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Chapter 1

INTRODUCTION

1.1. Research Background

1.1.1. Network Traffic and Digital Video Data
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Fig. 1.1. Global consumer internet traffic. [Source: Cisco VNI, 2012]

Mobile network technologies such as the 3G, 4G, and Long Term Evolution

(LTE) wireless standards have achieved rapid progress. Nevertheless, the

transmission of large amounts of multimedia data increases consumer traffic

dramatically on both wireless and wired networks. As shown in Fig. 1.1, global

Internet traffic is expected to almost four times from 2011 to 2016, according

to the Visual Networking Indexing Forecast from Cisco Systems, Inc. Internet

video is now 40 percent of consumer Internet traffic, and will reach about 60

percent by the end of 2015. In addition, the sum of all video types will

continue to be approximately 90 percent of global consumer traffic by 2015.



2 Chapter 1. INTRODUCTION

Thanks to the development of digital video compression technology,

especially digital broadcasting has become more and more popular, such as

standard definition television (SDTV) and high definition television (HDTV).

Ultra high definition television (UHDTV) [1], [2], [3] proposed by NHK Science &

Technology Research Laboratories is the latest digital video format for

next-generation television beyond HDTV. UHDTV includes 4K UHDTV (3840

pixels by 2160 lines, 2160p) and 8K UHDTV (7680 pixels by 4320 lines, 4320p)

which support frame rates up to 120 frames per second (fps). 8K UHDTV has

16 times the resolution of 1080p Full HDTV.

1.1.2. Video Compression Technologies

As video compression is the most significant attempt to reduce video data,

it is a process by which digital signals are simplified by eliminating

redundancy. Video coding technologies keep evolving along with massive

growth in online video traffic. Video compression standards, such as MPEG-1

[1], MPEG-2 [5], MPEG-4 [6], H.261 [7], H.263 [8], [9], and H.264/MPEG-4

Advanced Video Coding (H.264/MPEG-4 AVC or H.264/AVC) [10], [11], have

been developed through International Organization for Standardization and

International Electrotechnical Commission (ISO/IEC) and International

Telecommunication Union Telecommunication Standardization Sector (ITU-T).

H.265/High Efficiency Video Coding (H.265/HEVC, HEVC/H.265, or HEVC)

has recently been jointly developed by ISO/IEC MPEG and ITU-T VCEG [13],

[14], [15]. H.265/HEVC has been designed for the benefit of network service

providers and consumers. H.265/HEVC also focuses on improving video

coding efficiency for high resolutions beyond HDTV. H.265/HEVC can achieve

the bitrate savings more than half with respect to H.264/AVC, particularly

over sixty percent for the 4K UHDTV and 1080p Full HDTV sequences [12].

Table 1.1 describes main features between H.264/AVC and H.265/HEVC.

H.264/AVC adopted many advanced features such as variable block size
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motion estimation and motion compensation, multiple motion vectors per

macroblock, multiple reference frames, quarter-pixel precision motion

estimation and compensation, and context-adaptive binary arithmetic coding

(CABAC) for entropy coding. In H.264/AVC, each frame to be encoded is

divided into a grid of rectangles, called macroblocks. A macroblock normally

consists of 16×16 pixels, and is subdivided into smaller blocks of from 8×8 to

4×4, as shown in Fig. 1.2.

H.265/HEVC applies various new video coding features to obtain much

higher coding efficiency than H.264/AVC. The basic processing unit of

H.265/HEVC is based on coding tree unit (CTU) structure in place of

macroblock units in H.264/AVC, as shown in Fig. 1.3. All previous standards

have been adopted the fixed array size of 16×16 luma samples, but

H.265/HEVC supports variable size CTUs. Slice segments per picture are

divided into a maximum of 64×64 or 128×128 sized largest coding units

(LCUs). Each LCU is partitioned into coding units (CUs) varying in size from

64×64 to 8×8, which can be achieved as a recursive quadtree approach. In intra

prediction coding, each CU then is split into 2N×2N or N×N, where N is the

number of pixels, sized prediction units (PUs), while the PU types in inter

prediction include four symmetric partitions (2N×2N, N×N, 2N×N, and N×2N)

and four asymmetric partitions (2N×nU, 2N×nD, nL×2N, and nR×2N) by using

asymmetric motion partition (AMP) [16] designed for irregular image patterns.

The intra picture prediction of H.265/HEVC has 33 angular modes with planar

and DC modes, whereas H.264/AVC uses only 9 intra prediction modes.

0
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0 1
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1
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2 3
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4×8
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0 1

2 3
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Fig. 1.2. Macroblock partitions in H.264/AVC.
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Fig. 1.3. Coding tree unit structure in H.265/HEVC.

Table 1.1. Feature Comparison between H.264/AVC and H.265/HEVC

Feature H.264/AVC H.265/HEVC

Improvement
Half or less bitrate of

MPEG-2

Half or less bitrate of

H.264/AVC

Basic processing unit 16×16 Macroblock 64×64 Coding tree unit

Block partitions
Variable block size:

16×16 to 4×4

Prediction units:

64×64 to 8×8

Motion vector accuracy Quarter-pixel Quarter-pixel

Transform
8×8 and 4×4

DCT approximation

Transform units:

32×32 to 4×4

Entropy coding CAVLC and CABAC
CABAC

(Parallel operations)

Intra prediction 9 modes 35 modes

Inter prediction

Spatial MV prediction

(Median)

& Direct mode

Advanced MV prediction

(Spatial + Temporal)

& MERGE mode

Inter prediction interpolation Luma 6-tap + 2-tap Luma 7-tap or 8-tap

Built-in deblocking filter In-loop deblocking filter
In-loop deblocking filter

& SAO filter

Maximum resolution and fps
Up to 4096×2304

at 59.94 fps

Up to 8K UHDTV

at 120 fps

Encoding runtime
10 times complexity of

MPEG-2

10 times complexity of

H.264/AVC

Main drawback High bitrate for UHDTV High encoding complexity
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1.1.3. Video Encoder

Generally, a video encoder can be divided into three units: a temporal

redundancy eliminator, a spatial redundancy eliminator, and a statistical

redundancy eliminator (entropy encoder), as shown in Fig. 1.4 [17]. The

temporal redundancy eliminator estimates and extracts the motion of an

object using the close correlation between neighboring video frames, while

information related to stationary objects or background is eliminated. As

motion estimation (ME) is at the core of the temporal model, it occupies more

than half of the total encoding time [18]. Thus, a great deal of research into ME

has been conducted in an attempt to decrease the runtime of the ME module.

The H.264/AVC encoder as shown in Fig. 1.5 [11] is twice as efficient as that

of MPEG-2. H.264/AVC uses a lower bitrate to get the same quality with

MPEG-2. Although the advanced features allow it to encode video data more

effectively compared with conventional methods, the increased computational

complexity requires a certain level of CPU power to perform real-time video

encoding, especially in mobile applications.

The H.265/HEVC encoder as shown in Fig. 1.6 [14] can provide much higher

video coding efficiency compared to the H.264/AVC encoder by halving the

bitrates while maintaining almost the same subjective quality [12], but this is

achieved at the expense of a significant increase in computational complexity

[15]. It is known that H.265/HEVC coding requires up to 10 times more

processing power compared with H.264/AVC.

Temporal
Redundancy

Eliminator

Video
Input

Spatial
Redundancy

Eliminator

Statistical
Redundancy

Eliminator

Stored
Frames

Encoded
Output

CoefficientsResidual

Motion
Vectors

Fig. 1.4. Generic video encoder block diagram.
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Fig. 1.5. H.264/AVC encoder block diagram. [11]

Fig. 1.6. H.265/HEVC encoder block diagram. [14]
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1.2. Research Objective

The next emerging UHDTV technologies are being developed rapidly thanks

to enormous success and popularity of HDTV and the Internet. However, high

quality video streaming services including HDTV and UHDTV have been the

major cause current network traffic jam. Video coding standards such as

H.264/AVC and H.265/HEVC were released to decrease the massive traffic.

Video compression standards have also contributed powerfully to various

multimedia applications such as broadcasting, interactive communications,

digital storage media, medicine, video on demand (VOD), video surveillance

system, and so on. Particularly, H.265/HEVC enables broadcasters to sharply

reduce the bandwidth required to deliver UHDTV, whereas it has a much more

increased computational complexity in encoding due to many advanced

features, compared with previous standards. For this reason, it requires much

more powerful hardware with an additional expense.

Fig. 1.7 [17] and Fig. 1.8 [15] illustrate the computational complexity profiles

of H.264/AVC and H.265/HEVC encoding, respectively. As shown in Fig. 1.7,

carries out the ME process, accounts for over 60 percent

of the total encoding time of H.264/AVC. Similarly, Fig. 1.8 shows that the

which are encoding classes related to the ME process, is over 60 percent of the

total encoding time of H.265/HEVC. ME has been adopted in most modern

video compression standards including H.264/AVC and H.265/HEVC because

it is a significant core part to efficiently reduce a large amount of video data by

extracting motion vector information between adjacent frames. As mentioned

above, the high complexity of ME greatly affects the processing speed of the

latest video encoders and it will be a critical factor in real-time hardware or

software applications for video encoding. Accordingly, many researches on ME

have been conducted for a long time. In this research, the focus is on the

development of low complexity ME techniques.
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Fig. 1.7. Computational complexity distribution for H.264/AVC encoder.
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1.3. Thesis Organization

The dissertation consists of seven chapters, which is organized in the

following sequence: Chapter 1. INTRODUCTION; Chapter 2. RESEARCH

TRENDS; Chapter 3. INTEGER-PIXEL MOTION ESTIMATION; Chapter 4.

VERTICALLY SYMMETRICAL LINEAR MODEL BASED FME; Chapter 5. DATA

TREND APPROXIMATION BASED INTERPOLATION-FREE FME; Chapter 6.

ENHANCED 1-D PARABOLIC PREDICTION BASED FME; Chapter 7.

CONCLUSIONS.

In Chapter 1, a state-of-the-art video compression standard such as

H.264/AVC and H.265/HEVC are introduced. Although the advanced

technologies allow it to encode video data more effectively compared with

conventional methods, the increased computational complexity requires a

certain level of CPU power to perform real-time video encoding, especially in

mobile applications. The complexity of the data structure and algorithm of an

H.265/HEVC encoder is higher than 10 times an H.264/AVC encoder. The ME

runtime of a video encoder is recognized as the greatest portion of overall

video encoding time. Accordingly, the ME technique will be very significant

attempt for alleviating the computing complexity in H.265/HEVC.

In Chapter 2, various integer-pixel ME (IME) algorithms and fractional-pixel

ME (FME) algorithms are reviewed and introduced. Over the past few years,

many fast IME algorithms have been developed to replace the conventional full

search algorithm with a high level of computational complexity.

Block-matching algorithm is the most well-known IME method in video coding.

The position of the motion of an object in video sequence can be represented

as fractional-pixel as well as integer-pixel. Although FME has a strong impact

on peak signal-to-noise ratio (PSNR) of the coded images, the total video

encoding time is much more increased because it is performed after the IME

process is terminated. The FME process also makes frequent memory access

and a certain amount of computation due to interpolation operations, which
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are needed to produce fractional-pixel search positions.

In Chapter 3, some block-matching based techniques for fast IME are

proposed. The existing fast IME algorithms utilize a variety of search

strategies to speed up the search process. The conventional high-performance

hybrid ME algorithm adopted in the H.264/AVC reference software encoder

combines many improved technologies, but there is the potential for speed

improvement. Therefore, a modified hybrid ME algorithm is presented to

further reduce the computational complexity of the conventional method.

In Chapters 4, 5, and 6, interpolation-free prediction techniques for fast FME

are proposed. In both H.264/AVC and H.265/HEVC, the typical full

fractional-pixel search (FFPS) at quarter-pixel motion vector (MV) resolution

always checks 16 fractional-pixel search positions. The exhaustive search

method used in FFPS provides the excellent search quality whereas it causes a

serious waste in computational complexity. Thus, low complexity

interpolation-free based FME techniques are presented in the thesis. These

techniques focus on performing FME without interpolation operations in order

to minimize the use of fractional-pixel search points. In Chapters 4 and 5,

although the proposed methods overcome the shortcomings of the existing

prediction based FME methods, the reconstructed image quality and reduced

bitrate ratio are not fully satisfactory. In Chapter 6, therefore, a novel

technique using specific correction coefficients is also introduced. The

technique can further improve the performance of the existing methods,

whereas it requires a small number of fractional-pixel search points in

computational complexity.

Finally, Chapter 7 concludes and summarizes the thesis. The future works

related to this research field will also be discussed shortly in the final chapter.

In addition, the chapters in the thesis can be positioned as described in Table

1.2, of which the abbreviations are listed in Table 1.3 and Table 1.4. The

positioning of all the ME algorithms mentioned is represented in Table 1.5 and

Table 1.6; they are also explained briefly in Chapter 2.
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Table 1.2. Positioning of Each Chapter in the Thesis

Research

Field

Video Coding Standard

H.264/AVC H.265/HEVC

V
id

e
o
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n

c
o
d

e
r

In
te

g
e
r-

P
ix

e
l

M
E

Chapter 3
3.4.1

Proposed:
RDS [78]

Competition:
DS [60]
HEXBS [61]
CDS [62]

Chapter 3
Proposed:

EDWS [78]
Competition:

FFS [66]
UMHexagonS [65]

N/A

F
ra

c
ti

o
n

a
l-

P
ix

e
l

M
E

Chapter 4
Proposed:

VSLFPS [79], [80]
Competition:

QPFPS (1-D_PM) [69]
FFS [66] (IME)

Chapter 5
Proposed:

IFBFPS (METHOD_1-3) [81], [82]
Competition:

CBFPS [65]
PPFPS (1-D_PM) [68], [69], [70], [71]

Chapter 6
Proposed:

EPPFPS [83]
Competition:

FFPS [66], [67]
CBFPS [65]
PPFPS (1-D_PM) [68], [69], [70], [71]

Chapter 5
Proposed:

IFBFPS (METHOD_3) [81], [82]
Competition:

FFPS [66], [67]
PPFPS (1-D_PM) [68], [69], [70], [71]
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1.4. Research Direction and Area Covered by Thesis

All the block-based integer-pixel and fractional-pixel motion estimation (IME

and FME) algorithms mentioned in the thesis are listed in Table 1.3 Table 1.6.

Each ME algorithm will be briefly explained in Chapter 2. As shown in Table

1.5 and Table 1.6, the MV search speed and search accuracy comparisons

among the algorithms are dependent heavily on the experimental results in

the referenced papers, and it is difficult to compare precisely their

performances because the test conditions, encoding configurations, and

implementation environments for each simulation are different from each

other. Therefore, the performance evaluation of the ME algorithms may be

somewhat subjective. Table 1.5 and Table 1.6 represent simply the unit of

sear

lossless ME approach fully using all the search points required for finding the

using them for speeding up in other words, when an ME algorithm provides

the best quality at all times, it is regarded as .

As shown in Table 1.5, the conventional full search (FS) [66], [67] algorithm

can always produce the best matched MVs at the slowest search speed, while

the small diamond search (SDS) [63], [65] has poor performance in search

accuracy but its processing speed is very fast. SDS, for this reason, is

employed complementally to refine the best MV in the final search step of

some fast ME algorithms such as the efficient three-step search [63] and the

unsymmetrical-cross multi-hexagon-grid search (UMHexagonS) [65].

UMHexagonS, the test zone search (TZS) [67], and the edge based partial

distortion search (EPDS) [43] give high performance with relatively low

computational cost. On the other hand, in the case of FME as shown in Table

1.6, the exhaustive full fractional-pixel search (EFFPS) [see Fig. 6.15 (a)]
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provides the best search quality of all the FME algorithms. Nevertheless, since

EFFPS has a significantly high computational complexity and does not

consider hierarchical search by fractional-pixel resolution change, it has not

been adopted in most of the modern video encoders; alternatively, the

two-step full fractional-pixel search (FFPS) [66], [67] has replaced EFFPS up to

now, in spite of its lossy ME approach. On the contrary, the parabolic

prediction based fractional-pixel search (PPFPS) [68], [69], [70], [71] without

using additional fractional-pixel search points has an extremely low

computational cost, whereas the performance of prediction is insufficiently

competitive compared with the other FME algorithms reliant on interpolation.

Chapters 3 6 in the thesis propose some integer-pixel and fractional-pixel

ME techniques, respectively. The proposed ME algorithms are developed along

with the following three considerations: first, they should be compliant with

the recent video compression standard such as H.264/AVC or H.265/HEVC;

second, they should gain a competitive advantage over the existing

high-performance algorithms; third, they should not limit their practical

applications, for instance, consider implementation on mobile devices. The

experimental results in Chapter 3 demonstrate the performance among the

proposed IME algorithms and the anchor IME algorithms, adopted in the

reference software encoder of H.264/AVC, such as the fast full search (FFS)

[66] and UMHexagonS. In Chapters 4 6, the simulations compare the

performance among the proposed FME techniques, FFPS, and the center-biased

fractional-pixel search (CBFPS) [65]; FFPS is used as a reference fractional-pixel

ME algorithm in both H.264/AVC and H.265/HEVC, whereas the reference

integer-pixel ME algorithms, CBFPS and the test zone search (TZS) [67], are

only for H.264/AVC and H.265/HEVC respectively. All the other ME algorithms

used for the simulations in the thesis are directly implemented based on the

reference software encoders. In the light of the observations above, the thesis

will make various attempts to further improve the existing fast integer-pixel

and fractional-pixel ME algorithms such as UMHexagonS and PPFPS.
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Table 1.3. Referenced Integer-Pixel Motion Estimation Algorithms

Approach Abbr. Full Name Ref. No.

