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Summary

Congenital diaphragmatic hernia (CDH), which has a prevalence of 1 in

2,000-3,000 newborns and leads to approximately 8% of the known major congenital

anomalies, is a severe birth defect of the diaphragm. In recent clinical practice, it has

been reported that severe CDH could be treated in utero by a minimally invasive

surgery (MIS) called fetoscopic tracheal occlusion (FETO), which places a detachable

balloon into the fetal trachea to prevent pulmonary hypoplasia by increasing the

pressure of the chest cavity. In order to perform an FETO surgery, the surgeon inserts a

fiber endoscope having a diameter of 1.3 mm within a cannula (Karl Storz) having a

diameter of 3.3 mm into the amniotic cavity through the abdominal and uterine walls,

towards the fetal mouth and trachea, being navigated by 2D ultrasound (US) images and

fetoscopic images. However, this operation is so difficult and risky that high-level

surgical skills are required.

To facilitate the FETO surgery, a flexible wire-driven surgical tool, whose posture

can be transformed to fit the internal structure between the fetal oral cavity and trachea,

has recently been developed by Zhang et al., but the operation of this surgical tool is

still difficult without an automatic navigation system. A prospective FETO surgical

navigation system should be able not only to guide the surgical tool to the fetal trachea

by analyzing medical images such as 3D US images and fetoscopic images, but also to

provide the surgeon and control module with feedback information obtained by the

medical image analyses. Among different technologies needed for achieving the

prospective surgical navigation system, this thesis focuses on the following three main

topics:

(1) 3D fetal face detection from 3D US images;

(2) Surgical tool location from 3D US images and fetal mouth tracking in real-time

from fetoscopic images;

(3) Estimation of fetal trachea’s position in 3D tracking space (the world

coordinate system of 3D electromagnetic (EM) tracking system).
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As described below, new methods for the three topics are proposed and explored.

In addition, basic technologies (a) to (c), which are needed for the above-mentioned (1)

to (3), are dealt with by this thesis as follows:

(a) Medical image segmentation, which is a pre-process for detecting the fetal face

and head by (1), and is a pre-process for (b) also;

(b) Ellipse detection, which is needed for detecting the fetal head by (1) and fetal

mouth by (2), and is needed for (c) also;

(c) 3D US calibration, which obtains transformation matrix between 3D US image

coordinate system and the EM world coordinate system, and is needed for (1) to (3).

The contents of each chapter of this thesis are as follows.

Chapter 1 describes the background, related work, purpose, outline of the proposed

approach and organization of this thesis. The background overviews image-guided

procedures (IGP), congenital diaphragmatic hernia (CDH) and its treatments including

fetoscopic tracheal occlusion (FETO). The related work reviews IGP systems, medical

imaging and image process, and current navigation systems for the FETO surgery.

Chapter 2 overviews some existing IGP systems, which include tomographic image

overlay systems, fluoroscopic X-ray systems, CT and MR based systems, and video

based augmented reality systems. Related technologies on medical image processing are

illustrated, where technologies on enhancement, segmentation, feature extraction,

registration, visualization, and human computer interaction are included.

Chapter 3 elaborates on the prospective surgical navigation system and its related

technologies, where one section explains the technologies needed for the navigation

system, and the other section explains about three main topics (1) to (3).

Chapter 4 proposes new methods for (a) to (c) and studies their validities

experimentally, as follows: (a) An improved Kernel-based fuzzy C-means algorithm is

proposed for more accurate image segmentation than conventional methods.

Experiments using synthetic gray-scale images, simulated brain MR images, and fetal

2D US images show that the proposed method has a strong robustness against image

noise, and also achieves a better segmentation performance than the conventional

methods. (b) An improved iterative randomized Hough transform algorithm is proposed

for accurate ellipse detection despite occlusions and discontinuities. Experiments using
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clinical fetal US images demonstrate that the proposed method achieves more robust

and accurate results, and has a better efficiency than conventional methods. (c) A novel

3D US calibration system using 24 fiducial points obtained by resin cones is proposed

for more accurate calibration. Experimental results are comparable to those obtained by

conventional methods using electromagnetic tracking.

Chapter 5 proposes a new method for (1). Specifically, a novel boosting traversal

scheme based on the spatial relations between each facial feature in 3D US images is

presented for detecting the fetal face and locating five key facial features, which involve

nose tip, two eyes’ inner corners, nose upper bridge and upper lip. Experimental results

indicate the proposed approach is efficient and robust for 3D fetal face detection and

feature location. The accuracy of locating the key features is 100% as a result of testing

72 images of 6 subjects, and the location error 3.18±0.91 mm of the detected upper lip

can be tolerated by the FETO surgery. It turns out that the system could complete the

entire detection process within approximately 625 msec on a quad-core 2.60 GHz

computer.

Chapter 6 proposes new methods for (2): locating the surgical tool and tracking the

fetal mouth. Each of the 15 points on the surgical tool is located in 3D tracing space (the

world coordinate system of 3D EM tracking system) based on a 3D skeleton extraction

technology and the 3D US calibration system. Experimental results show that an

average TRE (target registration error) of 1.99±0.49 mm and a maximum TRE of

2.61±0.49 mm are achieved, which satisfy 3.85 mm, the requirement of the FETO

surgery. The fetal mouth is tracked from a fetoscopic video sequence via the AdaBoost

algorithm, the Camshift algorithm, and the improved iterative randomized Hough

transform algorithm. Experimental results demonstrate that the proposed approach can

automatically and accurately detect and track the fetal face and mouth in real-time in the

fetoscopic video sequence.

Chapter 7 proposes a method for (3): estimating the position of the fetal trachea.

First, a 3D fetal model with oral cavity and airways is reconstructed. Second, the 3D

fetal facial surface is extracted from 3D US images. Third, the reconstructed 3D fetal

model is registered with the extracted 3D fetal facial surface using sparse and dense

matching, and is localized in the 3D tracking space based on the 3D US calibration

system. Finally, the position of the trachea is estimated in the 3D tracking space based
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on the geometric relationship between the internal organs and the 3D fetal facial surface

in the 3D fetal model that can be known based on their design. In experiments, a mean

TRE of 1.55±0.46 mm is achieved for the location accuracy of the 3D fetal facial

surface extracted from 3D US images, and mean location errors of 2.51±0.47 mm and

3.04±0.59 mm are respectively achieved for the location accuracies of the pharynx and

the trachea entrance, which satisfy the requirement of the FETO surgery.

Chapter 8 concludes this thesis and states future work.
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Chapter 1 Introduction

1.1 Background

Recently, minimally invasive techniques are rapidly developed to replace

traditional open surgical procedures in clinical practice because of their better results

and lower overall costs. It is noteworthy that indirect, image-based feedback becomes

popular instead of direct visual feedback, which is still challenging. In open surgery, the

anatomical structures can be directly seen and felt by the physician. However, in

image-guided procedures (IGP), the anatomical structures needs to be identified in the

images by segmentation, and the spatial relationship between the images and the patient

needs to be established by registration. Moreover, navigation accuracy of the

image-guided procedures should be comparable or better than that accomplished by the

traditional method. Therefore, the researches on recreating the spatial information and

transferring a plan into action for image-guided procedures are more and more attracted.

For a better understanding of the spatial structure of the anatomy, image-guided

systems frequently integrate medical images and other information, such as tracked

instruments. These systems can contribute to the following aspects: (1) robustness of the

final result for minimally invasive procedures can be improved, and the gap between

exceptional and standard practice can be narrowed; (2) new minimally invasive

procedures may be realized to allow physicians to carry out procedures that were

formerly considered very dangerous; and (3) a quantitative comparison between plan

and implementation can be allowed.

In medical procedures, physicians mentally integrate their knowledge of

anatomical structures with specific medical images of the patient to produce a plan and

perform it. Image-guided systems use a similar approach, where all information are

incorporated and operated to provide guidance to the physician.

Initially, image-guidance systems were accepted by two medical procudures,

neurosurgery [1-3] and orthopedics [4, 5], because both can accept a rigid anatomy

assumption. Furthermore, the rigid anatomy assumption is also applied for all current

commercial image-guided systems. Deformable anatomical structures are still studied

for image-guided systems [6].
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1.1.1 Image-guided Procedures

Image-guided procedures can be divided into three phases based on a time-line

view: pre-operative, intra-operative, and post-operative. Each phase will be described as

follows.

Pre-operative

The goal of this phase is to make a surgical plan according to pre-operative images

and additional information. Multiple imaging modalities are often used concurrently,

such as CT (computed tomography) and MRI (magnetic resonance imaging) for

optimally visualizing bone and soft tissue. All data are mapped in one coordinate system

during plans formulation. These plans are relative to specific patient and procedure, and

thus have variable complexity [7].

The key technologies on medical image processing involved in pre-operative phase

are: (1) enhancement, the improvement of the image quality, (2) segmentation, the

classification of meaningful anatomies in the images; (3) registration, the transformation

of different sets of data into a single coordinate system; and (4) visualization, the

display and manipulation of image and data;

Intra-operative

During the operation, the coordinate system specified for the plan must be mapped

to a coordinate system in the operating room (OR). The image-guided system can

visualize tracked tools and anatomies and display their spatial relationships for the

physician, using all sorts of interfaces and displays. Additionally, the anatomical picture

may be updated by intra-operative images. If necessary, the operation plan is then

revised according to the surgical progress. The location of the tools and the anatomy can

be recorded by the guidance system, and can be used for intervention assessment.

The key technologies involved in intra-operative phase cover all the technologies

involved in pre-operative phase, in addition to: (1) tracking systems, for locating the

anatomies and tools; and (2) human computer interaction (HCI), for interacting with the

guidance system and visualizing the information to the physician.

Post-operative

In post-operative phase, the acquired images and the results are used to make a
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quantitative comparison with the pre-operative plan.

The key technologies used in post-operative period are the same as those used in

pre-operative period.

Motivated by similar reasons of IGP systems and the requirement of a higher

security and operability, this thesis deals with medical image processing technologies

that could contribute to achieving an automatic surgical navigation system for guiding

fetoscopic tracheal Occlusion (FETO) surgeries, which try to treat a severe birth defect

called congenital diaphragmatic hernia (CDH). So far there has been no automatic IGP

system for such a minimally invasive surgery.

1.1.2 Congenital Diaphragmatic Hernia (CDH)

Congenital diaphragmatic hernia (CDH) is a birth defect of the diaphragm, which

occurs sporadically, with an incidence of 1/2000 to 1/5000 of newborns, depending on

whether stillbirths are included. CDH allows the abdominal organs to move into the

chest cavity and cause two complications: pulmonary hypoplasia and pulmonary

hypertension [8]. Survival of those fetuses with isolated CDH after postnatal surgery is

about 50%. In recent clinical practice, it has reported that severe CDH could be treated

appropriately in uterus by a minimally invasive surgery (MIS) called fetoscopic tracheal

occlusion (FETO) [9], in which a detachable balloon is placed via the larynx into the

fetal trachea to prevent pulmonary hypoplasia or pulmonary hypertension by increasing

the pressure of the chest cavity.

(1) Introduction of CDH

The diaphragm is a thin layer of muscle, and separates the chest and abdominal

cavity. It is the muscle that the body uses to breathe, as shown in Fig. 1.1 (a). CDH

means that there is a hole in that layer - or, rarely, that the diaphragm is missing

altogether. A severe CDH can allow the organs, such as the stomach, intestines, and liver,

to slip into the chest through the hole, which affects the normal growth of the lung on

that side, as shown in Fig. 1.1 (b). Due to no full-grown lung, the fetus will have serious

breathing troubles after he/she is born.

Eighty-four percent of the hernias occur on the left side, 13% on the right and only

2% are bilateral. CDH will cause problems on the growth of both airway and vessels,
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and thus newborns will experience severe respiratory insufficiency depending on the

degree of pulmonary hypoplasia. Therefore, it is very critical to assess this anomaly and

manage CDH in the perinatal period [10, 11].

(a) Normal Diaphragm

(b) A left-sided diaphragmatic hernia

Figure 1.1 Normal diaphragm and a left-sided diaphragmatic hernia. (Image provided

courtesy of Texas Pediatric Surgical Associates, and they are linked by

http://www.pedisurg.com/pteduc/ congenital_ diaphragmatic_ hernia.htm).

(2) History of Treatments of CDH

CDH was initially treated by anatomical repair [12]. Tracheal occlusion (TO) was

applied to trigger lung growth by preventing egress of lung fluid and increasing airway

pressure, which is proved by several research groups [13]. The Philadelphia group [14]

reported a survival rate of 33% by TO. The San Francisco team [15] moved to the uterus

by endoscopy, but laparotomy was still required to expose uterine, and there was a high

risk of damage to internal organs. Endoscopy was first used by Deprest et al [16] to

position balloon into the trachea under ultrasound (US) guidance [17], but a lower

success rate was achieved [18, 19]. Subsequently, endoluminal plugging was first
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reported in active fetal surgery programs in the United States either by laparotomy or

percutaneously [20, 21]. In Europe, the clinical trials on severe cases were started by the

Fetal Endoscopic (or Fetoscopic) Tracheal Occlusion (FETO) Task Force [22, 23].

1.1.3 Fetoscopic Tracheal Occlusion (FETO)

Today, the procedure of fetoscopic tracheal occlusion (FETO) is believed to work

because it prevents egress of lung fluid, increasing airway pressure, causing

proliferation, increased alveolar airspace and maturation of pulmonary vasculature [13].

During the operation, the balloon is inserted at 26–28 weeks and removed at 34 weeks,

at least in severe cases [24].

Figure 1.2 FETO surgery.

In an FETO surgery, the surgical tool with a fetoscope is inserted through the

abdominal and uterine walls into the amniotic cavity, and directed towards the fetal

mouth, and a detachable balloon is placed above the fetal trachea for the tracheal

occlusion, as shown in Fig. 1.2, to stimulate lung growth by increasing pressure in the

fetal chest cavity. During the FETO surgery, the fetal and placental position is

determined by ultrasound examination for optimal trocar insertion. Sometimes, the fetal

position is adjusted to get better access to the trachea by gentle external manipulation.
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Once the desired position is achieved, some drugs will be injected to provide fetal

anesthesia, immobilization and prevention of fetal bradycardia.

The endoscope is introduced into the fetal mouth and directed over the tongue in

the midline by visualizing the raphe of the palate and uvula, to the pharynx, then the

larynx with the epiglottis as a landmark and finally through the vocal cords to the

trachea (Fig. 1.3). Then, the carina is identified by the endoscope, and the catheter is

positioned to deliver the balloon just above it [22].

Figure 1.3 The endoscope is inserted into the fetal mouth and the raphe of the palate (a),

the tongue (b), uvula and epiglottis (c) and vocal cords (d) are used as landmarks to gain

access to the trachea. The endoscope is then advanced to identify the carina (e) and the

balloon is placed just above it (Image provided courtesy of J. Deprest, et al.).

1.1.4 A Novel Flexible Robotic Manipulator (Surgical Tool)

Due to lack of flexibility, most surgical tools used in current FETO surgeries easily

hurt fragile fetal internal organs during the operation, especially the position of the

wound marked in Fig. 1.4. In order to reduce the possibility of such hurts, instead of the

cannula used in FETO surgeries, a flexible wire-driven manipulator (the surgical tool to

be used for FETO surgeries) with 6 degree of freedom (DOF) is designed and developed

by Zhang, et al. [25, 26], where its outer diameter is 2.4 mm and inner diameter is 1.0

mm, as shown in Fig. 1.5.
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Figure 1.4 Risk of current methods.

Figure 1.5 Improvement from the cannula to the designed manipulator.

(a) (b)

Figure 1.6 Multi-unit bending mechanism (a) and 3 units (b) of the manipulator.

Figure 1.7 Robot control system of the manipulator.
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Figure 1.6 (a) shows multi-unit bending mechanism of the manipulator. The final

manipulator to be used for FETO surgeries consists of three units, and each containing

10 ball-joint-shaped arthroses, as shown in Fig. 1.6 (b). The robot control system of the

manipulator is shown in Fig. 1.7, whose actions are operated by a computer.

1.1.5 Prospective Surgical Navigation System

Figure 1.8 Prospective surgical navigation system for the FETO surgery. Blue triangle:

topics studied by this thesis; red triangle and dotted line: processes and items not

studied by this thesis.

During the current FETO surgery, surgeons should be able to reconstruct 3D

structures of and to grasp the spatial relationship between the moving surgical tool, the

fetus in uterus and his/her critical internal organs by watching the US images and

fetoscopic images based on their clinical experiences. However, the reconstructed

surgical scenes in the surgeons’ brains are often not accurate and reliable. Therefore, a
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prospective surgical navigation system that can pursue accuracy, efficiency, safety and

reliability of the FETO surgery can be designed as shown in Fig. 1.8. The navigation

system should be able to provide precise, accurate, timely, robust and reliable

reconstructions that can be visualized as 3D scenes to be displayed. This facilitates the

surgeon’s vision based various judgments. In addition, the navigation system should be

able to support difficult tasks for the surgeon. For example, the insertion of the flexible

surgical tool into the fetal trachea is a very difficult and risky task for the surgeon, but if

the navigation system can automatically or semi-automatically perform this task by

detecting the fetal face, surgical tool, fetal mouth and estimating the position of the fetal

trachea (Fig. 1.8), it is very helpful and useful for the surgeon. Of course, important

judgments such as checking whether the surgical tool is at a proper position with the

proper posture should be done by the surgeon based on the information and data

provided by the navigation system. Namely, the system should promise rapid, timely

and accurate responses and feedback to the surgeon during surgeries through reasonable

human computer interaction.

This thesis deals with some image processing technologies that can contribute to

supporting the surgeon’s task for inserting the flexible surgical tool into the fetal trachea.

The specific topics this thesis treats are indicated by blue triangles in Fig. 1.8. More

details about each topic are described in Section 1.4 .

1.2 Related Work

1.2.1 IGP Systems

There are some existing IGP systems to be assisted by medical image processing

technologies, where (1) Tomographic image overlay systems used technologies on medical

image processing and visualization; (2) Fluoroscopic X-ray systems used technologies on

medical image processing, visualization, and tracking systems; (3) CT/MR based systems used

technologies on medical image processing, visualization, segmentation, registration, and

tracking systems; (4) Video based augmented reality systems used technologies on medical

image processing, visualization, segmentation, registration, and tracking systems. Each system

is detailed in Chapter 2 .
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1.2.2 Medical Imaging and Image Processing

Medical images are the main information source of image-guided procedures. In

the first medical procedure performed in 1896, X-ray images were used [27, 28]. The

common medical imaging modalities are computed tomography (CT), magnetic

resonance imaging (MRI), X-ray, functional MRI (fMRI), positron emission

tomography (PET), single photon emission computed tomography (SPECT), X-ray

fluorocopy, C-arm CT, ultrasound (US), optical imaging, etc. More details about each

modality can be found in [6].

On the other hand, as the key technologies of IGP systems, techniques of medical

image processing can be divided into five categories: enhancement, segmentation,

registration, visualization, and human computer interaction (HCI). Each category

includes a variety of solutions for different medical imaging modalities and distinct

clinical applications.

(1) Enhancement

Enhancement algorithms are used to reduce image noise and increase the contrast

of structures of interest. In medical images, the boundaries between each tissue are not

obvious, and thus accurate interpretation may become difficult if the images contain

much noise. Usually, enhancement can improve the image quality and facilitate

diagnosis. A clearer image can generally be provided for a human observer by

enhancement techniques. These techniques can also be utilized as a pre-processing step

for subsequent automated analysis.

(2) Segmentation

Segmentation is the stage to identify structures of interest from the images, which

is still challenging in algorithm implementation. In most cases, the final result of the

entire image analysis depends on the segmentation approach, because measurements

and other processing steps are based on segmented regions. There are some typical

segmentation algorithms, such as thresholding, region growing, deformable templates,

and pattern recognition techniques such as neural networks and fuzzy clustering, where

fuzzy clustering methods have been more widely used for medical image segmentation.
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(3) Registration

Registration of two images of the same part of human body is essential for many

applications, where the desired information can be conveyed by the correspondence

between the two images. Using different modalities often require registration process,

for example CT and MRI, can be taken from the same patient with the same instrument

at different times, or can belong to two different subjects. Anatomic atlas templates or

models also require registration algorithms for comparison with acquired images. These

algorithms must be able to deal with the distortions between the two images, which may

be caused by differences between the imaging modalities, artifacts, soft tissue elasticity,

and variability among subjects.

(4) Visualization

Visualization is a significant tool for medicine and biology. For the visual systems,

graphics hardware and software are specifically designed to facilitate visual inspection

of medical and biological data. For volumetric data, visualization techniques are

essential to enable effective visual inspection [29]. In this thesis, surface rendering [30,

31] that is the most popular rendering method in computer graphics is applied in this

thesis to visualize 3D objects.

(5) Human Computer Interaction

For IGP systems, computers are commonly used in the operating room (OR), and

thus human computer interaction (HCI) is also required during operation. Interaction

requirements are dynamic in the OR based on type of the operation, surgeon's decision,

and patient profile, etc. An HCI designing framework should consider the main

intro-operative aspects, such as surgical workflow, OR human roles, and interaction

requirements with hardware and software solutions. According to HCI, surgeons can

communicate with IGP systems by some input components, such as mouse/keyboard,

Kinect, and inertial sensors, etc.

More reviews of each category of the technologies are stated in Chapter 2 .

