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Preface

In the classical theory of the elliptic functions, due to Gauss, Jacobi, Schwarz, etc, there
exists a close relation among a family of elliptic curves, the Gauss hypergeometric differ-
ential equation and the elliptic modular function. This theory is often called the Gauss-
Schwarz theory. Set the family {S(λ)} of the elliptic curves

S(λ) : y2 = x(x − 1)(x − λ),

where λ ∈ C − {0, 1} is the complex parameter. The period mapping for {S(λ)} is given
by the quotient of period integrals. This is a multivalued analytic mapping on C−{0, 1}.
Now, these period integrals are the linearly independent solutions of the Gauss hyperge-

ometric differential equation 2E1

(1

2
,
1

2
, 1; λ

)
, where the projective monodromy group is

isomorphic to the principal congruence subgroup Γ(2). The period mapping for {S(λ)}
coincides with the Schwarz mapping of 2E1

(1

2
,
1

2
, 1; λ

)
. The inverse correspondence of

the period mapping defines a modular function for Γ(2), that is an meromorphic function
on H given by z �→ λ(z). Moreover, the modular function λ(z) has an explicit theta
expression

λ(z) =
ϑ4

01(z)

ϑ4
00(z)

,

where ϑ00(z) and ϑ01(z) are the Jacobi theta constants.
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We can regard K3 surfaces as 2-dimensional extension of the elliptic curves, for the
canonical bundle of a K3 surface is trivial. Several researchers tried to obtain modular
functions as the inverse correspondence of period mappings of families of K3 surfaces (for
example, see Shiga [Shg1] and Matsumoto, Sasaki and Yoshida [MSY] ).

In this thesis, we obtain an extension of this classical theory to the Hilbert modular
functions for Q(

√
5) by using a family of K3 surfaces with 2 complex parameters. Namely,

we study the period mapping for the family F of K3 surfaces with explicit defining
equations. The period integrals satisfy a system of partial linear differential equations in
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2 variables of rank 4. The inverse correspondence of this period mapping gives a pair of
Hilbert modular functions for the field Q(

√
5). This thesis is organized as follows.

In Chapter 0, we recall the classical elliptic functions without proofs and give a brief
survey of basic properties of K3 surfaces and elliptic surfaces. Especially, the period
mapping for marked K3 surfaces and some techniques of the Mordell-Weil latices shall be
used in this thesis.

In Chapter 1, we obtain the families F0,F1,F2 and F3 of K3 surfaces with 2 param-
eters. Namely, we have the families of K3 surfaces derived from 3-dimensional reflexive
polytopes with at most terminal singularities with 5 vertices. We give elliptic fibrations
for our families. To obtain the period mappings for our families, we need the Néron-Severi
lattices and the transcendental lattices. By applying the injectivity of the Torelli theorem
for marked K3 surfaces, we show that the Picard numbers of our families are equal to 18
(Section 1.3). Moreover, using some techniques of the Mordell-Weil lattice, we determine
the lattice structures of the Néron-Severi lattices and the transcendental lattices (Section
1.4). Our period mappings are multivalued analytic mappings on the parameter spaces.
Then, we have the projective monodromy groups for our period mappings. In Section
1.5, we determine these projective monodromy groups by applying the surjectivity of the
Torelli theorem for marked K3 surfaces.

In Chapter 2, we give the systems of linear differential equations which are satisfied
by the period integrals for our families of K3 surfaces. These differential equations are
systems of linear partial differential equation in 2 variables of rank 4. In this thesis,
we call them the period differential equation for our families. They give counterparts
of the classical Gauss hypergeometric differential equation. In other words, they give
the differential equation determined by the Gauss-Manin connection for our families. In
Section 2.2, we focus on the family F0. We show that the period differential equation for
F0 gives the uniformizing differential equation for the symmetric Hilbert modular orbifold
for the field Q(

√
5). This implies that the family F0 is strongly related to the Hilbert

modular function for Q(
√

5).
In Chapter 3, that is the main part of this thesis, we consider the period mapping for

the family F = {S(X,Y )} given by the affine equation

S(X,Y ) : z2 = x3 − 4y2(4y − 5)x2 + 20Xy3x + Y y4.

The aim of this chapter is to show that the inverse correspondence of the period mapping
for F gives a pair of the Hilbert modular functions for Q(

√
5) and to obtain an explicit

theta expression of this inverse correspondence. These results give an extension of the
classical theory of the elliptic modular functions.

The Hilbert modular functions for Q(
√

5) have several remarkable properties. There
exist various studies on the structure of the field of the Hilbert modular functions or the
ring of the Hilbert modular forms (for example Gundlach [Gu], Hirzebruch [Hi] and Müller
[Mul]). However, still now, to the best of the author’s knowledge, there has not appeared
an explicit expression of Hilbert modular functions as an inverse correspondence of the
period mapping for a family of algebraic varieties. In this thesis, we give an extension of
the above classical story to the Hilbert modular functions for Q(

√
5) by using the family

F = {S(X, Y )}.
In Section 3.1, we survey the study of the Hilbert modular orbifold (H×H)/〈PSL(2,O), τ〉

due to Hirzebruch, where O = Z +
1 +

√
5

2
Z and τ is an involution of H × H. In Sec-
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tion 3.2, we study the family F = {S(X,Y )}. A generic member S(X,Y ) is birationally
equivalent to a generic member of the family F0. We obtain the weighted projective space
P(1 : 3 : 5) as a compactification of the parameter space of F . We define the multivalued
period mapping P(1, 3, 5) − {one point} → D for F , where D is a Hermitian symmetric
space of type IV . We have a modular isomorphism between H × H and a connected
component D+ of D. Our multivalued period mapping gives the developing mapping
of the Hilbert modular orbifold (H × H)/〈PSL(2,O), τ〉. The inverse correspondence
H × H → C × C given by (z1, z2) �→ (X(z1, z2), Y (z1, z2)) defines a pair of the Hilbert
modular function for Q(

√
5). In Section 3.3, we consider the subfamily FX = {S(X, 0)}.

