

Abstract

We study the use of network coding to speed up content distribution in peer-to-

peer (P2P) networks. Our goal is to get the underlying reason for network coding’s

improved performance in P2P content distribution and to optimize resource con-

sumption of network coding.

In contrast with the current store-and-forward routing model, network coding

allows network nodes to code, i.e. generating new information from what they have

received, and after that, forward the coded information into the network. Each

time a node wants to send data, it has to, for example, linearly combine currently

available data by a series of numerical multiplications and additions, consuming a

certain amount of computational resources.

Network coding, though having been shown to achieve maximum multicast

throughput, incurs an expensive cost: practically every node in the network has

to code and they code excessively whenever there are incoming requests. A large

portion of that huge consumed computational resource, as we find out, can be

saved with almost no impact on the optimal performance of network coding. We

optimize network coding’s resource consumption in the two following aspects: (1)

we eliminate unnecessary coding by allowing only selected important network nodes

to encode; and (2) we further save computational resources at each network encoder

by figuring out exactly how much it should encode.

Short distribution time, i.e. the time required to distribute content to all re-

ceivers, can be achieved by placing coders at just a subset of carefully chosen peers.

Peer-to-peer systems, in addition, tend to be heterogeneous in which some peers,

such as hand-held devices, would not have the required capacity to encode. We

therefore envision a hybrid network coding P2P system where some peers encode

to improve distribution time and other peers, due to limited computational ca-

pacity or due to some system-wide optimization, do not encode. We begin the

dissertation by devising the protocols and data selection algorithm needed to effi-

iii

ciently realize such a hybrid network coding system. Our protocols greatly simplify

network operations. They allow peers, being network coders or not, to commu-

nicate seamlessly using the same protocol to talk with each other. Our proposed

data selection algorithm let peers choose the most updated data to download first

which results in noticeable improvement in distribution time. The proposed pro-

tocols and data selection algorithm boost the effectiveness of network coding in

shortening distribution time which we evaluate by simulations.

To optimize network coder placement, first of all, we observe analytically that

in pure P2P content distribution networks without network coding, a considerable

amount of data is sent multiple times from one peer to another when there are mul-

tiple paths connecting those two particular peers. The duplicated data consume

bandwidth on the paths, and therefore, result in sub-optimal delivery through-

put to downstream peers on those paths. Network coding, on the other hand,

when applied at upstream peers, eliminates information duplication on paths to

downstream peers, which results in more efficient content distribution.

Based on the insight obtained from our analysis, we then propose network coder

placement algorithms to deploy network coders at selective locations in a given net-

work topology. Our algorithms achieve comparable distribution time as network

coding, yet substantially reduces the number of encoders compared to a full net-

work coding solution in which all peers have to encode. Our placement methods

put encoders at critical network positions to eliminate information duplication the

most, thus, effectively shorten distribution time with just a portion of encoders. In

other words, we optimize resource consumption by removing unnecessary or less

important network coders.

We propose in total three algorithms to place network coders inside a P2P

content distribution network. The first algorithm elaborately figures the delay in

finish time a given upstream node causes to its downstream nodes due to dupli-

cation, and then, places network coders at nodes which cause the most delay in

iv

finish time. By doing so, we can effectively accelerate content delivery from nodes

which create the most duplication, thus shorten distribution time. Our first place-

ment algorithm, which we call minimal delay placement, although can determine

accurately how much distribution time can be shortened by placing a coder at

a given network node, has the trade-off of rather high computation complexity.

With a target to reduce the complexity, the two latter algorithms are based on

network centrality, a concept borrowed from social network studies, to quickly pin-

point network nodes which stand on more paths and wider paths to other nodes,

the characteristics which we show to correlate with the level of duplication, for

network coder placement.

Performance evaluation in wide varieties of network topologies by simulations

confirms the effectiveness of our proposed network coder placements which could

achieve comparable distribution time as full network coding with just a portion of

network coders. Evidently, a significant number of network coders can be saved

while still realizing short distribution time almost the same as a full network coding

solution.

Having optimized network coder placement over the whole network, we then

direct our attention to each individual network coder itself. Each time a network

coder generates new information from available information, it puts a piece of re-

dundant information into the network which helps accelerate content distribution

towards downstream nodes. However, excessive redundancy is not necessary to

achieve short distribution time. Since the encoding process consumes computa-

tional resources of the coder it is important to figure the right level of redundancy,

just enough to eliminate duplication, each network coder should generate. Assum-

ing only a constraint number of selected peers can encode, i.e. become network

coders, we next optimize the redundancy network coding generates, i.e. how much

a particular encoder should encode. Given the network topology, we analytically

figure out the redundancy ratio at each encoder to achieve shortest distribution

v

time and verify the result by simulations.

We believe our studies, which offer insights into the way network coding im-

proves content distribution and optimize its resource consumption and implemen-

tation, will contribute to the understanding of the subject and promote a wider

deployment of network coding as a method to speed up content distribution.

We conclude the dissertation with a promising outlook for extending our re-

sults to facilitate content distribution in information-centric networking, an active

research field which is anticipated to build our future networks.

vi

Acknowledgements

First of all, I would like to thank professors, staff, and fellow students in GITS,

Waseda University for their support during my doctorate study.

I would like to express my thanks to my dissertation committee, Prof.

Nakazato, Prof. Tanaka, Prof. Tsuda, and Prof. Sato, whose comments and

advice have helped improve this dissertation.

I also very much appreciate Dr. Gkantsidis’s discussion about one of his work

on network coding for peer-to-peer content distribution which has motivated the

research herein.

I gratefully acknowledge financial support from MEXT Scholarship throughout

the course of my PhD research and support from JSPS KAKENHI Grant Number

(24500098).

I am deeply indebted to my adviser, Prof. Nakazato, for his guidance. His

encouragement of new ideas has excited me to do my research. And I am grateful

to my adviser’s proactive support on several occasions as well as the friendly, yet

earnest, research atmosphere he created in our lab.

vii

To my parents.

viii

Contents

Abstract . iii

Acknowledgements . vii

List of Tables . xii

List of Figures . xiii

List of Algorithms . xvi

1 Introduction 1

1.1 Contribution . 2

1.2 Network Coding for Peer-to-Peer Content Distribution 3

1.3 Related Work on Network Coding Optimization 7

1.4 Dissertation Organization . 10

2 System Model 13

2.1 Network Coding Peer-to-Peer Content Distribution 13

2.2 Network Topology . 16

3 Protocols and Data Selection Algorithm 17

3.1 Ordinary Network Coding Peer-to-Peer System 19

3.2 Proposed Information Exchange Protocol 21

3.2.1 Block Format . 21

3.2.2 Pre-code Protocol . 22

3.2.3 Post-code Protocol . 25

3.3 Block Selection Problem . 26

ix

3.3.1 Duplication Problem with Current Rarest-first Block Selection 27

3.3.2 Proposed Block Selection Algorithm 31

3.4 Network Coder Assignment . 32

3.5 Performance Evaluation . 33

3.5.1 Clustered Topologies . 34

3.5.2 Small-world Network Topologies 35

3.6 Conclusion . 40

4 Minimal Delay Coder Placement 42

4.1 Network Coder Placement Problem 43

4.2 Multi-path Delivery Duplication Analysis 45

4.2.1 Two Receiver Duplication 46

4.2.2 Multiple Receiver Duplication 52

4.2.3 Delay in Finish Time of Downstream Peers 52

4.2.4 The Effect of Network Coding 53

4.2.5 Numerical Experiments . 55

4.3 Delay Computation and Placement Algorithm 56

4.4 Performance Evaluation . 59

4.4.1 Simulation Settings . 59

4.4.2 Performance Compared with Optimal Placement 60

4.4.3 Performance in Moderate Bottlenecked Topologies 61

4.4.4 Performance in Highly Bottlenecked Topologies 62

4.5 Discussion . 65

5 Centrality-based Coder Placement 67

5.1 Correlation of Duplication with Consisting Flows 68

5.2 Coding at Network Centrality . 72

5.3 Betweenness Centrality Placement 74

5.4 Flow Centrality Placement . 74

x

5.5 Performance Evaluation . 77

5.5.1 Performance in Moderate Bottlenecked Topologies 78

5.5.2 Performance in Highly Bottlenecked Topologies 81

5.5.3 Performance with Different Centrality Thresholds 83

5.6 Discussion . 85

6 Coding Redundancy Ratio 87

6.1 Redundancy Ratio at a Network Coder 87

6.2 Problem Formulation . 88

6.3 Redundancy Ratio Analysis . 90

6.3.1 Encoder at the Source . 90

6.3.2 Encoder at an Intermediate Peer 92

6.4 Redundancy Ratio Computation . 95

6.5 Performance Evaluation . 97

6.6 Discussion . 101

7 Conclusion and Future Work 102

7.1 Concluding Remarks . 102

7.2 Future Work . 104

Bibliography 107

List of Academic Achievements 113

xi

List of Tables

4.1 Duplication Analysis Notations . 44

4.2 Finish Time Comparison in a 50-node Network. 60

6.1 Redundancy Ratio Analysis Notations 89

xii

List of Figures

1.1 Network Coding in a Butterfly Network 4

1.2 Random Linear Network Coding . 5

1.3 A Network Coder Is Placed at an Intermediate Peer 6

1.4 Dissertation Organization . 10

2.1 Illustration of P2P Content Distribution System. 14

3.1 Ordinary Protocol Used in Network Coding P2P Systems. 20

3.2 Notification and Data Block Formats. 23

3.3 Pre-code Protocol. 24

3.4 Post-code Protocol. 25

3.5 Block Duplication - Example 1, Illustration 1. 28

3.6 Block Duplication - Example 1, Illustration 2. 28

3.7 Block Duplication - Example 1, Illustration 3. 29

3.8 Block Duplication - Example 2, Illustration 1. 29

3.9 Block Duplication - Example 2, Illustration 2. 30

3.10 Block Duplication - Example 2, Illustration 3. 30

3.11 Block Duplication - Example 2, Illustration 4. 31

3.12 A Two-cluster Topology Used for Simulation. 34

3.13 Average Finish Time in a Clustered Topology. 34

3.14 A Small-world Network Topology Used for Simulation. 36

3.15 Finish Time using Betweenness Centrality Placement. 37

3.16 Finish Time using Degree-based Placement. 37

xiii

3.17 Finish Time When Encoders Are Placed At Random. 38

3.18 Finish Time Improvement using Betweenness Centrality Placement. 39

3.19 Finish Time Improvement using Degree-based Placement. 39

3.20 Finish Time Improvement When Encoders Are Placed At Random. 40

4.1 Illustration of Maxflow on a Butterfly Network. 45

4.2 A Partial Graph of One Upstream Node with Its Two Downstream

Neighbors. 46

4.3 Snapshot of Data Blocks Downloaded by Node 1 and Node 2 48

4.4 The Number of Duplicated Blocks at Node 2 50

4.5 Multiple Receiving Nodes Are Represented by Two Virtual Nodes . 51

4.6 Data Blocks Downloaded by Node 1 and Node 2When Node i Encodes. 53

4.7 Block Duplication with Different Bandwidth Settings 55

4.8 Duplication Rate with Different Bandwidth Settings 56

4.9 Delay in Finish Time with Different Bandwidth Settings 56

4.10 Maximum Finish Time of Min-delay Placement in Moderate Bot-

tlenecked Topologies . 61

4.11 Average Finish Time of Min-delay Placement in Moderate Bottle-

necked Topologies . 62

4.12 Maximum Finish Time of Min-delay Placement in Highly Bottle-

necked Topologies . 63

4.13 Average Finish Time of Min-delay Placement in Highly Bottle-

necked Topologies . 63

4.14 Maximum Finish Time Comparison Varying the Number of Coders 64

4.15 Average Finish Time Comparison Varying the Number of Coders . 64

5.1 A Partial Graph with Two Paths. 69

5.2 Correlation of Duplication with Flow Size and Number of Flows. . . 71

xiv

5.3 Average Finish Time Compared with Network Coding in Moderate

Bottlenecked Topologies . 78

5.4 Maximum Finish Time Compared with Network Coding in Moder-

ate Bottlenecked Topologies . 78

5.5 Average Finish Time of Centrality-based Placements Varying Num-

ber of Encoders . 80

5.6 Maximum Finish Time of Centrality-based Placements Varying

Number of Encoders . 80

5.7 Average Finish Time Compared with Network Coding in Highly

Bottlenecked Topologies . 81

5.8 Maximum Finish Time Compared with Network Coding in Highly

Bottlenecked Topologies . 81

5.9 Average Finish Time of Centrality-based Placements Varying Num-

ber of Encoders . 82

5.10 Maximum Finish Time of Centrality-based Placements Varying

Number of Encoders . 83

5.11 Average Finish Time and Number of Coders Varying Betweenness

Centrality Threshold. 84

5.12 Average Finish Time and Number of Coders Varying Flow Central-

ity Threshold. 84

6.1 A Topology Where the Source Has Two Neighbors. 90

6.2 Encoder Is Placed at Intermediate Peer i Which Has Two Neighbors. 93

6.3 Illustration of Redundancy Ratio Function ei(t). 95

6.4 Maximum Finish Time using 250 Encoders. 98

6.5 Average Finish Time using 250 Encoders. 98

6.6 Maximum Finish Time using 5000 Encoders (Full Network Coding). 99

6.7 Average Finish Time using 5000 Encoders (Full Network Coding). . 100

xv

List of Algorithms

3.1 Proposed Block Selection Algorithm 31

4.1 Minimal Delay Placement Algorithm 58

5.1 Multi-path Coder Placement Algorithm 72

5.2 Centrality-based Coder Placement Algorithm 73

5.3 Flow Centrality Computation . 76

6.1 Redundancy Ratio Computation . 96

xvi

Chapter 1

Introduction

Network coding [1] has recently drawn much research attention owing to its ability

to achieve theoretically maximum throughput in multicasting data. By allowing

content to be combined at intermediate nodes while being forwarded in the net-

work, the multicast throughput is shown to approach that of the individual max-

imum throughput to each receiver as if it can utilize the whole network resources

[2]. The benefit of network coding, however, is unclear in practical settings such as

peer-to-peer content distribution, where non-coding solutions perform reasonably

well [3, 4].

We study the use of network coding in peer-to-peer (P2P) content distribution

to shorten distribution time. Although peers in P2P networks can readily be

turned into network coders1, questions remain about how we can effectively deploy

them. Requiring all peers to code, though may achieve shortest distribution time,

is inefficient in terms of computational resources since coding consumes the peer’s

resources. Our motivation is to get insights into network coding and answer the

questions (1) what conditions make network coding good performance, and (2) do

we need to code everywhere and all the time to achieve that performance.

That issue is especially important in practical scenarios when a large content

1The terms coders and encoders are used interchangeably.

1

is distributed or when peers get involved in distributing multiple files as in those

cases encoding process consumes huge resources. Reducing computational resource

consumption at each peer helps speed up that particular peer’s download progress,

which also likely accelerates other peers who are downloading from it.

1.1 Contribution

Our contributions are as follows.

1. We identify the underlying condition for network coding to be effective com-

pared with no coding. When there are multiple delivery paths from an up-

stream peer to a downstream peer, coding at the upstream peer will eliminate

content duplication to the downstream peer and accelerate its downloading

speed. We make an analysis of the duplication incurred in ordinary non-

coding P2P content distribution, which serves as the foundation for our pro-

posed network coder optimization.

2. We propose novel coder placement algorithms to reduce the number of net-

work coders. Based on the insight about how network coding improves perfor-

mance, given a constraint number of network coders, we propose algorithms

to locate key network nodes to place the given number of coders in order to

shorten distribution time the most.

3. We figure how much an encoder should optimally encode to achieve short

distribution time. The redundancy each network coder generates helps ac-

celerate content distribution to its downstream peers. Too high redundancy,

however, consumes the encoder’s resource unnecessarily. Too low redun-

dancy, on the other hand, will be ineffective. We analyze the exact level of

redundancy at each network coder to achieve shortest distribution time.

2

4. We devise the protocols and data selection algorithm to support P2P con-

tent distribution systems where network coding is partially enabled at se-

lected nodes. Our protocols and algorithm simplify operation and improve

performance of the P2P content distribution network.

1.2 Network Coding for Peer-to-Peer Content

Distribution

Peer-to-peer content distribution is a scalable solution to distribute content, i.e.

a file, from a source to all receivers which, unlike the server-client model, also

contribute their available bandwidth to help delivery the file. One of the most

popular P2P systems, BitTorrent [5], uses parallel downloads to accelerate down-

load speed. The file is divided into equal-size blocks, i.e. chunks, pieces, which peers

send and receive in parallel, utilizing both available upload and download band-

width. Each newly joining peer connects to a set of random existing peers, such

that to construct a mesh overlay network with random topologies. Furthermore,

rarest blocks are chosen first by receiving peers to quickly disseminate the whole

file into the system. To encourage peers to contribute uploading bandwidth to the

system, a peer uploads to, i.e. unchokes, a certain number of neighboring peers at

a time, which provide the uploading peer the best downloading rates. Rarest first

block selection and unchoking are shown to be the reasons underlying BitTorrent

excellent performance [3].

Network coding, due to Ahlswede et al. [1], is a method to maximize multicast

throughput. Using linear network coding [2, 6], a network coding scheme where

encoders generate new data by linearly combining the data they currently have,

the multicast throughput to each receiver is shown to asymptotically approach

its maximum to that individual receiver as if it can utilize all available network

resources by itself. Network coding has been adopted in several research contexts

3

Figure 1.1: Assuming the capacity of every link is 1 bit/s, when note W codes, the
throughput to each of receivers Y and Z is maximum at 2 bit/s.

such as network coding in wireless networks [7, 8, 9], physical layer network coding

[10], transport-layer network coding [11], network coding for distributed storage

systems [12, 13], network coding for P2P content distribution [14, 15, 16] and P2P

streaming [17, 18, 19], and network coding in information-centric networks [20].

Interested readers are referred to [21, 22, 23, 24, 25] for comprehensive discussions

on network coding.

Figure 1.1 illustrates the benefit of network coding in a butterfly network where

two bit a and b are multicasted from the source S to two receivers Y and Z. The

capacity of each link is 1 bit/s. Without network coding a total of only 3 bits

can be sent to the two receivers in one unit time, i.e. the average throughput

to each receiver is 1.5 bit/s (Figure 1.1(a)). When node W is allowed to encode

(Figure 1.1(b)), W combines the two bits a and b it has received using, for example,

XOR to produce a new coded bit a ⊕ b, and after that, sends the coded bit to

node X. The result is that, after decoding, each receiver can retrieve 2 bits per

one unit time which is the maximum throughput from the source to it.

Widely deployed in practical systems, random linear network coding (RLNC)

4

Figure 1.2: Random linear network coding coder creates new encoded blocks from
the original blocks using random coefficients. The multiplication and addition are
taken place in a finite field, e.g. GF (28).

[26, 27] works in a distributed manner under which encoders, independently and

randomly, make a linear combination of available data using random coefficients

to generate new coded data. RLNC has been deployed with BitTorrent to speed

up content distribution in Avalanche system[14, 15, 16, 28].

Avalanche allows all peers to generate new encoded blocks from what they have

received, i.e. become network coders, before sending to other peers.2 If the file

consists of K blocks, using RLNC, an encoding vector of K coefficients is attached

to each data block to specify how that coded block is generated from the K original

blocks. Suppose we have a coded block C0 with encoding vector (c01, c02, ..., c0K),

andK original blocks, B1, B2, ...,BK . That means C0 = c01B1+c02B2+...+c0KBK .

The coefficients, multiplications, and additions are taken place in a finite field, e.g.

GF (28). Figure 1.2 illustrates 5 new coded blocks are created from 5 original blocks

of the file, each original block contains a character from the word “HELLO”.

Now suppose encoder i, having received 2 blocks C1 and C2, wants to make

a new encoded block to send to a neighboring peer (Figure 1.3). The RLNC

2We call the peers which are allowed to encode network coder or encoder to distinguish them
from original non-encoding peers.

5

Figure 1.3: Avalanche [14] requires all peers encode. In this figure, peer i is
combining the two blocks C1 and C2 it has downloaded to make new coded blocks
C using random coefficients a1 and a2.

encoder i will pick up two random coefficients a1 and a2 and generate a new coded

block C: C = a1C1 + a2C2, which results in an encoded block with encoding

vector (a1c11 + a2c21, a1c12 + a2c22, ..., a1c1K + a2c2K). The coded block C together

with K coefficients above is sent to the requesting peer. At the receiving peer, all

encoding vectors are stored in a decoding matrix with corresponding coded data

blocks. After a peer collects K independent coded blocks, i.e. the K associated

encoding vectors form a full-rank matrix, it can decode to get the K original blocks

by solving the set of K linear equations.

