For small scale package, the average wire-length reduction

is 17.52%. For large scale packages, and the maximum and minimum wire-lengths reductions

are 23.66% and 14.87% respectively.

In the equal-length routing research for disordered pins, the more intensive the pins are, the

more difficult it is to get the ideal standard deviation of all the wires. Besides, in the RDL

routing research for flip-chip, the large quantity of obstacles may make routability decrease. We

hope we could do future research in much denser routing area.

87

Publication List

Journal Paper

1. R. Zhang and T. -Based IO Connection Assignment and

non-Manhattan RDL Routing for Flip- IEEJ Trans. on Electronics,

Information and Systems, Vol. 135, No.12, pp.1535-1544, 2015.

2. R. Zhang, T. Pan, L. Zhu and T. -length Routing

for Disordered Pins in PCB Design, IPSJ Trans. on System LSI Design Methodology,

Vol.8, pp.75-84, 2015.

3. X. Jiang, R. Zhang and T.

IPSJ Trans. on System LSI Design Methodology, Vol.6, pp.34-41, 2013.

International Conference Paper

4. R. Zhang, T. Pan and T. -Based Micro-Bump Assignment for 3D

12th International SoC Design Conference (ISOCC), pp.139-140, 2015.

5. R. Zhang, T. Pan, L. Zhu and T.

2015 20th Asia and South Pacific Design Automation

Conference (ASP-DAC), pp.402-407, 2015.

6. T. Pan, R. Zhang, Y. Takashima and T. A Randomized Algorithm for the

Fixed-Length Routing Problem 2014 IEEE Asia Pacific Conference on Circuits and

Systems (APCCAS), pp.711-714, 2014.

7. Y. Tian, R. Zhang and T. -matching Bus Routing by using

88

Multi-layers, 2014 International Conference on Electronics Packaging (ICEP),

pp.728-731, 2014.

8. R. Zhang, X. Wei and T. -Based IO Connection Assignment for

Flip- 2013 IEEE 10th International Conference on ASIC (ASICON),

pp.1-4, 2013.

9. R. Zhang and T.

2013 IEEE TENCON Spring Conference, pp.99-103, 2013.

10. X. Jiang, R. Zhang and T.

2011 IEEE 9th International Conference on ASIC (ASICON), pp.535-538, 2011.

Domestic Conference Paper

11. Q. Xu, T. Pan, R. Zhang, Y. Tian and T. A High Density Escape Routing

Method for Staggered-Pin-Array Based Mixed-Pattern Signal Model 14

, pp.249-250, 2015.

12. R. Zhang, T. Pan, L. Zhu and T.

, Vol.114, No.476,

pp.103-108, 2015. (Invited)

13. X. He, R. Zhang and T. -sweeping Based IO Assignment and Diagonal

2014, A-3-5, 2014.

14. Y. Tian, R. Zhang and T. -matching Bus Routing by using

Multi-layers, 2013, pp.485-486, 2013.

15. R. Zhang and T.

2012 _ , pp.86, 2012.

16. R. Zhang and T. -

2010, pp.426-427, 2010.

17. X. Xu, Y. Hu, R. Zhang and T. -Wire Routing Problem

using Multi- 2010, A-4-2, 2010.

89

Bibliography

[1] T. Yan, Q. Ma and M. D. F. Wong, Advances in PCB Routing, IPSJ Trans. on System LSI

Design Methodology, Vol.5, pp.14-22, 2012.

[2] M. M. Ozdal, Routing Algorithms for High-Performance VLSI Packaging, University of

Illinois at Urbana-Champaign, 2005.

[3] , , , 2007.

[4] P. Elenius and L. Levine, Comparing Flip-Chip and Wire-bond Interconnection

Technologies, Chip Scale Review, Vol.4, pp.81 87, 2000.

[5] J. H. Lau, D. Rice and C. G. Harkins, Thermal Stress Analysis of Tape Automated Bonding

Packages and Interconnections, IEEE Trans. on Components, Hybrids, and Manufacturing

Technology, Vol.13, Issue.1, pp.182-187, 1990.

[6] J. H. Lau, S. J. Erasmus Tape Automated Bonding

T Circuit World, Vol.16, No.2, pp.5-24, 1990.

[7] C. P. Wong, S. Lou and Z C Science, Vol.290, No.5500, pp.2269-2270,

2000.

[8] J. W. Fang and Y. W. Chang, -I/O Flip-Chip Routing for Chip-Package Co-

2008 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pp.518-522, 2008.