We have an explicit expression of the inverse correspondence of the period mapping for
FX in the famous elliptic J-function. In Section 3.4, we give explicit expressions of

(z1, z2) �→ (X(z1, z2), Y (z1, z2)

by Müller’s modular form. This result gives an extension of the classical elliptic modular
λ-function.
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0. Preliminaries

0.1 Classical elliptic modular functions

In the classical theory of elliptic modular functions, there is a closed relation among the
elliptic curve, the Gauss hypergeometric differential equation and the elliptic modular
functions. In this section, we recall the above classical topics. For detailed proof of the
topics in this section, see Griffiths [Gr1], McKean and Moll [MM], Fujiwara [F], Yoshida
[Y] and Mumford [Mum].

0.1.1 Elliptic curves and period integrals

An elliptic curve is a compact Riemann surface X of genus 1. The elliptic curve X can
be represented by a smooth algebraic curve of degree 3 in P2(C) = {(ζ0 : ζ1 : ζ2)}. The
defining equation of X can be given by

ζ0ζ
2
2 = (ζ1 − a1ζ0)(ζ1 − a2ζ0)(ζ1 − a3ζ0), (0.1.1)

where a1, a2 and a3 are distinct points in C. The holomorphic mapping

X → C; (ζ0 : ζ1 : ζ2) �→ (ζ0 : ζ1)

gives a 2-sheeted covering of P1(C) = {(ζ0 : ζ1)} with 2(1 + 1) = 4 distinct branch points
(ζ0 : ζ1) = (1 : a1), (1 : a2), (1 : a3) and (0 : 1). By a Möbius transformation, we assume
a1 = 0, a2 = 1 and a3 = λ ∈ C − {0, 1}. Then, we obtain the following canonical affine
equation of a elliptic curve:

S(λ) : y2 = x(x − 1)(x − λ). (0.1.2)

The point λ ∈ C−{0, 1} is a complex parameter of the family {S(λ)} the elliptic curves.
Let {γ1, γ2} be a basis of H1(S(λ), Z) such that (γ1 · γ2) = 1. See Figure 1.
Let ω be a holomorphic 1-form on S(λ). Since deg(ω) = (2 · 1 − 2) = 0, we have

Ω(S(λ)) � C.

The holomorphic 1-form

ω =
dx

y
=

dx√
x(x − 1)(x − λ)

on S(λ) is unique up to a constant factor.
Since dω = 0, the period integrals ∫

γ1

ω,

∫
γ2

ω (0.1.3)

1
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Γ2

Figure 1: The 1 cycles γ1 and γ2 on the complex torus

only depends on the homology class of γj (j = 1, 2). So, these integrals are well-defined.
Set

τ(λ) =

∫
γ2

ω∫
γ1

ω

.

We note that τ ∈ H = {z ∈ C|Im(z) > 0}. Let

Λ = {m1 + m2τ |m1,m2 ∈ Z}(⊂ C).

Then, the elliptic curve S(λ) is identified with the complex torus C/Λ.
The correspondence C − {0, 1} → H given by

Φ : λ �→ τ = τ(λ) (0.1.4)

is called the period mapping for the family {S(λ)}. We note that Φ is not a single-valued
but a multivalued analytic mapping.

Let us treat these period integrals as a integrals on λ-plane. Let λ ∈ R and 0 < λ < 1.
Take the branch of

√
x(x − 1)(x − λ) for x > 1 such that

√
x(x − 1)(x − λ) > 0. So,∫ ∞

1

dx√
x(x − 1)(x − λ)

> 0.

Similarly, we take
√

x(x − 1)(x − λ) ∈ iR>0 for λ < x < 1. So,∫ 1

λ

dx√
x(x − 1)(x − λ)

∈ −iR>0.

By Figure 2 and considering the analytic continuation, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
γ1

ω = 2

∫ 1

λ

dx√
x(x − 1)(x − λ)

,∫
γ2

ω = 2

∫ ∞

1

dx√
x(x − 1)(x − λ)

,

(0.1.5)

2



� � � �

0 Λ 1 �

Γ1

Γ2

�

�

�

Figure 2: The cycles γ1 and γ2 on x-plane.

and ∫ ∞

1

dx√
x(x − 1)(x − λ)∫ 1

λ

dx√
x(x − 1)(x − λ)

∈ iR>0

for 0 < λ < 1.

0.1.2 The Gauss hypergeometric differential equation

To study the period mapping for {S(λ)}, we consider the Gauss hypergeometric equation.
Let c 
= 0,−1,−2, · · · . The second-order linear differential equation

E(a, b, c) : λ(1 − λ)
d2u

dλ2
+

(
c − (a + b + 1)λ

)du

dλ
− abu = 0 (0.1.6)

is called the Gauss hypergeometric equation. This is a Fuchsian differential equation with
3 regular singular points 0, 1 and ∞. One solution of (0.1.6) about λ = 0 is given by the
Gauss hypergeometric series

2F1(a, b, c; λ) = 1 +
ab

c · 1λ +
a(a + 1)b(b + 1)

c(c + 1) · 1 · 2 λ2 + · · · .