Experimental evidence in [14] confirms that Avalanche has remarkably im-

proved performance compared with ordinary BitTorrent file distribution, especially

in clustered topologies where there is limited bandwidth between sets of peers. One

interesting observation is that substantial performance gain is evident even when

only the source is allowed to code, i.e. source coding. Nevertheless, the paper omits

concrete explanation for what underlies network codings good performance, and,

more interestingly what we can expect if a constrained number of peers are allowed

to encode. In [29, 30], source coding is also applied to improve BitTorrent without

6

incurring encoding at intermediate peers. Those results suggest full-scale network

coding where all nodes are required to code might be more than what we need to

achieve such performance.

There is, however, a disparity in the understandings of network coding benefit

in practical P2P systems. Chiu et al. in [4] give an analysis on star network

topologies and find no advantage in applying network coding in the P2P content

distribution system. With real experiment results, Legout et al. [3] show that the

rarest first algorithm used in BitTorrent guarantees close to ideal diversity of blocks

among peers and that replacing rarest first with source coding and network coding

cannot be justified. Experimental evidence in [14], on the other hand, confirms that

network coding can significantly improve BitTorrent file distribution. Standing in

the middle, results in [29, 30] support source coding [31, 32], i.e. coding only at

the source, as a method to improve BitTorrent performance.

We go forward to fill the gap by quantitatively identifying conditions which

justify the use of network coding in P2P content distribution. Given that insight,

we furthermore propose methods to optimize network coding deployment in such

environment.

Before going to the main parts of this dissertation, we review related work on

optimization for network coding.

1.3 Related Work on Network Coding

Optimization

Recently, there are many research efforts to optimize network coding in multicast

settings.

Closely related to our work, Kim et al. [33] use an evolutionary approach to

determine a minimal set of nodes where coding is required to achieve the maximum

multicast rate. Their method, though can manipulate a large space of solutions,

7

is based on a genetic algorithm, which barely offers any insight into how network

coding improves performance. Bhattad et al. [34] decomposed a multicast solution

into flows to subsets of receivers and construct a linear programming problem for

minimal network coding. Their approach is applicable only in multicast networks

with a small number of receivers since the complexity grows exponentially with

the number of receivers.

Lun et al. [35] present methods for computing subgraphs over which network

coding is deployed. Their primary concern is to minimize the cost associated with

bandwidth utilization on network links. Moreover, the model assumes full network

coding deployment to achieve maximum multicast rate which is not suitable in

case only a subset of network nodes are allowed to code. Recently, Martalo et al.

[36] figure network coding complexity, i.e. the minimal number of coding nodes,

and its relation to the multicast capacity and the number of receivers in random

network topologies. Their evaluation, however, is limited to the case of acyclic

networks which is not applicable in P2P overlay networks where circles and loops

prevail.

Fragouli et al. [37, 38] partition the network into subgraphs where the same

information flows and propose to place encoders at nodes on the borders of the

subgraphs where multiple flows merge. The method is hard to applied in P2P

content distribution where virtually all peers are intermediate nodes who receive

from multiple neighboring peers. Their model is also limited to the case of 2 sources

[38] which cannot be applied in P2P content distribution when the file size is larger

than 2 blocks.

P2P networks usually consist of a large number of peers and the network

topologies inherently contain cycles. Current approaches minimizing the num-

ber of coders whose complexity grows exponentially with the number of nodes[34]

and which assume direct acyclic graphs [38] are thus impractical in such networks.

Langberg et al. in [39] give upper bounds of the number of encoders needed to

8

achieve maximum multicast throughput. They, in addition, prove that determining

the minimum number of encoders required for maximum multicast throughput is

an NP-hard problem.

In another direction, Small and Li [40], Niu and Li [41], and Crisostomo et al.

[42] demonstrate that network coding efficiency largely depends on the P2P net-

work topologies. More recently, Maheshwar et al. [43] likewise study network

coding in a combination network topology and show that the coding advantage,

i.e. improving multicast throughput, and the cost advantage, i.e. reducing multi-

cast cost, are upper-bounded by a constant. Their goal, unlike ours, is to iden-

tify network coding performance compared with non-coding in various topology

configurations, e.g. by changing the randomness and sparsity of the network [40].

Justifying the benefit of network coding over the whole topology is in itself a rough

estimate. Within a topology, there might be some areas which benefit from coding

and others which do not. In our study, we instead take a closer look into a given

topology to pinpoint locations which need network coding, and then, make use of

that knowledge to place coders inside the network. To the best of our knowledge,

this is the first work which explicitly identifies conditions under which network

coding can speed up data distribution in a detailed scale.

Cleju et al. in [44] propose coder placement algorithms to minimize streaming

delay in a push-based, sender-driven overlay network. The intermediate nodes in

their system, however, are not interested in the content and only act as helpers to

the system and their problem is limited to direct acyclic network topologies. In our

system, all peers are receivers who actively select which parts of the content they

want to download. We also do not impose any constraint on the topologies which

practically are random meshes where one peer connects to others at random.

Maymounkov et al. [31, 45], Champel et al. [46], and Silva et al. [47] devise

network coding methods to achieve better computational efficiency. Our solution,

nevertheless, will further save computational resources by reducing the number of

9

Figure 1.4: Dissertation organization. The main parts of the dissertation are cen-
tered around three questions: (1) how to exchange data between peers (Chapter 3),
(2) where to place coders (Chapter 4 and Chapter 5), and (3) how much should
coders encode (Chapter 6).

encoders and the number of encoding operations at each encoder.

Interesting enough, both the first work on network coding [1] and the first work

where network coding was applied to P2P content distribution [14] have briefly

illustrated the problem we solve in this dissertation: the multi-path duplication

problem inherent to content distribution. We differ from them, yet motivated by

them, in that we make a full analysis of where the duplication happens and degrades

performance the most in order to place network coders there. In addition, we figure

how much a network coder should encode to eliminate such duplication.

1.4 Dissertation Organization

The remaining parts of this dissertation are organized in 6 following chapters (Fig-

ure 1.4).

• Chapter 2 describes our system model with the assumptions we have made

10

about the system.

• Chapter 3 proposes the communication protocols and data selection algo-

rithm required for a partly network coding-enabled P2P content distribution

system to operate efficiently. We envision a P2P system where some peers

encode to improve content distribution time and other peers, due to some

system-wide optimization or resource limitation, do not encode. Such a sys-

tem gives rise to a design problem which has never happened in both pure

non-coding and full network coding-enabled P2P systems. We identify the

problem and propose our protocols and algorithm to address it.

• Chapter 4 begins with our network coder placement problem statement

which is the main focus of the dissertation. Given a network topology, the

question we would like to answer is where to place a given number of network

coders inside the network to shorten distribution time the most. We then

makes an elaborate analysis of data duplication in ordinary non-coding P2P

content distribution in an effort to understand how network coding improves

performance. The analysis forms the basis for our network coder placement

to reduce number of network coders. We first analyze the duplicated data on

a simple 2-receiver graph based on a probability model. The result is then

extended to general topologies with multiple receivers. Taking advantages of

the analysis result, we propose a novel network coder placement algorithm

named minimal delay placement. Given a network topology, minimal delay

placement algorithm places coders at nodes which cause the most delay to

other nodes due to duplication. Our algorithm effectively eliminates unnec-

essary network coders, thus, reducing the number of coders with almost no

impact on the performance of the system.

• Chapter 5 presents our centrality-based coder placements. We target place-

ment algorithms with lower complexity and good performance. By observing

11

the correlation of data duplication in a content distribution network with the

characteristics of the delivery paths, we proposed two placement methods.

The first exploits betweenness centrality [48] characteristics of each network

nodes: encoders are placed at high betweenness centrality nodes, i.e. nodes

which stand on more shortest paths from the source to other nodes in the

network. The second algorithm uses flow centrality [49], a variant of be-

tweenness centrality which takes network flows into account, as an indicator

to place network coders.

• Chapter 6 optimizes redundancy ratio at each network coder, i.e. how much

the coder should encode. We figure the right redundancy level an encoder

should generate in order to achieve shortest distribution time based on the

network topology. The result is a saving in encoder’s computational re-

sources while still realizing good performance. Redundancy ratio optimiza-

tion, together with our network coder placements, further reduces resource

consumption of network coding.

• Chapter 7 finally concludes the dissertation with an outlook for future work

to continue the research we have presented. We discuss the improvements

needed to strengthen results of this dissertation and point in one promising

direction to extend the results of our study to the recent information-centric

networking research trend.

12

Chapter 2

System Model

2.1 Network Coding Peer-to-Peer Content

Distribution

We consider a peer-to-peer content distribution problem from one source to many

peers where each peer maintains overlay links to some other peers at random, i.e.

its neighbors, over which data are transferred (Figure 2.1).

A file exists at a single source and is distributed to all peers which, at the

beginning, do not have any part of the file. The file is divided into K equal blocks1,

the same as in [5], which are exchanged between neighboring peers over the overlay

links connecting them. Peers may download several blocks in parallel from many

neighbors at the same time. Parallel download accelerates the downloading speed

of each peer. A peer not only downloads blocks from its neighbors but also uploads

blocks it has to them, contributing its own upload bandwidth resources. As soon

as a peer finishes downloading a block, it can immediately act as a server of that

block and upload the block to its neighbors if there are requests for it. A peer

finishes when it has collected all blocks of the file.

1Other BitTorrent-like systems might use the terms chunk or piece. In this dissertation, we
use blocks to mean equal parts of the file.

13

Figure 2.1: A file is distributed from the source S to all peers over a mesh overlay
network. The file is divided into K equal blocks which are downloaded in parallel
by peers. Network coders are placed at solid nodes to accelerate content delivery.

As in BitTorrent systems [5, 14], block exchange between peers complies with

two rules:

1. rarest-first block selection at the receiving peer: a receiving peer chooses

rarest blocks within its neighborhood to download first, and

2. an incentive scheme at the sending peer: a sending peer uploads blocks re-

ciprocally to the neighboring peers who are also sending data to it.

Rarest-first block selection at the receiving peers works as follows. Peers keep

collecting information about which blocks have been downloaded by its neighbors

and how many neighbors possess a given block. Based on that information, a peer

can decide which blocks are the rarest in the neighborhood. Whenever a peer has

available bandwidth to download, it chooses a number of rarest blocks within its

neighborhood and requests each block from the corresponding neighbor.2 Depend-

2At the beginning of a content distribution session, since there are not many blocks available

14

ing on its available upload bandwidth and the incentive scheme, the neighbor will

permit the download or not. If a peer fails to request a block from a neighbor, it

tries with other neighbors who also have the block it interests in. If that also fails,

the peer will pick up the next rarest block as a substitute.

The incentive scheme at the sending peer is to ensure fairness in the system: a

peer not only downloads, i.e. consumes resource of other peers, but also uploads,

i.e. contributes it own resources. In our system, a sending peer prefers to upload

to neighboring peers who are also sending data to it. If the peer still has available

bandwidth resources, it will also upload to other neighbors who are not sending

data to it. That kind of mutual exchange incentive scheme has previously used in

[14].

We assume an altruistic system where peers stay and forward blocks even after

they have finished downloading. The source does also stay in the system until all

peers finish.

When network coding is enabled at a peer, the peer, which we then call network

coder or encoder, generates new encoded blocks from what it has received before

sending to other peers. Encoders in our system uses random linear network coding

[26] described in Section 1.2 to generate new coded blocks to send to its neighboring

peers. A peer finishes when it collects enough coded and/or original blocks for

decoding. When there are network coders deployed in the system, all peers which

have received coded blocks, however, are required to decode to recover the original

file.

among peers, in stead of using rarest-first selection, a peer can choose random blocks in the
neighborhood to download.

15

2.2 Network Topology

Peers in the P2P network form a directed overlay topology, i.e. directed graph

G = {V,E} where V is the set of peers, or nodes, and E is the set of directed

overlay links between peers. A path, without circles or loops, from node i to

node j is a sequence of nodes starting from i and terminating at j in which two

adjacent nodes are connected by a link.

A flow on a path from node i to node j is a mapping: E → R+ which conforms

to the two following constraints.

1. Capacity constraint: the flow along a link is not greater than the link capac-

ity.

2. Flow conservation: the total flow coming to a node is equal to the total flow

going out of a node except for the source (node i) and the sink (node j).

The value of a flow represents the total amount of flow passing from the source to

the sink. A maximum flow or maxflow is a flow with maximum value.

Since our main target is to isolate the feature of network coding that makes

good performance, we make two following assumptions.

1. We assume complete knowledge of the overlay topology and bandwidth ca-

pacity of each overlay link.

2. We assume a static scenario, i.e. there is no change in both the physical

topology and the overlay topology during a content distribution session.

Those assumptions allow us to capture the essence of network coding for short-

ening distribution time. The insight obtained from this static, centralized case is

critically important for future work which investigates the dynamic and distributed

scenarios.

16

Chapter 3

Protocols and Data Selection

Algorithm

Network coding [1, 2], which allows content to be coded at intermediate nodes

while being forwarded in the network, has been shown to achieve significantly

shorter distribution time in peer-to-peer (P2P) content distribution [14, 15, 16].

It is, however, too expensive and in many cases impossible to require encoding

at every peer. Recent work has demonstrated that encoding is only needed at

a subset of carefully chosen peers [44, 50, 51], and in some particular instances,

only at the source [29, 30], to achieve comparable performance to network coding.

Many other studies have focused on minimizing the number of required network

coders to achieve optimal multicast throughput [33, 34, 39].

P2P networks in reality, on the other hand, usually consist of heterogeneous

peers with quite different capabilities. More powerful peers can be ready for net-

work coding-enabled operations, yet such jobs are beyond the capacity of resource-

limited peers like hand-held and mobile devices. A successful network coding so-

lution to optimize P2P network performance, therefore, cannot impose encoding

at every network node.

Interested in using network coding to shorten distribution time in P2P network,

17

we envision a P2P system where encoding is applied at some peers while other

peers, due to resource limitation or due to optimization reasons, might not code.

The system, which we call a hybrid network coding P2P system, gives rise to a

design problem which has never happened before. In pure BitTorrent P2P system

[5], the source and all peers exchange pieces, i.e. blocks, of the file using rarest-block

selection to quickly disseminate the file into the system. A peer chooses the rarest

blocks in the neighborhood to download first. In full network coding-enabled P2P,

all peers code. Before downloading from a neighbor, a peer communicates with

the neighbor to determine if it can provide with new data. In the hybrid network

coding system, when some peers encode and others do not, there are mixtures of

coded and non-coded blocks in the neighborhood for each peer to choose from.

The questions are how to communicate in an environment where coders and

non-coding peers coexist, and which data should a peer select from such a mixture

of coded and non-coded data given that we would like to preserve the efficiency

and simplicity of BitTorrent P2P system.

In this chapter, we design our hybrid network coding P2P system.

1. We devise information exchange protocols which allow peers in a hybrid

network coding system to communicate seamlessly with its neighboring

peers whether they are coding-enabled or non-encoding ones. Our design,

backward-compatible to BitTorrent, requires only an addition of one field in

the meta-exchange messages.

2. We propose a block-selection algorithm for the partly network encoding-

enabled system to operate efficiently. Our block-selection algorithm, an ex-

tension from BitTorrent’s rarest-first selection, is derived from extensive ob-

servations of the way network coded data benefit content distribution.

Our design and algorithm noticeably improve system performance in terms of

distribution time compared with current network coding P2P systems.

18

3.1 Ordinary Network Coding Peer-to-Peer

System

Network coding [1, 2, 26], which allows intermediate nodes to encode, have been

applied to BitTorrent in order to shorten distribution time [14, 16]. Whenever

there is an opportunity to transmit, a peer combines all blocks it has to make new

coded blocks and sends to the requesting peer.

For full-scale network coding P2P where all peers encode, [14, 52] proposes

a mechanism by which before downloading from a neighbor, a peer checks if the

neighbor can provide it with meaningful blocks, i.e. blocks which are linearly in-

dependent from the set of blocks it has received. We call that a try-and-download

approach which, compared to BitTorrent, requires a major update in the way peers

exchange metadata (Figure 3.1):

1. a peer sends a request message to its neighbor,

2. the neighbor replies either with a newly generated encoding vector or with

its decoding matrix,1 and

3. requesting peer downloads a newly coded block from the neighbor if the

encoding vector or the neighbors decoding matrix is independent from its

own decoding matrix.

Try-and-download is synchronous in the sense that a peer has to be in synch

with its neighbors by continuously checking if they can provide it with new data.

Moreover, a receiving peer cannot know in advance exactly which and how many

blocks it is going to receive from each neighbor to make a better choice. Such

knowledge will help the receiving peers to decide which blocks are most valuable

to it. In full-scale network coding systems where peers are somehow homogeneous

1Please refer to Section 1.2 for an explanation of encoding vector and decoding matrix.

19

Figure 3.1: In current network coding P2P systems [14, 52] requests and replies
are synchronous. The requesting peer regularly checks with each of its neighbors
if it can download new independent blocks from them. If there are such blocks,
the peer then requests and downloads them from the corresponding neighbors.

in terms of computational resources to encode, try-and-download is feasible, yet

with a protocol overhead. Within a hybrid network coding P2P system, how-

ever, it is not necessarily that all peers can code. In such a scenario, requiring a

resource-limited peer to frequently compare its own decoding matrix with decoding

matrices of its neighbors is beyond its capacity. We need a simple, yet effective,

way to do that which every peer, encoding-enabled or not, can do. To facilitate

hybrid network coding P2P systems where encoding and non-encoding nodes mix

together, we depart from try-and-download approach to introduce an extension

to BitTorrent metadata exchange. We furthermore propose a block selection algo-

rithm to improve distribution time. Our proposed solution is backward-compatible

with BitTorrent and virtually requires no more protocol overhead than pure Bit-

Torrent, yet the performance improvement is noticeable compared with original

network coding P2P systems.

20

3.2 Proposed Information Exchange Protocol

In pure BitTorrent without network coding, there are two phases to distribute

blocks. These two phases interlace and take place asynchronously.

• Notification phase: after downloading a block, the downloading peer notifies

its neighbors about the block it has just downloaded.

• Selection phase: whenever bandwidth is available for downloading, a peer,

based on the information it has about which blocks are available in the neigh-

borhood, chooses one block to download using a block selection algorithm.

The download, then, can proceed if the downloading peer is currently un-

chocked by its neighbor who has the chosen block and the neighbor has

enough bandwidth to sustain such download. If that fails, the peer can re-

peat this process to choose another block. This phase stops when the peer

runs out of bandwidth or has no more blocks to choose from.

In the following subsections, we concentrate on the protocols used to commu-

nicate between peers and the format of the exchanged metadata. We discuss the

block selection algorithm in detail in the next section. BitTorrent unchocking al-

gorithm is one topic in itself to handle fairness and free-rider issues and is not

discussed in this section. We instead assume peers in our system are altruistic and

willing to contribute their bandwidth.

3.2.1 Block Format

To identify data blocks, each block is associated with one unique block-id. However,

one extension is needed to support network coding. Unlike non-coding systems in

which the assignment is done only by the source where all the blocks originate, in

network coding P2P systems, that assignment is done where the block is created

or originated: both at the source and at all the encoders. To assist our block

selection algorithm, in one content distribution session, the block-id is generated

21

in increasing order: a new block-id generated by a particular encoder is greater

than all previous block-ids generated by that encoder.

With network coding, an encoding vector is attached to each coded block as de-

scribed in Section 1.2. We propose an additional encoder-id field (Figure 3.2) which

stores the identification of the encoder who generated the coded block. Encoder-id

will be used in our block selection algorithm later on.

For each block, the metadata exchanged between neighbors in a notification

message, thus, consists of three fields: block-id, its encoder-id, and its encoding

vector (Figure 3.2(a)). The data block consists of block-id, encoder-id, and the

data payload (Figure 3.2(b)). If the notification or data block is a non-coded one,

its encoding vector and encoder-id can be omitted.

Having defined the block formats, we next present details of two communication

protocols, either of which can be used in the hybrid network coding system.

• Pre-code protocol : encoding vectors of coded blocks are generated in the

notification phase when encoders notify their neighbor about newly coded

blocks.

• Post-code protocol : encoding vector for a given coded block is generated in

the selection phase, just before the block is downloaded.

We discuss the pros and cons of those two protocols subsequently.