1.2.3 Current Navigation Systems and Issues to Be Solved

In conventional navigation systems for the FETO surgery, real-time 2D or 3D US
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images are applied simply to visualize the position of the surgical tool and fetal mouth,

without any further processing of US images or an accurate location of the target organs

[22, 32, 33]. Moreover, since the surgical tool and fetal mouth are still difficult to

clearly distinguish using 2D or 3D US images because of speckle noise, shadows, and a

low signal-to-noise ratio, surgeons are required to have a wealth of experience in using

US images. The group of Deprest examined US images to determine the fetal and

placental position for optimal trocar insertion, and guide a cannula with a

purpose-designed trocar to insert into the amniotic cavity to the fetal mouth. In

succession, the fetoscope was introduced into the fetal mouth as a guide and advanced

over the tongue to the pharynx, then to the larynx with the epiglottis, and finally through

the vocal cord to the trachea [22]. Ruano et al. reported a guidance of 4DUS to direct a

cannula with the fetoscope into the fetal oral cavity, which allowed imaging of the entire

fetal face and the insertion of the cannula toward the fetal oral cavity [32]. Tchirikov [33]

also discussed real-time 3D US guidance in FETO surgery to reduce the surgical risk.

However, none of these works achieved automatic and accurate IGP systems for

FETO surgeries; in other words, none can actualize the prospective surgical navigation

system shown in Fig. 1.8. To automatically navigate the flexible surgical tool developed

by Zhang, et al. into the fetal trachea, the following issues need to be solved.

(1) 3D fetal face detection from 3D US images;

(2) Surgical tool location from 3D US images;

(3) Fetal mouth tracking from fetoscopic images;

(4) Estimation of the fetal trachea’s position from 3D US images;

(5) Feedback to the robot control system of the surgical tool;

(6) Interaction between the surgical navigation system and surgeons.

Among the above-mentioned issues, this thesis focuses on the issues (1) to (4), all

of which could be solved by medical image processing technologies. More specifically,

this thesis aims at solving the issues on the fetal face detection from 3D US images,

surgical tool location from 3D US images and fetal mouth tracking from fetoscopic

images, and estimation of the fetal trachea’s position from 3D US images.
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1.3 Purpose of the Thesis

The purpose of this thesis is to solve the four issues described in Section 1.2.3.

Specifically, this thesis proposes and explores the four methods indicated by the blue

triangle in Fig. 1.8. The goal of each of the four methods is as follows, where (2) and (3)

in Section 1.2.3 are combined into one item, and thus three main topics are as follows.

(1) 3D fetal face detection

Robust, efficient detection of fetal faces should be achieved from 3D US images

with high accuracy: i.e. face location errors should be within the tolerance determined

by the FETO surgery’s requirement.

(2) Surgical tool location and fetal mouth tracking

Accurate location of the flexible surgical tool should be achieved from 3D US

images, where the location accuracy should be within the tolerance determined by the

FETO surgery’s requirement.

Accurate, real-time tracking of the fetal mouth should be achieved from fetoscopic

video sequence.

(3) Estimation of the fetal trachea’s position

The position of the fetal trachea should be estimated from 3D US images, where

the accuracy of the position estimation should be within the tolerance determined by the

FETO surgery’s requirement.

To achieve the above-mentioned three goals, this thesis needs to propose the

following three basic technologies: (a) medical image segmentation, (b) ellipse

detection, and (c) calibration for 3D US images. The relationship between the

above-mentioned three main topics (1) to (3) and the three basic technologies (a) to (c)

is indicated in Fig. 1.9, where (a) is used by (1) and (b), (b) is used by (1), (2) and (c),

and (c) is used by (1), (2) and (3). The goals of (a) to (c) are as follows.

(a) Medical image segmentation

MR and US images should be segmented accurately. In particular, the fetal head

and the flexible surgical tool should be segmented from the background in US images.
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Figure 1.9 Relationship between the basic technologies and the three main topics.

(b) Ellipse detection

Partially occluded or discontinued ellipses, which could correspond to fetal heads

in US images and fetal mouth in fetoscopic images, should be detected accurately. As

explained in later sections, cones are used for (c) 3D US calibration; therefore, ellipses,

which correspond to the cones, should be detected accurately.

(c) 3D Ultrasound Calibration

The coordinate system of the 3D US images, the world coordinate system of the

3D tracing space, and local coordinate systems of the fetuses and surgical tool should be

calibrated in an accurate, robust manner.

1.4 Proposed Approach

For the FETO surgery, (1) 3D fetal face detection, (2) surgical tool location and

fetal mouth tracking, and (3) estimation of the fetal trachea’s position, play an important

role on reducing the surgical risk, as shown in Fig. 1.2. Therefore, the prospective

surgical navigation system for the FETO surgery is planned in Fig. 1.8, where during

operation, real-time 3D US images are used for locating the fetal face, trachea, and

surgical tool in a single coordinate system. Simultaneously, fetal mouth is tracked in

real-time from fetoscopic images, where the fetospcopy is supposed to be inserted into
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the surgical tool and moves together with it. Finally, all of the above obtained

information can be applied as a feedback to the robot control system of the surgical tool

for guiding its movement. This thesis proposes a novel approach for each of the three

topics (1) to (3) so that the corresponding three goals (1) to (3) described in Section 1.3

are achieved.

(1) 3D Fetal Face Detection

3D Fetal face detection approach is applied to detect fetal face and facial key

features from 3D US images, where (1-1) the detected fetal face and key features are

located in 3D tracking space (the world coordinate system of 3D electromagnetic (EM)

tracking system) based on the 3D US calibration system, and then their locations can be

used as a feedback to the robot control system; (1-2) the detected key features are also

used for the proposed ICP-based registration method (Section 7.3 ).

(2) Surgical Tool Location and Fetal Mouth Tracking

To locate the surgical tool, first 3D skeletons of the surgical tool are extracted at

first from 3D US images, and then located in 3D tracking space based on the 3D US

calibration system. Moreover, fetal mouth tracking from fetoscopic videos is realized in

real-time based on the ellipse detection method described in (b). Both can be used as a

feedback to the robot control system in the future.

(3) Fetal Trachea Location

Although 3D US images can allow 3D modeling of the surface of a fetus, they

cannot 3D-model internal organs of a fetus, because the internal organs cannot be

identified in 3D US images. Meanwhile, MR images are available to 3D-model internal

organs of a fetus in actual clinical applications, but in case of this thesis, it is very

difficult to get a permission to use real fetal MR images due to privacy problems in

Japan. Therefore, as an alternative for MR images, this thesis uses models of fetal

phantoms with internal structure. The model is registered to the 3D US images so that

the internal organs including trachea are located in the 3D US images. Based on the 3D

US calibration system described in (c), fetal trachea is also located in the 3D tracking

space, which can be used as a feedback to the robot control system in the future.

Note that in the prospective surgical navigation system in Fig. 1.8, the modules
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(topics) with the blue triangle correspond to the above-mentioned (1) to (3). In contrast,

the modules with the red triangle are included in the future work, where examples of

such modules involve displaying 3D scenes with the reconstructed fetal facial surface,

trachea and surgical tool, human computer interaction for surgeons, and the feedback to

the robot control system of the surgical tool.

As described in Section 1.3 , this thesis aims at achieving the goals of the three

basic technologies (a) to (c). The approaches of the technologies (a) to (c) are as

follows.

(a) Medical image segmentation

An improved Kernel-based fuzzy C-means algorithm is proposed for segmenting

medical images such as MR and US images.

(b) Ellipse detection

An improved iterative randomized Hough transform (IRHT) algorithm is proposed

for detecting partially occluded or discontinued ellipses from US images and fetoscopic

images.

(c) 3D Ultrasound calibration

A novel 3D ultrasound calibration system based the 24 fiducial points obtained by

the resin cones placed in the area scanned by a 3D US probe is proposed so that the

transformations between different coordinate systems can be estimated.

1.5 Organization of the Thesis

As shown in Fig. 1.10, this thesis is organized as follows.

Chapter 1 is the introduction of this thesis.

Chapter 2 elaborates on conventional related works such as some existing IGP

systems and video based augmented reality systems, as well as medical image

processing technologies such as enhancement, segmentation, feature extraction,

registration, visualization, and human computer interaction.
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Figure 1.10 Organization of the thesis.

Chapter 3 explains the prospective surgical navigation system and overviews the

three proposed methods: (1) 3D fetal face detection, (2) surgical tool location and fetal

mouth tracking, and (3) fetal trachea location, where (1) to (3) are explained in Section

1.4 .

Chapter 4 proposes and explores the three basic technologies: (a) medical image

segmentation, (b) ellipse detection, and (c) 3D Ultrasound calibration, which are

described in Section 1.4 . The approaches of the three basic technologies are explained.

Experimental results demonstrate the validity of the proposed approaches.

Chapter 5 proposes a method for detecting 3D fetal faces. The specific algorithm of

the proposed method is explained. Experimental results show that this process satisfies

the goal.

Chapter 6 proposes methods for surgical tool location and fetal mouth tracking.

Their specific approaches are explained. Experimental results show the effectiveness of
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the proposed approaches.

Chapter 7 proposes a method for fetal trachea location. The specific approach is

explained. Experimental results demonstrate the validity of the proposed method.

Chapter 8 concludes this thesis and states future work.
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Chapter 2 Overview of IGP Systems and

Medical Image Processing

2.1 Some Existing IGP Systems

As introduced in Section 1.2.1, details of those existing IGP systems are described

in this section.

2.1.1 Tomographic Image Overlay Systems

A new image display approach with semi-transparent mirrors is developed for

displaying US images in real-time [34], CT [35] and MR [36] images, as shown in Fig.

2.1, but these tomographic image overlay systems have not been commercially applied.

The physician views the patient through a mirror or a semi-transparent mirror, and the

image reflection from the monitor appears to float inside the patient. These systems are

the most suitable for needle based procedures because one tomographic slice is

sufficient for navigation.

2.1.2 Fluoroscopic X-ray Systems

For fluoroscopic X-ray systems (also called virtual fluoroscopy), a fixed set of

X-ray images and dynamic, real-time, projections of tool representations onto the

images are utilized to replace C-arm fluoroscopic X-ray imaging [37, 38].

Figure 2.2 shows an example of the Medtronic system. These systems are primarily

used for qualitative planning, or when immediate intervention is required (i.e. trauma),

because no pre-operative imaging is obtained. Additionally, all objects are assumed to

be rigid and are either dynamically tracked by optical tracking or immobilized. These

systems were gladly approved by the orthopedics community because their workflow

only diverges slightly from current practice.
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Figure 2.1 MR based tomographic image overlay guidance system (Image provided

courtesy of G. Fichtinger).

Figure 2.2 Screenshot of the Medtronic Fluoronav R virtual fluoroscopy system. A tool

and its virtual extension are projected onto the image set. (Image provided courtesy of

Ziv Yaniv, et al.).
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2.1.3 CT and MR based Systems

CT and MR-based systems use dynamic, real-time, 3D views of anatomical

structures and surgical tools to replace stereotactic frames. All tools are required to be

fitted with reference frames so that they can be tracked in real-time, and anatomies are

either fitted with a dynamic reference frame and tracked, or immobilized. The

information is displayed via the quadrant view for most systems [39]. These systems

have been commercially applied for procedures of rigid anatomical structures, while

deformations can also be dealt with by some research systems, such as brain shift [40].

2.1.4 Video based Augmented Reality Systems

For video-based augmented reality systems, the video with information about the

anatomical structures is overlaid with the tools that are underneath the visible surface.

These systems combine all the technical aspects of virtual fluoroscopy systems and

MR/CT based systems. Specifically, navigation that is based on 2D projective images is

similar to virtual fluoroscopy, but registration is similar to CT/MR based systems.

Information is displayed either on a screen or directly into an optical device (e.g.

operating microscope) for viewing the anatomy. Conveying depth information is still an

issue, because navigation is based on 2D projective images [6].

2.2 Medical Image Processing

2.2.1 Enhancement

Medical images are often accompanied by noise due to various sources of

interference and different imaging and data acquisition systems, which reduce the

contrast and the visibility of details. Therefore, it may be helpful for a medical specialist

to interpret an image if its appearance and visual quality are improved, even if only

subjective.

A given image can be improved by image enhancement techniques so that it can

become easier to comprehend desired image features by the human visual system or

more likely to be detected by automated image analysis systems [41, 42]. Basic
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techniques of image enhancement include histogram equalization, mean and median

filtering, edge enhancement, image averaging and subtraction, and the Butterworth filter

[43]. Some advanced techniques for image enhancement involve the adaptive Wiener

filter [44], nonlinear contrast enhancement techniques, a wavelet-based framework, a

hybrid filter incorporating Fourier descriptors, etc. Each method serves a specific need

and has its own realm of applications [29].

In this thesis, the used ultrasound images frequently contain much speckle noise

due to its inherent characteristic, and thus operations of enhancement and filter on US

images are particularly critical for subsequent processing. Herein, the used technologies

of enhancement include Gaussian filter, white top-hat transform, morphological

operations (opening and closing), bilateral filter, etc.

2.2.2 Segmentation

For IGP systems, segmentation is defined to separate the image domain into

non-overlapping connected regions, which correspond to different anatomies. While

medical image segmentation has been studied extensively [45, 46], there is still no

automatic technique for imaging modalities and anatomies [47]. Therefore, the quality

of segmentation results only can be judged by the physician.

The most common algorithms include thresholding, watershed methods,

edge-based methods, gradient operators-based methods, region-based methods,

probabilistic Bayesian method, Markov random field model, level set methods,

atlas-based methods, statistical appearance models, deformable models, pattern

recognition techniques such as neural networks and fuzzy clustering, and volumetric

segmentation, etc. Several general surveys on medical image segmentation can be found

in [45, 46], and specialized surveys on deformable models [48-50], vessel extraction

[51-53], and brain segmentation [54-56] are also available.

Automated segmentation of medical images is a hard task, since images are often

noisy and often contain multiple anatomical structures, and sometimes the organ

boundaries may be confused. To overcome these challenges, domain-specific prior

knowledge is integrated by many algorithms [57-59].

Among segmentation technologies, fuzzy c-means (FCM) algorithm [60] is a

typical clustering algorithm, which uses Euclidean distance to measure similarity among
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image pixels, but it is just effective in clustering ‘spherical’ data. In order to cluster

more general dataset, a kernel-based fuzzy c-means (KFCM) algorithm [61, 62] is

proposed by exploiting kernel function to measure data’s similarities instead of

Euclidean distance. However, KFCM method is easily affected by noise owing to

ignoring spatial information in images. Recently, numerous methods [63-68] have been

proposed by exploiting image spatial correlation to advance segmentation capability for

low signal-to-noise ratio (SNR) images. In an image, the pixels should be highly

relevant, i.e. the pixels in their immediate neighborhoods should possess almost the

same characteristics. That is why, the spatial constraints among neighboring pixels is an

important feature that can be contributing to image segmentation. In order to reduce the

effect of noise, an improved KFCM method (iKFCM) [69] is proposed by cooperating

with spatial information to optimize the objective function in conventional KFCM

method in this thesis.

2.2.3 Feature Extraction

As a technology of feature extraction, ellipse detection is a specific solution for the

prospective surgical navigation system, since position of fetal head can be detected an

ellipse from 2D US images. Initially, approaches like least squares fitting [70, 71] and

Hough transform (HT) [72] were the main approaches for this purpose. To overcome

some limitations of the HT, combinatorial Hough transform (CHT) [73], randomized

Hough transform (RHT) [74], probabilistic Hough transform (PHT) [75], dynamic

generalized Hough transform (DGHT) [76], and Random Sample Consensus (RANSAC)

[77] algorithm were proposed to improve the performance of HT for non-linear

problems like ellipse detection. However, both RHTs and RANSAC may fail when

strong noise can corrupt the curve-related peaks in the parameter space, or can generate

a larger consensus set for a false model instance. A novel method named iterative

randomized Hough transform (IRHT) [136, 137] was proposed for detection of partial

ellipses under strong noise conditions. However, there are three limitations for IRHT

algorithm: (1) all extracted edge pixels that cannot be grouped for one elliptic

hypothesis are used for ellipse detection; (2) random selection of pixels for parameter

estimation, which both limitations require a large number of samples and result in a low

detection efficiency; (3) the robustness of the algorithm is not strong, because it does

not consider the number of pixels on the ellipse. In order to overcome the limitations of
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the original IRHT method, an improved iterative randomized Hough transform

algorithm is proposed in this thesis.

On the other hand, in order to locate the fetal facial surface for the prospective

surgical navigation system, key facial features, e.g. nose, eyes, lips and mouth, are

necessary to be detected from 3D US images. Some earlier works on curvature analysis

[78-81] are proposed for face recognition based on distinct facial curvature features. 3D

model-based methods [82, 83] are often employed for face recognition by fitting a priori

3D face model to a given face. In addition, some methods are depicted to represent the

3D data in a different domain for face recognition, e.g. 3D PCA [84], shape index [85],

point signature [86], and spine image [87], etc. Some other methods, e.g. face profile

extraction [88], and facial curves [89], are also reported recently. However, face

recognition technologies are rarely exploited in medicine, especially for 3D US images.

To our best knowledge, there is only one work to detect 3D fetal face from US volumes

for the optimal view [90], but their method required a priori 3D face mesh model for

face detection and a high calculation complexity on the registration between the 3D

model and the object. As a result, a curvature feature-based approach is proposed in this

thesis to automatically detect 3D fetal face and accurately locate key facial features for

guiding the FETO surgery in a high efficiency [180].

2.2.4 Registration

Image transformations that build correspondence between points or regions within

images, or between physical space and images, can be estimated by registration

algorithms. Thus, registration technologies can be divided into several classes:

landmark/point-based registration [91], surface matching (e.g., the “Head and Hat”

algorithm [92], distance transforms [93], iterative closest point [94]), registration based

on voxel similarity measures [95] and minimizing intensity difference [96], correlation

techniques [97], ratio image uniformity (RIU) [98], partitioned intensity uniformity

(PIU) [99], information theoretic techniques (e.g., joint entropy [100], mutual

information [101]), 2D-3D registration, and non-rigid registration, etc.

The first application of medical image registration was image-guided procedure.

There are three factors that should be considered to evaluate the performance of a

registration for image-guided procedures: (1) accuracy, measured by the target

registration error (TRE) [91], which indicates how far the estimated position of the
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anatomical target is from its actual position; (2) speed, i.e., how long does the algorithm

take to acquire the results; and (3) robustness, i.e., how well does the algorithm deal

with noise and outliers. The requirements for accuracy and robustness are equal for all

stages of the procedure, where TREs within several millimeters can be considered as

sufficient for most medical procedures. The speed of an algorithm is demanding in the

intra-operative stage, and its requirement is from several seconds to a couple of minutes,

while the time constraint can usually be relaxed for the other procedure stages [6].

The iterative closest point (ICP) method for the registration of 3D point clouds has

been widely used in a variety of fields including medical images, because of its good

accuracy and fast speed. It was proposed by Yang et al. [102] and Besl et al. [94]. In

order to heighten registration accuracy between the extracted 3D fetal facial surface and

a designed 3D fetal modal, an ICP-based method that is composed of coarse and fine

registrations is proposed in this thesis according to the detected key facial features via

3D fetal face detection.

2.2.5 Visualization

The goal of data visualization for IGP is to briefly convey the relevant information

for the successful completion of the intervention. Thus, the acquired medical images can

be viewed by superimposing additional information such as tool locations or underlying

anatomical structures. There are three ways to visualize tomographic images: surface

rendering, volume re-slicing, and direct volume rendering (DVR). Surface rendering

and DVR methods combined with segmentation are the only approaches for explicitly

visualizing individual anatomical structures. Volume re-slicing and most DVR methods

have no identification of anatomical structures, since visualization is done in 2D, and

thus two or three orthogonal views are necessary to understand the underlying 3D

anatomical structures.

2.2.6 Human Computer Interaction

The technologies associated with human computer interaction (HCI) can be

divided into two categories: interaction techniques and information presentation. In the

early stage, the standard keyboard and mouse were utilized as user input, and

information was presented on standard computer monitors using the traditional axial,
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sagittal, and coronal views. This approach may be acceptable for the pre and post

-operative stages, but it is not suitable for intra-operative use. In the intra-operative

stage, it is difficult for the physician to directly interact with the system [103]. Several

technologies can allow the physician directly interact with the system, involving touch

screens, trigger like input devices such as foot switches, tracked virtual keypads, speech

recognition systems, and computer vision based gesture recognition techniques.

2.3 Conclusions

The research on medical image processing plays an important role on improving

the performance of the IGP system. As the three main topics shown in Fig. 1.8 and

explained in Section 1.3 and 1.4 have not yet been researched, several related

technologies on medical image processing are studied and improved in this thesis for

increasing location accuracy and efficiency of the system, which are discussed in the

following chapters.
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Chapter 3 Overview of the Proposed

Methods

3.1 Prospective Surgical Navigation System

As outlined in Section 1.4 , based on fetal phantoms, the designed internal

structure, real-time 3D US images, and a novel 3D US calibration system, the

prospective surgical navigation system is designed to guide the FETO surgery by

locating the surgical tool, the fetus and the critical internal organs during the operation.

In addition, from a fetoscopic video sequence, fetal face and mouth are detected and

tracked in real-time to provide an effective and timely feedback to the robot control

system of the surgical tool.

3.1.1 Processes of the Prospective Surgical Navigation System

Figure 3.1 shows several steps of the prospective surgical navigation system,

which consists of an offline and online process, where the fetus is supposed to be

immobilized during the operation. The gray numbers and correspond to the

following (1) and (2) in offline process, and the blue numbers through

correspond to the following (1) through (6) in online process. Note that this thesis uses

resin fetal phantoms for offline and online processes because of difficulties in using real

fetuses for the experiments.