For Re(a) > 0, Re(c − a) > 0 and |λ| < 1, we have the Eulerian integral

2F1(a, b, c; λ) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

t−a(1 − t)c−a−1(1 − λt)−bdt. (0.1.7)

More generally, letting 0 < Re(a) < Re(c) < Re(b) + 1 < 2 and p, q ∈
{

0, 1,∞,
1

x

}
, the

integral

Fpq(λ) =

∫ q

p

t1−a(1 − t)c−a−1(1 − λt)−bdt (0.1.8)

3
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Figure 3: The Pochhammer arc.

is a solution of (0.1.6). Here, the integral arc is given by the Pochhammer arc (see Figure
3).

We have the Riemann scheme of (0.1.6)⎧⎨
⎩

λ = 0 λ = 1 λ = ∞
0 0 a

1 − c c − a − b b

⎫⎬
⎭ . (0.1.9)

Then, if c 
∈ Z, we have a system {u1, u2} of solutions of (0.1.6) around λ = 0 such that{
u1(λ) = (holomorphic),

u2(λ) = λ1−c(holomorphic).

If c ∈ Z, we can find a system {u1, u2} of solutions of (0.1.6) around λ = 0 such that{
u1(λ) = (holomorphic),

u2(λ) = log(λ) + (holomorphic),

where log stands for the principal value.
Let {y1(λ), y2(λ)} be a system of solutions of (0.1.6). We consider the mapping

σ : H → P1(C) : λ �→ y2(λ)

y1(λ)
.

This is a multivalued analytic mapping. The image σ(H) is a triangle bounded by 3 arcs
(i.e. parts of circles). This triangle is called a Schwarz triangle. The image under σ of
the union (∞, 0)∪ (0, 1)∪ (1,∞) gives the boundary of this Schwarz triangle. Due to the
Riemann scheme (0.1.9), we can determine the 3 angles:⎧⎪⎨

⎪⎩
π|1 − c| (at σ(0))

π|c − a − b| (at σ(1))

π|a − b| (at σ(∞)).

If |1 − c|, |c − a − b| and |a − b| < 1, the mapping σ sends H bijectively to a Schwarz
triangle.

We apply the Schwarz reflection principle to the mapping σ defined on H and to the
intervals (−∞, 0), (0, 1) and (1,∞). The analytic mapping σ is extended to H− = {z ∈
C|Im(z) < 0} through any of the above 3 intervals. Applying the same principle again on

4



H−, we obtain the analytic continuation σγ along γ ∈ π1(C−{0, 1}, ∗). There is a matrix(
a, b
c, d

)
∈ GL(2, C) such that

σγ =
aσ + b

cσ + d
. (0.1.10)

Then, we obtain the multivalued analytic mapping

σ : C − {0, 1} → P1(C); λ �→ y2(λ)

y1(λ)
.

This mapping is called the Schwarz mapping for (0.1.6). The image of the multivalued
mapping σ is given by conformal reflections of the original Schwarz triangle σ(H). By
making an even number reflections, we have a linear fractional transformation as (0.1.10).
These transformations form the projective monodromy group Γ for (0.1.6).

Set

|1 − c| =
1

p
, |c − a − b| =

1

q
, |a − b| =

1

r
,

where p, q, r ∈ {2, 3, 4, · · · } ∪ {∞}.
If

1

p
+

1

q
+

1

r
> 1, a finite numbers of the Schwarz triangles cover the whole P1(C). If

1

p
+

1

q
+

1

r
= 1, the Schwarz triangles cover the plane C(⊂ P1(C)). If

1

p
+

1

q
+

1

r
> 1, the

Schwarz triangles cover the plane H(⊂ P1(C)).

To study the period mapping (0.1.4), we consider the case

(a, b, c) =
(1

2
,
1

2
, 1

)
.

By (0.1.7), the integral ∫ q

p

t−
1
2 (1 − t)−

1
2 (1 − λt)−

1
2 dt

is a solution of the Gauss hypergeometric equation 2E1

(1

2
,
1

2
, 1

)
for p, q ∈ {0, 1,∞,

1

λ
}.

Performing a transformation t =
1

x
,⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1

λ

dx√
x(x − 1)(x − λ)

,∫ ∞

1

dx√
x(x − 1)(x − λ)

are solutions of 2E1

(1

2
,
1

2
, 1

)
, those are period integrals of the elliptic curve S(λ). There-

fore, we know that the period integrals∫
γ1

ω,

∫
γ2

ω

5



of S(λ) gives a system of solutions of 2E1

(1

2
,
1

2
, 1

)
. Hence, the period mapping in (0.1.4)

λ �→

∫
γ2

ω∫
γ1

ω

for {S(λ)} gives a Schwarz mapping for 2E1

(1

2
,
1

2
, 1

)
.

In this case, we have p = q = r = ∞. The projective monodromy group Γ(∞,∞,∞)
is isomorphic to the principal congruence subgroup

Γ(2) =
{(

a b
c d

)
∈ PSL(2, Z)|a ≡ d ≡ 1, b ≡ c ≡ 0 (mod2)

}
of level 2. Therefore, the projective monodromy group of the period mapping for the
family {S(λ)} is Γ(2).

0.1.3 The orbifold H/Γ(2)

We consider the action of Γ(2) on H = {τ |Im(τ) > 0} given by the transformation(
a b
c d

)
: τ �→ aτ + b

cτ + d
.

Since we saw that the projective monodromy group of the period mapping Φ for {S(λ)}
is Γ(2), we have the single-valued analytic period mapping Φ : C−{0, 1} → H/Γ(2) given
by

λ �→ τ = Φ(λ). (0.1.11)

The quotient space H/Γ(2) is not compact. However, adding 3 points 0, 1 and
√−1∞,

H/Γ(2) is compactified to
H/Γ(2) � P1(C)

(see Figure 4).
The above mentioned 3 points 0, 1 and

√−1∞ are called cusps.