3.2.2 Pre-code Protocol

Without the assumption that every peer can code, we propose a simple adaptation

to BitTorrent metadata exchange mechanism. To facilitate coding, in our system,

if a peer is an encoder, for each newly downloaded block, the peer notifies each

of its neighbors with metadata of one newly encoded block. The newly encoded

block is different from one neighbor to another neighbor. We note that to save

computational resources, only the metadata, i.e. encoder-id, block-id, and the newly

22

Figure 3.2: Notification and data block formats with the newly proposed encoder-id
field.

generated encoding vector of the encoded block (Figure 3.2(a)), are notified to the

neighbors in a notification message. Only when a neighbor decides to choose and

request the notified coded block is the actual data of that block encoded. For an

ordinary non-encoding peer, the metadata exchange is the same as in BitTorrent:

the peer notifies its neighbors of the block it has just received. The communication

protocol is illustrated in Figure 3.3. Since the system is a hybrid network coding,

notifications (message 1) and data blocks (message 3) transferred between peers

can be either encoded or original ones.

One might argue to use try-and-download here, but that will make the operation

more complicated because each peer has to implement two protocols: one for

encoding-enabled neighbors, one for ordinary neighbors. With our approach, all a

peer has to do is to choose from candidate blocks one particular block to download

based on the metadata it received in notification phase, which is the same as what

happens in a pure BitTorrent system.

When a peer receives notification of a newly encoded block by a neighbor,

i.e. message 1 in Figure 3.3, the peer stores that block in a candidate list if the

block is independent from all blocks it has downloaded. Otherwise, it ignores the

notification. Unlike encoding-enabled peers, non-encoding peers do not encode but

23

Figure 3.3: Pre-code protocol peers used to communicate. There are two asyn-
chronous phases: notification phase and selection phase. This protocol is an ex-
tension from BitTorrent: the notification messages and data blocks have an addi-
tional encoder-id. Encoding vectors are also attached to the notification messages
as described in Section 1.2.

forward what they have received: a mixture of coded and non-coded blocks. As in

BitTorrent, when receiving notification from a non-encoding neighbor, a peer will

update the count of that block, i.e. at how many neighbors the block exists.

When a peer can download, it selects a block using a selection algorithm and

sends a request for the chosen block to the corresponding neighbor (message 2). If

the request is accepted, the neighbor will upload the data block to the requesting

peer (message 3).

Coding generates a large number of coded blocks, usually larger than the num-

ber of original blocks, of which many blocks are redundant. As a peer continuously

downloads new blocks, some blocks in its candidate list might become dependent

on what it has downloaded. Each peer is therefore required to check and discard

candidate blocks which are dependent on what has been downloaded.

24

Figure 3.4: Using post-code protocol, the encoding vector is generated not in the
notification phase but just before the requested block is sent to the receiving peer.

3.2.3 Post-code Protocol

As we mentioned before, notification phase and selection phase are asynchronous.

That is, after peer A notifies an encoded block in message 1, some amount of

time passes before peer B requests that encoded block in message 2. The elapsed

time can arbitrarily be long if, for example, peer B decides to download several

blocks from other neighbors before choosing the encoded block from peer A. In the

meantime, peer A might receive some new blocks. Using pre-code protocol, that

new information is not included in the encoded block since the way the block is

generated, i.e. its encoding vector, was fixed at the notification time.

Encoders combine the blocks they currently have to make new coded blocks.

If we can delay the act of encoding just before the coded blocks are downloaded,

we can provide the receiving peers with the most updated information. Based

on the above observation, we proposed an alternative protocol, namely post-code

protocol, which is illustrated in Figure 3.4.

The differences of the post-code protocol from pre-code protocol are as follows.

25

• Encoding vector is not included in the notification message, i.e. message 1 in

Figure 3.4. Only encoder-id and block-id are notified to the neighbor (peer

B) each time peer A downloads a new block. As stated before, encoder-id is

the ID of peer A and block-id is an increasing number generated by peer A.

• The encoder (peer A) actually generates the encoding vector and sends to the

receiving peer in the selection phase (message 3) just before the actual coded

data (message 5). The receiving peer (peer B) needs to check if that encoding

vector is independent from its own decoding matrix before requesting the

encoded block (message 4).

Post-code protocol has the advantage of producing fresher coded blocks which

expectedly accelerate content distribution. The limitation, however, is that it

requires more protocol overhead: in total 5 messages for each downloaded block

compared with 3 messages in case of pre-code protocol.

3.3 Block Selection Problem

In this section, we describe in detail the block selection problem associated with

hybrid network coding systems and propose our solution for it. The proposed

block selection, which can be used with either of the two protocols we present

in the last section, completes our proposal for an efficient, high-performance P2P

content distribution with network coding. We begin by describing the duplication

problem in such a system using the original rarest-first block selection.

26

3.3.1 Duplication Problem with Current Rarest-first Block

Selection

The block selection algorithm used by BitTorrent is rarest-first by which peers

choose the rarest block in the neighborhood to download first.2 If there are sev-

eral rarest blocks, a random one is selected from those rarest blocks. Rarest-first

selection is not enough because of two reasons.

1. Encoders combine more information in the neighborhood. When there is

limited available bandwidth, for example when a bottleneck exists, non-coded

blocks and coded blocks cannot be given the same attention. Coded blocks

from the encoders should be preferred because they contain, in a sense, more

information and can accelerate content distribution through the bottleneck.

2. Coded blocks are not equally important. Each coded block even though

is always unique, i.e. rare, in the sense that almost always no two coded

blocks are identical, the level of importance of each coded block is different.

Coded blocks are created progressively from all the blocks an encoder has

downloaded. In the beginning, as there are only a few blocks to encode,

the coded blocks created then contain within them only the information

from that few blocks. The more blocks an encoder has, the more data are

combined to create new coded blocks. Because of that, only at the source or

when an encoder has downloaded the full file, are the coded blocks equally

important. In other cases, the most recently coded blocks likely contain more

information.

To make it clear, we illustrate the problem in two following examples.

2In the beginning of the distribution section when peers have no blocks to exchange with
others, BitTorrent uses random block selection by which peers choose a random block in the
neighborhood to download. Nevertheless, after a peer has acquired some blocks, it switches to
rarest block selection.

27

Figure 3.5: Node E and F receive notification from node A, G, and H about the
candidate blocks the two nodes can down-load. Of which B1 and B2 are non-coded
blocks from node G and H; A1–A4 are newly encoded blocks from encoder A.

Figure 3.6: With original rarest-first selection, there is a probability 1/8 that node
E and F choose the same block B1 or B2. The result is that node T can only
download one new block while its bandwidth allows two blocks.

Example 1 (Figure 3.5–3.7) illustrates a partial overlay topology with 6 nodes:

A, G, H, E, F, T of which A is the only encoder. Nodes A, G, H each has two

blocks B1 and B2. Encoder A has notified node E, F with 4 blocks A1–A4, each

node with two newly coded blocks. Nodes G, H have notified E, F with blocks

B1 and B2. The count of each block in the neighborhood is given in the tables

(Figure 3.5). Suppose due to bottlenecks, E and F, each can only download one

new block. If E and F select blocks using original rarest-first algorithm, there

is 1/8 chance that both will download the same block B1 or B2 which results in

28

Figure 3.7: If coded blocks from encoder A are preferred, node E and F can always
download independent blocks. As a result, node T can utilize all its bandwidth to
download 2 new independent blocks.

Figure 3.8: Encoder A, having 2 blocks B1 and B2, notifies node E and node F
with newly encoded blocks A1–A4.

node T can only download one new block while its available bandwidth allows two

(Figure 3.6). In Figure 3.7, if E and F prefer coded blocks from encoder A over

other blocks, T can always download two new blocks.

Example 2 (Figure 3.8–3.11) considers a partial overlay topology in which

an encoder A is delivering coded blocks to non-coding nodes E, F, and T. At the

beginning, A has two blocks B1 and B2, and notifies E and F of 4 newly encoded

blocks: A1–A4, two blocks for each node (Figure 3.8). Node E and node F then

each can download one block, e.g. A1 and A2 due to bandwidth limit. In the

29

Figure 3.9: Encoder A, after downloading 2 new blocks B3 and B4, notifies node
E and node F with blocks A5–A8 encoded from all 4 blocks B1–B4.

Figure 3.10: With original rarest-first selection, there is a probability 1/9 that
node E chooses block A3 and node F chooses block A4. The result is node T can
only download 2 independent blocks A1 and A2 in 2 units of time. Blocks A3 and
A4 in node E and node F are not useful to node T because they are dependent on
A1 and A2.

meantime, A downloads two more blocks: B3 and B4, and sends new notifications

about blocks A5–A8 to E and F (Figure 3.9). If E and F select blocks using rarest-

first, there is 1/9 chance that E chooses A3 and F chooses A4 which results in peer

T being only able to obtain 2 independent blocks in 2 units of time (Figure 3.10).

In contrast, T can download 4 new blocks if E and F prefer new encoded blocks

over old ones (Figure 3.11).

30

Figure 3.11: If the newest blocks are preferred, the 4 blocks downloaded by node
E and node F are independent, which means node T can download in total 4
independent blocks in 2 units of time.

Algorithm 3.1: Proposed Block Selection Algorithm

Input: Set C of candidate blocks and function count(Ci) ∀Ci ∈ C specifying
how many times each block exists in the neighborhood of peer A.

Result: One block for peer A to download

1 Sort blocks in ascending order of their occurrence count(·);
2 Make a list L1 of all blocks Ci with the lowest count(Ci) ;
3 Make a list L2 of all blocks Ci ∈ L1 which are encoded by a neighbor of peer A in
random order: Ci.encoder id ≡ encoder B’s ID ∀B,B is a neighbor of A;

4 Exchange blocks in L2 so that blocks from the same encoder are in descending
order of their block id ;

5 Make a list L3 of all blocks Ci ∈ L1\L2 in random order;
6 if L2 �= ∅ then
7 return the first block in L2;
8 end
9 else

10 return the first block in L3;
11 end

The problem therefore is: given a mixture of coded and non-coded blocks in

the neighborhood, which blocks should a peer choose to download.

3.3.2 Proposed Block Selection Algorithm

Our proposed algorithm is given in Algorithm 3.1. It works seamlessly in all

types of networks: pure non-coding, full-scale network coding, and hybrid network

coding. We extend the original rarest-first selection (line 2) to give preference to

31

coded blocks from immediate neighbors over other ones (line 3). Also, from the

same encoding neighbor, newer coded blocks (with larger block-id) are preferred

over older ones (line 4). In doing so, we allow valuable newly encoded blocks in

the neighborhood to be quickly disseminated while preserving the power of rarest-

first in distributing new information. Our algorithm improvement is generally

significant. Without it, newly coded blocks, virtually with more information, are

arbitrarily blocked in the network because neighboring peers may choose not to

download them.

3.4 Network Coder Assignment

Given that in the hybrid network coding P2P content distribution, only some

peers encode, the questions are which peers will become network coder and who is

responsible for assigning them.

In our view, peers at key locations of the network can selectively be assigned

as network coders as we have discussed in detail in Chapter 4 and Chapter 5. This

approach, however, requires a centralized server to compute and assign coders.

Practically, in P2P systems such as BitTorrent [5, 14, 53], we can allow trackers

to do that task since the trackers know which peers currently join the torrents.

Network coders can also be assigned in a distributed manner without any cen-

tralized server by using, for example, degree information [54]. Given a threshold,

peers with degrees higher than the given value will become encoders. Degree-

based placement performance, however, is not as good as the proposed placement

methods in Chapter 4 and Chapter 5.

In scenarios where computational resources are limited, we can approximately

predict the amount of required resources based on which a peer can determine, by

itself, to become an encoder if it meets the resource requirements. Such an encoder

assignment does not need a centralized server either.

32

3.5 Performance Evaluation

We implemented a C++ simulator of the hybrid network coding P2P content distri-

bution system. We evaluate the proposed block-selection algorithm in Section 3.3

using either pre-code or post-code protocol in Section 3.2 and compare the per-

formance with a baseline network coding BitTorrent system. The baseline system

uses BitTorrent’s original rarest first block selection and the pre-code protocol.

A file is distributed from the source to all participating peers, among which

a preset number of peers are allowed to encode. The file is divided into smaller

fix-sized parts, i.e. blocks. The source and all peers exchange blocks until all peers

acquire enough blocks to construct the original file; then the simulation finishes.

The simulations are round-based. Each peer chooses blocks to download ac-

cording to its available bandwidth, rarest block first selection, and the incentive

scheme in the beginning of each round. The chosen blocks are downloaded by the

peer at the end of the round and then the system moves to next round. After a

peer has collected enough blocks, it stops downloading but keeps staying in the

system to serve other peers. A link capacity is measured by block per round, i.e.

how many blocks can be transferred through the link in a round. Network coding

operations are carried out in finite field GF (28). We disregard the negligible over-

head of sending encoding coefficients associated with random linear coding in our

simulations.

We implemented mutual exchange incentive scheme in the simulations: when

there is contention for uploading, a sending peer preferably uploads to the neigh-

bors from whom it is also downloading. After such peers are exhausted, other

neighbors are chosen for upload. This kind of incentive schemes has previously

been used in [14].

33

Figure 3.12: A two-cluster topology with a middle node i.

Figure 3.13: Average finish time of the proposed system compared with baseline
system in a clustered topology.

3.5.1 Clustered Topologies

We first evaluate performance in a simple topology of two clusters (Figure 3.12).

A middle node i intercepts between the source and the clusters to simulate a

situation where blocks are coming progressively to node i. Within a cluster, peers

are arranged in k-regular random topologies where k is from 3 to 6. Each cluster

has 1000 nodes with 1 block per round bandwidth between neighbors within a

cluster. Source bandwidth to node i is 8 blocks per round and from node i to each

cluster is 4 blocks per round. The two clusters are connected by a link with a

capacity of 1 block/round. The source delivers a 200-block file to all peers.

34

Figure 3.13 compares the finish time of our system using the proposed block

selection algorithm (with either pre-code or post-code protocol) and the finish time

of the baseline system in three cases: no coding, coding at node i, and network

coding. As we expect, no coding finish time is the same for both systems. Finish

time improvement of the proposed system becomes evident when node i codes

(around 5%) and when all nodes code (around 10%). In this topology, the finish

time is the same for both pre-code and post-code protocols.

3.5.2 Small-world Network Topologies

We use Watts and Strogatz small-world network model [55] to generate more com-

plex topologies for simulations. The reason is twofold. First, several real-life net-

works, including P2P overlays, have been reported to exhibit properties of small-

world networks [56, 57]. Second, small-world model has a parameter to tune the

severity of bottleneck links as explained below.

Nodes in a small-world network are, at the beginning, organized in a ring

lattice, each node connects to a predetermined number of nearby nodes, i.e. degree

d. The links between nodes are then rewired with some probability prw, i.e. one

endpoint of the (randomly chosen) link is rewired to a new random node, to create

shortcuts. With a large rewiring probability, e.g. prw approaches 1, the network

becomes a random one. Small rewiring probabilities result in topologies where

peers are highly clustered (due to the original ring lattice) and, despite of that,

the average length of shortest paths between peers is low (due to the shortcuts),

which means content from one peer can easily reach other peers. When prw=0 or

extremely small, the topology is a regular ring lattice where the average length of

paths between peers is relatively long compared with larger rewiring probabilities.

Shortcuts connect different parts of the networks where quite different collec-

tions of data blocks exist. Those shortcuts, to a certain extent, equivalent to

bottleneck links because the total flow of nearby regular links is bigger than the

35

Figure 3.14: A small-world network topology with 12 nodes, degree d=6, and
rewiring probability prw=0.05. Random links on the original ring lattice are rewired
to new random end-points, which results in the dashed shortcuts.

capacity of the single shortcut link. By adjusting the rewiring probability, we

can tune the severity of the bottlenecks. Lower rewiring probabilities mean fewer

shortcuts, which in turn mean the bottlenecks are more severe because there are

fewer shortcut links for transferring data between different parts of the network.

Figure 3.14 illustrates a small-world network with 12 nodes, degree d=6, and

rewiring probability prw=0.05.

In our simulations, we set overlay link capacity to 1 block per round and change

the rewiring probability and degree.3

We simulate two real-life scenarios.

1. Optimization scenario: encoders are placed at selected peers to minimized

distribution time. We use two placement methods:

• betweenness centrality placement: nodes with high betweenness central-

ity values [48] are chosen as encoders. (We discuss in detail betweenness

centrality placement in Section 5.3.)

• degree-based placement: encoders are placed at nodes with high degrees

first.

3We observe the same results with heterogeneous link capacity.

36

 50

 55

 60

 65

 70

 75

 80

 85

 90

 250 1000 2000 3000 4000 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

Coders

Baseline
Proposed Selection + Pre-code

Proposed Selection + Post-code

Figure 3.15: Finish time of the proposed system when choosing nodes with highest
betweenness centrality as encoders compared with finish time of baseline system.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 250 1000 2000 3000 4000 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

Coders

Baseline
Proposed Selection + Pre-code

Proposed Selection + Post-code

Figure 3.16: Finish time of the proposed system compared with a baseline system
in case encoders are placed at high-degree peers.

2. Resource-constraint scenario: nodes with higher capacity can encode,

nodes having limited resources cannot. Among peers, we set some random

ones with rich resources and assign them as encoders.

We increase the number of encoders from 0 (no coding) to 5000 (full network

coding) and compare the performance of the proposed system with the baseline

system in two scenarios above. The results are given in Figure 3.15, Figure 3.16,

and Figure 3.17 with rewiring probability prw=0.02.

37

 50

 55

 60

 65

 70

 75

 80

 85

 90

 250 1000 2000 3000 4000 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

Coders

Baseline
Proposed Selection + Pre-code

Proposed Selection + Post-code

Figure 3.17: The performance of the proposed system compared with baseline
system in resource-constraint scenario when only (random) high-capacity peers
are allowed to encode.

When betweenness centrality is used to optimize encoder placement, the pro-

posed block selection together with pre-code protocol shortens distribution time by

about 15% compared to the baseline system with only 250 encoders (Figure 3.15).

With more encoders, the improvement is higher and reaches more than 25% when

all nodes encodes. The finish time of no coding, i.e. the number of encoders is zero,

is the same regardless of which block selection algorithm and protocol are used.

With 2000 or less encoders chosen at random, i.e. a set of random peers are al-

lowed to encode, there is not much finish time improvement using both rarest-first

and the proposed block selection (Figure 3.17). That is because a few encoders at

random, without a proper placement, are not effective in improving distribution

time. When a large number of encoders, e.g. 3000 or 4000 encoders, are ran-

domly deployed, the proposed block selection with pre-code protocol can improve

distribution time by around 15% compared to baseline system.

The finish time using degree-based placement lies between the other two place-

ments. As before, the proposed system achieves noticeable finish time improvement

compared to the baseline system using rarest selection (Figure 3.16).

We next change the rewiring probability prw from 0.02 to 0.5 to evaluate our

38

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Im
pr

ov
. o

ve
r N

on
-c

od
in

g
B

itT
or

re
nt

 [%
]

Rewiring Probability

Baseline
Proposed Selection + Pre-code

Proposed Selection + Post-code

Figure 3.18: Finish time improvement of the proposed system and baseline system
using 250 encoder placed at high betweenness centrality peers compared with non-
coding BitTorrent.

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Im
pr

ov
. o

ve
r N

on
-c

od
in

g
B

itT
or

re
nt

 [%
]

Rewiring Probability

Baseline
Proposed Selection + Pre-code

Proposed Selection + Post-code

Figure 3.19: Finish time improvement of the proposed system and baseline system
using 250 encoder placed at high-degree peers compared with non-coding BitTor-
rent.

system in a wide range of topologies. Using 250 encoders among the total of 5000

peers, the finish time improvement compared with non-coding Bit-Torrent (with

no encoder) is presented in Figure 3.18, Figure 3.19, and Figure 3.20 for between-

ness centrality placement, degree-based placement, and random coder placement

respectively.

Our proposed system (proposed selection + pre-code and proposed selection +

39

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Im
pr

ov
. o

ve
r N

on
-c

od
in

g
B

itT
or

re
nt

 [%
]

Rewiring Probability

Baseline
Proposed Selection + Pre-code

Proposed Selection + Post-code

Figure 3.20: Finish time improvement of the proposed system and baseline system
using 250 encoder placed at random peers compared with non-coding BitTorrent.

post-code) always achieves improved performance compared with the baseline sys-

tem. The improvement, however, is more visible in topologies with low rewiring

probabilities (prw=0.02). High rewiring probabilities generate almost random

topologies in which the effect of coding, in general, is not so noticeable.

