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Chapter 1

Introduction

1.1 Background

1.1.1 Research Background

Civil infrastructures include various units and systems such as buildings,

transportation systems, and communication systems. However, much of civil

infrastructure like buildings, bridges, offshore oil platforms and other lifeline systems

deteriorate with time because of variety of cause, such as fatigue failure caused by

environmental factors and natural calamities. Especially in Japan, construction of

modern infrastructures started in Meiji Era (1868) [1]. Rapid growth of the Japanese

followed to meet expansion of industrial activities. Thus, many of bridges are in

serious aging condition or currently closing to the original lifetime. This situation has

become an issue concerned by government, since Japan is a mountainous and rugged

country. According to the investigation report of road installations (2005), the Japan

Ministry of Land, Infrastructure, Transport and Tourism (JMLITT) calculates that

almost 40 senile structures in 2011, and 70% will be senile

structures in 2020 (shown in Figure 1.1) [2]. Regarding road bridges, the traffic in

major highways is as large as 15,000 vehicles per line and the ratio of heavy trucks in

the traffic is also high (as high as 30%). On some of bullet train routes, trains run

quite frequently. Many problems of bridges are because of the high loading. Therefore,

how to continuously evaluate the structural condition, detect existing damage in

bridge structures at the earliest possible time, and timely maintain the aging bridges is

critical so that the bridges can continue to be safely used, and further improve the

public safety.
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Figure 1.1 Construction year of bridges in America and Japan [2]

In order to maintain the safety of bridges, government periodically, usually once

every several years, inspect bridges. To date, the primary way used to perform these

inspections is schedule driven and relies on visual inspection. However, such visual

inspections have limited efficiency and reliability. The variation of inspector s

experience and invisibility of serious damage can make the damage be overlooked,

whereas the propagation of the damage between two inspections can potentially put

the bridge at risk. Therefore, a much more effective and reliable way to monitor and

assess the integrity and functionality of nation s bridges is needed.

Structural health monitoring (SHM) provides a way to continuously capture

structural response and assess structural condition in real-time. SHM is able to

describe the characteristic of loads in situ, thereby useful to predict the structural

response due to extreme loading condition. SHM can also be used to access

post-extreme event condition due to natural hazards or man make disasters. This can

potentially allow the authority to access the affected area faster and eventually reduce

economic and social impact of damage. The essential purpose of SHM for bridge

structures is to detect the existing damage in the systems. The damage is defined as

the changes of material attribute and geometry such as boundary conditions and

system connectivity. Vibration-based SHM methods for bridge structures have

evolved in 1980s. The vibration-based SHM method is based on detecting the changes

of the characteristics structural, such as damping, stiffness and mass. The procedure of

vibration-based SHM methods for bridge consists of two parts: measurement of

structural dynamic responses and evaluation of current bridge condition based on

damage identification algorithm, where by studying and comparing the changes in

monitored vibration response between initial and current structural condition, the

structural unknown damages can be identified in [3]. Figure 1.2 shows the envisaged
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benefits of structures with SHM systems. This Figure fully reflects the advantages of

SHM to bridge maintenance, comparing with the traditional method without SHM. In

summary, SHM in bridge has great advantage in terms of real-time monitoring and

assessment, timely maintenance practices, and rapid response after extreme event.

Therefore, to make overall road operate in safety with economic limitations,

developing a low cost, automatic and long-term Bridge Structural Health Monitoring

(BSHM) systems is required urgently and highly.

Figure 1.2 Benefit of SHM [3]

1.1.2 Current Problems

The rapid development of BSHM favored the transportation system, improved

overall road operational safety and reduced the cost of maintenance. The merits of a

BSHM system is mainly decided by two factors: (1) sensitivity and precision

and the performance of data acquiring devices, and (2) measured-data analysis. From

the point of the current development, hardware facilities used for structural health

monitoring are more and more advanced, and the current sensor technology has

reached a higher level. Therefore, sensor signal acquisition is not a critical problem.

In BSHM system, data analysis needs to complete damage identification and bridge

health status evaluation. Therefore, it can be seen as the most critical stage in BSHM.

However, data analysis still have many problems, such as impact of noises on the

precision of damage diagnosis, influence of varying operation and environment on

damage detection, damage identification sensitivity and precision problem, damage

locating problem, damage details detecting, and etc.
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Impact of Noises on the Precision of Damage Identification

In BSHM, measurement noises widely exist in acquired vibration-data, and are

derived from thermal, magnetic and electric effect of data acquiring devices and

observation error. These noises can bring difficulties to damage identification while

the noise pollution of vibration-data is large. Therefore, the data needs to be de-noised

before further data analysis for damage detection. The performance of de-noising can

affect the precision of damage diagnosis significantly, because noises can cover

characteristic changes caused by damages. Wavelet Transform (WT) is a common

method for data processing in BSHM. In order to determine appropriate threshold to

reduce noise in the appropriate range, usually WT needs to estimate the range of

characteristic frequency about true signal and noise firstly. If there is no prior

knowledge about the range of characteristic frequency, it is difficult to get satisfied

noise reduction. Fast Independent Component Analysis (ICA) is another application

on data processing. As we known, Fast ICA is a linear ICA algorithm, which is

suitable to the processing of signal in linear mixing environments. Thus, there are

some obvious disadvantages in the de-noising of non-linear system, such as the

vibration signals of bridge.

Influence of Varying Operational and Environmental conditions on

Damage Identification

When a BSHM system is deployed on a field bridge which is exposed to outside

environment, damage detection process will have to deal with uncertainties from

operational and environmental influence. The uncertainties from operational condition

include live traffic, while environmental condition includes temperature and moisture.

These changes in the data caused by the variation in operating condition and

environment maybe regard as an effect of damage mistakenly, because the existing

vibration-based damage diagnosis algorithms are based on studying and comparing

the changes in monitored vibration response between benchmark and current

structural condition. Therefore, when operational and environmental variability is an

issue, how to separate changes caused by the variability from changes caused by real

damage is also a challenge to the field implementation of a robust SHM system.

Damage Identification Sensitivity and Precision Problem

In recent years, many algorithms have been proposed by different researchers to

identify structural damage, such as model-based algorithms and feature-based

algorithms, for BSHM. Fundamental difficulty with model based methods is that

physical-parameters which are acquired from the model updating is likely to unrelated

to the information of real damage (location and severity). Deferent to model-based
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algorithms, the algorithms based on feature detect the changings of structure based on

some damage features without a detailed structural-model, such as FFT, Transform

Function (TF). Although, in most the cases, existing feature based algorithms can

identify whither structure is damage in most cases, they are difficult to detect the

damage severity or location(s) of damages. Furthermore, in these algorithms the

sensitivity of features to kinds of damage levels shows that these features were not

good indicators of damage. Thus, how to identify the severity and location of

damages, and how to extract sensitive damage features are urgently to be solved.

Damage Details Detection

As mentioned above, most of the vibration data-based damage identification

algorithms are difficult to detect the severity or location(s) of damages. Even if some

of these algorithms can detect the location and severity of damages successfully, they

can only locate the approximate areas and severity of damages. In other words,

specific location and severity of damages, such as subsurface voids and cracks, are

nearly impossible to be determined by these algorithms. However, the specific

location and severity of damages are very important for government to maintain

bridges. Although many complicated and expensive equipment-based nondestructive

damage detecting systems can obtain the specific information of damages, heavy

economic and time burden is a serious problem for government. Therefore, an

economic and efficient method for detecting the specific information of damages is

needs to be developed.

1.2 Motivation and Objective

1.2.1 Motivation

During last ten years, although development of advanced hardware facilities and

high level sensing technology indicates the possibility of employing long term SHM

systems in bridge daily monitoring, BSHM has been confronted by several problems

in crucial data analysis such as noise impact problem, varying environment influence

problem, damage identification sensitivity and precision problem, damage details

(specific location and size) detecting, etc. Also, due to the tight budget of government,

expenditures for maintenance-related activities cannot be expected to increase in

proportion to the need. Against such issues and backgrounds, many attempts have

been made to develop a BSHM system with efficient, economy, and high accuracy.

Attribute to use more and more advanced hardware facilities for BSHM system, the

measurement errors is reduced significantly. However, these devices cannot make the

acquired vibration-data avoid the measurement noises, which can affect the precision

of damage diagnosis significantly by covering the characteristic changes caused by
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damages. Otherwise, during deploying a SBHM system on a field bridge which is

exposed to outside varying operation condition and environment, the changes in the

data caused by the variability of operation condition and environment maybe regard

as an effect of damage mistakenly. Therefore, design of a data processing method to

de-noise and eliminate the impacts of varying operation condition and environment is

an indispensable mean for detecting damages accurately.

Also, the problem of damage identification sensitivity and precision cannot be

avoided by only de-noising and eliminating the influences of varying operational and

environmental condition. Thereby, it is very important to design an advanced and

sensitive damage diagnosis algorithm, including damage identification, damage

severity detection, and damage locating.

When the damages of bridge have been detected and needs to be repaired, the

specific location and size of damages, such as voids and cracks under the subsurface,

is very important for maintainer. And in general, since the vibration data-based

damage identification algorithm can only obtain the approximate areas of damages,

BSHM would be confronted with a new problem that how to detect the specific

information of damages, in an economical and efficient way.

1.2.2 Objective

Faced by problems mentioned above, bridge structure health monitoring (BSHM)

system with characteristics of high efficient, accuracy and sensitivity is preferable in

the future. Measurement noises and varying operation condition and environment

directly affect the precision of damage identification. Design of high performance

data processing method with an improved de-noising algorithm and new data

normalizing scheme is an effective measure for better data analysis, is treated as one

research field in the dissertation. Besides, a good damage identification algorithm can

also increase the sensitivity of damage feature, improve the accuracy of damage

identification and damage severity detection, and locate damages. Therefore, in order

to improve the damage identification performances of BSHM system, design of an

advanced vibration data based damage diagnosis algorithm is other promising way.

Specific location and size of subsurface damages (such as voids and cracks) is

difficult to detect and very important for maintainer. Hence, to detect specific

information of subsurface damages economically and efficiently, is an indispensable

but challenging task. In this research, standing-wave based nondestructive damage

detecting system is being designed. The organization of the research is illustrated as

Fig. 1.3.
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Figure 1.3 Organization of the research

The research is summarized as three fields:

Design of High-performance Data Processing Method

In order to reduce the impacts of noise on data analysis and give de-noised data

samples with good signal-to-noise ratio for damage detection algorithm to improve

precision and sensitively, one of possible approach is employing a data processing

method to de-noise acquired vibration data samples. Most of the existing de-noising

methods are efficient only in linear systems. However, bridge systems belong to

non-linear systems. Otherwise, most of the existing BSHM systems ignore the

impacts of varying operation condition and environment on the precision and

sensitively of damage detection. Actually, since these changes in the data caused by

the variability of operation condition and environment maybe regard as an effect of

damage mistakenly, how to eliminate impacts of the operational and environmental

variability is a big challenge. In this research, a new data processing method is

proposed for BSHM. In this method, a de-noising algorithm based on post-nonlinear

geometric-linearization ICA is proposed for the purpose of de-noising efficiently in

nonlinear system. In this de-noising algorithm, a compensation scheme is designed to

reduce the error of geometric-linearization to improve the de-noising performance. To

eliminate the impacts of varying operation condition and environment, a novel

environment impact reduction method based on AR model and data matching is

proposed. In the environment impact reduction method, acquired vibration data
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samples are divided into two set, undamaged condition data set and unknown

condition data set. AR model is used to extract the features of each data samples in the

two sets. Based on these features, a data matching scheme based on Euclidean

distance is designed to obtain the data sample pair, one sample of undamaged

condition data set and one of unknown condition data set, which are sampled in a

similar operation and environment condition.

Design of Damage Diagnosis Algorithm

As above-mentioned, data processing method can improve the performances of

damage detection by de-noising and data normalizing. Improvement of damage

diagnosis algorithm performances is another promising method for improving the

performances of damage detection. With a view to the accuracy of damage

identification and the sensitivity of damage features, a two-stage damage diagnosis

algorithm is proposed based on time-series modeling. After, data processing, in first

stage after data processing, FFT is used to obtain the characteristic frequency of

bridge to detect the structural novelty (detecting damages) by comparing the

frequency in a healthy state with an unknown state. Based on the result of first stage, a

statistical pattern recognition damage identification algorithm is proposed for second

stage to determine the severity and location(s) of damages. In order to reduce the

influence of external factors, ARMA model is employed to extract the damage

features. During feature extraction, principal component analysis (PCA) is used to

carry out the effective curtailment of the multi-feature. Then based these features,

Mahalanobis distance is utilized to calculate the damage sensitive features (DSF) of

each data samples. Otherwise, a statistic-based damage sensitive feature index Dindex

is proposed to obtain a diagnosis of structure condition and locations of damages

when Dindex has changed significantly from before to after damage. In this way, a

judgment on status of the structure can be made accurately and swiftly.

Design of Standing-Wave based Structure Non-destructive Damage

Detecting System

With requirements of specific location and size of subsurface damages (such as

voids and cracks) for bridge maintenance, a standing-wave based structure

non-destructive Damage detecting system is developed as an assistance system to

obtain the specific information of damages based on the result of the two-stage

damage diagnosis algorithm. Firstly, this system sends high-frequency sweeping

waves (3.8 5.8 GHz) to an object. The incident and reflection waves from the object

form a standing wave whose amplitude A(f, x) is related to the input wave frequency f

and object distance x. The amplitude signal is detected and converted to volts with a

zero-biased detector. Finally, the amplitude frequency response A(f, x) is processed
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by empirical mode decomposition (EMD) to denoise and analyzed by the ICA method.

Hence the object state including the existence, location and size of subsurface voids is

identified. In comparison with other structure non-destructive damage detecting

systems, the proposed system is compact and less expensive, and offers higher

sensitivity, resolution, and accuracy.

1.3 Outline of This Dissertation

The dissertation consists of six chapters which are organized as follows.

In Chapter 1, the background of bridge structure health diagnosis (BSHM) is being

discussed. Then, the current problems of BSHM and the problems which we focus on

are discussed. Next motivation and objective of this research is presented.

In chapter 2, concept of SHM is intruded at first. Then current existing vibration

based BSHM systems are discarded. Also the data processing methods and damage

diagnosis algorithms of BSHM systems are described and discussed in detail. Then

current existing Nondestructive testing methods are described. Finally, based on the

discussion of the algorithms in current existing BSHM system, the problems and

solution are presented.

In Chapter 3, a new data processing method focused on de-noising and eliminating

the impacts of varying operation and environment condition is proposed for data

analysis. To solve the problem of efficiently de-noising in bridge systems (nonlinear

systems), a de-noising algorithm based on post-nonlinear geometric-linearization ICA

is designed. In this algorithm, to improve the performance of de-noising, a

compensation scheme is designed to reduce the linearization error of this nonlinear

ICA. To eliminate impacts of operational and environmental variability, a novel

environment impact reduction method based on AR model and data matching is

proposed. In the environment impact reduction method, firstly, acquired vibration data

samples are divided into two set, including undamaged condition data set and

unknown condition data set. Then AR model is used to extract features of each data

samples in the two sets. Finally, based on these features, a data matching scheme

based on Euclidean distance is designed to obtain data sample pair, one sample of

undamaged condition data set and one of unknown condition data set, which are

sampled in a similar operation and environment condition. To verify performance of

this new data processing method, performance evaluation, simulation and experiment

are given.

In chapter 4, another research concerning vibration data based bridge structure

damage identification algorithm is presented. Section 4.2 describes overview of the

proposed two-stage output-only damage diagnosis algorithm. In section 4.3, first stage

is described. In section 4.4, a novel time-series modeling based Damage Diagnosis
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Algorithm is proposed to sensitively detect severity and location of damage (second

stage). In this algorithm, ARMA model is selected for extracting features, PCA is used

to carry out the effective curtailment of the multi-feature. Beside, based on the

extracted features a new sensitive damage-sensitive feature index Dindex is proposed to

obtain a diagnosis of structure condition, and identify severity and location of

damages. To verify the performance of proposed algorithm, numerical simulation is

shown in section 4.5. The field bridge experiments included measurement at the

Kando Bridge in Japan and analysis results are presented in section 4.5. Section 4.6

summarizes the chapter.

In chapter 5, to pinpoint exact location and severity of the damage in economy and

efficiency, a standing-wave based structure DNT system was successfully built.

Section 5.2 describes the overview of this standing-wave based structure DNT system.

In section 5.3, at first we introduce the basic standing-wave teste algorithm. Then

improvement of this test algorithm and system is proposed. At last, a new data

analysis method based on modified EMD and ICA is proposed to improve accuracy of

damage detection. To verify the performance, numerical simulation is shown in

section 5.4, and results of experiments including 3 cases are presented and discussed

in section 5.5. To show the advantages of this system, comparison of my system and

other systems is shown in section 5.5. Finally section 5.6 concludes the summary.

In Chapter 6, the conclusion and future research are given.
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Chapter 2

Overview of Current Research

2.1 Introduction

This chapter provides a review of some important background related to this

research. First, an introduction of structural health monitoring (SHM) is given, with

followings of previous applications in the field of Bridge SHM (BSHM). Second, the

background of data processing is presented. It includes an overview of data de-noising

techniques in existing bridge SHM systems. Furthermore, an introduction of existing

vibration-based damage diagnosis algorithms are shown followed. Finally,

non-destructive testing (NDT) based Local Damage detecting techniques are provided

for obtaining the detailed information of damages (such as detailed location and size

of damages) to satisfy the requirements of bridge health diagnosis and maintenance.

2.2 Bridge Structural Health Monitoring

2.2.1 Concept of Structural Health Monitoring

Structural health monitoring (SHM) is a method which implements damage

identification strategy that aimed at assessing the existing performance of a structure.

It is mainly motivated to safeguard the people`s life-safety, and by the economic

impact to the public society. It can be also motivated to understand the complex

relationships between loading objects with bridge, assess novel techniques in

construction or designing, evaluate the condition when an extreme loading event

occurs, monitor construction procedure, evaluate retrofit measures and monitor

structural deterioration and degradation. SHM includes the integration of various

kinds of sensors, data delivering, computing capacity, and processing capacity. By

using this technology, it`s possible for people to consider: the structure design; the
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structure management; and considering this management as a portion of further and

wider systems. SHM systems, shown as Figure 2.1, could be organized like the

following in different levels:

Sensor monitors the type of physical phenomenon which is related to the

damage, and produces a data to send to the data acquiring and storing system.

A network consists of several type sensors, the data of different type sensors

can be multi used and combined. The sensors used for monitoring the

environment conditions can be used to implement the functions of the usage

monitoring. The data obtained by the monitoring sub-system is employed by

the user to establish a diagnosis.

Using the information from the integrity monitoring system, the usage

condition of the monitoring system, and the mechanics knowledge, and

behavior laws to decide the prognosis and the structure health management

such as repair, maintenance, and etc.

Figure 2.1 Theory of a SHM system [1]

At any level described above, the feasible systems can be established. The system s

diagnosis capacity can be further enhanced obviously as the SHM system

organization presented in Figure 2.1 can be enhanced by combining the data of usage

condition with the function of integrity monitoring function.

2.2.2 Existing Structural Health Monitoring on Bridge

With the rapidly ageing of the worldwide civil infrastructure, much attention had

been focused on Bridge SHM (BSHM) recently. The vibration-based BSHM method

is based on detect changes in the characteristics of structural, such as damping,

stiffness, and mass, etc. By studying and comparing the changes in monitored

vibration response between initial and current structural condition, the unknown
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damages of structural properties can be identified. The procedure of Vibration-based

BSHM system consists of Data Acquiring and Data Analysis, including Data

processing and Damage Detection. While the most damage detection algorithms of

Data Analysis in vibration-based SHM require input excitation and output, measuring

the input excitation from a bridge is quite difficult due to the varying bridge loading.

Thus, in vibration-based BSHM, research on damage diagnosis algorithms is focused

on only use vibration data excited by ambient.