Definition 0.1.1. Let the holomorphic function f on H satisfies

f
(aτ + b

cτ + d

)
= (cτ + d)kf(τ),

for any

(
a b
c d

)
∈ Γ(2) and the Fourier expansion of f is in the form

f(τ) =
∑
n≥0

an exp(2π
√−1τ).

Then we call f is a modular form for Γ(2) of weight k.

6
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Figure 4: The orbifold (H)/Γ(2).

Definition 0.1.2. The meromorphic function g on H satisfying

g
(aτ + b

cτ + d

)
= g(τ)

for any

(
a b
c d

)
∈ Γ(2) is called a modular function for Γ(2).

Of course, a modular function is a function on H/Γ(2). If f1 and f2 are modular forms
of the same weight, then

g =
f1

f2

defines the modular function.

0.1.4 The Jacobi theta constants

We consider the ring of modular forms for Γ(2). For z ∈ H and (a, b) = (0, 0), (0, 1) or
(1, 0),

ϑab(z) =
∑
n∈Z

exp
(
π
√−1

(
n +

a

2

)
z + 2π

√−1
(
n +

a

2

)( b

2

))
.

is called the Jacobi theta constants. This is a holomorphic function on H.
We have the Jacobi identity

ϑ4
00(z) = ϑ4

01(z) + ϑ4
10(z). (0.1.12)

By the definition of the theta constants, we have⎧⎪⎨
⎪⎩

ϑ00(it) = 1 + 2(q̃ + q̃4 + q̃9 + · · · ),
ϑ01(it) = 1 − 2(q̃ − q̃4 + q̃9 − · · · ),
ϑ10(it) = 2(q̃

1
4 + q̃

9
4 + q̃

25
4 + · · · ),

(0.1.13)

where t ∈ R and q̃ = e−πt.
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The theta constants satisfies the following formulae:⎧⎪⎨
⎪⎩

ϑ00(z + 1) = ϑ01(z),

ϑ01(z + 1) = ϑ00(z),

ϑ10(z + 1) = e
πi
4 ϑ01(z),

(0.1.14)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϑ00

(
− 1

z

)
= e−

πi
4
√

zϑ00(z),

ϑ01

(
− 1

z

)
= e−

πi
4
√

zϑ10(z),

ϑ10

(
− 1

z

)
= e−

πi
4
√

zϑ01(z).

(0.1.15)

Set

ϑab(∞) = lim
t→∞

ϑab(it).

From (0.1.13), we have

ϑ00(∞) = 1, ϑ01(∞) = 1, ϑ10(∞) = 0. (0.1.16)

Then, from (0.1.14) and (0.1.15), we have

ϑ00(0) : ϑ01(0) : ϑ10(0) = 1 : 0 : 1, (0.1.17)

and

ϑ00(1) : ϑ01(1) : ϑ10(1) = 0 : e−
πi
4 : 1. (0.1.18)

By the way, because of (0.1.14) and (0.1.15), ϑ4
00, ϑ

4
01 and ϑ4

10 are modular forms for
Γ(2) of weight 2. Moreover, the ring of modular forms for Γ(2) is given by

C[ϑ4
00, ϑ

4
01, ϑ

4
10]/(ϑ

4
00(z) = ϑ4

01(z) + ϑ4
10(z)) = C[ϑ4

00, ϑ
4
01].

0.1.5 The theta expression of the inverse correspondence of the
period mapping

We saw that the period mapping

Φ : λ �→ τ(λ) =

∫
γ2

ω∫
γ1

ω

(0.1.19)

for {S(λ)} is a multivalued analytic mapping with the projective monodromy group Γ(2).
Then, the inverse correspondence τ �→ λ = λ(τ) satisfies

λ(τ1) = λ(τ2)
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if

τ2 =
aτ1 + b

cτ1 + d

where

(
a b
c d

)
∈ Γ(2). Therefore, τ �→ λ(τ) defines a modular function for Γ(2).

We consider the integrals in (0.1.19). If λ → 0, we have∫
γ2

ω =

∫ 0

λ

dx√
x(x − 1)(x − λ)

→ 0.

So, in this case, τ(λ) → 0. By the same argument, if λ → 1, then τ(λ) → √−1∞. From
this, together with the argument principle, we have⎧⎪⎨

⎪⎩
λ(
√−1∞) = 1,

λ(0) = 0,

λ(1) = ∞.

On the other hand, by the last subsection, we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϑ4
01

ϑ4
00

(
√−1∞) = 1,

ϑ4
01

ϑ4
00

(0) = 0,

ϑ4
01

ϑ4
00

(1) = ∞.

From this we can prove that τ �→ λ(τ) and τ �→ ϑ4
01

ϑ4
00

(τ) are the same modular functions

for Γ(2).
So, we have

Theorem 0.1.1. For τ ∈ H,

λ(τ) =
ϑ4

01(τ)

ϑ4
00(τ)

. (0.1.20)

holds.

Many mathematicians (Picard, Terada [T], Deligne and Mostow [DM], Shiga [Shg1],
Matsumoto, Sasaki and Yoshida [MSY], etc) attempted to extend this classical theory
of elliptic functions. Especially, [Shg1] and [MSY] studied the moduli of families of K3
surfaces and modular functions.

0.2 Complex surfaces

In this thesis, we study the Hilbert modular function for Q(
√

5) via the moduli of a family
of elliptic K3 surfaces. We survey the results of complex surfaces we shall apply.

9



0.2.1 K3 surfaces

In this subsection, we recall the definitions and basic properties of K3 surfaces. For
detailed proof, see [BHPV].