The performance of post-code protocol (proposed selection + post-code) is bet-

ter than pre-code protocol (proposed selection + pre-code) in low-rewiring topolo-

gies prw=0.02 (Figure 3.15–3.17). The reason is because with post-code protocol

encoders can combine more updated information to send to the receivers as we

have discussed before. In topologies with higher rewiring probabilities (prw ≥ 0.1)

(Figure 3.18, 3.19, and 3.20), since new information can transfer through more

rewiring links, post-code protocol has the same performance as pre-code protocol.

We note that in the simulations, we have not taken into account the overhead of

protocols used to communicate between peers.

3.6 Conclusion

We have proposed information exchange protocols and its associated block-

selection algorithm to improve performance of a hybrid network coding P2P

40

system in which encoding-enabled and non-encoding peers coexist.

Our design is simple, backward compatible to BitTorrent, yet efficient in the

way it handles blocks of data: coded and non-coded alike.

We proposed two protocols. The first one, pre-code protocol, is an extension

of BitTorrent with the addition of an encoder-id field in the exchanged messages

to identify from whom the blocks are generated. The second one, namely post-

code, by postponing the encoding process, can combine and deliver more updated

information to the receivers and achieve shorter finish time. Post-code protocol

is more effective in severely bottlenecked topologies. The trade-off is, however,

higher protocol overhead.

Our block-selection algorithm is derived from observation on the benefit of

network coding in eliminating data duplication. Most recently encoded blocks are

preferred over other blocks since they contain more information, and thus, can

accelerate throughput. Using our proposed algorithm, peers can effectively choose

blocks to down-load which results in considerable improvement in distribution time.

We believe our proposed solution, which promotes network coding as a method

to shorten distribution time even if encoding is not fully enabled at every peer,

will be of great use in heterogeneous P2P systems and/or when there is a need to

minimize resource consumption.

For future work, we plan to evaluate the proposed design and block selection

algorithm in a dynamic setting. We are also interested in implementing the pro-

posal in a real system, especially to evaluate the actual trade-off and effectiveness

of the post-code protocol.

We have not addressed incentive issues: how to motivate peers to encode, which

is another interesting problem we leave for future work.

41

Chapter 4

Minimal Delay Coder Placement

Motivated by the question “can we achieve the performance of network coding

without requiring all nodes to encode,” in this chapter, we first identify the un-

derlying condition for network coding to be effective compared with no coding,

and then, given that insight, we propose a novel coder placement algorithm that

achieves comparable performance in terms of finish time as network coding while

using much less computational resources than network coding does.

We make an elaborate analysis of the network topology to locate nodes in the

network where network coding can accelerate content distribution the most. The

analysis result is then used to develop a coder placement algorithm which we name

minimal delay placement or min-delay for short. Performance evaluation confirms

the effectiveness of min-delay coder placement in shortening distribution time given

a constraint on the number of network coding.

Before going into details of our analysis and the proposed network coder place-

ment, we begin with a statement of the network coder placement problem we

consider in this chapter.

42

4.1 Network Coder Placement Problem

Network coding, in achieving optimal distribution time, requires every node to

code. Assuming the system uses random linear coding, the encoding complexity of

the system is O(CFK) where C is the number of encoders in the system, K is the

number of original blocks, and F is the file size. Since F is fixed for a given file,

and K cannot be set too low, it is important to minimize the number of coders to

reduce the encoding complexity.

Our goal is to devise a coder placement algorithm which substantially reduces

the number of coders while, at the same time, effectively shortens distribution

time. Our problem can be stated as follows.

Given a P2P content distribution which is defined by

- a network topology G = {V,E},

- a source on G with a file of size F to be distributed, and

- a number C (1 ≤ C ≤ |V |),

where in the network topology can we place C coders in order to shorten distribu-

tion time the most?

Since our problem is as hard as the problem of finding a placement with shortest

finish time and minimum number of coders which is proved to be NP-hard [39],

we aim at heuristic placements which we demonstrate by simulations to achieve

comparable finish time as full network coding.

We propose 3 algorithms in total:

1. minimal delay placement,

2. betweenness centrality-based placement, and

3. flow centrality-based placement.1

1We explain betweenness centrality and flow centrality in Section 5.3 and Section 5.4 respec-
tively.

43

Table 4.1: Notations

Notation Meaning

1, 2, ..., i, .., j Node IDs. (The source is denoted as node 0.)

t Time

R(t) The number of redundant blocks transmitted downstream
from an intermediate node at time t.

α1(t) The number of blocks coming to node 2 on path1 which
node 2 has not downloaded directly from node i by time t
in two-receiver case (Figure 4.2).

β1(t) The number of duplicated blocks arriving at node 2 via
path1 by time t in two-receiver case (Figure 4.2).

α2(t) The number of blocks coming to node 1 on path2 which
node 1 has not downloaded directly from node i by time t
in two-receiver case (Figure 4.2).

β2(t) The number of duplicated blocks arriving at node 1 via
path2 by time t in two-receiver case (Figure 4.2).

f(i, j) Actual throughput from node i to node j

B(i, j) Duplication rate from node i to node j

D(i, j) Delay in finish time node i causes to node j due to block
duplication.

F File size in blocks

maxflow(i, j) Maxflow from node i to node j.

The first algorithm is proposed in this chapter. The second and third ones

are fast placement algorithms taking advantage of network centrality [48, 49] to

quickly locate key network positions for coder placement which will be presented

in the next chapter.

To lay the foundation for our minimal delay network coder placement, we begin

with an elaborate analysis of the duplication generated in the network topology to

determine network nodes at which network coding is needed the most to eliminate

that duplication and improve the system performance.

44

Figure 4.1: Two paths from node S to node Y are marked in dashed lines. All
links on the graph have capacity of 1 bit/s. The maxflow from node S to node Y
is 2 bit/s, which means at most 2 bits can be transferred from node S to node Y
in a second.

4.2 Multi-path Delivery Duplication Analysis

In this section, we develop a full analysis of the block duplication, i.e. the same,

duplicated blocks are delivered towards a given node. Such an analysis is required

to find out the nodes from which duplication degrades performance, i.e. finish time,

the most. Given that knowledge, we then can place encoders there to eliminate

duplication and effectively speed up content distribution.

We begin with terminologies, and then, present our detailed analysis of block

duplication. A path, without circles or loops, from node i to node j is a sequence

of nodes starting from i and terminating at j in which two adjacent nodes are

connected by a link. A flow on a path from node i to node j is a mapping E → R+

which conforms to

• capacity constraint of each link: the flow does not exceed the capacity of the

link over which it runs through, and

• flow conservation at each node on the path: the flow coming to a given node

45

Figure 4.2: A partial graph connecting an intermediate node i and two of its
neighbors: node 1 and node 2.

is equal to the flow going out of that node except for the source (node i) and

the sink (node j).

A maxflow on a path is the maximum flow which can run through the path,

and a maxflow from node i to node j is the maximum amount of flows passing

from node i and node j. Figure 4.1 illustrate two paths from node S to node Y .

The maximum flow which can run through each path is 1 bit/s and the maxflow

from node S to node Y is 2 bit/s.

In P2P content distribution, when there are multiple delivery paths to a par-

ticular node, some blocks are transmitted multiple times to those paths, which

inefficiently consumes bandwidth and results in insufficiency of new information

flow coming to the downstream node. We analyze block duplication on multiple

delivery paths in P2P content distribution systems, first in the case the upstream

node has two downstream receivers, whose result is then extended to more general

cases.

4.2.1 Two Receiver Duplication

Figure 4.2 illustrates data transmission from an upstream node i to two direct

neighbors node 1 and node 2. There are two paths, i.e. sequences of nodes, one

in each direction, connecting node 1 and node 2: path1 from node 1 to node 2,

46

and path2, in the opposite direction, from node 2 to node 1. Denote the incoming

throughput to node i as s, the throughput from node i to node 1 over the direct

link as s1, and the throughput from node i to node 2 as s2. The flow on path1 from

node 1 to node 2 is p1, and on path2 from node 2 to node 1 is p2. Since both flows

originate from node i, the parameters satisfy following constraints: p1 ≤ s1 ≤ s

and p2 ≤ s2 ≤ s. In addition, let d1 is the delay it takes for a block to travel from

node 1 to node 2 on path1, and d2 is the delay from node 2 to node 1 on path2.

Consider blocks departing from node i. Ideally, to achieve optimal distribu-

tion time, a given block should not be transmitted to both node 1 and node 2,

except when there are no new blocks available at node i to satisfy requests from

node 1 and node 2. Nevertheless, due to delay on connecting paths: path1 and

path2, node 1 and node 2 only know a subset of the blocks which have been down-

loaded by the other node. As a result, a considerable number of blocks available

at node i are requested by and transmitted to both downstream neighbors node 1

and node 2, which we call redundant blocks. Those redundant blocks, being trans-

mitted by node 1 and node 2 on the two paths: path1 and path2, will result in

block duplication or duplicated blocks with the reception at node 2 and node 1

respectively.

Suppose by time t, node 1 has downloaded set S1 of blocks, and node 2 has

downloaded set S2 of blocks directly from node i. Then the number of redundant

blocks received by both node 1 and node 2 by time t is R(t) = |S1 ∩ S2|. At time

t+1, there are 3 cases in which redundant blocks are transmitted from node i, i.e.

the same blocks are downloaded by both node 1 and node 2:

1. blocks in S1 are downloaded again by node 2,

2. blocks in S2 are downloaded again by node 1, and

3. the same blocks from node i, which have not been downloaded by either

node, are downloaded by both node 1 and node 2.

47

Figure 4.3: Snapshot of data blocks downloaded by node 1 and node 2 at time
t+ 1 before the two nodes choose new blocks to download from node i. There are
s(t+ 1) blocks available at node i, of which s1t and s2t are the numbers of blocks
node 1 and node 2 have downloaded respectively. The inner area p1(t−d1−1)
represents the number of blocks node 2 received from node 1 over path1; a subset
of which: β1(t) blocks node 2 has already downloaded from node i, results in block
duplication at node 2.

Denote T1(t), T2(t), and T3(t) as the number of redundant blocks corresponding

to each of these above cases. Let β1(t) be the number of duplicated blocks arriving

at node 2 via path1 by time t which it has already downloaded from node i. Those

duplicated blocks, although not downloaded by node 2 again, will result in under-

utilization of path1, and consequently node 2’s downloading capacity because they

consume bandwidth resource along the path from node 1 to node 2.

Denote α1(t) as the number of blocks coming to node 2 on path1 which it

has not downloaded directly from node i by time t (refer to Figure 4.3 for an

illustration). Since there are a total of p1(t−d1−1) blocks2 coming to node 2 on

path1 by time t, we have α1(t) + β1(t) = p1(t− d1 − 1) .

At time t + 1, node 2 downloads s2 new blocks from node i. It can choose s2

blocks from a set Q2 of s(t+1)−s2t−α1(t) blocks. Within set Q2, s1t−R(t)−α1(t)

blocks have been downloaded only by node 1. Therefore, we have the expected

2We assume at a given time t a node can only send blocks it has received at time t − 1 and
earlier. For that reason, at time t node 1 sent a total p1(t − 1) blocks through path1, of which
p1(t− d1 − 1) blocks have arrived at node 2 by time t due to delay d1 on the path.

48

number of redundant blocks in case 1:

T1(t+ 1) =
s2(s1t−R(t)− α1(t))

s(t+ 1)− s2(t)− α1(t)
. (4.1)

Similarly, the number of redundant blocks in case 2 is:

T2(t+ 1) =
s1(s2t−R(t)− α2(t))

s(t+ 1)− s1(t)− α2(t)
(4.2)

where α2(t) is the number of blocks node 1 received on path2 which it has not

downloaded directly from node i by time t.

The number of new blocks at node i which have not downloaded by either

node 1 or node 2 is s(t+1)− (s1+ s2)t+R(t), from which node 1 might download

s1−T2(t+1) blocks and node 2 might download s2−T1(t+1) blocks. The expected

number of blocks which are downloaded by both node 1 and node 2, i.e. case 3,

therefore is

T3(t+1) =
(s1−T2(t+ 1)) (s2−T1(t+ 1))

s(t+ 1)− (s1 + s2)t+R(t)

=
s1s2(s(t+1)−(s1+s2)t+R(t))

(s(t+1)−s1(t)−α2(t))(s(t+1)−s2(t)−α1(t))
. (4.3)

From Eq. (4.1), (4.2), and (4.3), the total redundant blocks at time t+ 1 is

R(t+ 1) = R(t) + T1(t) + T2(t) + T3(t)

= R(t) +
s2(s1t−R(t)−α1(t))

s(t+1)−s2(t)−α1(t)
+

s1(s2t−R(t)−α2(t))

s(t+1)−s1(t)−α2(t)

+
s1s2(s(t+1)−(s1+s2)t+R(t))

(s(t+1)−s1(t)−α2(t))(s(t+1)−s2(t)−α1(t))
. (4.4)

We continue to figure the number of duplicated blocks arriving at node 1 and

node 2: β2(t) and β1(t) respectively. Those duplicated blocks are the cause of

sub-optimal throughput to node 1 and node 2.

At time t, node 2 downloads p1 new blocks from path1. Those blocks are chosen

49

Figure 4.4: The number of duplicated blocks arriving at node 2 via path1 by time

t: β1(t) is a subset of the union of R(t− d1) and
t∑

i=t−d1+1

T1(i).

from a set P1 of s1(t− d1)− p1(t− d1− 1) which have been downloaded by node 1

by time t− d1 but not have yet been sent to node 2 (Figure 4.4).3

Notice that the intersection U1 of s1(t− d1) blocks node 1 has downloaded by

time t− d1 and s2t blocks node 2 has downloaded by time t consists of

• R(t−d1) redundant blocks by time t−d1, and

•
t∑

i=t−d1+1
T1(i) redundant blocks from t−d1+1 to t.

Given that at time t, β1(t−1) blocks in set U1 have already been sent to node 2,

if any blocks in the remaining set U1 \β1(t−1) were chosen to send to path1, those

blocks would become duplicated when they arrive at node 2. As a result, the

number of duplicated blocks during time t is

Δβ1(t)=
p1(R(t−d1)+

∑t
i=t−d1+1 T1(i)−β1(t−1))

s1(t−d1)−p1(t−d1−1)
.

The accumulative number of duplicated blocks arrived at node 2 on path1 by time

3We made a simplification to the analysis by ignoring the set of blocks arrived at node 1 from
node 2 over path2 by time t− d1: p2(t−d1−d2−1) blocks. In reality, those blocks would not be
chosen by node 1 to send back to node 2 over path1 again.

50

Figure 4.5: A partial graph connecting an intermediate node i and m receiving
nodes: node N1, node N2 and node Nm. The receiving nodes are represented by
two virtual nodes: Node 1 and Node 2.

t, therefore, is

β1(t) = Δβ1(t) + β1(t− 1)

=
p1(R(t−d1)+

∑t
i=t−d1+1 T1(i)−β1(t−1))

s1(t−d1)−p1(t−d1−1)
+ β1(t− 1), (4.5)

and, the number of non-duplicated blocks is

α1(t) = p1(t− d1 − 1)− β1(t). (4.6)

In the opposite direction, using the same reasoning, we have

β2(t)=
p2(R(t−d2)+

∑t
i=t−d2+1 T2(i)−β2(t−1))

s2(t−d2)−p2(t−d2−1)
+β2(t−1), (4.7)

α2(t) = p2(t− d2 − 1)− β2(t). (4.8)

51

4.2.2 Multiple Receiver Duplication

We use the two-receiver analysis to approximate block duplication in case there are

more than two neighbors who receive blocks from the intermediate node i. Suppose

there are m receivers (m > 2): node N1, node N2, ..., node Nm (Figure 4.5). To

analyze duplication to a given receiver, for example node N1, we can proceed as

follows.

• Separate node N1 and consider it as node 1 in the two-receiver case.

• All the remaining nodes: node N2, ..., node Nm, are represented by a virtual

node 2.

• Figure the topological parameters, i.e. bandwidth and delay, between node i,

node 1, and the virtual node 2.

• Apply the two-receiver model to analyze block duplication to node 1.

4.2.3 Delay in Finish Time of Downstream Peers

The above duplication analysis allows us to quantify the actual throughput from

node i to its neighbor node 1, as

f(i, 1) = s1 +
α2(t)

t
. (4.9)

Since the maximum throughput from node i to node 1 is min(s, s1 + p2), the

delay in finish time of node 1 due to block duplication distributing S blocks from

node i is:

D1 =
S

f(i, 1)
− S

min(s, s1 + p2)

=
S

min(s, s1 + p2)− B(i, 1)
− S

min(s, s1 + p2)
(4.10)

where B(i, 1) = min(s, s1+p2)−f(i, 1) is the duplication rate from node i to node 1.

52

Figure 4.6: When node i encodes, the set S1 of blocks downloaded by node 1 and
the set S2 of blocks downloaded by node 2 are non-overlapped. The number of
redundant blocks R(t) = |S1 ∩ S2| is, therefore, equal to zero. As a result, number
of duplicated blocks coming to node 2: β1(t) = 0. (Although not depicted, the
same is true for β2(t).)

In general, given the duplication rate from node i to node j: B(i, j), and the

maxflow value from the source to node j: maxflow(0, j), the delay node i causes

to node j is

D(i, j) =
F

maxflow(0, j)− B(i, j)
− F

maxflow(0, j)

=
B(i, j)

maxflow(0, j)− B(i, j)
.

F

maxflow(0, j)
(4.11)

where F is the total number of blocks at the source. The attribute of Eq. 4.11 is

that it gives higher values to node j

• with low throughput from the source, i.e. large F
maxflow(0,j)

, and

• which experiences high duplication rate among nodes with the samemaxflow

from the source, i.e. B(i,j)
maxflow(0,j)−B(i,j)

is high.

4.2.4 The Effect of Network Coding

When a node encodes, each block it sends is uniquely generated: there exist no

identical blocks transmitting on different paths originated from it. Suppose in the

two-receiver case (Figure 4.2), node i is allowed to encode using random linear

53

network coding. Because there are virtually no identical encoded blocks, the num-

ber of redundant blocks originating from node i is zero4. We have S1 ∩ S2 = ∅
(Figure 4.6) which means there are no redundant blocks transmitted from node i:

R(t) = |S1 ∩ S2|

= 0.

Since duplicated blocks arriving at node 2 and node 1 are subsets of the set of

redundant blocks S1 ∩ S2, we also have

β1(t) = 0, and

β2(t) = 0 respectively.

Therefore, the delay in finish time of node 1 and node 2 due to duplication

from node i:

D1 = 0, and

D2 = 0 respectively.

In the multiple receiver case, when an upstream node i encodes, since there are

no duplicated blocks sending from node i, the delay in finish time it causes to a

downstream node j due to block duplication is

D(i, j) = 0. (4.12)

4Using random linear network coding, there is a small probability that two encoded blocks
are linearly dependent. The probability, however, approaches zero when encoding is done in a
large finite field.

54

 0

 50

 100

 150

 200

 0 10 20 30 40 50

D

up
lic

at
ed

 b
lo

ck
s

[b
lo

ck
]

Time [round]

s=8 s1=5 s2=3 p1=3 p2=1 d1=d2=1

R(t) analysis
R(t) emulation

β1(t) analysis
β1(t) emulation

β2(t) analysis
β2(t) emulation

Figure 4.7: Block duplication with different bandwidth settings. The analysis
result closely matches emulation result.

4.2.5 Numerical Experiments

Number of redundant blocks R(t), number of duplicated blocks β1(t), β2(t), and

delay in finish time D1, D2 can be computed from the network topological pa-

rameters, i.e. s, s1, s2, p1, p2, d1, and d2 using Eq. ((4.1), (4.2), (4.4)–(4.11). In

this subsection, we present some numerical experiments with various topological

parameters.

To confirm the correctness of the analysis, we compare the analytical results

with a BitTorrent emulation5 running on the partial topology in Figure 4.2. For

each input parameter, we run the emulation 1000 times. The comparison is given

in Figure 4.7 where block duplication analysis results (the dots) closely match the

emulation results (the lines).

Furthermore, we vary the bottleneck bandwidth p2 to see how it affects the

duplication rate B(i, 1) and delay in finish time D1 of node 1. With wider bottle-

neck bandwidth, node 1 experiences higher duplication rate (Figure 4.8) and longer

finish time delay (Figure 4.9) because it receives more blocks from the bottleneck

5We isolate BitTorrent’s block exchange mechanism and emulate it in our emulation.