In last few decades, many of modern SHM systems were developed and real

deployed on many bridge projects in Europe, the United States, Japan, and China. The

Hong Kong Bridge Structural Health Monitoring System (HBSHM) based on

traditional wire-network is installed on Ting Kau Bridge, Kap Shui Mun Bridge, and

Tsing Ma Bridge [2]. Similar study can be found in Bill Emerson Memorial Bridge,

Missouri [3]. Other examples of BSHM are the Tamar Bridge (UK) [4], the Zhanjiang

Bay Bridge (China) [5], SHM system on Golden Gate Bridge [6], long term SHM

system on Jindo Bridge [7], and SHM on Railway Bridge [8], etc.

2.2.2.1 Hong Kong Bridge Structural Health Monitoring System

Figure 2.2 shows a long-term BSHM system, named Hong Kong Wind and Bridge

Structural Health Monitoring System (HBSHM), using a total number of 350 sensors

with seven different types on the Kap Shui Mun Bridge (KSMB) [2]. Large amount

various kinds of sensors were installed on the bridges, including temperature sensor,

anemometer sensor, displacement sensor, accelerometer sensor, weight in motion

sensor, GPS, and Fiber Bragg Grating sensors. Figure 2.3 shows the architecture of

WBSHM. Many kinds of data analysis algorithms are used in this system to identify

damages, as shown in the data analysis part, such as FFT, FDD, etc.

Figure 2.2 Deployment of HBSHM on Tsing Ma Bridge [2]
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Figure 2.3 Data processing and analysis of HBSHM

2.2.2.2 BSHM System on Golden Get Bridge

Figure 2.4 Deployment of sensor nodes on Golden Gate Bridge [6]

Figure 2.5 Data analysis of BSHM system on Golden Get Bridge

Many researchers have deployed WSN in full-scale bridge health monitoring.

Pakzad et al. [6] designed and deployed 64 wireless nodes on the Golden Gate Bridge

in San Francisco for bridge structural health monitoring. Each node has 4 channels.
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The sketch of this research is shown in Figure 2.4. In this research, the system is able

to make sources of distortion such as the system error, temperature variation and

system noise floor including noise from amplifier, A/D converter and the

accelerometer in minimum. The sampling rate of this system is set to 200 HZ and 1

kHz as the sampling rate. In this research, Wavelet Transform (WT) [9] is applied to

de-noise in data processing procedure and many data analysis algorithms are applied

to detect the damage of bridge, such as FFT and Stochastic subspace identification

(SSI) algorithm [11].

2.2.2.3 Bridge Structural Health Monitoring System on Jindo Bridge

The largest WSN implementation for BSHM was conducted on the Jindo Bridge

[7], including a 344m central main span and two 70m side spans, in South Korea. On

this bridge, a total number of 70 wireless sensor nodes with 427 sensor channels were

installed. Figure 2.7 shows the process of this BSHM system. Empirical model

decomposition (EMD) [10] is employed as data processing to de-noise in this BSHM

system. Two output-only modal identification methods, i.e., FDD (frequency domain

decomposition) and SSI [11] are used in this system to extract the modal characteristic

of the bridge from the acceleration data. The extracted modal characteristic from both

modal identification methods are validated by comparing with each other and with

those from the finite element (FE) model analysis, which is constructed based on

delving into the detailed drawings and design documents, and validated utilizing the

acceleration data from the existing wired SHM system on the bridge.

Figure 2.6 Deployment of sensors on Jindo Bridge [7]

Figure 2.7 Overview of BSHM system on Jindo Bridge
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2.2.2.4 Bridge Structural Health Monitoring System on Seiran Bridge

In the BSHM system of Seiran Bridge, a low-power WSN is developed and

deployed to monitor and acquire vibration data of Seiran Bridge [16], in Japan. On

this bridge, a total number of 22 wireless sensor nodes with 66 sensor channels were

installed. This data acquiring system is shown as the Figure 2.8. Figure 2.9 shows the

data analysis processes of this BSHM system. A famous independent component

analysis (ICA) Fast-ICA [16] is employed as data processing to de-noise in this

BSHM system. FFT (Fast Fourier Transformation) is applied to extract the

characteristic frequency of the bridge from the acceleration data measured in health

condition and unknown condition. By comparing frequencies of these two condition,

the global damages of bridge were detected. In order to detect local damages and

location of damages, transform function (TF) based method [32] is developed. This

method use one sensor s sampling data as input and anther sensor s data as output.

Then the TF of the two sensors are obtained. By comparing the TF of two bridge

conditions to detect whither damage exists in the area between two sensors. In this

way, the damage can be detected and located. Based on these results of data analysis,

maintenance decision can be made for this bridge.

Figure 2.8 Data acquiring system of Seiran Bridge system [16]

Figure 2.9 Overview of data analysis on Seiran Bridge system [16]
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2.3 Data Processing Method in BSHM

2.3.1 ICA based Data Processing Method

In BSHM system on Seiran Bridge [16], ICA (independent component analysis)

based de-noising method is used to de-noise for data processing. ICA is a famous

blind source signals separation technology. Figure 2.10 shows how ICA separates

blind sources and reconstructs signal. Assuming that the linear mixtures of show

as , is the n independent

components of , and in every time-period t, like equation (2.1), in

this equation A as a full rank scalar matrix. ICA aims to search a linear matrix W to

get the recovered signals u, shown as equation (2.2), which are the max statistically

independent. Because the variances of is unsureness in theory, we suppose the

variance of each as . In this way, the components are independent.

(2.1)

(2.2)

Figure 2.10 schematic diagram of ICA [16]

This algorithm is consists of two steps as follows.

Step 1: Use ICA to separate the signals of the bridge from others (such as noise,

car, and etc.). Herein, FastICA is chosen for the singles separation, since it is

well known, fast, and representative.

Step 2: FastICA calculates the power value to check which signal is the most

Power value calculation is

important for linear ICA and is useful for choosing the signal that represents

in this way,

the acquired vibration data is de-noised and used for damage diagnosis.
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2.3.2 Wavelet Transform based Data Processing Method

Contraction threshold based Wavelet Transform (WT) is a common method for data

processing in BSHM such as the BSHM system on Golden Gate Bridge [6]. Wavelet

transform is a kind of time - frequency signal analysis method, which has the

characteristics of multi-resolution analysis, and has the ability of denoting local signal

characteristics in both time and frequency domain. It is a kind of time and frequency

localization of analysis method which can change time window and frequency

window. This method is very suitable for analyzing the change of the signal process.

For an arbitrary energy limited function , the wavelet transform of f(t)

is show as equation (2.3), where a and b are the scale factor and shift factor

respectively, and is the wavelet base, which is the wavelet

function cluster of the mother wavelet . Also, the satisfies the equation

(2.5), where is the Fourier transform of . The function f(t) can be

refactored as equation (2.6) by the wavelet coefficients .

(2.3)

(2.4)

(2.5)

(2.6)

The main theoretical basis Wavelet threshold de-noising method is: in wavelet

domain, the energy of the signal belonged to Besov space is concentrated in a limited

number of coefficients, but the noise energy is distributed in the wavelet domain.

After wavelet decomposition, the wavelet transform coefficients of signal are bigger

than the wavelet transform coefficients of noise. So a suitable number lambda can be

found as threshold, when the is less than the threshold, the at this moment

is mainly caused by noise; conversely, when the is greater than the threshold, it

is mainly caused by the signal. The steps of wavelet threshold de-noising method

show as follows:

1) One-dimensional wavelet decomposition of signals: Select and determine the

level of decomposition, and then do decomposition calculation.

2) Quantize the threshold of high frequency coefficient: Choose a threshold to do

quantization threshold processing for high frequency coefficients.

3) One-dimensional wavelet reconstruction: the one-dimensional wavelet

reconstruction is performed according to the bottom low frequency coefficients of

wavelet decomposition and the high frequency coefficient of each layer.
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2.3.3 Empirical Mode Decomposition based Data
Processing Method

Empirical mode decomposition (EMD) [10] is a kind of nonlinear and

non-stationary data processing method. Empirical model decomposition (EMD) is

employed as data processing to de-noise in many BSHM systems such as the BSHM

on Jindo Bridge. The outstanding advantage of EMD is that the data has a good

adaptability. The EMD decompose the signal into more orderly Intrinsic Mode

Functions (IMFs) arranged from high frequency to low frequency, each IMF

represents a vibrational mode.

Definition2.1: an IMF must satisfy the two conditions shown as follow.

In the whole IMFs, the quantity of zero-crossings has to equal to that of

extrema or differ at most 1.

At any point, the average values of the two envelopes composed of local

maximum points and minimum points are equal to 0.

Decomposition steps of EMD are shown as:

(1). Confirm all the local maximum and minimum of the signal, and then insert

between each set of the extrema using cubic curves to develop an upper

envelope and a lower envelope.

(2). Give the two envelopes mean m1 based on the two envelopes.

(3). The signal x and m1 should be defined the difference to be the first component:

.

(4). Use replace x(t), and repeat above 3 steps until satisfies definition 2.1

or the given stopping criteria. Let , and separate from x(t):

, . The stopping criteria is shown as equation (2.7),

where is a typical value from 0.2 to 0.3.

(2.7)

(5). Repeat above 4 steps until is monotonic or has a sole extremum from

which none IMF can be extracted, the decomposition process is finished and

shown as equation (2.8)

(2.8)

The steps of EMD based de-noising method:

Step 1, use above described EMD to decompose signal into IMFs.

Step2, remove the IMF caused by high frequency noise from the

decomposition IMFs. Since the IMF components are arranged from high to low

frequency, the first IMF is caused by high frequency random noise. After

removal of the First IMF, the rest of the IMFs is used to reconstruct signal to

achieve de-noising.
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2.4 Data Analysis Method for Damage Detection

Accuracy and sensitivity of damage diagnosis algorithm directly determines the

performance of BSHM system. How to identify damages sensitively and how to

precisely detect the damage severity and location become major problems in vibration

data based BSHM system. Currently, many methods have been proposed by different

researchers to identify structural damage, such as model-based algorithms and

feature-based algorithms, for BSHM. A fundamental difficulty with model based

methods is that physical-parameters acquired from the model updating is likely to

unrelated to the information of real damage (location and severity). Deferent to

model-based algorithms, the feature-based algorithms detect the changes of structure

based on some damage features without a particular structural-model. The Features

used for damage identification are typically based on mode-shape derivative, natural

frequency, and stiffness-matrix etc.

2.4.1 Frequency Domain Decomposition based Damage
Diagnosis Method

Frequency Domain Decomposition (FDD) method is proposed by Brinker et al. [26]

and applied in the BSHM system of Jindo Bridge [7]. FDD starts by constructing and

decomposing the PSD matrix for the measured data via the singular value

decomposition (SVD) shown as equation (2.9), where y is the measurement vector;

is the PSD matrix; is the diagonal matrix, which contains the singular

values ( ) in descending order; U is the unitary matrices with left singular vector,

and V is unitary matrices with right singular vector. Due to the symmetry of ,

U is equal to V. The magnitudes of the singular values indicate the relative level of

vibration at the corresponding frequencies. The peaks in the plot of the 1st singular

value versus frequency can be interpreted as natural frequencies of the structure,

while the corresponding 1st singular vectors at these frequencies can be interpreted as

the associated mode shapes. Thus, based on the 1st singular value function, the

conventional peak picking method is used to obtain the natural frequency.

(2.9)

The steps of the FDD based damage diagnosis algorithm are shown as:

Step 1: Use FDD to obtain the natural frequency of bridge in health condition

and unknown condition based on the acquired vibration data.

Step 2: Compare the natural frequency of the undamaged condition and

unknown conditions to determine the structure health condition of bridge.

Change in frequencies means there are damages on the bridge.
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2.4.2 ICA based FFT Method

Cheng et al. proposed a feature based algorithm in [16]. ICA (independent

component analysis) is used to de-noise. And then FFT is employed to obtain the

structural health status of Seiran Bridge in Japan. Data processing is described in

section 2.3.1, and the processes of this Method are shown in Figure 2.11.

This algorithm is consists of three steps as follows.

Step 1: Use ICA to separate the signals of the bridge from others (e.g., noise,

car, and wind signals). Herein, FastICA is chosen for the singles separation to

obtain the bridge signal, since it is well known, fast, and representative.

Step 2: Use FFT to obtain the characteristic frequency of bridge from the signal

separated by ICA in the undamaged condition (or known condition) and

unknown conditions.

Step 3: Compare the extracted frequency of the undamaged condition and

unknown conditions to determine the structure health condition of bridge.

Change in characteristic frequencies means there are damages on the bridge.

Figure 2.11 Processes of ICA based FFT Method

2.4.3 Statistical Pattern Recognition based Damage
Diagnosis Method

Lately, statistical pattern recognition techniques (SPR) have made a survey about

expectation of seeking a more high-performance method for distributed damage

detecting. A SPR based damage diagnosis algorithm is proposed and applied in [17],

on which residual error is used to extract the damage sensitive feature (DSF), it helps

to determine the severity besides location of damage. For a signal x(t), auto-regressive

model of p order can be written as equation (2.10), where is the residual error,

is AR coefficients to be determined by Yule-Walker or Burg method.

(2.10)

Let y(t) be the response of unknown structural condition, so following the same

model in equation (2.10) it can be written as equation (2.11), where the notations

carry their usual meaning as earlier.
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(2.11)

Now, to judge whether two cases (reference and unknown) are comparable to an

extent, based on residual errors, the damage sensitive feature is found out as equation

(2.12), reflecting the difference between those two signals. If the DSF is close to 1,

the anonymous signal is close to the reference model; hence a way to detect as well as

quantify damage. These processes are shown in the Figure 2.12.

(2.12)

Figure 2.12 Processes of SPR based damage diagnosis method

2.4.4 Other Algorithms

Farrar et al. [18, 20] evaluated the sensitivity of some features to all kinds of

damages based on data sampled on the real bridge. It was proved that the features

based on modal property were not good at damage identification. R. Koushik et al.

[21] developed an attractive damage diagnosis for mechanical systems. A damage

identification method based on time-series analysis with AR (autoregressive) model is

designed to extract damage feature in [21]. A detection scheme is proposed to detect

structural novelty and locate damage by using the damage features obtained from data.

Peter et al. [22] further presented a feature extraction method based on ARMA

(autoregressive with moving average [22]) modeling. It explored the effectiveness of

AR damage indicators and classification algorithms, and applied statistical methods to

different types of structures.

2.5 Nondestructive Testing Method for Local
Damage Detection

Most of vibration data-based BSHM systems can only locate the approximate areas

and severity of damages. In other words, the specific location and severity of damages,

such as subsurface voids and cracks, are nearly impossible to be determined by these

algorithms. However, the specific location and severity of damages are very important

for government to maintain bridges. Therefore, when the BSHM system detects a
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severe damage, nondestructive testing (NDT) [23] is required to detect the precise

location and size of the damage. In last few decades, many nondestructive testing

techniques and systems are developed to obtain the specific information of damages,

such as Ultrasonic inspection based system, X-ray based system, Ground-penetrating

radar based system, and etc.

2.5.1 Stress Waves

Figure 2.13 shows the principle of stress wave testing method. Impacting the

material surface is used to generate stress waves to propagate through the material at

the sound speed and reflect from outside surfaces, internal crack, and boundaries

surfaces between adjacent different materials. The time used for stress wave to

propagate a required distance can be utilized to detect the location of decay in bridge

structure. When stress waves through decay part, its propagation speed is smaller than

healthy part. Thus, based on the size of material and propagation time, location of

decay can be obtained.

Usually, attenuation of stress wave in decay part is quicker than that in sound

elements. Therefore, the location of decay can be detect by observing the frequency of

propagating stress wave, due to the higher frequency propagating in health part and

low frequency propagating in decayed part.

Figure 2.13 Stress Wave Probing

2.5.2 Ultrasonic Inspection

Figure 2.14 shows the principle of NDT method by using ultrasonic inspection

techniques. The ultrasonic inspection techniques contain the characteristics of the

stress wave with high frequency (usually bigger than 20 KHz) transmitting through

material. Ultrasonic inspection techniques have been widely used to detect

strength-reducing defects in bridge structural members.

In [24], ultrasonic-wave is used to detect the rebar corrosion progression. A

nonlinear ultrasonic based NDT method is presented by Shah in [25] to detect the

concrete. The main lack of using ultrasonic inspection for bridge structural detection

is it is difficultly to effectively obtain ultrasonic coupling between the surface of
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bridge and transducer. Another defect of ultrasonic inspection in bridge structural

NDT is it needs to touch the bottom surface of bridge deck to transmit and receive

ultrasonic wave. Due to the significant attenuation of stress waves with

high-frequency, the propagating distance of stress wave is short. Thus, the ultrasonic

wave based DNT method can effectively detect decay and other defects in very

limited area only, which limits ultrasonic waves to be applied in bridge structures with

large, heavy cross sections.

Figure 2.14 Ultrasonic Testing [24]

2.5.3 Radiography

Radiography technique uses a radiographic source placed on one side of an object

to send radial and a recorder, for example a film, on the other side to record the

received radial. The condition of bridge structural has been investigated by

radiographic techniques based NDT methods are applied to detect the bridge

structural heath condition in laboratory and field. However, portability of equipment

is the main problem in field bridges. Another lack of radiographic techniques based

NDT methods is it is difficult to access the bottom surface of bridge deck to place the

recorder. In [26], X-ray mapping is used to evaluate the penetration of alkalis. Also

we must note the hazard of radial in radiographic techniques to humans. A NDT

method based on analyzing the surface waves in multichannel is proposed in [27].

However, it is expensive and time consuming.

2.5.4 Microwave / Ground Penetrating Radar

Microwave inspection techniques are based on the propagation characteristic of

electromagnetic-waves (shown in Figure 2.15). Ground penetrating radar is travel

microwave inspection technique. It uses an antenna intergrade transmitter and receiver

to send wave and receive the reflected wave. Then based on the reflected wave

techniques can obtain the time difference of two or three difference surfaces. The time

difference can be used to detect the location and size of damages or defects. Chen and

Wimsatt [28] used a 400 MHz antenna to detect the subsurface health conditions in

pavements. Yehia et al. [29] studied many different type NDT techniques, such as
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ground penetrating radar technique and impact echo technique, designed to detect the

health conditions of concrete deck in bridges. Field data complexities and difficulties

in data interpretation limit the application of the abovementioned techniques.

Figure 2.15 Ground penetrating radar [28]

2.6 Problem Definition

As described in above sections, with the developments of technologies in BSHM,

many type vibration-based BSHM systems had been developed and applied in field

bridges, such as BSHM system in Golden Gate Bridge, system in Jindo Bridge, etc.

However there are still many problems in researches of BSHM. Especially in data

analysis, current researches employ many de-noising algorithms for data processing to

reduce the impacts of noises but ignore whether these algorithms perform efficiently

for bridge system which is a nonlinear system, and the problem about the impacts of

varying operational condition and environment on damage identification precision.

Also, for damage diagnosis, how to solve the problems of identification sensitivity

and locating precision are not essentially solved.

2.6.1 Problems of Data Processing in BSHM

In vibration data based BSHM system, measurement noises widely exist in

acquired vibration-data, and are derived from thermal, magnetic and electric effect of

data acquiring devices and observation error. These noises can bring difficulties to

damage identification while the noise pollution of vibration-data is large, because

noises can cover the characteristic changes caused by damages. In order to reduce the

impacts of noises on damage identification to avoid wrong results of damage

identification, many kinds of de-noising methods had been employed for data

processing in BSHM system, such as wavelet transform de-noising algorithm in the

BSHM of Golden Gate Bridge, empirical mode decomposition de-noising algorithm

in the system of Jindo Bridge, ICA in reference [16], and etc.
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Wavelet Transform (WT) is a common method for data processing in BSHM. In

this algorithm, after wavelet decomposition, the wavelet transform coefficients of

signal are bigger than the wavelet transform coefficients of noise. So a suitable

number lambda can be found as threshold, when a wavelet transform coefficient is

less than the threshold, this coefficient at this moment is mainly caused by noise;

conversely, it is mainly caused by the signal. In order to determine appropriate

threshold to reduce noise in the appropriate range, WT usually needs to estimate the

range of characteristic frequency about true signal and noise firstly. If there is no prior

knowledge about the range of characteristic frequency, it is difficult to get satisfied

noise reduction.

ICA (Independent Component Analysis) is another application of data processing in

BSHM. ICA is a famous blind source signals separation technology. In reference [16],

FastICA is chosen to separate the singles from noises and others for de-noising,

because of well known, fast, and representative. As we known, Fast ICA is a linear

ICA algorithm, which is suitable to the processing of signal in linear mixing

environments. Thus, there are some obvious disadvantages in the de-noising of

non-linear signals, such as the vibration signals of bridge.