Let X be a compact complex surfaces. Let KX be the canonical bundle of X. Set{
pg(X) = dim(H2(X,OX)) = dim(H0(X,OX(KX))),

q(X) = dim(H1(X,OX)) = dim(H1(X,OX(KX))).

For a coherent sheaf F on X, the Euler characteristic

χ(F) =
2∑
j=0

(−1)jdim(Hj(X,F))

is well-defined. Especially, we have

χ(OX) = 1 − q(X) + p(X).

Let c1(X) and c2(X) be the Chern classes of the tangent bundle T (X) of X. The cup
product

H2(X, Z) × H2(X, Z) → H4(X, Z) � Z

defines a non-degenerate quadratic form (namely lattice structure) Q. Then, for D1, D2 ∈
H2(X, Z), we have the intersection number (D1 · D2). Letting b+(X) (b−(X), resp.)
be the number of positive (negative, resp.) eigenvalues of Q(X), we have the index
τ(X) = b+(X) − b−(X).

Theorem 0.2.1. (1) (The Riemann-Roch theorem for surfaces) Let D be a divisor on
X. Then It holds that

χ(OX(D)) =
1

2
(D · (D − KX)) + χ(OX).

(2) (Noether’s formula)

χ(X) =
(KX)2 + c2(X)

12
.

(3) (The Hirzebruch index Theorem)

τ(X) =
c1(X)2 − 2c2(X)

3
.

Definition 0.2.1. Let X be a compact complex surface. If the canonical bundle KX of
X is trivial and H1(X,OX) = 0, we call X be a K3 surface.

A K3 surface is simply connected. By Noether’s formula, we can see that the topolog-
ical Euler characteristic of X is equal to 24. We have that c1(X) = 0 and c2(X) = χ(X).
Then, using the Poincaré duality, we have

rank(H2(X, Z)) = rank(H2(X, Z)) = 22.

10



Applying the index theorem, we obtain that the lattice H2(X, Z) has signature (3, 19).
Then, by the cup product pairing, we can prove that H2(X, Z) has the following unimod-
ular lattice structure:

H2(X, Z) = E8(−1) ⊕ E8(−1) ⊕ U ⊕ U ⊕ U, (0.2.1)

where E8(−1) and U are given by the intersection matrices

E8(−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1 O

1 −2 1
1 −2 1

1 −2 1 1
1 −2 0

O 1 0 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, U =

(
0 1
1 0

)
.

Definition 0.2.2. Let us call

NS(X) = Div(X)/algebraically equivalent

the Néron-Severi lattice of X. This is a sub lattice of H2(X.Z). The rank of Néron-Severi
lattice is called the Picard number. Let us call

Tr(X) = NS(X)⊥

the transcendental lattice of X.

From the exact sequence of the shaves

0 → Z → OX → O∗
X → 0,

we obtain the Chern class mapping

δ∗ : H1(X,O∗
X) → H2(X, Z).

A line bundle over X is given by an image of the above mapping. We also have a canonical
homomorphism

j∗ : H2(X, Z) → H2(X, R).

Through the Poincaré duality, the image j∗ ◦ δ∗(H1(X,O∗
X)) in H2(X, Z) is identified

with the Néron-Severi lattice. For an algebraic K3 surface, note that linear equivalence,
algebraic equivalence and numerical equivalence all coincide.

A K3 surface is a Kähler manifold. We have a Hodge structure

H2(X, Z) ⊗ C = H0,2(X) ⊕ H1,1(X) ⊕ H2,0(X).

We have
NS(X) = H1,1(X) ∩ H2(X, Z).

Therefore, we have ∫
γ

ω = 0

where γ ∈ NS(X) and ω is the unique holomorphic 2-form up to a constant factor.
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Theorem 0.2.2. (The Torelli theorem for K3 surfaces) Let S1 and S2 are K3 surfaces.
We suppose that there exists an effective Hodge isometry ϕ : H2(S1, Z) → H2(S2, Z).
Then, there exists a biholomorphic mapping f : S1 → S2 such that f∗ = ϕ.

We shall apply this theorem to our lattice polarized K3 surfaces (Theorem 1.3.1,
Theorem 1.5.1, Proposition 3.2.3, etc).

0.2.2 Elliptic surfaces

In this thesis, we use some results for elliptic surfaces. In this subsection, we survey them.
For detailed proof, see Kodaira [Kod] or Shiga [Shg1], [Shg2].

Definition 0.2.3. An elliptic surface (S, π, C) is a smooth projective surface S with a
proper mapping π : S → C to a smooth projective algebraic curve C such that a generic
fibre π−1(p) (p ∈ C) is an ellipic curve. A holomorphic mapping ϕ : C → S such that
π ◦ ϕ = idC is called a section of π.

We will consider the case for C = P1(C).

Proposition 0.2.1. ([Shg1]) An elliptic surface (S, π, C) with sections is a K3 surface
if and only if C = P1(C) and the Euler number of X is equal to 24.

An elliptic surface (S, π, P1(C)) with sections is given by the compact non-singular
model of an affine algebraic surface in C3. If P1(C) = (t − sphere), the defining equation
of the affine surface is given by the form

y2 = 4x3 − g2(t)x − g3(t), (0.2.2)

where g2(t) and g3(t) ∈ C[t] and π is given by (x, y, t) �→ t. We call the above defining
equation the Kodaira normal form of (S, π, P1(C)). If S is a K3 surface, polynomials g2

and g3 satisfy 5 ≤ deg(g2) ≤ 8 and 7 ≤ deg(g3) ≤ 12.
For an elliptic surface (S, π, C), a fibre π−1(p) (p ∈ C) is generically a non-singular

elliptic curve. But, for some q ∈ C, π−1(q) is not a non-singular elliptic curve. In this
case, we call π−1(q) a singular fibre.