[9] Z. Zhang and C. P. Wong, Recent Advances in Flip-Chip Underfill: Materials, Process, and

Reliability, IEEE Trans. on Advanced Packaging, Vol.27, Issue.3, pp.515-524, 2004.

[10] J. T. Yan and Z. W. Chen, Pre-Assignment RDL Routing via Extraction of Maximal Net

90

Sequence, 2011 IEEE 29th International Conference on Computer Design (ICCD),

pp.65-70, 2011.

[11] J. W. Fang, I. J. Lin, P. H. Yuh, Y. W. Chang and J. H. Wang,

Flip- 2005 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pp.753-758, 2005.

[12] J. W. Fang and Y. -I/O Flip-Chip Routing for Chip-Package Co-Design

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol.29, Issue.5, pp.711-721, 2010.

[13] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, VLSI Physical Design: From Graph

Partitioning to Timing Closure, Springer, 2011.

[14] M. J. S. Smith, Application-Specific Integrated Circuits, Addison-Wesley Professional,

2008.

[15] -Aware Physical Design, 2006 International

Symposium on Physical Design, pp.39-46, 2006.

[16] G. Xu, L. D. Huang, D. -Via Enhanced Maze Routing for

Yield Improvement, 2005 Asia and South Pacific Design Automation Conference

(ASP-DAC), pp.1148-1151, 2005

[17] A. B. Kahng, B. Liu and I. I. -Tree Routing for Reliability and Yield

Improvement, 2002 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pp.260-266, 2002.

[18] E. W. with Graphs, Numerische

mathematik, pp.269-271, 1959.

[19] Networks and Some Generalizations, Bell system

technical journal, Vol.36, Issue.6, pp.1389-1401, 1957.

[20]

Algorithm for VLSI Design, IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, Vol.27, Issue.1, pp.70-83, 2008.

[21] P. P. Saha, S. Saha and T. Samanta, Rectilinear Steiner Clock Tree Routing Technique with

91

Buffer Insertion in Presence of Obstacles, 2015 28th International Conference on VLSI

Design (VLSID), pp.447-451, 2015.

[22] , IRE Trans. on

Electronic Computers, Vol.EC-10, Issue.3, pp.346-365, 1961.

[23] T. Y. Cheung, Graph Traversal Techniques and the Maximum Flow Problem in Distributed

Computation, IEEE Trans. on Software Engineering, Vol.SE-9, Issue.4, pp.504-512, 1983.

[24] D. Eppstein, Breadth-first Search and Depth-first Search, University of California-Irvine,

1996.

[25] R. Diestel, Graph Theory, Springer, 2005.

[26] N. Alon, R Yuster and U. Zwick, Color-coding, Journal of the ACM (JACM), Vol.42,

Issue.4, pp.844-856, 1995.

[27] N Alon, R Yuster and U. Zwick, Color-coding: A New Method for Finding Simple Paths,

Cycles and Other Small Subgraphs within Large Graphs, Proceedings of 26th Annual ACM

Symposium on Theory of Computing, pp.326-335, 1994.

[28] X. Deng, Y. Yao, J. Chen and Y. Lin, Combining Breadth-first with Depth-first Search

Algorithms for VLSI Wire Routing, 2010 3rd International Conference on Advanced

Computer Theory and Engineering (ICACTE), pp.482-486, 2010.

[29] D. K. Kole, H. Rahaman, D. K. Das and B. B. Bhattacharya, Optimal Reversible Logic

Circuit Synthesis Based on a Hybrid DFS-BFS Technique, 2010 International Symposium

on Electronic System Design (ISED), pp.208-212, 2010.

[30

with Obstacles using Bi- 2009 Asia and South

Pacific Design Automation Conference (ASP-DAC), pp.600-605, 2009.

[31

with Obstacles using Bi- IEICE Trans.

Fundamentals, Vol.92, No.12, pp.2971-2978, 2009.

[32] , CAFE router:

, , Vol.108, No.298, pp.73-78, 2008.

92

[33]

2010 Asia and South Pacific Design

Automation Conference (ASP-DAC), pp.281-286, 2010.

[34

IEICE Trans. on Fundamentals of

Electronics, Communications and Computer Sciences, Vol.93, No.12, pp.2380-2388, 2010.

[35] 2009

Design Automation Conference (DAC), pp.326-331, 2009.

[36] -Matching Routing for High-Speed Printed

2003 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pp.394-400, 2003.

[37] -Matching Routing Algorithm for

High- IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, Vol.25, Issue.12, pp.2784-2794, 2006.