(1) Offline Process

(1) 3D fetal modal with oral cavity and airways is reconstructed from real physical

fetal phantoms (Section 7.2 );

(2) Transformation matrix of the 3D US calibration system is estimated by the

novel cones’ phantom and an electromagnetic (EM) tracking device (Section 4.3 );

(2) Online Process

(1) 3D fetal US images are obtained by scanning a fetal phantom in a water tank

with a Philips V6-2 3D US probe (Section 5.2.2);
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Figure 3.1 Process of the prospective surgical navigation system.

(2) 3D fetal facial surface is extracted from the obtained 3D US images, and key

feature points (i.e., nose tip, two eyes’ inner corners, nose upper bridge and mouth) of

the extracted 3D fetal face are detected (Section 5.2.2);

(3) The 3D fetal model with the structure of internal organs is registered with the

extracted 3D fetal face with the detected key feature points, and located in the 3D US

space (the coordinate system of 3D US images) (Section 7.3 ).

(4) The surgical tool is detected and extracted from the 3D US images, and located

in the 3D US space;

(5) The 3D fetal model with oral cavity and airways, the extracted 3D fetal facial

surface from 3D US data, and the surgical tool are accurately located in the 3D EM

tracking space (the world coordinate system of the 3D EM transmitter), via the

transformation matrix of the 3D US calibration system estimated in the offline process;

where, in the future, the distance between the tip of the surgical tool and the detected

fetal mouth will be estimated before the surgical tool is inserted into the fetal mouth,

and utilized as a feedback to the robot control system of the surgical tool;
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(6) To guide the surgical tool into the fetal mouth, the fetal mouth are detected

and tracked in real-time from a fetoscopic video sequence, so that the system can

provide an effective and timely feedback to the robot control system of the surgical tool

for guiding movement of the surgical tool in the future.

3.1.2 Three Main Topics

The three main topics of this thesis are contained in the online process, whose

details of each topic are explained as follows:

(1) 3D Fetal Face Detection

Several steps are included in the 3D fetal face detection, as shown in Fig. 3.2, and

are detailed in Chapter 5 .

Figure 3.2 Process of 3D fetal face detection from 3D US images.

Step-1: 3D US images are obtained by scanning a resin fetal phantom in a water tank

using a 3D US probe;

Step-2: 3D fetal facial surface is extracted from 3D US images;



Chapter 3 Overview of the Proposed Methods44

Step-3: 3D fetal face and key facial features are detected by a boosting traversal scheme

based on the spatial relations between each facial feature;

Step-4: The detected 3D fetal face and key facial features are located in 3D tracking

space based on the 3D US calibration system.

(2) Surgical Tool Location and Fetal Mouth Tracking

For surgical tool location, it can be realized by the following steps, as shown in Fig.

3.3. The methods of the surgical tool location are described in Chapter 6 .

Figure 3.3 Process of surgical tool location from 3D US images.

Step-1: 3D US images are obtained by scanning a bending surgical tool in a water tank

using a 3D US probe;

Step-2: The 3D skeletons of the surgical tool are extracted from 3D US images;

Step-3: The extracted 3D skeletons of the surgical tool are located in 3D tracking space

based on the 3D US calibration system.

For fetal mouth tracking, it can be realized by the steps in Fig. 3.4, which will be

illustrated in detail in Chapter 6 .

Step-1: Fetoscopic images are recorded by a fetoscopy when it moves with the
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movement of the surgical tool;

Step-2: Fetal face is detected by a classifier from fetoscopic images;

Step-3: Fetal face is tracked by Camshift algorithm, and a region of interest (ROI) is

given after tracking;

Step-4: Fetal mouth is detected and tracked in the ROI.

Figure 3.4 Process of fetal mouth tracking.

(3) Trachea Location

As a critical internal organ for the FETO surgery, fetal trachea can be located by

the steps in Fig. 3.5, which will be explored in Chapter 7 .

Step-1: 3D US images are obtained by scanning a resin fetal phantom in a water tank

using a 3D US probe;

Step-2: 3D fetal facial surface is extracted from 3D US images;

Step-3: 3D fetal face and key facial features are detected;

Step-4: The 3D fetal model reconstructed in the offline process is registered with the

extracted 3D fetal facial surface to be located in 3D US space;
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Step-5: Position of fetal trachea is estimated in 3D tracking space based on the 3D fetal

model located in 3D US space and the 3D US calibration system.

Figure 3.5 Process of fetal trachea location from 3D US images.
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Chapter 4 Basic Technologies for Three

Main Topics

Before discussing the three main topics of this thesis, three basic technologies on

image segmentation, ellipse detection, and 3D US calibration are discussed in this

chapter, and the relationship between these technologies and the three main topics that

will be represented in Chapter 5, 6 and 7 has been portrayed in Fig. 1.9.

(1) An Improved Kernel-based Fuzzy C-Means Algorithm

An improved Kernel-based Fuzzy C-means Algorithm (iKFCM) is proposed to

reduce the effect of noise for medical image segmentation, which applied k-nearest

neighbor model and a neighborhood controlling factor by estimating image contextual

constraints to optimize the objective function of conventional KFCM method.

Conventional KFCM algorithms classify each pixel in image only by its own gray value,

but the proposed method classifies by the gray values of its neighborhood system. For

this reason, the proposed iKFCM algorithm has a strong robustness for image noise in

image segmentation.

The algorithm is applied for segmentation of 2D US images (Chapter 5 ).

(2) An Improved Iterative Randomized Hough Transform Algorithm

An improved IRHT algorithm is proposed to detect partial ellipse in medical

images, especially for ultrasound images. This work is different from previous ones in

several aspects. First, the pre-processing guarantees the obtained pixels have a high

possibility of generating one elliptic hypothesis with the selected edge. Second, the

quasi random scheme reduces the requirement on the number of samples, i.e., a small

number of samples can promise a robust and accurate result, which improves the

efficiency of the algorithm. Third, the least square approach for parameter estimation,

and the number (N) of pixels on the ellipse for updating the ROI heighten the accuracy

and robustness of the algorithm.

This algorithm is applied for detection of fetal head in 2D ultrasound images

(Chapter 5 ), fetal mouth in fetoscopic images (Chapter 6 ), and position of each cone in

the 3D US calibration system (Section 4.3 ).
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(3) A 3D Ultrasound Calibration System

3D ultrasound calibration aims to determine the spatial transformation for mapping

points from the 3D US image coordinate system to the world coordinate system in 3D

tracking space. The transformation comprises six parameters - 3 translations in the

direction of the x, y, and z axes and the 3 rotations, azimuth, elevation, and roll, about

these axes. In this thesis, a novel point-based phantom consisting of 12 resin cones is

proposed for 3D US calibration. It is easy to construct and scan the phantom, and only

simple experimental setup is required.

This system is applied for location of 3D key fetal facial features detected from 3D

US images (Chapter 5 ), surgical tool location from 3D US images (Chapter 6 ), and

estimating the position of the fetal trachea (Chapter 7 ).

4.1 An Improved Kernel-based Fuzzy C-Means

Algorithm

4.1.1 Introduction

Medical image segmentation is an important step for medical image processing,

which is a complex and challenging task, especially in brain magnetic resonance (MR)

image segmentation. The purpose of medical image segmentation is to partition an

image into several non-overlapping regions, which are homogeneous with respect to

some characteristics such as grayscale or texture.

A large number of approaches are available for MR image segmentation [104-106].

However, for MR images, there are many uncertain factors, such as noise, bias field and

partial volume effect, which make MR images essentially fuzzy [107]. Therefore, fuzzy

clustering methods have been more widely used in MR image segmentation.

Fuzzy c-means (FCM) algorithm [60] is a typical clustering algorithm, which uses

Euclidean distance to measure similarity among image pixels, but it is just effective in

clustering ‘spherical’ data. In order to cluster more general dataset, a kernel-based fuzzy

c-means (KFCM) algorithm [61, 62] is proposed by exploiting kernel function to

measure data’s similarities instead of Euclidean distance. However, KFCM method is

easily affected by noise owing to ignoring spatial information in images.
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Recently, numerous methods [63-68] have been proposed by exploiting image

spatial correlation to advance segmentation capability for low signal-to-noise ratio

(SNR) images. In an image, the pixels should be highly relevant, i.e. the pixels in their

immediate neighborhoods should possess almost the same characteristics. That is why,

the spatial constraints among neighboring pixels is an important feature that can be

contributing to image segmentation.

Herein, an improved KFCM method (iKFCM) [69] is proposed by cooperating

with spatial information to optimize the objective function in conventional KFCM

method so as to reduce the effect of noise. In conventional KFCM algorithms, the

classification of every pixel in images is only determined by its own gray value.

However, in the proposed iKFCM method, the classification of every pixel is also

determined by the gray values of its neighbourhood system. For this reason, the

proposed iKFCM method has a strong robustness for image noise in image

segmentation. In experiments, some synthetic grayscale images and simulated brain MR

images are used to assess the performance of iKFCM in comparison with other fuzzy

clustering methods.

4.1.2 Algorithms

The Kernel-based Fuzzy C-means Algorithm (KFCM) [61] can perform a nonlinear

mapping to a high dimensional feature space via a kernel function to replace Euclidean

distance in FCM algorithm.

(1) Conventional KFCM Algorithm

The grayscale dataset of 2D objective image is given as

in an s-dimensional space , where is the gray value of pixel i, N is the

number of image pixels. The KFCM algorithm classifies X into L fuzzy subsets by

minimizing the following objective function

2

1 1

( , ) || ( ) ( ) ||
L N

m

m ki i k
k i

J U V u x v (4.1)

where is a nonlinear map function defined as . F is a

transformed feature space with a higher dimension. L is the number of clusters (so the
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objective image will be partitioned into L clusters). N is the number of image pixels.

is fuzzy membership of pixel i in cluster k, satisfying , and

. denote the average gray value in cluster k. m is a

parameter for controlling clustering fuzziness, generally .

Also, , and

is an inner product kernel function. Here, Gaussian kernel function

is exploited, then . Thus, the objective function is

revised as :

1 1

( , ) 2 (1 ( , ))
L N

m

m ki i k
k i

J U V u K x v (4.2)

In Gaussian kernel function, is width of this function. Since is described as a

dispersion, is estimated with the following formula through the sample variance,

2
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Thus, the update equations for minimizing with the necessary conditions

are as follows:

1/( 1)

1/( 1)

1

(1 ( , ))

(1 ( , ))

m

i k
ki L

m

i j
j

K x v
u

K x v
(4.4)

1

1

( , )

( , )

N
m

ki i k i
i

k N
m

ki i k
i

u K x v x

v

u K x v

(4.5)

An initial arbitrary value is adopted for each cluster center. Through iterative

processing, the KFCM algorithm converges by comparing the changes in the

membership function or the clustering centers between two successive iteration steps.

(2) Improved KFCM Algorithm

The application of contextual constraints is essential for a capable image analysis
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system. Also spatial information among pixels indicates that neighboring pixels possess

uniform feature values, and the probability that they belong to the same cluster is large.

This spatial relationship is beneficial for suppressing influence of image noises, but

conventional KFCM algorithm did not utilize the spatial relationship. Though the

improved FCM method (here, it is called as sFCM) in [65] utilized the spatial

relationship to modify the fuzzy membership by a spatial membership function, to

some extent that will weaken the role of neighbourhood system. Besides, the method

proposed by G.C. Karmakar and L.S. Dooley in [108] gives a better description for

spatial relationship, which indicates every pixel can be endued with a fuzzy set. Further

combined with k-nearest neighbor model, for pixel i, its membership function with

spatial information is defined as:

1

k
ki L

k
k

n
p

n

(4.6)

where, denotes the membership of pixel i in cluster k, is the number of the

pixels in pixel i’s neighbourhood system belonging to cluster k (the initial

classification of every pixel in is achieved by conventional KFCM algorithm). The

general neighbourhood systems based on Euclidean distance are shown in Fig. 4.1. In

experiments, a comparison of using first order neighborhood system and second order

neighborhood system is given for the proposed method.

If the number of pixels in belonging to cluster k is large, the probability of

pixel i in cluster k should be large. Therefore, if the pixels in are all classified into

the same cluster, the membership of pixel i in the same cluster should be 1.

(a) (b)

Figure 4.1 Neighborhood systems and their cliques. (a) A first order neighborhood

system with its cliques, (b) a second order neighborhood system with its cliques.

Then, is applied with spatial information and a neighborhood controlling

factor to modify the membership degree matrix of conventional KFCM algorithm.
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Specially, fuzzy membership is converted into , where

is constant for controlling the effect of neighborhood system, increased with noise

intensity, and ranges . Accordingly, the new objective function is revised as:

1 1

( , ) 2 ((1 ) ) (1 ( , ))
L N

m

m ki ki i k
k i

J U V p u K x v (4.7)

According to the constraint of and Lagrange multipliers, the new iterative

equations are derived as:

1/( 1)

1/( 1)

1

(1 )(1 ( , ))

(1 ( , ))

m

ki i k
ki L

m

i j
j

p K x v
u

K x v
(4.8)

1

1

( , )

( , )

N
m

ki i k i
i

k N
m

ki i k
i

u K x v x

v

u K x v
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The improved KFCM algorithm (iKFCM) is performed via the following steps.

Step-1 Set the number of cluster L, parameter , neighborhood controlling factor

, initial clustering centers (via histogram statistics of image gray

value), the smallest error and (p is a counter). Next, get initial

image segmentation results by conventional KFCM algorithm.

Step-2 Calculate probability by Eq. (4.6).

Step-3 Update fuzzy membership and clustering centers by Eq. (4.8) and (4.9),

.

Step-4 If , then goto Step-5, else return to Step-2.

Step-5 Acquire the final segmentation results which are determined by fuzzy

membership of each pixel.

4.1.3 Results

In order to verify the validity of the new method, conventional KFCM algorithm,
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an improved FCM method with spatial information in [65] (here, it is called as sFCM)

and the improved KFCM algorithm (iKFCM) are implemented in experiments. All

algorithms are implemented under the same initial values and the same stopping

condition with . In brain MR image segmentation, the images are supposed to

be segmented into four clusters: gray matter (GM), white matter (WM), cerebrospinal

fluid (CSF) and background (BG). For quantitatively evaluating the ability of the above

algorithms, misclassification rate (MCR) is defined as:

×
the No.of misclassified pixels

MCR = 100%
the No.of all pixels

(4.10)

where . Smaller MCR values correspond to better image segmentation

performances. All experiments are conducted by VS 2003 in the PC of Intel® Core™2

CPU 6600 @ 2.40GHZ with 2GB memory.

(1) 24-bit synthetic gray images

24-bit synthetic grayscale images with pixels are used, where their

resolutions are 74.25 pixels per inch. The images are supposed to be classified into four

clusters. Figure 4.2 gives a compassion of segmentation results of three approaches for a

synthetic gray image with 7% Gaussian noise. The result in Fig. 4.2 (c) is calculated by

conventional KFCM algorithm, the results in Fig. 4.2 (d) and Fig. 4.2 (e) are separately

calculated by the improved method through applying first (iKFCM1) and second

(iKFCM2) neighborhood system.

(a) (b) (c) (d) (e)

Figure 4.2 Comparison of segmentation results of three methods for a synthetic

grayscale image with 7% Gaussian noise. (a) original image, (b) ground truth, (c) using

conventional KFCM method, (d) using the improved KFCM method with first order

neighborhood system (iKFCM1), (e) using the improved KFCM method with second

order neighborhood system (iKFCM2).

According to the segmentation results in (c), (d) and (e) in Fig. 4.2, it can be
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learned that there are the most misclassified points in the circles of Fig. 4.2 (c) in the

result of conventional KFCM, which indicates the improved methods of using two

different neighborhood systems achieve more accurate segmentation results. Also it can

be known that the performance of iKFCM2 is superior to that of iKFCM1, which

indicates the performance of the second-order neighborhood system is better than that of

the first-order neighborhood system.

Table 4.1 MCRs (%) of three methods for synthetic images with different levels of

Gaussian noise.

Noise level (%) 7% 9% 11% 13%

KFCM 0.85 3.72 8.43 13.56

iKFCM1 0.25 1.78 5.13 8.86

iKFCM2 0.13 1.25 4.37 8.04

Table 4.1 shows MCRs of three methods for synthetic images with different levels

of Gaussian noise. As shown in Table 4.1, the MCRs of conventional KFCM are the

largest than those of the improved methods applying two neighborhood systems. Also

the data in Table 4.1 reveal that the performance of iKFCM2 using the second

neighborhood system is better than that of iKFCM1 using the first neighborhood system.

In conclusion, iKFCM2 has the best segmentation performance in this test. Therefore,

the second neighborhood system is used for the following experiments.

(2) Simulated Brain MR Images

In this section, simulated brain MR images in Brainweb (http://www.bic.mni.

mcgill.ca/brainweb/), which are called gold standard of image segmentation, are used

for validation. Each data set is composed of pixels, thickness of layer is 1

mm, weighted. The noise in the simulated images has Rayleigh statistics in the

background and Rician statistics in the signal regions. The "percent noise" number

represents the percent ratio of the standard deviation of the white Gaussian noise versus

the signal for a reference tissue. Several simulated data sets ( , voxel size: )

with variations of the parameters “noise (n)” (ranging from 1 to 9%) are chosen. This

selection covers the whole range of the parameter values available in BrainWeb so that

the comparability with real data can be considered as sufficient to test the robustness of

the different methods at varying image qualities [109].
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(2-1) Transverse Slices

In the first part, three groups of transverse slices with several levels of noise in Z =

8 mm, Z = 18 mm and Z = 28 mm are used for testing several methods in brain image

segmentation, where Z is a axial coordinate in a three-dimension space.

(a) (b) (c) (d) (e)

Figure 4.3 Comparison of segmentation results of three methods for a simulated brain

MR transverse slice in Z = 8mm with 9% Gaussian noise. (a) original image, (b) ground

truth, (c) using conventional KFCM method, (d) using sFCM, (e) using iKFCM.

(a) (b) (c) (d) (e)

Figure 4.4 Comparison of segmentation results of three methods for a simulated brain

MR transverse slice in Z = 18mm with 9% Gaussian noise. (a) original image, (b)

ground truth, (c) using conventional KFCM method, (d) using sFCM, (e) using iKFCM.

(a) (b) (c) (d) (e)

Figure 4.5 Comparison of segmentation results of three methods for a simulated brain

MR transverse slice in Z = 28mm with 9% Gaussian noise. (a) original image, (b)

ground truth, (c) using conventional KFCM method, (d) using sFCM, (e) using iKFCM.
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Figure 4.3, Figure 4.4 and Figure 4.5 show segmentation results by the three

methods, respectively, for simulated brain MR transverse slices in Z = 8 mm, Z = 18

mm and Z = 28 mm adding 9% Gaussian noise. sFCM used in spatial information in

[65], which utilizes the second order neighborhood system for the purpose of being

consistent with the iKFCM method. There are many more noise dots in circles of (c) of

each figure than in the same areas in (d) and (e) of each figure, which indicates

conventional KFCM method is easily affected by image noise owing to be deficient in

image spatial information. Also there are some over-segmentations in some region

edges for sFCM method, especially in circles of Fig. 4.3 (d), compared with the same

areas in Fig. 4.3 (e). Accordingly, all experimental results demonstrate that the improved

approach (iKFCM) achieves the best result in this processing. Moreover, the

computational efficiency of the iKFCM method is the same as that of conventional

KFCM method, but far better than that of the sFCM method.

Table 4.2 presents a comparison of MCRs of three methods for simulated brain MR

slices in various Z positions with different levels of Gaussian noise. The data in Table

4.2 denote that the MCRs of the iKFCM method for all simulated brain MR slices are

the least than those of conventional KFCM and sFCM method. This means the proposed

method is robust for image noise in the segmentation of different brain images.

Furthermore, the stronger the intensity of noise in image, the better the segmentation

property of the proposed method compared with conventional KFCM.

Table 4.2 MCRs (%) of three methods for simulated brain MR transverse slices with

different levels of Gaussian noise.

Slice Coords Z = 8 mm Z = 18 mm

Noise Level (%) 3% 5% 7% 9% 3% 5% 7% 9%

KFCM 6.88 8.66 10.01 11.67 5.84 6.93 8.00 9.82

sFCM 6.32 6.78 7.65 8.16 5.72 6.41 7.04 7.83

iKFCM 4.72 6.10 6.93 7.60 5.01 5.82 6.35 7.41

Slice Coords Z = 28 mm

Noise Level (%) 3% 5% 7% 9%

KFCM 7.25 8.47 9.35 10.99

sFCM 5.92 6.13 6.82 7.31

iKFCM 4.62 5.20 6.02 6.66
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(2-2) Coronal Slices

In this section, two groups of coronal slices in Y = -18 mm and Y = 0 mm are used

for testing several methods in brain image segmentation, where Y is a coronal

coordinate in a three-dimensional space.

Figure 4.6 and Figure 4.7 are the segmentation results of the three methods for

simulated brain MR coronal slices in Y = -18 mm and Y = 0 mm adding 9% Gaussian

noise. From the above two figures, the segmentation results in circles of (c) are heavily

affected by image noise for conventional KFCM method. Some over-segmentation

results have been trapped in circles of (d) by sFCM method, compared with the same

areas in (e). Consequently, the iKFCM method not only exploits spatial information

among image pixels to avert the effect of noise, but also effectively reduces

over-segmentation induced by the complexity of medical images.

(a) (b) (c) (d) (e)

Figure 4.6 Comparison of segmentation results of three methods for a simulated brain

MR coronal slice in Y = -18 mm with 9% Gaussian noise. (a) original image, (b) ground

truth, (c) using conventional KFCM method, (d) using sFCM, (e) using iKFCM.