If we have a Kodaira normal form (0.2.2) of (S, π, P1(C)), we can obtain the singular
fibres of (S, π, P1(C)). See Table 1.

ordt(g2) ordt(g3) ordt(D) The Type of Singular Fibre

(1) 0 0 b Ib
(2) ≥ 2 ≥ 3 b + 6 I∗

b

(3) ≥ 1 1 2 II
(4) ≥ 2 2 4 IV
(5) ≥ 3 4 8 IV ∗

(6) ≥ 4 5 10 II∗

(7) 1 ≥ 2 3 III
(8) 3 ≥ 5 9 III∗

Table 1: The singular fibres for the elliptic fibration.

Here, the types of singular fibre is due to Kodaira [Kod]. The irreducible components of
exceptional curves coming from the canonical resolutions of singular fibres are illustrated
in Figure 5, 6, 7.

12



�2
�2

�2

�2

Ib

�2

�2 �2

IV

Figure 5: The singular fibres of type Ib and IV .

�2

�2

�2

�2

�1
�1

�1
�1

Ib�

�5

�3
�4

�5

�1

�2

�3
�4

�6

�2

II�

Figure 6: The singular fibres of type I∗
b and II∗.

0.2.3 The Mordell-Weil group of sections

We shall use the theory of the Mordell-Weil lattices due to T. Shioda. For detail, see
[Sho1] and [Sho2].

Let S be a compact complex surface and C be a algebraic curve. Let π : S → C be
an elliptic fibration with sections. For generic v ∈ C, the fibre π−1(v) is an elliptic curve.
In the following, we assume that the elliptic fibration π : S → C has singular fibres.
C(C) denotes the field of meromorphic functions on C. If C = P1(C), the field C(C) is
isomorphic to the field C(t) of rational functions.

Here, E(C(C)) denotes the Mordell-Weil group of sections of π : S → C. For all
P ∈ E(C(C)) and v ∈ C, we have (P · π−1(v)) = 1. Note that the section P intersects
an irreducible component with multiplicity 1 of every fibre π−1(v). Let O be the zero of
the group E(C(C)). The section O is given by the set of the points at infinity on every
generic fibre.

Set

R = {v ∈ C|π−1(C) is a singular fibre of π}.
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Figure 7: The singular fibres of type III∗ and IV ∗.

For all v ∈ R, we have

π−1(v) = Θv,0 +
mv−1∑
j=1

μv,jΘv,j, (0.2.3)

where mv is the number of irreducible components of π−1(v), Θv,j (j = 0, · · · ,mv− 1) are
irreducible components with multiplicity μv,j of π−1(v), and Θv,0 is the component with
Θv,0 ∩ O 
= φ.

Let F be a generic fibre of π. Set

T = 〈F, O, Θv,j|v ∈ R, 1 ≤ j ≤ mv − 1〉Z ⊂ NS(S).

We call T the trivial lattice for π. For P ∈ E(C(C)), (P ) ∈ NS(S) denotes the corre-
sponding element.

Theorem 0.2.3. (Shioda [Sho1], see also [Sho2] Theorem (3·10))
(1) The Mordell-Weil group E(C(C)) is a finitely generated Abelian group.
(2) The Néron-Severi group NS(S) is a finitely generated Abelian group and torsion free.
(3) We have the isomorphism of groups E(C(C)) � NS(S)/T given by

P �→ (P ) mod T.

We set T̂ = (T ⊗Z Q) ∩ NS(S) for the trivial lattice T .

Corollary 0.2.1. ([Sho1], see also [Sho2] Proposition (3·11))
(1)

rank(E(C(C))) = rank(NS(S)) − 2 −
∑
v∈R

(mv − 1).

(2) Let E(C(C))tor be the torsion part of E(C(C)). Then,

E(C(C))tor � T̂ /T.
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Set
E(C(C))0 = {P ∈ E(C(C))|P ∩ Θv,0 
= φ for all v ∈ R}.

We have

E(C(C))0 ⊂ E(C(C))/E(C(C))tor (0.2.4)

(see [Sho1], see also [Sho2] Section 5).
Let v ∈ R. Under the notation (0.2.3), we set

(π−1(v))� =
⋃

0≤j≤mv−1, μv,j=1

Θ�
v,j,

where Θ�
v,j = Θv,j − {singular points of π−1(v)}. Set m

(1)
v = �{j|0 ≤ j ≤ mv − 1, μv,j =

1}.
Theorem 0.2.4. ([Ne], [Kod], see also [Sho2] Section 7) Let v ∈ R. The set (π−1(v))�

has a canonical group structure.

Remark 0.2.1. Especially, for the singular fibre π−1(v) of type Ib (b ≥ 1), we have

(π−1(v))� � C× × (Z/bZ).

For the singular fibre π−1(v) of type I∗
b (b ≥ 0), we have

(π−1(v))� �
{

C × (Z/4Z) (b ∈ 2Z + 1),

C × (Z/2Z)2 (b ∈ 2Z).

For each v ∈ C, we introduce the mapping

spv : E(C(C)) → (π−1(v))� : P �→ P ∩ π−1(v).

Note that

P ∩ π−1(v) = (x, a) ∈
(

C×

C

)
× {finite group}

(see [Sho2] Section 7). We call spv the specialization mapping.

Theorem 0.2.5. ([Sho2] Section 7) For all v ∈ C, the specialization mapping

spv : P �→ (x, a) ∈
(

C×

C

)
× {finite group}

is a homomorphism of groups.