Lossless

FS Full Search [66], [67]

FFS Fast Full Search [66]

PDS Partial Distortion Search [36], [37]

FFSSG Fast Full Search with Sorting by Gradient [42]

FFSSD Fast Full Search with Sorting by Distortion [42]

SEA Successive Elimination Algorithm [44]

MSEA Multilevel Successive Elimination Algorithm [46]

ASO Adaptive Search Order [47]

Lossy

NPDS Normalized Partial Distortion Search [40]

APDS Adjustable Partial Distortion Search [41]

EPDS Edge Based Partial Distortion Search [43]

3SS Three-Step Search [48]

N3SS New Three-Step Search [57]

4SS Four-Step Search [58]

BBGDS Block-Based Gradient Descent Search [59]

DS Diamond Search [60]

HEXBS Hexagon-Based Search [61]

CDS Cross-Diamond Search [62]

E3SS Efficient Three-Step Search [63]

CDHS Cross-Diamond-Hexagonal Search [64]

SDS Small Diamond Search [63], [65]

EHS Extended Hexagon-Based Search [65]

UMHexagonS
Unsymmetrical-Cross Multi-Hexagon-Grid

Search
[65]

TZS Test Zone Search [67]

ENS Eight Neighbor Search [71]

Proposed

Lossy

RDS Revised Diamond Search [78]

EDWS
Diamond Web-grid Search (DWS) Combined

with Efficient Stationary Block Skip Method
[78]
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Table 1.4. Referenced Fractional-Pixel Motion Estimation Algorithms

Approach Abbr. Full Name Ref. No.

Lossless EFFPS Exhaustive Full Fractional-Pixel Search Fig. 6.15

Lossy

FFPS Full Fractional-Pixel Search [66], [67]

CBFPS Center-Biased Fractional-Pixel Search [65]

PPFPS

(1-D_PM)

Parabolic Prediction Based Fractional-Pixel

Search (One-Dimensional PPFPS)

[68], [69],

[70], [71]

QPFPS

Quadratic Prediction Based Fractional-Pixel

Search (QPFPS not using the modified SDS

in its final search step is the same with

1-D_PM.)

[69]

PDFPS
Prediction Based Directional Fractional-Pixel

Search
[72]

MPFPS
Motion Prediction Fast Fractional-Pixel

Search
[73]

FEFPS Fast and Efficient Fractional-Pixel Search [74]

Proposed
Lossy

VSLFPS
Vertically Symmetrical Linear Model Based

Fractional-Pixel Search
[79], [80]

IFBFPS

(METHOD_1-3)

Interpolation-Free Quadratic Bézier Spline

Based Fractional-Pixel Search
[81], [82]

EPPFPS
Enhanced 1-D Parabolic Prediction Based

Fractional-Pixel Search
[83]
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Table 1.5. Relative Performance Comparison among IME Algorithms

Performance Eval.
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The target area in the thesis is indicated as shown in this formatted text.
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Table 1.6. Relative Performance Comparison among FME Algorithms

Performance Eval.
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Chapter 2

RESEARCH TRENDS

2.1. Motion Estimation in Video Compression

C

R

Best matched

dd

d

C(i, j)

MV(i+u, j+v)

R(i+u, j+v) Candidate block in

reference frame

M N block in

current frame

2d+M+1

M N

Reference frame

Search window in

reference frame

Current frame

Fig. 2.1. The principle of the block matching algorithm.

Motion estimation (ME) has been used to efficiently eliminate the temporal

redundancy in video compression. ME is also developed for different types of

applications such as image sequence analysis, video coding, computer vision,

and image stabilization. The existing ME techniques can be roughly

categorized into time-domain and frequency-domain algorithms. The

time-domain algorithms include matching algorithms and gradient-based

(recursive) algorithms. The frequency-domain algorithms, meanwhile, include

phase correlation algorithms, discrete cosine transform (DCT) matching

algorithms, and the wavelet transform matching algorithm [19].
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In addition, motion estimation techniques can be classified into pixel

recursive approach [20], [21], [22], [23] and block matching approach [24]

according to their elementary units, i.e., pixels or blocks. Pixel recursive

algorithms try to calculate the displacement of each pixel separately. There

are some merits of pixel recursive approach; it can cope with the problem of

multiple moving objects and does not have any overhead for transmitting

motion information. However, pixel recursive approach recursively employs

the luminance change for each pixel in order to seek the motion information

of objects, and therefore the decoder requires the expense of high

computational complexity, almost the same as the encoder. Pixel recursive

approach also has a relative weakness in noise, discontinuities in the motion

field, and large displacements [25], [26].

On the other hand, block matching algorithms have been adopted by many

reference video encoders due to their low computational cost and robustness

to errors. Various block matching based ME algorithms are briefly introduced

in section 2.3. In block matching, each block in the current frame is compared

with the search area in the reference frame in order to find the best matched

block pointed to by motion vector, and then only the motion information is

transmitted to perform video data compression, as described in Fig. 2.1. The

best motion vector corresponds to the block position with the minimum

distortion which can be computed by block distortion measurement (BDM)

criteria such as the sum of absolute differences (SAD), the mean absolute error

(MAE), the mean squared error (MSE), and the sum of absolute transformed

differences (SATD) [17], [19]. SAD and MAE have been commonly used as fast

video quality metric for block matching ME due to their simplicity.
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2.2. Distortion Measurement Criteria

The sum of absolute differences (SAD) is the most frequently used BDM

criterion because of its low complexity. The SAD function used for block

matching ME can be computed as follows:

1 1

0 0

( , ) | ( , ) ( , ) |
M N

i j

SAD u v C i j R i u j v (1)

where M×N denotes the macroblock size and C(i, j) and R(i+u, j+v) represent

current and reference area samples respectively. The best motion vector (u, v)

is determined by the candidate having the lowest matching error SAD value. It

is effectively the simplest metric that calculates every pixel in a block. For low

complexity implementation, the constant division by M×N in the mean

absolute error (MAE) criterion shown in (2) is excluded from the SAD function.

1 1

0 0

1 ( , )
( , ) | ( , ) ( , ) |

M N

i j

SAD u v
MAE u v C i j R i u j v

M N M N
(2)

MAE is a widely used cost function along with SAD. The average distortion

value produced by MAE represents the differences between the current block

and the reference block but is unconcerned about the relationship between the

pixel values in the blocks. In some cases, the MAE function may cause

suboptimal results in fast ME algorithms because its performance worsens as

the search range becomes wider due to multiple local minima [27], [28]. On the

other hand, the sum of squared differences (SSD), also known as the sum of

squared errors (SSE), and the mean squared error (MSE) are generally

considered to provide better results compared to SAD and MAE respectively,

as they can be explained as Euclidean distance between two samples, which is

similar to the human visual perception. However, the SSD and MSE functions

require much higher computational complexity due to one multiplication per
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pixel difference, as shown below.

1 1
2

0 0

( , ) ( ( , ) ( , ))
M N

i j

SSD u v C i j R i u j v (3)

1 1
2

0 0

1 ( , )
( , ) ( ( , ) ( , ))

M N

i j

SSD u v
MSE u v C i j R i u j v

M N M N
(4)

The sum of absolute transformed differences (SATD) is a well-known block

matching metric used in the recent video compression standards such as

H.264/AVC and H.265/HEVC, which is used for fractional-pixel refinement

and intra prediction mode decision in the recent video encoders. The SATD

function works by applying a Hadamard transform (HT) of the differences

between the pixels in the current macroblock and the corresponding pixels in

the reference block, as described in (5) and (6). Even though SATD produces

superior prediction quality from both the perspectives of subjective and

objective metrics, it has far more increased computational complexity than

that of SAD.

1 1

0 0

( , ) | ( ( , ) ( , )) |
M N

i j

SATD u v HT C i j R i u j v (5)

1 1 1 1

1 1 1 1
( ) ,

1 1 1 1

1 1 1 1

THT Diff M Diff M M (6)

Rate distortion optimization (RDO) [29] can be utilized to enhance the

quality performance in video encoding. The RDO technique was developed to

effectively reduce the amount of video data with minimal quality loss. That is,

RDO explains the tradeoff between bitrate and quality. In a generic video

encoder the discrete cosine transform (DCT) is performed, followed by the
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quantization and entropy encoding process. For that, RDO requires much

heavier computational burden than those of other video quality metrics, such

as SAD, SSD, and SATD. It is used for inter prediction mode selection in

H.264/AVC and coding unit (CU) depth decision in H.265/HEVC, which are

performed after the final step of the ME process. The rate distortion cost

(RDcost) formula is defined as shown in the following equation.

modeRDcost Distortion Rates (7)

where Distortion indicates block matching metric such as SAD, SSD, and SATD,

mode
is the Lagrangian multiplier for adjusting the tradeoff between distortion

and bitrate, mode represents the available modes in inter coding, and Rates

denotes the number of bits needed to be encoded. In the RDcost formula, SAD

is generally used as the BDM criterion for integer-pixel ME, whereas SATD is

applied to the fractional-pixel refinement process.

Peak signal-to-noise ratio (PSNR) is very well-known as a quantitative image

quality metric for evaluating the distortion of reconstructed image.

Particularly, the luminance PSNR (Y-PSNR) is recognized to be more

appropriate for the measurement of visual quality than that of chrominance

(Cb and Cr) components [30]. The formula for PSNR, where n is the number of

bits per sample, can be easily calculated based on the MSE criterion as follows.

2

10

(2 1)
10 log

n

PSNR
MSE

(8)

Bjøntegaard delta matric [31] is widely used to effectively represent the

average difference between two rate-distortion curves consisting of pairs of

PSNR and bitrate. In the research on the recent video coding standards such as

H.264/AVC and H.265/HEVC, Bjøntegaard delta PSNR and bitrate (BD-PSNR

and BD-Bitrate) provide objective values for close analysis of simulation
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results at various quantization parameters (QPs). To evaluate BD-PSNR and

BD-Bitrate, the normal rate-distortion curves passing through four data points

can be interpolated by applying a third order logarithmic polynomial, as given

below.

3 2

0 1 2 3( ) , log( )PSNRF F x c x c x c x c x BIT (9)

3 2

0 1 2 3( ) , log( )BitrateF F y c y c y c y c y SNR (10)

where F(x) and F(y) denote the interpolation curves for BD-PSNR and BD-Bitrate

respectively, c
0

c
3

are the coefficients for line fitting, and x and y are the

logarithms of the output bitrate and PSNR (BIT and SNR) respectively. The

BD-PSNR value over the whole range of bitrates [bl, bu] is expressed as the

average difference I
PSNR

between the integrals of the two interpolation curves

F
A
(x) and F

B
(x), and in the same way I

Bitrate
in BD-Bitrate is computed with the

PSNR interval [sl, su], as shown in (11) and (12) respectively.

( ( ) ( ))
-

bu

B A
bl

PSNR

F x F x dx
BD PSNR I

bu bl
(11)

( ( ) ( ))
-

su

B A
sl

Bitrate

F y F y dy
BD Bitrate I

su sl
(12)

2.3. Overview of Integer-Pixel Motion Estimation

The conventional full search (FS) [66], [67] algorithm, also known as the

exhaustive search algorithm, can achieve the optimal search result and

excellent rate-distortion performance because it performs brute-force

distortion measurement against every block within the search window in the
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reference frame. As the FS algorithm also realizes simple data flow and

uncomplicated logical operation circuit, it can be easily implemented on

hardware devices. Implementation examples of ME architecture based on FS

are shown in [32], [33], [34]. However, if the video frame size or the search

range in encoding configuration is greatly increased, FS becomes extremely

wasteful in terms of computation. The FS process used for ME is known to

occupy about 60 to 80% of the total encoding time [35], and the overwhelming

computational load makes it often inappropriate for real-time video coding

applications. For this reason, in order to replace the exhaustive FS method,

various fast integer-pixel ME techniques have been developed over the past

few years. Most of the alternative ME algorithms to FS can be grouped into two

main techniques, fast exhaustive search and partial ones. Fast exhaustive

search approach, which is commonly using all or almost all of the search

points within a search range, performs faster than the conventional FS

technique, while maintaining the MV search quality; it can also be represented

as lossless ME approach. In partial search approach, most of search points are

ignored strategically for high speed search. Therefore, the computational cost

of partial search methods is normally lower than that of fast exhaustive search

approach, but they are with some degradation in search quality.

Fast exhaustive search approach, also known as the fast full search (FFS) [66]

technique, can achieve the same block matching performance as FS. Fast

exhaustive search methods are attractive enough due to having lower

complexity without any degradation in quality. Partial distortion elimination

(PDE) [36], [37] is a significant lossless ME algorithm, which was adopted in the

reference software encoder of H.264/AVC [38]. In a different way, the

H.265/HEVC test model (HM) reference software [67] implements a FFS-like

technique; when the fast encoder mode parameter is set to on, only a set of

even rows in each block is used for the block distortion computation. The

main idea of partial distortion search is explained in [39]. PDE can alleviate the

computational cost by omitting unwanted computation during matching error
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operations when the accumulated partial distortion is larger than the

previously measured minimum distortion within the search window. The

modified and improved PDE algorithms are introduced in [40], [41], [42], [43],

respectively. However, some of the modified PDE techniques [40], [41], [43]

cause a little bit quality degradation and bitrate increase, which result in lossy

motion estimation, even though they attempt an additional reduction in

computational cost.

Successive elimination algorithm (SEA) [44] is also frequently cited as fast

exhaustive search approach. SEA is possible to reduce a high number of

matching evaluations by applying the sum norm for each block; if the sum

norm is inconsistent with a necessary condition derived by Minkowski's

inequality [45], the search process for the corresponding block can be skipped.

Multilevel SEA (MSEA) [46] can reject many candidates by using the sum norms

of subblocks after dividing a block into several subblocks. In [47], the adaptive

search order (ASO) is presented as an improvement of MSEA.

Partial search approach attempts a decrease in computation by reducing the

number of candidate samples to find the best matched block or performing

the early termination or predicting the best motion vector for the current

macroblock. Each partial search algorithm is based on various techniques such

as unimodal error surface assumption [48], [49], spatio-temporal correlation

between the neighboring blocks and frames [50], [51], motion vector

probability distribution prediction [57], [58], [60], [62], [64], multi-resolution

frame structure [52], [53], [54], and integral projection [55], [56].

In particular, most of the partial search techniques are using general

characteristics of real-world video sequences, which primarily include

unimodal error surface assumption and motion vector probability distribution.

Though the distortion cost increases monotonically as the search point moves

away from the optimal one with the global minimum cost, it is not true for all

the cases because of the irregular and unsteady motion of objects and

background in video sequence. Therefore, the ME search process, such as the
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three-step search (3SS) [48] using unimodal error surface assumption, could

often easily be trapped at a local minimum [57].

Through observational evidences that the motion vector probability

distribution for real-world image sequences is center-biased [57], [58], [60],

[62], [64], many competitive partial search algorithms have been proposed up

to the present, which try to decrease the number of search points with some

degradation in block matching accuracy with respect to FS. For example, the

new three-step search (N3SS) [57], the four-step search (4SS) [58], the

block-based gradient descent search (BBGDS) [59], the diamond search (DS)

[60], the hexagon-based search (HEXBS) [61], the cross-diamond search (CDS)

[62], the efficient three-step search (E3SS) [63], the cross-diamond-hexagonal

search (CDHS) [64], the unsymmetrical-cross multi-hexagon-grid search

(UMHexagonS) [65], and the test zone search (TZS) implemented in the

reference software such as JSVM [66], JMVC [66], and HM [67] are fast

block-based ME algorithms, developed to effectively reduce the computational

complexity of the integer-pixel ME (IME) module. Each of the existing IME

algorithms has a different search strategy to satisfy both the accuracy of

estimation and the search speed.

In this thesis, the proposed fast IME techniques are introduced for further

reduction in computational complexity based on unimodal error surface

assumption, spatio-temporal correlation, and motion vector probability

distribution prediction, which will also archive negligible rate-distortion

performance degradation, compared to UMHexagonS [65].
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Fig. 2.2. A search path example of the conventional full fractional-pixel search

algorithm; the two-step refinement process is hierarchically performed from

half-pixel (Step 1) to quarter-pixel (Step 2).

Most motion estimators follow the IME process with a fractional-pixel ME

(FME) process. The location of a moving object in a video sequence can be

represented at fractional-pixel, as well as integer-pixel precision. FME

improves the image quality visibly, but requires higher computational

complexity. The runtime of the FME module is over 30% of the total encoding

time [18]. The conventional two-step full fractional-pixel search (FFPS) [66],

[67], also called the hierarchical fractional-pixel search, is wasteful and

inefficient owing to its fixed number of search points, as shown in Fig. 2.2. In

addition, an interpolation process (upsampling) must be performed to create

the fractional-pixel search area for half-pixel or quarter-pixel search point

refinement, which requires a high computational complexity and frequent

memory access. To ameliorate these issues, techniques such as the

center-biased fractional-pixel search (CBFPS) [65], the fast sub-pixel ME having

lower computational complexity [68], the quadratic prediction based
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fractional-pixel search (QPFPS) [69], the low-complexity algorithm for

fractional-pixel motion estimation [70], and the fast ME with interpolation-free

sub-sample accuracy [71] have been developed.

CBFPS is a typical interpolation-based fast FME algorithm adopted in the

reference encoder software of H.264/AVC. After predicting fractional-pixel

MV, The small diamond search pattern (SDSP) is applied to refine the

estimated MV. However, if predicted MV is not accurate, the FME search would

occasionally be trapped into the local minimum.

Some parabolic prediction based techniques have been proposed in [68],

[69], [70], and [71] respectively. In [68], three parabolic models are introduced

to approximate the block matching error at half-pixel accuracy. The two

dimensional parabolic model in [68] is also used in the low-complexity

algorithm for FME [70]. Even though the parabolic models require very low

computational complexity for determining the best predicted fractional-pixel

MV, they do not provide a detailed solution for quarter-pixel or less-than-one

accuracy. In addition, the quality performance of the parabolic prediction

based methods requires further improvement for practical applications.

QPFPS is based on the one-dimensional (1-D) mathematical model. In this

algorithm, a degenerate quadratic prediction function is used to approximate

the matching error value within the fractional-pixel ME search area. The local

coordinates of five integer-pixel positions are utilized to compute the model

coefficients. To obtain the minimum matching error, the differential operation

is performed on the quadratic prediction function. The predicted position is

located at the center of SDSP, and then the small diamond search (SDS)

algorithm is carried out to refine the best fractional-pixel MV.

The low-complexity algorithm for FME is using a 1-D parabolic

decomposition of the two-dimensional (2-D) parabolic model. The existing 2-D

parabolic model FME algorithm is not actually suitable in quarter-pixel

resolution ME. Thus, the 1-D parabolic decomposition-based method was

proposed to fix the shortcoming in quarter-pixel resolution ME. The FME
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algorithm has lower computational cost and better performance at

quarter-pixel MV accuracy, compared to the conventional 2-D parabolic model.