Empirical model decomposition (EMD) is employed as data processing to de-noise

in many BSHM systems such as the BSHM on Jindo Bridge. It decompose the signal

into many orderly Intrinsic Mode Functions (IMFs) arranged from high frequency to

low frequency. This algorithm achieves de-noising by removing the first IMF from the

decomposition IMFs, because the first IMF is caused by high frequency random noise.

There two defects in this algorithm. First, the first IMF may contain the bridge signal

components, which are the high frequency components of bridge signal possibly.

Second, this algorithm only removed the high frequency part of the noises, thus the

other IMFs remains noises.

In addition to above mentioned data processing methods in BSHM, many other

den-noising algorithms are employed for data processing in BSHM. However, these

data processing methods didn t regard the impact of varying operation condition and

environment on damage indication, because these changes in the data caused by the

varying operation condition and environment maybe regard as an effect of damage

mistakenly. Therefore, how to separate changes caused by the variability from

changes caused by real damage is also a challenge to the field implementation of a

robust SHM system.

Based on above discussion, we can obtain follow problems summarization of

existing data processing methods in BSHM.

1) The de-noising performance is not good in bridge system (nonlinear system)

such as FastICA used in BSHM of reference [16] and wavelet transform in Golden
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Gate Bridge system.

2) The impacts of varying operation condition and environment on damage

identification are ignored by all these data processing method in BSHM.

To solve these above shortcomings, our data processing method should be able to: 1)

effectively minimize the impacts of noises with satisfied reliability. 2) Effectively

minimize the impacts of varying operation condition and environment on data

analysis.

To achieve these goals, two data processing algorithms are proposed. The first is

the optimization of de-noising performance by designing an improved post-nonlinear

ICA de-noising algorithm. The second is designing a novel data normalizing

algorithm based on data matching to eliminate the impacts of varying operation

condition and environment on damage identification. The two algorithms are

introduced in the chapter 3.

2.6.2 Problems of Data Analysis Method for Damage
Detection

Currently, many methods have been proposed by different researchers to identify

structural damage, such as model-based algorithms and feature-based algorithms, for

BSHM. A fundamental difficulty with model based methods is that

physical-parameters acquired from the model updating is likely to unrelated to the

information of real damage (location and severity). Different to model-based

algorithms, the feature-based algorithms detect the changings of structure based on

some damage features without a particular structural-model. The Features used for

damage identification are typically based on mode-shape derivative, natural frequency,

and stiffness-matrix etc. Cheng et al. [16] proposed a feature based algorithm by using

ICA (independent component analysis) to denoise and FFT to detect the changes in

characteristic frequency. Based on the results, the bridge structure damage has been

able to detect. However, the algorithm in [16] cannot detect the severity and location(s)

of damage. Farrar et al. [18, 20] evaluated the sensitivity of some features to all kinds

of damages based on data sampled on the real bridge. It was proved that the features

based on modal property were not good at damage identification.

Lately, SPR (statistical pattern recognition) techniques have been studied in

expectation of seeking a more high-performance method for distributed damage

detecting. Sohn et al. [21] developed an attractive damage diagnosis for mechanical

systems. In [21], ARX (a, b) models of the reference data segments and the

unidentified data are constructed to obtain their model residuals. Hence, ARX residual

sequences of reference and unidentified data can be obtained, which are and

respectively. The researchers define the ratio as DSF
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(damage-sensitive-feature). A changing of damage indicator s values is regarded as

the damaged. A statistical detecting scheme and the damage features obtained by all

data samples were designed to detect the novelty of structure and locate damage. The

main lack of model residual based algorithms is that the sensitivity of the DSF is

easily affected by noise, varying environment and model type easily. [22] reported an

application of AR model residuals based damage diagnosis algorithm in a concrete

bridge. In [22], it successfully applied the AR model residuals in detecting structural

change. An undamaged condition data set is applied for obtaining a reference AR

model. The main lack of model residual based algorithms is that the sensitivity of the

DSF is easily affected by the noise, varying environment and model type easily.

Based on above discussion, we can obtain following problems summarization of

existing damage diagnosis algorithm.

1) The physical-parameters acquired from the model updating is likely to unrelated

to the information of real damage (location and severity) in model based methods.

2) In feature based algorithms, the global feature-based algorithms, such as the

algorithm in [16], cannot minor damage sensitively and locate damage. The damage

feature in not good sensitivity is another problem in feature based algorithm such as

algorithm in [18, 20].

To deal with these above problems, our damage diagnosis algorithm should able to:

1) identify the damages in sensitivity and accuracy; 2) detect damage severity and

locate damages efficiently. To reach these goals, a novel two-stage bridge structure

damage diagnosis algorithm is introduced in the chapter 4.

2.6.3 Problems of Nondestructive Testing Method for
Local Damage Detection

NDT (Non-destructive Testing) based local damage diagnosis algorithm comprises

assessing the health condition of systems and components without destruct them by

using a large number of analysis techniques utilized in science research and industry

production. In last the past few decades, many nondestructive testing techniques and

systems are developed to obtain the specific information of damages.

In [31], a NDT method based on stress wave is proposed. In this method, impacting

the material surface is used to generate stress waves to propagate through the material

at the sound speed and reflect from various surfaces, such as internal crack and

boundaries surfaces between adjacent different materials. The time used for stress

wave to propagate a required distance can be utilized to detect the location of decay in

bridge structure. When stress waves through decay part, its propagation speed is

smaller than in healthy part. Thus, based on the size of material and the time

propagate time the location of decay will be obtained.
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The ultrasonic inspection techniques contain the characteristics of the stress wave

with high frequency (bigger than 20 KHz) transmitting through material. In [24],

ultrasonic-wave is used to detect the rebar corrosion progression. A nonlinear

ultrasonic based NDT method is presented by Shah in [25] to detect the concrete. The

main lack of using ultrasonic inspection for bridge structural detection is difficulty to

effectively obtain ultrasonic coupling between the surface of bridge and transducer.

Another defect of ultrasonic inspection in bridge structural NDT is to touch the

bottom surface of bridge deck to transmit and receive ultrasonic wave. Due to the

significant attenuation of stress waves with high-frequency, the propagating distance

of stress wave is short. Thus, the ultrasonic wave based DNT method can only

effectively detect decay and other defects in very limited area, which limits ultrasonic

waves to be applied in bridge structures with large, heavy cross sections.

The radiography technique uses a radiographic source placed on one side of an

object to send radial and a recorder, for example a film, on the other side to record the

received radial. The condition of bridge structural has been investigated by

radiographic techniques based NDT methods are applied to detect the bridge

structural heath condition in laboratory and field. However, portability of equipment

is the main problem in field bridges. Another lack of radiographic techniques based

NDT methods is difficulty in accesssing bottom surface of a bridge deck to place the

recorder. In [26], X-ray mapping is used to evaluate the penetration of alkalis. Also

we must note the hazard of radial in radiographic techniques to humans. A NDT

method based on analyzing the surface waves in multichannel is proposed in [27].

However, it is expensive and time consuming.

Microwave inspection techniques are based on the propagation characteristic of

electromagnetic-waves. Ground penetrating radar is travel microwave inspection

technique. It uses an antenna intergrade transmitter and receiver to send wave and

receive the reflected wave. Then based on the reflected wave techniques can obtain

the time difference of two or three difference surfaces. The time difference can be

used to detect the location and size of damages or defects. Chen and Wimsatt [28]

used a 400 MHz antenna to detect the subsurface health conditions in pavements.

Yehia et al. [29] studied many different type NDT techniques, such as ground

penetrating radar technique and impact echo technique, designed to detect the health

conditions of concrete deck in bridges. Field data complexities and difficulties in data

interpretation limit the application of the abovementioned techniques. When testing

methods based on electromagnetic waves were used in the past, several serious

problems were encountered. Conventional electromagnetic wave-based testing

methods, such as microwave and ground-penetrating radar, need the total reflected

waveform to calculate the location of subsurface voids using time delay. However,
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considering the frequency limitations of the oscilloscope and A/D converter, it might

be difficult to clearly capture the waveform at high frequencies (higher than 1 GHz).

In addition, it is difficult to separate the incident and reflected waves.

Based on above discussion, to order to solve these problems of existing NDT

technologies, our NDT system should have the following function: 1) detect the

location and the damage severity which has not only high accuracy, but also

resolution; 2) detect and locate damages economically and efficiently. To reach these

goals, we then introduce the idea of standing-wave based structure nondestructive

testing system for local damage information detection in the chapter 5.
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Chapter 3

Improved Nonlinear ICA based Data

Processing Method

3.1 Introduction

In vibration based bridge structural health monitoring (BSHM) system, the main

purpose of BSHM is to evaluate the health condition of bridge structure by analyzing

the vibration data of bridge. The key issue of this type BSHM system is how to detect

the damages in sensitive and accuracy by analyzing the vibration data. Attribute to use

more and more advanced hardware facilities for BSHM system, the measurement

errors is reduced significantly. However, these devices cannot make the acquired

vibration-data avoid the measurement noises, which can affect the precision of

damage diagnosis significantly by covering the characteristic changes caused by

damages. Otherwise, during deploying a BSHM system on a field bridge which is

exposed to outside varying operation condition and environment, the changes in the

data caused by the variability of operation condition and environment maybe regard

as an effect of damage mistakenly. Therefore, design of a data processing method to

de-noise and eliminate the impacts of varying operation condition and environment is

an indispensable mean for detecting damages accurately.

In the research, to deal with these problems, a two-stage data processing method,

including a new de-noising algorithm and a novel environment impact reduction

method, is proposed to efficiently de-noise in nonlinear system and reduce the impact

of varying operation condition and environment on data analysis. To achieve

efficiently de-noising an improved post-nonlinear geometric-linearization ICA

algorithm is designed for data processing in nonlinear system. After de-noising, in

order to reduce the impact of varying operation condition and environment, a novel

environment impact reduction method based on similarity matching is proposed. The

simulation and experiment results of the two methods show better performance.
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3.2 Overview of Proposed Data Processing

Method

In order to effectively solve above discussed noisy vibration data problem and

varying environment (complex working condition) impact, a two-stage data process

method is proposed in this charter. The proposed diagnosis scheme consists of the two

stages shown in Figure 3.1.

Figure 3.1 Two-stage data process method

The method of first stage is designed to reduce the impact of noises, and the

method of second stage is proposed to reduce the impact of varying environment and

operation condition. In the first stage, to achieve efficiently de-noising in nonlinear

system (bridge system), an improved post-nonlinear geometric-linearization ICA

based de-noising method is designed for processing vibration data. In this improved

ICA algorithm, compensation based scheme is proposed to reduce the linearization

error caused by the linearization scheme of the post-nonlinear geometric ICA. In the

second stage, in order to reduce the impact of varying environment, a novel

environment impact reduction method based on similarity matching is proposed. In

the method, data samples are divided into two set, health condition data set and

unknown condition data set. AR model is used to extract the features of each data

samples in the two sets. Based on these features, a data matching scheme based on

Euclidean distance is designed to obtain the data sample pair (one data sample of

health condition data set and anther in unknown condition data set) measured in a

similar environment. In this way, the change of structure caused by varying

environment is reduced effectively.

To summarize, the data process scheme includes data de-noising and impact

reduction of varying environment and operation condition. Formulations for the two

stages are presented in the following subsections.
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3.3 Improved Nonlinear-ICA based De-noising

Method

3.3.1 Post-nonlinear Geometric ICA

Post-nonlinear (PNL) mixtures are proposed first by Taleb. The PNL model

consists of two stages, the linear stage and the nonlinear stage. In [1], a post-nonlinear

ICA, named pgICA (post-nonlinear Geometric ICA), is proposed and divided the

demixing process into the two stages. Since the linear ICA algorithms are mature

comparing with nonlinear ICA, the advantage of pgICA is it can utilize any kind of

linear ICA algorithms in the second stage, to deal with various problems.

The pgICA algorithm consists of two stages: a geometry based linearization stage

and a demixing stage by linear ICA algorithm. m blind source signals is presented in

equation (3.1). Equation (3.2) formulates the linear mixing and nonlinear mixing of

ICA, and the equation (3.3) shows vector x. In equation (3.2) the nonlinear function is

defined as f and A is defined as the n × m full rank matrix. A separation system is

needed to be established to obtain the source signal s. Thus, we need to search a

mapping G: Rn Rm such as equation (3.4), where y, shown in equation (3.5),

represents the estimates of source signal s; g and w represents the inverted

nonlinear-function (linearization function) and inverted-matrix. The two levels of

pgICA are shown as Figure 3.2.

(3.1)

, (3.2)

T
n txtxtxx ]),(,),(),([ 21 (3.3)

)(xGy )(Wxg (3.4)

T
m tytytyy ]),(,),(),([ 21 (3.5)

Figure 3.2 Two levels of the pgICA
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A geometric viewpoint is applied in the pgICA to deal with the nonlinear problem.

Generally, a linear-mixture signal and a nonlinear-mixture signal are able to be

denoted by plane and curved surface in three-dimensional space respectively, such as

the signal v and signal x in Fig 3.2. In this way, firstly the distribution of inputs is

represented in a 3D space by pgICA. And then the distribution of inputs is

geometrically transformed to planes by pgICA, and linear-mixture corresponded to

that plane is funded. In the geometric transformation, t

is given to the points that belong to the 3D plane, which have equal position in x and y

coordinate axis (unknown values). To recognize such points, the mixture s time-index

is used to find a companion point; when , a sample of nonlinear-mixture

signal xi is denoted as x1(t1). Thereafter, (s1(t1), s2(t1), x1(t1)) is the coordinates of the

point in the surface of signal , which is point p1 = (s1(t1), s2(t1), s1(t1)). Otherwise, a

k is used as a referenced plane and the other surfaces i are transformed

by this When a surface is chosen as the fake plane in this time

transforming, the fake plane may change to another in the next transforming process

period. At last, a linear ICA is used to de-mix the transformed linear-mixture to obtain

the source signals.

To introduce pgICA, the process in detail for two observed signals, signal xk and

signal xi, is given to introduce the method. There are two case needs to be considered.

Case 1: observed signals have a linear mixture signal and a nonlinear mixture signals.

Case 2: observed signals only contain nonlinear mixture signals. The steps are shown

as follow.

(1) In case 1, randomly select a linear mixture signal xk (plane) as reference plane

k to linearize other surface. In Case 2, randomly select a nonlinear mixture

signal xk, (surface) as a fake plane named k. The other surface is called i, and

cont = 0. The processes of geometric linearization of case 1 and case 2 are

shown as Fig 3.3 and Fig 3.4 respectively. The different between case 1 and

case 2 only exist in this step. Other steps of the two cases are the same. So, we

only give the flowchart of case 2 in Fig 3.5 for explaining.

(2) Pick two random points pk1 = (s1(t1), s2(t1), xk(t1)) and pk2 = (s1(t2), s2(t2), xk(t2))

from k. Locate their respective companion points qi1 and qi2 in the surface i.

(3) Select an arbitrary point pkc = (s1(tc); s2(tc); xk(tc)) between pk1 and pk2, and its

companion point qix in i and qic on straight line qi1qi2. Get the value zi(tc) of

point qic = (s1(tc); s2(tc); zi(tc)) using equation (3.7).

(3.7)

(4) Update xi(tc) by computing xi
new(tc) using equation (3.8). belongs to [0, 1].

(3.8)
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(5) If cont Nk then cont = cont + 1 and go to step 2. Else, cont = 0 and compute

the error using equation (3.9) and then go to next step. is the amount of

points updated in every iteration.

(3.9)

(6) If (stopping threshold of linearizing) go to (2). Else, the linearizing

process is stopped. Go to the next step.

(7) Sort the linearized signal zi according to an ascending order and name the sorted

signal as zi
s. Smooth zi

s by using the averaging function, equation (3.6).

(3.6)

(8) Restore the original order of the smoothed signal to produce signal zi. This

nonlinear geometric transformation algorithm for n observations is the same as

when . Then the signal xk is used to transform other signals. After

linearizing all signals, the signal xk is transformed by the plane of signal zi. Then

use linear ICA to separate these linearized signals.

Figure 3.3 Geometric linearization process of the pgICA in case 1

Figure 3.4 Geometric linearization process of the pgICA in case 2
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Figure 3.5 Flowchart of pgICA

3.3.2 Problem of Post-nonlinear Geometric ICA

We have previously [1] discussed three issues related to unavailability while using

the geometric linearizing technique in pgICA. The first and second issues are solved

in [1]. The third issue relates to vagueness in the point qc line q1q2. Due to the

unknown first-two coordinates, if pc line p1p2 can t be ensured. Thus, as

introducing in [1], the Proposition 2 s reverse can t been hold always. It means not

only one point can satisfy Proposition 2. The completed solution has not been found

in [1] to remove the vagueness. A local transforming and a position update algorithm

is applied in [1] to lower the vagueness.

In local transformation, we averagely divided the surface into small cells according

to the amplitude of the observed signal. However, this could result in the number of

samples in one cell being far smaller or bigger than the number in other cells, due to

non-linear distortion of cells. As a result, the algorithm would not work. To address

this, we have improved the local transformation. We arrange the amplitudes of

observed signals in ascending order. Based on this, we determine the total number of

cells, named CellNum. The surface is divided into CellNum cells. Thus, the number

of samples in each cell is the same, but the amplitude of signal in every cell is

different. The geometric linearization transformation is carried out in these cells. In

this way, the problem of local transformation is solved.

In addition, a position update algorithm is applied to lessen the inaccuracy in [1]. In
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this algorithm, in order to replace the operation of pulling to the right position ,

a learning-rate is utilized for updating . The transformation takes longer,

but it converges to a plane in steady. Equation (3.8) shows the updating-function. In

order to easily understand this linearization algorithm, a transversal cut over line p1p2

of the 3D plane is projected to the YZ axis as shown in Figure 3.6, where these points

are p1(-, -, xk(t1)), p2(-, -, xk(t2)), pc(-, -, xk(tc)), p c(-, -, zk(tc)), q1(-, -, xi(t1)), q2(-, -,

xi(t2)), qx(-, -, xi(tc)), q c(-, -, zi(tc)), and qc(-, -, z i(tc)).

Figure 3.6 3D plane projected to YZ axis

From Fig 3.6, we can get equation (3.10), where xi(t2 xi(t1) > 0. As shown in

Figure 3.6, qx is under the line q1q2. In the original geometric linearization algorithm,

the reference plane is a real plane, but there is no real plane in the practical pgICA;

pgICA utilizes a fake plane, resulting in an error. zi(tc) is the value of tc when the

reference plane is the fake plane. Based on the above discussion and equation (3.7),

we can get equation (3.11).

(3.10)

õ

õ

÷ (3.11)

As shown by equation (3.11) and Figure 3.5, using q'
c instead of qx leads to move

too much phenomenon, which creates the point qc. When < 0, xi(t2) xi(t1) < 0, and

qx is under the line q1q2, this problem still exists.
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÷ ÷ (3.12)

3.3.3 Improvement of Post-nonlinear Geometric ICA

To solve this problem, a compensation algorithm is proposed for pgICA. From

equation (3.11), we can obtain equation (3.12). Equation (3.12) shows the value of qc

equal to q'
c (ideal value) plus a floating up and down deviation. If a method can

reduce the deviation, we can calculate the position of qc more accurately and

transform the surface to a plane more accurately. Thus, we can limit the value of 2

and 2 to make the transformation more accurate.

Herein, we decribe our compensation algorithm in detail. We set

(3.13)

As shown in Figure 3.6, when k1 = k2, we get a perfect line q1 q'
c q2. We can use

the position relation between point pc and line p1p2, the position relation between qc,

q'
c and line q1q2, and by equation (3.12), we obtain the compensation algorithm as

shown in equation (3.15) and equation (3.16). The new compensated z'
i(tc), named

zc
i(tc), is obtained from the z'

i(tc) calculated in equation (3.11). Note that the zi(tc) in

equation (3.7) is the same as the z'
i(tc) in equation (3.11).