55

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50

B
(i,

1)
 [b

lo
ck

/ro
un

d]

Time [round]

Duplication rate B(i,1) varying bottleneck bandwidth

s1=s2=4 p1=p2=1 d1=d2=1
s1=s2=4 p1=p2=2 d1=d2=1
s1=s2=4 p1=p2=3 d1=d2=1

Figure 4.8: Duplication rate with different bandwidth settings. Wider path band-
width p1 and p2 result in higher duplication rate.

 0

 5

 10

 15

 20

 0 10 20 30 40 50

D
el

ay
 D

1
[ro

un
d]

Time [round]

Delay D1 varying bottleneck bandwidth

s1=s2=4 p1=p2=1 d1=d2=1
s1=s2=4 p1=p2=2 d1=d2=1
s1=s2=4 p1=p2=3 d1=d2=1

Figure 4.9: Delay in finish time with different bandwidth settings. Wider path
bandwidth p1 and p2 result in longer delay in finish time of node 1.

path which increases the chance of block duplication.

4.3 Delay Computation and Placement

Algorithm

We use block duplication analysis in section 4.2 to figure the number of dupli-

cated blocks originating from each node, and how much delay that particular node

56

causes to a given child, i.e. a neighboring node which receives data from it, and all

downstream peers of that child. We then assign the nodes which generate the most

delay as encoders. The total delay caused by a node i due to block duplication is:

D(i) =
∑

i∈maxflow(0,j)

D(i, j) (4.13)

where D(i, j) is the delay computed using Eq. 4.11.

Our placement algorithm (Algorithm 4.1) starts by computing maxflow from

the source (node 0) to all peers. During that process, it collects:

• the set downstream[i→ j] of downstream peers of each link i→ j: peer k is

a downstream peer of link i→ j if link i→ j belongs to the maxflow from

the source to node k,

• the flow passing a link i→ j to a downstream node k: flow[i→ j→k], and

the flow passing a node i to a downstream node k: flow[i→k],

• the set child[i] of children of node i: node k is a child of node i if it is a

downstream node of node i and the two nodes are neighbors, i.e. directly

connected, and

• the flow from a node i to its child node k on link i→k: directflow[i→k].

The main part of the algorithm (lines 23–43) compute the block duplication

rate a node i causes to each of its child node j as in section 4.2. The duplication

is then propagated to all downstream nodes of link i→j. Finally, the delay node i

causes to each of its downstream nodes is computed using Eq. 4.11 and added to

the total delay D[i].

For each link from a node to its child, we have to run maxflow algorithm [58]

(lines 31 and 33) which takes O(V E2) time. Since the main loop is run at most E

times, once for each link, the overall complexity therefore is O(V E3).

57

Algorithm 4.1: Minimal Delay Placement Algorithm

Input: G = {V,E}, the source (node 0), file size F , number C
Result: C encoders (1 ≤ C ≤ |V |)

1 forall the i, j, k ∈ V do
2 flow[i→ j → k] = 0;
3 flow[i→ k] = 0;
4 directflow[i→ k] = 0;
5 downstream[i→ j] = ∅;
6 child[i] = ∅;
7 D[i] = 0;

8 end
9 foreach k ∈ V \{0} do

10 compute maxflow(0→ k) by Edmonds-Karp algorithm [58];
11 foreach i→ j ∈ maxflow(0→ k) do
12 downstream[i→ j]← k;
13 flow[i→ j → k] = maxflow0→k(i→ j);

14 end
15 foreach i ∈ maxflow(0→ k) do
16 flow[i→ k] = maxflow0→k(i);
17 if (i→ k) ∈ E then
18 child[i]← k;
19 directflow[i→ k] = maxflow0→k(i);

20 end

21 end

22 end
23 foreach i ∈ V do
24 foreach j ∈ child[i] do
25 V1 ← j;
26 V2 ← child[i]\{j};
27 s = flow[0→ i]− flow[j → i];
28 s1 = directflow[i→ j];
29 s2 = 0;
30 foreach k ∈ child[i]\{j} do s2+ = directflow[i→ k];
31 p1 = min(maxflow(V1 → V2), s1);
32 d1 = min(pathlen(V1 → V2));
33 p2 = min(maxflow(V2 → V1), s2);
34 d2 = min(pathlen(V2 → V1));

35 S = F.flow[i→j]
maxflow(0→j) ;

36 compute duplication using Eq. (4.1), (4.2), (4.4)–(4.9);

37 loss ratio = min(s,s1+p2)−f(i,1)
min(s,s1+p2)

;

38 foreach k ∈ downstream[i→ j] do
39 B[i→ k]+ = loss ratio ∗ flow[i→ j → k] ;
40 end

41 end

42 foreach k ∈ V do D[i]+ = S
maxflow(0,k)−B[i→k] − S

maxflow(0,k) ;

43 end
44 Encoders ← C peers with highest D[·] values;
45 return Encoders;

58

4.4 Performance Evaluation

4.4.1 Simulation Settings

We implemented a C++ simulator of the P2P content distribution system using the

pre-code protocol in Section 3.2.2 and run simulations over generated topologies

distributing a file from the source to all participating peers. The file is divided into

smaller fix-sized parts, i.e. blocks. The source and all peers exchange blocks until

all peers acquire enough blocks to construct the original file; then the simulation

finishes.

The simulations are round-based and peers exchange blocks using the block

selection described in Section 3.3 and mutual exchange incentive scheme, the same

as in Section 3.5.

We consider three scenarios.

1. No coding – coding is not allowed in the system, i.e. all peers send and receive

original blocks as in a pure P2P system. A peer finishes when it has collected

all the original blocks.

2. Network coding – all peers, including the source, are allowed to encode, i.e.

combine downloaded blocks to make new encoded blocks and send to other

peers. A peer finishes when it has collected enough coded blocks required for

decoding.

3. Selective coding (proposed) – the same as network coding except that only

some peers chosen by the proposed placement algorithm, including the

source, are allowed to encode.

For each overlay topology, with the same simulation parameters, we run sim-

ulations 100 times6 distributing a 200-block file from the source and collect the

6Although simulation parameters are the same for 100 runs, due to randomness in downloader

59

Table 4.2: Finish time in a network of 50 nodes placing 4 encoders including the
source (values are in round). Finish time of network coding (when all 50 encoders
are encoders) is included for reference.

Average Finish Time Maximum Finish Time
Brute-force Search 64.41 76.50
Min-delay (proposed) 65.32 77.53
Degree-based 68.50 81.46
Network Coding 58.31 75.00

average finish time of all peers (Tavg) and maximum finish time among all peers

(Tmax) in each of the 3 scenarios: no coding, network coding, and selective coding

when we use the proposed min-delay algorithm to place coders.

We use Watts and Strogatz small-world network model [55] to generate P2P

network topologies with 5000 peers as described in Section 3.5.2. By varying the

small-world network’s degree d and rewiring probability prw we can generate a wide

range of network topologies from highly bottlenecked topologies (with low prw) to

random topologies (with high prw). Capacity of all links is set to 1 block/round.

4.4.2 Performance Compared with Optimal Placement

We first evaluate our algorithm in a small-sized network of 50 peers (degree d = 4

and rewiring probability prw = 0.05) with C = 4 encoders (including an encoder

at the source). Since the size of network is relatively small, we can find an optimal

placement by brute-force searching all possible combinations of encoders to find

the one which makes shortest finish time.

The performance of the proposed min-delay placement is also compared with

that of degree-based placement, i.e. network coders are placed at high-degree nodes

first, using the same number of encoders. The result is given in Table 4.2. Both

average finish time of all peers and maximum finish times among all peers of min-

selection by the sending peers and block selection by the receiving peers, the result changes with
each run.

60

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Fi
ni

sh
 T

im
e

(%
 L

on
ge

r T
ha

n
N

C
) [

%
]

Rewiring Probability

Min-delay
Degree-based

Figure 4.10: Maximum finish time of the proposed min-delay algorithm placing
1000 encoders in 5000-peer topologies with different rewiring probabilities com-
pared with network coding. The maximum finish time of degree-based placement
is given for reference.

delay placement are close to the optimal maximum finish time found by brute-force

search and much shorter than finish time of the degree-based method.

Network coding finish time, included in Table 4.2 for reference purpose, is

always shorter than the other given methods because network coding uses all 50

peers as encoders.

4.4.3 Performance in Moderate Bottlenecked Topologies

Topologies with moderate bottleneck are generated using small-world network

model with degree d = 6 and relatively high rewiring probability 0.02 ≤ prw ≤ 0.4.

Placing 1000 encoders in 5000-peer networks (Figure 4.10 and Figure 4.11),

the performance of min-delay placement in terms of maximum finish time (Fig-

ure 4.10) and average finish time of all peers (Figure 4.11) is as good as network

coding’s performance. With 20% of the number of encoders, min-delay algorithm

can achieve finish time just about 5% longer than finish time of network coding in

moderate bottlenecked topologies.

Degree-based placement results in much longer finish time, sometimes as much

61

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Fi
ni

sh
 T

im
e

(%
 L

on
ge

r T
ha

n
N

C
) [

%
]

Rewiring Probability

Min-delay
Degree-based

Figure 4.11: Average finish time of the proposed min-delay algorithm placing 1000
encoders in 5000-peer topologies with different rewiring probabilities compared
with network coding. The average finish time of degree-based placement is given
for reference.

as 20% longer than network coding.

4.4.4 Performance in Highly Bottlenecked Topologies

We generate severely bottlenecked topologies by setting the rewiring probability

prw to small values in the range of [0.002, 0.04] and degree d=8. The network size

is also 5000 peers. The finish time is then compared with that of network coding

to evaluate how effectively the proposed algorithm assigns a small number of 250

encoders (excluding the source which always encodes) in such highly bottlenecked

networks (Figure 4.12 and Figure 4.13).

Min-delay algorithm achieves maximum finish time within 10% of network cod-

ing’s finish time using only a small portion of 5% total peers as encoders (Fig-

ure 4.12). With such small number of encoders, the average finish time of all

peers is about 13% longer than network coding (Figure 4.12). For comparison, in

these topologies whose rewiring probabilities are generally low, i.e. network bottle-

necks are severe, with a small number of encoders, the finish time of degree-based

placement, in some cases, however, is worse than network coding by 30–40%.

62

 0

 5

 10

 15

 20

 25

 30

 0.005 0.01 0.02 0.04

Fi
ni

sh
 T

im
e

(%
 lo

ng
er

 th
an

 N
C

) [
%

]

Rewiring Probability

min-delay Tmax
degree-based Tmax

Figure 4.12: Maximum finish time ofmin-delay (newly proposed) and degree-based
methods placing 250 encoders compared with network coding (NC).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.005 0.01 0.02 0.04

Fi
ni

sh
 T

im
e

(%
 lo

ng
er

 th
an

 N
C

) [
%

]

Rewiring Probability

min-delay Tavg
degree-based Tavg

Figure 4.13: Average finish time of min-delay (newly proposed) and degree-based
methods placing 250 encoders compared with network coding (NC).

In regular topologies (prw ≤ 0.002) and highly random topologies (large prw)

all algorithms have almost the same finish time as network coding because coding

improvement over non-coding is marginal in those topologies.

We vary the number of encoders (excluding the source which always encodes)

from 50 to 1000 in a 5000-peer network with d = 8 and prw = 0.01. Whereas

random and degree-based placements achieve poor performance especially with

small numbers of encoders, the proposed min-delay algorithm reaches finish time

63

 60

 70

 80

 90

 100

 0 100 250 500 1000

Fi
ni

sh
 T

im
e

[ro
un

d]

Encoders

min-delay Tmax
random Tmax

degree-based Tmax

network coding finish time

Figure 4.14: Maximum finish time of the newly proposed min-delay method com-
pared with random, and degree-based encoder placement (d = 8, prw = 0.01).

 50

 60

 70

 80

 0 100 250 500 1000

Fi
ni

sh
 T

im
e

[ro
un

d]

Encoders

min-delay Tavg
random Tavg

degree-based Tavg

network coding finish time

Figure 4.15: Average finish time of the newly proposed min-delay method com-
pared with random, and degree-based encoder placement (d = 8, prw = 0.01).

comparable to that of network coding at 500 encoders (Figures 4.14 and 4.15).

Deploying 1000 to 5000 encoders using the latter method, there is virtually no

more improvement than using 500 encoders.7

7We only present results deploying 50–1000 encoders in Figures 4.14 and 4.15 to make the
figures more focused. Increasing the number of encoders from 1000 to 5000, the finish time of
min-delay placement is almost the same.

64

4.5 Discussion

In this chapter, we have investigated how network coding achieves its robust per-

formance. One reason lies in its ability to eliminate data duplication throughout

the network, yet using all peers as encoders. Coding at an upstream peer can

eliminate data duplication, and in turn, shorten finish time of downstream peers

located behind multiple paths from it. Data redundancy generated by a coder

eliminates block duplication, which otherwise unnecessarily consume bandwidth

resources and slow down content delivery over bottleneck paths. To reduce the

number of encoders, we, therefore, look into the network topology and assign en-

coders only where large data duplication exists.

We analyze the amount of duplicated data coming to a node and the delay

caused by that duplication, given surrounding topological parameters. We make

an extensive analysis of how much duplication originated from a given upstream

node using a probability model and then translate the duplication to delay in finish

time the upstream node causes to its downstream nodes. Based on the analysis,

we propose a novel algorithm, namely min-delay placement, to place coders within

a P2P network to shorten distribution time.

Using the proposed algorithm, the content distribution has comparable per-

formance to network coding, yet with far fewer coders, using much less computa-

tional resources compared to network coding which excessively codes everywhere.

It can almost reach the performance of network coding in moderate bottlenecked

topologies while substantially reducing the number of network coders. Min-delay

placement demonstrates its full strength in severely bottlenecked topologies where

it outperforms other methods we have considered and achieves performance closely

matching that of network coding. Noticeably, min-delay placement can approach

performance of network coding with just a small portion of encoders.

A limitation of min-delay placement is its high complexity O(V E3) where V

is the number of nodes and E is the number of links in the network. When the

65

network is large or when coder placement is frequently recomputed, algorithms

with lower complexity is desirable. We are therefore motivated to devise faster

placement algorithms which we present in the next chapter.

One straightforward way to extend our proposed placement to the dynamic

case, where peers keep joining and leaving the system, is to redeploy encoders

periodically. Developing a distributed algorithm to figure the duplication and

delay for coder assignment is also an interesting future work.

66

Chapter 5

Centrality-based Coder

Placement

Minimal delay placement as presented in Chapter 4 can achieve good performance

by precisely figuring how much delay an upstream node causes to its downstream

nodes, and then, placing encoders at nodes which cause the most delay. Never-

theless, its good performance is accompanied by a high complexity of O(V E3).

In this chapter, in order to reduce the complexity, we aim to find faster heuristic

algorithms which can quickly pinpoint important nodes in the network to place

network coders.

Our idea is to use network centrality [48, 49] as an indicator of where duplication

occurs the most and place network coders there to eliminate such duplication.

The new placement algorithms, on the one hand, are derived from our obser-

vation that content duplication has close correlations both with the number of

paths from an upstream node to a downstream node and with the size of the flows

running over those paths. Coding at upstream peers with more and wider paths

to other nodes can effectively eliminate content duplication to speed up content

delivery. To identify nodes which lie on multiple and wider paths to other nodes

to place network coders, our proposed method, on the other hand, exploits be-

67

tweenness centrality [48] and flow centrality [49] to quickly locate the desired key

locations in the network.

In the following parts, we present the correlation analysis, and after that, our

newly proposed centrality-based coder placements based on betweenness centrality

and flow centrality.

5.1 Correlation of Duplication with

Consisting Flows

BitTorrent P2P content distribution systems [5, 14] are receiver-driven. In such

systems, peers choose blocks to download in a distributed manner based on their

own perception that those blocks are rare in the neighborhood. Without a global

knowledge, when there are multiple downstream paths to a particular node, some

blocks are downloaded multiple times by upstream peers on those paths, which

results in insufficiency of new information flow coming to the downstream node.

Because of duplicated blocks, the downstream node cannot utilize its full down-

loading capacity. This duplication phenomenon, which we call block duplication

and analyze in Chapter 4, has been illustrated in [1, 14]. Nevertheless, in this sec-

tion, we distinctively figure the correlation of block duplication with the number

of paths and the size of flows from a upstream peer to a downstream peer, which

is the foundation of our newly proposed centrality-based coder placements.

A path, without circles or loops, from node i to node j is a sequence of nodes

starting from i and terminating at j in which two adjacent nodes are connected

by a link. A flow on a path from node i to node j is a mapping E → R+ which

conforms to capacity constraint of each link and flow conservation at each node on

the path. A max-flow is the flow with maximum value. Figure 5.1 illustrates two

paths connecting node i and node j: path 1 and path 2 with two respective flows

of p1 and p2.

68

Figure 5.1: A partial graph where two paths connect node i and node j.

Denote N(t) as the total number of blocks available at node i by time t. Since

nodes on one path do not know which blocks have been chosen by nodes on the

other path, we can assume blocks are picked up at random: p1t random blocks

are chosen from N(t) to transmit on path 1, and likewise, p2t random blocks

are transmitted on path 2 by time t. The expected number of duplicated blocks

transmitting on the two paths, therefore, is p1t.p2t
N(t)

.

The total number of non-duplicated blocks from node i which are delivered to

node j by time t is

a(t) = p1t+ p2t− p1p2t
2

N(t)
. (5.1)

Let si be the rate at which blocks coming to node i. We have the number

of blocks available at node i by time t: N(t) = sit. From (5.1), the effective

throughput (averaged over time t) from node i to node j is

peff =
a(t)

t

= p1 + p2 − p1p2
si

. (5.2)

By the same reasoning, (5.2) can be generalized to get the effective bandwidth

69

in case there are m paths connecting node i and node j

peff =p1 + p2 + ..+ pm − p1p2 + p1p3 + ..+ pm−1pm
si

+

p1p2p3 + ..+ pm−2pm−1pm
s2i

− ..− (−1)mp1p2..pm

sm−1
i

. (5.3)

Equation (5.3) reveals that due to duplicated blocks on the paths, the effective

throughput peff is smaller than the total flows on all paths from node i to node j:

peff = p1 + p2 + ..+ pm − r (5.4)

where r > 0 is the duplication rate.

From (5.3) and (5.4), we have

r =
p1p2 + p1p3 + ..+ pm−1pm

si
−

p1p2p3 + ..+ pm−2pm−1pm
s2i

+ ..+ (−1)mp1p2..pm

sm−1
i

. (5.5)

There are two observations on the correlations of duplication rate r with con-

sisting flows which contribute to the creation of our coder placement algorithms.

First, duplication rate is higher with larger consisting flows. If we consider a

given flow pi separately and fix all other flows, (5.5) can be converted to

r = Aipi +Bi (5.6)

where Ai and Bi are independent from pi, and Ai > 0, Bi > 0. Equation (5.6)

shows the correlation of duplication rate and each separate flow from node i to

node j: when a given flow pi increases, duplication rate r also increases.

Second, duplication rate is higher if there are more flows from node i to node j.

Let r(m) and peff (m) respectively be the duplication rate and effective throughput

70

 1
 1.5

 2
 2.5

 1 2 3 4

r

p3

(a) r increases with flow p3

 0.5
 1

 1.5
 2

 2.5

 2 3 4 5 6

r

m

(b) r increases with number of flows m

Figure 5.2: Duplication rate increases with flow size and number of flows.

with m flows from node i to node j: p1, p2, .., pm and r(m+ 1) be the duplication

rate when a new flow pm+1 is added. It is easy to see that

r(m+ 1) = r(m) +
peff (m)pm+1

si
(5.7)

which means r(m+ 1) > r(m). Therefore, we have

r(l) > r(m) ∀l > m. (5.8)

We illustrate the correlation in Figure 5.2(a) when there are 3 flows p1, p2, and

p3 from node i to node j: si = 8, p1 = p2 = 2 and p3 changes from 1 to 4. In

Figure 5.2(b), we fix si = 6, p1 = p2 = 1 and add more flows with bandwidth equal

to 1 to change the number of flows m from 2 to 6.

If a network coder is placed at upstream node i, there are no duplicated blocks

transferring on the paths to downstream node j because each coded block is unique.

As a result, the duplication rate r = 0 when node i encodes.