(a) (b) (c) (d) (e)

Figure 4.7 Comparison of segmentation results of three methods for a simulated brain

MR coronal slice in Y = 0 mm with 9% Gaussian noise. (a) original image, (b) ground

truth, (c) using conventional KFCM method, (d) using sFCM, (e) using iKFCM.

In Table 4.3, a comparison of MCRs of the three methods for simulated brain MR

slices in various Y positions with different levels of Gaussian noise, it can be known that
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though the improvement in MCRs of the iKFCM methods changes with varied Y

positions and varied noise levels, the overall effect is the best among these three

methods in this comparison.

Table 4.3 MCRs (%) of three methods for simulated brain MR coronal slices with

different levels of Gaussian noise.

Slice Coords Y = -18 mm

Noise Level (%) 3% 5% 7% 9%

KFCM 4.79 5.92 7.19 8.15

sFCM 4.96 5.43 5.89 6.46

iKFCM 4.23 4.68 5.65 6.19

Slice Coords Y = 0 mm

Noise Level (%) 3% 5% 7% 9%

KFCM 4.50 5.31 6.46 7.57

sFCM 4.85 5.00 5.50 6.19

iKFCM 3.87 4.52 4.94 5.85

4.1.4 Conclusions

In this section, an improved KFCM method (iKFCM) with spatial information has

proposed to modify the objective function of conventional KFCM method in order to

reduce the effect of noise. In the proposed approach, the classification of every pixel in

images is not only determined by its own gray value, but also determined by the gray

values of its neighborhood system. The experimental results for the segmentation of

synthetic gray-scale images and simulated brain MR images, show that the proposed

method has a strong robustness for image noise, and also achieves a better segmentation

performance than other fuzzy clustering methods.

In addition to the application in segmentation of brain MR images, the proposed

iKFCM method is also applied for segmentation of 2D US images in this thesis, where

bright parts of fetal skulls are divided from 2D US images for 3D fetal facial surface

extraction, which is described in Chapter 5 .
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4.2 An Improved Iterative Randomized Hough

Transform Algorithm

Ellipse is one of the most commonly occurring geometric shapes in real images.

Thus, detection of ellipses in a robust, reliable and efficient manner from real images

provides a good image analysis tool for pattern recognition.

In medical image processing, ellipse detection is also an important means for many

clinical applications, such as fetal head detection on ultrasound (US) images for fetal

growth evaluation [110] and fetal weight estimation [111], and fetal mouth detection

from a fetoscopic video sequence for a surgical guidance [112], etc. However, medical

images, such as US images and fetoscopic images are inevitably accompanied by

moderate noise, curve discontinuity, shape deformation and image artifacts, which make

the detection of geometric shapes like ellipses very difficult in medical images and thus

technically interesting and challenging.

4.2.1 Introduction

(1) Literature Review

Ellipse detection in images has been an open research problem since long time ago.

Initially, approaches like least squares fitting and Hough transform (HT) [72] were the

main approaches for this purpose. These approaches generally use the mathematical

model of ellipse and the edge pixels for detecting the ellipses. Least squares based

methods [70, 71] usually cast the ellipse fitting problem into a constrained matrix

equation in which the solution should minimize the residue in the mathematical model.

The choice of constraints and solutions for constrained matrix equations has an impact

on the performance and selectivity of the ellipse detection methods.

Hough transform (HT) and its variations seek an estimation of parameters by

clustering in the parameter space [113, 114]. HT based methods are usually more robust

than least squares based methods when the edge contours are not smooth as they use

pixels for detecting ellipses instead of edge contours. However, HT based methods have

two main problems. First problem is that HT is intensive in terms of computation and

memory consumption because it uses a five dimensional parameters space. Second
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problem is that since the pixels used in HT need not belong to the same edge contour,

number of samples required for detecting each ellipse is very high.

To overcome some limitations of the HT, combinatorial Hough transform (CHT)

[73], randomized Hough transform (RHT) [74], probabilistic Hough transform (PHT)

[75], and dynamic generalized Hough transform (DGHT) [76] were proposed to

improve the performance of HT for non-linear problems like ellipse detection. The PHT

randomly selects a small subset of pixels for further processing. The other transforms

share the following fundamental idea and are hereinafter referred to as RHTs. For an

n-dimensional curve, a sample of n randomly picked pixels is used to solve for the n

parameters of the curve. The count for the solution (an instance of the model) is

increased by one in the parameter space. This process is repeated until enough solutions

are accumulated so that there is a meaningful count distribution in the parameter space.

The peak count and its coordinates in the parameter space correspond, respectively, to

the most prominent curve instance in the image space and curve parameters. This

random sampling (of n pixels) and convergent mapping (of n pixels to one solution) are

the key mechanisms of RHTs, accounting for their favorable properties of small storage,

high speed, good accuracy and reduced effects of correlated noise [74].

Random Sample Consensus (RANSAC) [77] algorithm shared the two key

mechanisms of RHTs. The RANSAC also randomly samples n pixels to get an instance

of the model. Instead of accumulating the counts as in the RHTs, the RANSAC checks

the number of the consensus pixels that are within some error tolerance of the instance.

If this number is greater than some threshold, a model is solved with the consensus

pixels; otherwise, another set of n pixels is sampled and the process is repeated.

However, both RHTs and RANSAC may fail when strong noise can corrupt the

curve-related peaks in the parameter space, or can generate a larger consensus set for a

false model instance. A novel method named iterative randomized Hough transform

(IRHT) [115, 116] was proposed for detection of partial ellipses under strong noise

conditions. The IRHT iteratively applies a randomized Hough transform to a region of

interest (ROI) in the image space. The ROI is updated based on the latest estimates of

parameters. First limitation of the IRHT is that all extracted edge pixels that cannot be

grouped for one elliptic hypothesis are used for ellipse detection, and second limitation

is random selection of pixels for parameter estimation, which both limitations require a

large number of samples and result in a low detection efficiency. Third limitation is that



A Fetal Surgical Navigation System for Fetoscopic Tracheal Occlusion Surgeries 61

the robustness of the algorithm is not strong, because it does not consider the number of

pixels on the ellipse.

(2) The Proposed Method

In order to overcome the limitations of the original IRHT method, a pre-processing

is given to remove redundant pixels and exclude edges that cannot generate one elliptic

hypothesis with the considered edge by edge grouping after edge extraction. During

ellipse detection, a quasi random scheme selects three pixels as the centers of three

windows, and fit all edge points in these three windows to an ellipse by the least square

approach [117] (Fig. 4.8). Meanwhile, the number of pixels on the ellipses is considered

to determine the result for each iteration by selecting the detected ellipse with the

maximum number of pixels on the ellipses, which is chosen from the top-M peaks in the

accumulators of the entire detected ellipse samples, where M is a specified number of

peaks in the accumulators of the detected ellipses.

Figure 4.8 Quasi random scheme for a digital ellipse.

This work is different from previous ones in several aspects. First, the

pre-processing guarantees the obtained pixels have a high possibility of generating one

elliptic hypothesis with the selected edge. Second, the quasi random scheme reduces the

requirement on the number of samples, i.e., a small number of samples can promise a

robust and accurate result, which improves the efficiency of the algorithm. Third, the

least square approach for parameter estimation, and the number of pixels on the ellipse

for updating the ROI heighten the accuracy and robustness of the algorithm.
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4.2.2 Methods

(1) Algorithm Overview

The flow diagram of the proposed algorithm is summarized in Fig. 4.9. The

algorithm begins with edge extraction to detect skeletons (edges) of the areas in an

image. In pre-processing, the edges that have a high probability of being on the same

ellipse are obtained. Finally, the improved IRHT (iIRHT) algorithm [118, 119] is

proposed to detect ellipse from the obtained edges.

Figure 4.9 Flow diagram of the proposed algorithm.

(2) Edge Extraction

Let us take fetal head detection in US Images (Fig. 4.12 (a)) as an example, in

which skeletons of fetal skulls are to be extracted as the brightest areas by edge

extraction. First of all, a Gaussian filter with a window is exploited to reduce the

speckle noise (Fig. 4.12 (b)), and a white top-hat transform is operated to increase the

contrast with a structuring element (Fig. 4.12 (c)).

After that, the iKFCM algorithm [69] is applied to distinguish the brightest areas

from the fetal US images (Fig. 4.12 (d)). In this way, the mean value and the

standard deviation ( ) of each cluster can be calculated from the

segmentation results. Since only main skeletons of fetal skulls are necessary as the input

of the ellipse detection, it is not essential to extract the whole brightest areas comprising

much noise.
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Subsequently, a global thresholding is utilized to convert the intensity image into a

binary image, and then the brightest areas are extracted from the background by a

simple operation that compares image gray values with a threshold value T (Fig. 4.12

(e)). The following threshold value T verified in the experiments, is used to extract the

brightest areas,

1 1
0.75

k k
T = (4.11)

where, and are the mean value and standard deviation of the brightest

areas, respectively (Here, the brightest areas are considered as the cluster).

Concerning binary image, a binary morphologic opening operation with a

structuring element is used to remove some small bright areas, and a closing operation

with a structuring element is used to smooth the boundaries of the large bright

areas. In the end, the skeletons (or edge curves) of the brightest areas are extracted by

distance transform [120] (Fig. 4.12 (f)).

(3) Pre-processing

(3-1) Removal of Redundant Pixels

In Fig. 4.10 (b), if a junction on the extracted edges (Fig. 4.10 (a)) is zoomed,

many redundant pixels are left around corners, which could lead to the errors in the

ellipse detection stage. Those pixels present in the corners tend to form L shape, as

shown in Fig. 4.11, and are eliminated as redundant pixels [121] (Fig. 4.12 (g)).

(3-2) Edge Grouping

After the removal of redundant pixels, edge curves are classified by the number of

pixels on each connected curve. Those less than 10 pixel long are excluded because they

may be the effect of noise or do not contribute to ellipse detection process. Meanwhile,

the longest connected edge curve is selected as one part of the assumed target ellipse,

and a search region, which is defined below, can be found such that the edge curves

outside the search region of the selected edge curve can be certainly rejected from

grouping with the considered edge curve. Such rejection is possible by defining a

suitable search region such that the edge curves inside the search region are the only
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edge curves that may be grouped with the considered edge curve for forming ellipses.

Such a search region is shown in Fig. 4.13 (a). The shaded region is the search

region and the edge curves that do not lie completely inside the search region are not

grouped with the considered edge curve [122]. In Fig. 4.13, the shaded region

shows the search region for the edge curve . Based on the search region, it can be

concluded that the edge curves , and cannot be grouped with for

generating one elliptic hypothesis. The search region can be found using the lines ,

and and the midpoint of the edge curve shown in (b).

(a) (b)

Figure 4.10 Edges and redundant pixel.

Figure 4.11 Redundant pixel to be removed.

Determining of the Search Region

The search region R is defined as follows. For a given edge curve e, let the tangents

to the edge curve at its end points and denote and , respectively, and let

the line segment connecting the end points and denote . The tangents to the

edge curves are computed using reference [123], and the value of the control parameter

is chosen to be 4. The two tangents and and the line divide the image into

two regions, and , as shown in Fig. 4.13 (b). Then the search region R is

determined as the region that does not contain , which is the middle point of the

edge curve e. In Fig. 4.13 (b) and Fig. 4.12 (h), the search region R is determined as ,

i.e., , because .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 4.12 Edge extraction and pre-processing on an US image, (a) a clinical fetal US

image, (b) the result of a Gaussian filter on (a) , (c) the result of a white top-hat

transform on (b), (d) the segmentation result on (c), (e) the result of a global

thresholding on (d), (f) the skeletons extracted from (e), (g) the result after removing

redundant pixels, (h) the search region of the longest connected edge curve, (i) the

reserved edges after edge grouping, (j) the ROI decided by the estimated ellipse.
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Finding the Edge Curves within the Search Region of an Edge Curve

For a given edge curve e, after finding its search region R, the edge curves within

the search region can be found as follows. An edge curve if all the following

three criteria are satisfied:

Search region criterion 1 (S1): and are on the same side of .

Search region criterion 2 (S2): and are on the same side of .

Search region criterion 3 (S3): and are on the opposite side of .

After the edge extraction and pre-processing, the obtained curves have a high

probability on the same ellipse (Fig. 4.12 (i)).

(a) (b)

Figure 4.13 Illustration of the detection of the search region, (a) illustration of the search

region, and (b) definition of the search region.

(4) Iterative Randomized Hough Transform

In US images, fetal skulls often appear as the brightest areas with some

discontinuities, because fetal skulls are not completely closed. Besides, some other

structures also may generate bright spots in the image. Furthermore, various artifacts

and noise are usually present in US images. Consequently, a useful head detection

algorithm must effectively deal with these disturbances. The iterative randomized

Hough transform (IRHT) [115] was recently developed for the detection of ellipse with

large discontinuities and strong noise, derived from randomized Hough transform (RHT)

[124] method. The following items provide a brief description of the RHT algorithm

and the IRHT algorithm.

(4-1) Randomized Hough Transform (RHT)

In a binary image, the curve to be detected can be modeled by , where
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comprises n-dimensional parameters, represents the

coordinates of pixels on the curve. The RHT method first randomly takes a sample of n

pixels, , and maps this sample into one point in the

n-D parameter space by solving a set of n-s equations . If c is valid for

ellipse, the counter at c is increased by one in the parameter space and stored in its

corresponding accumulator. This process is repeated until a predefined number of valid

samples (K) are processed. The location of the counter peak in the accumulators denotes

a remarkable possibility of the curve in the image. For ellipse detection ( ), the

following equation is suitable to be utilized [76, 125]:

2 2 2 2( ) 2 0x y U x y V xy Rx Sy T (4.12)

where, the five parameters, , can be converted into the standard ellipse

parameters , are the center coordinates of the ellipse, a

and b are its major and minor semi-axes, and is the angle of rotation, then the ellipse

eccentricity is given by and
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where, U and V depend only on and e. In particular, for a circle, U and V are zero.

(4-2) Iterative Randomized Hough Transform

The IRHT method employs a randomized Hough transform (RHT) to a region of

interest (ROI) in the image space by iterative parameter adjustment and reciprocal use

of the image space and parameter space. In the RHT method, the ROI is always the

whole image and it does not change during the whole process. However, to get more
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accurate results, the ROI in the IRHT method is updated based on the latest estimates of

parameters during the iteration process. Thus, noise pixels are gradually excluded from

the ROI, and the estimation progressively becomes close to the target.

The steps of the IRHT algorithm are described in the following, and its flow

diagram for ellipse detection is shown in Fig. 4.14.

Figure 4.14 Diagrams of the IRHT and iIRHT algorithms (Black characters: IRHT; bold,

italic characters surrounded by red rectangle: iIRHT; blocks with only black characters:

common to IRHT and iIRHT).

Step-1 Edges are obtained by edge extraction, and the ROI is set as the whole image;

Step-2 Scan all pixels in the ROI, and store obtained edge pixels in a pixel list.

Zero-clear the accumulators. Set , where i is a counter for false detections;

Step-3 A sample of 5 pixels is randomly selected from the pixel list;

Step-4 A parameter solution c( ) is estimated for this sample with Eq.
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(4.12). To ensure that c represents a valid ellipse, the following conditions need

to be met: , a, and b are positive, and are not larger than the

image width and height respectively, and a and b are not longer than one half of

the diagonal length of the image. If c is not valid, then ; subsequently,

if (= a large number, such as 1000), then return to Step-3; otherwise, the

detection process terminates and reports failure of detection;

Step-5 Increase the count for the accumulator that corresponds to c. If K samples have

not been processed, then return to Step-3, where is often used by the

original IRHT method [115];

Step-6 A parameter estimate, , is determined from the locations of the count peaks

in the accumulators, and update the ROI based on (see below for more

specific procedure);

Step-7 If has converged (see below for explanation of convergence conditions),

output the result detected in the final iteration as the final result; else,

return to Step-2.

Update of the ROI

A slightly larger region than the region of the estimated ellipse is used to

compensate for uncertainties in the estimated parameter . In Fig. 4.12 (j), the ROI is

simply considered as a rectangle, whose center and angle of rotation are the same as

( is indicated by a gray dot in Fig. 4.12 (j)) and of the estimated

ellipse, width equals , and height equals , where and indicate

the standard deviations of a’s and b’s values from the found K samples.

Conditions for ’s Convergence

If the ellipses detected in two successive iterations satisfy the following conditions,

is judged to be converged. The conditions are as follows: less than in ; less

than 2 pixels in each of and b; and less than 6 pixels total in and b.

(4-3) Improved Iterative Randomized Hough Transform

Based on the principle of the IRHT method, an improved IRHT (iIRHT) algorithm

is proposed by introducing a quasi random scheme, the least square approach, and the

number of pixels on the ellipse, to achieve high accuracy, robustness and efficiency of
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the algorithm. The flow diagram of the iIRHT algorithm is similar as that of the original

IRHT algorithm, but the improvements are applied to Step-1, Step-3, Step-4, and Step-6

as indicated by bold, italic characters surrounded by red rectangles in Fig. 4.14. Note

that the other blocks and procedures are common to the original IRHT algorithm.

In Step-1, redundant pixels on edges are removed at first, and the edge pixels

generating one elliptic hypothesis at a high possibility with the longest connected edge

are reserved by edge grouping, and then the ROI is initialized as the whole image. In

Step-3 (the quasi random scheme), 3 pixels are randomly selected from the pixel list as

the centers of the three windows, where the distance of each selected pixel should be

larger than 10. Then, a sample of pixels from the pixel list are selected in these 3

windows; In Step-4, all the selected pixels in the windows are fitted to an ellipse with a

parameter solution c( ) by the least square approach. In Step-6 (the

number of pixels on the detected ellipse), top-M peaks are detected from the

accumulators, and their numbers N of pixels on the ellipses are calculated; Determine

with the maximum N from the top-M peaks, and update the ROI based on . In

addition, , which is smaller than that value ( ) of the original IRHT

method [115], and contributes to a higher efficiency of the iIRHT algorithm.

4.2.3 Experiments

(1) Fetal Head Detection

Clinical fetal ultrasound images are provided by Nanjing Maternity and Child

Health Care Hospital in China, each of which has had prior consent from the Mothers,

before being used in this research. For the purpose of raising the performance of the

algorithm, a priori information, reported by Hadlock et al. [126], is applied into this

experiment, which shows that the eccentricity of the human fetal head has a

mean ( ) of 0.783 and a standard deviation ( ) of 0.044. It could be used to construct

a constraint as , namely, , and about 99.7%

of fetal heads would have an eccentricity in this range. All programs of each method in

C++ run on a quad-core 2.60 GHz computer with 8GB memory.

(1-1) One Clinical Ultrasound Image

A clinical US image is applied to test the performance of several methods, and the
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red ellipse in Fig. 4.15 (a) is detected by surgeons manually. The edges in Fig. 4.15 (b)

are extracted by edge extraction, and the skeletons in Fig. 4.15 (c) are detected by

pre-processing. For each method, 100 groups of the parameters of the detected ellipses

are recorded in Fig. 4.15 (d)-(m) and Table 4.4.

Table 4.4 The means of the estimated parameters for several methods.

Methods Parameters

a b N Time(s)

RHT

IRHT

iIRHT

(M=3)

iIRHT

(M=6)

iIRHT

(M=9)

Figure 4.15 (d)-(h) enumerate the center coordinates of the detected ellipses via

RHT, IRHT, iIRHT (M = 3), iIRHT (M = 6), and iIRHT (M = 9) algorithms, where the

red points in each figure are the ground truth of the center coordinate of the ellipse, and

the horizontal and vertical axes correspond to the x and y axes, respectively. It can be

learnd that the detected center coordinates of RHT method are very divergent from the

ground truth, those of IRHT method are relatively a little convergent from the ground

truth, and those of iIRHT methods are very convergent from the ground, where iIRHT

(M = 6) method performs best and acquires the most convergent results. On the other

hand, based on the comparison of the means of each parameter detected via several

methods also prove that the iIRHT (M = 6) method achieves the best accuracy of the

estimated parameters, the best robustness and the best efficiency ( s) of the

algorithm. Thus, in the following experiments and applications, M is selected as 6 for

the proposed iIRHT algorithm.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)
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(j) (k)

(l) (m)

Figure 4.15 One US image and the detected results (a) a clinical fetal US image, (b)

extracted skeletons, (c) reserved pixels by pre-processing from (b), (d)-(h) distributions

of the centers of the detected ellipses by RHT, IRHT, iIRHT (M = 3), iIRHT (M = 6),

and iIRHT (M = 9), (i)-(m) distributions of the major and minor axes of the detected

ellipses by RHT, IRHT, iIRHT (M = 3), iIRHT (M = 6), and iIRHT (M = 9).

(1-2) A Test Database

In this sub-section, thirty-five clinical US images are utilized as a test database to

compare the performance of three different methods, i.e., the RHT algorithm, the IRHT

algorithm, and the proposed iIRHT algorithm (M = 6), where six images are shown in

Fig. 4.16 as examples. Since the parameters of the ellipse is five-dimension, after the

ground truth of each image in the test database is obtained manually by the surgeons,

the distance between the estimated parameters ( ) and the ground truth

( ) is calculated by

2 2 2 2 2 2

0 0
( ) ( ) ( ) ( ) ( )

g g g g g
d x x y y a a b b (4.18)
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Then, the RMS value of a set of d’s is computed by

2 2 2

1 2

1
( )

n
RMS d d d

n
(4.19)

where, n is the test number of each image for each method, and herein n is selected as

50. Consequently, the mean RMSs and the mean execution time Ts of the algorithms are

calculated based on the test database for each method, and listed in Table 4.5.

From Table 4.5, the proposed iIRHT method achieves the best accuracy, robustness

and efficiency of the algorithm, compared with the RHT method and the original IRHT

method. However, the mean RMS of the RHT method is extremely large, which proves

it may fail when the image noise is very strong.