On the other hand, there are many minor improved FME methods. The

prediction-based directional fractional-pixel search (PDFPS) [72] combines

some techniques such as fractional-pixel MV prediction, early termination,

quarter-pixel small diamond search refinement, and directional search. PDFPS

produces low computational cost with a slight PSNR loss and bitrate increase.

The motion prediction fast fractional-pixel search (MPFPS) [73] tries to reduce

computation by using the simplified adaptive search range (SASR) and the

mixed small diamond search pattern (MSDSP). The simulation results in [73]

show that the computational load is lower than that of PDFPS. The fast and

efficient fractional-pixel search (FEFPS) [74] is based on a unimodal error

surface assumption. The FME method can further decrease the number of

search points by searching only some positions in a particular quadrant,

compared to CBFPS.

In this thesis, the proposed fast FME techniques focus on predicting the best

fractional-pixel MV without using interpolation operations for reduction in

computational complexity. Chapters 4 and 5 present various

interpolation-free techniques to overcome some drawbacks to the existing

mathematical prediction based FME methods. However, although the

proposed techniques can improve further the prediction performance at very

low computational cost, the improvement of performance may be not fully

satisfactory for practical use. The performance of video encoding techniques

can be considered as a tradeoff between rate-distortion and computational

cost. In other words, it is also important to adjust the balance between

complexity and performance. In Chapter 6, therefore, a novel FME technique is

proposed for a reasonable improvement in rate-distortion performance at the

expense of low complexity. In the experimental results of each chapter, the

performance of the proposed algorithms will be thoroughly evaluated in terms

of PSNR and bitrate as well as computational complexity.
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Chapter 3

INTEGER-PIXEL MOTION ESTIMATION

3.1. Introduction

Motion estimation (ME) is an effective and representative technique for

removing the temporal redundancy in video sequences. Block-based motion

estimation has been adopted by most video compression standards including

MPEG-2, H.264/AVC, and H.265/HEVC. The block-matching approach is the

most popular technique for block-based motion estimation. The full search

(FS) [66], [67] algorithm evaluates exhaustively all the reference blocks within a

search range in order to determine the best matched block. Even though FS

provides outstanding quality performance and simple data flow and circuit

control, a prohibitive amount of computation is required if the search range

becomes too large. This high computational complexity makes it often not

suitable for real-time implementations. Over many years, many fast

integer-pixel (IME) algorithms have been proposed to replace FS with a high

level of computational complexity. Each fast IME algorithm uses a different

search strategy to satisfy both the search quality and search speed. The

unsymmetrical-cross multi-hexagon-grid search (UMHexagonS) [65] was

proposed as a reference IME algorithm for the reference video encoder of

H.264/AVC. UMHexagonS is a highly efficient IME algorithm, but there is the

potential for speed improvement. Thus, in this chapter, some fast IME

techniques are proposed to further improve the speed performance of

UMHexagonS. The proposed techniques have been developed based on close

analysis of the statistical data for real-world video sequences as well as the

existing techniques used in UMHexagonS. The results of the simulations will

demonstrate the performance of the modified fast IME algorithm combined

with the proposed techniques.
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3.2. Related Work

In this section, a high-performance hybrid integer-pixel ME algorithm,

UMHexagonS, is analyzed, and then its modified approach will be proposed

for further reduction in computational complexity. UMHexagonS embedded in

the H.264/AVC JM (Joint Model) reference software [66], [75] combines many

advanced techniques, including early termination, MV prediction, and search

patterns of cross, diamond, and hexagon. As shown in Fig. 3.1 (a), a 16 points

large hexagon pattern is considered based on the fact that horizontal motion

is generally much more frequent than that of vertical motion for real-world

video sequences. The two search patterns of Fig. 3.1 (b) and (c) are adopted in

the extended hexagon-based search (EHS) [65], which is used as a

sub-algorithm in the UMHexagonS algorithm.

(a) (b) (c)

Fig. 3.1. The Search patterns used in UMHexagonS. (a) Large hexagon pattern,

(b) Hexagon search pattern, and (c) Small diamond search pattern.
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The search process of UMHexagonS is described in Fig. 3.2. The procedure of

UMHexagonS is also summarized as follows:

Step_0) Before the IME process, the start search point should be decided at

first; then, it performs the early termination (ET) operation [65].

Step_1) First, an unsymmetrical-cross search is made. The spacing between

checking points is two and there are twice as many points horizontally than

vertically; then, it performs the ET operation.

Step_2) Starting from the best point found in the cross search step, next

small rectangular full search is made; then, it performs the ET operation.

Step_3) A multi-hexagon-grid search strategy is taken (from 1 to SR/4,

SR=search range). The 16 points hexagon pattern used in the grid search has

more points at the left and right edges; then, it performs the ET operation.

Step_4) In the final search step, EHS (Step_4-1) or small diamond search

(Step_4-2) is used to refine the best MV found in the multi-hexagon-grid stage.
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Fig. 3.2. The search process of UMHexagonS.
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Fig. 3.3. Motion vect .

The current search pattern in the UMHexagonS process, as explained above,

varies with the conditions of each search step. The search patterns used in

UMHexagonS can be improved by removing unnecessary search points and

reforming into more robust shapes. For this, a statistical analysis on various

motions from real-world video sequences is required. As shown in Fig. 3.3 and

Fig. 3.4, the motion vector probability (MVP) distributions are resulted from

simulations using the full search algorithm with a search range SR = ±7.

Sequences used for Fig. 3.3

an Fig. 3.4 is using

three CCIR601 Sequences , , In Fig.

3.3 (a), over 89% of motion vectors are found at the central point (0, 0). Within

the central 5×5 area, most of motion vectors are also found. The MVP

sports scene is shown in Fig. 3.3 (b). Unlike the distribution as illustrated in Fig.

3.3 (a), Fig. 3.3 (b) does not show altogether center-biased MVP distribution but

wide distribution.
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Fig. 3.4. Motion vector probability (%) distribution for three CCIR601s.

Fig. 3.4 displays the results of MV's accumulated distribution for the three

CCIR601 sequences. The MVP distribution diagram can be divided into nine

regions to comprehensively analyze the general MVP distribution tendency of

video data. In Fig. 3.4, it can be seen that the portion of MV within the 5×5

region in the center of the search range is the highest at 53%. Moreover, the

portions of MVP in the horizontal and vertical regions are especially high in

the regions other than the central region. The major cause for this

phenomenon is closely related to the fact that the camera capturing the

images mainly moves in horizontal and vertical directions. Based on this

observation, the proposed fast integer-pixel motion estimation techniques are

presented in the following section.
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3.4. Proposed Techniques

3.4.1. Revised Diamond Search Algorithm

(a) Large diamond-shaped pattern (LDSP) of DS

(b) Redefined LDSP (RLDSP) (c) Small X-shaped pattern (SXSP)

(d) Small diamond-shaped pattern (SDSP)

Fig. 3.5. Redefined search patterns from LDSP used in original DS.

The dense search points in the large diamond-shaped pattern (LDSP) of the

original DS algorithm, as shown in Fig. 3.5 (a), are inadequate for searching

wide-area movements. On the other hand, in Fig. 3.5 (b), the redefined large

diamond-shaped pattern (RLDSP) of the distributed search points is more

appropriate for horizontal and vertical searches. Furthermore, the small

X-shaped pattern (SXSP) as shown in Fig. 3.5 (c), which has branched out from

LDSP, can flexibly cope with local minimum block distortion measure (BDM)

points. The small diamond-shaped pattern (SDSP) as shown in Fig. 3.5 (d) is

used in the final search step of the proposed revised diamond search (RDS)
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algorithm. Two Examples of search paths of the proposed RDS are shown in

Fig. 3.6. The search process of the RDS algorithm using RLDSP, SXSP, and SDSP

can be summarized as follows:

Step_1) The five checking points of RLDSP are tested. If the minimum BDM

point is located at the center, go to Step_3; otherwise, go to Step_2.

Step_2) A new RLDSP with the center at the previous minimum distortion

point is formed. If the minimum BDM point obtained is located at the center of

RLDSP, go to Step_3; otherwise, recursively repeat this step.

Step_3) Switch the search pattern from RLDSP to SXSP. If the minimum BDM

point occurs at the center of SXSP, go to Step_4; otherwise, repeat Step_2.

Step_4) One of the five checking points of SDSP is determined as the new

minimum BDM point, which is the final MV.
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Fig. 3.6. Two examples of search paths of RDS.
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3.4.2. Performance Evaluation of RDS

The performance evaluation experiments of the proposed RDS algorithm

evaluate the search speed and quality. The search speed can be checked with

the average number of search points per block, and the average PSNR (peak

signal-to-noise ratio) is used to evaluate the search quality. A total of eight

720×486, 90 frames), are used for the experiment. The sum

of absolute differences (SAD) criteria is used for BDM measurement. It is

defined as follows:

1 1

0 0

| |
M N

ij ij
i j

SAD C R (1)

where M and N are the parameters about the macroblock size. C
ij

and R
ij

are

current and reference area samples respectively. The block size and the search

range are set at 16×16 and SR = ±15, respectively. Table 3.1 and Table 3.2

compare the performance of the proposed RDS algorithm with those of BMAs

such as DS, HEXBS, and CDS. The results in Table 3.2, where SPT denotes the

average number of search points per block, indicate that the proposed RDS

always uses less search points than the original DS. However, the proposed

RDS provides a higher quality performance than DS in most sequences, as

shown in Table 3.1. In particular, the search quality is more remarkable for

intense and abrupt movements, the proposed RDS algorithm outperforms DS

in terms of the search speed and quality.
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Table 3.1. PSNR (dB) Comparison

BMA
CIF Sequences

Average
Claire Coastguard Football Salesman

DS 41.162 29.483 24.241 35.281 32.542

HEXBS 40.837 29.322 24.036 35.238 32.358

CDS 41.147 29.478 24.190 35.377 32.548

RDS 41.139 29.456 24.273 35.271 32.535

BMA
CCIR601 Sequences

Average
Football Garden Stefan Susie

DS 24.643 26.252 22.616 34.659 27.043

HEXBS 24.540 26.058 22.999 34.772 27.093

CDS 24.600 26.214 22.558 34.562 26.984

RDS 24.685 26.345 23.227 34.831 27.273

Table 3.2. Computational Complexity (SPT) Comparison

BMA
CIF Sequences

Average
Claire Coastguard Football Salesman

DS 13.226 17.692 23.898 13.831 17.162

HEXBS 11.119 13.908 17.462 11.309 13.450

CDS 9.575 18.849 24.453 10.628 15.876

RDS 13.193 16.012 20.700 13.591 15.874

BMA
CCIR601 Sequences

Average
Football Garden Stefan Susie

DS 23.051 22.328 20.491 20.463 21.583

HEXBS 16.584 16.561 15.943 15.426 16.128

CDS 23.291 25.549 20.378 21.048 22.566

RDS 19.998 18.973 18.487 18.323 18.945
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3.4.3. Diamond Web-Grid Search Algorithm

(a) (b)

Fig. 3.7. The two new search patterns used in the proposed DWS algorithm: (a)

Full diamond search pattern and (b) Dodecagon search pattern.

The RDS algorithm proposed above can be combined with other fast IME

algorithms as a sub-algorithm to refine the best estimated MV. In this section,

a main-algorithm that can combine with RDS is proposed; RDS will be used as

the final MV refinement process of the proposed main-algorithm and try to

further improve the performance of it. The proposed main-algorithm, the

diamond web-grid search (DWS) algorithm for H.264/AVC motion estimation,

was developed based on observations of the MVP distribution and multiple

local minima for real-world sequences. The full diamond search pattern and

dodecagon search pattern, as shown in Fig. 3.7 (a) and (b), are used as basic

search patterns in the proposed DWS algorithm. The full diamond search

pattern is very suitable for searching center-biased motions. In contrast to the

multi-hexagon-grid used in UMHexagonS, the multi-dodecagon-grid (web-grid)

is considering all directions, but is heavier in horizontal and vertical directions

than in diagonal directions. In the final search step of the proposed DWS, the

proposed RDS can be used to refine the best MV. The search process of the

proposed DWS is described in Fig. 3.8. The DWS algorithm can also be
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summarized in three steps, as follows:

Step_0) Before the integer-pixel motion estimation, the start search point

should be decided at first; then, it performs the ET operation.

Step_1) First, a full diamond search and a symmetrical-cross search are

made. The spacing between checking points of the symmetrical-cross search

pattern is four; then, it performs the ET operation.

Step_2) A web-grid search strategy is taken. The dodecagon pattern is scaled

to various sizes (from 1 to SR/4); then, it performs the ET operation.

Step_3) In the final search step, an unrestricted center-biased search

(Step_3-1: RDS or EHS) or the small diamond search (Step_3-2) is adopted to

refine the best MV found in the web-grid stage.
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Fig. 3.8. The search process of DWS.
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3.4.4. Performance Evaluation of DWS

,

, ,

, , , .

for each of the eight sequences. We compare the proposed algorithms with

fast full search (FFS) and UMHexagonS algorithm using the H.264/AVC JM

version 12.4 reference software with search range SR = 16, quantization

parameter QP = 40, and rate-distortion optimization RDO = 0, and the baseline

profile. The DW+EHS and DW+RDS algorithms, in Step_3-1 of DWS, are using

EHS and RDS respectively.

Table 3.3 and Table 3.4 show that the proposed DW+RDS is about 0.011 dB

higher compared with that of UMHexagonS in terms of PSNR while the average

bitrate increase is 0.024%. From Table 3.5, the motion estimation time

reduction is still about 5.3%. On the other hand, DW+EHS can achieve the

average bitrate decrease of 0.012 with 0.002 dB PSNR drop on average in

comparison with UMHexagonS, whereas the average reduction in ME time is

about 5.9%.
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Table 3.3. PSNR (dB) Comparison

ME FFS UMHexagonS DW+EHS DW+RDS

QCIF

Claire 31.477 31.384 31.401 31.451

Container 27.850 27.841 27.827 27.826

Grandma 29.683 29.621 29.620 29.654

Salesman 27.381 27.367 27.357 27.380

CIF

Coastguard 26.675 26.663 26.653 26.647

Mobile 24.380 24.342 24.344 24.338

News 29.902 29.864 29.866 29.858

Stefan 26.372 26.339 26.336 26.354

Average (dB) with respect to UMHexagonS -0.002 0.011

Table 3.4. Bitrate (bps) Comparison

ME FFS UMHexagonS DW+EHS DW+RDS

QCIF

Claire 7593 7528 7520 7532

Container 8402 8414 8367 8366

Grandma 6099 6067 6051 6045

Salesman 9660 9510 9578 9587

CIF

Coastguard 111963 111654 112114 112002

Mobile 228985 229682 228922 228806

News 49051 48988 48814 48884

Stefan 240217 232526 233430 233794

Average (%) with respect to UMHexagonS -0.012 0.024

Table 3.5. Motion Estimation Time (ms) Comparison

ME FFS UMHexagonS DW+EHS DW+RDS

QCIF

Claire 45912 9017 8143 8382

Container 46505 10792 10371 10321

Grandma 47674 10085 9489 9471

Salesman 47576 12073 11237 11593

CIF

Coastguard 196767 55820 52985 52847

Mobile 189266 60204 57416 56776

News 186276 39662 37687 38482

Stefan 189677 57613 54038 53606

Average (%) with respect to UMHexagonS -5.915 -5.303
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3.4.5. Skipping Zero Motion Vector

ZMV block
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(a) MV space (b) ZMV = (0, 0)

Fig. 3.9. (a) A ZMV block found in MV space. (b) The location of ZMV in search

range = ±7.

A block with a zero motion vector (ZMV) is regarded as a stationary block.

ZMVs are usually distributed around the background of a video sequence. In

Fig. 3.9, a ZMV is positioned at the center of the search window. Most of BMAs

start the search process from the central point of the search window.

Attention needs to be paid to the fact that ZMV only uses a single central point,

and that the BDM value from the previous frame can be reused. SAD or SATD

(sum of absolute transformed differences) are mainly used for measuring

block distortion. Since video quality distortion and bitrate are simultaneously

considered in H.264/AVC, the rate-distortion optimization (RDO) can also be

used, as defined in (2) and (3).

modeRDcost SAD Rates (2)

( 12)/30.85 2 QP

mode (3)

where
mode

is the Lagrangian multiplier and it adjusts the tradeoff between
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bitrate and video distortion, QP is the quantization parameter, and Rates

represents the number of bits required for coding the difference between the

candidate MV and the MV predictor. The sum of squared differences (SSD) can

be used instead of SAD for better performance at the cost of an increased

computational complexity.

Simulation experiments are conducted using the FS algorithm with the

luminance of four CIF sequences (100 frames respectively) to analyze the

correlation between ZMV and the mean absolute error (MAE). MAE is

calculated as follows:

1 1

0 0

1
| |

M N

ij ij
i j

MAE C R
M N

(4)

As a result of the simulation, Fig. 3.10 (a) and (b) indicate that the ZMV ratio

is inversely proportional to the MAE value. Based on this fact, an existing

technique for effectively skipping ZMV [76] is introduced.
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Fig. 3.10. (a) ZMV ratio comparison. (b) MAE comparison.



3.4. Proposed Techniques 45

All ZMV blocks

=
Average SAD of all ZMV blocks

MV space

Fig. 3.11. The existing ZMV skip method.

As shown in Fig. 3.11, the existing ZMV skip technique uses the average SAD

value of all ZMV blocks as a threshold for the ZMV prediction. The threshold

ZMV_SAD
threshold

can be calculated as shown in (5).

, ,

1
_ { | }threshold i j i j

ZMV

ZMV SAD SAD MV ZMV
N

(5)

where N
ZMV

denotes the total number of ZMV. When the current MV is ZMV, its

SAD value is added to a temporary variable, and then the average of the

accumulated SAD values, ZMV_SAD
threshold

, is updated. Table 3.6 expresses the

pseudo code for using the threshold in BMA. However, this technique can only

be used in the motion estimation unit for MPEG-1, 2 fixed block-size. In other

words, it is not appropriate for variable block-size ME (VBSME) of H.264/AVC.