71

Algorithm 5.1: Multi-path Coder Placement Algorithm

Input: G = {V,E}, the source (node 0), number C
Result: C encoders (1 ≤ C ≤ |V |)

1 forall the i ∈ V do
2 R[i] = 0;
3 end
4 foreach j ∈ V \{0} do
5 figure all paths 0→ j;
6 foreach i, i on multiple paths 0→ j do
7 compute ri using (5.5);
8 R[i] = R[i] + ri;

9 end

10 end
11 Encoders ← C peers with highest R[·] values;
12 return Encoders;

5.2 Coding at Network Centrality

Network coding, by generating new coded blocks, can eliminate block duplication,

and thus, achieve high throughput and short distribution time. Since block dupli-

cation happens on multiple delivery paths, to optimize the whole system, our job

is to find a set of C nodes, from which duplicated blocks slow down throughput

to other nodes the most, where C is the number of network coders to be de-

ployed. One such algorithm (Algorithm 5.1), which figures all possible path from

the source to a downstream node, is given for reference.1 Algorithm 5.1’s running

time, however, is prohibitive due to the exponential number of paths.2

We propose a heuristic approach instead by quickly looking for nodes which

lie on more paths with wider bandwidth. By ensuring that chosen coders lie

on paths to many nodes with wider bandwidth we can avoid duplicated blocks

1The main difference between Algorithm 5.1 and Algorithm 4.1 in Chapter 4 is that the latter
only considers paths with shortest lengths from the source to a given node, which is tractable.
Also Algorithm 4.1 concerns with the delay an upstream node causes to its downstream nodes
due to duplication while Algorithm 5.1 works with the duplication itself.

2The number of paths between two nodes, in general, depends on the topology. In a full
mesh topology with V nodes, for example, the number of paths between any two given nodes is
V−2∑
k=0

(V−2)!
(V−2−k)! .

72

Algorithm 5.2: Centrality-based Coder Placement Algorithm

Input: G = {V,E}, the source (node 0), number C
Result: C encoders (1 ≤ C ≤ |V |)

1 foreach i ∈ V \{0} do
2 compute centrality index C[i] using either

1. Brandes’s betweenness centrality algorithm [59];

2. flow centrality algorithm (Algorithm 5.3);

3 end
4 Encoders ← C peers with highest C[·] values;
5 return Encoders;

from transferring to those nodes as shown in Section 5.1. Our idea is to use

network centrality indices (we will explain shortly) to evaluate how important a

node to other nodes if that node becomes a coder. The higher a node’s centrality

value, the more paths or wider paths between other nodes it stands on, and the

more appraisable for it to become a coder. Algorithm 5.2 summarizes our coder

placement strategy. Note that the source is always chosen as a coder because it

stands on paths to every peer. The algorithm utilizes either betweenness centrality

[48], or its variant, flow centrality [49] to figure the importance of a given network

node which we explain in the following section.

Originated in social networks studies, centrality is an essential tool for graph

analysis which measures the importance of a node within the graph. Depending

on the kind of measures, there are various centrality indices. In this study, how-

ever, we are interested in betweenness centrality and flow centrality. Betweenness

centrality expresses the degree a node locates on the paths between other nodes,

and flow centrality expresses the total bandwidth of flows going through a node.

That is, betweenness centrality and flow centrality are indicators of nodes from

which duplication occurs. Given that network coding, by generating fresh encoded

data to send onto each path, can effectively eliminate such duplication to increase

effective bandwidth, placing coders in nodes with high centrality values will speed

up content delivery.

73

5.3 Betweenness Centrality Placement

Betweenness centrality [48] measures the degree that a node stands on the shortest

paths between other nodes, which has been applied in different contexts such as

routing and cache placement [60, 61] to place a network function in a set of nodes.

Since we are interested in distributing data from the source to all peers, all shortest

paths under consideration are from the source to other nodes.

Denote σk as the number of the shortest paths from the source to node k and

σk(i) as the number of the shortest paths from the source to node k which go

through node i. Betweenness centrality of node i is measured by

CB(i) =
∑

k �=i∈V

σk(i)

σk

. (5.9)

Nodes with high betweenness centrality locate on more shortest paths to other

downstream nodes, and thus, likely generate more duplication as we observe in

Section 5.1. If those nodes encode, more duplication can be avoided to speed

up content distribution. The limitation of betweenness centrality is that it only

considers the number of shortest paths to downstream nodes which does not always

reflect correctly the importance of a node in eliminating duplication.

Betweenness centrality of all nodes can be computed with Brandes’s O(V E)

algorithm [59]. Since we are only interested in shortest paths from the source, the

complexity is O(E).

5.4 Flow Centrality Placement

Flow centrality [49], on the other hand, measures the portions of max-flows be-

tween all pairs of other nodes which go through a given intermediate node. Like

betweenness centrality, we are interested in flows from the source to all peers. In

our study, we compute flow centrality of node i as the total amount of flows from

74

the source to all other node k which pass through node i:

CF (i) =
∑

k �=i∈V
f(S, i, k). (5.10)

where S is the source, and f(S, i, k) is the portion of max-flow from the source

to node k that passes through node i. As we are interested in both the value

of the flow and the shortness of the path, the max-flow mentioned above is the

one consists of paths with shortest lengths among all paths from the source S to

node k.3

High flow centrality nodes have larger aggregate flows to downstream nodes.

They, therefore, have high probability to stand on more paths to a given down-

stream node, and in addition, the flows on the paths are likely larger. Since larger

duplication results from larger flows as stated in Section 5.1, we expect high flow

centrality nodes to generate more duplication to downstream nodes, which justifies

the need to place encoders there.

We compute flow centrality using Algorithm 5.3 which is basically Edmonds-

Karp’s max-flow algorithm [58] with the addition of line 38 where the augmenting

flow value (flow) is updated to the flow centrality CF [i] of each node i on that

augmenting path.

Flow centrality, however, is more expensive to compute than betweenness cen-

trality. In Algorithm 5.3, the complexity to visit each source-sink pair is O(V E2).

Therefore, to find out flow centrality of all V nodes, the algorithm takes O(V 2E2)

time.

3This kind of flow centrality is slightly different from what has been originally proposed in [49]
where f(S, i, k) means the portion of max-flow from node S to node k that must pass through
node i in order that node k achieves its max-flow. In other words, if node i is removed, the
max-flow from node S to node k decreases by f(S, i, k).

75

Algorithm 5.3: Flow Centrality Computation

Input: G = {V,E}, the source (node 0)
Result: flow centrality CF [i]∀i ∈ V

1 forall the i, j ∈ V do
2 CF [i] = 0;
3 u[i, j]=capacity of link (i, j), (i, j) ∈ E;

4 end
5 s = 0;
6 foreach t ∈ V do
7 forall the (i, j) ∈ E do
8 f [i, j] = 0;
9 end

10 repeat
11 Q← empty queue;
12 prev[0] = −1;
13 forall the i ∈ V do
14 color[i]= not visited ;
15 end
16 enqueue s→ Q;
17 while Q not empty do
18 dequeue i→ Q;
19 color[i]= visited ;
20 foreach neighbor j of i do
21 if color[j]= not visited and u[i, j]− f [i, j] > 0 then
22 color[j]= queued ;
23 prev[j] = i;
24 enqueue j → Q;

25 end

26 end

27 end
28 if color[t]== visited then
29 for j ← t, prev[j] ≥ 0 do
30 i = prev[j];
31 flow = min(u[i, j]− f [i, j]);
32 j ← prev[j];

33 end
34 for j ← t, prev[j] ≥ 0 do
35 i = prev[j];
36 f [i, j] = f [i, j] + flow;
37 f [j, i] = f [j, i]− flow;
38 CF[i] = CF[i] + flow;
39 j ← prev[j];

40 end

41 end

42 until color[t]==visited ;

43 end
44 return CF [·];

76

5.5 Performance Evaluation

We create a round-based simulator in C++ to verify the effectiveness of our pro-

posed algorithm. The simulation settings are the same as in Section 3.5 and Sec-

tion 4.5. Peers exchange information using pre-code protocol in Section 3.2.2. In

the beginning of each round, blocks are assigned to each peer according to available

bandwidth, our proposed block selection in Section 3.3 and the mutual exchange

incentive scheme described in Section 3.5. The assigned blocks are downloaded by

the receivers by the end of the round and then the system moves to next round.

A link capacity is measured by block per round, i.e. how many blocks can be

transferred through the link in a round. Finite field GF (28) is used for encoding

and decoding operations. We disregard the negligible overhead of sending encoding

coefficients associated with random linear coding in our simulations.

As in Section 3.5.2, we generate 5000-peer overlay topologies using Watts and

Strogatz small-world network model [55]. By changing the rewiring probability

prw we can generate a wide range of topologies from regular ones (low prw values)

to random ones (high prw values). When rewiring probability is low, the topology

is highly bottlenecked since there are fewer long-distance links connecting parts of

the network as we have discussed in Section 3.5.2. All overlay links have capacity

of 1 block per round. We run simulations 100 times on each generated topology

collecting the average finish time of all peers (Tavg) and the maximum finish time

among all peers (Tmax) distributing a 200-block file.

Using the same simulation parameters, the finish time of betweenness centrality

and flow centrality coder placements are compared with network coding, i.e. full

encoder deployment, and min-delay placement which we previously discussed in

Chapter 4. The performance of degree-based coder placement, i.e. coders are placed

at high-degree nodes, is also included for comparison.

77

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Fi
ni

sh
 T

im
e

(%
 L

on
ge

r T
ha

n
N

C
) [

%
]

Rewiring Probability

Min-delay
Degree-based

Btw. Central.
Flow Central.

Figure 5.3: Average finish time of betweenness centrality and flow centrality place-
ments deploying 1000 encoders in 5000-peer topologies compared with network
coding (NC). The performance of min-delay and degree-based placements are given
for comparison.

 0

 5

 10

 15

 20

 25

 30

 0.02 0.1 0.2 0.3 0.4 0.5

Fi
ni

sh
 T

im
e

(%
 L

on
ge

r T
ha

n
N

C
) [

%
]

Rewiring Probability

Min-delay
Degree-based

Btw. Central.
Flow Central.

Figure 5.4: Maximum finish time of betweenness centrality and flow centrality
placements deploying 1000 encoders in 5000-peer topologies compared with net-
work coding (NC). The performance of min-delay and degree-based placements are
given for comparison.

5.5.1 Performance in Moderate Bottlenecked Topologies

We compare the performance of the proposed heuristic placements with full net-

work coding in Figure 5.3 for average finish time of all peers and in Figure 5.4

for maximum finish time among all peers. In moderate bottlenecked topologies

78

(0.02 ≤ prw ≤ 0.5, d = 6), assigning C=1000 peers with highest flow centrality as

coders, we can achieve comparable performance to network coding. The average

finish time of all peers is approximately under 5% longer than network coding.

Using betweenness centrality to appoint the same number of coders with highest

betweenness centrality values, the finish time is nearly 15% longer than network

coding when the topologies have lower rewiring probability (prw=0.02 and prw=0.1)

and 5% longer than network coding with higher rewiring probabilities.

The reason for flow centrality’s good performance is that, by taking max-flow

into account, it reflects more accurately the characteristics of the topology than

betweenness centrality. The complexity of flow centrality is, however, higher than

betweenness centrality. For comparison, degree-based placement, i.e. encoders are

placed at high-degree nodes first, has poor performance. We notice that the perfor-

mance gain due to coding is negligible (even with full network coding) in regular

topologies (prw=0) and highly random topologies (prw > 0.5) because there are

virtually no bottlenecks in such networks.

Flow centrality’s performance in moderate bottlenecked topologies is almost the

same as min-delay placement (Figures 5.3 and 5.4). Given its lower complexity,

flow centrality placement algorithm is certainly preferable in such networks.

We next change parameter C to appoint different numbers of peers with highest

centrality values as coders in a topology with 5000 peers and rewiring probability

prw=0.02, degree d=6. Figure 5.5 and Figure 5.6 respectively give the average

and maximum finish time when no coders (no coding) to 5000 coders (full net-

work coding)4 are deployed. We also include the finish time of random placement,

which assigns the encoders at random, and degree-based placement for reference.

Betweenness centrality and flow centrality placements always achieve improved

performance compared with degree-based and random placements. Of the two for-

4Using a given placement method, increasing the number of encoders to 5000 means that all
peers in the network encode, i.e. network coding. Therefore, in Figure 5.5 and Figure 5.6, finish
time is the same for all placement methods when the number of encoders is 5000.

79

 50

 55

 60

 65

 70

 75

 80

 85

 90

 250 1000 2000 3000 4000 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

Number of Encoders

Btw. Central.
Flow Central.

Degree-based
Random Coders

Figure 5.5: Average finish time of betweenness centrality and flow centrality place-
ments varying the number of encoders compared with degree-based and random
placements.

 65

 70

 75

 80

 85

 90

 95

 100

 105

 250 1000 2000 3000 4000 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

Number of Encoders

Btw. Central.
Flow Central.

Degree-based
Random Coders

Figure 5.6: Maximum finish time of betweenness centrality and flow centrality
placements varying the number of encoders compared with degree-based and ran-
dom placements.

mer methods, flow centrality reaches finish time almost equal to network coding

with only 1000 encoders and the performance is nearly constant when we increase

the number of coders from 1000 to 5000 (Figure 5.5). The result confirms that

centrality is good tool to locate a small subset of important nodes for coder place-

ment.

80

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.005 0.01 0.02 0.04

Fi
ni

sh
 T

im
e

(%
 lo

ng
er

 th
an

 N
C

) [
%

]

Rewiring Probability

min-delay Tavg
flow central. Tavg
btw. central. Tavg

degree-based Tavg

Figure 5.7: Average finish time of betweenness centrality and flow centrality place-
ments deploying 250 encoders in 5000-peer topologies compared with network cod-
ing (NC). The performance of min-delay and degree-based placements are given
for comparison.

 0

 5

 10

 15

 20

 25

 30

 0.005 0.01 0.02 0.04

Fi
ni

sh
 T

im
e

(%
 lo

ng
er

 th
an

 N
C

) [
%

]

Rewiring Probability

min-delay Tmax
flow central. Tmax
btw. central. Tmax

degree-based Tmax

Figure 5.8: Maximum finish time of betweenness centrality and flow centrality
placements deploying 250 encoders in 5000-peer topologies compared with network
coding (NC). The performance of min-delay and degree-based placements are given
for comparison.

5.5.2 Performance in Highly Bottlenecked Topologies

We use low rewiring probability (0.002 ≤ prw ≤ 0.04) and degree d = 8 to generate

highly bottlenecked topologies to verify performance of betweenness centrality and

flow centrality placements compared with other methods. The average finish time

81

 50

 60

 70

 80

 0 100 250 500 1000

Fi
ni

sh
 T

im
e

[ro
un

d]

Encoders

min-delay Tavg
flow central. Tavg
btw. central. Tavg

degree-based Tavg
random Tavg

network coding finish time

Figure 5.9: Average finish time of betweenness centrality and flow centrality place-
ments varying the number of encoders in a topology with rewiring probability
prw=0.01 and degree d=8.

and maximum finish time are given in Figure 5.7 and Figure 5.8 respectively using

250 peers as network coders.

Betweenness centrality and flow centrality placements result in average fin-

ish time close to min-delay placement (Figure 5.7). In terms of maximum finish

time, however, they could not match the performance of min-delay placement (Fig-

ure 5.8) which can achieve finish time closer to full network coding. We note that

since network coders are placed at a very small portion of 5% of the total peers,

the trade-off are longer finish time compared with full network coding which uses

all peers as coders.

We increase the number of network coders C from 50 to 1000 coders to see

the impact on finish time. With C=500 network coders, flow centrality placement

achieves almost the same finish time as min-delay placement which is closely ap-

proaches full network coding’s performance in terms of both average finish time

(Figure 5.9) and maximum finish time (Figure 5.10). Finish time of betweenness

centrality placement, however, is almost always longer than flow centrality place-

ment.

Flow centrality and betweenness centrality placements are less robust than min-

82

 60

 70

 80

 90

 100

 0 100 250 500 1000

Fi
ni

sh
 T

im
e

[ro
un

d]

Encoders

min-delay Tmax
flow central. Tmax
btw. central. Tmax

degree-based Tmax
random Tmax

network coding finish time

Figure 5.10: Maximum finish time of betweenness centrality and flow centrality
placements varying the number of encoders in a topology with rewiring probability
prw=0.01 and degree d=8.

delay placement in assigning a small number of 50 to 250 encoders with consistent

shorter maximum finish time (Figure 5.10). The reason is because min-delay place-

ment accelerates slow peers by assigning encoders to shorten their finish time as

we have disccused in Chapter 4’s Eq. 4.11. The average finish time of the three

methods, however, is almost the same (Fig 5.9) since the decrease in finish time of

those slow peers is averaged over the total number of peers.

5.5.3 Performance with Different Centrality Thresholds

We furthermore evaluate the placement method in terms of total number of re-

quired encoders and average finish time, varying the centrality threshold. With

each threshold, all nodes with centrality value higher than or equal to the thresh-

old are chosen as encoders. The results are given in Figure 5.11 and Figure 5.12

in which threshold α=0 means all nodes are chosen as encoders, i.e. full network

coding, and threshold infinity means no nodes code, i.e. no coding. In the given

topology (d=6, prw=0.02), choosing all nodes with betweenness centrality higher

or equal to αb=10, which means the total fractions of shortest paths to down-

stream peers the selected encoders locate on are equal to or greater than 10, gives

83

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 1 5 10 100 ∞
 200

 1000

 2000

 3000

 4000

 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

N
um

be
r o

f E
nc

od
er

s

Betweenness Centrality Threshold αb

Btw. Central. Finish Time
Btw. Central. # Encoders

Figure 5.11: Average finish time and number of assigned encoders with different
betweenness centrality thresholds.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

0 32 96 180 960 ∞
 200

 1000

 2000

 3000

 4000

 5000

Fi
ni

sh
 T

im
e

[ro
un

d]

N
um

be
r o

f E
nc

od
er

s

Flow Centrality Threshold αf

Flow Central. Finish Time
Flow Central. # Encoders

Figure 5.12: Average finish time and number of assigned encoders with different
flow centrality thresholds.

an average finish time 14% longer than network coding, however, with a saving

of nearly 85% in the number of required encoders compared to network coding

(Figure 5.11).

The performance is better using flow centrality. When threshold is set to

αf = 180, i.e. each chosen encoder stands on a total flow of 180 to its downstream

peers, with nearly 90% saving in encoders, flow centrality placement achieves short

finish time, just 7% longer than network coding finish time (Figure 5.12). With

84

lower thresholds, i.e. more nodes are chosen as encoders, there is not much improve-

ment in finish time, even though the number of encoders is much higher. The result

means that while encoders at high centrality nodes can effectively improve perfor-

mance, those at low centrality nodes are redundant and can be removed to save

resources.

5.6 Discussion

In this chapter, we have proposed heuristic algorithms to place coders within a

P2P network to shorten distribution time. Unlike previous related work which

justifies coding over the whole network topology, our algorithms, in evaluating

the centrality value of each node within the topology, look inside the network to

find particular places which require network coding. The idea works on the basis

that coding at an upstream peer can improve data transmission on multiple paths

to downstream peers located behind bottlenecks. Data redundancy generated by

a coder eliminates duplicated downloads, which otherwise unnecessarily consume

bandwidth resources and slow down content delivery over the paths. By taking

advantages of the correlations of duplication with the number and the size of

the paths, we can effectively using betweenness centrality and flow centrality to

pinpoint the network nodes which generate more duplication for network coder

placement.

We have confirmed that betweenness centrality and flow centrality are good

indicators to locate important nodes, which lie on multiple paths to other nodes,

in a network and deploy them as coders. Flow centrality, by taking flow information

into account, achieves a performance closely matched that of full network coding.

Betweenness centrality placement, although less effective, has the advantage of

much lower complexity which is suitable when encoder placement is frequently

computed.

The proposed centrality-based placements have performance comparable to

85

min-delay placement (which we have presented in Chapter 4) and quite close to

network coding performance in moderate bottlenecked topologies. In highly bot-

tlenecked topologies, their performance in terms of average finish time is as good as

min-delay placement. However, the maximum finish time is longer than min-delay

placement when only a small number of encoders are deployed.

The advantage of centrality-based coder placements is their lower complexity

compared with min-delay placement. In practice, in very large network topolo-

gies, or in situations where network coder placement are frequently computed,

centrality-based algorithms are better choices since they incur less computation

time. When performance is preferred, min-delay placement will take the lead.

We can extend our centrality-based placements to the dynamic case, where

peers keep joining and leaving the system, is to redeploy encoders periodically. A

more elegant extension, however, is to use a distributed approximation algorithm,

such as [62, 63], to compute the centrality value at each peer.