Remark 0.2.2. Especially for the singular fibre π−1(v) of type Ib (I∗
b , resp.), the projection

of spv
E(C(C)) → (Z/bZ) ((Z/4Z) or (Z/2Z)2, resp.)

is a homomorphism of groups.
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Proposition 0.2.2. ([Sho1] or [Sho2]) For an elliptic K3 surface (S, π, P1(C)), let F be
a general fibre and P be a section of π. Then,

(F · F ) = 0, (F · P ) = 1, (P · P ) = −2.

Lemma 0.2.1. Let S be a K3 surface with the elliptic fibration π : S → P1(C) and F be
a fixed general fibre. Then, π is the unique elliptic fibration up to Aut(P1(C)) which has
F as a general fibre.

Proof. Note that π ∈ H0(S,OS(F )). We shall prove

dim(H0(S,OS(F ))) = 2.

By Serre’s duality,

H2(S,OS(F )) � H0(S,OS(KS − F )) = H0(S,OS(−F )) = 0.

So, by the Riemann-Roch Theorem and Proposition 0.2.2, we see that

χ(OS(F )) = χ(OS) = 2.

Then, we have

0 − dim(H1(S,OS(F ))) + dim(H0(S,OS(F ))) = 2.

From the exact sequence,

0 → OS(−F ) → OS → OF → 0,

we obtain the exact sequence

· · · → H0(S,OS) → H0(F,OF ) → H1(S,OS(−F )) → H1(S,OS) → · · · .

Because S is a K3 surface, it holds that H1(S,OS) = 0. Moreover, H0(S,OS) →
H0(F,OF ) is an onto mapping. Therefore, we have

H1(S,OS(F )) = H1(S,OS(−F )) = 0.

Hence, we see that dim(H0(S,OS(F ))) = 2.
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Chapter 1

Periods for the families of K3
surfaces with 2 parameters derived
from the reflexive polytopes

To obtain an extension of the theory of classical elliptic functions, we need elliptic K3
surfaces with explicit defining equations. In this part, we use 3-dimensional reflexive
polytopes with 5 vertices to obtain K3 surfaces. We have the families Fj (j = 0, 1, 2, 3)
of K3 surfaces with 2 complex parameters from each polytope. We determine the generic
Picard numbers (Section 1.3), the Néron-Severi lattices and the transcendental lattices
(Section 1.4) of these family Fj (j =, 0, 1, 2, 3) of K3 surfaces. We have the multivalued
period mappings for Fj (j = 0, 1, 2, 3). We determine the projective monodromy groups
of these period mappings applying the Torelli theorem for marked K3 surfaces (Section
1.5).

1.1 Toric varieties derived from reflexive polytopes

The reflexive polytopes is introduced by Batyrev [Ba] to study the mirror symmetry of
Calabi-Yau varieties. In this section, we survey the basic result of the reflexive polytopes.
For detail, see [Ba] or [Od].

Set N = Zr, NR = N ⊗ R, M = HomZ(N, Z) � Zr and MR = M ⊗ R. Let 〈·, ·〉 :
M × N → Z be the canonical Z−bilinear mapping. The pairing 〈·, ·〉 is extended to the
R-bilinear mapping MR × NR → R.

If n1, · · · , nr ∈ NR are given, we call the set σ = R≥0n1 + · · · + R≥0nr a cone. Set
σ∨ = {x ∈ MR|〈x, y〉 ≥ 0, for all y ∈ σ}. This is called the dual to σ. We call the subset
τ of σ a face if τ = {y ∈ σ|〈m0, y〉 = 0} for m0 ∈ σ∨. If Δ be a set of cones with the two
properties
(i) every face of σ ∈ Δ is contained in Δ,
(ii) if σ1, σ2 ∈ Δ, then σ1 ∩ σ2 is a face of both σ1 and σ2,
then Δ is called a fan.

Letting Sσ = M ∩ σ∨, set

Uσ = {u : Sσ → C|u(0) = 1, u(m + n) = u(m)u(n), for all m,n ∈ Sσ}.
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Proposition 1.1.1. The set

TNemb(Δ) =
⋃
σ∈Δ

Uσ

gives an irreducible and normal variety of r dimension. Setting e(m)(u) = u(m) for
m ∈ Sσ and u ∈ Uσ,

(e(m1), · · · , e(mp)) : Uσ → Cp

defines an one to one mapping and Uσ coincides with the set of C-valued points of the
affine scheme Spec(C[Sσ]).

The variety TNemb(Δ) is called a toric variety.
If σ2 ⊂ σ1, then Uσ2 ⊂ Uσ1 . Especially, any Uσ contains the algebraic torus TN =

Hom(M, C×).

Proposition 1.1.2. The toric variety TNemb(Δ) associated to a fan Δ is non-singular
complex manifold if and only if there exist a Z-basis {n1, · · · , nr} of N and s ≤ r such that
σ = R≥0n1 + · · · + R≥0ns for any σ ∈ Δ. The toric variety TNemb(Δ) is compact if and

only if Δ is a finite and complete fan, i.e., Δ is a finite set with the support |Δ| =
⋃
σ∈Δ

σ

coinciding with the entire NR.

If v ∈ NR and b ∈ R are given, set H(v, b) = {u ∈ MR|〈u, v〉 ≥ b}. We call

P =
s⋂
j=1

H(vj, bs)

a polyhedron. A bounded polyhedron is called a polytope.
If r-dimensional polytope P (⊂ MR) is given, take every point m0, · · · ,ms of M ∩ P .