Table 3.6. Pseudo Code for Using ZMV Threshold in BMA

,

- _ ( , , , )

{

( , , );

_ , ;

}

reference current

current reference current i j

current threshold

Block Matching Algorithm Frame Frame i j

SAD SAD Frame Frame Block

if SAD ZMV SAD return ZMV
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3.4.6. Efficient Stationary Block Skip Method for VBSME

for MB type 1
for MB type 2
for MB type 3

for MB type 7

+

Fig. 3.12. The seven variable thresholds used in the proposed ESBSM method

and seven segmentations of the macroblock.

In order to implement the ZMV block skip technique in the H.264/AVC JM

reference software, a simple solution referred to as the efficient stationary

block skip method (ESBSM) is introduced. The proposed solution uses seven

different variable threshold variables depending on the type of macroblock

(MB) [see Fig. 1.2].

For example, as shown in Fig. 3.12, if a stationary block with ZMV is MB type

2, its minimum SA(T)D (min_mcost) is added to the accumulator variable for

MB type 2 which is represented as ZMVSumMcost[2] in Fig. 3.13. And then all

the seven ZMV thresholds are recalculated right before moving from the

current frame to the subsequent frame; the ZMV threshold for MB type 2 is

represented as the average value of the ZMV min_mcosts for MB type 2 and the

average ZMV min_mcost for MB type 2 can only be used as the ZMV threshold

for MB type 2. There are seven variable ZMV thresholds, and each threshold

value is determined according to the average ZMV min_mcost of the

corresponding MB type. The proposed ESBSM can easily be combined with the

existing ME algorithms in H.264/AVC. Fig. 3.13 displays the flow of the ME

process combined with the proposed ESBSM implemented in JM. In the

experiment results, the proposed DWS algorithm is used as the ME process.
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ME Process of DWS

Initial Start Point Prediction

min_mcost
<

ZMVTreshold[ ]

YES: ME Termination NO

Update ZMVTresholds.

ZMVSumMcost[ ]
+=

min_mcost

YES

NO

Average ZMVSumMcosts.
(Updating ZMVTresholds)

Zero Motion Block ?

YES

NO

End of Current Frame ?

Fig. 3.13. The flowchart of the ME process combined with the proposed ESBSM

implemented in the H.264/AVC JM reference software encoder.

3.4.7. Experimental Results

The experiments are conducted at JM12.4 with the default settings of SR =

16, QP = 40, RDO = 0, and the baseline profile. Three hundred frames are used

for each of the six sequences , ,

, , .

addition, 30 frames from three high-resolution HDTV sequences

2160p) are also used in the

experiments. The experimental results, as shown in Table 3.7 Table 3.9,

indicate that the proposed DW+RDS algorithm combined with ESBSM (EDWS)

reduces the computations of UMHexagonS by up to 12%, while maintaining a

similar PSNR performance; saving 8.9% ME time and 0.08% bitrate on average.
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Table 3.7. PSNR (dB) Comparison

ME UMHexagonS EDWS

QCIF

Claire 31.384 31.347

Container 27.841 27.761

Foreman 28.137 28.104

CIF

Coastguard 26.663 26.643

Mobile 24.342 24.332

Stefan 26.339 26.332

HDTV

Harbour 28.294 28.286

Ship 34.395 34.372

Spinningchair 37.166 37.152

Average (dB) with respect to UMHexagonS -0.026

Table 3.8. Bitrate (bps) Comparison

ME UMHexagonS EDWS

QCIF

Claire 7528 7455

Container 8414 8315

Foreman 31970 32005

CIF

Coastguard 111654 111346

Mobile 229682 228682

Stefan 232526 233541

HDTV

Harbour 1076424 1075376

Ship 8442496 8557904

Spinningchair 8048600 8075040

Average (%) with respect to UMHexagonS -0.080

Table 3.9. Motion Estimation Time (ms) Comparison

ME UMHexagonS EDWS

QCIF

Claire 8836 8088

Container 10744 9626

Foreman 13035 11744

CIF

Coastguard 56593 49500

Mobile 61016 54023

Stefan 57152 51440

HDTV

Harbour 34877 32833

Ship 299666 280654

Spinningchair 269397 254437

Average (%) with respect to UMHexagonS -8.946
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3.5. Summary

In this chapter, a fast hybrid motion estimation algorithm was developed to

reduce the computational complexity in video encoding. The proposed ME

techniques include revised diamond search (RDS) algorithm, full diamond and

dodecagon search patterns, and efficient stationary block skip method

(ESBSM). The proposed RDS algorithm adopted two new search patterns, the

redefined large diamond-shaped pattern (RLDSP) and the small X-shaped

pattern (SXSP); RLDSP will be more appropriate to search horizontal and

vertical area due to the distributed search points, compared with the large

diamond-shaped pattern of the original DS algorithm; SXSP will flexibly cope

with local minimum block distortion measure points. As shown in the

simulation results, actually, the proposed RDS performs faster and more exact

than the original DS for CCIR601 sequences which consist of horizontal,

vertical, and vigorous motion contents. The proposed diamond web-grid

search (DWS) algorithm consists of the full diamond search pattern and the

multi-dodecagon-grid (web-grid); the full diamond search pattern not only is

very suitable for searching center-biased motions, but it also contributes to

simplifying the search process of UMHexagonS; the multi-dodecagon-grid is

considering all directions, but is heavier in horizontal and vertical directions

than in diagonal directions; in the final search step of DWS, RDS is used to

refine the best MV. The proposed DWS algorithm performs a little faster than

UMHexagonS while better search quality is maintained. The proposed ESBSM

can omit the ME process and save even more the total encoding time by using

the seven variable zero motion vector (ZMV) threshold for variable block-size

motion estimation (VBSME) in H.264/AVC. The proposed DWS algorithm

combined with ESBSM (EDWS) was simulated in the H.264/AVC JM reference

software to substantiate the fact that it can further improve the speed

performance of the conventional fast motion estimation algorithm,

UMHexagonS.
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Chapter 4

VERTICALLY SYMMETRICAL LINEAR MODEL BASED FME

4.1. Introduction

The recent motion estimators for video coding perform an interpolation

operation to determine the estimated motion position at fractional-pixel

resolution after their integer-pixel ME (IME) process. Even though

fractional-pixel ME (FME) has a strong impact on the quality of the

reconstructed images, an increase in the total encoding time is necessarily

caused because the IME process is followed by the FME process. Since the

interpolation filter in the FME process performs a large number of

multiplication and addition operations to generate fractional-pixel search

points from neighboring integer-pixel samples, it requires a high

computational cost as well as frequent memory access. In the H.264/AVC and

H.265/HEVC standards, the typical two-step full fractional-pixel search (FFPS)

[66], [67] evaluates the eight half-pixel search points followed by the eight

quarter-pixel search points. The fixed number of fractional-pixel search points

is very wasteful in terms of computational complexity, although it shows a

remarkable performance in search quality. The quadratic prediction based

fractional-pixel search (QPFPS) [69] tries to decrease the use of interpolation

operations by employing a degenerate quadratic prediction model. In this

chapter, a vertically symmetrical linear model based FME algorithm including

a grouping strategy is proposed to further improve the performance of the

degenerate quadratic prediction model. The results of the simulations show

the proposed algorithm can achieve a little bit better rate-distortion

performance compared with the existing prediction method, while

maintaining a similar computational complexity.
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4.2. Previous Quadratic Prediction Based FME Algorithm

The quadratic prediction based fractional-pixel search (QPFPS) [69] was

proposed to reduce the computational load at quarter-pixel motion vector

(MV) resolution. A degenerate quadratic prediction function, which is a

simplified version of the two-dimensional parabolic prediction model derived

for the matching error approximation, affects the determination of the best

prediction position at quarter-pixel MV resolution, which is shown below.

2 2( , )P x y ax bx cy d y e (1)

where x and y indicate fractional-pixel position, a, b, c, d, and e are the five

parameters for approximating the matching error cost P(x, y). When the five

integer-pixel positions are defined as C = (0,0), H
1
= (-1,0), H

2
= (1,0), V

1
= (0,-1),

and V
2
= (0,1) [see Fig. 4.7], the five parameters a, b, c, d, and e can be obtained

by solving the simultaneous equation shown below.

1

2

1

2

( )

( )

( )

( )
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P C e

P H a b e

P H a b e

P V c d e

P V c d e

(2)

As described in (3), the differential operation can be executed on the

quadratic prediction function with respect to x and y to assume the minimum

error cost P(x, y), which is obtained by being substituted with x
p
and y

p
.

2 0

2 0
p

p

ax b

c y d
(3)
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In the final step, the predicted position is located at the center of the small

diamond search pattern (SDSP), and then a modified small diamond search

(SDS) algorithm will be carried out to refine the best fractional-pixel search

point. In this step case, however, the interpolation process is definitely needed

to generate a fractional-pixel search area.

4.3. Observation: Real-World Error Surfaces

The real-world error surfaces of IME and FME are illustrated in Fig. 4.2 and

Fig. 4.3. The error surfaces were simulated for the three input sequences: CIF

[see Fig. 4.1] with the search range

of ±16. 1/16-pixel MV resolution is used for FME. As shown in Fig. 4.2, the

error surfaces of IME are irregular, but those of FME in Fig. 4.3 are

undoubtedly unimodal. The fractional-pixel search points within the FME

search area are produced by performing the interpolation operations from

information about the integer-pixels. Accordingly, the fractional-pixel error

cost increases monotonically as the search point moves away from the best

point with the minimum error cost. The side of the FME error surfaces is also

shaped like parabola, as shown in Fig. 4.3.

(a) (b) (c)

Fig. 4.1. and
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(a)

(b) Football

(c) Garden

Fig. 4.2. Error surfaces of IME at integer-pixel MV resolution.
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(a) Flower

(b) Football

(c) Garden

Fig. 4.3. Error surfaces of FME at 1/16-pixel MV resolution.
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(a) (b)

Fig. 4.4. (a) An example of FME error surface. (b) Another angle of (a).

4.4. Observation: Simplified Error Surface of FME

As already mentioned above, the error surface of FME has been simulated

and analyzed directly. Fig. 4.4 (a) shows the FME error surface for CCIR601

-pixel MV resolution. Unlike that of IME, the FME

error surface is clearly unimodal because the sub-pixels were generated by the

bilinear interpolation using the existing integer-pixels. Actually, most of FME

algorithms are influenced by a kind of interpolation. Therefore, the approach

to the FME part should be different from IME. Particularly, we take notice of

Fig. 4.4 (b). The shape looks like parabolic definitely. It means we can apply

parabolic models including some quadratic functions for FME. The graph also

shows that it has vertical symmetry with respect to x=5/16.

Furthermore, the vertically symmetrical characteristic of the FME error

surface has been observed closely, as illustrated in Fig. 4.5. 1000 FME error

performing full fractional-pixel search at 1/16-pixel MV resolution and their

best MV is (4, 2). The shape average for 10, 100, and 1000 FME error surfaces is

computed, respectively, and then only the three minimum MAE values

corresponding to the x-coordinates -15/16, 1/4, and 15/16 for each error

surface are extracted and used to analyze the general characteristics. As a
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result, Fig. 4.5 shows that the average FME error surfaces simplified represent

almost obviously vertical symmetry with respect to x=1/4.

From understanding Fig. 4.4 and Fig. 4.5, a linear model graph can be drawn,

as shown in Fig. 4.6. Line F(x) adjoins point (-1, F(-1)) and (0, F(0)). Here, we can

introduce symmetry assumption for F(x). Line G(x), which has the negative

slope value of F(x), is passing point (1, G(1)). That is, the basic principle of the

proposed FME algorithm is to find the location where the two lines intersect.

Fig. 4.5. Average FME error surfaces simplified for 10, 100, and 1000 error

surfaces at 1/16-pixel MV resolution.

x

Cost

1-1 0

Best Sub-pel

F(x)

G(x)

Fig. 4.6. The basic concept of the proposed FME algorithm.
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4.5. Proposed Linear Model Based FME Algorithm

The proposed linear model based fractional-pixel motion estimation

algorithm reuses the matching error cost of the nine integer-pixel search

points as shown in Fig. 4.7. Basically, the linear prediction function applied in

the proposed algorithm is described as follows.

21

1

)1)(()(

)()(

HxCHxG

CxCHxF
(4)

In function F(x), for example, -H
1
+C is the slope value of the linear equation

for a group (H
1
, C, H

2
). Function G(x) represents a symmetrical linear function

with the negative slope value corresponding to F(x). The intersection point x

between F(x) and G(x) can be shown below.
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Fig. 4.7. The nine integer-pixel search points reused in the proposed linear

model based FME algorithm.



58 Chapter 4. VERTICALLY SYMMETRICAL LINEAR MODEL BASED FME

Table 4.1. Horizontal, Vertical, and both Groups Using the Nine Integer-Pixel

Search Points
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In addition to the linear model based prediction, we propose a grouping

strategy to enhance the accuracy. The nine integer-pixel search points are

grouped according to the close proximity. As listed in Table 4.1, they are

divided into three groups, the horizontal, the vertical, and the both horizontal

and vertical, of three points. For instance, (S
1
, V

1
, S

2
), (V

1
, C, V

2
), and (S

1
, C, S

4
) are

the respective members of the above mentioned groups. Each group is used to

determine the best x, y, x or y position, respectively. All the groups are

calculated to predict the matching error cost of FME, and then the x- and
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y-coordinate of the location which produces the minimum prediction cost are

regarded and selected as the best fractional-pixel MV. Before transmitting the

best fractional-pixel MV, the quantization step suitable for quarter- or

higher-pixel MV resolution is required. We use the quantization process

explained in [69] at quarter-pixel MV resolution. As shown in Table 4.2, the

best fractional-pixel MV can also be quantized at 1/8-pixel MV resolution.

Table 4.2. Quantization Operations for FME at 1/8-Pixel MV Resolution

Integer-converted x or y Quantized x or y Predicted p = x or y

-7 -0.875 p < -0.8125

-6 -0.750 - p < -0.6875

-5 -0.625 - p < -0.5625

-4 -0.500 - p < -0.4375

-3 -0.375 - p < -0.3125

-2 -0.250 - p < -0.1875

-1 -0.125 - p < -0.0625

0 0.000 - p

1 0.125 0.0625 < p

2 0.250 0.1875 < p

3 0.375 0.3125 < p

4 0.500 0.4375 < p

5 0.625 0.5625 < p

6 0.750 0.6875 < p

7 0.875 p > 0.8125
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4.6. Experimental Results

The proposed algorithm has been evaluated based on both the H.264/AVC

JM version 12.4 reference software [66], [75] and the H.264/AVC Key Technical

Area (KTA) version 2.7 reference software [77]. In JM12.4, the simulation is

conducted with the default settings of search range (SR)=16, quantization

parameter (QP)=28, rate-distortion optimization (RDO)=off, entropy coding=

CAVLC, and baseline profile. In KTA2.7, which includes advanced coding

efficiency tools such as adaptive interpolation filters, ME with 1/8-pixel MV

resolution, MV competition, adaptive quantization matrix selection, and so on,

the simulation is conducted with the default settings of SR=16, QP=40,

RDO=on, entropy coding=CABAC, and main profile. After carrying out

UMHexagonS for IME, the FME module is applied. Quarter- and 1/8-pixel ME

are performed on JM12.4 and KTA2.7, respectively. The four sequences QCIF

, , sed

for quarter-pixel ME. The other four sequences

,

used for 1/8-pixel ME. They include a variety of motion contents and activities,

respectively. 100 frames are encoded for each sequence. The proposed

method is directly compared with QPFPS. To assess only the prediction of

them without the interpolation process, the modified small diamond search

process (MSDSP) used in QPFPS will be skipped.

From Table 4.3 and Table 4.5, the PSNR performance of the proposed

algorithm shows a little better improvement compared with the quadratic

prediction based method. As shown in Table 4.4 and Table 4.6, the bitrate is

also lower than the quadratics . Particularly, as described in Fig. 4.8, the

rate- the proposed

algorithm has a little bit better performance than the existing prediction

method. Meanwhile, the computational complexity of the proposed algorithm

is similar to that of QPFPS not using MSDSP, as shown in Fig. 4.9.
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Table 4.3. PSNR (dB) Performance Comparison at 1/4-Pixel MV Resolution

FME
Sequence

Claire (QCIF) Football (CIF) Mobile (CIF) News (CIF)

QPFPS 39.631 36.171 33.792 37.981

Proposed 39.649 36.175 33.794 37.982

Table 4.4. Bitrate (bps) Performance Comparison at 1/4-Pixel MV Resolution

FME
Sequence

Claire (QCIF) Football (CIF) Mobile (CIF) News (CIF)

QPFPS 34802 1599065 2062130 232426

Proposed 34627 1579102 2059097 231466

Table 4.5. PSNR (dB) Performance Comparison at 1/8-Pixel MV Resolution

FME

Sequence

Salesman

(QCIF)
Husky (CIF) Stefan (CIF) City (HDTV)

QPFPS 27.455 23.033 26.730 28.244

Proposed 27.487 23.038 26.748 28.247

Table 4.6. Bitrate (bps) Performance Comparison at 1/8-Pixel MV resolution

FME

Sequence

Salesman

(QCIF)
Husky (CIF) Stefan (CIF) City (HDTV)

QPFPS 10915 855072 181999 274032

Proposed 10927 854767 181714 273811
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Fig. 4.8. Rate- .

Fig. 4.9. Computational complexity .
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4.7. Summary

Observing the vertically symmetrical characteristic of the Fractional-pixel

ME error surface, symmetry assumption for a simple linear function was

introduced. The proposed vertically symmetrical linear model based

fractional-pixel motion estimation algorithm can produce a similar

performance compared with the existing quadratic prediction based algorithm,

but it is simpler in terms of computation. Particularly, the proposed linear

model based FME algorithm was designed to implement in the H.264/AVC

encoder without using the interpolation process. In addition to the linear

model based prediction, a grouping strategy was proposed to further improve

its prediction accuracy. In the grouping strategy technique, the nine

integer-pixel matching errors are grouped according to the close proximity.