Using the method in [62], for example, an alternative centrality value called

second order centrality is computed by letting each node keep track of the time

elapsed between visits by a random walk. High centrality nodes see more frequent

visits compared with other nodes. The approach in [63], on the other hand, figures

the centrality level of a node by means of a localized spectral analysis on a small-

size neighborhood of the node. In addition, to make the decision whether a node

should become a network coder or not fully distributed, the centrality threshold

also needs to be determined locally at each node.

Looking at another facet, the performance and the number of network coders

depend on the centrality threshold we choose. Lower thresholds result in short

finish time with the cost of more network coders. A good centrality threshold

is largely controlled by the characteristics of the network topology. Determining

such appropriate thresholds is an interesting problem which we leave for our future

work.

86

Chapter 6

Coding Redundancy Ratio

Having located where to place network coders in a given network, in this chapter,

we further optimize each network coder itself: we determine the optimal level

of redundancy generated by a network encoder to achieve shortest finish time.

Each time a network coder generate a new coded data, it put a piece of redundant

information into the network which helps accelerate content distribution. However,

requiring an encoder to encode all the time is excessive. The level of redundancy

generated at each network coder should be carefully considered so that to avoid

unnecessary encoding as it consumes the node’s resources.

We start with a description of the problem, and then, make an analysis of the

optimal redundancy ratio at each network coder. Based on the analysis, we devise

an algorithm to compute redundancy ratios of all network coders and evaluate the

performance by simulations.

6.1 Redundancy Ratio at a Network Coder

When network coding is enabled at a peer, the peer generates new encoded blocks

from what it has received before sending to other peers. Suppose we have a coded

87

block C0 with encoding vector (c01, c02, ..., c0K), and K original blocks, B1, B2, ...,

BK . That means

C0 = c01B1 + c02B2 + ...+ c0KBK .

The coefficients, multiplications, and additions are taken place in a finite field, e.g.

GF (28).

Now suppose encoder i, having received 2 blocks C1 and C2, wants to make

a new encoded block to send to a neighboring peer. Using random linear coding

[26], encoder i will pick up two random coefficients a1 and a2 and generate a new

coded block C: C = a1C1+a2C2, which results in an encoded block with encoding

vector (a1c11 + a2c21, a1c12 + a2c22, ..., a1c1K + a2c2K).

The ratio of the number of encoded blocks network coder i generates, namely

enc(i), to the number of blocks it received, recv(i), is called the redundancy ratio

or expansion factor at network coder i:

ei =
enc(i)

recv(i)
. (6.1)

After a peer collects K independent blocks (both encoded and original), i.e.

the K associated encoding vectors form a full-rank matrix, it can decode to get

the K original blocks by solving the set of K linear equations.

6.2 Problem Formulation

Peers in a P2P network form a directed overlay topology, i.e. directed graph G =

{V,E} where V is the set of peers, or nodes, and E is the set of directed overlay

links between peers. Pieces of the file, i.e. blocks, are then exchanged between

connecting peers, i.e. neighbors. A peer finishes when it collects K blocks which

form a full-rank matrix. Our problem can be stated as follows.

88

Table 6.1: Notations

Notation Meaning

1, 2, ..., n Peer IDs. (The source is denoted as S.)

c(i, j) Capacity of overlay link (i, j)

f(i) Max-flow from the source to peer i which is determined
by max-flow min-cut theorem [58].

f(i, j) Total throughput from peer i to neighboring peer j over
both the direct link (i, j) and the indirect path from i to
j. Abbreviated as fj when i is understood.

s(i, j) Throughput over the direct link (i, j) from peer i to neigh-
boring peer j. Abbreviated as sj when i is understood.

b(i, j) Bottleneck bandwidth from peer i to peer j, the two peers
might not be neighbors. Abbreviated as bj when i is un-
derstood.

K Number of original blocks

Ti Shortest finish time of peer i: Ti =
K
f(i)

.

ei Redundancy ratio at encoder i

Given a P2P content distribution which is defined by

• a network topology G = {V,E},

• a source S ∈ V with a file of K blocks to be distributed to all peers, and

• a set of encoders C (C ⊆ V),

what is the best redundancy ratio at each encoder which shortens distribution time

the most?

The notations in Table 6.1 are used in our analysis. Our strategy is to determine

the best redundancy ratio at each encoder separately based on the given network

topology. We present the detail analysis in the next section.

89

Figure 6.1: The encoder is placed at the source S which is sending data to two
neighboring peers: peer 1 and peer 2. Bandwidth utilization over the link from the
source to the two peers is s1 and s2 respectively. The two peers might not directly
connect, i.e. not a neighbor of each other. Bottleneck bandwidth from peer 2 to
peer 1 is b1 and that on the reverse direction is b2.

6.3 Redundancy Ratio Analysis

6.3.1 Encoder at the Source

The source has two neighboring peers

We first analyze the source’s redundancy ratio in a simple topology (Figure 6.1)

where the source distributes a file to two receivers: peer 1 and peer 2. An encoder

is placed at the source to shorten finish time of the two peers, i.e. the time required

for them to download the whole file.

We assume a static network, i.e. there is no change in the physical topology

and the overlay topology during a content distribution session as have been stated

in Chapter 2. A peer stops downloading when the necessary number of blocks is

acquired but keeps staying in the system to serve other peers.

Consider one of the peers, for example peer 2. There are two paths over which

content are delivered to it: directly from the source and from the source via peer 1

to peer 2. In ordinary non-coding P2P content distribution, since peers select

blocks to download independently based on the local information in the neigh-

borhood, a considerable number of identical blocks are transferred on both paths.

90

That duplication phenomenon also happens when the source, after sending all K

blocks, has to resend old blocks into the system. Block duplication results in in-

sufficiency of new information flow coming to peer 2. Consequently, peer 2 cannot

utilize its full download capacity.

When the source is allowed to encode, in order for peer 2 to achieve its full

download speed, i.e. shortest finish time, the source should generate enough re-

dundancy so that all blocks transferred on one path to peer 2 are different from

those on the other path. Denote s1 and s2 as the bandwidth utilization over the

link from the source to peer 1 and peer 2 respectively. Bottleneck bandwidth from

peer 2 to peer 1 is b1 and that on the reverse direction is b2. Let T1 and T2 be the

shortest finish time of peer 1 and peer 2 respectively. That is

T1 =
K

s1 + b1
, and

T2 =
K

s2 + b2

where s1 + b1 and s2 + b2 are the throughput from the source to peer 1 and peer 2

respectively and K is the number of original blocks at the source.

Without loss of generality, assume peer 2 is the slower peer, i.e. it finishes after

peer 1: T2 ≥ T1. By the time T2 when peer 2 finishes downloading the whole file,

the source has generated and sent

• s1T1 encoded blocks to peer 1, and

• s2T2 encoded blocks to peer 2.

The total number of encoded blocks the source generated, therefore, is

enc(S) = s1T1 + s2T2

= s1.
K

s1 + b1
+ s2.

K

s2 + b2
.

91

Since the number of original blocks at the source is K, we have the redundancy

ratio at the source:

eS =
enc(S)

K

=
s1

s1 + b1
+

s2
s2 + b2

. (6.2)

Redundancy ratio smaller than the one given in (6.2) results in some blocks are

transfer on both paths, and consequently, peer 2 could under-utilize its download

capacity. Larger redundancy ratio, on the other hand, has no effect on the finish

time since T2 is the shortest achievable finish time for peer 2.

The source has m neighboring peers

The result in (6.2) can be extended to the case when the source connects to m

neighboring peers: peer 1, peer 2, ..., peer m. We have

eS =
m∑
j=1

sj
sj + bj

=
m∑
j=1

sj
f(j)

(6.3)

where f(j) is the total throughput, i.e. max-flow, from the source to peer j.

6.3.2 Encoder at an Intermediate Peer

An encoder is placed at an intermediate peer i which delivers blocks to m neigh-

boring peers (Figure 6.2 illustrates the case m = 2). The difference in this case is

that peer 1, peer 2, ..., and peer m do not need to download all K blocks, which

are required to construct the original file, from encoder i. By time t, peer 1 has

downloaded K1(t) = s1t blocks from encoder i, peer 2: K2(t) = s2t blocks, ..., and

peer m: Km(t) = smt blocks.

92

Figure 6.2: The encoder is placed at an intermediate peer i which is sending data
to two neighboring peers: peer 1 and peer 2. In this case, intermediate encoder i
does not have the whole file but is downloading it at rate f(i); and peer 1 and
peer 2 do not need to receive all K blocks, which are required to construct the
original file, from encoder i. In total, peer 1 receives K1 blocks and peer 2 receives
K2 blocks from encoder i.

Assume T1 ≤ T2 ≤ .. ≤ Tm, the total encoded blocks node i has generated by

the time t is

enc(i, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1t+ s2t+ ..+ smt if 0 < t < T1,

s1T1 + s2t+ ..+ smt if T1 ≤ t < T2,

...

s1T1 + s2T2 + ..+ smTm if t ≥ Tm.

Since the number of blocks encoder i received by time t is

recv(i, t) =

⎧⎪⎪⎨
⎪⎪⎩
f(i)t if 0 < t < Ti,

K if t ≥ Ti

the redundancy ratio at encoder i becomes

ei(t) =
enc(i, t)

recv(i, t)

93

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
f(i)t

(s1t+ s2t+ ..+ smt) if 0 < t < T1,

1
f(i)t

(s1T1 + s2t+ ..+ smt) if T1 ≤ t < T2,

...

1
K
(s1T1 + s2T2 + ..+

sj−1Tj−1 + sjt+ ..+ smt) if Ti ≤ t < Tj,

...

1
K
(s1T1 + s2T2 + ..+ smTm) if t ≥ Tm

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1+s2+..+sm
f(i)

if 0 < t < T1,

s1T1

f(i)t
+ s2+..+sm

f(i)
if T1 ≤ t < T2,

...

s1T1+s2T2+..+sj−1Tj−1

K
+

(sj+..+sm)t

K
if Ti ≤ t < Tj,

...

s1T1+s2T2+..+smTm

K
if t ≥ Tm

(6.4)

assuming Tj is closest to Ti and Tj ≥ Ti.

In (6.4), notice that the redundancy ratio ei(t) is, at first, equal to
s1+s2+..+sm

f(i)

with 0 < t < T1. Then it decreases on [T1, Ti). After that, the ratio increases on

[Ti, Tm) and finally reaches s1T1+s2T2+..+smTm

K
when t ≥ Tm. Figure 6.3 illustrates

the redundancy ratio function ei(t) in case node i has m = 3 neighbors and T1 <

T2 < Ti < T3.

The maximum redundancy ratio, therefore, is the larger value of the two local

maxima s1+s2+..+sm
f(i)

in (0, T1) and
s1T1+s2T2+..+smTm

K
in [Tm,∞):

ei = max

(
s1 + s2 + ..+ sm

f(i)
,
s1T1 + s2T2 + ..+ smTm

K

)

94

 0

 0.5

 1

 1.5

 2

0 T
1

T
2

T
i

T
3

e
i
(
t
)

t

maximum

maximum

Figure 6.3: Illustration of redundancy ratio at node i withm = 3 neighboring peers.
The redundancy ratio changes over time and reaches two maxima at 0 < t < T1

and t ≥ T3.

= max

⎛
⎜⎜⎝

m∑
j=1

sj

f(i)
,

m∑
j=1

sj
f(j)

⎞
⎟⎟⎠ . (6.5)

6.4 Redundancy Ratio Computation

We implement an algorithm to compute the redundancy ratio of all encoders (Al-

gorithm 6.1) given the overlay topology and capacities of all overlay links.

The algorithm starts by computing max-flow from the source to all peers using

Edmonds-Karp algorithm [58] (line 7–17). For the sake of presentation, we use

notation maxflowS→j as a set containing all the augmenting paths, i.e. the paths

found by repeatedly figuring a path with positive capacity from the source to

node j. We note that since Edmonds-Karp [58] uses breadth-first search, the

resulting max-flow to a given node consists of augmenting paths with shortest

lengths from the source to that node.

While computing max-flow to node j, the algorithm collects:

• the set child[i] of children of node i: node j is a child of node i if i ∈

95

Algorithm 6.1: Redundancy Ratio Computation

Input: G = {V,E}, c(i, j) ∀(i, j) ∈ E, the source S ∈ V , set C of encoders
(C ⊂ V)

Result: redundancy ratio ei ∀i ∈ C

1 forall the i, j ∈ V do
2 f(j) = 0;
3 f(i, j) = 0;
4 s(i, j) = 0;
5 child[i] = ∅;
6 end
7 foreach j ∈ V \{S} do
8 compute max-flow from the source to j: f(j) using Edmonds-Karp

algorithm [58];
9 maxflowS→j ← all augmenting paths;

10 foreach i ∈ maxflowS→j do
11 if (i→ j) ∈ E then
12 child[i]← j;
13 f(i, j) = maxflowS→j(i);
14 s(i, j) = maxflowS→j(i→ j);

15 end

16 end

17 end
18 foreach i ∈ C do
19 if i is S then

20 ei =
∑

j∈child[i]
s(i,j)
f(j)

;

21 end
22 else

23 ei = max

(∑

j∈child[i]

s(i,j)

f(i)
,

∑
j∈child[i]

s(i,j)
f(j)

)
;

24 end

25 end

maxflowS→j and the two nodes are neighbors, i.e. directly connected,

• the flow passing the corresponding parent node i: maxflowS→j(i), and

• the flow passing a link from the parent node i to the child node j:

maxflowS→j(i→ j).

Based on the collected information, it then figures the total throughput from

node i to node j: f(i, j), and the throughput over the direct link i→ j: s(i, j) for

96

each pair of parent i and child j. Finally, the redundancy ratio at each encoder is

computed using either (6.3) at line 20 if the encoder is at the source, or (6.5) at

line 23 if the encoder is an intermediate node.

The complexity is dominated by the second loop (line 7–17) computing max-

flow from the source to all peers which takes O(V 2E2) time.

6.5 Performance Evaluation

We implemented a C++ simulator of the P2P content distribution system and

run simulations over generated topologies distributing a file from the source to

all participating peers. The file is divided into smaller fix-sized parts, i.e. blocks.

The source and all peers exchange blocks until all peers acquire enough blocks to

construct the original file; then the simulation finishes.

The simulations are round-based and peers exchange blocks using our proposed

pre-code protocol (Section 3.2.2) and block selection (Section 3.3), and mutual

exchange incentive scheme, the same as in Section 3.5.

We generate topologies for simulations using Watts and Strogatz small-world

network model [55] with degree d = 8 and rewiring probability prw = 0.01. All

overlay links have capacity of 1 block per round. The network size is 5000 nodes.

We use min-delay placement presented in Chapter 4 to determine where to

place |C| = 250 encoders in the network. Using min-delay placement, encoders

are placed at nodes from which data duplication causes the most delay in finish

time to downstream nodes. We then run Algorithm 6.1 to figure the redundancy

ratio of the chosen encoders.

A multiplier λ is used to adjust the actual redundancy ratio at all encoders. At

any time, each encoder i is allowed to generate an accumulative number of encoded

blocks equal to or less than λei times the number of blocks it has received where

ei is node i’s maximum redundancy ratio computed by Algorithm 6.1. If it passes

the limit, the encoder stops generating new encoded blocks but keeps sending

97

 65

 70

 75

 80

 85

 90

 95

 100

0.2 0.5 0.75 1 1.25 1.5 ∞
 0

 10

 20

 30

 40

M
ax

 F
in

is
h

Ti
m

e
[ro

un
d]

C
od

in
g

Im
pr

ov
. o

ve
r B

itT
or

re
nt

 [%
]

Multiplier λ

250 Coders Tmax
BitTorrent Tmax
Coding Improv.

Figure 6.4: Maximum finish time when 250 encoders are deployed using min-
delay placement compared with maximum finish time of non-coding BitTorrent.
Multiplier λ is used to adjust redundancy ratios at all encoders.

 55

 60

 65

 70

 75

 80

 85

 90

0.2 0.5 0.75 1 1.25 1.5 ∞
 0

 10

 20

 30

 40

A
vg

. F
in

is
h

Ti
m

e
[ro

un
d]

C
od

in
g

Im
pr

ov
. o

ve
r B

itT
or

re
nt

 [%
]

Multiplier λ

250 Encoders Tavg
BitTorrent Tavg

Coding Improvment

Figure 6.5: Average finish time when 250 encoders are deployed using min-delay
placement compared with average finish time of non-coding BitTorrent. Multiplier
λ is used to adjust redundancy ratios at all encoders.

old encoded blocks for the time being if there are download requests. When the

constraint on number of encoded is satisfied, the encoder can start generating new

coded blocks again. λ = 1 means that the encoders generate the same level of

redundancy as computed by our analysis.

We run simulations 100 times distributing a 200-block file from the source and

collect the maximum finish time Tmax and average finish time of all peers Tavg. We

98

 60

 65

 70

 75

 80

 85

 90

 95

 100

0.5 0.75 1 1.25 1.5 ∞
 0

 10

 20

 30

 40

M
ax

 F
in

is
h

Ti
m

e
[ro

un
d]

C
od

in
g

Im
pr

ov
. o

ve
r B

itT
or

re
nt

 [%
]

Multiplier λ

5000 Coders Tmax
BitTorrent Tmax
Coding Improv.

Figure 6.6: Maximum finish time when 5000 encoders (full network coding) are
deployed at all peers compared with maximum finish time of non-coding BitTor-
rent. The finish time improvement increases steeply when multiplier λ = 1, i.e.
encoders use the redundancy ratio computed by our analysis.

compare the finish time of the network coding-enabled P2P system with a non-

coding ordinary BitTorrent. To ensure a fair comparison, in both non-coding and

coding cases, we enforce at the C chosen nodes super-seeding scheme [64]. The

nodes try to serve with a block which has never been sent into the network.

The results are given in Figure6.4 for maximum finish time and Figure6.5 for

average finish time of all peers. λ = ∞ means no restriction on the number

of encoded blocks an encoder can generate. When λ = 0.2, i.e. each encoder

generates only 20% of the redundancy which has been computed by our proposed

algorithm, the finish time is extreme long since there are only a few coded blocks

circulating in the system. Increasing λ values results in shorter finish time. There

is, however, almost no finish time improvement with λ > 1 compared with the

finish time when λ = 1. The results confirm that with the analyzed redundancy

ratio we can achieve short distribution time.

Notice that a certain level of improvement, though negligible, shows up with

redundancy ratios higher than the analyzed one (when λ > 1). We attribute that

improvement to two reasons. First, in actual systems, data might be distributed

99

 50

 55

 60

 65

 70

 75

 80

 85

 90

0.5 0.75 1 1.25 1.5 ∞
 0

 10

 20

 30

 40

A
vg

. F
in

is
h

Ti
m

e
[ro

un
d]

C
od

in
g

Im
pr

ov
. o

ve
r B

itT
or

re
nt

 [%
]

Multiplier λ

5000 Coders Tavg
BitTorrent Tavg

Coding Improvment

Figure 6.7: Average finish time when 5000 encoders (full network coding) are
deployed at all peers compared with average finish time of non-coding BitTorrent.
The finish time improvement increases steeply at λ = 1, i.e. encoders use the
redundancy ratio computed by our analysis.

from the source over delivery paths other than the shortest paths which our algo-

rithm considers. When that happens, the actual redundancy ratios of upstream

nodes on those paths will be higher. Second, due to delay incurred when blocks

are transferred on the paths, a redundancy ratio higher than the analyzed value

might be needed to sustain content delivery until downstream peers finish. The

difference in performance, however, is insignificant when the network has a small

diameter.

We furthermore check the performance when all nodes encode, i.e. all 5000 peers

are assigned as encoders (Figure6.6 and Figure6.7).1 The finish time decreases

steeply at λ = 1, when redundancy ratios are equal to the analyzed values. The

reason is because with redundancy ratios lower than the analyzed one, there is not

enough block redundancy in the system, which results in high level of duplication

and long finish time. Increasing λ higher than 1, and even with unrestricted

1We note that in this case, since all peers are controlled by parameter λ, when λ ≤ 0.2, i.e.
each peer is allowed to generate at most 20% of the optimal number of blocks, most peers can
not finish downloading the file since there are not enough blocks generated and distributed in
the system.

100

encoding (λ =∞), there is practically no improvement in finish time.

6.6 Discussion

To further reduce network coding’s computational resource consumption, in this

chapter, we have proposed a method to compute the redundancy ratio at a given

network coder. The proposed redundancy ratio computation is developed based on

our analysis of the best level of redundancy each network coder should generate in

order to achieve shortest distribution time. Using the analyzed redundancy ratios,

the system has short distribution time, virtually the same as in case the encoders

are allowed to code unrestrictedly.