When k2 > 0 and |k1| > |k2|,

(3.15)

When k2 < 0 and |k1| < |k2|,

(3.16)

' = z'
i(tc) xi(tc) and take it into equation (3.12), and we get equation (3.17)

and (3.18). We use the position of qx and q'
c to compensate for the inaccuracy in the

position of qc

zc
i(tc) = zi(tc)

')k2 (3.17)

zc
i(tc) = zi(tc)

')k2 (3.18)

Based on this compensation algorithm, we improve the pgICA and obtain the

improved algorithm, named post-nonlinear compensated geometric ICA (pcgICA).

The flowchart and steps of pcgICA are shown as follows and Fig 3.7.

(1) Use the improved local transformation algorithm described above to divide
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surfaces into small cells.

(2) Select a fake plane named k. The other surface is called i.

(3) Pick two random points pk1 = (s1(t1); s2(t1); xk(t1)) and pk2 = (s1(t2); s2(t2); xk(t2))

from the surface k. Locate their respective companion points pi1 and pi2 in the

surface i.

(4) Select an arbitrary point pkc = (s1(tc); s2(tc); xk(tc)) between pk1 and pk2, and its

companion point qic in i. Find the value z i(tc) of point pic = (s1(tc); s2(tc); z i(tc))

using equation (3.7).

(5) Use equation (3.15) and (3.16) to get the compensated value zc
i(tc) of point qic.

(6) Compute xi
new(tc) using equation (3.8).

(7) If cont Nk then cont = cont + 1 and go to step 2. If cont = 0, go to next step.

(8) Compute the error using equation (3.9). If

linearizing process is stopped. Go to next step.

(9) Sort the linearized signal zi in ascending-order, and smooth the sorted-signal

using the averaging function, equation (3.6).

(10)Restore the original order of the smoothed signal to produce signal zi, which

are utilized for the inputs of the linear-ICA. The plane of signal zi is utilized as

the fake-plane for transforming other signals the signal xk.

(11)Use FastICA to separate the linearized signals.

Figure 3.7 Flowchart of improved pgICA (pcgICA)
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3.3.4 Improved nonlinear ICA based De-noising Method

This proposed de-noising method is consists of these steps shown as follows. The

flowchart of this method is shown as Figure 3.7

Step 1: Using proposed compensation scheme to improve the linearization

process of post-nonlinear geometric ICA.

Step 2: Use the improved nonlinear ICA to separate the signals of the bridge

from others (such as noise, car, and etc.). In this improved ICA, Fast-ICA is

chosen for the linear separation process, since it is well known, fast, and

representative.

Step 3: After signal separation, Fast-ICA calculates the power value to check

Power value calculation is important for linear ICA and is useful for choosing

bridge. In this way, the acquired vibration data is de-noised and used for

damage diagnosis.

Figure 3.7 Flowchart of improved pgICA based de-noising method
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3.4 Experiments of Improved Nonlinear ICA

3.4.1 Simulation 1 of Improved Nonlinear ICA (pcgICA)

Two signals are used in this simulation, s1(t) is a sinusoidal signal shown as

equation (3.19), and s2(t) is a noise uniform distributed in [ 1, 1]. Two linear mixtures,

v1 and v2, are generated by mixing matrix A is used to generate the linear-mixture

and linear-mixture . Matrix A is composed of the random-numbers of [ 1, 1]

shown as equation (3.20). Equation (3.21) is used to distort the two linear-mixtures to

produce the observations x1 and x2. In this simulation, the sample size N equal to 3000,

the µ equal to 0.2, the window size of smoothing-function L equal to 151, and the

error-threshold equal to 0.002. The number of cells CellNum = 10.

Figure 3.8 shows the 3D plots of linear mixtures v1 and v2. Since v1 and v2 are the

linear mixtures of source signals s1 and s1, they are planes. Figure 3.8 shows the 3D

plots of the nonlinear mixtures x1 and x2, which are obtained by non-linear mixing.

Figure 3.9 shows the linear mixtures z1 and z2. The mixtures z1 and z2 are linear

signals because the geometric linearization algorithm of pcgICA was used to linearize

the nonlinear mixtures signals x1 and x2. Thus, in Figure 3.9, the signals z1 and z2 are

planes. After linearizing signals, the FastICA is utilized for zi to separate and obtain

the source-signal s estimates yi. The source signals , , nonlinear mixture signals

, , and separated signals , are shown in the Figure 3.10. Figure 3.10

shows the separated signal well reflects the characteristic of the source signal.

The correlation-coefficient between a source-signal si and its estimate ,

is used to measure the performance. The correlation-coefficient was computed by

using equation (3.22). The estimate of the ith source-signal si belongs to the outputs

yi , and the correlation-coefficient s absolute, |r(yi, si)|, is the biggest.

We utilized the index, , to compare FastICA, pgICA and pcgICA. Table 3.1

shows the results. the table shows our algorithm pcgICA performs better than others.

Compared to FastICA and pgICA, the correlation-coefficient of our method is

improved 37.4% and 8.1%, respectively. Thus, the results indicate that the

linearization algorithm of our algorithm is more accurate than that of pgICA.

(3.19)

(3.20)

(3.21)

(3.22)
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Figure 3.8 3-D diagram of linear signals v1, v2 and nonlinear signals x1, x2

Figure 3.9 3-D diagram of Linearized signals z1 and z2
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Figure 3.10 Source signals , , nonlinear mixture signals , , and separated signals ,

Table 3.1. Correlation coefficient comparison

algorithm r(s1, s'
1) r(s2, s'

2)

FastICA 0.91 0.53

pgICA 0.95 0.91

pcgICA (our algorithm) 0.99 0.98

The signal-noise-ratio (SNR) is also used to measure the performance. The SNR

was computed by using equation (3.23). Table 3.2 shows the SNR results of FastICA,

pgICA and pcgICA. The table shows our algorithm pcgICA performs better than

others. Compared to FastICA and pgICA, the SNR of our method is improved 51.8%

and 16.3%, respectively. Thus, the results indicate that the linearization algorithm of

our algorithm is more accurate than that of pgICA.

(3.23)

Table 3.2. SNR comparison

algorithm SNR( ) dB SNR( ) dB

FastICA 13.57 8.01

pgICA 19.37 15.25

pcgICA (our algorithm) 21.417 18.84

3.4.2 Simulation 2 of pcgICA

Source signals used in this simulation are shown as Figure 3.11, which are

from http://www.bsp.brain.riken.jp/ICALAB/ and choose the Speech4.mat data.

Linear mixture matrix A is used to generate the linear-mixture signal , , ,

A
m

p
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tu
d

e
(-

)

Data print (-)
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and . Matrix A is composed of the random-numbers of [ 1, 1] shown as

equation (3.24). Equation (3.25) is nonlinear mixture function to distort the four

linear-mixtures to produce the observations x1, x2, x3, and x4. In this simulation,

the sample size N equal to 5000, the µ equal to 0.2, the window size of

smoothing-function L equal to 151, and the error-threshold equal to 0.01.

Figure 3.11 Source signals of simulation 2

8994.03806.02290.08582.0

4642.01318.07012.07758.0

0014.02596.01866.03966.0

4275.08562.02723.07056.0

A

(3.24)

(3.25)

Figure 3.12 shows the mixed signals x1, x2, x3, and x4. To show the advantage of

improved pgICA, I compare my method with Fast-ICA and pgICA. Figure 3.13,

Figure 3.14, and Figure 3.15 shows the separated signals of using Fast-ICA, pgICA,

and improved pgICA (pcgICA) respectively. Compare these three result figures with

the source signals Figure 3.11, the separated signals of using pcgICA is more better

than other two methods. To further verify the advantage of pcgICA, the results of

correlation-coefficient between a source-signal si and its estimate , are

A
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p
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tu
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e
(-

)

Sampling point (-)
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shown in the table 3.3. The table shows our algorithm pcgICA performs better than

others. Compared to FastICA and pgICA, the correlation-coefficient of our method is

improved 0.39 (51.8%) and 0.17 (16.7%) averagely, respectively. Compare with the

results of simulation 1, Table 3.1, the more complex (more mixture signals) mixture

data is, the greater advantage my method has. Thus, the results indicate that the

linearization algorithm of our algorithm is more accurate than that of pgICA.

Table 3.3. Correlation coefficient comparison

Method r(s1, s'
1) r(s2, s'

2) r(s3, s'
3) r(s4, s'

4)

Fast-ICA 0.41 0.35 -0.54 -0.62

pgICA 0.68 0.62 -0.64 0.87

Improved pgICA 0.76 0.84 -0.91 0.99

Figure 3.11 Mixed signals of simulation 2

Figure 3.12 Separated signals of Fast-ICA
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Figure 3.12 Separated signals of pgICA

Figure 3.13 Separated signals of pcgICA

3.4.3 Experiment of Improved Nonlinear ICA

3.4.3.1 Data of Nakajima Bridge Experiment

The Seiran Bridge was selected for our research because it satisfied all the demand

conditions, healthy, made of steel, and easy for the placement of a sensor node. In this

experiment, the vibration was sampled using accelerometer sensors. Data from the

bridge pier and beam were measured. The location of sensors is described in Figure

3.14 and Table 3.4. The acquired original data are as follows. Original sampling

frequency was 200Hz, and the number of samplings was 15,000. In this experiment,

from 9:30 to 16:00, we successfully took 10 times measurements, and once

measurement every half an hour. In order to avoid data corruption case by

transmutation, we repeatedly perform 3 times data acquiring per times measurement.
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Figure 3.14 Deployment of sensors on beam and pier

3.4.3.2 Performance Evaluation of De-noising Method

In order to shown the performance of pcgICA in field bridge experiment, it is use to

analyze the data of this field bridge experiment to obtain the signal of bridge. As is

well known, if we directly use FFT to obtain the spectral pre-analysis of the original

signal, the result will show many frequencies due to various kinds of noise. Thus, the

spectral pre-analysis is used to shown the de-noising performance. We describe the

analysis results of the data in x-axis and y axis from the sensors A, sensor B, and

sensor C deployed on the pier of bridge, and at 10:30 a.m. Here, we arbitrarily select

8,000 samples of original data as analysis target.

The chosen data samples of the x-axis data in sensors A, B, and C are shown in

Figure 3.15. The FastICA of Hyvarinen was used in the linear-stege of pcgICA and

pgICA, where the nonlinear function is chosen as g(µ) = µ3, randomly choosing W

in initial, and the value of the stopping criterion equal to 0.0001. Figure 3.16 show

the separation result of pcgICA.

Figure 3.15 8000 data samples of original data in x-axis

A

B

C
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Figure 3.16 Signals separated by x-axis data using pcgICA

By using the eigenvalue analysis of FastICA, the first demixed-signal contains the

most powerful and biggest eigenvalue in the x-axis. It is considered as the signal of

the bridge, because our sensors were set directly on the bridge. The power values of

the separated signals are shown in Figure 3.17. Thus, the first separated signal is

chosen for spectral analysis, and the result shows its frequency in the x-axis is equal

to 3.2 Hz, as shown in Figure 3.18. The spectral analysis results of other signals (car,

noise) are shown in Figure 3.19 and Figure 3.20. From Figure 3.21, we can see that

the FFT results of the two signals are not clear enough to obtain their frequency.

When we use ICA to separate the signal of the bridge, we cannot perfectly separate

other signals from the bridge signal. However, ICA can considerably reduce the effect

of noises, as verified by Figure 3.18 and Figure 3.21.

Figure 3.17 Power values of three separated signals

(1)

(2)

(3)
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Figure 3.18 Spectral analysis of separated signal 1 in x-axis

Figure 3.19 Spectral analysis of separated signals 2 in x-axis

Figure 3.20 Spectral analysis of separated signals 3 in x-axis
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Figure 3.21 Spectral analysis of separated signal 1 in y-axis

By using the accessory eigenvalue-analysis of FastICA, the second demixed-signal

contains the most powerful and biggest eigenvalue in y-axis. Thus, it can be look as

the signal of bridge and selected for spectral analysis. Figure 3.21 shows the result of

using FFT, where the frequency of the signal in y-axis is equal to 3.2 Hz. Because of

few noises in the signal, the primary frequency is acquired cleanly and easily.

In order to verify the effectiveness of ICA in various potential excitations, before

performing this experiment our research group implements many bridge diagnosis

simulations and experiments by using ICA, FFT and Spectral analysis. These

simulation experiments are described in [4] [5]. In these simulations, we adopted

identical excitation for identification such as the fixed size impact (300N), the fixed

speed wind (10 m/s, 20m/s, 30m/s and 40m/s) and the fixed weight vehicle running in

fixed speed. These excitations were added on the undamaged bridge and damaged

bridge. The analysis result shows that the identified characteristic frequency of

healthy bridge keeps no change with the increase of the wind, impact or vehicle

running speed. Also, the characteristic-frequency is reduced when corrosion existing.

Thus, these simulations and bridge experiments verify the effectiveness of ICA in the

situation of running vehicle as excitation. Although the bridge vibration signal and

vehicle vibration signal seem dependent, the analysis results of these simulations and

experiments show ICA can separate the bridge vibration signal from other vibration

signals or noise successfully. It means the basic assumption of independent between

Comparing FastICA and pgICA with pcgICA

In order to show the advantage of the pcgICA algorithm, a comparison between the

pcgICA, pgICA, FastICA, and wavelet threshold based de-noising method in the same

signals is presented in this subsection. The comparison between the four methods in
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x-axis is shown in Figure 3.22, Figure 3.23, Figure 3.24, and Figure 3.25. Figure 3.26,

Figure 3.27, Figure 3.28, and Figure 3.29 show the comparison between the four

methods in y-axis. The results of Fast-ICA and wavelet threshold based method show

that although the frequency of the bridge is found to be 3.2 Hz, the FFT result does

not clearly distinguish which frequency belongs to the bridge. Even in the case, the

noise degrees are too large to difficultly search the bridge s frequency. As is well

known, the result of the spectral analysis of a bridge s signal needs to be as clear as

possible. Figure 3.25 and Figure 3.29 indicate that pcgICA is better than Fast-ICA,

wavelet threshold based method and pgICA in this regard.

Figure 3.22 Results of FastICA in x-axis

Figure 3.23 Results of Wavelet threshold based method in x-axis
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Figure 3.24 Results of pgICA in x-axis

Figure 3.25 Results of improved pgICA (pcgICA) in x-axis

Figure 3.26 Results of Fast-ICA in y-axis
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Figure 3.27 Results of Wavelet threshold based method in y-axis

Figure 3.28 Results of pgICA in y-axis

Figure 3.29 Results of pcgICA in y-axis
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3.5 Similarity Matching based Environment

Impact Reduction Method

3.5.1 Overview of Environment Impact Reduction Method

As discussed in section 2.6, the varying environment and operation conditions can

affect the dynamic vibration data of bridge structure significantly. Therefore, the

acquired data needs to be processed to eliminate the influences of the varying

environment and operation conditions. However, although environment such as wind

and temperature can be simultaneously measured with structural responses, it is

difficult to acquire the quantitative measurement of operation conditions such as

traffic-flow in BSHM. To solve this problem, a novel environment impact reduction

method based on similarity matching is proposed. The flowchart of proposed method

is shown in the Figure 3.30. By using our proposed scheme it is no need to measure

the condition of environment and operation when the vibration data is sampled. The

data recorded in the undamaged condition should cover as many conditions of

environment and operation as possible.

Figure 3.30 Flowchart of proposed method

3.5.2 Data Samples Set Partition Procedure

In order to eliminate expediently, two data samples sets are generated, which are

used for the health condition and the unknown condition of the bridge respectively.
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The set of data samples corresponded to the health condition is defined as SU, while

the SD is defined as the set in unknown condition. For data sample SD, the elimination

scheme is used to search a referenced data-sample of SU that is likely to have been

sampled under similar environment and operation conditions.

3.5.3 Similarity Matching Procedure

Practically, our proposed elimination scheme is a similarity matching process. A

finding is implemented on many data-samples to get the data samples within a

distance (defined by user) between it and a target data-sample. In this scheme, data

samples are transformed to a number of features by using AR model. And then the

similarity-measures are employed to search the data sample matched to the target

data-sample. Thus, the random data-samples in is represented by , and the

random data-samples in is represented by . Here, an autoregressive model

(AR) is applied to constructed models for and , which are shown as

equation (3.26) and (3.27), where the AR mode s order is p, is the coefficient

of AR, also is AR s coefficient, ux(n) represents the white-noise inputs

containing the variance of , and is defined as the white-noise inputs

containing variances of . In the meaning of second-order statistics, the character of

a time-series is able to be presented by the AR s coefficients and the

corresponded-input. Thus, we can regard or to a type of

feature of or . Since measured-data is divided into many data samples,

only one of the data samples from a given set is selected to create the AR model, in

order to reduce the modeling times. After modeling all the data-samples of and

by using Equation (3.19) or (3.20), we obtain two feature spaces, FU and FD,

which correspond to SU and SD respectively. So any data can find a mapping with a

point or a point in FU or FD.

(3.26)

(3.27)

Thereafter, similarity matching is performed by searching a point {ax(k), x
2},

which is similar to a target point {ay(k), y
2} of FD (the target point is mapped by

certain data in FD) in space FU. The hierarchical similarity search algorithm

[2], is applied to search for the aforementioned data

point. The adaptive similarity-measures and a hierarchical-scan are implemented in

the extracted-features of data samples SU. x
2 or y

2 also can be looked as the input for

a linear system, and equation (3.21) is used for finding a certain target-point {ay(k),

y
2} to choose a less part of features in FU. In equation (3.21), 1 is a

specified-difference from x
2 to y

2. Therefore, we obtain a subset FU
s1, including the
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feature points which satisfy equation (3.21). The value of 1 is based on the matching

speed and accuracy we demand. For example, if we want more accuracy, we need

make the value smaller, which will make subset FU
s1 contain more points.

Thereafter, the next similarity-measure is utilized for further seeking in subset FU
s1.

In equation (3.22), 2 represents a similarity-coefficient containing specified value.

The value of 2 is determined in almost the same manner as that of 1. The value of 2

FU
s1 can pass the test, and these passed

feature points constitute a smaller subset, FU
S2. At last, the Euclidean-distance from

the target-point to every feature point of FU
S2 is calculated, and the feature point with

the minimum Euclidean distance, shown as equation (3.23), is regarded as the one

matched to the target-point. Thus, a matched data-sample pair is constituted by the

data sample corresponded to the target-point of FD and the point of FU which matched

to the target-point. All the data samples in SD are matched by performing the above

similarity matching process to obtain their data sample pairs.

(3.21)

(3.22)

(3.23)

3.6 Performance Evaluation of Environment

Impact Elimination Method

In order to shown the performance of similarity matching based environment

impact elimination method, the data of 10 times measurements are used. In order to

display the influence of varying operation condition and environment on bridge

structure properties such as characteristic frequency, the pcgICA and FFT are used to

obtain the characteristic frequencies of 10 times measurements. Here, we still choose

the data in x-axis and y axis from the sensors A, sensor B, and sensor C, from 9:30 to

4:00. The temperatures of 10 times measurements are shown in table 3.4. The

calculated characteristic frequencies of 10 times measurements are shown in the

Figure 3.31. From Figure 3.31, the frequency decrease with the temperature increase.

The frequency variation is up to 4.55%, which means the varying environment can

affect the characteristic frequencies of bridge structure significantly.



61

Table 3.4 10 times measurements

Measurement

Number

Measurement

Time

Temperature

(Degree)

Measurement

Number

Measurement

Time

Temperature

(Degree)

1 9:30 11.4 7 13:30 24.4

2 10:00 12.2 8 14:00 21.3

3 10:30 13.6 9 14:30 19.3

4 11:00 16.1 10 15:00 16.4

5 11:30 18.7 11 15:30 14.1

6 12:00 25 12 16:00 12.5

Figure 3.31 Frequency vs temperature

In order to further shown the impact of the varying environment on structure

frequency, the data of second measurement is used as the reference to obtain the

frequency variation between it and the other measurements. The frequency variation

is shown as the black points in Figure 3.33. To verify the effectiveness of our

proposed elimination method, we employ the data of first 6 measurements as

undamaged condition, and the data of others 6 measurements are use as unknown

condition. Our proposed method is applied to obtain the matched data pairs. The

matched results are shown in Figure 3.32. After data matching, FFT are used to obtain

the frequency of the data in the two conditions. The frequency variation of this case is

shown as the read points in Figure 3.33. From Figure 3.33, we can get that by using

our elimination method the frequency variation is very small, about 0.013% per

degree. Our proposed method can effectively reduce the impact of the varying

environment.
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Figure 3.32 Matched results

Figure 3.33 Frequency variations in using and without using proposed method
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3.7 Summary

In vibration based BSHM, The key issue of this type BSHM system is how to

detect the damages in sensitive and accuracy by analyzing the vibration data. Attribute

to use more and more advanced hardware facilities for BSHM system, the

measurement errors is reduced significantly. However, these devices cannot make the

acquired vibration-data avoid the measurement noises. Otherwise, during deploying a

BSHM system on a field bridge, the changes in the data caused by the variability of

operation condition and environment maybe regard as an effect of damage mistakenly.