Figure 4.16 Six clinical US images.

Table 4.5 Comparison of three methods.

Methods Mean RMS Time (s)

RHT

IRHT

iIRHT

4.2.4 Conclusions

An improved iterative randomized Hough transform (IRHT) method has been

proposed for automatic fetal head detection on ultrasound images. At first, the main

skeletons of the object are extracted from images by the edge extraction. Then, the

pre-processing is applied to remove redundant pixels and exclude edges that cannot

generate one elliptic hypothesis with the selected edge by edge grouping. Meanwhile,

the quasi random scheme, the least square approach, and the number of pixels on the

ellipse are introduced to improve the proposed method. The experiments on clinical
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fetal ultrasound images demonstrate that the proposed iIRHT method achieves more

robust and accurate results, and has a better efficiency and performance than the RHT

method and the original IRHT method.

4.3 A Novel 3D Ultrasound Calibration System

4.3.1 Introduction

In recent decades, much research has been undertaken to make ultrasound

calibration more reliable, accurate, and simultaneously easier and quicker to perform.

With the commercial availability of a new generation of 3D US machines, real-time 3D

US calibration based on real-time 3D US volumes offers many new opportunities for

computer-assisted diagnosis, therapy, and intervention. Usually, calibration methods are

classified with respect to the target geometry (a phantom) they rely on. 3D US

calibration methods using a 3D US probe have been reviewed specifically in [127, 128].

The simplest phantoms are probably single-point and multi-point targets. This can

be formed by a pair of cross-wires or a stylus [127]. Poon and Rohling [127] compared

three phantoms, namely an IXI-fiducial wire phantom, a cube phantom, and a stylus

based on a 3D curved-array US probe. They obtained the root mean square (RMS)

errors of the point accuracy measure of 2.15 mm (IXI-wire), 4.91 mm (cube), and 2.36

mm (stylus) through an optical tracking system. Lang et al. [129] examined two similar

solutions based on 2D US images [130, 131] extended to 3D using EM tracking, and

obtained an average distance error of mm. Nevertheless, most of them

share the alignment and feature extraction problems.

Z-fiducial (N-fiducial) phantom addresses the alignment problem of point target

methods. Bouchet et al. [132] designed a Z-phantom consisting of 39 nylon wires based

on swept-volume US and an optical tracker. The maximum errors in the three

dimensions of the volume are 0.4 mm in the elevation direction, 1.5 mm in the lateral

direction, and 1.1 mm in the axial direction, leading to a total target location error of 1.9

mm. However, this technique required an average of 300 points for 3D US volumes,

which made the calibration system inefficient.

Plane phantom methods are based on detection of the intersecting line of a planer

surface with the 2D US beam. Michael et al. [133] optically tracked a single plane
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membrane phantom, and achieved an RMS distance error of 1.15 mm. However, the

major drawback of single-plane phantoms resides in their barely discriminative

geometry. Meanwhile, the 12-step acquisition protocol is necessary for obtaining robust

results, which leads to a lot of redundancy. Another drawback is that the overall

calibration time is about 20 minutes, and the feature extraction problem results in a

visual verification and eventually a correction.

Registration-based methods rely on surface or intensity based registration

techniques and therefore can be performed on images of objects with arbitrary shape.

Lange and Eulenstein [134] compared two image registration-based methods based on

swept-volume 3D US, i.e., the tracked phantom (TP) approach and hand-eye (HE)

calibration. The TP approach registered a US volume of a phantom with its associated

CT volume, and the HE calibration registered two US volumes acquired from two

different directions on the same phantom. They yielded an RMS location error of 3.3

mm with a magnetic tracking system. Huang et al. [135] described an image registration

based 3D TEE-EM (transesophageal echocardiography) calibration system, and

achieved an FRE (fiducial registration error) of mm and an average TRE

(target registration error) of mm. Parthasarathy et al. [136] fused a

pre-procedural MR roadmap with real-time 3D TEE for cardiac stem cell therapy. They

validated the system on a moving heart phantom and produced a landmark registration

accuracy of mm and an average registration accuracy of mm

through EM tracking. Nevertheless, a robust registration procedure is often presumed

for such methods, and sometimes a favorable matching process cannot be promised,

which will cause a poor performance of the registration-based methods.

Some phantom-less methods are reported to solve 3D US calibration by locating

the tip of a tracked stylus or needle precisely in 3D US volumes [137]. However, their

validation on the calibration results was based on precision and not accuracy, and it was

difficult to locate the needle tip accurately owing to 3D image resolution and artifacts.

In previous research, the high accuracy of point-based calibration methods has

been demonstrated by several research groups [138-140]. Therefore, a novel point-based

cones' phantom consisting of twelve resin cones is proposed for real-time 3D US

calibration by EM tracking, which addresses the alignment and feature extraction

problems, though one single cone phantom [141] has been used for free-hand 3D US

calibration. In contrast to existing 3D US calibration systems, the feature extraction of
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the proposed system is fully automated so that fiducial points can be segmented

precisely in 3D US images, and the results prove that using only two US volumes can

achieve high accuracy and efficient calibration.

4.3.2 A New Cones’ Phantom

3D US calibration aims to determine the spatial transformation for mapping points

from the 3D US space to the 3D tracking space. The transformation comprises six

parameters: three translations in the direction of the x, y, and z axes and the three

rotations, azimuth, elevation, and roll, about these axes.

Figure 4.17 shows the proposed calibration setup, in which twelve plastic cones,

whose tips are utilized for the calibration, are placed on the bottom of a water tank. The

3D US probe with a 3D tracking sensor is fixed above the phantom by a plastic holder,

so that the beam surface contacts the water. The transmitter of the 3D EM device is

settled near the water tank. The x-y-z system is the coordinate system of 3D US images,

the x'-y'-z' system is the coordinate system fixed to the 3D US probe, and the x"-y"-z"

system is the world coordinate system of the 3D EM transmitter.

Figure 4.17 The experimental setup of the 3D US calibration system.

The phantom is composed of twelve transparent resin cones of six different types.

The bottom diameters of all types are 30 mm, and the heights of the six types are 30 mm

(C-I), 40 mm (C-II), 50 mm (C-III), 60 mm (C-IV), 70 mm (C-V), and 80 mm (C-VI),
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respectively. Since the field of view of 3D US images is fan-shaped, its top is narrow

and its bottom is wide. Accordingly, in the phantom, as shown in Fig. 4.18 (a), the two

tallest cones are arranged in the middle, and other lower cones are arranged on both

sides, i.e., the cones of No.5 and No.6 are C-V, No.7 and No.8 are C-VI, No.1 and No.2

are C-I, No.3 and No.4 are C-II, No.9 and No.10 are C-III, and No.11 and No.12 are

C-IV. In addition, as shown in Fig. 4.18 (b), nine cones are arranged as a target model

used for the validation, where the cones from No.4 to No.6 are C-IV (the taller ones in

the middle), and the others are C-I (the lower ones on both sides).

(a) (b)

Figure 4.18 Experimental setup of the 3D US calibration system.

4.3.3 Calibration Matrix

The proposed 3D US calibration system addresses the feature extraction problem,

i.e., the fiducial points (the tips of the cones are shown as white points in Fig. 4.19 (a))

are identified automatically and precisely in 3D US images by the following steps.

Step-1: The 2D slice of (about the quarter position in the y direction) is

extracted from 3D US images. It includes the twelve ellipses that correspond to

the twelve cones in the phantom (Fig. 4.19 (b)). Note that in the 2D slice the

cross section of each cone is observed as an ellipse due to US deformation.

Step-2: Through the bilateral filter, the iKFCM segmentation [69], and distance

transformation in the 2D slice, the skeletons of the twelve ellipses are extracted

(Fig. 4.19 (d)).

Step-3: The twelve ellipses are detected by the improved IRHT method [118, 119] with

the restrictions of , , and , where the semi-major axis a

and semi-minor axis b of each cone should be less than (256 is the
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maximum value of the z-axis), because a total of three cones are arranged in z

direction, and e denotes the eccentricity of the detected ellipse. Since the US

deformation is limited, the ellipses deformed from the circles of the cross

sections of the cones should not be so flat that the eccentricity of the ellipses

could be confined in the range of . Multiple-ellipse detection is

accomplished by the method in [115], and then five elliptical standard

parameters ( ) of each ellipse are estimated.

Step-4: Similarly, from the five 2D slices in y direction (i.e., y=130, 135, 140, 145, and

150), five sets of the twelve ellipses are extracted, and then the average values of

the five parameters for each ellipse are calculated to suppress detection errors.

Step-5: To detect each cone's tip and identify which ellipse that detected tip belongs to,

each ellipse's average center of and average semi-major axis

(e.g., the red ellipse in Fig. 4.19 (d)) are computed, where, ep is the ID number

of the twelve cones. In the 2D slice of , a rectangular ROI (the gray

rectangle in Fig. 4.19 (c)) is estimated, where the ROI's centerline is the line of

(the white vertical line in Fig. 4.19 (c)), and length and width are 512

(the maximum value of the y-axis) and , respectively. In the ROI area,

the two lines of the edges of the cone are detected using Hough transform, so

that the cone's tip is detected as the cross-point of the detected two lines.

However, sometimes only one edge of the cone can be found (e.g., the rightmost

cone in Fig. 4.19 (c)). In this case, the cross-point of the detected one edge and

the line of is detected as the cone's tip. Similarly, the other cones' tips

are detected. Then the 3D location of each tip in the phantom is decided

automatically and precisely from the 3D US volumes.

(a) (b) (c) (d)

Figure 4.19 Automatic fiducial point detection in 3D US images. (a) 3D US volume, (b)

2D slice on x-z plane, (c) 2D slice on x-y plane, (d) skeletons of image (b).
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On the other hand, the position of each tip in the phantom is manually

measured by a pen probe, as shown in Fig. 4.17, where denotes the coordinate of

each cone's tip in the 3D tracking space. The calibration matrix , and the

reference tracker's transformation matrix have the following relationship:

2 2tip pr W US pr US
P T T P (4.20)

where , x and y are the column and row indices of the pixel on the

extracted slice in x-y plane, and z is the index of the extracted slice along the z-axis. The

scale factors are integrated with the calibration matrix ; therefore, the extra scale

factor in the computation is not required. After being multiplied by the inverse of the

reference transformation matrix from left, Eq. (4.20) can be written as :

1

/ 2 2tip pr pr W tip US pr US
P T P T P (4.21)

where is a vector in the 3D US probe coordinate system. Considering n

positions of the vertices in the phantom, the following equation is obtained from Eq.

(4.21):

1

1

/ ,1 / , 2 2

1

, ,

1 1

n

n

tip pr tip pr n US pr US pr US

n

x x

y y
P P T T T

z z
(4.22)

where . Then, the calibration matrix is calculated by Horn's method

[130, 142], as follows:

1

2 / ,1 / ,
( , , ) ( )T T

US pr tip pr tip pr n US US US
T P P T T T (4.23)

4.3.4 Results and Discussion

In practice, a Philips iU22 US system (Fig. 4.20 (a)) with a V6-2 3D curved-array

US probe (Fig. 4.20 (b)) is employed to collect 3D US data, since curved arrays offer
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significantly improved sizing than matrix arrays. The iU22 US system supports high

resolution 2D/3D/4D imaging, and have a 6 to 2 MHz extended operating frequency

range and a field of view of 66°. The Ascension 3D guidance trakSTAR (Fig. 4.21 (a))

with some Model 90 6-DOF tracking sensors (Fig. 4.21 (b)) is utilized for tracking,

which can realize fast 3D tracking (240-420 updates per second). The diameter of the

3D tracking sensor is just 0.9 mm, so that it can be inserted into the surgical tool

developed by Zhang et al. [26], whose inner diameter is only 1.0 mm. The static

accuracy of the position for the tracking sensor is 1.4 mm RMS and the orientation is

0.5 RMS. The specifications of the Ascension 3D guidance trakSTAR is listed in Table

4.6. Moreover, all programs of each process in C++ run on a quad-core 2.60 GHz

computer with 8GB memory.

(a) (b)

Figure 4.20 Ultrasound system.

(a) (b)

Figure 4.21 A 3D EM tracking device.
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Table 4.6 Specifications of the Ascension 3D guidance trakSTAR.

Parameter Detail

Company Ascension

Type Model 90 Sensor

Size

Sensor

Housing:

Outside Diameter: 0.9 mm (0.035 inch)

Length: 8.8 mm (0.35 inch)

Sensor Cable: 3.3 m (10.8 ft) distance

Wide Range

Transmitter:

12” (30.5cm) cube with 20’ (6.15m)

cable

Degrees of freedom Six (position and orientation)

Translation range ±2.1m in any direction

Angular range All attitude: ±180° azimuth and roll, ±90° elevation

Update rate up to 600 updates/second

Outputs
X, Y, Z positional coordinates, orientation angles,

orientation matrix and quaternion

Static accuracy
3.8mm RMS position

0.5 degree RMS orientation

Interface USB / RS232

Power 100 to 240V, 50/60 Hz

Operating

temperature

59°F to 95°F (15°C to 40°C), 95% non-condensing

humidity

(1) Calibration Precision

Validation of the calibration is very necessary to evaluate the performance of the

3D US calibration in reconstructing the 3D plane in the tracking space. There are two

common evaluation criteria for measuring calibration errors: (1) fiducial registration

error (FRE) is the RMS distance between the located position of each fiducial as

transformed from the US image space to the tracking space and the position of that

corresponding fiducial located in the tracking space, which is used to evaluate how well

the EM and US points fit together; (2) target registration error (TRE) is computed in the

same manner as FRE, but the points for TRE are not used to estimate the calibration

matrix, and thus it provides a better indication of the accuracy of the calibration.
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Twenty-four fiducial points from 3D US images and tracking information were

recorded, where 12 points are detected from one US volume by using the proposed

phantom, and the other 12 points are detected from one more US volume by using the

proposed phantom whose base is rotated by 180°. Additionally, 18 points from 3D US

images are used for TRE measurement, where nine points are detected from one US

volume by using the target model in Fig. 4.18 (b), and the other nine points are detected

from one more US volume by using the same target model with some horizontal

translation.

During the calibration, six points (the tips of the phantom from No.1 to No.6) are

used initially, increasing by one point at a time up to 24 points (the point is added

sequentially as the marked number increases from small to large, where the rotated

phantom is marked in the same order) for FRE validation. For each set of calibration

points, 18 points based on the target model are used for TRE validation. In total, the

data of 10 groups (the data of the same experiment for ten times) are recorded, and each

of which corresponds to 24 fiducial points and 18 target points. Additionally, the

locations of the nine points phantom during this experiment are different, since the

locations of the nine points phantom are considered as being changed horizontally and

vertically so that the nine points phantom can cover the entire 3D US space. By doing

this, location errors caused by image distortion on distal region of 3D US images can

also be included into TRE.

The means and standard deviations of the 10 groups are calculated and illustrated

in Fig. 4.22, with the FREs and TREs at each number of calibration points. As the

number (n) of calibration points increases, it can be found that: (1) the means and

standard deviations of FREs and TREs have a sudden decrease at n = 9 (the first black

vertical line in Fig. 4.22); (2) those values start to converge at n = 21 (the second black

vertical line in Fig. 4.22). As a result, the minimum number of the points used for the

calibration system is 9. Moreover, more points (22 or more) do not cause much

improvement for calibration results. Thus, 24 fiducial points from two US volumes are

chosen to estimate the calibration matrix for locating the 3D fetal model with the oral

cavity and airways, and the corresponding FRE of and TRE of

are achieved in this case. Moreover, though feature extraction is

computed in tens of seconds, the overall calibration time of about 6 minutes is mostly

due to the manual measurement of the tip of each cone by a pen probe.
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Figure 4.22 The validation results of the 3D US calibration system.

(a) (b)

Figure 4.23 A pen probe (a) and its transformation estimation (b).

Table 4.7 Comparison of the results of previous studies and the proposed approach.

Methods Results (RMS)

Lange and Eulenstein 3.3 mm

Huang et al. FRE: TRE:

Parthasarathy et al.

Lang et al.

The proposed approach FRE: TRE:

Here, the pen probe is shown in Fig. 4.23 (a), which is attached by a Model 90

6-DOF tracking sensor, and is used to measure the positions of the objects in 3D

tracking space (the coordinate system of EM transmitter). Unknown transformations of
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the pen probe is estimated by pivot calibration, in which both the tip location relative to

the tracked coordinate system and the fixed point’s coordinates in 3D tracking space are

computed by rotating the pen probe while its tip location remains fixed, as shown in Fig.

4.23 (b). Although two different poses are sufficient to calculate the unknown

transformations of the pen probe, twenty different poses are used to take the average

value of the transformations.

(2) Discussion

The results of the proposed calibration method based on 24 fiducial points are

comparable to those obtained by previous calibration methods using EM tracking. The

accuracy of the proposed approach is better than the majority of the methods from the

comparison in Table 4.7. Although Lang et al. [129] obtained better accuracy than did

the proposed approach, a set of 30-50 volumes is required for each experiment to ensure

the best accuracy, which made the calibration process long and tiresome. In conclusion,

the proposed system guarantees satisfactorily accuracy, and also only requires a simple

experimental setup and two US volumes for 3D US calibration.

4.4 Conclusions

This chapter presents several basic algorithms on image segmentation , ellipse

detection, and 3D US calibration, which significantly contribute to the final

performance of the system. The improved Kernel-based fuzzy C-means algorithm

heights the segmentation accuracy for 2D US image segmentation. The improved

iterative randomized Hough transform method reduces the detection error and enhances

the efficiency of the algorithm for detection of fetal head in 2D US images, fetal mouth

in fetoscopic images, and position of each cone in the 3D US calibration system. The

3D Ultrasound Calibration System promises a high location accuracy and robustness of

the system for locating the fetal facial surface extracted from 3D US data, the 3D fetal

model with oral cavity and airways mapped with the extracted fetal facial surface, and

the surgical tool detected from 3D US data.
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Chapter 5 3D Fetal Face Detection

5.1 Introduction

In the last few years, ultrasound (US) images have been widely used for

visualizing and diagnosing internal organs and fetuses due to their safety, cost efficiency

and impact-free characteristic compared to other modalities, e.g. MRI and CT.

Real-time 2D and 3D US images have become important aids for guiding a minimally

invasive surgery [33], e.g., as described in Chapter 1 , fetoscopic tracheal occlusion

(FETO) [9] surgery, which is operated to treat a severe birth defect of the fetuses called

congenital diaphragmatic hernia (CDH). In order to navigate such a surgery, the

detection of 3D fetal face and location of key facial features from 3D US data, e.g. nose,

eyes, lips and mouth, could be very helpful for reducing the surgical risk.

On the other hand, the ordinary 3D sensor-based 3D face recognition technology

has been developed for many critical applications over the past decades, such as human

computer interface, personal authentication, surveillance systems, etc. Some earlier

works on curvature analysis [78-81] are proposed for face recognition based on distinct

facial curvature features. 3D model-based methods [82, 83] are often employed for face

recognition by fitting a priori 3D face model to a given face. In addition, some methods

represent the 3D data in a different domain for face recognition, e.g. 3D PCA [84],

shape index [85], point signature [86], and spine image [87], etc. Some other methods,

e.g. face profile extraction [88], and facial curves [89], are also reported recently.

Several surveys of 3D face recognition methods can be found in [143-145].

However, face recognition technologies are rarely exploited in medicine, especially

for 3D US images. To our best knowledge, there is only one work to detect 3D fetal face

from US volumes for the optimal view [90]. They proposed a learning-based approach

by combining 3D and 2D information to detect fetal face from 3D US volumes in one

second on a dual-core 2.0 GHz computer, but their method required a priori 3D face

mesh model for face detection and a high calculation complexity on the registration

between the 3D model and the object. Additionally, curvature-based surface descriptor

is one of the most successful 3D surface representations for 3D face recognition. As a

result, a curvature feature-based approach is proposed to automatically detect 3D fetal
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face and accurately locate key facial features for guiding the FETO surgery in a high

efficiency [146]. After that, the detected position of the upper lip in 3D US space is

transformed into 3D tracking space by a 3D US calibration system, and then the

physical distance between the detected upper lip and the tip of the surgical tool will be

estimated to provide an alarm for surgeons in the future.

This work is different from the previous ones in several aspects. First, the proposed

method does not require any priori knowledge or training data. Second, the scaling

between a 3D face model and a given face is not necessary to be computed. Third, a

new boosting traversal scheme based on the spatial relations between each facial feature

is presented for 3D face detection and facial feature location. Fourth, this system has a

high efficiency and takes about 625 ms for locating all key facial features on a

quad-core 2.60 GHz computer.

5.1.1 Background

As described in Section 1.1.3, in an FETO surgery, a fetoscope is inserted through

the abdominal wall into the uterus, and a detachable balloon is placed in fetal trachea for

the tracheal occlusion by a flexible and slender surgical tool developed in [25], as

shown in Fig. 5.1, to stimulate lung growth via increasing the pressure of fetal chest

cavity. During the operation, the pose of a 3D US probe is easily controlled within 15°

from the frontal view so as to allow an optimal view of the fetal face.

(a) (b)

Figure 5.1 The FETO surgery.

Besides, the surgical tool is automatically operated by a robot control system

during operations. In order to promise the surgical security, the movement accuracy of
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the control system should be improved further, and the moving speed of the surgical

tool should be reduced if the distance between the fetal mouth and the tip of the surgical

tool is less than 1.5-2.0 cm. For such a purpose, automatic fetal face detection and

accurate and precise location of the key facial features are very significant for the

navigation system of the FETO surgery.

Figure 5.2 The flow diagram of the proposed approach.