The proposed FME algorithm expanded by the grouping strategy technique

will have a little bit more increased computational cost because it requires

more matching errors of integer-pixel search points. The results of the

experiment show that the proposed algorithm can provide a little bit better

performance in terms of PSNR compared with a quadratic prediction based

algorithm, whereas the average bitrate is more reduced at a negligible increase

in computational complexity.
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Chapter 5

DATA TREND APPROXIMATION BASED

INTERPOLATION-FREE FME

5.1. Introduction

Motion estimation can efficiently eliminate the temporal redundancy to

achieve video compression. The computational complexity of a fractional pixel

motion estimation (FME) module cannot be negligible, although such modules

improve visual quality after the integer-pixel motion estimation process. Most

conventional FME methods include an interpolation procedure to form

fractional-pixel search points from information about the integer-pixels. The

interpolation, however, requires frequent memory access and a certain

amount of processing time. The center biased fractional-pixel search (CBFPS)

[65] adopted in the H.264/AVC JM reference software [66], [75] is a significant

attempt to reduce fractional-pixel search points by using prediction technique

and simple search pattern. Various modified versions of CBFPS have also been

proposed, but they are still relying on the interpolation process. Thus, some

mathematical prediction models [68], [69], [70], [71], have been introduced to

approximate the fractional-pixel search area. In this chapter,

interpolation-free FME techniques using a data trend approximation and

reusing a few integer-pixel matching errors are proposed. The proposed

methods were implemented on the reference encoders of H.265/HEVC and

H.264/AVC. The experimental results show that the proposed methods

produce a similar or better performance than the existing FME methods

without the need for any additional search points.
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5.2. Parabolic Models to Approximate Matching Errors

Block-based ME evaluates the matching error cost obtained by subtracting

the candidate region from the current macroblock in order to find the best

matched block within a search range in the reference frame. Equations (1) [68],

[71], (2) [68], and (3) [68], [69], have been used to model the matching error

F(x,y) at fractional-pixel resolution.
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Fig. 5.1. The five main integer-pixel search points (H
1
, H

2
, C, V

1
, V

2
) and the four

relatively unimportant search points (U). The five main search points form the

SDSP.
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In particular, the parabolic models in (1) and (2) require the matching errors

of the nine adjacent search points at integer-pixel resolution, as described in

Fig. 5.1, to determine coefficients c
1

c
9

and c
1

c
6
, respectively. In other words,

if all nine matching error costs are not provided by the IME process, the

estimation cannot be guaranteed. To fix this problem, a full search (FS) and an

eight neighbor search (ENS) have been used for IME [68], [71]. However, FS is

very wasteful in terms of computational complexity, and the rectangular

search pattern consisting of eight IME search points used in ENS is inefficient

compared with the small diamond search pattern (SDSP) with five IME search

points, illustrated in Fig. 5.1. SDSP has been applied to many fast IME

algorithms due to its efficiency and simplicity [60], [61], [62], [63], [64], [65],

[66], [67]. In addition, many powerful IME algorithms, including UMHexagonS

in H.264/AVC, terminate the search process using SDSP in the final step.

UMHexagonS occasionally determines the best position by checking only one

search point using the early termination technique [65]. The fast IME

algorithms using SDSP, therefore, may not calculate the matching errors of the

diagonal search points surrounding the best determined position. Fig. 5.2

shows the results of a simulation counting the number of known IME search

points with their matching error. In Fig. 5.2, the percentage K
x,y

of each local

position (x,y) can be obtained as follows:

,

The number of the known search points
(%) 100

The total number of the macroblocks used for IME
x yK (4)
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Fig. 5.2. Results of a simulation counting the number of known integer-pixel

search points with their matching error cost by performing UMHexagonS. (a)

Percentages of known search points within a 3 × 3 range of the local position

for t

sequence.

In the simulation, UMHexagonS is used for IME with the QCIF test video

frames). These videos include small and large motion objects, respectively. As

described in Fig. 5.2, the percentage K
0,0

of the known integer-pixel search

points of the center position (0,0), which represents the local coordinates of

the search point corresponding to the best position with the lowest matching

error, is always 100%, and the percentages (K
-1,0

, K
1,0

, K
0,-1

, K
0,1

) of the four

positions forming the SDSP are also over 90%. In contrast, the four diagonal

positions on the edge have low percentages (K
-1,-1

, K
1,-1

, K
-1,1

, K
1,1

) of about 7% and

that the two models in (1) and (2) have difficulty working with powerful IME

algorithms using SDSP. Accordingly, if a fast IME using SDSP was to be

followed by the FME process based on (1) or (2), it would cause an increase in

the total encoding time and require some modifications to the fast IME
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module. The models in (1) and (2) are also unstable on the extension to the

quarter-pixel or less-than-one FME. This is because some matching errors at

the outside half-pixel locations, e.g., (-0.5,-1), must be additionally

approximated after calculating the coefficients.

Contrary to the mathematical models discussed above, the parabolic model

in (3) can be applied without any difficulties under state-of-the-art IME

techniques because it needs only five IME matching errors, as described in Fig.

5.1, to determine the five coefficients c
1

c
5
. This model can also be

decomposed into two one-dimensional (1-D) parabolic models that

approximate the horizontal and vertical matching errors separately, as

described in the following equation:

)(,)( 32
2

1 yorxpcpcpcpF (5)

As has been discussed [69], the minimum matching error cost F(p) can easily

be found by differentiation with respect to x and y. When dF/dp = 0, the x and

y coordinates are regarded as the best prediction position (x
b
,y

b
).

1

2
21

2
,02)(

c

c
pcpcpF b (6)

The 1-D parabolic model uses only the three IME matching error costs,

corresponding to (H
1
, C, H

2
) or (V

1
, C, V

2
), to compute c

1
c

3
, as derived in (7) [69].

Cc

IIc

VorHIVorHICIIc

3

212

222111211

2/)(

),(,2/)2(

(7)
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The best predicted x
b

and y
b

coordinates are estimated independently of

each other. Here, however, the 1-D parabolic model based prediction has a

serious fault, as shown below:

2

1

2
,

1

2
2

c

c
pifIC b (8)

Equation (8) is an abnormal case, and there is a contradiction because the

matching error C at the local location (0, 0) always returns the lowest error

cost in the IME. That is, the 1-D parabolic model based prediction alone is not

able to find the best prediction position at locations with pixel values greater

than 0.5 or less than -0.5. This will have a serious impact on the FME process at

quarter-pixel or less-than-one resolution. Moreover, if the matching error H
1
or

H
2

is set to zero, denoting an unknown matching error, the 1-D parabolic

graph tends to be concave down rather than concave up. As an alternative

solution, to enhance the reconstruction PSNR performance, QPFPS [69]

adopted an interpolation based refinement procedure in its final search step,

although this led to an increase in computational complexity.
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5.3. Surface Modeling to Approximate Data Trends

The parabolic models discussed in the previous section can be extended to

higher-order polynomial surface models to achieve more accurate prediction.

However, higher-order polynomial functions require more computational

complexity and IME matching error costs, and often result in unwanted

undulations. Thus, different forms of error surface modeling from the

above-mentioned parabolic models have been considered. Free-form surface

modeling is used to describe the skin of a 3-D geometric element. The surfaces

do not have rigid radial dimensions, unlike in parabolic surface modeling.

Free-form splines include the following methods: Cardinal, Hermite, Bézier,

and non-uniform rational B-spline (NURBS). A Cardinal spline is a sequence of

individual curves joined to form a larger curve, and a Hermite spline uses two

points and two tangents to model a 2-D curve. Bézier splines, particularly in

their quadratic and cubic forms, are widely used to model smooth curves. To

model a quadratic Bézier curve, only three control points are required. The

latest fast IME algorithms such as UMHexagonS terminate the final search step

using SDSP with the five search points shown in Fig. 5.1 as the smallest search

pattern. In particular, each of the IME search points (H
1
, C, H

2
) and (V

1
, C, V

2
)

correspond to the three control points of a quadratic Bézier curve. A quadratic

Bézier curve is also a parabolic segment, but it does not pass by all of the

control points. Although the curve is not an interpolation between the control

points, it can approximate the data trend. Hence, quadratic Bézier curve based

FME techniques are introduced. NURBS, which can be defined by degree,

weighted control points, knot vector, and evaluation rules, is currently a very

popular type of spline. To model a free-form curve with NURBS, the number of

control points must be greater than or equal to four. NURBS is a generalization

of B-splines and Bézier splines.
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5.4. Quadratic Bézier Curve

In the 1-D parabolic model in (5), the three IME search points (H
1
, C, H

2
) or (V

1
,

C, V
2
) in Fig. 5.1, are used to predict the best fractional-pixel position at the

horizontal or vertical location. As discussed in the previous section, quadratic

Bézier curves are a natural choice for this problem, because the three IME

search points correspond to the three control points of the quadratic Bézier

curve. The quadratic Bézier curve algorithm can be explained by (9) and (10).

Equation (9) describes a generalization of the Bézier curve.

)!(!

!

)1()(

)10(,)()(
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ttCtJ

ttJptP

in

ini
inin

n

i
ini

(9)

where n denotes the degree of the Bézier curve, p
0
, p

1
p

n-1
, p

n
are control

points, and
n
C

i
is the binomial coefficient. While the parameter t moves from 0

to 1, the function P(t) traces a curve. Let the matching error costs

corresponding to the local positions (x
i
, 0) and (0, y

i
) be X

i
and Y

i
. Considering

the coordinates for 1-D surface modeling, when x
i
or y

i
= i-1, the IME search

points (H
1
, C, H

2
) and (V

1
, C, V

2
) can be represented as {(x

0
, X

0
), (x

1
, X

1
), (x

2
, X

2
)}

and {(y
0
, Y

0
), (y

1
, Y

1
), (y

2
, Y

2
)}, respectively. At x

i
or y

i
= m

i
and X

i
or Y

i
= M

i
, each of

the coordinates m
i

and M
i

is entered separately as a control point p
i
. The

quadratic Bézier curve given by the three control points (p
0
, p

1
, p

2
) is described

in (10), which forms the core of the proposed techniques.
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(a) (b)

Fig. 5.3. Examples of a 1-D parabolic model and a quadratic Bézier curve. (a)

The two curves plotted using the three matching errors located at (-1, 5759), (0,

1659), (1, 5759). (b) The curves at (-1, 5759), (0, 1659), (1, 3146).

Fig. 5.3 shows examples of quadratic Bézier curves and the 1-D parabolic

model. As shown, the quadratic Bézier curve does not pass by all three control

points, but two points are always passed. The x or y coordinate with the lowest

matching error cost will be regarded as the best prediction position x
b

or y
b
.

The best prediction position found by the quadratic Bézier curve, however,

tends to be more biased toward x = -1 or 1 than that of the 1-D parabolic

model, as illustrated in Fig. 5.3 (b). Thus, a preprocessing algorithm is

introduced to correct the one-directional bias.
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5.5. Proposed Method 1

In this paper, three FME methods based on quadratic Bézier curves are

proposed. The first method differentiates the quadratic Bézier curve in (10) to

give:

)(2)2(2)( 10210 pppppttP (11)

Let P(t) be zero. When (p
0
, p

1
, p

2
) = (M

0
, M

1
, M

2
), it is possible to obtain the

optimum value of t
b

that minimizes the matching error cost, as shown below:

)2()(

0)(2)2(2)(

21010

10210

pppppt

pppppttP

b
(12)

As described in (13), when (p
0
, p

1
, p

2
) = (m

0
, m

1
, m

2
) = (-1, 0, 1), the best

fractional-pixel prediction position P(t
b
) can be found by substituting the

above optimum t
b
for t in (10).

12)1(2)1()(
2

21
2

0 bbbbbb ttpttptptP (13)

Table 5.1 compares the fractional-pixel motion vector (FMV) found by the

1-D parabolic model based prediction (1-D_PM) and that found by the

proposed method (BÉZIER) at quarter-pixel resolution. The matching

probabilities given refer to the agreement of the two methods with the best

FMV found by FFPS. In the simulation, it is assumed that the FMV matching

consist of 100 frames. UMHexagonS is used for IME and returns the five
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neighboring IME matching errors. The best fractional-pixel prediction

positions determined by the two algorithms are subjected to quantization

operations [69]. Abnormal cases, such as the IME matching error H
1
or H

2
being

unknown or zero, are not allowed, and the FME process for the macroblock is

skipped in exceptional cases. If the x or y coordinate of the best FMV found by

FFPS is equal to that found by a mathematical model based prediction, it

counts the number of matching FMVs in position |P|. As shown in Table 5.1 (a)

and (b), the 1-D parabolic model based prediction can produce more accurate

FMVs than the quadratic Bézier curve based prediction. However, the 1-D

parabolic model based prediction can never find the best x
b

or y
b

located at

|P|>0.5, unlike the quadratic Bézier curve based prediction. That is, compared

with the 1-D parabolic model based prediction, the quadratic Bézier curve

approach provides higher robustness to large motions. It should be noted that,

in general, macroblocks with larger motions result in higher distortion.

Table 5.1. Fractional-pixel Motion Vector Matching Probability (%)

Method Position [0,±0.75] |P| = 0 |P| = 0.25 |P| = 0.5 |P| = 0.75

1-D_PM
x-coord. 44.928 49.969 28.606 14.598 00.000

y-coord. 39.768 43.321 28.010 15.998 00.000

BÉZIER
x-coord. 30.559 33.963 16.497 15.257 30.711

y-coord. 27.329 30.046 15.285 14.616 27.359

(b) CIF

Method Position [0,±0.75] |P| = 0 |P| = 0.25 |P| = 0.5 |P| = 0.75

1-D_PM
x-coord. 28.673 50.725 23.179 15.063 00.000

y-coord. 24.592 39.588 23.874 14.763 00.000

BÉZIER
x-coord. 22.465 36.714 13.949 14.273 24.193

y-coord. 18.278 25.977 13.483 14.364 25.168
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5.6. Proposed Method 2

The second method involves predicting p
1
' in order to pass close to all three

control points. Thus, p
1
' should be predicted such that p

1
can exist on the

Bézier curve. As p
1
is equal to P(t = 0.5), p

1
' can be computed as:

)4(
2

1
'
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2

1
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2

1
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2
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(14)

If p
1

in (12) is replaced by p
1
', then the Bézier curve can pass through p

1
as

well as p
0

and p
2
, as shown below:

)'2()'( 21010 ppppptb (15)

Finally, when (p
0
, p

1
, p

2
) = (M

0
, M

1
, M

2
), (16) is used to determine the best

fractional-pixel prediction position P(t
b
). The result of the prediction is the

same as that of the 1-D parabolic model based prediction, although the

approach is different. This second proposed method, however, can easily be

extended to a third method.

)242()(12)( 21020 pppppttP bb (16)
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5.7. Proposed Method 3: Determination of Adjusting Factors

As shown in Table 5.2, each location (x, y) corresponds to the five main IME

search points (H
1
, H

2
, C, V

1
, V

2
). Table 5.2 (a) shows the average matching error

and Table 5.2 (b) s

(100 frames). In the simulation, the sum of absolute difference (SAD) criterion

is used to calculate the matching errors for a given quantization parameter

(QP) of 28 and rate-distortion optimized mode (RDO) of 1, based on the

H.264/AVC JM version 12.4 reference software [66], [75]. In the case of

Fig. 5.3 (a), the prediction curves are almost

symmetric about x

horizontal search points (H
1
, C, H

2
) form slightly uneven curves, similar to Fig.

5.3

center-biased than those f

stationary and small-motion objects, most of the integer-pixel motion vectors

are distributed within the central area. Furthermore, for the quadratic Bézier

curve, the following can be assumed:

First, the more similar the matching error H
1

(V
1
) is to H

2
(V

2
), the closer the

best prediction position is to the center. The best prediction position will also

be similar to that of the 1-D parabolic model.

Second, the higher or lower H
1

is compared to H
2
, the more the best

prediction position is biased in one direction. That is, the best prediction

position will be located farther away from that of the 1-D parabolic model.

Third, the farther H
1

and H
2

are from C, the closer the best prediction

position is to the center. The best prediction position will also be similar to

that of the 1-D parabolic model.

Finally, the closer H
1
and H

2
are to C, the more the best prediction position is

biased in one direction. That is, the best prediction position will be located

farther away from that of the 1-D parabolic model.
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Table 5.2. Average IME Matching Error Costs

(x, y) -1 0 1 (x, y) -1 0 1

-1 122.100 -1 311.212

0 133.955 103.513 133.174 0 283.471 236.197 294.131

1 121.288 1 308.656

Table 5.3. Pseudo-Code for the Third Proposed Method

D = (0.5 × (4.0 × p
1

p
0

p
2
)) p

1

AF1 = if (p
0

> p
2
) then (p

0
/ p

2
) 1.0, else (p

2
/ p

0
) 1.0

AF2 = (p
0
+ p

2
) / (2.0 × p

1
)

AF3 = if (1.5 > AF2) then AF1 × 10.0, else AF2 1.0

p
1
' = p

1
+ (D × AF3)

Fig. 5.4. Determination of the Bézier curve by controlling p
1
'.
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In the second proposed method, it is known that the shape of the quadratic

Bézier curve can be determined by controlling the predicted control point p
1
',

as illustrated in Fig. 5.4. The adjusting factors used in the third proposed

method are described by the pseudo-code in Table 5.3. Each adjusting factor is

composed according to certain assumptions. Let (p
0
, p

1
, p

2
) = (M

0
, M

1
, M

2
). As

shown in Table 5.3, the variable D, which represents the original distance

between p
1

and p
1
', can be obtained by applying (14), as used in the second

method. The adjusting factor AF1 is based on the assumption that a higher

ratio of p
0
to p

2
will lead to a bigger gap between p

1
and p

1
'. The ratio of p

0
+p

2
to

2p
1

gives AF2, which represents the relative difference between them. The

critical value 1.5 in the second conditional sentence is used to determine the

adjusting factor AF3. The critical value is experimentally selected to be higher

than AF2 = 1.29 computed by the matching errors (H
1
, C, H

2
) in Table 5.2 (b). If

AF2 is less than the critical value, the relationship between p
0

and p
2

is

preferred to that between p
0
+p

2
and p

1
, in which case AF3 is AF1 multiplied by

10 determined by many tests. The last line of the pseudo-code shows that the

position of p
1
' is determined by applying D adjusted by AF3. The procedure of

the third proposed method for obtaining the best prediction position x
b

or y
b

can be summarized as follows:

Step_1) The IME process for a prediction block is terminated and returns the

IME matching error costs.