Therefore, design of a data processing method to de-noise and eliminate the impacts

of varying operation condition and environment is an indispensable mean for

detecting damages accurately.

In the research, to deal with these problems, a new data processing method,

including a new de-noising algorithm and a novel data normalizing algorithm, is

proposed. To achieve efficiently de-noising an improved post-nonlinear

geometric-linearization ICA algorithm (pcgICA) is designed for data processing in

nonlinear system. In this improved ICA algorithm, compensation based scheme is

processed to reduce the geometric-linearization error caused by the original

linearization scheme of the post-nonlinear geometric ICA (pgICA).

After de-noising, in order to eliminate the impact of varying operation condition

and environment on data analysis, a novel environment impact elimination method

based on AR model and similarity matching is proposed. In this algorithm, acquired

vibration data samples are divided into two sets, undamaged condition data set SU and

unknown condition data set SD. AR model is used to extract the features of each data

samples in the two sets. Based on these features, a similarity matching scheme based

on Euclidean distance is designed to obtain the data sample pair, one sample of SU and

one of SD, which are sampled in a similar operation and environment condition. Thus,

the change caused by varying operation condition and environment is eliminated.

To verify the advantage of our algorithm, pcgICA, it is compared with FastICA and

pgICA by calculate the correlation-coefficient and signal-noise-ratio (SNR) in

simulation. Comparing with FastICA and pgICA, the average correlation-coefficient

of pcgICA is improved by 0.39 (62.1%), and 0.17 (16.7%) respectively, the SNR is

improved by 51.8% and 16.3% respectively. In Nakajima bridge experiment, the

results shows pcgICA also is better than FastICA and pgICA. To verify the

effectiveness of the proposed environment impact emilination algorithm, the data of

Nakajima bridge experiment is used. The results shows using our method can

effectively eliminate false damage detection caused by varying environment. It means

our proposed method is efficient.
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Chapter 4

Time-series Modeling based Damage

Detection Method

4.1 Introduction

After data processing, the accuracy and sensitivity of damage diagnosis algorithm

directly determines the performance of BSHM system. How to identify damages

sensitively and how to accurately detect the damage severity and location become

major problems in vibration data based BSHM system. To deal with these problems,

many vibration data based damage diagnosis algorithms are designed. However, most

of these algorithms detect damages of bridge structure by comparing the vibration

data in current status condition with the vibration data in health condition. Actually,

there is no vibration data corresponding to health condition or difficult to obtain in

many old bridges. Thus, how to detect damages by only using the data in current state

is another problem. The backgrounds promoted design of advance and sensitivity

damage diagnosis algorithm. In this chapter, a novel two-stage bridge structure

damage diagnosis algorithm is proposed to evaluate the health of bridges, including

damage identification and damage servility and location detection. In the first stage,

after data processing, FFT is used to obtain the characteristic frequency of bridges. By

comparing the frequency in a healthy state with an unknown state, we detect the

structural novelty (damage identifying).

In second stage, to detect the severity and location of damage, a statistical damage

detection algorithm, called Time-series modeling based damage diagnosis algorithm,

is proposed. ARMA model is used to establish models for the processed data to

perform feature extraction, where PCA (principal component analysis) is employed to

reduce the amount of features. A new damage sensitive feature index with high

sensitivity, Dindex, is proposed to obtain the severity and location of damages.
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4.2 Overview of Proposed Damage Detection

Method

Generally vibration data of structure excited by environment are acquired and used

in structure damage diagnosis. Thus, there is an assumption for the proposed damage

detection algorithm: The monitoring system can only obtain the output vibration data

because of free input excitations (environment excitations or random traffic loading).

The proposed diagnosis scheme consists of the two stages shown in Figure 4.1.

Figure 4.1 Proposed two-stage damage detection method

The first stage detects the novelty of the bridge structure, and the second stage

detects the severity and location(s) of damages. In the first stage, after de-noising and

normalizing, FFT is used to extract the characteristic frequency of healthy state and

unknown state for the structural novelty detection. The second stage is utilized to

locate damages and detect the severity sensitively. In this stage, a statistical damage

identification algorithm, called time-series modeling based Damage Diagnosis

Algorithm, is proposed. At first, the data samples are used to establish ARMA model.

Based on the model, the pattern vectors perform feature extraction, where PCA is

utilized to carry out the effective curtailment of the multi-feature. These features and

Mahalanobis distance are used to extract the damage-sensitive-features (DSFs). In

DSF extraction, there two cases need to be considered: First case containing the

vibration data in health condition and the second case without that data. In 1th case,

the features of the data sample in health condition are chosen as reference to be used

for calculating Mahalanobis distance. In 2nd case, the features of any one data sample
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in unknown condition are chosen as reference. Based on the DSFs, a new sensitive

DSF index, Dindex, is proposed to obtain a diagnosis of structure condition, or identify

the severity and location of damages.

To summarize, the diagnosis scheme includes global and local structure damage

detection. Formulations for the two stages are presented in the following subsections.

4.3 Process of First Stage

After processing data by de-noising and normalizing, the first stage of our

algorithm, global structure damage detection, is used to detect bridge damage. The

first stage damage detection consists of four steps shown as Figure 4.3. These steps

are as follows.

STEP ONE: Use pcgICA to separate the signals of the bridge from others (e.g.,

noise, car, and wind signals). Herein, FastICA is chosen for the linear separation

phase of pcgICA. Note that the vibration of the bridge is excited by vehicles or other

ambient excitations. In this system, the excitation is the input, and vibration data of

the bridge is the output. They seem to be related, but actually they are statistically

independent, as verified by many research results. We calculate the power value to

check which signal is the most powerful and can represent the br

Power value calculation is important for linear ICA and is useful for choosing the

e bridge.

STEP TWO: Perform similarity matching based environment impact reduction

method to obtain data sample pairs.

STEP THREE: Use FFT to obtain the bridge s characteristic frequency in the

undamaged and unknown conditions. Then, compare the extracted frequency in the

data sample pair to determine the global structure health condition of bridge. Change

in characteristic frequencies means there is damage on the bridge. We then proceed to

the second stage, local structure damage detection, to locate damages and detect the

severity of damage.

Figure 4.2 First stage of the two-stage damage diagnosis algorithm
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4.4 Second Stage: Time-series Modeling based

Damage Detection Algorithm

In this structure damage diagnosis stage, we propose a novel structure damage

diagnosis algorithm called the time-series modeling based damage diagnosis

algorithm. Four steps consist of the damage diagnosis algorithm shown as Figure 4.3.

Figure 4.3 Four steps of SDD

STEP ONE: The data is processed by the data process method proposed in chapter

3. SU and SD are obtained.

STEP TWO: After processing the data samples, ARMA is chosen and applied for

each data sample to establish the ARMA model.

STEP THREE: In a bridge system, the inherent characteristics of the system can be

characterized by the parameters of the ARMA s AR part. Thus, we can apply the

parameters of ARMA s AR part to extract the damage sensitive feature (DSF). To

extract the DSFs quickly and accurately, PCA (Principal Component Analysis) is

applied to carry out the effective curtailment of the multi-feature parameters.
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STEP FOUR: Statistical discrimination is carried out based on the DSFs of data

samples. A damage sensitive feature index (Dindex) is proposed to compare the DSF

coming from the damaged condition with that coming from the undamaged condition.

Thus, we can use the damage-sensitive-feature index Dindex to detect the severity of

damages and locate damages.

4.4.1 Data Normalizing

In this stage, each data sample is further normalized by following equation (4.1) to

differentiate the effect of structural alteration from some trivial outfitted amendments.

xij(t) represents the normalized-data, Xij(t) is the jth data sample of ith sensor s data, µij

is the mean of data sample Xij(t) and ij is the standard-deviation of Xij(t).

(4.1)

4.4.2 ARMA Modeling

4.4.2.1 ARMA Model

After normalization, an ARMA (p x q) model is established as equation (4.2) for

each normalized data sample, xij(t).

(4.2)

Where k and k are the kth coefficient of AR part and MA part, severally, ij(t)

represents residual-term or error-term (when this equation correctly interpret the time

structure and rule, ij(t) is the white-noise containing zero-mean and variance

of a
2.). This ARMA (p x q) model contains two parts: the auto regressive (AR) and

the moving average (MA). The AR part denotes that the value of xij(t) is associated

with the value in previous p steps, and the MA part denotes that xij(t) is associated

with the noise in previous q steps. When the backward shift operator B, which is

defined as Bk (t) = (t-k), is drawn in equation (4.2), the equation (4.3) is obtained.

So equation (4.2) can be transformed to equations (4.4) and (4.5).

;

;

(4.3)

(4.4)

(4.5)

When the ij(t) is set as system input and the xij(t) as the output, the ARMA (p x q)
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can be described as a system with a transfer function, (t) (t). Therefore,

determining the order of this model, p and q, and the coefficient, k and k, is a

process in model establishing and identification.

Using (B) and (B) in equation (4.5) for factorization, we obtain equations (4.6)

and (4.7), where k and k are the characteristic root of the AR and MA parts

respectively. From the point of view in system, k is the pole of transfer function of

system and denotes the inherent characteristic of the system. k is the zero point of

transfer function of system and denotes the connection between the system and the

environment. Thus, (B) denotes the inherent characteristic of system. Compared with

AR model ARMA model is more complete, higher model precision, and clearer in the

physical interpretation of parameter, because ARMA fully considers the influence of

external factors (MA part). Thus, ARMA model has better ability to identify small

changes in the structure inherent characteristics.

(4.6)

(4.7)

4.4.2.2 ARMA Modeling

In this thesis, (2n, 2n-1) modeling method [1] is used to establish ARMA (2n, 2n-1)

model. The order p and q in ARMA is determined by using

Criterion (AIC) [1]. The parameters of ARMA are estimated by the long regression

residuals method [1].The searching scheme is shown as Figure 4.4. The processes of

model establish is shown as Figure 4.5. There are three steps in this model establish

method, which are shown as follow.

(1) TEP ONE: From , use the long regression residuals method [1] for data

{ } to fit ARMA (2n, 2n-1) model.

(2) STEP TWO: Use AIC to test whether this model is applicable. If not applicable,

let n = n + 1, and go to fit ARMA (2n, 2n-1) model again until the model applicable.

Then go next step.

(3) STEP THREE: Reduce order of AR part, and do above two steps again to test

whether there is a more small AR part s order can be applicable. If yes, get the final

ARMA model contained smallest AR part s order. Else, use the ARMA model

obtained in the step two.
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Figure 4.4 Searching scheme of (2n, 2n-1) modeling method

Figure 4.5 Processes of ARMA modeling

In this ARMA model, the model residue error can be present by equation (4.8).

After calculating the residue { }(t=p+1, p+2, , N) by using equation (4.8), the

residue sum of squares S is calculate by equation (4.9) and variance of residue is

obtained by equation (4.10).
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Then based on the equation (4.9) and equation (4.10) we can get the AIC, shown as

equation (4.11), where N is the length of data, n represents the amount of model order,

n= p + q. Thus, when we use AIC to determine the order of model, increase the fitting

order n, the will decrease. Therefore, when the AIC (n) get the minimum, the

order n is best fitting order. In this way we can get the value of p and q.

Long Regression Residuals Method

After using AIC to get the order of model, the long regression residuals method [1]

is applied to estimate the parameters of ARMA model. As described in [1], the

parameter of AR model is a linear estimation, but the estimation of ARMA is a

nonlinear estimation because the { } is unknown. Thus, the idea of long regression

residue method is that: firstly, use data { } to fit AR(p) model and calculate the

residue { } of AR model. Then use this residue { } as the residue of ARMA and use

the linear regression method, least square method, to estimate the parameters of

ARMA model.

According above idea, use data { } to fit AR (n) model at first, and obtain the AR

model parameters .

Then, we calculate the residue of AR model by equation (4.11). Thus, the residue

sequence is obtained.

The residue sequence is regard as the observed value of MA part of ARMA

model. Then, take the observed value and { } into ARMA (p, q) model, and

calculate the parameter of ARMA (p, q) model. For example, when the least square

method is used to estimate parameters, take { } and into ARMA (p, q), and the

equation (4.12) can been got:

Use matrix to represent equation (4.12), shown as equation (4.13).
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Where:

Because of X are known, the least square estimation is shown as:

4.4.3 Feature extraction and dimensionality reduction

The analysis in subsection 4.4.2 shows that the parameters of the AR part denote

the inherent characteristics of the system. Thus, the AR part can be used to extract the

DSF. To identify damage, a new type of DSF is proposed based on Mahalanobis

distance. In order to improve the speed of extraction, PCA is utilized before extracting.

There are five steps to obtain the DSF, shown as Figure 4.6.

Figure 4.6 Processes of damage sensitive feature (DSF) extraction

STEP 1: The data is processed by proposed data process method in chapter 3. In the

1th case, containing the data acquired in health condition, many data sample pairs
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(target data sample-matched data sample) are obtained, which means the matched data

sample corresponding to the target data sample (in SD) is searched in SU. Each data of

SU and SD are divided in to many segments. These segments of data in SU are divided

into two parts, one part used for the training data samples set S1, and the other used

for the reference data samples set S2. The data that contains the target data sample and

correspond to the unknown condition is divided into two parts. The second part is

used for the pending data sample set S3. In the 2th case without the data acquired in

health condition, we arbitrarily choose and divided a node s data into two parts one

part used for the training data samples set S1, and the other used for the reference data

samples set S2. Other nodes data in the same time measurement is preform the same

processes as 1th case. We set the number of data samples in S1, S2, and S3 as n.

STEP 2: Use the data samples of these three sets to establish their ARMA models.

STEP 3: Record all order parameters of the AR part of each data segment s ARMA

model in S1 as vector (i = 1, 2, , n). Thus, we can get the (n × p) matrix U of S1:

;

Where

We use PCA to analyze the matrix U = (u1, u2, , un) and obtain P principal

components of U. The kth principal component Yk shown as equation (4.15). From

equation (4.15), we get equation (4.16), where is the covariance of U, 1 2

P, and ei is the characteristic root of and orthonormal unitization characteristic

vector. Then we do the same process as S1 to S2, and S3.

(4.15)

(4.16)

STEP FOUR: Extracting the first m principal components (m < p, usually, 1 < m <

4 can contain the 80% 90% principal information of matrix U) instead of original

data to carry out dimensionality reduction. Thus, three n × m principal matrices are

obtained from S1, S2, and S3 respectively.

STEP FIVE: Record the n × m principal matrix from training data sample set S1 as

m dimension population G. Its mean vector is µ, and covariance is . We define the

Mahalanobis distance between each vector of the n × m principal matrix of s2 and s3

(x) to the mean vector of population G as DSF, shown as equation (4.17). Thus, based

on equation (4.17), we extract the DSF of the data samples.

(4.17)



75

4.4.4 Statistical Discrimination

Actually, even though there is no change in condition of the structure, the DSF can

still be greater than 0 because of the nonlinear character or time-varying behavior of a

bridge. Therefore, for statistical reliability, structure damage diagnosis should be

performed based on a plenty of data-samples. Herein, a DSF-based statistical

discrimination algorithm is proposed.

Firstly, all measured data are divided as in section 4.4.3. Thereafter, for each data

sample in S2 and S3, the corresponding DSF is computed by using equation (4.17). By

using these DSFs, a new damage sensitive feature index Dindex is proposed as equation

(4.18), where DSFU is the mean value of DSF obtained by using the data samples of

S3. The DSFR, named reference DSF, is the mean value of the DSF corresponding to

the undamaged condition data sample set S2. Thus, if the bridge structure changes, the

Dindex will be far larger than 1. In addition, the magnitude of Dindex can be utilized to

locate damages and determine the severity of damage, which will be verified in the

simulation and experiments.

(4.18)

4.5 Simulation and Field Experiments

4.5.1 Numerical Simulation

To verify the validity of the presented algorithm in the second stage, a numerical

simulation of a uniform beam model containing damages is performed. To clearly

show the advantages of the diagnosis algorithm in the second stage, we use three

equal spans girder model and stochastic white-noise as excitation, which are applied

in simulation of many other statistic partner recognition based diagnosis algorithms,

to implement simulation for my method. The model is shown in Figure 4.3, where the

span length is 30 m, and the model is meshed into 10 elements in each span. The

elastic module E= 2 × 105 = 7850 kg /m3, the section area A =

m2, and the section inertia moment I = m4.

Figure 4.7 Three span girder model
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Crack damage is simulated in an equivalent sub beam using a unit elastic modules

discount function suggested in [2]. Considering the symmetry of the three-span girder

model, damage patterns are designed in two cases. The first case contains four

damage levels in the same position. In the second case, there are three different

positions within the same damage level. In the first case, we reduce 10%, 20%, 35%,

and 50% of the elastic module of the two units near the center of the left side span,

respectively, for four damage patterns. In the second case, the damage conditions are

as follows. For damage condition 1, reduce 10% of the elastic module in the damage 1

of Figure 4.7. For damage condition 2, reduce 10% of the elastic module in the

damage 2 of Figure 4.7, maintaining the damage of condition 1. For damage condition

3, reduce 10% of the elastic module in the damage 3 of Figure 4.7, maintaining the

damages of conditions 1 and 2.

In order to obtain a structural vibration data, the girder is loaded by a stochastic

white-noise excitation. The vertical acceleration obtained from each of the 30 nodes is

taken as the simulated monitoring data. The sampling frequency is set to 200Hz. To

display the frequency change from the undamaged to the damaged condition, sensors

sample 1000s. The first two orders of frequencies in the two conditions are shown in

Table 4.1 (the data of node 10). From this table, we can find that the deviations of

frequencies in the two conditions are less than 1% due to the structure changes.

Table 4.1 Frequency in damaged and undamaged conditions

Order undamaged Condition 1 2 3

1st 2.495 2.481 2.477 2.473

2nd 3.195 3.194 3.182 3.178

When we use our proposed algorithm to extract the structure damage feature, we

only select the sampling data of posterior 150 s as simulated monitoring data because

of the large size of the 1000 s sampling data. The simulated monitoring data obtained

from the undamaged condition is divided into two groups, S1 and S2 (see sections

4.3.3 and 4.3.4). S1 contains the data obtained during the prior 100 s, and S2 contains

the data obtained in the remaining 50 s. Meanwhile, the data obtained from all the

damaged patterns during the posterior 50 s are used as S3. All the simulated

monitoring data in S1, S2, and S3 are further divided into 100, 50 and 50 segments

respectively (these are blocks, not seconds or points) to obtain data sample sets. Each

segment consists of 1024 points, with 87.5% of data overlapped among adjacent

segments. Thereafter, the data of nodes 4, 10, 17, 19, 27, and 30 are used to establish

the ARMA and extract the DSFs and DSPR by applying our algorithm.

The results from the first case are shown in Figure 4.8. When the structure changes,

the Dindex is larger than 1, and the Dindex sharply increases with the increase in damage

level. When the damage level is small, such as in condition 1, Dindex also shows

significant change. These results Figure prove that our index Dindex is sensitive to the
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damage of structure. The Dindex of node 4 and that of node 10, which are close to the

bridge damage, are significantly larger than the Dindex of other nodes that are further

away. Thus, we can locate the damage.