5.2 Method

5.2.1 Process of the Proposed Method

In this chapter, the key fetal facial features are identified, including the nose tip,

two eyes inner corners, nose upper bridge and upper lip, by the mean and Gaussian

curvatures in the 3D fetal face extracted from 3D US volumes. Figure 5.2 shows the

major steps of the proposed approach based on a boosting traversal scheme.

At first, the depth map of the fetal face is obtained from the 3D US volumes.
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Second, the candidate regions of the nose tip, two eyes inner corners and nose upper

bridge are segmented by the HK classification with different parameters. Third, the

positional relations among four features are verified by the Filter 1. If they meet the

conditions of the Filter 1, the region of interest (ROI) of the mouth area is estimated to

identify the position of the upper lip; otherwise all possible combinations of four

features among all candidate regions are traversed and validated by the Filter 1 until an

appropriate combination is found. Fourth, the candidate regions of the upper lip are

separated by the HK classification in the ROI of mouth area, and one of them is

extracted based on the Upper lip rule 1 and 2. Finally, the positional relations among all

detected five features are checked by the Filter 2. If the Filter 2 is satisfied, then a fetal

face with the key features is successfully detected; otherwise the traversal process on

the other combinations of each feature continues until a conclusion is obtained.

5.2.2 Acquisition of Depth Image for Fetal Face

In experiments, a physical fetal phantom made of silicone resin is scanned in a

water tank, by a Philips iU22 US system and a V6-2 3D US probe to obtain 3D US

images with the size of . Herein, a fetal phantom at the

gestational age (GA) of 32 weeks is taken as an example, and its 3D US data is shown

in Fig. 5.3 (a). As we all know, 3D US images may have low resolution, and the

imaging quality is easily affected by phantom material and air bubbles in the water.

Therefore, a method is proposed to extract 3D fetal facial surface by scanning the slices

along z axis. The procedure of the method is described in the following steps, where the

slice of z =128 is shown as an example in Fig. 5.3 (b).

Step-1 The boundaries in the 2D slice of z =128 are detected by canny edge detection in

Fig. 5.3 (c).

Step-2 The fetal head is detected by fitting an ellipse to the detected boundaries in Fig.

5.3 (c) via the improved iterative randomized Hough transform (IRHT)

algorithm proposed in [118, 119] and Section 4.2 , so that five elliptical standard

parameters are obtained. Next, a foursquare ROI with

the center of and the side length of is selected;

Step-3 The largest connected region is thresholded in the ROI area and filtered by

binary morphologic closing and opening operations and a hole filling filter, as

shown in Fig. 5.3 (d);
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(a) 3D US data (b) 2D slice (c) edges & ellipse

(d) the largest region (e) contour (f) upper edges

(g) 3D point cloud (h) depth image (i) smoothed result

Figure 5.3 Acquisition of depth image for fetal face.

Step-4 The contour of the largest connected region is detected by a binary contour filter

in Fig. 5.3 (e), and the upper edges above the midline of the contour are

accepted in Fig. 5.3 (f);

Step-5 Repeat the steps from (3) to (4) on the slices from z = 50 to z = 200 (because the

fetal head is placed at the center in 3D US space), then a 3D point cloud of the

fetal facial surface is extracted in Fig. 5.3 (g).

Step-6 Finally, the depth image of the fetal facial surface is mapped to 2D space, as

shown in Fig. 5.3 (h).
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This method does not consider the impact of obstructions in front of the face, e.g.

fetal hands, because they will be moved away from the front of the face during the

operation. In addition, the pose of the fetal face from the frontal view is controlled in

the range of [0°, 15°] in operations, which means the elevation view angle, the azimuth

view angle, and the roll view angle around nose tip (focal point) are all controlled in this

range, as shown in Fig. 5.1 (a). If the pose of the fetal face is non-zero, the depth errors

will be derived from the extracted 3D point cloud of the facial surface. However, the

experimental results in Section 5.3 indicate that the depth errors are sufficiently small

and do not affect the detection of 3D fetal face and key facial features for the proposed

approach.

5.2.3 HK Classification

The HK classification method [147] is performed to obtain a point classification in

a depth image according to the local shape around each point, where the mean (H) and

Gaussian (K) curvatures respectively describe the property and bending degree of the

local shape. The different local surface shapes in a 3D facial mesh can be determined by

the signs of the mean and Gaussian curvatures as shown in Table 5.1.

Table 5.1 HK classification.

H < 0 H = 0 H > 0

K < 0 hyperbolic concave hyperbolic symmetric hyperbolic convex

K = 0 cylindrical concave planar cylindrical convex

K > 0 elliptical concave impossible elliptical convex

To calculate the curvatures of 3D faces, let be a surface defined as follows:

2 2{( , , ) | ( , ) }S x y z z F x y ax by cxy dx ey f (5.1)

For each point , the mean (H) and Gaussian (K) curvatures [148]

are computed by

2 2

3
2 2 2

(1 ) 2 (1 )
( , )

2(1 )

x yy x y xy y xx

x y

F F F F F F F
H x y

F F
(5.2)
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K x y
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(5.3)

where , , , , are the 1st and 2nd derivatives of F in . Since there

are some artifacts, noise and gaps in the depth image extracted from the 3D US volumes,

a median filter and a bilateral filter are executed to remove sharp spikes and noise, and

smooth the depth image, as shown in Fig. 5.3 (i).

5.2.4 Nose, Eyes and Nose Upper Bridge

As introduced in [80, 81], the shapes of the nose tip, nose upper bridge and two

eyes inner corners are elliptical convex, hyperbolic convex, and elliptical concave,

respectively. In the beginning, the depth image is thresholded to isolate regions of high

curvatures, and the points with low curvatures are rejected by and

, where and are predefined and tested for each feature by

experiments. Then the nose tip, two eyes inner corners and nose upper bridge are

detected in the following sequence.

(1) Nose Tip

As the first step of the boosting traversal scheme, nose tip detection is extremely

crucial to improve the efficiency and robustness of the proposed algorithm. There have

been some works about the location of the nose tip, e.g. the highest point in the depth

image [88], curvatures [149], and local features [150], etc. However, no method can

promise a recognition rate of 100% for the location of the nose tip due to the noise and

rotation of the subject. Here, a boosted classification scheme is proposed to identify the

candidate regions of the nose tip based on the local curvature features.

Nose classifier 1: The candidate regions of the nose tip are distinguished by the HK

classification ( ) and the threshold ( ).

From the results of Nose classifier 1 in Fig. 5.6 (a), morphological opening and

closing operations are performed to exclude some small candidate regions (Fig. 5.6 (b)).

In order to depict the cap-like shape of the nose tip, the average value and standard

deviation of the Gaussian curvatures for each candidate region are calculated.
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where and N are respectively the average value of the Gaussian curvatures and the

number of the points for all candidate regions, , and are respectively the

average value and standard deviation of the Gaussian curvatures and the number of the

points in the j-th candidate region, is the Gaussian curvature of point i, and is

the Gaussian curvature of point i in region j. Ordinarily, the nose tip is the most distinct

protuberance on the facial surface, i.e. the region of the nose tip has the largest average

value of Gaussian curvatures. However, owing to the unpredictable sharp spike noise in

the depth image, the average value and standard deviation of the Gaussian curvatures in

the nose tip region are relatively larger than those of any other facial data.

Nose classifier 2: The candidate regions satisfying from the results of Nose

classifier 1 are remained, and sorted in descending order by the standard deviation .

Through the boosted classification scheme based on Nose classifier 1 and 2, a few

candidate regions are chosen, and the points with the highest Gaussian curvature in each

candidate region are selected as the candidate positions of the nose tip, e.g. the black

points in Fig. 5.6 (c). Then the candidate points in the sorted order are traversed one by

one with other features to check their spatial relations of the Filter 1 and Filter 2.

(2) Two Eyes Inner Corners

The regions of two eyes inner corners have the largest average value of the

Gaussian curvatures in a clean depth image for elliptical concave areas, but this criterion

is not suitable for a fetal facial surface since the fetal facial features except nose tip are

not obvious compared with those features of the adult. Accordingly, the candidate

regions of the two eyes inner corners are segmented by the HK classification (

), as shown in Fig. 5.6 (d). Some small candidate regions are discarded in Fig.
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5.6 (e) by morphological opening and closing operations. Subsequently they are sorted

in descending order by the standard deviation of the Gaussian curvatures of each

candidate region. Then the points with the highest Gaussian curvature in each candidate

region are selected as the candidate positions of two eyes inner corners, e.g. the black

points in Fig. 5.6 (f). After that, all the sorted candidate positions are traversed in pairs

as the order in Fig. 5.4 to combine with the detected nose tip for the examination of the

Filter 1, where n is the sum of the eyes’ candidate positions.

(3) Nose Upper Bridge

The candidate regions of the nose upper bridge are classified by the HK

classification ( ) and the threshold of the depth map (

), e.g. the grey regions in Fig. 5.6 (g). Then the candidate region closest to the

midpoint of the two eyes inner corners is selected as the region of the nose upper bridge,

whose centroid is calculated as the position of the nose upper bridge, e.g. the black

point in Fig. 5.6 (g).

Figure 5.4 The selection order of the two eyes inner corners.

5.2.5 Filter 1

For the key facial features, there is a positional relationship among them, as shown

in Fig. 5.5 (a), where is the position of the nose tip (green point), is the position

of the nose upper bridge (light green point), and are the positions of the two

eyes inner corners (two blue points), is the midpoint between and (light

blue point), c is the crosspoint between the line from to and the line from

and (purple point), is the angle between the vector from to and the

vector from to , is the angle between the vector from to and



Chapter 5 3D Fetal Face Detection96

the vector from to , is the angle between the vector from to and the

vector from to , is the angle between the vector from to and the

vector from to , and is the angle between the vector from to and the

vector from to . Ideally, the above mentioned parameters should satisfy the

following conditions:

;

;

, and are restricted to guarantee the position of be

between the two eyes inner corners;

The point c, point and point are very close.

Actually, the corresponding parameters of each restriction are predefined and

tested in experiments. Thus, the Filter 1 is defined as follows:

, , and ;

;

, and ;

, , and , where

.

where denotes the pixel distance between and c, and other d-s have the

same meanings. If the candidate positions of the nose tip, nose upper bridge and two

eyes inner corners meet each condition of the Filter 1, then a circle ROI of the mouth

area is estimated to identify the position of the upper lip, as shown in Fig. 5.5 (a) and

Fig. 5.6 (h), where the ROI’s center (black point in Fig. 5.5 (a)) is away from by

, on the line from to , and the ROI’s radius

, otherwise other combinations of candidate nose and eyes

are traversed.

5.2.6 Upper lip

Though seven key features of a human face is possible to be detected by the local

shape index [151], it is still difficult to detect some key features for a fetal face, such as
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two eyes outer corners, two eyes, and two mouth corners, even if the local shape index

is tried. Thus, it is forced to detect the most remarkable feature - the upper lip in the

ROI of the moth area, whose shape is elliptical convex.

(a) (b)

Figure 5.5 The positional relationship among the detected key facial features. (a) the

Filter 1, (b) the Filter 2.

Candidate regions of the upper lip are identified in the ROI of the mouth area by

the HK classification ( ), as shown in Fig. 5.6 (i). Small candidate regions

are removed as shown in Fig. 5.6 (j), by morphological opening and closing operations.

The centroids of the candidate regions are selected as the candidate positions of the

upper lip, e.g. the black point in Fig. 5.6 (k). After then, the point satisfying the

following rules is determined as the position of the upper lip.

Upper lip rule 1: The angle between the vector from to the position of the upper lip

l and the vector from to l is less than , because l, and should be on the

same line, as shown in Fig. 5.5 (b).

Upper lip rule 2: Among the remained points (as a result of Upper lip rule 1), the point

closest to is determined as the position of the upper lip.

If there is no point that satisfies the Upper lip rule 1 and 2, then other combinations

of candidate nose and eyes are traversed.
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(a) nose candidates (b) morphological operations (c) nose positions

(d) eyes’ candidates (e) morphological operations (f) eyes’ positions

(g) candidates of nose upper bridge (h) detected feature points

(i) upper lip candidates (j) morphological operations (k) upper lip positions

Figure 5.6 The process of the fetal face and key features detection.
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5.2.7 Filter 2

If the position of the upper lip l is detected by the Filter 1, then the spatial

relationship among all key features in Fig. 5.5 (b) is examined by the Filter 2. Thus,

Filter 2 is defined as follows.

The triangle is an acute triangle, i.e. , ,

and ;

is inside the triangle .

Qualified by both the Filter 1 and Filter 2, then the fetal face and the key facial

features are judged to be successfully detected from the depth image; otherwise, other

combinations of candidate nose and eyes are traversed until a conclusion is obtained.

5.3 Experiments

In experiments, 72 images of 6 subjects are collected to test the efficiency and

robustness of the proposed algorithm. All programs run on a quad-core 2.60 GHz

computer with 8GB memory. Since the FETO surgery is operated at about 26-29 weeks

gestational age [23], 6 fetal phantoms with different sizes made by Kyoto Kagaku Co.,

Ltd are utilized as shown in Fig. 5.7, where the six phantoms are respectively at the

gestational age of 24 weeks, 26 weeks, 28 weeks, 30 weeks, 32 weeks, and 34 weeks.

Naturally, the larger the gestational age of the fetuses, the more distinct the fetal facial

features. For each phantom, 12 typical poses are captured by rotating the 3D US probe

around the nose tip, i.e. the frontal view, and of azimuth angles,

and of elevation angles, and , and of roll angles from the

frontal view, as shown in Fig. 5.1 (a). Among such a test database, the ground truth is

decided manually in 3D US images, as well as all key feature points are detected by the

proposed algorithm for each case, and thus a detection success rate of 100% is achieved.

Moreover, a detection success rate of 100% is obtained for any roll angle, because the

roll rotation does not cause the errors of the extracted depth image. Figure 5.8 portrays

some examples of several poses of the fetal phantoms with the detected key facial

features. In addition, the proposed system has a high efficiency and can detect all key

facial features in about 625 ms (the average execution time for all test data, as shown in

Table 5.2). Compared with the efficiency (one second) of the fetal face detection
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method in [90], the performance of the proposed system is elevated by 37.5% without

any algorithm optimization; therefore, it is possible to speed up the system 10-20 times

by utilizing GPU technology or parallel processing.

Figure 5.7 Six fetal phantoms.

Figure 5.8 The results of the detected fetal face and key features.

On the contrary, there are some errors on the key feature location. Due to the

significance of the upper lip location for the FETO surgery, the distance error of

voxels for all tested images is calculated by measuring the detected upper

lip and the marked upper lip manually, i.e. the root mean square (RMS) distance error of

by a transformation from 3D US space to 3D tracking space

according to the 3D US calibration system. Subsequently, the distance between the
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detected upper lip and the tip of the surgical tool will be measured to provide an alarm

for surgeons when it is less than . Therefore, the distance error of the

detected upper lip can be tolerated by the FETO surgery.

Table 5.2 The comparison results.

HK Classification SC Segmentation Principal Curvature

Distance error

Efficiency

In Table 5.2, the results about the distance errors and the efficiency of the method

are compared by three different curvatures, i.e. the mean (H) and Gaussian (K)

curvatures, the shape index (S) and the curvedness value (C) [85, 152], and the

maximum and minimum principal curvatures [78, 79]. It can be learned that the

performance of the HK classification and the SC segmentation on the tested images is

basically the same, but the principal curvature does not perform as good as the previous

two methods owing to the lack of the curved-ness representation. So the principal

curvature-based method cannot identify the key facial features with a small distance

error and a high efficiency. Accordingly, the HK classification and the SC segmentation

both are effective and robust for detecting 3D fetal face and locating the key facial

features.

5.4 Conclusions

In this chapter, a novel boosting traversal scheme based on the mean and Gaussian

curvatures of the surface has proposed to detect 3D fetal face and locate the key facial

features from 3D US data for navigating an FETO surgery. The experimental results

indicate the proposed approach is efficient and robust for 3D fetal face detection and

feature location, i.e. all key feature points are detected for each case, and thus a

detection success rate of 100% is achieved by testing 72 images of 6 subjects, and the

location error of the detected upper lip can be tolerated by the FETO

surgery, as well as the system can complete the entire detection process in about 625 ms

on a quad-core 2.60 GHz computer. In the future, the proposed approach will be

improved to reduce the upper lip location error by optimizing the parameters of each

filter and classifier according to more clinical fetal ultrasound data. Meanwhile, the
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depth image extraction method will further be developed to acquire more accurate depth

information for 3D fetal face detection and facial feature location.

In this thesis, this algorithm is applied for detection of key features on 3D fetal

face, where the detected key features are utilized for coarse registration between the 3D

fetal model and the extracted 3D fetal facial surface (Chapter 7 ), and the detected lip

(one key feature) will be utilized for estimating the distance between the tip of the

surgical tool and the detected lip in the future.
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Chapter 6 Surgical Tool Location and

Fetal Mouth Tracking

6.1 Surgical Tool Location

This section proposes an approach that accurately localizes the flexible surgical

tool [25, 26] despite its different postures (bending patterns) captured by real-time 3D

US images based on the 3D US calibration system explained in Section 4.3 . In this

system, a 3D US probe, to which a 6-DOF (degree of freedom) EM sensor is attached,

is exploited to acquire the images of the surgical tool, and an EM transmitter is fixed at

a certain point in the environment as the origin of the world coordinate system. From

the 3D US images, the skeletons of the surgical tool with different postures are extracted,

and then the coordinates in the world coordinate system of 15 labeled points along the

surgical tool are calculated by the proposed 3D US calibration system.

6.1.1 Methods

(1) Overview

For current FETO surgeries, the localization of the surgical tool remains a

challenging problem. Here, a block diagram of the proposed method for the accurate

localization of the surgical tool is shown in Fig. 6.1.

Figure 6.1 Diagram of the proposed approach.
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(2) Flexible Surgical Tool

Zhang et al. [25, 26] developed a wire-driven surgical tool with an outer diameter

of 2.4 mm and an inner diameter of 1.0 mm so that the tool can be inserted into the

trocar with a diameter of 3 mm. As shown in Fig. 6.2 (a), the surgical tool consists of

three units, each of which contains 10 ball-joint-shaped arthroses. Each unit also has

two-DOFs, which enable the surgical tool to bend in different bending motions

(patterns), as shown in Fig. 6.2 (b).

(a) (b)

Figure 6.2 The structure and bending patterns (motion) of the surgical tool.

(a) 15 labeled points (b) The deformations of the 15 labeled points

Figure 6.3 The deformations of the 15 labeled points in the surgical tool.

In order to localize the surgical tool, 15 points are labeled as No.1 to No.15 by

selecting one out of every two arthroses (points) along the surgical tool, as shown in Fig.
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6.3 (a). The deformations (bending patterns) of the surgical tool (Fig. 6.3 (b)), are

determined by the driving motor’s rotation r (radian), and the motion data with the

different bending patterns of the 15 labeled points are obtained by an optical camera

(Here, a simple bending of the surgical tool in one direction is firstly considered).

(3) Proposed Approach

To accurately localize the surgical tool, the coordinates of the 15 labeled points

along the surgical tool in the world coordinate system need to be estimated. The

procedure is as follows (Fig. 6.4):

Step-1 After segmentation of the 3D US volume by global threshold, the surgical tool is

detected by selecting a region of interest (ROI) based on the segmentation result,

and the 3D distance map in the ROI is calculated;

Step-2 The skeleton is extracted by a fast marching minimal path extraction in ITK

[153], where the start, the end, and several way-points in the skeleton are

required before extraction (although these points are designated manually at

present, they can be provided automatically in the future by attaching several 3D

EM tracking sensors along the surgical tool);

Step-3 The coordinates of the 15 labeled points in 3D US space are measured in the

extracted skeleton based on the known coordinates of the start and end points,

because the distance between two adjacent labeled points is the same.

Step-4 The coordinates of the 15 labeled points in the world coordinate system are

calculated by the proposed 3D US calibration system.

(a) 3D US data (b) 3D ROI (c) skeleton (d) 15 labeled points

Figure 6.4 The procedure of the surgical tool localization.
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6.1.2 Results

Figure 6.5 shows the mean and standard deviation of average and maximum TREs

for the 15 labeled points corresponding to each bending pattern in Fig. 6.3 (b). In Fig.

6.5, TREs denote the RMS distance errors between the coordinates of the 15 labeled

points transformed from 3D US image space to 3D tracking space and the

corresponding coordinates localized in 3D tracking space. For each bending pattern

from to , the TREs of individual labeled points show slight differences

because the standard deviations of average and maximum TREs (blue and red dashed

lines in Fig. 6.5) are both smaller than 0.5 mm. The fluctuations on the means of

average and maximum TREs (blue and red solid lines in Fig. 6.5) are also small.

Besides, considering TREs of all points for all bending patterns, an average TRE of

and a maximum TRE of are obtained, which

satisfy the requirement of the FETO surgery: less than 3.85 mm.

Figure 6.5 Validation of the 15 labeled points for the surgical tool localization.

In FETO surgeries, the surgical tool is inserted into fetal airways until the entrance

of fetal trachea, and the narrowest part of the passage is the fetal pharynx where the

surgical tool is supposed to go through. In addition, FETO surgery is operated at about

26-29 weeks gestational age (GA) [23], and the average diameter of fetal pharynx is 7.7

mm at about 26-30 weeks [154]. Thus, 3.85 mm - half of the average diameter of fetal

pharynx is the maximum distance error tolerable for this surgery. Therefore, the

localization of the surgical tool in the experiments achieves sufficiently high accuracy

for FETO surgeries.
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6.1.3 Conclusions

This section has proposed an approach that localizes the surgical tool for FETO

surgeries from 3D US images based on the 3D US calibration system. The localization

of the surgical tool achieves an average TRE of and a maximum TRE

of , which satisfy the requirement of the FETO surgery: less than 3.85

mm. The experimental results demonstrate that the proposed approach can achieve

sufficiently high accuracy for localizing the surgical tool. To further improve the

calibration consistency and accuracy, one potential of the future work is to design new

algorithms to automatically identify the vertices in the cones’ phantom and extract the

skeletons of the surgical tool. Furthermore, the effect of speed of sound would be taken

into consideration in the future.