Step_2) The adjusting factors for controlling p
1
' are determined by the

pseudo-code described in Table 5.3.

Step_3) The predicted p
1
' is entered in (15), and then the optimum t

b
is

computed.

Step_4) The best prediction position is found by applying the optimum t
b
in

(13). The best prediction position is quantized according to a previously

reported method [69].
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5.8. Proposed Method 3: Error Cost Scaling

Fig. 5.5. Examples of the error cost scaling. The best prediction x-coordinate of

the original curve is the same as those of the two distorted curves scaled up

and down vertically.

In H.264/AVC JM 12.4, the simulation results may vary slightly with data

types, coding style, and compliers. The version 12.4 of JM seems to have some

defects. For instance, developers of the reference software can use float or

as floating-point type but they may get different test results in some

cases. If a satisfactory result is not reached, the proposed technique in this

section is recommended; the simulations shown below do not use the error

cost scaling technique.

As stated above, the third proposed method determines the position of p
1
'

based on the ratios computed by reusing the IME matching error costs. Here, it

should be realized that p
1
' is seriously affected by the level of the matching

error cost. In particular, the IME matching errors for video images containing

vigorous. The error cost level can therefore be scaled artificially.
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Fig. 5.6. Relationship between the average IME matching error and QP for the

X, 0) is represented as X.

As shown in Fig. 5.5, there are three curves, including those minimized by

50% and enlarged by 200%, involved in the matching error cost. Due to this

scaling, the error cost levels are obviously changed, but the positions on the

x-axis are not. Although the IME matching errors are distorted by the scaling,

the best prediction position can still be found without any difficulty. That is,

the error cost scaling normalizes and distorts the irregular matching error

costs, whereas the characteristic shape of the curve is maintained.

In addition, the relationship between the average IME matching error and QP

has been considered. Fig. 5.6 represents an extension to the simulation in

Table 5.2 (a) and shows variations in matching error at 13 QPs = [20, 32]. As

listed in Table 5.3, the adjusting factors were determined based on the average

P = 28. However, the average IME matching

errors are affected by the QPs, as shown in Fig. 5.6. As a solution to this

problem, the error cost scaling process has been designed without modifying

the adjusting factors.
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Table 5.4. Pseudo-Code for the Error Cost Scaling

if (p
0

< p
2
) then Max = p

2
, else Max = p

0

if (Max < p
1
) then Max = p

1

if (QP [20,32]) CV = 0.578 × QP2 21.138 × QP + 269.95

else if (QP [0,19]) CV = 0.101 × QP2 0.451 × QP + 48.309

else CV = 1.344 × QP2 64.006 × QP + 861.658

if (Max > CV) then

{

S_Rate = CV / Max

p
0
= p

0
× S_Rate

p
1
= p

1
× S_Rate

p
2
= p

2
× S_Rate

}

The error cost scaling process can be carried out as described in Table 5.4.

First, the highest error cost of the three IME matching errors (p
0
, p

1
, p

2
) = (M

0
, M

1
,

M
2
) is obtained. Second, if the maximum error cost is higher than the critical

value CV, the maximum error is changed to CV and the scaling rate S_Rate is

saved. CV should be adjusted according to QP. With reference to the

relationship between the average matching error and QP, as illustrated in Fig.

5.6, the four best CVs (= 78, 97, 130, 186) corresponding to four QPs (= 20, 24,

28, 32) were found. The other CVs can also be approximated using equation

fitting. The three coefficients c
1

c
3

of the quadratic function F(x) = y =

c
1
x2+c

2
x+c

3
giving the best fit to a data set can be found by applying the method

of least squares, as shown in (17) and (18).

n

i
iii cxcxcyE

1

2
32

2

1 )}({ (17)



82 Chapter 5. DATA TREND APPROXIMATION BASED INTERPOLATION-FREE FME

n

i

i

ii

ii

ii

iii

iii

y

yx

yx

c

c

c

nxx

xxx

xxx

1

2

3

2

1

2
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)(, (18)

where n denotes the number of data points (x
i
, y

i
). In (17), the minimum E can

be obtained by differentiating E with respect to each coefficient. The optimum

values of c
1

c
3

E c
1

E c
2

E c
3
= 0, as shown in (18).

The three coefficients for the four data points (20, 78), (24, 97), (28, 130), and

(32, 186) are computed as follows:

269.95

21.138

0.578

491

13480

379456

41042784

104278476544

2784765442155008
1

3

2

1

c

c

c

(19)

The dotted line (a) in Fig. 5.6 shows the result of fitting the data points using

the above coefficients to determine the best CV at QPs = [20, 32], as described

in Table 5.4. The above function, however, cannot approximate all the best

CVs for QPs = [0, 51] due to limitations in the quadratic function. Therefore,

two additional quadratic functions, corresponding to dotted lines (b) and (c) in

Fig. 5.6, are used for QPs = [0, 19] and QPs = [33, 51], respectively. Each of the

two functions is determined by the two sets of data points {(0, 48), (10, 55), (20,

78), (24, 97)} and {(24, 97), (28, 130), (32, 186), (51, 1094)}, which are the best

data points found experimentally based on the relationship in Fig. 5.6. At the

end of the error cost scaling process, the scaling rate is applied to the other

matching error costs. After that, the prediction process of the third proposed

method starts. The modified procedure of the third proposed method for

obtaining the best prediction position x
b
or y

b
can be summarized as follows:

Step_1) If the IME process for a macroblock is terminated and returns the

IME matching errors, the error cost scaling process in Table 5.4 is performed.
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Step_2) The adjusting factors for controlling p
1
' are determined by the

pseudo-code described in Table 5.3.

Step_3) The predicted p
1
' is entered in (15), and then the optimum t

b
is

computed.

Step_4) The best prediction position is found by applying the optimum t
b
in

(13). The best prediction position is quantized according to a previously

reported method [69].

5.9. Proposed Method 3: Modification for H.265/HEVC

H.265/HEVC is the latest video compression standard suitable for

high-resolution video formats such as WQXGA, 4K, and 8K. In place of the 16 ×

16 macroblock adopted in H.264/AVC, H.265/HEVC is based on a coding tree

unit (CTU) with a maximum size of 64 × 64. The CTU consists of three blocks:

a luma coding tree block (CTB), two chroma CTBs, and syntax elements. Since

larger CTB sizes generally produce a lower bitrate, large CTB sizes have a

strong influence on the coding efficiency with high-resolution video. Each CTB

can be split into multiple coding units (CUs). The CU also consists of three

blocks: a luma coding block (CB), two chroma CBs, and syntax elements. Each

CU is again partitioned into prediction units (PUs) and a quadtree of transform

units (TUs). The CU level determines the inter or intra prediction mode, and

each CB can be split into prediction blocks (PBs). Larger blocks tend to lead to

higher matching error costs. Therefore, the adjusting factor AF3 described in

Table 5.3 is modified to suit the H.265/HEVC test model (HM) version 12.0

reference software [67], as shown below:

AF3 = if (4.0 > AF2) then AF1, else AF2 2.0 (20)

H.265/HEVC utilizes 7- or 8-tap interpolation filters for the motion vector

refinement process at quarter-pixel resolution, whereas H.264/AVC performs
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a two-step interpolation: 6-tap interpolation filtering for half-pixel resolution

positions followed by a bilinear interpolation for quarter-pixel resolution

positions. Both H.265/HEVC and H.264/AVC refine the motion vectors at the

quarter-pixel resolution; thus, the quantization process of [69] is also used in

the final prediction step of the third proposed method in H.265/HEVC.

5.10. Experimental Results Based on H.264/AVC

The proposed techniques have been implemented in H.264/AVC JM 12.4 on

the Windows 7 64-bit OS platform with an Intel i5 CPU@1.80 GHz, and

H.265/HEVC HM 12.0 on the Windows 7 64-bit OS platform with an Intel i7

CPU@2.80 GHz. Based on the H.264/AVC JM, the simulation was conducted

using the default settings, i.e., search range = 16, QPs = 20, 24, 28, and 32, and

RDO = 1 under the baseline profile. As implemented in JM, UMHexagonS is

used for fast IME. The performance of the proposed methods (METHOD_1 3)

is evaluated by comparison with that of CBFPS and the 1-D parabolic model

based prediction (1-D_PM) in terms of PSNR and bitrate. The computational

complexity can be compared in terms of the total motion estimation time

(MET) and the average number of fractional-pixel search points per block (FSP).

CBFPS is chosen as one of the most popular interpolation based FME

algorithms. As defined in JM, if a macroblock type is less than or equal to 3,

UMHexagonS is performed, followed by FFPS rather than CBFPS for FME. The

rule, therefore, is applied to all the FME methods for fair comparison, and the

fractional-pixel search points used in FFPS are not counted. In addition, the

mathematical model based methods have been implemented in the IME

module of JM. However, because the PSNR and bitrate in IME are measured, the

computational complexity will only be mentioned briefly. The six sequences

(352× sequence includes

different types of motion, which can be classified as small, middling, and large



5.11. Experimental Results Based on H.265/HEVC 85

motion. The number of frames to be encoded is 100 at 30 Hz.

As listed in Table 5.5 Table 5.9, the average quality performance of

METHOD_3 at each QP is better than that of 1-D_PM. The average PSNR

degradation of 0.016 with respect to CBFPS is lower than the 0.025 attained by

1-D_PM. In particular, the average PSNR drop at each QP = 28 and QP = 32 is

0.003, which means that the quality is very close to that of CBFPS. In terms of

computational complexity, METHOD_3 has no use for FSPs, whereas CBFPS

requires at least five. METHOD_1 3 and 1-D_PM achieve an average MET

reduction of 17.198%, 17.824%, 16.894%, and 17.033%, respectively, with

respect to CBFPS. The computational load of METHOD_3 can also be reduced

from about 11% to 30% compared with CBFPS. When METHOD_3 is directly

implemented in the IME module of JM, the average MET reduction is about 46%,

whereas the quality is expected to degrade a little compared with that in the

FME module with the above simulation conditions. The bitrate comparisons in

Table 5.5 Table 5.9 show that METHOD_3 is competitive with 1-D_PM. The

bitrate of METHOD_3 shows an average increase of less than 0.081% with

respect to 1-D_PM. On the other hand, the average PSNR degradation of 0.022

for METHOD_1 with respect to CBFPS is lower than that of 1-D_PM, but the

bitrate increase compared with 1-D_PM averages about 0.2%. The performance

of METHOD_2 is equal to that of 1-D_PM with similar complexity.

5.11. Experimental Results Based on H.265/HEVC

Based on the H.265/HEVC HM 12.0, the simulation was carried out under the

main profile using the following configuration parameters: group of pictures

(GOP) size = 4, intra period = -1, search range = 64, and decoding refresh type

= 0. The four QPs used in this test are 22, 27, 32, and 37. As adopted in HM,

TZS is selected as a fast IME search algorithm. As mentioned above, the results

of the simulation conducted for H.264/AVC JM 12.4 show that the

performances of METHOD_1 and METHOD_2 are very similar or equal to that
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of 1-D_PM, whereas METHOD_3 is better than 1-D_PM for most of the test

sequences at each QP. In this simulation based on HM, the performance of

METHOD_3 is therefore directly compared with that of 1-D_PM. FFPS

implemented in HM is selected as the anchor FME algorithm. The performance

comparisons are shown in Table 5.10 and Table 5.11, where PSNR

represents the PSNR difference between 1-D_PM and FFPS, or METHOD_3 and

FFPS, which means a PSNR degradation with respect to FFPS; Bitrate denotes

the bitrate increase in percentage with respect to FFPS; and Encode_T,

Inter_T, and FME_T represent the total encoding time reduction, inter

prediction time reduction, and FME time reduction in percentage with respect

to FFPS, respectively. The Bjøntegaard delta (BD) PSNR (BD-PSNR) and bitrate

(BD-Bitrate) [31] are used to evaluate the objective differences between the two

rate-distortion curves. Similar to METHOD_3 implemented in JM, METHOD_3

was also implemented without using an interpolation process (upsampling) in

the FME module of HM. Since the HM module without upsampling does not

accurately measure the PSNR and bitrate, only the complexity reduction is

reported; Table 5.10 lists these values in parentheses. The eight sequences

(30 Hz). The number of frames to be encoded is 100 for each sequence.

As shown in Table 5.10, the average PSNR and bitrate performances of

METHOD_3 are better than those of 1-D_PM. The PSNR degradation for most

of the test sequences against four QPs is lower compared with 1-D_PM. The

BD-PSNR of METHOD_3 shown in Table 5.11 is also higher than that of 1-D_PM.

In particular, the PS

close to that of FFPS, whereas the bitrate increase with respect to FFPS is

negligible and lower than that of 1-D_PM. The bitrate for the WQVGA and

WVGA sequences shows a much lower increase compared with 1-D_PM. Fig.
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5.7 shows the rate-distortion (R-D) curves for the eight sequences with QPs =

22, 27, 32, and 37. The R-D curves show that the R-D performances for the

WQVGA and WVGA sequences are better than with 1-D_PM, and the

performances for the 720p, 1080p, and WQXGA sequences are close to that of

FFPS. In terms of computational complexity, METHOD_3 and 1-D_PM do not

require any FSPs, whereas FFPS always uses 16 FSPs. As shown in Table 5.10,

the total encoding time of METHOD_3 can be reduced from about 6% to 25%,

and the average FME time reduction is 41.465%, with respect to FFPS. When

METHOD_3 is implemented without upsampling in the encoder, the encoding

time can be dramatically reduced from about 14% to 46% with an FME time

reduction of about 99%. METHOD_3 with and without upsampling achieves an

average encoding time of 13.427% and 30.625%, respectively. METHOD_3 also

has a similar complexity as 1-D_PM.

5.12. Summary

The proposed low-complexity interpolation-free fractional-pixel ME

algorithms, METHOD_1 3, were developed to achieve much further reduction

in computational complexity compared with the existing interpolation based

FME algorithms, with a reasonable rate-distortion degradation. The proposed

algorithms are designed based on a quadratic Bézier spline as an alternative to

the parabolic prediction models having some drawbacks. The quadratic Bézier

spline model based prediction can approximate the best prediction position

greater than 0.5 or less than -0.5. Particularly, the proposed METHOD_3

adjusts the predicted position by using a specific threshold. The results of the

simulations for various video test sequences demonstrate that the

performance of METHOD_3 is superior to the conventional 1-D parabolic

model based prediction. In addition, the simplicity of the algorithm will make

it suitable for hardware applications. It can be directly implemented in the IME

module, and easily extended to 1/8 or 1/16 pixel resolution ME.
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Table 5.5. Performance Comparison in H.264/AVC (QP=20)

Sequence Method PSNR (dB) Bitrate (kbps) MET (ms) FSP

Claire
(QCIF)

CBFPS 45.713 109.838 7091 4.904

1-D_PM 45.674 116.882 5174 0.000

METHOD_1 45.676 116.561 5646 0.000

METHOD_2 45.674 116.882 5340 0.000

METHOD_3 45.672 116.225 5918 0.000

Salesman
(QCIF)

CBFPS 42.217 180.509 7009 5.085

1-D_PM 42.175 195.919 5679 0.000

METHOD_1 42.163 195.487 5324 0.000

METHOD_2 42.175 195.919 5990 0.000

METHOD_3 42.171 195.960 5434 0.000

Football
(CIF)

CBFPS 43.595 4009.248 62397 8.589

1-D_PM 43.564 4103.251 52649 0.000

METHOD_1 43.575 4110.252 52252 0.000

METHOD_2 43.564 4103.251 52831 0.000

METHOD_3 43.578 4103.340 52029 0.000

News
(CIF)

CBFPS 43.651 669.869 31116 5.257

1-D_PM 43.605 703.241 24109 0.000

METHOD_1 43.601 703.435 24599 0.000

METHOD_2 43.605 703.241 24820 0.000

METHOD_3 43.601 701.443 24353 0.000

Stefan
(CIF)

CBFPS 43.299 4244.916 44922 6.871

1-D_PM 43.264 4325.671 38559 0.000

METHOD_1 43.259 4330.272 37568 0.000

METHOD_2 43.264 4325.671 38189 0.000

METHOD_3 43.265 4324.531 38932 0.000

Table
(CIF)

CBFPS 42.699 2918.530 42427 7.370

1-D_PM 42.640 3045.521 35257 0.000

METHOD_1 42.647 3047.391 34504 0.000

METHOD_2 42.640 3045.521 34586 0.000

METHOD_3 42.645 3040.949 34318 0.000
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Table 5.6. Performance Comparison in H.264/AVC (QP=24)

Sequence Method PSNR (dB) Bitrate (kbps) MET (ms) FSP

Claire
(QCIF)

CBFPS 42.715 61.224 7324 4.795

1-D_PM 42.732 64.267 5822 0.000

METHOD_1 42.712 64.154 5936 0.000

METHOD_2 42.732 64.267 6043 0.000

METHOD_3 42.733 63.845 5842 0.000

Salesman
(QCIF)

CBFPS 38.947 103.531 7708 5.193

1-D_PM 38.907 113.136 6331 0.000

METHOD_1 38.915 113.371 6300 0.000

METHOD_2 38.907 113.136 6635 0.000

METHOD_3 38.919 113.280 6408 0.000

Football
(CIF)

CBFPS 40.464 2637.679 62989 8.137

1-D_PM 40.464 2711.268 53192 0.000

METHOD_1 40.456 2714.177 51434 0.000

METHOD_2 40.464 2711.268 52990 0.000

METHOD_3 40.469 2710.956 53893 0.000

News
(CIF)

CBFPS 41.135 390.722 31177 5.092

1-D_PM 41.101 410.918 25670 0.000

METHOD_1 41.097 411.953 25824 0.000

METHOD_2 41.101 410.918 24434 0.000

METHOD_3 41.103 410.990 25817 0.000

Stefan
(CIF)

CBFPS 39.844 2560.536 45628 6.630

1-D_PM 39.810 2631.269 39913 0.000

METHOD_1 39.813 2634.099 38893 0.000

METHOD_2 39.810 2631.269 37880 0.000

METHOD_3 39.814 2630.933 38720 0.000

Table
(CIF)