Figure 4.8 Dindex for First case

Figure 4.9 shows the result of the second damage case. As noted above, the three

span girder model contains several areas of damage in the second damage case. From

Figure 4.9 shows obviously that significant difference exists in Dindex obtained from

the damaged and undamaged cases. From the bar graph of condition 2, we can find

the Dindex of nodes 4 and 10 are far larger than that of others. This indicates damage is

located near those two nodes. Comparing with Figure 4.8, we find our Dindex can

locate the damage. From the bar graph of condition 3 in Figure 4.9, we can find the

Dindex of nodes 4, 10, and 17 are significantly larger than that of others, which means

damage is located near the three nodes. Comparing the positions of these three nodes,

we can guess there is damage between node 4 and node 10, within node 10, and

within node 17. We can guess there is serious damage around node 10. After checking

the position damages, we find the first guess is right, which verifies our algorithm can

locate damage when there is damage in multiple locations.

Based on the discussion of the first and second damage cases, it can be concluded

that the Dindex index defined in this paper is sensitive to the damage of structure. Our

algorithm can detect the severity and location of damage.
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Figure 4.9 Dindex for second case

4.5.2 Field Bridge Experiments

From 2008 to 2012, in order to test and improve the BSHM system, the system was

tested on 10 bridges, using a variety of experiments, such as a large road bridge called

Nakajima Bridge, in Fukuoka Prefecture. In this experiment, we applied the WSN to

measure the vibration data of the bridge in an undamaged condition. To acquire data

on the undamaged and damaged bridge, implemented an experiment is implemented

on the Kando Bridge in Shimane Prefecture. To test the BSHM system through

longer-term monitoring, we monitored Seiran Bridge in Kokura for four months. In

this paper, we introduce the experiments on the Kando Bridge to verify the validity of

the BSHM.

4.5.2.1 Kando Bridge Experiment

To acquire undamaged and damaged bridge data, an experiment was implemented

on the Kando Bridge in Izumo in Shimane Prefecture. This bridge consist of a steel

girder and a concrete deck slab, having five equal spans of length 50.8 m each, and

pier-to-pier distance of 51.58 m. The bridge s length is 258m. The deck rests on

braced steel girders of 2.1 m high placed at 2 m centerline distance. Figure 4.10 is a

schematic diagram showing the location of damage and sensors on the bridge.

Figure 4.10 Locations of damage and sensors
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The initial steps in this experiment were similar to those on the Nakajima Bridge;

that is, the use of WSN to acquire acceleration data. Before we artificially damaged

the bridge, (damaged by our), we collected data to serve as the measurement of the

undamaged bridge condition (although this data may not reflect the actual bridge

condition). In order to obtain significant vibration data in damage position we deploy

some sensors beside the potential damage in this experiment. We need to declare that

we deploy sensors on bridge according to a fixed spacing in other experiments such as

Nakajima Bridge, Seiran Bridge, etc. We then induced damage to the bridge and

collected additional measurement data, which is considered to represent the unknown

condition. In this experiment, our proposed two-stage diagnosis algorithm is used to

identify the damage to the bridge and verify the validity of our algorithm.

Damage was inflicted at three different places with six levels of severity. These

damage types are as follows. Type I: the bearing between the abutment and bridge

deck was damaged, shown in Figure 4.11. Type II: the gusset plate of the bridge deck

located between piers P1 and P2 was damaged, shown in Figure 4.12. Type III: The

concrete ceiling and the reinforcement were scratched out to damage the deck of the

bridge as shown in Figure 4.13, where the cut depth of level-1 and level-2 are 3mm

and 25mm respectively. The depth of level-3 in horizon is the same as the level-2, and

the depth in vertical is equal to the level-1. The depth of level-4, level-5 and level-6

are 10mm, 10mm, and 30mm respectively.

Figure 4.11 Abutment bearing damage

Figure 4.12 Gusset plate damage
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Figure 4.13 Concrete damage

After measuring the non-damaged Kando Bridge, we did three types of artificial

damage to the bridge. Apart from ambient excitation, two types of external excitations

were also used. The first one involved excitation using a loaded moving car, and the

second one involved an impact with a 20 kg weight at 1 m high, at the same place.

Typically, sensors for all damage cases are placed near the damage location in order

to identify local changes. For damage types I, II, and III, eight sensors were deployed

on the bridge as shown in Figure 4.10. In each level of damage, sensors measured the

vibration of the bridge for each excitation. Thus, we obtained 57 measurements: three

undamaged measurements and 54 unknown measurements.

To determine the modal properties of a system, a transfer function based approach

is the most typical approach. For this approach, both input excitation and output

responses are needed. In this bridge diagnosis, we can only obtain the output, since

the system is excited by a moving car, hammer, or other ambient excitations. Thus,

our two-stage diagnosis algorithm is proposed. Since the running car is the most

common excitation in normal bridges, this paper only describes the results of the

analysis of vibration data excited by the moving car.

4.5.2.2 Analysis Results of First Stage Algorithm

First, the pcgICA-based algorithm was used to obtain the change in frequency

between the health condition and the damaged condition. Then, my method was

utilized to obtain the severity of damages and locate damages. Because the vibration

data were measured in almost the same environmental and operational conditions, we

did not need to implement our proposed data normalization algorithm in this
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experiment. The undamaged data and unknown data were divided into three data

sample subsets as shown in section 4.4.3. Figure 4.14 shows the acceleration data of

one axis in one sensor before and after damage. The upper picture shows the data of

the healthy bridge, and the lower picture shows the data after doing steel frame

damage.

Figure 4.14 Acceleration data of one axis in one sensor

The results of the first stage of our diagnosis algorithm are tabulated in Table 4.3. It

is observed from the characteristic frequency of type I in Table 4.3 that with an

increase in damage severity the frequencies are decreasing, depicting the stiffness

degradation of the structure. A similar trend of frequency drop is also observed from

the type II data in Table 4.2. However, it may be noted that the percentage drop in the

first two frequencies is less than in type I damage cases. It can also be noted that a

slight increase in damage severity may not result in noticeable changes in frequencies

from the type II of Table 4.2. This may be for various reasons, including change in

damping and noise levels. As seen in Table 4.2, the type III damage shows

degradation in frequency with an increase in damage severity, illustrating the

contribution of web girder stiffness in structural frequencies. Most of the percentage

drops are less than 3%, which indicates that the first stage can detect the structure

change but is not sensitive enough to locate the damage. Thus, the second stage, using

SDD, is proposed to detect the severity and location of damage.

Table 4.2 Frequency change for damage type I, type II, and type III

Severity Type I frequency Type II frequency Type III frequency

0 2.443 2.442 2.442

1 2.443 2.442 2.436

2 2.415 2.413 2.432

3 2.388 2.406 2.432

4 2.371 2.406 2.395

5 2.315 2.36 2.362

6 2.271 2.353 2.356
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4.5.2.3 Analysis Results of Second Stage Algorithm

In the second stage, the model order is determined by the method of section 4.4.2.2.

In order to show the effect of de-noising, the model order using de-noising data and

original data are shown in the Figure 4.15. Figure 4.15 shows the ARMA model is (8,

7) model using de-noised data, where the order of AR part is 8 and the order of MA is

7. In Figure 4.15, we can find the minimum AIC value of using non-de-noised data is

at (10, 9). It means the model order determination is bad than using de-noised data,

because high order will result in more parameters of AR part. This proves the

important of de-noising in damage diagnosis again. The sampling frequency is 200Hz

and sampling time is 15 seconds. Thus, every node can obtain 3000 length data. The

sampled data obtained from the undamaged condition is divided into two groups, S1

and S2 (see sections 4.4.3). S1 contains the data obtained during the 15 s, and S2

contains the data obtained in the posterior 10s. Meanwhile, the data obtained from all

the damaged patterns during the posterior 10s are used as S3. All the simulated

monitoring data in S1, S2, and S3 are further divided into 40, 20 and 20 segments

respectively (these are blocks, not seconds or points) to obtain data sample sets. Each

segment consists of 400 points, with 83.75% of data overlapped among adjacent

segments for S1 and 80% for S2 and S3. Thereafter, the data of eight nodes in three

type damager condition are used to establish the ARMA and apply the parameters of

ARMA s AR part to extract the damage sensitive feature (DSF) (Mahalanobis

distance) based on the equation (4.9). Finally, based on the result of DSFs, Dindex of all

nodes in tree type damages are obtained based on the equation (4.10).

Figure 4.15 AIC results of de-noising data and non-de-noising data
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Damage Type I

The extracted DSFs of all the data sample segments in the first type damage with

six levels are shown in Figure 4.16, Figure 4.17, Figure 4.18, and Figure 4.19. Figure

4.20 shows the variation diagram of DSFs of sensor 4. From the five figures, we can

get:

1) The DSFs of undamaged condition and six levels damage conditions exist

obvious differences in the mean value and variance. In undamaged condition,

the mean of DSFs and ripple of data are small, which means that the

characteristic vector of undamaged condition is close to the reference

population G. However, the DSFs of six levels damage in 8 sensors are

increase and have large ripple, which means the characteristic vector of these

conditions are far from G and has large discreteness.

2) The mean of DSFs of 8 sensors in six levels damage increase with the damage

level increasing. Otherwise, the DSF growth of sensor 1, 2, 5 is not very big,

but the DSFs of sensor 3, 4, 7, and 8 increase very obvious. Especially in

sensor 4, the DSFs of six levels damage conditions shows far bigger than that

of undamaged condition.

These results inosculate with the design of experiment, where, the sensor 4 is

beside the damage and sensor 1, 2, 5 are far from the location of damage. However, it

is difficult to intuitively the location and sensitivity of damages by using the

distribution diagram of DSFs. To solve this, the equation (4.10) is used to get the

damage sensitive feature index Dindex of various damage levels and sensors. Figure

4.20 shows the damage severity feature index Dindex of the undamaged condition and

six levels damaged condition (the unknown condition is now known to be the

damaged condition) in type I. From Figure 4.21, it can be observed that the value of

Dindex at sensor 4 is far larger than that at others, suggesting that the type I damage is

very close to that sensor. From Figure 4.17 and Figure 4.20, a similar trend is

observed, where sensor 4 is placed almost on the location of the bearing cut. In

addition, the DSPR at sensors 3, 7, and 8 is larger than at other sensors, and the Dindex

of sensor 3, 4, 7, and 8 obviously increase with the increase of damage level. In this

way, we can obtain the sensitivity and location of damage accurately and intuitively.
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(a) Distribution diagram of DSF in sensor 1

(b) Distribution diagram of DSF in sensor 2

Figure 4.16 Distribution diagrams of DSFs in sensor 1 and 2
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(a) Distribution diagram of DSF in sensor 3

(b) Distribution diagram of DSF in sensor 4

Figure 4.17 Distribution diagrams of DSFs in sensor 3 and 4
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(a) Distribution diagram of DSF in sensor 5

(b) Distribution diagram of DSF in sensor 6

Figure 4.18 Distribution diagrams of DSFs in sensor 5 and 6
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(b) Distribution diagram of DSF in sensor 7

(b) Distribution diagram of DSF in sensor 8

Figure 4.19 Distribution diagrams of DSFs in sensor 7 and 8
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Figure 4.20 Variation diagrams of DSFs in sensor 4

Figure 4.21 DSPR for damage type 1

Damage Type II and III

In type damage II and III, we only to display the results of sensor 3 s DSFs for

damage II and that of sensor 1, and 2 for damage III, since these sensors are close to

the damage II or damage III. Figure 4.22 shows the DSFs of sensor 3 in damage II.

Figure 4.23, and Figure 4.24 give the DSFs of sensor 1, and 2 in damage III. From the

three figures, we can get the DSFs of these sensors in six levels damage increase with

the damage level increasing, and the DSF growth is very big. Especially in sensor 1

and 2 for damage III and sensor 3 for damage II, the DSFs of six levels damage

Damage levels (-)
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conditions shows far bigger than that of undamaged condition. These results also

inosculate with the design of experiment.

The Figure 4.25 and Figure 4.26 show the damage severity feature index Dindex in

the undamaged condition and the damaged condition in damage type II and III. In

Figure 4.25, the Dindex of sensor 3 is far larger than others, which indicates that the

type II damage is nearest to the location of sensor 3. Figure 4.10 confirms this. Figure

4.26 shows the type III damage is very close to sensors 1 and 2, and near sensor 5.

From these figures, it can be observed that the Dindex is a measure of damage severity.

In other words, all the figures show that Dindex is increasing with severity of damage.

Figure 4.22 Variation diagrams of sensor 3 s DSF in damage type II

Figure 4.23 Variation diagrams of sensor 1 s DSF in damage type III
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Figure 4.24 Variation diagrams of sensor 2 s DSF in damage type III

Figure 4.25 Dindex for damage type II

Damage levels (-)
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Figure 4.26 Dindex for damage type III

4.5.3 Performance Comparison

In this experiment, we obtained 57 measurements. Although this paper only shows

the results of 18 measurements in detail, all other measurements were analyzed using

our proposed algorithm. Here a definition is give as follow:

Specificity: it means the ratio of the number of measurements which classify

healthy condition correctly to the total number of measurements in healthy

condition, shown as the equation (4.19).

(4.19)

Sensitivity: it means the ratio of the number of measurements which classify

damage condition correctly to the total number of measurement in damage

condition, shown as the equation (4.20).

(4.20)

The results of the three undamaged time measurements show almost the same

patterns. In the results of this experiment, when the vibration is excited by ambient

excitation and the data measured at the level 1 of type II and III damage, the Dindex

values are very close to 1. This means our algorithm failed to detect the damage in

these two conditions. Thus, in this experiment, the specificity and sensitivity of our

algorithm were 100% and 96.3%, respectively. As noted in section 4.5 we monitored

the Seiran Bridge for four months. During this period, the bridge was measured by

WSN three times per week. Thus, we measured this bridge 48 times. The analysis of

these measurements showed that four of the measurements indicated damage on the

bridge. The sensitivity of our algorithm was 91.7% in this experiment. Thus, the

Damage levels (-)
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results of experiments verify that our diagnosis algorithm not only can detect the

damage severity sensitively but it also can locate the damages.

In order to compare other structure diagnosis algorithms (FFT with ICA , SPR with

residual [3] [4], Transfer Function [5]) with my algorithm, we use these algorithms to

analyze the data measured in 6 bridges (Seiran Bridge, Kando Bridge, Nakajima

Bridge, Nishikawa Bridge, Anagigawa Bridge, and Hibikino Bridge). The specificity

and sensitivity of these algorithms are shown in Figure 4.27 and Figure 4.28. We must

notice: in ever bridge experiment, we measured the bridge many times. The data of

each measurement are analyzed by these algorithms. Since we obtain the data of

damage condition in Kando Bridge only, Figure 4.28 shows the sensitivity of these

algorithms based on the measurement in Kando Bridge. From Figure 4.27 and Figure

4.28, we can get my algorithm is better than others obviously not only in sensitivity

but also in specificity. Comparing with SPR with residual method, TF, and FFT with

ICA, my method improved 10.3%, 17.1%, and 13.2% in sensitivity, respectively, and

improved 9.6%, 13.4%, and 11.8% in specificity.

Figure 4.27 Sensitivity of algorithms

Figure 4.28 Specificity of algorithms
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4.6 Summary

In BSHM system, the accuracy and sensitivity of damage diagnosis algorithm

directly determines the performance of BSHM system. How to identify damages

sensitively and how to accurately detect the damage severity and location become

major problems in vibration data based BSHM system. Besides, the effects of noise

and varying environment and operation conditions to identification results are also a

serious issue. To solve these problems, a two-stage output-only damage diagnosis

algorithm is proposed, including a new type of statistical pattern recognition based

structure damage diagnosis algorithm.

In the first stage, after data processing, FFT is used to extract the characteristic

frequency of healthy state and unknown state for the structural novelty detection. In

the second stage, Based on the first stage a statistical damage identification algorithm,

called time-series modeling based Damage Diagnosis Algorithm, is proposed to

sensitively detect the severity and location of damage. At first, the normalized data

samples are used to establish ARMA model. Based on the model, the pattern vectors

perform feature extraction, where PCA is utilized to carry out the effective curtailment

of the multi-feature. These features and Mahalanobis distance are used to extract the

damage-sensitive-features (DSFs). In DSF extraction, there two cases need to be

considered: the First case containing the vibration data in health condition and the

second case without that data. In 1th case, the features of the data sample in health

condition are chosen as reference to be used for calculating Mahalanobis distance. In

2nd case, the features of any one data sample in unknown condition are chosen as

reference. Based on the DSFs, a new sensitive DSF index, Dindex, is proposed to obtain

a diagnosis of structure condition, or identify the severity and location of damages. To

summarize, the diagnosis scheme includes global and local structure damage

detection.

To verify the performance of this two-stage algorithm, experiments included

measurement at the Kando Bridge in Japan. Damage was inflicted at different

locations to achieve varying levels of damage severity. The results demonstrate that

the severity and position of damage can be detected by utilizing our proposed

two-stage diagnosis algorithm. The specificity and sensitivity of this algorithm were

100% and 96.3% respectively in this experiment. Our algorithm is compared with

other diagnosis algorithms such as FFT with ICA, SPR with residual, Transfer

Function. The results show our algorithm is better than others obviously not only in

sensitivity but also in specificity. Comparing with SPR with residual method, TF, and

FFT with ICA, my method improved 10.3%, 17.1%, and 13.2% in sensitivity,

respectively, and improved 9.6%, 13.4%, and 11.8% in specificity.
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Chapter 5

Standing-Wave based Non-destructive

Testing System

5.1 Introduction

In chapter 4, a novel damage detection algorithm is designed for the BSHM system,

and it can successfully detect the severity and approximate location of various

damages on bridges. However, this system records the damages near the sensors only;

therefore, the specific location and size of the damage cannot be determined,

especially damages inside the concrete block of bridge. Thus, when the vibration

based BSHM system, global health diagnosis method, detects serious damages,

nondestructive testing (NDT) [1] based local health diagnosis method is needed to

pinpoint the exact location and size of the damage for bridge maintenance. Although

many complicated and expensive equipment-based nondestructive testing systems can

obtain the specific information of damages, the heavy economic and time burden is a

serious problem these systems. Therefore, the issue about economically and

efficiently detecting the specific information of damages also needs to be solved

urgently. Based on the backgrounds, a new standing-wave based structure

nondestructive testing system and algorithm is proposed in this chapter. The system

sends high-frequency modulated sweeping waves (3.8 5.8 GHz) to an object by the

antenna, and the input and reflected waves form a standing wave, which will be

recorded by the antenna. Subsequently, the health of the structure is evaluated by

checking the amplitude frequency response A(f, x) of the standing wave.
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5.2 Overview of the Standing-wave based

Structure NDT System

The basic standing-wave method is used to measure the range and distance from

the radar to the object [2] [3]. In order to detect the structure, the basic standing-wave

method is improved, and then the standing-wave based structure NDT system is

proposed and shown in Figure 5.1. The processes of this system show as follow:

1) The signal source generates a high-frequency sweeping wave (Figure 5.2) and

sends the wave to the object to be tested through the waveguide and antenna.

2) The wave is reflected on the front surface of the object (air object interface).

The reflected and incident waves form a standing wave (Figure 5.3), also the reflected

waves from the front and back surface of the void (inside in the object) with incident

wave form other two standing waves. These are received by the antenna.

3) The amplitude of the standing wave is transformed to volts by the amplitude

detector in the radar and then recorded as data in computer.

4) According to the amplitude frequency response A(f, x), if the distance between

two peaks in the A(f, x) curve is known, the distance to the object can be calculated.

Since the signal received by the antenna is mixed by the three standing waves, before

distance calculation an modified empirical mode decomposition (EMD) is proposed

for the data to denoising. And then ICA is used to extract three amplitude frequency

responses to obtain the distances to the object and void.

Fiure 5.1 Standing-wave based structure NDT system
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Figure 5.2 Sweeping wave

Figure 5.3 Standing wave

5.3 Standing-wave based Structure NDT System

Since the standing-wave based structure NDT system is improved from the basic

standing-wave method which was used to measure the range and distance from the

radar to the object, in this chapter we recommend the fundamental idea of the basic

standing-wave method at first.

5.3.1 Basic Standing-wave Testing System for Distance
Detection

5.3.1.1 Basics Algorithm and System

The components of the basic standing-wave testing system are shown in Figure 5.4.