The result demonstrates that full network coding, though optimal in achievable

throughput, is not actually efficient in terms of resource utilization. By carefully

considering the right level of redundancy at each encoder, we can save computa-

tional resources while still achieving good performance.

For our future work, we would like to extend the method to a dynamic setting

where peers can join and leave the system. To address that, we need a distributed

algorithm to assign encoders and figure the redundancy ratio, for example, based

on local topology characteristics. We also plan to evaluate performance using

traces from live systems.

Another interesting development is to figure when an encoder should encode.

Here we let encoders encode as soon as possible which might not be necessarily

efficient especially in the beginning of the content distribution session when there

are only a few data pieces available in the system.

101

Chapter 7

Conclusion and Future Work

7.1 Concluding Remarks

We study methods to optimize network coders in P2P content distribution. The

main problem we want to solve is to reduce resource consumption of network

coding. We address the problem in several aspects.

First of all, we optimize the whole system where network coding-enabled peers

and ordinary peers coexist, which we call a hybrid network coding P2P system,

by proposing protocols and data selection algorithm for it. Our protocols let peers

communicate seamlessly whether they are network coders or ordinary non-coding

peers. Our data selection algorithm allows a peer to handle mixtures of coded

data and non-coded data gracefully. Together, the proposed protocols and selection

algorithm noticeably improve performance of such a hybrid network coding system.

We then, with a target to optimize network coder placement, look into the

network topology to determine the locations which most seriously need network

coding. We reveal quantitively the condition under which network coding can im-

prove performance. That lies in its ability to eliminate data duplication. When

there are multiple delivery paths from an upstream peer to a downstream peer, the

same data is transferred multiple times over those paths, which consumes band-

width and slow down content delivery to the downstream peer. Placing a network

102

coder at the upstream peer will eliminate data duplication and accelerate trans-

fer throughput. We distinctively figure the amount of duplication originated from

each node on a network topology which is the basis for our algorithms to determine

where we should place network coders inside a content distribution network.

We proposed algorithms to place network coders at the appropriate nodes based

on the insight obtained from our duplication analysis. We place coders where dupli-

cation happens and affects performance the most in order to shorten distribution

time. The result is that we can eliminate unnecessary network coders to save

computational resources. We present three placement algorithms: minimal delay,

betweenness centrality, and flow centrality coder placements. The first algorithm,

minimal delay placement, elaborately figures the duplication, and delay in finish

time, each upstream node causes to its downstream nodes. Based on that, it ac-

curately locates nodes which cause the most delay to downstream nodes due to

duplication for network coder placement. The limitation is its higher complexity.

The last two methods, on the other hand, exploit centrality concepts to pinpoint

the nodes which generate most duplication. Centrality indexes are effective tools

for that purpose because using them we can locate nodes which stand on more

paths or wider paths to other nodes, which are the places where larger duplication

occurs. The advantage of these two methods is their relatively fast speed with

good performance in terms of shortening the distribution time.

We furthermore optimize the level of redundancy each network coder should

generate, namely redundancy ratio. That is we answer the question how much

a network coder should encode given the amount of data it has received. By

determining the right redundancy ratio at each encoder, we reduce computational

resource consumption further, saving the encoders from worthless encoding.

We evaluate the performance of our proposed optimization by simulations.

Our proposed communication protocols and block selection algorithm boost the

performance significantly. In simulations, the finish time is 15%–25% shorter when

103

peers use the proposed protocols to communicate and the proposed block selection

algorithm to choose which blocks to download from neighboring peers.

Our placement algorithms achieve comparable performance in terms of finish

time as full network coding with only a portion of network coders. As the number

of network coders increases the performance is gradually improved, but the finish

time almost equal to that of network coding can be achieved with just tenths of

the total number of peers assigned as network coders. The result demonstrates

that a large number of network coders are redundant and can be removed to save

computational resources with virtually no effect on the performance.

With the redundancy ratio from our analysis, network coders can limit their

encoding operations while still generating the right redundancy level to shorten

finish time. Lower redundancy ratios than the values suggested by the analysis

result in longer finish time due to lack of redundancy and higher redundancy ratios

practically has no meaningful impact.

Our study offers new insights into what makes network coding’s good perfor-

mance, where in a network can we place network coders, and how much redundancy

a network coder needs to generate. In practice, such knowledge equips network

designers with an effective tool to deploy network coding in order to improve net-

work performance. We answer the question how to optimally implement network

coding from both the network’s and each individual node’s point of views.

The results of our study can readily be extended to other types of networks

where network nodes communicate with one another over multiple paths over which

network coding, with the redundancy it generates, can effectively accelerate per-

formance.

7.2 Future Work

Admittedly, we cannot say our work is complete in its current state. There are

several improvements we want to carry out in order to strengthen our results.

104

First of all, we plan to evaluate our proposed optimization in an dynamic

environment where peers keep joining and leaving the system. In this work, we

focus on understanding the feature of network coding in a static settings. The

result should be more convincing if we can verify it in such dynamic networks. We

believe our proposals would also work well with node dynamics as network coding,

in general, has been shown to increase resilience in such conditions [6, 14].

The algorithms proposed in this dissertation are centralized in the sense that

they required a centralized server to do the computation, and then, to assign or

communicate the result to participating nodes in the network. We would like to

make both of those tasks distributed. As we have discussed in Section 3.4 and

Section 5.6, we can decentralize the system, in case of centrality-based placement

for example, by, first, devising a distributed algorithm to allow each peer to figure

an approximate centrality value by itself which is then used to decide if the peer

should encode or not. Second, we would need to determine the centrality threshold

and devise a method to inform peers in the system about the threshold. Alter-

natively, a peer can determine by itself the threshold based on local information

or some indication values passing through it from neighboring peers. Peers with

centrality values higher than the threshold will become network coders to improve

the system performance. Likewise, redundancy ratio can also be computed in a

distributed manner by each peer from the information of the traffic flows going

through it.

Lastly, we plan to evaluate our proposals using traces from live systems and

implement them in real-life networks.

Before closing, we would like to discuss one promising direction to apply the

result in this dissertation to the research trend in information-centric networking.

Information-centric networking (ICN) [65], currently an active research area, is in

a sense a system where content distribution is natively supported. Nevertheless,

ICN, especially content-centric networking (CCN) [66], one of the most promising

105

ICN approaches, is in its early development state and active research is on progress

to improve them in several aspects. In terms of a content distribution system,

ICN for the time being suffers many drawbacks as pointed out in [20, 67, 68, 69]

which result in under-utilization of network resources and sub-optimal delivery

throughput. As multiple delivery paths are inherent in ICN, we are, therefore,

excited about future research extending the results in this dissertation to see how

network coding could help improve ICN efficiency.

106

Bibliography

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216,
2000.

[2] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE Transactions
on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[3] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke algo-
rithms are enough,” in Proceedings of ACM SIGCOMM IMC, 2006.

[4] D.-M. Chiu and R. Yeung, “Can network coding help in p2p networks,” in
Proceedings of NetCod 2nd, Boston, 2006.

[5] B. Cohen, “Incentives build robustness in bittorrent,” in P2P Economics
Workshop, 2003.

[6] R. Koetter and M. Médard, “An Algebraic Approach to Network Coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[7] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“Xors in the air: practical wireless network coding,” SIGCOMM Comput.
Commun. Rev., vol. 36, no. 4, pp. 243–254, Aug. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1151659.1159942

[8] ——, “Xors in the air: practical wireless network coding,” in Proceedings
of the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’06. New
York, NY, USA: ACM, 2006, pp. 243–254. [Online]. Available: http:
//doi.acm.org/10.1145/1159913.1159942

[9] D. Nguyen, T. Tran, T. Nguyen, and B. Bose, “Wireless broadcast using
network coding,” Vehicular Technology, IEEE Transactions on, vol. 58, no. 2,
pp. 914–925, 2009.

[10] S. Zhang, S. C. Liew, and P. P. Lam, “Hot topic: physical-
layer network coding,” in Proceedings of the 12th annual international
conference on Mobile computing and networking, ser. MobiCom ’06.
New York, NY, USA: ACM, 2006, pp. 358–365. [Online]. Available:
http://doi.acm.org/10.1145/1161089.1161129

107

[11] J. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J. Barros,
“Network coding meets tcp,” in INFOCOM 2009, IEEE, 2009, pp. 280–288.

[12] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Net-
work coding for distributed storage systems,” Information Theory, IEEE
Transactions on, vol. 56, no. 9, pp. 4539–4551, 2010.

[13] A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network
codes for distributed storage,” Proceedings of the IEEE, vol. 99, no. 3, pp.
476–489, 2011.

[14] C. Gkantsidis and P. R. Rodriguez, “Network Coding for Large Scale Content
Distribution,” in Proceedings of IEEE INFOCOM, March 2005.

[15] C. Gkantsidis, J. Miller, and P. Rodriguez, “Anatomy of a P2P Content Distri-
bution System with Network Coding,” in Proceedings of IPTPS’06, February
2006.

[16] ——, “Comprehensive view of a live network coding P2P system,” in Proceed-
ings of the 6th ACM SIGCOMM conference on Internet measurement, ser.
IMC ’06. New York, NY, USA: ACM, 2006, pp. 177–188.

[17] M. Wang and B. Li, “Network coding in live peer-to-peer streaming,” IEEE
Transactions on Multimedia, vol. 9, no. 8, pp. 1554–1567, 2007.

[18] ——, “R2: Random push with random network coding in live peer-to-peer
streaming,” Selected Areas in Communications, IEEE Journal on, vol. 25,
no. 9, pp. 1655–1666, 2007.

[19] ——, “Lava: A reality check of network coding in peer-to-peer live stream-
ing,” in INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE. IEEE, 2007, pp. 1082–1090.

[20] M.-J. Montpetit, C. Westphal, and D. Trossen, “Network coding meets
information-centric networking: an architectural case for information
dispersion through native network coding,” in Proceedings of the
1st ACM workshop on Emerging Name-Oriented Mobile Networking
Design - Architecture, Algorithms, and Applications, ser. NoM ’12.
New York, NY, USA: ACM, 2012, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/2248361.2248370

[21] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an instant
primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68, Jan.
2006.

[22] C. Fragouli and E. Soljanin, Network Coding Fundamentals, ser. Foundations
and Trends in Networking. Now Publishers, 2007.

[23] ——, Network Coding Applications, ser. Foundations and Trends in Network-
ing. Now Publishers, 2008.

108

[24] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, Network Coding Theory
Part I: Single Source, ser. Foundations and Trends in Communications and
Information Theory. Now Publishers, July 2006, vol. 2, no. 4.

[25] T. Ho and D. Lun, Network Coding: An Introduction, 1st ed. Cambridge
University Press, 2008.

[26] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits of
Coding over Routing in a Randomized Setting,” in ISIT 2003, Yokohama,
Japan, 2003.

[27] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong, “A
Random Linear Network Coding Approach to Multicast,” IEEE Transactions
on Information Theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[28] R. W. Yeung, “Avalanche: A network coding analysis,” Communications in
Information & Systems, vol. 7, no. 4, pp. 353–358, 2007.

[29] T. Locher, S. Schmid, and R. Wattenhofer, “Rescuing Tit-for-Tat with Source
Coding,” in Proceedings of IEEE P2P, September 2007.

[30] D. Nguyen and H. Nakazato, “Peer-to-Peer Content Distribution in Clustered
Topologies with Source Coding,” in Proceedings of IEEE GLOBECOM, Hous-
ton, USA, December 2011.

[31] P. Maymounkov and D. Mazires, “Rateless Codes and Big Downloads,” in
IPTPS’03, February 2003.

[32] M. Luby, “LT Codes,” in Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002.

[33] M. Kim, M. Medard, V. Aggarwal, U.-M. O’Reilly, W. Kim, C. W. Ahn,
and M. Effros, “Evolutionary Approaches to Minimizing Network Coding Re-
sources,” in Proceedings of IEEE INFOCOM, May 2007.

[34] K. Bhattad, N. Ratnakar, R. Koetter, and K. R. Narayanan, “Minimal net-
work coding for multicast,” in Proceedings of IEEE ISIT, September 2005.

[35] D. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee, “Achiev-
ing minimum-cost multicast: a decentralized approach based on network cod-
ing,” in Proceedings of IEEE INFOCOM, vol. 3, 2005, pp. 1607–1617.

[36] M. Martal, M. Mohorovicich, G. Ferrari, and C. Fragouli, “Network-coded
multihop multicast: Topology and encoding complexity,” in Proceedings of
IEEE ICC, 2012, pp. 2501–2505.

[37] C. Fragouli and E. Soljanin, “Information flow decomposition for network
coding,” Information Theory, IEEE Transactions on, vol. 52, no. 3, pp. 829–
848, 2006.

109

[38] C. Fragouli, E. Soljanin, and A. Shokrollahi, “Network Coding as a Coloring
Problem,” in Proceedings of IEEE Annual Conference on Information Sciences
and Systems (CISS 2004), Princeton, NJ, USA, March 2004.

[39] M. Langberg, A. Sprintson, and J. Bruck, “The encoding complexity of net-
work coding,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp.
2386–2397, 2006.

[40] T. Small and B. Li, “Topology Affects the Efficiency of Network Coding in
Peer-to-Peer Networks,” in Proceedings of ICC, 2008.

[41] D. Niu and B. Li, “Topological Properties Affect the Power of Network Coding
in Decentralized Broadcast,” in Proceedings of IEEE INFOCOM, 2010.

[42] S. Crisostomo, J. Barros, and C. Bettstetter, “Network Coding with Short-
cuts,” in Proceedings of IEEE ICCS, 2008.

[43] S. Maheshwar, Z. Li, and B. Li, “Bounding the coding advantage of combi-
nation network coding in undirected networks,” IEEE Transactions on Infor-
mation Theory, vol. 58, no. 2, pp. 570–584, 2012.

[44] N. Cleju, N. Thomos, and P. Frossard, “Network Coding Node Placement
for Delay Minimization in Streaming Overlays,” in Proceedings of IEEE ICC,
2010.

[45] P. Maymounkov, N. J. Harvey, and D. S. Lun, “Methods for efficient network
coding,” in Proc. 44-th Allerton Conference, vol. 6, 2006.

[46] M.-L. Champel, K. Huguenin, A.-M. Kermarrec, and N. Le Scouarnec, “LT
network codes: low complexity network codes,” in Proceedings of the 5th in-
ternational student workshop on Emerging networking experiments and tech-
nologies, ser. Co-Next Student Workshop ’09. New York, NY, USA: ACM,
2009, pp. 39–40.

[47] D. Silva, W. Zeng, and F. Kschischang, “Sparse network coding with overlap-
ping classes,” in Proceedings of NetCod ’09 Workshop, 2009, pp. 74–79.

[48] L. C. Freeman, “A set of measures of centrality based on betweenness,” So-
ciometry, vol. 40, no. 1, pp. 35–41, 1977.

[49] L. C. Freeman, S. P. Borgatti, and D. R. White, “Centrality in valued graphs:
A measure of betweenness based on network flow,” Social Networks, vol. 13,
pp. 141–154, 1991.

[50] D. Nguyen and H. Nakazato, “Centrality-based network coder placement for
peer-to-peer content distribution,” International Journal of Computer Net-
works and Communications, vol. 5, no. 3, pp. 157–174, May 2013.

[51] ——, “Network coder placement for peer-to-peer content distribution,” IEICE
Transactions on Communications, vol. E96-B, no. 7, July 2013.

110

[52] P. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proceedings of
the Allerton Conference on Communication, Control and Computing, 2003.

[53] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Understanding BitTorrent:
An Experimental Perspective,” INRIA-00000156, VERSION 3, Tech. Rep.,
November 2005.

[54] C. Yin, B. Wang, W. Wang, T. Zhou, and H. Yang, “Efficient routing on
scale-free networks based on local information,” Physics Letters A, vol. 351,
pp. 220–224, 2006.

[55] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ net-
works,” Nature, vol. 393, pp. 440–442, June 1998.

[56] A. Adamic, “The Small World Web,” in Proceedings of ECDL ’99, Springer-
Verlag, London, UK, 1999, pp. 443–452.

[57] N. Leibowitz, M. Ripeanu, and A. Wierzbicki, “Deconstructing the kazaa
network,” in Proceedings of WIAPP, 2003.

[58] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. MIT Press and McGraw.Hill, 2001, ch. 26.2, pp. 600–663.

[59] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Math-
ematical Sociology, vol. 25, pp. 163–177, 2001.

[60] D. He, W. K. Chai, and G. Pavlou, “Leveraging In-network Caching for Ef-
ficient Content Delivery in Content-centric Network,” in Proceedings of the
London Communication Symposium, September 2011.

[61] A. Tizghadam and A. Leon-Garcia, “AORTA: Autonomic Network Control
and Management System,” in Proceedings of the 1st IEEE Workshop on Au-
tomated Network Management, April 2008.

[62] A.-M. Kermarrec, E. L. Merrer, B. Sericola, and G. Trdan, “Second order
centrality: Distributed assessment of nodes criticity in complex networks,”
Computer Communications, vol. 34, no. 5, pp. 619–628, 2011.

[63] K. Wehmuth and A. Ziviani, “Distributed location of the critical nodes to
network robustness based on spectral analysis,” in Network Operations and
Management Symposium (LANOMS), 2011 7th Latin American, 2011, pp.
1–8.

[64] BitTornado. www.bittornado.com.

[65] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A Survey of Information-Centric Networking (Draft),” in Information-
Centric Networking, ser. Dagstuhl Seminar Proceedings, B. Ahlgren, H. Karl,
D. Kutscher, B. Ohlman, S. Oueslati, and I. Solis, Eds., no. 10492. Dagstuhl,
Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany,
2011. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2011/
2941

111

[66] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of
the 5th international conference on Emerging networking experiments and
technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12.
[Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[67] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Information-centric networking: seeing the forest for the trees,”
in Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
ser. HotNets-X. New York, NY, USA: ACM, 2011, pp. 1:1–1:6. [Online].
Available: http://doi.acm.org/10.1145/2070562.2070563

[68] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache ”less for more”
in information-centric networks,” in Proceedings of the 11th international
IFIP TC 6 conference on Networking - Volume Part I, ser. IFIP’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 27–40. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30045-5 3

[69] G. Rossini and D. Rossi, “Evaluating ccn multi-path interest forwarding
strategies,” Computer Communications, vol. 36, no. 7, pp. 771 – 778,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140366413000261

112

List of Academic Achievements

Articles in
refereed
journals

© Dinh Nguyen and Hidenori Nakazato,“Network Coder Place-
ment for Peer-to-Peer Content Distribution,” IEICE Trans-
actions on Communications, Special Section on Internet Ar-
chitectures, Protocols, and Management Methods that En-
able Sustainable Development, vol. E96-B, no. 07, pp. 1661–
1669, July 2013.

© Dinh Nguyen and Hidenori Nakazato,“Centrality-based Net-
work Coder Placement for Peer-to-Peer Content Distribu-
tion,” International Journal of Computer Networks & Com-
munications, ISSN 0975-2293, vol. 5, no. 3, pp. 157-174,
May 2013.

© Dinh Nguyen and Hidenori Nakazato, “Hybrid Network Cod-
ing Peer-to-Peer Content Distribution,” Journal of Comput-
ing, ISSN 2151-9617, vol. 5, issue 4, pp. 8-17, April 2013.

Presentations
at international
conferences

© Dinh Nguyen and Hidenori Nakazato, “Rarest-first and Cod-
ing are Not Enough,” Next Generation Networking and Inter-
net Technical Symposia, IEEE GLOBECOM 2012, Anaheim,
California, U.S.A., December 2012.

© Dinh Nguyen and Hidenori Nakazato, “Peer-to-Peer Content
Distribution in Clustered Topologies with Source Coding,”
Next Generation Networking and Internet Technical Sym-
posia, IEEE GLOBECOM 2011, Houston, Texas, U.S.A., De-
cember 2011.

Presentations
at domestic
conferences

© Dinh Nguyen and Hidenori Nakazato, “Network Coder Place-
ment for Peer-to-Peer Content Distribution,” IEICE Tech.
Report, vol. 112, no. 309, CS2012-74, pp. 59–64, Novem-
ber 2012. (IEICE Technical Committee on Communication
Systems Award)

Nguyen Quoc Dinh and Hidenori Nakazato, “Peer-to-Peer
Content Distribution with Source Coding,” IEICE Society
Conference, Osaka, Japan, September 2010.

Nguyen Quoc Dinh and Hidenori Nakazato, “Transcoder
Placement for Peer-to-Peer Streaming,” IEICE Tech. Re-
port, vol. 105, no. 627, NS2005-195, pp. 149–152, March
2006.

113