CBFPS 39.253 1591.188 45107 7.075

1-D_PM 39.212 1667.450 35327 0.000

METHOD_1 39.213 1672.877 36076 0.000

METHOD_2 39.212 1667.450 36013 0.000

METHOD_3 39.214 1667.462 36696 0.000
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Table 5.7. Performance Comparison in H.264/AVC (QP=28)

Sequence Method PSNR (dB) Bitrate (kbps) MET (ms) FSP

Claire
(QCIF)

CBFPS 39.716 33.324 8025 4.660

1-D_PM 39.676 34.181 6292 0.000

METHOD_1 39.701 34.135 6369 0.000

METHOD_2 39.676 34.181 6286 0.000

METHOD_3 39.741 34.351 6656 0.000

Salesman
(QCIF)

CBFPS 35.799 59.638 9463 5.286

1-D_PM 35.763 63.914 7198 0.000

METHOD_1 35.790 64.222 7647 0.000

METHOD_2 35.763 63.914 7211 0.000

METHOD_3 35.789 64.397 6621 0.000

Football
(CIF)

CBFPS 37.576 1730.412 62116 7.493

1-D_PM 37.563 1772.098 53280 0.000

METHOD_1 37.560 1779.343 53778 0.000

METHOD_2 37.563 1772.098 54182 0.000

METHOD_3 37.573 1775.998 54539 0.000

News
(CIF)

CBFPS 38.517 230.314 31024 4.920

1-D_PM 38.500 241.286 26357 0.000

METHOD_1 38.522 242.534 26760 0.000

METHOD_2 38.500 241.286 25435 0.000

METHOD_3 38.510 240.792 27752 0.000

Stefan
(CIF)

CBFPS 36.452 1441.358 46835 6.459

1-D_PM 36.436 1502.765 39502 0.000

METHOD_1 36.439 1506.394 39958 0.000

METHOD_2 36.436 1502.765 39168 0.000

METHOD_3 36.443 1501.999 40728 0.000

Table
(CIF)

CBFPS 36.250 861.838 45089 6.591

1-D_PM 36.225 903.982 38780 0.000

METHOD_1 36.227 903.686 37849 0.000

METHOD_2 36.225 903.982 38361 0.000

METHOD_3 36.235 902.755 38522 0.000



5.12. Summary 91

Table 5.8. Performance Comparison in H.264/AVC (QP=32)

Sequence Method PSNR (dB) Bitrate (kbps) MET (ms) FSP

Claire
(QCIF)

CBFPS 36.753 18.552 8261 4.535

1-D_PM 36.749 18.607 7019 0.000

METHOD_1 36.750 18.727 7038 0.000

METHOD_2 36.749 18.607 6511 0.000

METHOD_3 36.785 18.895 6900 0.000

Salesman
(QCIF)

CBFPS 32.700 33.643 9604 5.294

1-D_PM 32.655 34.548 9262 0.000

METHOD_1 32.670 34.735 8663 0.000

METHOD_2 32.655 34.548 8752 0.000

METHOD_3 32.657 34.704 8389 0.000

Football
(CIF)

CBFPS 34.581 1068.910 66632 6.921

1-D_PM 34.582 1097.966 54539 0.000

METHOD_1 34.578 1097.710 55426 0.000

METHOD_2 34.582 1097.966 55270 0.000

METHOD_3 34.581 1095.737 54461 0.000

News
(CIF)

CBFPS 35.626 135.864 32857 4.826

1-D_PM 35.627 140.616 29296 0.000

METHOD_1 35.627 141.439 28093 0.000

METHOD_2 35.627 140.616 27745 0.000

METHOD_3 35.638 140.976 28484 0.000

Stefan
(CIF)

CBFPS 32.796 671.957 47462 6.372

1-D_PM 32.787 715.740 41516 0.000

METHOD_1 32.803 716.966 41070 0.000

METHOD_2 32.787 715.740 39393 0.000

METHOD_3 32.799 715.795 40697 0.000

Table
(CIF)

CBFPS 33.252 438.204 53105 5.979

1-D_PM 33.228 455.419 40769 0.000

METHOD_1 33.234 458.244 41715 0.000

METHOD_2 33.228 455.419 39176 0.000

METHOD_3 33.229 456.706 42093 0.000
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Table 5.9. Average Values with Respect to CBFPS (QPs=20, 24, 28, 32)

Method PSNR (dB) Bitrate Increase (%) MET Reduction (%) FSP

1-D_PM -0.025 4.333 17.033 0.000

METHOD_1 -0.022 4.537 17.198 0.000

METHOD_2 -0.025 4.333 17.824 0.000

METHOD_3 -0.016 4.414 16.894 0.000
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Table 5.10. Performance Comparison in H.265/HEVC

(a) PSNR and Bitrate with Respect to FFPS

Sequence QP Method PSNR (dB) Bitrate (%)

BlowingBubbles
(WQVGA)

22
1-D_PM -0.056 4.097

METHOD_3 -0.051 3.469

27
1-D_PM -0.096 3.462

METHOD_3 -0.084 3.052

32
1-D_PM -0.095 2.321

METHOD_3 -0.092 2.431

37
1-D_PM -0.068 1.726

METHOD_3 -0.080 1.343

BQSquare
(WQVGA)

22
1-D_PM -0.065 4.668

METHOD_3 -0.060 3.545

27
1-D_PM -0.135 5.812

METHOD_3 -0.115 4.163

32
1-D_PM -0.151 5.310

METHOD_3 -0.124 3.678

37
1-D_PM -0.129 3.476

METHOD_3 -0.119 2.752

BQMall
(WVGA)

22
1-D_PM -0.033 2.973

METHOD_3 -0.032 2.708

27
1-D_PM -0.060 2.976

METHOD_3 -0.050 2.825

32
1-D_PM -0.083 1.853

METHOD_3 -0.078 2.011

37
1-D_PM -0.072 1.106

METHOD_3 -0.073 1.510

PartyScene
(WVGA)

22
1-D_PM -0.041 3.535

METHOD_3 -0.034 2.786

27
1-D_PM -0.093 3.591

METHOD_3 -0.072 3.153

32
1-D_PM -0.095 2.954

METHOD_3 -0.080 2.686

37
1-D_PM -0.087 1.759

METHOD_3 -0.085 1.782

Johnny
(720p)

22
1-D_PM -0.030 2.525

METHOD_3 -0.029 2.553

27
1-D_PM -0.050 2.336

METHOD_3 -0.046 2.530

32
1-D_PM -0.058 1.577

METHOD_3 -0.056 1.488

37
1-D_PM -0.022 1.303

METHOD_3 -0.033 1.456
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BQTerrace
(1080p)

22
1-D_PM -0.011 1.767

METHOD_3 -0.011 1.529

27
1-D_PM -0.060 1.541

METHOD_3 -0.057 1.341

32
1-D_PM -0.057 0.815

METHOD_3 -0.053 0.609

37
1-D_PM -0.038 0.666

METHOD_3 -0.040 0.343

Steam
LocomotiveTrain

(WQXGA)

22
1-D_PM -0.011 0.432

METHOD_3 -0.007 0.598

27
1-D_PM -0.029 0.382

METHOD_3 -0.029 0.292

32
1-D_PM -0.022 0.450

METHOD_3 -0.021 0.237

37
1-D_PM -0.013 0.055

METHOD_3 -0.015 0.380

Traffic
(WQXGA)

22
1-D_PM -0.058 3.015

METHOD_3 -0.054 2.831

27
1-D_PM -0.066 2.571

METHOD_3 -0.065 2.575

32
1-D_PM -0.064 1.720

METHOD_3 -0.066 1.945

37
1-D_PM -0.052 0.761

METHOD_3 -0.059 1.046

Average
1-D_PM -0.063 2.298

METHOD_3 -0.059 2.051
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(b) Computational Complexity with Respect to FFPS

Sequence QP Method Encode_T (%) Inter_T (%) FME_T (%) FSP

BlowingBubbles
(WQVGA)

22
1-D_PM 06.605 20.893 45.505 0.000

METHOD_3 06.765 (16.756) 20.278 (45.537) 42.205 (99.451) 0.000

27
1-D_PM 09.703 20.395 41.924 0.000

METHOD_3 09.443 (22.857) 18.762 (45.533) 39.981 (99.285) 0.000

32
1-D_PM 12.381 20.065 40.198 0.000

METHOD_3 11.627 (28.592) 19.730 (46.861) 42.663 (99.138) 0.000

37
1-D_PM 13.844 21.181 39.299 0.000

METHOD_3 12.934 (32.319) 19.909 (49.087) 39.858 (99.049) 0.000

BQSquare
(WQVGA)

22
1-D_PM 06.884 25.533 40.787 0.000

METHOD_3 06.584 (17.505) 21.687 (60.067) 37.350 (99.327) 0.000

27
1-D_PM 10.263 25.566 39.626 0.000

METHOD_3 09.702 (24.521) 22.496 (61.176) 39.351 (99.323) 0.000

32
1-D_PM 14.061 26.712 42.459 0.000

METHOD_3 13.287 (33.747) 24.523 (60.762) 39.034 (99.129) 0.000

37
1-D_PM 16.015 26.860 42.440 0.000

METHOD_3 14.704 (38.832) 24.476 (62.249) 38.732 (99.005) 0.000

BQMall
(WVGA)

22
1-D_PM 12.845 22.536 45.810 0.000

METHOD_3 12.780 (20.808) 22.317 (42.460) 44.808 (99.369) 0.000

27
1-D_PM 12.151 20.747 43.761 0.000

METHOD_3 11.163 (21.163) 18.945 (40.792) 42.506 (99.246) 0.000

32
1-D_PM 16.803 23.920 45.141 0.000

METHOD_3 14.133 (28.021) 22.610 (44.749) 42.132 (99.335) 0.000

37
1-D_PM 16.885 24.084 44.590 0.000

METHOD_3 15.456 (31.359) 21.009 (47.719) 42.455 (99.301) 0.000

PartyScene
(WVGA)

22
1-D_PM 06.306 19.727 42.969 0.000

METHOD_3 06.148 (14.509) 18.025 (43.829) 40.476 (99.150) 0.000

27
1-D_PM 08.888 20.168 42.282 0.000

METHOD_3 08.203 (20.633) 18.994 (45.708) 41.422 (99.279) 0.000

32
1-D_PM 11.329 20.805 41.967 0.000

METHOD_3 10.749 (26.422) 20.057 (48.203) 41.220 (99.288) 0.000

37
1-D_PM 13.289 21.779 42.206 0.000

METHOD_3 12.174 (31.077) 20.179 (50.052) 40.470 (99.249) 0.000

Johnny
(720p)

22
1-D_PM 14.021 24.924 40.944 0.000

METHOD_3 13.301 (34.201) 23.849 (59.671) 40.169 (99.205) 0.000

27
1-D_PM 17.115 25.626 40.499 0.000

METHOD_3 16.176 (41.398) 24.738 (61.997) 39.776 (99.289) 0.000

32
1-D_PM 18.715 26.707 40.819 0.000

METHOD_3 17.334 (45.036) 24.926 (63.460) 39.834 (99.268) 0.000

37
1-D_PM 18.926 26.828 40.157 0.000

METHOD_3 18.176 (46.667) 26.091 (64.623) 40.137 (99.251) 0.000
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BQTerrace
(1080p)

22
1-D_PM 07.428 21.562 42.372 0.000

METHOD_3 07.282 (18.115) 19.925 (47.629) 41.117 (99.257) 0.000

27
1-D_PM 11.554 21.636 41.939 0.000

METHOD_3 10.995 (27.627) 20.980 (50.914) 40.930 (99.259) 0.000

32
1-D_PM 15.118 22.935 41.049 0.000

METHOD_3 14.169 (36.615) 21.584 (54.212) 39.726 (99.211) 0.000

37
1-D_PM 16.384 22.928 40.776 0.000

METHOD_3 15.568 (39.882) 22.061 (55.330) 40.004 (99.252) 0.000

Steam
LocomotiveTrain

(WQXGA)

22
1-D_PM 16.058 26.174 47.748 0.000

METHOD_3 15.937 (26.895) 25.701 (43.724) 47.356 (99.345) 0.000

27
1-D_PM 22.268 28.674 48.868 0.000

METHOD_3 21.594 (33.623) 27.634 (50.679) 47.773 (99.380) 0.000

32
1-D_PM 24.757 30.214 49.250 0.000

METHOD_3 23.020 (37.768) 28.176 (54.539) 47.700 (99.350) 0.000

37
1-D_PM 27.138 31.814 49.184 0.000

METHOD_3 25.568 (41.814) 30.052 (60.733) 48.135 (99.426) 0.000

Traffic
(WQXGA)

22
1-D_PM 11.738 24.647 42.238 0.000

METHOD_3 10.496 (28.169) 22.646 (56.529) 40.334 (99.294) 0.000

27
1-D_PM 13.944 23.933 40.968 0.000

METHOD_3 12.992 (33.434) 22.841 (56.353) 40.343 (99.270) 0.000

32
1-D_PM 15.977 24.365 40.406 0.000

METHOD_3 15.075 (38.689) 23.223 (57.887) 39.343 (99.282) 0.000

37
1-D_PM 17.013 24.701 40.708 0.000

METHOD_3 16.116 (40.947) 23.390 (58.350) 39.531 (99.281) 0.000

Average
1-D_PM 14.263 24.020 42.778 0.000

METHOD_3 13.427 (30.625) 22.557 (52.857) 41.465 (99.267) 0.000
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Table 5.11. Bjøntegaard Delta Performance Comparison in H.265/HEVC

Sequence
BD-PSNR (dB) BD-Bitrate (%)

1-D_PM METHOD_3 1-D_PM METHOD_3

BlowingBubbles -0.197 -0.183 5.432 4.992

BQSquare -0.323 -0.252 8.902 6.874

BQMall -0.160 -0.154 4.030 3.890

PartyScene -0.218 -0.188 5.314 4.560

Johnny -0.087 -0.088 3.969 3.959

BQTerrace -0.075 -0.069 4.285 3.941

SteamLocomoti_ -0.030 -0.030 1.549 1.496

Traffic -0.126 -0.129 4.213 4.332

Average -0.152 -0.137 4.712 4.255
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Fig. 5.7. Rate-distortion curves for the sequences in H.265/HEVC.
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Chapter 6

ENHANCED 1-D PARABOLIC PREDICTION BASED FME

6.1. Introduction

fractional-pixel motion estimation (FME) as well as integer pixel motion

estimation (IME). FME can provide better quality performance at the cost of

higher computational complexity than IME alone. Even though the existing

parabolic prediction models [68], [69], [70], [71], have contributed to a

significant reduction in computational complexity with minimizing

dependence on interpolation filter, the reconstructed image quality is not fully

satisfactory for practical applications. In this chapter, thus, the research

focuses on developing a high-performance interpolation-free based approach

for FME with extremely minimizing the use of the fractional-pixel search

points. The proposed modified parabolic prediction based FME technique is

based on a linear function employing specific correction coefficients to

further improve the performance of the existing parabolic prediction model.

In the simulation results, compared with the conventional prediction model

based algorithm, the proposed technique can produce more accurate

predicted fractional-pixel motion vectors at lower bitrate, whereas it requires

a few fractional-pixel search points in terms of computational complexity.
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6.2. Related Work

(a) (b)

Fig. 6.1.

surface of IME at integer-pixel MV resolution. (b) Error surface of FME at

1/16-pixel MV resolution.

Two error surfaces are illustrated in Fig. 6.1. They were simulated for the

-pixel MV

resolution is used for FME. The FME error surface in Fig. 6.1 (b) is undoubtedly

unimodal but that of IME in Fig. 6.1 (a) is irregular. The fractional-pixel search

points within the FME search area are produced by performing the

interpolation process reusing the IME error costs. Accordingly, the FME error

cost increases monotonically as the search point moves away from the best

point with the minimum error cost. The side of a FME error surface is also

shaped like parabola, as shown in Fig. 6.1 (b). To plot FME error surfaces using

a parabolic model, a degenerate quadratic parabolic prediction function is

introduced in (1), as already mentioned in [69].

01

2

23

2

4),( cycycxcxcyxQ (1)

where x and y denote fractional-pixel position. c
0
, c

1
, c

2
, c

3
, and c

4
are the five
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coefficients of the function Q. If the five integer-pixel search points S
0

= (0,0),

S
1

= (-1,0), S
2

= (1,0), S
3

= (0,-1), and S
4

= (0,1) are checked by the IME process,

c
0

c
4

can be computed by substituting the coordinates and error costs of the

five integer-pixel search points for the variables of (1). As Q(S
0
) = Q(0,0) = c

0
,

Q(S
1
) = Q(-1,0) = c

4
-c

3
+c

0
, Q(S

2
) = Q(1,0) = c

4
+c

3
+c

0
, Q(S

3
) = Q(0,-1) = c

2
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1
+c

0
, and

Q(S
4
) = Q(0,1) = c

2
+c

1
+c

0
, the coefficients c

0
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4
are calculated as shown below:
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As shown in (3), the predictive minimum error cost is obtained by partially

differentiating Q with respect to x and y
x
Q

y
Q = 0, the

x and y coordinates are regarded as the best prediction position (x
p
, y

p
). In the

final step of the FME process, the best prediction position should be quantized

by using the quantization operations [69]. The best quantized prediction

position is determined as the best FMV.
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As explained in this section, the parabolic prediction based fractional-pixel

search (PPFPS) has very low computational complexity, whereas the

reconstruction quality is unsatisfactory compared with conventional FME

methods. The quality performance of QPFPS, which is based on the above

parabolic prediction, is more improved by applying an interpolation based

FMV refinement process. In the final step of QPFPS, the best predicted position
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is located at the center of the small diamond search (SDS) pattern, and then a

modified SDS algorithm is carried out to refine the best fractional-pixel search

point. In this step case, however, the interpolation operations are required to

provide a fractional-pixel search area. Accordingly, the total encoding time

will be inevitably increased due to the complexity of the interpolation

operations and the checking time of fractional-pixel search points. In this

paper, therefore, a modified method of PPFPS is proposed to minimize the use

of the interpolation operations and to reduce the number of search points; on

the other hand, better performance than that of PPFPS will be maintained.