The signal source generates a high-frequency sweeping wave and sends the wave to

the object to be tested through the waveguide and antenna. The wave is reflected on

the surface of the object (air object interface). The reflected and incident waves form

a standing-wave that is received by antenna. The amplitudes of the standing-wave are

then transformed to volts by the amplitude detector in the radar. According to the

amplitude frequency response A(f, x), if the distance between two peaks in the A(f, x)

curve is known, the distance to the object can be calculated.
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Figure 5.4 Basic components of the standing-wave radar

5.3.1.2 Derivation of Amplitude frequency Response

If the reflection coefficient on the object surface is , the transmission speed of the

electromagnetic wave is c, the amplitude of the incident signal is 1, and the phase of

the incident signal is 0, and considering the reflection and time delay t, then the

received signal V(f, x) on the antenna is

(5.1)

The amplitude A(f, x) of the received signal is

(5.2)

(5.3)

Finally, the amplitude A(f, x) is given by

(5.4)

Where | is the amplitude of the reflection coefficient, and is its phase. From

equation (5.4), because | , , and c are constants, the amplitude is only related to

distance x and frequency f.

1) If the frequency is fixed, because the amplitude of the wave is only related to

position x, the synthesis wave is a standing wave.

2) If the distance x is fixed, the amplitude A(f, x) is maximum when

(5.5)

From equation (5.5), we obtain

(5.6)

If the peak frequency fN is the frequency at the maximum amplitude point in the A(f,

x) curve, then fN is
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(5.7)

If the frequency difference between the Nth and (N + 1)th peaks is f, as shown in

Figure 5.5,

Figure 5.5 Frequency difference f between the Nth and (N + 1)th peaks

then f is

(5.8)

Subsequently, the distance x is calculated as

(5.9)

Thus, if the steps introduced in section 5.4.1.1 are followed and the frequency

difference f between two peaks in the amplitude frequency response A(f, x) curve is

obtained, the object distance x can be calculated using equation (5.9).

Many conventional algorithms of pulse waves are used to test objects such as in [4].

However, in the basic algorithm from equations (5.1) (5.2) (5.3), and (5.4), in order to

obtain several peaks in the amplitude frequency response, a specific bandwidth

sweeping wave is used for testing, because pulse waves cannot follow the change in

the amplitude frequency response. Thus, the distance x cannot be calculated.

5.3.2 Improvement of Basic Standing-wave Algorithm
for Void Testing

The algorithm introduced in section 5.4.1 is used to calculate the distance from the

radar to the object surface. For concrete blocks, the object surface is the surface of the

concrete block (air concrete interface) as shown below.

Figure 5.6 Three-interface case

Figure 5.6 shows the case for a subsurface void inside concrete using the basic

standing-wave testing system. In this case, only distance 1 (first interface) can be

calculated. No additional information regarding voids inside the block can be inferred
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(distance 2 distance 1 and distance 3 distance 2).

To detect voids and their location and size

the basic standing-wave testing system is expanded, as shown in Figure 4.7.

Figure 5.7 Expansion of the basic standing-wave testing system

Figure 5.7 shows how to calculate the distance in the subsurface void case. The

white block denotes route 1 in Figure 5.6, where the electromagnetic wave passes

through air, and the blue block denotes route 2 in Figure 5.6, where the

electromagnetic wave passes through concrete before reaching the air in the

concrete air interface. The wave speed in air is c and in concrete is c/3; therefore, for

the same period, the distance covered by the electromagnetic wave in air is three time

that in concrete, shown as the equivalent distance in Figure 5.7.

Considering equation (5.1), because the calculation in the basic standing-wave

testing system is based on the time delay of the wave transmission in the medium, the

same algorithm is used to calculate the distance of the concrete air interface.

Nonetheless, because the distance of the second interface x2 contains the equivalent

distance, for calculating the location of the air void, the distance in air to that in

concrete is converted as follows:

(5.10)

(5.11)

In equation (5.10) and equation (5.11), L1 is the location of the subsurface air void

(distance from the block surface to the top surface of void) and L2 is the height of the

subsurface air void, x1 is the distance from the radar to the concrete block surface, and

x2 is the calculated distance from the radar to the top of the air void top, including x1

and the equivalent distance. x3 is the calculated distance from the radar to the

undersurface of the air void top, including x2 and the distance between up surface and

undersurface. Because the amplitude frequency response A(f, x1) is a standing wave,

the amplitude frequency response A(f, x2) and A(f, x3) are also standing wave.

Because of x1 < x2 < x3 and by equation (4.8), the frequency difference between two

peaks is 1 > 2 > 3.
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5.3.3 Modified EMD and ICA based Data Analysis Method

5.3.3.1 Problem of only using ICA to Separate Responses
A(f, x1), A(f, x2), and A(f, x3)

When we use the standing wave testing system to detect the subsurface air voids in

the concrete, as shown in Figure 5.6, the received amplitude frequency response A(f,

x) will be a mixed signal consisting of A(f, x1), A(f, x2), A(f, x3), and noise. As a result,

in order to use equation (5.9), (5.10) and (5.11) to calculate the location and size of

void, we need to separate the amplitude frequency responses A(f, x1), A(f, x2), and A(f,

x3) in Figure 5.8 from the received response signal and extract the frequency

difference between the two peaks 1, 2, and 3. ICA is a famous and common

blind source separation technique. In order to obtain good separation results, the total

number of observer samples (input of ICA) needs more than or equal to the number of

separated signals (output of ICA). However, since the mixed standing-wave response

A(f, x) is corresponding to the distance between the sampling antenna and reflecting

surface, if we move the sampling antenna to obtain multiple observer samples (mixed

standing wave responses) each observer sample s compositions (standing wave

response A(f, x1), A(f, x2), and A(f, x3)) are different. Therefore, the problem of directly

using ICA to separate mixed response signal is there are not enough observer samples

as the input of ICA. To solve this problem, an improved empirical mode

decomposition (EMD) is proposed to give multiple inputs for ICA and denoising in

the standing wave testing system. Then FastICA[17] [3] is applied to obtain the

amplitude frequency response A(f, x1), A(f, x2), and A(f, x3). Based on these three

separated responses, equation (5.9), (5.10), (5.11) are used to calculate the location

and height of void. Also we move the antenna in parallel to detect the width and

length of void, which will be described in section 4.6.

Figure 5.8 Separation of the three amplitude frequency responses
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5.3.3.2 Empirical Mode Decomposition

With the basis which is derived from the data, a signal can be decomposed

adaptively into Intrinsic Mode Functions (IMFs) by using the EMD (empirical mode

decomposition) [5].

Definition5.1: an IMF must satisfy the two conditions shown as follow.

The quantity of zero-crossings has to equal or differ to the amount of extrema

by at most one in the whole set of numbers.

At any data point, the average value of the envelope which is defined by using

the local-maxima and the envelope which is defined by using the local-minima

are equal to zero.

With the above definition of an IMF, Figure 5.9 shows the flow chart of EMD and a

signal x(t) can be decomposed using the following EMD algorithm:

(6). Initialize , i = 1, , k = 1.

(7). Confirm all the local maximum and minimum of the signal , which

is when i = 1 and k = 1, and then insert between each set of the extrema

using cubic curves to develop an upper envelope emax(t) and a lower envelope

emin(t).

(8). Give the two envelopes mean .

(9). The signal x(t) and m1(t) should be defined the difference to be the first

component, that is, .

(10). If satisfies definition 5.1, let to be the first IMF; rest

let and return to step (2).

(6) Compute the residue .

(7) if still is not monotonic or has least 2 extema, let i = i + 1 and return to

steps (1); else is monotonic or has a sole extremum from which none IMF can

be extracted, the decomposition process is finished.

If the decomposition process of EMD ends up at i = n, we can get n IMFs, (i = 1,

, n), and a surplus , which shown as equation (5.12). Therefore, the signal x(t)

can be shown as equation (5.13), where represents the potential trend and the

modes (i = , n) are zero-mean waveforms of frequency modulation and

amplitude modulation.

(5.12)

(5.13)
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Figure 5.9 Flow chart of EMD

5.3.3.3 Untrue IMF Components Problem of EMD

EMD has been proven that it can be used in widely applications because it can

extract signals from the data produced in non-stationary processes and noisy nonlinear.

Although EMD is very useful, there are still difficulties need to be solved.

When do EMD to signal, in some cases, there are some IMFs, which are not the

components of original signal and called as untrue IMF components. This caused by

insufficient sampling rate and spline interpolation. In order to describe the untrue IMF

components problem, an example using EMD to decompose the signal, including two

sine signals and shown as equation (5.14), is presented. Figure 5.10 shows the results

of EMD. Obviously, the IFM 3 and IFM 4 are new set of IMFs, which may contain

parts of original signal or maybe untrue IMF components. Generally, in order to

reduce the untrue IMF components, the signal needs to take oversampling. In ideal

station, the sampling rate needs to big than four times Nyqvist frequency. However,

when the frequency of signal is very high, oversampling is bound to cause a great

amount of calculation.

To solve this problem, a modified EMD, called MEMD, is proposed and described

in the next sub section.

(5.14)
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Figure 5.10 IMFs of EMD

5.3.3.4 Modified Empirical Mode Decomposition

In order to solve the untrue IMF components problem, a modified MED is

proposed. In this scheme, the correlation between IMFs and the original signal is used

as the standard to judge which IMFs belong to the signals real components, and

which are untrue IMFs. The untrue IMFs will be combined to residual. The Modified

EMD is as follows:

(1) Do EMD for the signal x(k) to get the IMF components { , i = 1,..., n}.

(2) Calculate the correlation coefficient { , i = 1,..., n} between the IMF

components { , i = 1,..., n}and the original signal by using equation 5.15,

where x(k) is the original signal.

(5.15)

(3) If , keep the IMF component , otherwise combine this IMF

component into the residual. Usually, the threshold is set as one tenth of the

maximum value of correlation coefficients.

The result of using modified EMD to decompose the signal of equation (5.14) is

shown in Figure 5.11. From this result, the untrue IMF components problem is solved.
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Figure 5.11 IMFs of Modified EMD

5.3.3.5 New Data analysis method based on Modified EMD
and ICA

To solve the problem of no enough observer samples as the input of ICA to separate

mixed response signal, the modified empirical mode decomposition (EMD) is

proposed to denoise and give multiple inputs for ICA. Thus, a new data analysis

method based on Modified EMD and ICA is designed to extract the

amplitude frequency response A(f, x1), A(f, x2), and A(f, x3). The new method is

shown as Figure 5.12.

(1) Do modified EMD for the mixed amplitude frequency response A(f, x), and

obtain IMFs. Since the first IMF is the component of noise in usual, the IMFs

are used as the input of ICA except the first IMF and residue.

(2) Fast-ICA [17] is applied to obtain the amplitude frequency response A(f, x1),

A(f, x2), and A(f, x3) by using these IMFs.

(3) After extracting these there standing-waves, all the peak points of these

standing-waves are found out by using ,

and all the zero points are found out. Between two zero points, the maximum

peak point is selected as the final peak point. In this way all the final peak

points of standing waves are obtained automatically.

(4) Based on the final peak points, the frequency differences between two

peaks are calculated. Then this new method calculate the error between these

frequency differences . If the error is greater than threshold, the will be

give up. Others will be used to calculate the mean value. And then, this mean

value is used to calculate distance by equation (5.9).

(5) Based on these three separated responses, equation (5.9), (5.10), (5.11) are

used to calculate the location and height of void. Also we move the antenna in

parallel to detect the width and length of void, which will be described in

section 5.6.
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Figure 5.12 Processes of new data analysis method
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5.4 Simulation by Numerical Analysis

Simple numerical analysis was performed to verify the proposed system. The

reflection and refraction rate, and the attenuation constant and phase factor were used

to calculate each reflection, refraction, and attenuation. The following coefficients are

necessary.

1) Reflection rate

(5.16)

2) Refractive rate

(5.17)

3) Attenuation constant

(5.18)

4) Phase factor

(5.19)

1 and 2 are the dielectric constants of air and concrete, respectively, is the electric

conductivity of concrete, and is the permeability.

The framework of the calculations is shown in Figure 5.13. The probe is placed on

the surface of the concrete block. The thickness of the concrete block is 6.6 cm, and

the air void is located 2.2 cm inside the concrete. The size of the air void is 2.2 cm.

Figure 5.13 Numerical calculation

For the wave propagation calculation, the route shown with the red arrow in Figure

5.12 is chosen. If the incident signal is E0, then the wave signal for this route is

(5.20)

where e denotes the phase lag, which is related to time delay of the wave

propagation in air; T1 denotes the air concrete interface where refraction takes place,

and the amplitude is reduced to T1 if the incident amplitude is 1; e j( - denotes the

phase lag and the attenuation in concrete and depends on the distance L of the wave

propagation in concrete. In concrete, the attenuation constant is not zero because the

electric conductivity of the concrete is not zero.

Although the number of repeated reflections inside the concrete is infinite, only the
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first three reflections between any of the four interfaces are considered since the

higher order reflections are weak (< 0.4%). The repeated reflections between the

second and third interface are shown in Figure 5.13.

In the calculations, the total area is divided into four parts (shown as in

Figure 5.13), and then the interior repeat reflection routes are divided into two classes.

1) The first class comprises the repeat reflection routes in areas , , and .

The repeat reflection route in area contains four signals, which contribute to the

total reflection. The signals are shown as blue arrows in Figure 512, where the first

time is the reflection and the next is the refraction.

2) The second class comprises the repeat reflection routes in areas , ,

and . The repeat reflection route in area is shown in Figure 5.13.

Figure 5.14 Repeat reflections in area

For sweeping frequencies between 3.8 GHz and 5.8 GHz, the computations are

shown in Figure 5.15.

From Figure 5.15, the following are inferred:

1) The amplitude frequency response A(f, x) shows periodicity that satisfies

equation (5.4) and resembles Figure 5.3.

2) In the case of no void, the peaks correspond to the frequency difference

between two peaks and the distance of the concrete surface x satisfies equation (5.12).

3) If a void exists, the amplitude frequency response A(f, x) curve changes. Several

signals with different periodicities are included in the new amplitude frequency

response A(f, x) curve.

Figure 5.15 Computations for 3.8 GHz 5.8 GHz



109

5.5 Experiment and Analysis

5.5.1 Implementation of the Standing-wave based

Structure NDT System

In this section, the prototype system according to the improved standing-wave

testing algorithm is described. The system consists of the four parts shown in Figure

5.16. The standing-wave radar prototype system is shown in Figure 5.16. The system

consists of the signal generator, the standing-wave radar, the A/D converter, and a

signal processor.

Figure 5.16 Standing-wave testing prototype system

Figure 5.17 Schematic of the standing-wave radar

The signal generator generates sweeping waves (sweep mode), and it has a start

frequency of 3.8 GHz, a stop frequency of 5.8 GHz, a center frequency of 4.8 GHz,

and a frequency span of 2 GHz. The linear sweep mode is used in the spacing setup.
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The step size is 1 MHz (step line = 1 MHz), and the dwell time is 10 ms. The total

sweeping time from 3.8 GHz to 5.8 GHz is 23.6 s.

The standing-wave radar sends the sweeping waves to the object, combines the

incident and reflected waves, and then transforms the wave amplitude to voltage. The

standing-wave radar is the core of the prototype system shown in Figure 5. 17. The

analog voltage signal is transformed to digital signal by A/D converter. Then the

digital signal is sent to the PC. The signal processor on the PC analyzes the received

amplitude frequency response A(f, x) and is used to detect whether there are voids

inside the object.

5.5.2 Experiments and Data Analysis

Concrete, and clay and marble blocks were used to test the prototype system. As

described in section 5.4, the algorithm obtains the location of voids by using the

frequency difference f and the speed of the electromagnetic wave in the materials.

There are two methods to obtain the wave speed in different materials. The first

calculates the approximate speed using Equation (5.21), where c is the speed of the

electromagnetic wave in air, and v is the dielectric constant of the material.

(5.21)

The second method measures the speed in the material. In this case, an algorithm

similar to that in [4] is used to measure the speed in concrete without voids, and clay

and marble blocks. In [4], the time delay between the first and the second-surface

reflected wave is used to calculate the distance using Equation (5.22),

(5.22)

where H is the thickness of the block, c is the speed of the radar wave in air and is

constant, and t1 is the time delay between the first and the second-surface reflected

wave. In the experiments, the thickness of the block is known. The data in Table 5.1

show individual measurements and averages. Because the bridge diagnosis system in

chapter 3 and 4 can distinguish the approximate area of damage, a nondamaged area

is selected to measure the wave speed in the field.

Table 5.1 Wave speed in the tested materials
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5.5.2.1 Case 1

Three types of concrete blocks (wave speed = c/3) were used (Figure 5.18):

1) A 5-cm-thick concrete block with no air voids.

2) A 2.2-cm-thick concrete block with 2.2-cm-thick voids.

3) A 2.2-cm-thick concrete block with 5.8-cm-thick voids.

Figure 5.18 Three types of concrete blocks

Then, the antenna is positioned at the surface of the sample, and the signal

generator is turned on. The amplitude frequency response A(f, x) observed in the

oscilloscope for each concrete block is shown in Figure 5.19.

The blue line in Figure 5.19 denotes the sweeping frequency in the range 3.8 5.8

GHz. The yellow waves show the amplitude of the response detected by the wave

detector. When the signal generator is turned on, two or more periods of data are

collected by the A/D converter. Because of the large interference in the first-period

data, these data are discarded in the subsequent analysis. The starting point of the

second-period data is the start of the second period of the blue line in Figure 5.19,

which is the lowest frequency point in the second period.

From the results, it is inferred that in the nonvoid concrete case, the A(f, x) curve

shows periodicity, whereas in the case of concrete with air voids, the periodicity of

amplitude frequency response A(f, x) is somewhat lost, as shown in Figure 5.19 and

Figure 20.

The proposed data analysis mothed is used to extract the amplitude frequency

response A(f, x1), A(f, x2), and A(f, x3), which represent the first reflection(top of the

block), second reflection interface (top of the air voids), and third reflection

respectively. These responses are used to identify the location and size of the air

voids.
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Figure 5.19 Observed oscilloscope signals for case 1

Figure 5.20 Sampling data for case 1

In case 1, all sampling data contain the A(f, x1) that represents the reflection on the

concrete surface, whereas the data for the small void contains the A(f, x2) that

represents the reflection on the top of the air void and the A(f, x2) that represents the

reflection on the bottom of the air void.

The independent analysis of the data for the small voids gives the three main

independent components in Figure 5.21. The frequency differences are shown in table
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5.2. The errors between these frequency differences are shown in the Table 5.3 (the

threshold is 5%). From Table 5.3, we can find the frequency difference of

A , of A , and of A are greater than threshold and will

not be used to calculate the mean value of frequency difference. Other errors are very

small. Thus, the average sampling points between two peaks of the standing-wave

formed by the concrete surface is 1021; the average sampling points between two

peaks of the top of the air void is 867, the average sampling points between two peaks

of the bottom of the air void is 821.

Figure 5.21 Independent components for case 1

Table 5.2 Frequency difference of standing-waves

Table 5.3 Errors between frequency differences
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There are also other A(f, x) curves for reflections on other surfaces; however,

considering the propagation of electromagnetic waves, these three

amplitude frequency responses are the strongest. And can be used to calculate the

distance to the two surfaces.

For the concrete surface, because the sampling frequency is 200 Hz and the average

sampling points between the two peaks is 1045, the time between the two peaks is

5.225 s. For the sweeping wave, the frequency is proportional to time, and the total

sweeping time from 3.8G Hz to 5.8 GHz is 23.6 s; thus, 1 = 432.6MHz. Based on

Equation (5.9), x1 is 34.67 cm and is shown in Figure 5.22.

Figure 5.22 Equivalent distance for case 1

For the top of the air void, the calculation is the same as that in the concrete case. x2

is 41.12 cm. For the bottom of the air void, the x3 is 43.41.

According to Figure 5.22, the equivalent distance between the concrete surface and

the top of the air void is 6.45 cm. Then, for the small void, the distance from top of air

void to the top of concrete is

(5.23)

The distance from top of air void to the bottom of air void is

(5.24)

Table 5.4 shows the results of small void and large void blocks. From Table 5.4, we

can find the two detected values are very close to the real distance L1 and L2 in small

void and large void blocks. The maximum error is about 4%, which are very small.

Table 5.4 Results of case 1 experiment
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5.5.2.2 Case 2

The testing samples are two 3.3-cm-thick clay bricks (wave speed = c/2.5). The

cases considered are shown in Figure 5.23 and are 1) one clay brick, 2) two clay

bricks with in-between distance x = 0, and 3) two clay bricks with in-between

distances of x = 1 cm, x = 3 cm, and x = 6 cm.