6.2 Fetal Mouth Tracking

6.2.1 Introduction

To perform the FETO surgery, a fiber fetoscope with a diameter of 1.3 mm within a

cannula (Karl Storz) featuring a diameter of 3.3 mm is inserted into the amniotic cavity

through the abdominal and uterine walls, toward the fetal mouth and trachea, and is

navigated by the ultrasound (US) images and fetoscopic images [22, 23], but this

operation is so dangerous that the use of a supporting system for navigating surgeries is

imperative. On the other hand, although fetoscopic images have been utilized as a tool

for guidance of FETO surgeries, they just provide a direct observation for surgeons, and

there is still no further processing in the fetoscopic images to guide a surgical tool to be

inserted into the fetal trachea. In order to address this problem, an automatic approach is

proposed to detect and track the fetal face and mouth accurately in real-time in a

fetoscopic video sequence, as well as provide an effective and timely feedback to the

robot control system of the surgical tool.

6.2.2 Methods

(1) Mains Steps of the Proposed Approach
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To detect and track the fetal face and mouth in a fetoscopic video sequence, there

are four main steps as follows. Figure 6.6 shows the block diagram of the method.

Step-1 The region of interest (ROI) for each frame in the fetoscopic video sequence is

selected based on the mask image, and smoothed by Gaussian filter;

Step-2 The fetal face in ROI is detected by the AdaBoost algorithm based on Haar-like

features [155];

Step-3 The fetal face is tracked by the CamShift algorithm based on an iterative search

in a color histogram [156];

Step-4 In the search window from the CamShift algorithm, the area of the fetal mouth is

segmented by a global threshold, and the edges of the fetal mouth are extracted

by canny edge detection. After this, an ellipse is fitted to the edges of the fetal

mouth by the improved iterative randomized Hough transform method proposed

in [118, 119] and Section 4.2 ;

Figure 6.6 The block diagram of the proposed approach.

(2) Region of Interest

The frames in the fetoscopic video sequence have the same ROI. Thus, a mask

image is used to select the ROI for each frame, i.e., the white area in Fig. 6.7 (b).
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(a) one frame (b) the mask image

Figure 6.7 One frame and the mask image.

(a) (b) (c)

Figure 6.8 Haar-like features.

(3) Classifier

(3-1) Haar-like Features

As shown in Fig. 6.8, Haar-like features, such as (a) edge features; (b) line features;

and, (c) center-surround features, are often used for human face detection. The Haar-like

features are calculated by scanning all of the pixels from left to right and top to bottom

in each frame. However, the direct calculation of the pixels’ sums over multiple

rectangles would make the detection task very slow and unable to be realized in

real-time. An efficient method was proposed in [155] for computing the sums quickly

by using an intermediate representation for the image, which is called as the integral

image. Then, the integral image, Summed Area Table (SAT), is computed over the whole

image I, and the SAT is defined as

,
( , ) ( , )

i x j y
SAT x y I i j (6.1)

The pixel sum over a generic rectangle

can then be computed using the SAT. The sum is computed by using the

rectangle corners coordinates, as indicated in Eq. (6.2).

0 0 0 0 0 0 0 0
( ) ( , ) ( , ) ( , ) ( , )S r SAT x w y h SAT x w y SAT x y h SAT x y (6.2)



Chapter 6 Surgical Tool Location and Fetal Mouth Tracking110

(3-2) AdaBoost Algorithm

AdaBoost is a machine learning algorithm that selects a small number of critical

visual features from a larger set and yields an extremely efficient classifier [155, 157].

Originally, the AdaBoost algorithm was used to boost the classification performance of

a simple (or weak) learning algorithm. The weak learning algorithm is designed to

select the single rectangle feature that best separates the positive and negative examples.

For each feature, the weak learner determines the optimal threshold classification

function, such that the minimum number of examples is misclassified. A weak classifier

thus consists of a feature , a threshold , and a parity indicating the

direction of the inequality sign:

1 ( )
( )

0
j j j j

j

if p f x p
h x

otherwise
(6.3)

where x is a pixel sub-window of an image, and the summary of the boosting

process is shown in Fig. 6.9. Then, the final strong classifier H(x) is a linear

combination of T weak classifiers :

1

( ) ( ( ))
T

j j

j

H x sign h x (6.4)

where is the weight assigned for each weak classifier .

Figure 6.9 The boosting process of the AdaBoost algorithm.

(3-3) CamShift Algorithm

The continuously adaptive mean shift algorithm (CamShift) [5] is an adaptation of

the mean shift algorithm for object tracking that is intended as a step toward head and

face tracking for a perceptual user interface. Figure 6.10 summarizes the algorithm

described below. For each video frame, the raw image is converted to a color probability
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distribution image by a color histogram model of the color being tracked. The center

and size of the color object are found via the CamShift algorithm operating on the color

probability image. The current size and location of the tracked object are reported and

used to set the size and location of the search window in the next video image. The

process is then repeated for continuous tracking. Figure 6.11 gives an example of the

tracking of fetal facial color by color histogram and color distribution.

Figure 6.10 The flow diagram of color object tracking.

(a) one frame (b) color histogram (c) color distribution

Figure 6.11 Fetal facial color tracking.

(3-4) Fetal Mouth Detection

In order to locate the fetal mouth in the search window from the CamShift

algorithm after tracking the fetal face successfully, the improved iterative randomized

Hough transform (IRHT) method proposed in [118, 119] and Section 4.2 is exploited

to improve the efficiency and accuracy of detecting the ellipse of the fetal mouth for

real-time tracking. Figure 6.12 illustrates the process of the fetal mouth (as an ellipse)

detection: (a) one frame with the fetal mouth; (b) the edges detected from the ROI of the

frame in (a); and, (c) the ellipse detected from the edges in (b).

On the other hand, the fetoscope should be relatively close to the target, and then,

the target will be easily distinguished. Accordingly, the change of the target size would
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not be great in a fetoscopic video sequence when the fetoscope is close to the target. As

a result, the size of the ellipse is restricted to be fitted to the fetal mouth in the range of

, and based on the used fetal phantom so

that the efficiency and accuracy of the improved IRHT algorithm are improved, where a

and b denote the major and minor semi-axes of the ellipse, respectively, and e denotes

the eccentricity of the ellipse. Certainly, for other fetal phantoms or real fetuses of

different sizes, specific parameter values of the restriction should be trained and

predefined. At the same time, once the fetal mouth is detected from one frame, then the

ROI estimated from the detected ellipse (the gray rectangle in Fig. 6.12 (c)) will be

utilized in the next frame to reject the edges that do not belong to the fetal mouth for a

better tracking efficiency, where the center of the rectangle ROI is the same as the

detected ellipse, and the width and height are defined as and ,

respectively.

(a) (b) (c)

Figure 6.12 Fetal mouth detection.

6.2.3 Results

In the experiments, as shown in Fig. 6.13 (a), a fetal phantom was placed on the

bottom of a water tank, and a 3D ultrasound probe was fixed above the phantom by a

plastic holder, whose beam surface contacted the water. A straight cannula was

exploited to simulate the movement of the surgical tool as a real operation, and a

fetoscope, which is a fiber soft endoscope (FiberTech) with a high resolution CCD

camera based on a FT-201F imaging system (in Fig. 6.13 (b)), was inserted into the

cannula to obtain the video sequence. The fetoscope was moved from two different

starting positions toward the position of the fetal mouth. As shown in Fig. 6.14, (a) is

the 1st starting position from which the fetus cannot be viewed by fetoscope; (b) is the

corresponding moving path of the fetoscope from the 1st starting position; (c) is the 2nd
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starting point from which the fetal left hand can be viewed by the fetoscope; and, (d) is

the corresponding moving path of the fetoscope from the 2nd starting position.

(a) (b)

Figure 6.13 Experimental equipment.

(a) the 1st starting position (b) the 1st moving path

(c) the 2nd starting position (d) the 2nd moving path

Figure 6.14 Two different starting positions and the corresponding moving paths.

In Fig. 6.15, (a) and (b) show the first and second process of tracking of the fetal

face and mouth from the 1st and 2nd starting positions, respectively. The fetal face was

tracked successfully and the mouth was detected accurately from frame No. 20 to No.

169 for the 1st process and from frame No. 5 to No. 150 for the 2nd process, respectively.
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In the 1st process, the average processing times before and after the successful face

tracking are ms and ms, respectively. In the 2nd process, the

average processing times before and after the successful face tracking are

ms and ms, respectively, as shown in the columns of “No Face” and “Face

Tracking 1” in Table 6.1. Considering the frame rate of 29 FPS of the FT-201F imaging

system, if the processing time for each frame is less than 34.5 ms, then the real-time

tracking can be realized. Thus, from the average processing times of the 1st process and

2nd process, the proposed approach basically achieves the real-time tracking of the fetal

face and mouth in the fetoscopic video sequence.

(a) the 1st process about the tracking of fetal face and mouth from the 1st starting position

(b) the 2nd process about the tracking of fetal face and mouth from the 2nd starting position

Figure 6.15 The processes of the tracking of the fetal face and mouth.

Additionally, a comparison between the improved IRHT method and the original

IRHT method is made for fetal mouth detection. In Table 6.1, the average processing

times for the tracking of the fetal face and mouth by the improved IRHT method, which
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is shown in the column of “Face Tracking 1,” are significantly smaller than those values

by the original IRHT method shown in the column of “Face Tracking 2”. In Table 6.2,

the number of pixels on the detected ellipse by the improved IRHT method is quite

larger than those values by the original IRHT method. Furthermore, the average

processing time by the original IRHT method after the successful face tracking for the

1st process and 2nd process are ms and ms, respectively, as

shown in the column of “Face Tracking 2” in Table 6.1, which cannot satisfy the

requirement of real-time tracking. In conclusion, the improved IRHT method performs a

better efficiency and accuracy of the fetal mouth detection, which contributes to the

real-time tracking of the whole process.

Table 6.1 The average processing times for different stages and different methods (ms).

No Face Face Tracking 1 Face Tracking 2

The 1st Process

The 2nd Process

Table 6.2 The number of pixels on the detected ellipse for two methods.

Face Tracking 1 Face Tracking 2

The 1st Process

The 2nd Process

6.2.4 Conclusions

This section has proposed an approach that automatically detects and tracks the

fetal face and mouth during the fetoscopic video sequence for navigating a surgical tool

to be inserted into the fetal trachea. Firstly, the AdaBoost algorithm is utilized as a

classifier to detect the fetal face, based on Haar-like features. After that, the CamShift

algorithm is applied to track the fetal face based on the image color histogram, and the

fetal mouth is detected as an ellipse by the improved IRHT method. The experimental

results demonstrate that the proposed approach can automatically and accurately detect

and track the fetal face and mouth in real-time in the fetoscopic video sequence, as well

as can provide an effective and timely feedback to the robot control system of the
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surgical tool. In the future, the real-time tracking of the fetal face and mouth in the

fetoscopic video sequence will be combined with the distance estimation between the

tip of the surgical tool and the fetal mouth from 3D ultrasound data, as this can provide

more accurate and reliable feedback.



A Fetal Surgical Navigation System for Fetoscopic Tracheal Occlusion Surgeries 117

Chapter 7 Estimating the Position of the

Fetal Trachea

7.1 Introduction

Real-time 3D US images as an intraoperative guide have been introduced to fetal

MIS surgeries [32, 33], due to their cost efficiency, real-time imaging, lack of radiation

exposure, and impact-free characteristic compared to preoperative MR or CT modalities.

Unfortunately, 3D US images have many disadvantages. The imaging quality is very

poor because of the speckle noise. The imaging field of view (FOV) is also quite limited.

Often, some critical internal organs are difficult to visualize and identify from 3D US

volumes due to their low resolution and the echogenicity relative to the target organs.

For the FETO surgery, real-time 3D US images provide a helpful guidance during

the operation. However, the critical internal organs, such as fetal trachea, that is easily to

be hurt by the surgical tool, cannot be identified from 3D US images. Thus, in order to

estimate the position of the fetal trachea, an approach is proposed in this chapter.

7.1.1 Proposed Approach

For the FETO surgery, the location of the surgical tool, the fetus and the critical

internal organs plays an important role on reducing the surgical risk. On one hand, 3D

US images can allow only 3D modeling of the surface of a fetus, but cannot 3D-model

internal organs of a fetus, because the internal organs cannot be distinguished in 3D US

images. Although MR images are available to 3D-model internal organs of a fetus in

actual clinical applications, in case of the research in this thesis, it is very difficult to get

a permission to use real fetal MR images due to privacy problems in Japan. Therefore,

as an alternative for MR images, models of fetal phantoms with internal structure are

used. The model is registered to the 3D US images so that the internal organs are

located in the 3D US images.

To do this, resin fetal phantoms without internal structure are used instead of real

fetus in the mother's body, where normally resin phantoms with internal structure are
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also not available. Since the resin phantom does not have the internal structure, after the

phantom is laser-scanned, the phantom’s 3D model is reconstructed, and the internal

structure in the phantom's model is designed. Accordingly, a surgical navigation scheme

is proposed based on fetal phantoms, the designed internal structure, real-time 3D US

images, and the novel 3D US calibration system proposed in Section 4.3 .

Figure 7.1 The block diagram of the proposed approach.

Figure 7.1 shows a block diagram of the proposed approach, which consists of an

offline and online process. The offline process prior to surgery includes reconstruction

of 3D fetal modal with oral cavity and airways, and estimation of the transformation

matrix of the 3D US calibration system by the novel cones' phantom and EM tracking

device. The online process starts with obtaining 3D fetal US images by scanning a fetal

phantom in a water tank with a 3D US probe. Then, a 3D fetal facial surface is extracted

from the 3D US images and registered with the 3D fetal model. After the registration,

the 3D fetal model located in the 3D US space is transformed into the 3D tracking space

by the estimated transformation matrix, where, as explained in previous sections, the 3D

US space denotes the coordinate system of 3D US images, and the 3D tracking space

denotes the world coordinate system of the 3D EM transmitter. Finally, the 3D fetal

facial surface, oral cavity, and airways are accurately located in the 3D tracking space.
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7.2 3D Fetal Model

7.2.1 3D Fetal Facial Surface

Since the internal anatomies of the oral cavity and airways are difficult to visualize

and distinguish from 3D US volumes due to their low resolution, a 3D fetal model with

such anatomies is designed. At first, the surface of the 3D fetal model is created by

scanning a physical fetal phantom with an untouched high-speed 3D scanner -

3030RGB/MS, as shown in Fig. 7.2. First, the phantom is made to stand in the front of

the scanner. Next, the phantom on the rotating platform rotates along a complete circle,

and each turn is set to 10°. Finally, the 3D fetal facial surface can be reconstructed as

3D point cloud data obtained by the untouched 3D scanner, as shown in Fig. 7.3 (a).

Figure 7.2 Untouched 3D scanner and the standing fetal phantom.

7.2.2 Design of the Fetal Oral Cavity and Airways

The designed internal anatomies include the structures of the oral cavity, pharynx,

larynx, trachea, and esophagus. As the FETO surgery is often performed at about 26-29

weeks gestational age (GA) [23], the average size for each part is selected at about

24-32 weeks GA. These structures [158] are drawn as shown in Fig. 7.3 (b) by a 3D

CAD design software (Solidworks 2008). To simplify the design, the cross-sectional

shapes of all tracts are considered as ellipses or circles. The size of each part is
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determined by referring to [154, 159, 160]. Through the manual rotation and translation

of the designed structure in 3D space, a 3D fetal model with an oral cavity and airways

can be achieved as shown in Fig. 7.3 (c).

(a) (b) (c)

Figure 7.3 3D fetal model. (a) 3D point cloud, (b) the design of the fetal oral cavity and

airways, (c) 3D fetal model.

7.3 3D Rigid Registration

7.3.1 3D Fetal Ultrasound Images

In the online process, a physical fetal phantom is scanned in a water tank with the

Philips iU22 US system and a V6-2 3D US probe to obtain 3D US images (Fig. 7.5 (a)).

The V6-2 3D US probe has a 2 to 6 MHz extended operating frequency range and a

field of view of 66°. All acquired volumes have a size of

voxels with the scaling factors , ,

, where the coordinate system of the 3D US image,

which is decided by the position and orientation of the 3D US probe, is defined in Fig.

7.5 (a).

As shown in Fig. 7.4, in order to simulate real fetus in human amniotic fluid, a

fetal phantom is placed in a water tank, and then a 3D US probe is placed above the

fetal head by a customized holder, to make the fetal head imaging in the center of 3D

US space, since the fetus is assumed to be immobilized in uterus during the operation.

Simultaneously, an EM tracking sensor is fixed on the customized holder, and the EM

transmitter is laid near the water tank.



A Fetal Surgical Navigation System for Fetoscopic Tracheal Occlusion Surgeries 121

Figure 7.4 Experimental environment.

The phantom based experimental environment should be able to simulate the

environment of the real fetus in the uterus (amniotic fluid) accurately. In order to

compare difference of ultrasound imaging between the experimental environment and

the environment of the real fetus, sound speeds in and densities of water and the used

phantoms were measured at room temperature as indicated in Table 7.1, in which sound

speeds in and densities of amniotic fluid and water are also listed according to [161].

Note that sound speeds in, densities of, and acoustic impedances ( ) of water and

amniotic fluid are similar to each other, where acoustic impedance is calculated by

ai
Z D (7.1)

In Eq. (7.1), and D denote the density of and sound speed in water, respectively.

Table 7.1 shows that the difference between the sound speeds measured in this thesis

and shown in [161] in water at room temperature is approximately 0.9%, which is very

small. Thus, it can be inferred that the error between the measured sound speed in the

used fetal phantoms and their ground truth should be acceptably small. By Eq. (7.1), the

acoustic impedance of the used phantoms is calculated as 1.16, as shown in Table 7.1.
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Table 7.1 Sound speeds, densities and acoustic impedances of different materials.

Materials
Sound speed (D)

( )

Density ( )

( )

Acoustic impedance ( )

( )

amniotic fluid

(ref. [161])
1510 1.01 1.53

water

(ref. [161])
1500 1 1.50

water

(measured)
1486 1 1.49

fetal phantoms

(measured)
1208 0.96 1.16

human skin

(ref. [162])
1.68

human muscle

(ref. [163])
1.70

human skull

(ref. [163])
6.10

Table 7.2 The values of (%) at various boundaries.

Boundary The reflection coefficient ( )

amniotic fluid – human skin 0.2%

human skin – human muscle 0.004%

human muscle – human skull 31.8%

water (measured) – fetal phantoms 1.6%

For ultrasound imaging, ultrasonic waves are emitted from a transducer, and partly

reflected back to the transducer as echoes from boundaries between two adjacent objects.

The amount of the reflected echoes depends on the difference in acoustic impedances

between the two objects such as tissues traversed by the beam, where this difference in

is commonly referred to as impedance mismatch. The larger the impedance

mismatch is, the larger the amount of reflection is, and the smaller the amount of

transmission is. The reflection coefficient is defined as a ratio of the intensity of

the reflected wave relative to that of the incident wave as follows [163],
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2

2 1

2

2 1

( )

( )
ai ai

US

ai ai

Z Z
R

Z Z
(7.2)

where and are the acoustic impedances of the two objects that form the

boundary. Table 7.2 shows the values of (%) at various boundaries. At boundary

between amniotic fluid and human skin, only 0.2% of the incident energy is reflected,

and 99.8% of the energy is transmitted across the boundary. Although this reflected

energy is much smaller than 31.8%, the reflection coefficient at boundary between

human muscle and human skull, it is sufficient to reveal the borders of fetal faces

according to [90], in which clear clinical 3D US data of fetal faces are presented. Thus,

the faces of the used fetal phantoms in a water tank can be imaged reasonably due to the

reflection coefficient value 1.6% at boundary between water and the phantoms. Then,

the gray-levels of the phantoms’ faces should be between the gray-levels for real fetal

faces and real fetal skulls in 3D US images, while gray-levels for the phantoms and real

fetal faces could be close to each other. Actually, by visually comparing US images for

the used phantoms with real fetal faces [90] and skulls [164], it turns out that

gray-levels for the used phantoms and real fetal faces are almost identical, while real

fetal skulls are brighter due to the larger reflection coefficient value (31.8%).

7.3.2 3D Fetal Facial Surface Extraction

Unlike MR or CT imaging technology, 3D US images do not have high resolution,

and the imaging quality of US is easily affected by phantom material and air bubbles in

the water. Therefore, a method that extracts the 3D fetal facial surface by scanning the

slices in an plane is proposed. Herein, a fetal phantom at the gestational age of

30 weeks is used as an example, and its 3D US data (Fig. 7.5 (b)) that has been

pre-processed by Gaussian filter and threshold segmentation are shown in Fig. 7.5 (c),

where 3D US probe is placed above the fetal head, and the fetal head can be centered in

the 3D US space ( coordinate system), because the fetus is assumed to be

fixed in uterus during the operation. The procedure for this method is described in

Section 5.2.2, and the 3D point cloud of the fetal facial surface can be extracted from

3D US images (Fig. 7.5 (c)), as shown in Fig. 7.5 (d). On the other hand, it is straight

forward to extract the corresponding facial surface from the 3D fetal model simply by

setting the range on the x, y, and z axes (Figure 7.5 (e)).
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(a) 3D US probe (b) original 3D US (c) extracted 3D US

(d) 3D facial surface (e) another surface

Figure 7.5 3D fetal facial surface extraction from 3D US images.