6.3. Observation

Fig. 6.2 shows an example of the difference between the simplified FME

error surface of Fig. 6.1 (b) and the quadratic parabolic prediction model. The

above-mentioned parabolic prediction model has perfectly bilateral symmetry

by an axis but the real-world FME error surface is a little bit uneven. Hence, a

solution to narrow the gap is required for enhancing the performance of the

parabolic prediction model.

Fig. 6.2. The difference between the real-world FME error surface and the

parabolic prediction model at 1/16-pixel MV resolution.
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Fig. 6.3. The number of occurrences by the distance D between the best

position of FFPS and that of PPFPS at 1/4-pixel MV resolution. D divided by 4 is

represented as the fractional-pixel distance.

Fig. 6.4. The ratios P
1
/P

2
and P

2
/P

1
by the distance D between the best position

of FFPS and that of PPFPS at 1/4-pixel MV resolution.

Fig. 6.5. The line fitting for the interval from 0 to 6 in Fig. 6.4.
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A simulation based on the H.264/AVC JM version 12.4 reference software

[75]

frames, respectively. The encoder parameters used in JM are configured as

quantization parameter (QP) = 24, search range (SR) = 16, rate-distortion

optimized mode (RDO) = 1, and symbol mode = 1 (CABAC). UMHexagonS

implemented in JM is used for IME. The focus of the simulation is how the

average IME error costs will change according to the distance D, which is

converted to an integer value by multiplying by four and the maximum range

is from -6 (= -3-3) to 6 (= 3-(-3)), between FFPS and PPFPS at quarter-pixel MV

resolution. In this simulation, it is assumed that the matching performance of

FFPS is the best of all FME algorithms. The three horizontal integer-pixel

search points S
0
, S

1
, and S

2
, which also represent the error costs corresponding

to the IME positions, are used for an analysis. The average cost of S
i

is

represented as P
i
. In an analysis, the average IME error cost P

1
by the distance D

in the interval from -6 to -1 tends to be greater than P
2
, whereas in the interval

from 1 to 6, P
2

is greater than P
1
. When the distance is zero, P

1
and P

2
have

almost the same average cost. Fig. 6.3 shows that the number of occurrences

of the distance D = zero is the highest, whereas that of the ranges [-6,-3] and

[3,6] is very low. As shown in Fig. 6.4, particularly, it is noticeable that the

higher the ratio of P
1
/P

2
or P

2
/P

1
is, the farther the distance tends to be. Based

on this observation, the linear function L passing by both two points (0,1) and

(2,C) is given as follows:

1
2

1
)( D

C
DLRp (4)

where C indicates the preset correction coefficient (preset corrector, PC),

which is the ratio P
2
/P

1
corresponding to the distance D = 2, the function L

represents the predicted ratio S
1
/S

2
or S

2
/S

1
= R

p
, and the variable D in the
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function L denotes the distance D. If the preset corrector C is known, the ratio

S
1
/S

2
or S

2
/S

1
by the distance D can be approximated. On the other hand, the

predicted distance D
p
can be found by using the inverse of the function L. The

inverse function of L is shown in (5).

1

)1(2
)(1

C

R
RLDp (5)

where R denotes the ratio S
max

/S
min

(S
max

= max{S
1
,S

2
}, S

min
= min{S

1
,S

2
}) for the

current macroblock. The predicted distance D
p

depends on R and C. The

predicted distance D
p
must be divided by 4 at quarter-pixel MV resolution, and

then D
p
added to the best prediction position found by PPFPS is determined as

the best corrected prediction position. The preset correctors for each test

input sequence are listed in Table 6.1.

Table 6.1. The Preset Correction Coefficients for Test Input Sequences

Location Horizontal search position (S
0
, S

1
, S

2
) Vertical search position (S

0
, S

3
, S

4
)

Distance -2 (C = P
1
/P

2
) 2 (C = P

2
/P

1
) -2 (C = P

3
/P

4
) 2 (C = P

4
/P

3
)

Foreman 1.21 1.17 1.02 1.01

Coastguard 1.17 1.15 1.01 1.00

Mobile 1.16 1.39 1.09 1.11

Knightshields 1.11 1.29 1.08 1.06
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Fig. 6.6. The frequency of the ratio R = S
max

/S
min

Fig. 6.6 shows the frequency of the ratio R for Foreman sequence. As

statistical approach, Gaussian distribution has been compared with the

frequency graph. In addition, mean and standard deviation of the data have

analyzed for validity of the distance prediction function, as listed in Table 6.2.

As a result, it is difficult to apply the function itself. That is, data

transformation or modification of the function is needed.

Table 6.2. The Trend Analysis of the Ratio R = S
max

/S
min

for Test Sequences

Sequence
Search

position
Mean ( ) S.D. ( ) Minimum Maximum

Mean of

{R|R> + }

Percent of

{R|R> + }

Foreman
Horizontal 1.19 0.26 1.00 6.99 1.80 9.65

Vertical 1.21 0.31 1.00 8.21 1.95 9.50

Coastguard
Horizontal 1.16 0.28 1.00 8.30 1.89 6.50

Vertical 1.23 0.33 1.00 26.74 1.99 8.37

Mobile
Horizontal 1.28 0.43 1.00 12.56 2.34 9.19

Vertical 1.25 0.35 1.00 9.51 2.05 9.79

Knightshields
Horizontal 1.11 0.39 1.00 9.89 1.94 6.41

Vertical 1.11 0.39 1.00 12.50 1.91 6.49
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Modification

1

)1(2
)(1

C

R
RLDp

KC

R
RLDp

1

)1(2
)(1

K

Let C = 1.21 as the preset corrector.
If R = 1.19, then Dp

If R = 1.45, then Dp 4.29
If R = 1.80, then Dp 7.61

Abnormal case ( - D

Let C = 1.21 and K = 1.
If R = 1.19, then Dp

If R = 1.45, then Dp 0.74
If R = 1.80, then Dp 1.32

It satisfies - D

Fig. 6.7. Modification of the distance prediction function.

The distance prediction function can be modified as shown in Fig. 6.7. The

adjusting factor K can be added to the denominator of the linear function. By

so doing, the data irregularity can be overcome. The modified distance

prediction function will narrow somewhat the gap between the prediction

position and the true motion vector. Table 6.3 represents the matching

probability (%) between the predicted distance and the real distance.

Table 6.3. The Matching Probability (%) between the Predicted Distance and the

Real Distance

Sequence
Search

position

K

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Foreman
Horizontal 26.45 26.35 26.04 22.21 17.69 25.65 26.47 26.52 26.43

Vertical 27.43 27.83 27.98 25.03 02.50 24.68 27.25 27.32 27.07

Coastguard
Horizontal 21.92 21.79 21.05 17.04 14.34 21.26 22.05 22.06 22.03

Vertical 30.21 30.56 30.51 26.78 01.12 26.58 30.47 30.81 30.52

Mobile
Horizontal 22.44 21.83 20.31 13.49 17.60 23.71 24.23 24.12 23.99

Vertical 26.66 26.49 25.16 19.92 10.03 21.89 24.73 25.57 25.77

Knightshields
Horizontal 25.33 24.97 24.15 20.37 20.88 26.57 26.81 26.67 26.50

Vertical 30.18 30.41 30.37 28.10 11.02 28.69 30.59 30.69 30.45
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Fig. 6.8. Probability of D
p

in the central range [0,±1].

Fig. 6.9. PSNR and bitrate measurements by K.
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Fig. 6.8 shows the probability of D
p
in the central range [0,±1]. The PSNR and

bitrate performances by K are represented in Fig. 6.9. The performance

changes in the proposed technique by the adjusting factor K [-2,2]. Based on

the simulations and analysis, the best adjusting factor K is set to 1. As shown

in Fig. 6.8 and Fig. 6.9, when K is 0, the performance is the worst. Whereas

when K equals 1, the bitrate is deceased about 3% with better PSNR.

6.4. Application of Proposed Technique

Two applications using the preset corrector technique are proposed. The

first method is based on frame and the second method is based on

macroblock type. Fig. 6.10 shows the illustration of the first method. It

updates the preset corrector every n frame. Thus, this method must perform

the full fractional-pixel search every n frame. In the other frames, the

parabolic prediction is carried out, and then the predicted position is

corrected by the distance prediction function.

#0 [#2, #n]:
PPFPS with PC

[#(n+2), #2n]:
PPFPS with PC

[#(2n+2), #3n]:
PPFPS with PC

#1, #(n+1), #(2n+1), #(3n+1) : Update PC using FFPS every n frame. Updating PC

Fig. 6.10. The illustration of the available way to apply the proposed technique

to specific frames.
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Before explaining the second proposed method, the existing CBFPS

algorithm is analyzed. As defined in H.264/AVC JM reference software, CBFPS

is only performed when the current block type is submacroblock, as described

in Fig. 6.11 and Fig. 6.12. Although this improves the performance, FFPS must

be performed in the other block types 1, 2, and 3. It increases computational

cost. Therefore, an alternative to FFPS is considered.

The IME process is terminated.

Submacroblock?
Yes

FFPS

Stop

No

Fig. 6.11. The flowchart of CBFPS implemented in the H.264/AVC JM.

0

16×16

Type=1

0 1

8×16

Type=3

0

1

16×8

Type=2

0 1

2 3

8×8
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8×4

Type=5

0 1

4×8

Type=6

0 1

2 3

4×4

Type=7

0

1

8×8

Type=4

0

Submacroblock Types

Fig. 6.12. The seven macroblock types used in H.264/AVC.
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Fig. 6.13. Quarter-pixel motion vector probability distribution.

Fig. 6.14. Error surface of fractional-pixel motion estimation.
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Fig. 6.13 shows the quarter-pixel MV probability distribution; Fig. 6.14 is the

FME error surface. Here, the following two statements is worthy of notice.

(a) 66.71% of fractional-pixel MVs are found within the central 3 by 3 area.

(b) The FME error surface is clearly unimodal. There are few local minima.

Based on the above observation, the block-based gradient descent search

(BBGDS) [59], which is one of the most well-known fast search algorithms for

integer-pixel block motion estimation, is introduced as an alternative to FFPS.
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Fig. 6.15. Examples of search process of (a) EFFPS, (b) FFPS, (c) SDS, and (d)

BBGDS at 1/4-pixel MV resolution.
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Table 6.4. The Quarter-Pixel Motion Vector Matching Probability, Average

Search Points, and Speedup Rate

Sequence Measurement EFFPS FFPS SDS BBGDS

Foreman

MV match (%) 100.00 86.78 74.57 89.13

Search points 48.00 16.00 7.37 12.32

Speedup 1.00 3.00 6.52 3.90

Coastguard

MV match (%) 100.00 93.20 85.64 93.84

Search points 48.00 16.00 7.84 12.49

Speedup 1.00 3.00 6.12 3.84

Mobile

MV match (%) 100.00 92.86 80.11 94.32

Search points 48.00 16.00 7.88 12.98

Speedup 1.00 3.00 6.09 3.70

Knightshields

MV match (%) 100.00 90.88 82.77 90.36

Search points 48.00 16.00 7.41 12.03

Speedup 1.00 3.00 6.48 3.99

To analyze the performance of each fractional-pixel search algorithm, the

exhaustive full fractional-pixel search (EFFPS), as shown in Fig. 6.15 (a), is used

as the anchor algorithm. EFFPS has not been adopted by the reference

software due to its very heavy computational cost. However, the performance

is better than FFPS. As shown in Table 6.4, BBGDS, which was originally

developed for integer-pixel motion estimation but it is modified in order to be

used as the quarter-pixel refinement process in this simulation, can produce

more accurate fractional-pixel motion vectors while uses about four less

search points. In other words, FFPS can be replaced with BBGDS without risk.

On the other hand, the small diamond search (SDS) shows the worst

performance results with the highest speedup rate.
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The IME process is terminated,
and then returns the error costs.

Update
the buffer used for

calculating PC?

Compute the distance between
MVBBGDS and MVPPFPS.

Accumulate the error costs in
the corresponding buffer.

Start PPFPS with PC.

Stop

MVBBGDS

No

Yes

Calculate PC from the buffer.

Perform PPFPS.

Correct the predicted position
with PC, and then quantize it.

Stop

MVPC

Use one of the following conditions:
(1) Update it every n frame.
(2) Update it according to the block type.

If (1) is applied, use FFPS.

Fig. 6.16. The overall flow of the proposed FME algorithm.

Fig. 6.16 is the flowchart of two proposed methods. The first method uses

FFPS and update preset corrector every n frame. The second method uses

BBGDS and update preset corrector when block type is 1, 2, or 3. In the other

process, they perform parabolic prediction based motion estimation with

distance prediction technique.
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(d) Knightshields (720p HDTV)

Fig. 6.17. Rate-distortion curves for the four test input sequences.
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The proposed technique was implemented in the H.264/AVC JM reference

It performs FFPS

instead of PPFPS every 5 (10) frame

using the proposed preset corrector technique. It performs FFPS instead of

PPFPS every 5 (10) frame. In proposed method, if the current block type < 4, it

performs BBGDS. Otherwise, PPFPS with preset corrector is carried out. The

adjusting factor K is set to 0.9.

Fig. 6.17 illustrates rate-distortion curves for the four popular test input

sequences. The green line is the first proposed method based on frame. The

led line is the second proposed method based on macroblock type. The

performance of the second proposed method is always better compared with

original parabolic prediction. It also represents validity of the distance

prediction technique using preset corrector. However, the bitrate is increased

much more than FFPS and CBFPS. On the other hand, the performance of the

cant improvement. The average

bitrate increase is 1.92% with respect to FFPS. The PSNR drop is 0.04.

Fig. 6.18. The average ME time reduction and number of search points.
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In Fig. 6.18, the graph shows computational complexity comparison. For

your reference, the average number of search points is not necessarily

proportional to complexity. Although the number of large macroblocks is

much less than that of small ones, the larger macroblock size is, the more

increased the number of pixels used in matching criteria is. Anyway, the ME

time reduction of the second proposed method is about 37.19% with respect

to FFPS. With respect to CBFPS, it shows 21.39% reduction. Normal parabolic

prediction achieves about 50% motion estimation time reduction compared

with FFPS but the rate-distortion performance is the worst.

6.6. Summary

The fractional-pixel ME module of the recent video encoder definitely

includes the interpolation process in order to form fractional-pixel search

samples from neighboring inter-pixel information, while greatly increasing its

computational complexity. The 1-D parabolic prediction model can

approximate the FME search area at very low computational cost, whereas its

prediction performance is not enough for practical use; the parabolic model

has perfectly bilateral symmetry by an axis, but the real-world error surface is

not actually symmetrical. In this chapter, therefore, the modified parabolic

prediction technique using preset correction coefficients has been proposed

to enhance its performance. A linear model used in the proposed technique is

presented to narrow the gap between the real-world FME error surface and the

1-D parabolic prediction model. The best prediction position obtained by the

1-D parabolic prediction can be corrected by applying the proposed technique.

In the simulation results, the proposed method has a competitive R-D

performance and lower computational complexity compared with the existing

interpolation based search algorithms. Furthermore, the performance has

certain potential of improvement by customizing parameters. Thus, it needs

to design more robust algorithm based on in-depth data statistical analysis.
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Chapter 7

CONCLUSIONS

The recently released H.265/HEVC standard will achieve a much higher

efficient compression performance for high-resolution video formats beyond

HDTV, as compared to H.264/AVC. Owing to the significantly increased

computational complexity, however, additional costs will be incurred because

the real-time encoder is implemented on consumer electronics devices,

particularly mobile devices. In this thesis, therefore, the proposed techniques

focus on reducing the computational complexity in video encoding.

In particular, the integer-pixel motion estimation module of a video encoder

has the highest computational cost. Thus, first of all, low complexity

integer-pixel motion estimation techniques were proposed in the thesis. The

proposed hybrid motion estimation algorithm is a combination of revised

diamond search algorithm, full diamond and dodecagon search patterns, and

efficient stationary block skip method. The proposed integer-pixel motion

estimation algorithm was successfully implemented in the H.264/AVC

reference encoder software. The experimental results show that the proposed

algorithm further decreases the computational burden while maintaining

negligible rate-distortion performance degradation with respect to the

existing reference method; the motion estimation time of proposed algorithm

can be reduced by up to 12% compared with the existing reference method.

On the other hand, fractional-pixel motion estimation causes a remarkable

increase in the overall encoding time, as the integer-pixel motion estimation is

performed, followed by it. Nevertheless, fractional-pixel motion estimation

has a strong impact on quality performance, raising about 1 to 3 dB in terms

of peak signal-to-noise ratio. For this reason, the complexity optimization of

fractional-pixel motion estimation is significantly needed. Apart from

integer-pixel motion estimation, fractional-pixel motion estimation requires
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interpolation operations to generate a fractional-pixel search area. In the

thesis, there are several proposed fractional-pixel motion estimation

algorithms, the vertically symmetrical linear model based fractional-pixel

motion estimation, the interpolation-free fractional-pixel motion estimation

based on data trend approximation, and the enhanced 1-D parabolic

prediction based fractional-pixel motion estimation. All the proposed

fractional-pixel motion estimation algorithms were designed to archive

utmost reduction in computational complexity without using upsampling or

with using a minimal number of fractional-pixel search points. Though most

of the existing fractional-pixel motion estimation methods are using

fractional-pixel motion vector refinement for improvement in quality, the

proposed ones in this thesis are contributed to substantially reduce the use of

block distortion measurement and interpolation operations which are directly

involved in computational complexity. In the results of the simulations based

on the H.265/HEVC reference software encoder, the interpolation-free

fractional-pixel motion estimation based on data trend approximation, the

quadratic Bézier spline based method, can achieve about 41% fractional-pixel

motion estimation time saving on average when the interpolation process,

required to efficiently determine coding unit (CU) depth and prediction unit

(PU) type, is omitted, about 99% fractional-pixel ME time saving with respect

to the conventional full fractional-pixel search algorithm; its computational

complexity is almost the same as the existing 1-D parabolic prediction based

fractional-pixel search algorithm but it has better rate-distortion performance.

Moreover, the proposed prediction technique using preset correction

coefficients may provide a clue for what mathematical model prediction-based

fractional-pixel motion estimation algorithms are further improved in quality

at minimal computational cost. The proposed algorithms can also be

combined with each other to further improve performance. This research

work will continue far into the future also. I would like to dedicate myself to

developing much higher efficient algorithms in this research field.
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