Figure 5.23 Case 2 setup

The amplitude frequency responses A(f, x) are shown in Figure 5.24. The blue line

denotes the sweeping frequency range of 3.8 5.8GHz. The yellow waves represent

the detected amplitude responses detected by the wave detector.

Figure 5.24 Observed signals for case 2

When the thickness of the clay bricks changes, the amplitude frequency response

also changes. In the case of no voids, the A(f, x) curve shows good periodicity, which
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is lost in the case of air void and when the size of the voids changes.

Application of Fast-ICA to the data returns the independent components in Figure

5.25. Three components are the standing-wave A , A , and A ,

respectively. The same processes of case 1 are used in case 2 to calculate the detected

location and size of void. In the clay blocks, the wave speed is c/2.5; therefore, for the

same period, the distance in air covered by the electromagnetic wave is 2.5 times that

in clay. The results of case 2 are shown in Table 5.5. From Table 5.5, the detected

values of location and size are very close to the real distance and . The

maximum error of case 2 is 3%, which is very small.

Figure 5.25 Three independent components for 1cm void in case 2

Table 5.5 Results of case 2 experiment
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5.5.2.3 Case 3

The testing samples are two concrete bricks and one 1.8cm thick marble brick

(wave speed = c/1.5). The distance between the marble brick and concrete bricks is

1cm (Figure 5.26). First, the antenna is placed on one place on the marble surface, and

then the antenna is repositioned.

Figure 5.26 Case 3 setup

The sampling data collected by the A/D converter are shown in Figure 5.27. Data

analysis with the new data analysis method gives the independent components in

Figure 5.28. Three components are the standing-wave A , A , and

A , respectively. In the marble block, the wave speed is c/1.5; therefore, in the

same period, the distance in air covered by the electromagnetic wave is 1.5 times that

in the marble. The same processes of case 1 are used in case 3 to calculate the

detected location and size of void. The results of case 3 are shown in Table 5.6. From

Table 5.6, the detected values of location and size are very close to the real distance

and . The maximum error of case 3 is 4%, which is very small.

Figure 5.27 Sampling data for case 3
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Figure 5.28 Independent components for case 3

Table 5.6 Results of case 3 experiment

From Figure 5.20, 5.24, and 5.27, it is observed that the interval of the amplitude

peaks differs in the same figure. Noise and the application of Fast-ICA contribute to

the error. To solve this problem, the errors between frequency differences are

calculated. If the error is greater than threshold, the will be give up. Others will

be used to calculate the mean value. And then, this mean value is used to calculate

distance. In this way, the differences in the intervals of the amplitude peaks do not

affect the results significantly. Otherwise, since we adopt several peaks to obtain the

average interval, we also can easily calculate the average interval when two peaks are

close each other. From these 3 cases, we can find the errors in the data in the 3

experiments are less than 5%, the precision (millimeter) is enough for actual case,

since several millimeters thickness (distance L) usually will not appear in actual

structure diagnosis. Therefore, in practice, it is suitable for bridge local health

diagnosis. Otherwise, the space between the horn antenna and the top surface of the

block should be separated to avoid scuffing of antenna. The distances between the

receiver antenna and the top surfaces of the blocks depend on the material under

investigation.
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5.5.3 Comparison

As described in chapter 2, many NDT techniques and systems are developed to

obtain the specific information of damages, such as X-ray based system,

radiography based system, Ultrasonic inspection based system, Ground-penetrating

radar based system, and etc. However, the limitations of harmful to humans and

difficultly deploying the receiver part on the bottom of bridge deck let the X-ray

based system and radiography based system to be difficulty applied for bridge.

Therefore, in order to show the advantages of my system, I compare my system with

ground penetrating radar system (GPR) and ultrasonic NDT system.

5.5.3.1 Ultrasonic Inspection based NDT System

Figure 5.29 shows the principle of NDT method by using ultrasonic inspection

techniques to detect bridge. The ultrasonic based NDT system consists of an

ultrasonic transducer, receiver, and a data processing equipment. At first, transducer

transmits ultrasonic waves into object. Then the receiver records the returning waves.

At last the data processing equipment analyzed the received waves to obtain the

location of damages. If there is a void, crack or impurity, the sound will rebound and

the data processing equipment will show the returned waves. Based on the time delay

between the returned waves, the location of them will be obtained and shown by the

data processing equipment.

An ultrasonic based NDT method is presented by Shah in [10] to detect the

concrete. The main lack of using ultrasonic inspection for bridge structural detection

is it is difficultly to effectively obtain ultrasonic coupling between the surface of

bridge and transducer. Another defect of ultrasonic inspection in bridge structural

NDT is the small size of probe limit system to detect the deck of bridge.

Figure 5.29 Ultrasonic based NDT system
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5.5.3.2 Ground Penetrating Radar System

Microwave inspection techniques are based on the propagation characteristic of

electromagnetic-waves. Ground penetrating radar (GPR) is typical microwave

inspection technique. The principle of GPR system is shown as Figure 5.30. It uses an

antenna intergrade transmitter and receiver to send wave and receive the reflected

wave. Then based on the reflected wave techniques can obtain the time difference of

two or three difference surfaces. The time difference can be used to detect the location

and size of damages or defects. Yehia et al. [11] studied many different type NDT

techniques, such as ground penetrating radar with 800MHz antenna, designed to

detect the health conditions of concrete deck in bridges. Field data complexities and

difficulties in data interpretation limit the application of the abovementioned

techniques. However, considering the frequency limitations of the oscilloscope and

A/D converter, it might be difficult to clearly capture the waveform at high

frequencies (higher than 1 GHz). Otherwise, using time delay to calculate the location

and the depth of damage size will limit the detection precision.

Figure 5.30 Ground penetrating radar system [11]

5.5.3.3 Comparison of three NDT Systems

Table 5.7 shows the comparison results of my system, ultrasonic based NDT

system, and GPR system. From table 5.7, we can find my system no need a special

medium for receiver, such as the coupling medium of ultrasonic system, to record the

reflected wave. It means my system no need to consider the difficult of ultrasonic

based NDT system, which is difficultly to effectively obtain ultrasonic coupling

between the surface of bridge and transducer. The resolution of my system is far

better than the GPR system, which means my system can detect the small size damage

which cannot be detected by GPR system. Comparing with the ultrasonic based NDT
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system and GPR system, the detection precision of my system improves 44.4% and

67.7% respectively. This is because my system uses frequency difference to calculate

the location and size of damages, but other two systems use time delay. In my system,

the waveform also changes for voids smaller than one-fourth of the wave length.

Since the frequency of wave in my system is higher than other two systems, the

detection precision of my system is far better than others. Although, the detection

depth limitation of my system is lower than other two systems, the detection depth of

my system is enough for bridge and other builds structure detection. Otherwise the

detection depth can be extended by reducing the frequency of my system.

Since my system and GPR system are based on electromagnetic wave, I compare

my system with GPR system by using the same hardware to take the 3 case

experiments described in section 5.5.2 to show the advantage of my system in

detection precision. The detection error of two systems shows as Figure 5.31. The

detection error is defended by equation (5.25), where is the detected value

and is the actual value. Figure 5.30 shows the detection error of my system is

far lower than GPR system. This means the detection precision of my system is far

better than GPR system, and my system improves 67.7% averagely.

(5.25)

Fig.5.7 The comparison of my system, GPR, and ultrasonic NDT

Figure 5.31 Detection error of my system and GPR system
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5.6 Summary

In this chapter, in order to pinpoint the exact location and severity of damages, a

standing-wave structure DNT system was successfully built. In this system, the signal

generator generates a 3.8 GHz 5.8 GHz sweeping wave to the radar. The radar sends

the sweeping wave to the object, and the incident and reflection waves from the object

form a standing wave whose amplitude A(f, x) is related to the input wave frequency f

and object distance x. The amplitude signal is detected and converted to volts with a

zero-biased detector. Finally, the amplitude frequency response A(f, x) was analyzed

by the proposed data analysis method based on modified EMD and ICA, and the

object state including the existence, exact location and size of subsurface damages

such as voids was identified.

To verify the performance of this system, Simulations and experiments using

different samples were performed. The data analysis suggests the following. First, for

the case of no air voids, the A(f, x) curve always has good periodicity. Second, in the

presence of air voids and when the size of the voids changes, the A(f, x) curve changes.

Third, the voids are detected by generating sweeping waves and storing the

amplitude frequency response data. Then, the modified EMD and ICA based data

analysis mothed is proposed to extract the responses from A(f, x) to estimate the

distances. Finally, by calculating the frequency difference between two peaks on the

extracted amplitude frequency responses, the void location and size can be

determined. The errors in the data in the experiments are less than 5%. It means the

precision (millimeter) is enough for actual case, since several millimeters thickness

(distance L) usually will not appear in actual structure diagnosis. Therefore, in

practice, it is suitable for bridge diagnosis.

Compared with other NDT systems, the proposed system offers the following

advantages. First, compared with other BSHM system, it offers higher sensitivity and

can detect the specific location and senverity of the damage. Second, compared with

the conventional ultrasonic wave method and other electromagnetic wave methods

(GPR system), it has higher resolution owing to its higher frequency and more

accurate owing to the algorithm because for voids smaller than one-fourth of the wave

length, the waveform also changes. Comparing with the ultrasonic based NDT system

and GPR system, the detection precision of my system improves 44.4% and 67.7%

respectively. Finally, compared with commercial systems, it is more compact and less

expensive.
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Chapter 6

Conclusion

6.1 Conclusion

In order to comply with increasing requirements of bridge structure health

diagnosis, including accuracy and sensitive of damage detection and locating, SHM

method should be improved further. In this research, data process method is proposed

to reduce the impact of noises and varying environment on damage diagnosis

performance and improve the accuracy and sensitive of damage detection. In addition,

betterment of damage diagnosis performance was also applied to pursue higher

accuracy and sensitive in detecting damage location and severity. Improvement in

damage diagnosis performance is achieved by an advance time-series modeling based

damage diagnosis method, including applying ARMA and Mahalarobis distance to

extract damage features. Also it involves, designing a new damage sensitive feature

index to obtain highly accurate and sensitive location and severity of damage.

Detailed location and severity information of local damages is indispensable to bridge

maintenance or reparation. As a result, locate the detailed location and severity of

local damages (especially inside) is crucial for bridge structure monitoring and

maintenance system.

The research can be summarized as three aspects,

(1) Design of high-performance data process method to reduce the impact of noise

and varying environment

(2) Design of advanced damage diagnosis method for damage detection and

locating

(3) Design of effective NDT system to acquire the detailed location and severity

information of damages

In chapter 3, from the viewpoint of increasing accuracy and sensitivity of damage

detection and reducing the impact of noises and varying environment, a data process

method based on improved post-nonlinear ICA and similarity matching is proposed.

To achieve efficiency in de-noising, an improved post-nonlinear
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geometric-linearization ICA algorithm (pcgICA) is designed. In this improved ICA

algorithm, compensation based scheme is processed to reduce the

geometric-linearization error of post-nonlinear geometric ICA (pgICA). It is revealed

that improved pgICA is superior to conventional pgICA,

Convergence performance, at least 1.5 times faster than conventional pgICA

Better de-noising of non-linear system

The improved ICA is used for de-noising of vibration data measured on bridge. To

verify the advantage of improved method (pcgICA), it is compared with Fast-ICA and

pgICA by correlation-coefficient and signal-noise-ratio (SNR) in simulation.

Comparing with Fast-ICA and pgICA, the average correlation-coefficient of my

method is improved by 62.1%, and 16.7% respectively, the SNR is improved by 51.8%

and 16.3% respectively. In the Nakajima bridge experiment, results show pcgICA is

better than Fast-ICA and pgICA.

In order to reduce the impact of varying operating and environment condition on

data analysis, a novel environment impact reduction method based on AR model and

similarity matching is proposed. Vibration data are divided into two sets, undamaged

condition data set SU and unknown condition data set SD. AR model is used to extract

the features of each data in the two sets. Using these features, a matching scheme

based on Euclidean distance is designed to obtain the data sample pair, one of SU and

one of SD, which are measured in a similar operation and environment condition. In

this way, change of structure caused by varying environment is eliminated. It is

revealed that my method is superior to the conventional method in two aspects,

No need to measure environment, such as temperature, humidity, loading, etc.

Better accuracy and not only consider the factors that can be measured

(temperature), also consider that can t be measured (traffic loading, etc.).

To verify effectiveness of the proposed algorithm, data of Nakajima bridge

experiment is used. Results show our method can effectively eliminate false damage

detection caused by varying environment and operation condition, which means our

proposed method is efficient.

In chapter 4, in addition to improve the accuracy and sensitive of damage detection

by data process method, an advance damage diagnosis method is designed to directly

detect location and severity of damage, accurately and sensitively. In this chapter, a

two-stage damage diagnosis method based on statistic pattern recognition is proposed

for detecting and locating damages accurately. In the first stage, after data process,

FFT is used to obtain characteristic frequency of bridges. By comparing the frequency
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in a healthy state with an unknown state, we detect the structural novelty (damage

identifying).

In second stage, to detect severity and location of damage, a time-series modeling

based damage diagnosis algorithm is proposed. At first, data samples are used to

establish ARMA model. Based on the model, pattern vectors form damage feature,

where PCA is utilized to reduce the amount of features. These features and

Mahalanobis distance are used to extract the damage-sensitive-features (DSFs). Based

on the DSFs, a new sensitive DSF index, Dindex, is proposed to take statistically

diagnose structure condition, and identify severity and location of damages. It is

revealed that my method is superior to the conventional method,

Highly accuracy and sensitive, statistical reduce error and DSPR magnify the

difference between damage and health.

Better locating, at least locate all kinds of damages (close to sensor).

To verify performance of this two-stage algorithm, experiments were conducted at

the Kando Bridge in Japan. Damages were inflicted at different locations to achieve

varying levels of damage severity. The results demonstrate that location and severity

of damage can be identified using our proposed two-stage diagnosis algorithm.

Sensitivity of my method is 96.3% in this experiment. Our algorithm is compared

with other diagnosis algorithms such as FFT with ICA, SPR with residual method,

and Transfer Function based method. The results show our algorithm is better not only

in sensitivity but also in specificity.

Comparing with SPR with residual method, TF, and FFT with ICA, my method

improved by 10.3%, 17.1%, and 13.2% in sensitivity, respectively.

My method improved by 9.6%, 13.4%, and 11.8% in specificity, respectively.

In chapter 5, as described in chapter 4, a two-stage damage diagnosis algorithm is

proposed for BSHM system. This method can successfully detect severity and

approximate locations of various damages on bridges. With the viewpoint of locating

detailed location and severity information of local damages for bridge maintenance or

repair, a nondestructive testing (NDT) system based on stand-wave is developed to

pinpoint exact location and severity of the damage by using the approximate location

information of chapter 4. This system consists of two parts:

Stand-wave detection

1). the sender antenna sends 3.8 GHz 5.8 GHz sweeping wave to the object,

and the incident and reflection waves from the top-surface of object form
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a standing wave whose amplitude A(f, x) is related to the input wave

frequency f and object distance x.

2). The amplitude signal is recoded by receiver antenna, shows on the

oscilloscope and store in PC. When there are no damages (void or crack)

in object, A(f, x) is a perfect stand-wave.

3). Else, A(f, x) is a mixture wave mixed by the (formed by

reflected wave of object s top-surface), (formed by reflected

wave of Void s top-surface), and (formed by reflected wave of

Void s lower-surface).

4). Thus, by reading changes in waves on oscilloscope, horizontal position

can be located. Also, by horizontal moving the antenna and checking

wave on oscilloscope, the width of void is obtained.

Data analysis for detecting the damage s depth

To detect depth and size of damage accurately, a new data analysis method

based on modified EMD and ICA is proposed to calculate two values. In this

way location and size of inside damages such as voids was identified.

To improve decompensation accuracy of EMD, a modified EMD based a

correlation coefficient is proposed. The mixture stand-wave A(f, x) is

decompensated by modified EMD to give multiple inputs for ICA.

ICA extract the three separated stand-waves , , and

. Based on these stand-waves get the , , and .

Then based on , , and , the two values are calculated.

It is revealed that this system is superior to other NDT systems in two aspects,

Better accuracy, high frequency sweep wave and using frequency difference

to calculate distance make better accuracy then using time.

Simple, easy to carry, inexpensive, and safety to human health.

To verify the performance of this system, Simulations and experiments were

performed. The data analysis suggests the following. By reading the frequency

difference between two peaks on the extracted stand-waves, void location and size

can be determined. Detection error in the experiments is less than 5%. It means

precision (millimeter) is enough for actual case. Comparing with ground penetrating

radar system and ultrasonic based NDT system, the detection error of my system

reduces by 67.7% and 44.4%, respectively. Also, my system has higher resolution,

higher accuracy, and less expensive. Therefore, in practice, it is suitable for bridge

diagnosis than other NDT systems.
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6.2 Future Research

The proposed methods and systems for bridge health diagnosis can be validated in

the future research by Appling in real bridge health diagnosis and maintenance system.

The illustration of future researches is shown in Figure 6.1

Figure 6.1 Future research

6.2.1 Cloud system for BSHM

Although a bridge structural health monitor and maintenance system is built based

on the proposed methods and system in the research, there are still some parts needed

to be improved.

First, the data storage and analysis results sharing needs to be improved. In this

BSHM system, acquired vibration data of bridges are stored in data sever and

data analysis center. Researchers need to get data from data analysis center to

do analysis and send the analysis reports to bridge maintenance relevant

departments. This not only costs time but also increases expenditure. In the

future, a cloud system needs to be developed for storing vibration data of

bridges and analysis results of analyzers. In this system, data acquiring system

directly transmit measured vibration data in cloud system. Also, the analyzers

directly take these data to perform analysis and store these results in cloud

system. In this way, analyzers can analyze status of bridges at anytime and

anywhere. Also the maintainers can get the analysis results at anytime and

anywhere.
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Second, the data analysis software needs to be improved. In this BSHM system,

although a data analysis software is developed, it is difficult and complex for

general users. Thus, in future, an integrated and easy-to-use software should be

developed for any user based on the proposed methods in this thesis.

6.2.2 Application Extension of Data Acquiring System

In our built BSHM system, a data acquiring system based on low-power wireless

sensor network (WSN) is developed for acquiring vibration data. In this data

acquiring system, a new node board with low-power and low-power protocols are

designed. In the future, this data acquired system would be extended to use in other

applications. For example, this system can be extender for inter-vehicle

communication in automatic drive application.

In this application, a camera interface is needs to be added in node board to

exchange images and control information. Also information process software is

needed to add in the nodes. Otherwise, in BSHM system, the routing method is

a static routing method. Thus, when the WSN is used in inter-vehicle

communication, routing method is needed to be improved, because topology of

network changes dynamically and quickly. In future, we need to develop some

techniques, such as routing, to improve fault-tolerant ability of topology and

effective of data transmitting.

Also, this BSHM system can be applied in other status monitoring and

diagnosis field. By improve small parts such as sensors, the BSHM system is

easily extended to apply in monitoring status of builds, machine or towers, etc.

Also, the data acquiring system can be applied in many application of daily life,

such as automatic meter reading system.

6.2.3 Standing-wave based structure NDT system

In this research performance analysis of standing-wave based structure NDT

system is perform by using concrete bricks and granite bricks in laboratory. In further,

this system needs to be test in different materials used in bridge, road, and builds etc.

Do more experiment on more materials and if possible, change the shape of

subsurface void to verify our system. Add steel bar to the concrete and check

its influence. Try to use radar to detect subsurface void in material of high

dielectric constant such as metal bars.

Try to improved separation processing of data analysis method. In proposed

method, after modified EMD, Fast-ICA is applied to separate stand-waves of

surfaces. Some peaks of separated signals are not obvious. Thus, in future,

improvement on ICA is needed to improve the effect of separation.
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The NDT system is built, but it is a prototype system. In the future, we need to

systemize these hardware equipment to make system for easy to use and reduce

cost of the system. Also, the software needs to be systemized to extract the

location and size of void, directly. In this way, users can easily use this system.

And then, after systemizing, this system should be developed as a product to appear

on the market with the BSHM system.
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