7.3.3 ICP-based Registration

The iterative closest point (ICP) method for the registration of 3D point clouds was

proposed by Yang et al. [102] and Besl et al. [94]. It has been widely used in a variety of

fields including medical images, because of its good accuracy and fast speed. Given two

point clouds ( ) and ( ), the

transformation between data A and data B is assumed to be linear with respect to a

rotation matrix R and translation vector t. The goal of the ICP algorithm is to find the

transformation parameters for minimizing the error (mostly least squares) between the

transformed data B and the closest points of the data A, which is described by Eq. (7.3)

[165], where is the point of the data A paired with .

2

, ( )
1

( , ) arg min || ( ) ||
bN

R t c i i
i

R t a Rb t (7.3)
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(1) Coarse Registration

For the purpose of improving the efficiency, accuracy, and robustness of the

conventional ICP algorithm, an ICP-based registration algorithm is proposed, which

consists of coarse registration and fine registration. In the coarse registration facial

feature points, i.e., nose tip, two eyes' inner corners, and nose's upper bridge, are

detected in the two extracted 3D fetal facial surfaces from 3D US images and the 3D

fetal model. As introduced in [80], the shapes of the nose tip, two eyes' inner corners,

and nose's upper bridge are respectively elliptical convex, elliptical concave, and

hyperbolic convex, which can be described by the mean (H) and Gaussian (K)

curvatures. From [166], a surface that has either a peak or a pit shape has a positive

Gaussian curvature value ( ). The nose tip has a peak surface type, and each of the

two eyes' inner corners has a pit surface type that is detectable based on the Gaussian

curvature. These points should have the highest positive Gaussian curvature values

among the points on the facial surface. However, since the unpredictable sharp spike

noise on the 3D fetal facial surfaces may result in a false feature detection, a boosting

traversal scheme based on the spatial relations among key features proposed in [146] is

applied to guarantee a successful detection of the key facial features.

About the feature detection, the extracted 3D point cloud (Fig. 7.5 (d)) from 3D US

images is used as an example for explaining the procedure. The steps are as follows:

Step-1 The depth image of the fetal facial surface is mapped to 2D space, as shown in

Fig. 7.6 (a).

Step-2 The depth map is smoothed (Fig. 7.6 (b)) by a median filter (by a window)

and a Gaussian filter (by a window, and the Gaussian sigma, which is the

standard deviation of the Gaussian distribution, is set as 1.25)} to remove sharp

spikes and noise. Then the depth map is thresholded to detect regions of high

curvatures, and to reject points with low curvatures by and ,

where and are predefined by experiments.

Step-3 The candidate regions of the nose ( ) and two eyes' inner

corners ( ) are selected from the thresholded depth map (Fig. 7.6

(c)), and are sorted in descending order by the standard deviation of Gaussian

curvatures of each region, respectively.

Step-4 The three regions are selected in sequence from the sorted candidate regions of

the nose and eyes' inner corner (e.g., three black areas in Fig. 7.6 (c)).
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(a) depth map (b) smoothed result (c) candidate regions

(d) nose upper bridge (e) detected features (f) coarse registration

Figure 7.6 Fetal facial feature detection and coarse registration.

Step-5 The positions of the points with maximum Gaussian curvature in the selected

three regions are labeled as feature points (Fig. 7.6 (d)) [167], where the two

blue points indicate the positions of the two eyes' inner corners, and the green

point indicates the position of the nose tip.

Step-6 The candidate regions for the nose's upper bridge are classified by HK

classification ( ) and the threshold of the depth map (

), e.g., the gray regions in Fig. 7.6 (d).

Step-7 The candidate region closest to the midpoint of the two eyes' inner corners is

selected as the region of the nose's upper bridge, whose centroid is detected as

the position of the nose's upper bridge, e.g., the black point in Fig. 7.6 (d).

Step-8 The spatial relationship among these four features is examined by the filter

proposed in [146]. If the filter is satisfied, these feature points are finally

determined; otherwise, return (4) to traverse all candidate regions until the filter

is satisfied.

The boosting traversal scheme based on the spatial relations among key features

[146] ensures that the four feature points can be detected successfully, as shown in Fig.

7.6 (e). Similarly, the corresponding feature points of the 3D fetal model (i.e., the red
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points in Fig. 7.6 (f)) are detected and registered with the four feature points detected

from 3D US images (i.e., the blue points in Fig. 7.6 (f)) by the ICP algorithm, where the

3D gray point cloud in Fig. 7.6 (f) shows the 3D facial surface extracted from the 3D

US images.

(2) Fine Registration

After the feature point-based coarse registration described in Sub-section (1), fine

registration for the two point clouds is performed for better efficiency, accuracy, and

robustness. Then the ICP-transformation matrix in the left side of Eq. (7.3)7.3 is

calculated by the ICP algorithm. The result is shown in Fig. 7.7 (a), where the right red

source point cloud (containing 5049 points) is extracted from the 3D fetal model, the

left blue target point cloud (containing 17863 points) is extracted from the 3D US

images, and the left green resulting point cloud is transformed from the right red source

point cloud by the ICP-transformation matrix.

(a) (b) (c)

Figure 7.7 The rigid registration of two point clouds.

Based on the ICP-transformation matrix, all the points of the 3D fetal model with

the oral cavity and airways can be transformed into 3D US space. The results in Fig. 7.7

(b) and (c) illustrate that the transformed 3D fetal model coincides very well with the

fetal facial surface in the 3D US images.

7.4 Results

7.4.1 Validation for Locating the 3D Fetal Model

In experiments, five fetal phantoms with different sizes made by Kyoto Kagaku
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Co., Ltd, Japan are used, and they are respectively at the gestational age of 24-weeks

(Fetus1), 26-weeks (Fetus2), 28-weeks (Fetus3), 30-weeks (Fetus4) and 32-weeks

(Fetus5). A testing database of 60 3D US images are collected by utilizing such five

fetal phantoms. For the ICP-registration between the fetal facial surface extracted from

the 3D fetal model and 3D US data, a successful detection rate of 100% is achieved for

detecting four key facial features in the coarse registration based on such a testing

database, and the achieved mean RMS error of the registration results is

based on the estimated transformation matrix in Section 4.3.1.

(1) Validation for Locating 3D Fetal Facial Surface

In order to validate location accuracy of the 3D fetal facial surface, 14 silicone

target markers are pasted to the frontal facial surface of the fetal phantom, as shown in

Fig. 7.8 (b), where all markers are the same hemispheres having a diameter of 5 mm and

a height of 2.5 mm (Fig. 7.8 (a)). The 14 markers can easily be identified manually in

3D US images (Fig. 7.8 (c)). Mean TREs of these 14 markers for the test database are

experimentally obtained as shown in Table 7.3, which proves good accuracy of the

proposed method.

(a) One marker (b) 14 Markers (c) 3D US data

Figure 7.8 Fetal phantom with 14 markers and its US data.

Table 7.3 Mean TREs of each phantom (mm).

Fetus 1 Fetus 2 Fetus 3 Fetus 4 Fetus 5

Mean TRE for all fetuses :
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(2) Validation for Internal Organs

Although a high accuracy for locating the points on the 3D facial surface is

obtained by measuring TREs, the location of internal organs, i.e. fetal oral cavity and

airways, is still difficult. On the other hand, the geometric relationship between the

internal organs and the 3D fetal facial surface in the 3D fetal model can be known based

on their design. Therefore, the corresponding positions of the internal organs in real

fetal phantoms can be estimated via such a geometric relationship.

Herein, as shown in Fig. 7.9 (a), position P on the bottom of the pharynx and

position T on the entrance of the trachea are specified as validation examples, which are

considered as the farthest points in the internal organs from the 3D fetal facial surface.

The corresponding positions in the real fetal phantom are defined as P' and T'. Then, an

validation method for the location errors of position P and T is proposed as follows:

Step-1 As shown in Fig. 7.9 (b), three positions, , and are specified

manually as reference points on the surface of the 3D fetal model, where is

the position of the nose tip, and and are the positions of the two eyes'

inner corners;

Step-2 Let ( ) be the vectors from to , and let be the vector from

to position P. Since the selected three positions and P position can be known

from the design of the 3D fetal model, ( ), which are the angles

between and , are computed. Meanwhile, the cross product is

defined as a vector that is perpendicular to both and , with a

direction given by the right-hand rule. Then, , which is the angle between

and is computed;

Step-3 The corresponding three positions ( ) on the surface of the real fetal

phantom in 3D tracking space are directly measured by the pen probe prior to

experiments. The vectors ( ) from to and , which is

the cross product are computed, as shown in Fig. 7.9 (c). Since the

geometric relationship among the selected three positions ( ) and

position P in the 3D fetal model is the same as that among the corresponding

three position ( ) and position P' in the real fetal phantom, the

following relationships hold.

' ' | ' | | ' | cos , [1,2]
i p i p i

v v v v i (7.4)
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2 1 2 1
' ' | ' | | ' | cos

p p p
v v v v (7.5)

1 1
| ' | | |

| ' | | |
p p

v v

v v
(7.6)

where, ( ) and are calculated in Step-2, and the coordinate of

position P' in 3D tracking space are the solutions of the above simultaneous equations

from Eq. (7.4) to Eq. (7.6). Thus, a unique solution of is computed as a ground

truth for estimating the position P.

(a) P & T (b) reference points (c) the corresponding points

Figure 7.9 The location errors of the pharynx and trachea.

Table 7.4 Location errors of the pharynx and trachea.

Positions Location errors (mm)

Position P on pharynx

Position T on trachea

Table 7.5 The mean execution time of each key step (ms).

Step-1 Step-2 Step-3

mean

mean (the system)

On the other hand, the estimated coordinates of the position P from the 3D fetal

model are transformed into the 3D tracking space based on the ICP-registration matrix
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and 3D US calibration system. Then, the transformed coordinates in the 3D tracking

space of the position P' are compared with the ground truth (the estimated coordinates

of P) to calculate its location error. Similarly, the location error of position T can also be

estimated. As a result of experiments, the mean location errors of the position P and T

for the testing database are and , respectively, as

shown in Table 7.4.

In addition, for FETO surgeries, the surgical tool having an outer diameter of 2.4

mm is inserted into fetal airways until the tool reaches the entrance of fetal trachea.

During this procedure, the narrowest part of the passage is the fetal pharynx, through

which the surgical tool is supposed to go. The FETO surgery is normally performed at

about 26-29 weeks gestational age (GA); therefore, the average diameter of fetal

pharynx is 7.7 mm at that time. Thus, 3.85 mm - half of the average diameter of fetal

pharynx is the maximum distance error tolerable for this surgery. Consequently, both of

the location errors of the pharynx ( ) and the entrance of the trachea

( ) satisfy the requirement of the FETO surgery.

7.4.2 Efficiency of the Surgical Navigation System

In the online process, there are several factors contributing to the final efficiency of

the surgical navigation system: (1) the extraction of 3D fetal facial surface from 3D US

data (Step-1); (2) ICP-based registration, including key facial feature detection (Step-2);

(3) 3D US calibration-based transformation (Step-3). The mean execution time of each

key step for 10 groups of five fetal phantoms are listed in Table 7.5, which shows the

system spends about on the location of 3D fetal facial surface and

internal organs. On one hand, the fetus is supposed to be immobilized during the FETO

operation [23]. Once the registration is realized before the operation, no more

registration is required during the operation so that real-time 3D registration is not

necessary for the surgery. On the other hand, compared with minutes, which

is medical doctors' average time for FETO surgeries [15], the time of the navigation

system is very short and thus should meet current requirement of the FETO surgery.

However, the current survival rate in fetuses with left-sided CDH (the majority of

hernias (80-85%) occur on the left side of the diaphragm) treated with the FETO

surgery is not so high: the specific survival rate is between 24.1% and 49.1% [23].

Therefore, reducing the surgery time might be one solution to raise the survival rate.
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Thus, a faster computation speed of the surgical navigation system could contribute to

such a solution; in other words, faster computations are always demanded.

In addition, it can be learned that Step-1 spends the most time ( )

during the online process, which is a major factor deciding the final efficiency of the

system. However, the efficiency of Step-1 can easily be increased by 50-100 times

based on the technology of multi-threaded processing and multi-core processors. The

efficiency of Step-2 and Step-3 can also be increased by 10-50 times based on GPU

technology. Consequently, the computation time of the system can be improved to be

less than one second in the future by making use of algorithm optimization,

multi-threaded processing, multi-core processors, and GPU technology.

7.5 Conclusions

This chapter has proposed an approach that can accurately locate 3D fetal facial

surface, oral cavity, and airways based on the registration between the 3D fetal model

and 3D US images and a 3D US calibration system. The reconstructed 3D fetal model

with the oral cavity and airways is registered with the 3D fetal facial surface extracted

from 3D US images and located in 3D US space. Then, the 3D US calibration system

based on a novel cones' phantom is proposed to transform the 3D fetal model from the

3D US space to the 3D tracking space, and a FRE of and a TRE of

by using 24 fiducial points from two US volumes are achieved.

Furthermore, a mean TRE of is achieved for measuring location

accuracy of the 3D fetal facial surface extracted from 3D US images by 14 target

markers, and mean location errors of and are

respectively achieved for indirectly measuring location accuracy of the pharynx and the

entrance of the trachea, which satisfies the requirement of the FETO surgery.

In the future, more points (e.g., some 3D points on the fetal body) will be

introduced to reduce the error of ICP-based registration. Furthermore, the location of the

surgical tool and the feedback from fetoscopic video sequences will be included in the

surgical navigation system to make a comprehensive evaluation. Clinical fetal MR

images are also essential for directly validating the location errors of the fetal oral cavity

and airways, and will be considered in the cooperation with some hospitals.
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Chapter 8 Conclusions and Future Work

8.1 Conclusions

To support FETO surgery's surgeons, this thesis aims at achieving a surgical

navigation system, in which a flexible surgical tool for treating the fetus for his/her

CDH is automatically or semi-automatically inserted into the fetal trachea. To facilitate

the surgeons' judgments and confirmations, the navigation system should be able to

provide information on spatial relationship between the surgical tool and fetal face,

mouth and trachea for the surgeon in a robust, accurate and efficient manner. To satisfy

this requirement, this thesis has proposed medical image processing methods that can

detect the fetal face, reconstruct 3D fetal facial surface, locate the surgical tool, track the

fetal mouth, and estimate the position of the fetal trachea. Experimental results prove

that the proposed methods' achievements are within the tolerances determined by the

FETO surgery in terms of robustness, accuracy and efficiency. In the following, specific

conclusions for each method proposed in Chapters 5 to 7 are described.

(1) Fetal face detection

A method for detecting the fetal face from 3D US images has been proposed. A

new boosting traversal scheme based on the mean and Gaussian curvatures of the

surface detects five key facial features: nose tip, two eyes’ inner corners, nose upper

bridge and mouth. These detected key features are used for locating the fetal mouth

from 3D US images and for performing coarse registration of 3D fetal facial surface.

Experimental results show that all key feature points are successfully detected from a

dataset of 72 3D US images for six fetal phantoms. The location error 3.18±0.91 mm of

the detected upper lip is within the tolerance required by the FETO surgery. The

detection system can complete the entire detection process within about 625 msec on a

quad-core 2.60 GHz computer.

(2) Surgical tool location and fetal mouth tracking

To locate the flexible surgical tool, after 3D skeletons of the surgical tool are

extracted from 3D US images, the coordinates of 15 points on the tool are obtained

based on the 3D US calibration system (Section 4.3 , (c) in this section). Experimental
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results show that the proposed approach can achieve sufficiently high accuracy for

localizing the surgical tool: i.e., an average TRE of 1.99±0.49 mm and a maximum TRE

of 2.61±0.49 mm, which satisfy the requirement of the FETO surgery: less than 3.85

mm.

To track the fetal mouth, first, the AdaBoost algorithm as a classifier detects the

fetal face based on Haar-like features. Then, the CamShift algorithm is applied to track

the fetal face based on the image color histogram, and the fetal mouth is detected as an

ellipse by the improved IRHT method (Section 4.2 , (b) in this section). Experimental

results confirm that the fetal mouth can be tracked accurately in real-time from

fetoscopic video sequences.

(3) Estimating the position of the fetal trachea

The fetal phantom is registered to the 3D US images so that the internal organs

including fetal trachea are located in the 3D tracking space based on the 3D US

calibration system (Section 4.3 , (c) in this section). In experiments, a mean location

error of 2.51 0.47 mm is achieved for localizing the fetal trachea in the 3D tracking

space, which satisfies the requirement of the FETO surgery.

In addition, Chapter 4 explores the three basic technologies, which are used by the

above-mentioned three technologies, as follows.

(a) Medical image segmentation

An improved Kernel-based fuzzy C-means algorithm is proposed to raise the

segmentation accuracy for 2D US image segmentation by combining with spatial

information. Experimental results indicate that the proposed method has a strong

robustness for image noise, and also achieves a better segmentation performance than

other fuzzy clustering methods. Also, it turns out that this segmentation method is useful

as the pre-process for the fetal face detection (the above-mentioned (1)).

(b) Ellipse detection

An improved iterative randomized Hough transform (iIRHT) method is proposed

to reduce the detection error and enhance the efficiency of the algorithm for detection of

fetal head in 2D US images, fetal mouth in fetoscopic images, and position of each cone

in a 3D US calibration system. Experiments on clinical fetal ultrasound images prove

that the proposed iIRHT method achieves more robust and accurate results, and has a
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better efficiency and performance than the RHT method and the original IRHT method.

(c) 3D Ultrasound Calibration System

A novel 3D US calibration system based on cones’ phantom is proposed to promise

a high location accuracy and robustness of the system for the location of the fetal facial

surface extracted from 3D US data, the 3D fetal model with oral cavity and airways

mapped with the extracted fetal facial surface, and the surgical tool detected from 3D

US data. Experimental results are comparable to those obtained by previous calibration

methods using EM tracking. The proposed system guarantees satisfying accuracy, and

also only requires a simple experimental setup and two US volumes for 3D US

calibration.

8.2 Future Work

There is a long way to realize a surgical navigation system (Fig. 1.8) for clinical

applications or commercial use. As described in Section 8.1 , this thesis achieved some

contributions to the prospective surgical navigation system, but each of the three

proposed methods has remaining issues and future work as follows.

(1) Fetal face detection

Although a detection success rate of 100% is achieved by testing 72 images of 6

subjects, all of the test data are based on the fetal phantoms. Thus, the examination on

the clinical data is more significant, and should be performed in the future.

(2) Surgical tool location and fetal mouth tracking

Robustness of the proposed method should be evaluated using more experimental

data for surgical tool location. In addition, a method that can locate the tool even after

the tool is inserted into the fetal mouth should be developed and explored.

Concerning the fetal mouth tracking from the fetoscopic images, dynamism of fetal

mouth (open, close, etc.) has not been explored by this thesis. In particular, a method for

dealing with the case in which the shape of the fetal mouth cannot be described by an

ellipse needs to be developed. To solve this problem, multiple features’ detection will be

researched in the future for improving the robustness of the method on tracking fetal

mouth.
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(3) Estimating position of the fetal trachea

At present, the 3D fetal model with trachea is reconstructed based on the fetal

phantoms and the designed structure of the trachea. In the future, the clinical 3D fetal

MR or CT images will be utilized to reconstruct a 3D fetal model with trachea by

collaborating with medical doctors and hospitals.

In addition, remaining issues and future work of the three basic technologies are

described as follows.

(a) Medical image segmentation

Higher segmentation accuracies should be achieved for 2D US image segmentation;

for that, the current algorithm should be improved based on studies using more US

images. Also, the efficiency of the process should be enhanced in the future by

algorithm optimization, because it needs to be used for all of 2D US slices (at least 256

slices) extracted from 3D US images.

(b) Ellipse detection

The accuracy and efficiency of the algorithm have been improved for detecting

fetal head and fetal mouth in this thesis. In the future, more clinical ultrasound data

(more than one hundred) will be tested for evaluating the accuracy, efficiency, and

robustness of the proposed method.

(c) 3D US calibration

More 3D US volumes (more than thirty) will be collected to improve the precision

and accuracy of the calibration system, which is the most important step for accuracy of

the entire surgical navigation system.

Finally, considering the achievement of the final goal of the surgical navigation

system, there are still some future works as follows.

First, in order to assess the technical feasibility and behavior of the system, the

linkage of the surgical navigation system, the movement of the surgical tool and

interaction with surgeons will be realized; thus, a feedback about location of the objects

and interaction from the surgeons will be provided for guiding the movement of the

surgical tool.

Second, although the experimental results show that the proposed methods attain
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higher accuracy in average, a large number of cases have not yet been attempted for

statistical significance test in this thesis. Thus, more cases of experiments will be

performed, and more experimental data will be collected in the future for statistical

significance test by comparison with previous methods to check the technical

applicability and reliability of the system based on a clinical setting before clinical

studies. Meanwhile, the system will be assessed for its clinical accuracy, patient and

user safety, and reliability in a realistic clinical setting context.

Third, the system will be assessed in clinical trials, including study of the indirect

and direct impacts on surgical strategy and performance by simulated experiments on

fetal phantoms and animals.

Fourth, algorithm optimization, multi -threaded processing, multi-core processors,

and GPU technology will be tried to heighten the efficiency of the proposed methods.

Last but not the least, clinical requirements of the current FETO surgery will

further be confirmed to check whether the system is helpful for the surgery by

discussion and collaboration with clinicians.
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