[38]

2004 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pp.830-837, 2004.

[39] -Layer Bus Routing for

High- IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, Vol.25, Issue.3, pp.490-503, 2006.

[40] Y. Kubo, H. Miyashita, Y. Kajitani -Speed

Integration, the VLSI Journal, Vol.38, No.3, pp.439-449, 2005.

[41] -Route: A Length-

2008 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pp.499-505, 2008.

[42] S. Nakatake, K. Fujiyoshi, H. Murata

BSG- IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, Vol.17, Issue.6, pp.519-530, 1998.

[43] -Aware Length- 2011

93

International Symposium on Physical Design, pp.61-68, 2011.

[44]

16th International Conference on Parallel Architecture and Compilation

Techniques, pp.388-400, 2007.

[45] -Route: A Length-Constrained Routing Scheme for

IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, Vol.28, Issue.11, pp. 1679-1690, 2009.

[46] T. Y. Tsai, R. J. Lee, C. Y. Chin, C. Y. Kuan, H. M. Chen

2011 Design, Automation and Test in

Europe Conference and Exhibition (DATE), pp.1-6, 2011.

[47] ary Pins

IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, Vol.32, Issue.3, pp.381-391, 2013.

[48] D. S. Journal of

the ACM (JACM), Vol.24, Issue.4, pp.664-675, 1977.

[49] L. Bergroth, H. Hakonen Survey of Longest Common Subsequence

A 7th International Symposium on String Processing and Information Retrieval,

pp.39-48, 2000.

[50] C. Tan, D. Bouldin and P. Dehkordi, -array Pad Router for ICs, 10th

Annual IEEE International ASIC Conference and Exhibit, pp.265-269, 1997.

[51] J. W. Fang, I. J. Lin, Y. W. Chang and J. H. Wang, -Flow-Based RDL Routing

Algorithm, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,

Vol.26, Issue.8, pp.1417-1429, 2007.

[52] J. W. Fang, C. H. Hsu and Y. W. Chang,

Algorithm for Flip-chip Design, 2007 Design Automation Conference (DAC), pp.606-611,

2007.

[53] P. W. Lee, C. W. Lin and Y. W. Chang, -assignment Routing Algorithm for

Flip-chip Designs, 2009 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), pp.239-244, 2009.

94

[54] K. S. Lin, H. W. Hsu, R. J. Lee and H. M. Chen, -I/O RDL Routing for Chip-Package

Co-design Considering Regional Assignment, 2010 IEEE Electrical Design of Advanced

Packaging and Systems Symposium (EDAPS), pp.1-4, 2010.

[55] J. T. Yan, K. P. Lu and Z. W. Chen, -driven Partitioning-based IO Assignment

for Flip-chip Designs, 2010 IEEE Asia Pacific Conference on Circuits and Systems

(APCCAS), pp.1075-1078, 2010.

[56] J. T. Yan and Z. W. Chen, -chip

Designs, 2009 Asia and South Pacific Design Automation Conference (ASP-DAC),

pp.588-593, 2009.

[57] E. Hursey, N. Jayakumar and S. P. Khatri, -Manhattan Routing using a Manhattan

Router, 18th International Conference on VLSI Design, pp.445-450, 2005.

[58] W. R. Davis, J. Wilson, S. Mick, et al., Pros and Cons for Going

V Design and Test of Computers, Vol. 22, Issue.6, pp.498-510, 2005.

[59] K. Bernstein, P. Andry, J. Cann, Third Dimension: Design

C 2007 Design Automation Conference (DAC), pp.562-567, 2007.

[60 -Dimensional Integration Technology

and Integrated S 2009 Asia and South Pacific Design Automation Conference

(ASP-DAC), pp. 409-415, 2009.

[61 Road to 3D EDA Tool R 2009 Asia and South

Pacific Design Automation Conference (ASP-DAC), pp.429-436, 2009.

[62 C 2009 Asia and South Pacific Design

Automation Conference (ASP-DAC), pp. 421-422, 2009.

[63 -Based Inter-Die Routing for 3D

2011 Asia and South Pacific Design Automation Conference (ASP-DAC), pp.330-335,

2011.

[64 -bump Assignment for 3D ICs Using Order

R 2012 Asia and South Pacific Design Automation Conference (ASP-DAC),

pp.341-346, 2012.

95

[65] J. T. Yan, Y. J. Tseng and C. H. Micro-bump Assignment for RDL Routing

in 3D ICs, 21st IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pp.195-198, 2014.