We take dual σj to the cone
∑

k 
=j R≥0(mk − mj). Let Δ(P ) be the fan consisting of all
faces of σ0, · · · , σs. Then, we obtain a toric variety Tnemb(Δ(P )).

Definition 1.1.1. If a polytope

P =
s⋂
j=1

H(vj,−1)

contains the origin as a inner point, we call P a reflexive polytope. Moreover, if every
vertex of P is a lattice point, the origin is the unique inner lattice point and only the
vertices are the lattice points on the boundary, we call P a reflexive polytope at most
terminal singularities.

In the following, we consider the toric variety associated to a finite and complete fan.
Let X = TNemb(Δ) and Δ(1) be the set of 1-dimensional cones of Δ. For ρ ∈ Δ(1), let
n(ρ) be the primitive element of ρ.

If a continuous function h on NR is linear on σ ∈ Δ and h(y) ∈ Z for y ∈ N , h is
called Δ-linear support function. Let SF(N, Δ) be the set of Δ-linear support functions.
If h ∈ SF(N, Δ), there exists lσ ∈ M such that h(n) = 〈lσ, n〉 for any n ∈ σ.
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Let σ and τ ∈ Δ. Since σ ∩ τ ∈ Δ, we have

h(n) = 〈lσ, n〉 = 〈lσ∩τ , n〉 = 〈lτ , n〉

for any n ∈ σ ∩ τ . So, we obtain

〈lσ − lτ , n〉 = 〈lτ − lσ, n〉 = 0

and lσ − lτ and lτ − lσ ∈ Sσ∩τ . Then, we have

e(lσ − lτ ) ∈ O∗
X(Uσ ∩ Uτ ).

So, {e(lσ − lτ )} gives a system of transition functions and define a line bundle over X.
This line bundle is denoted by Lh.

On the other hand, for h ∈ SF(N, Δ), we define a Weil divisor

Dh = −
∑
ρ∈Δ(1)

h(n(ρ))V (ρ).

This is a divisor given by the defining equation e(−lσ) = 0 on Uσ. We note that [Dh] = Lh.
For h ∈ SF(N, Δ), we set

�h = {m ∈ MR|〈m,n〉 ≥ h(n), for any n ∈ NR}.

We can prove that �h is a polytope.

Proposition 1.1.3. The cohomology group H0(X,OX(Dh)) is a finitely dimensional vec-
tor space. Moreover, a system of generators of H0(X,OX(Dh)) is given by {e(m)|m ∈
�h ∩ M}.
Proposition 1.1.4. In h ∈ SF(N, Δ) satisfies h(n1) + h(n2) ≤ h(n1 + n2) for n1 and
n2 ∈ NR. Then

Hq(X,OX(Dh)) = 0

for q ≥ 1.

So, we consider the anti-canonical bundle −KX of X. If a reflexive polytope P with at
most terminal singularities is given, there exists k ∈ SF(N, Δ(P )) such that Dk coincides
with −KX . Moreover, �k = P holds. Therefore, we see

H0(X,OX(−KX)) = 〈e(m)|m ∈ P ∩ M〉C.

From Proposition 1.1.4, we have

Proposition 1.1.5. For q ≥ 1,

Hq(X,OX(−KX)) = 0.

If the fan Δ(P ) is non-singular, we take k ∈ SF(N, Δ) such that k(n(ρ)) = −1 for any
ρ ∈ Δ(P ).
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Example 1.1.1. Let r = 2. Set (
2 −1 −1
−1 2 −1

)
.

We can check that X = TNemb(Δ(P )) is P2(C).
So, we obtain that

H0(X,OX(−KX)) = 〈e(m)|m ∈ P ∩ M〉C

=
{

a1 + a2t1 + a3t2 + a4
t21
t2

+ a5
t1
t2

+ a6
1

t2
+ a7

1

t1t2
+ a8

1

t1
+ a9

t2
t1

+ a10
t22
t1
|aj ∈ C

}
This is equal to the set of homogenous equations of order three. Therefore, this coincides
with the famous result KP2(C) = −3H, where H is a hyperplane section of P2(C).

1.2 A family of K3 surfaces and elliptic fibration

To obtain families of K3 surfaces with explicit defining equations, we use the 3-dimensional
reflexive polytopes with at most terminal singularities. These polytopes with 5-vertices
are given as

P0 =

⎛
⎝1 0 0 0 −1

0 1 0 0 −1
0 0 1 −1 −2

⎞
⎠ , (1.2.1)

P1 =

⎛
⎝1 0 0 −1 0

0 1 0 0 −1
0 0 1 −1 −1

⎞
⎠ , P2 =

⎛
⎝1 0 0 0 −1

0 1 0 −1 −1
0 0 1 −1 −1

⎞
⎠ , P3 =

⎛
⎝1 0 0 −1 0

0 1 0 −1 0
0 0 1 0 −1

⎞
⎠ ,

(1.2.2)

P4 =

⎛
⎝1 0 0 0 −1

0 1 0 0 −1
0 0 1 −1 −1

⎞
⎠ , (1.2.3)

where the column vectors correspond to the coordinates of the vertices (see [Ot] or [KS]).
Among the polytopes in (1.2.1), (1.2.2) and (1.2.3), P0, P2, P3 and P4 are the Fano

polytopes.

Let us start from the polytope P0 in (1.2.1). We obtain a family of algebraic K3
surfaces from P0 by the following canonical procedure (for detail, see [Od] Chapter 2):

(i) Make a toric 3-fold X from the reflexive polytope P0. This is a rational variety.
(ii) Take a divisor D on X that is linearly equivalent to −KX .
(iii) Generically, D is represented by a K3 surface.
In this case, D is given by

a1 + a2t1 + a3t2 + a4t3 + a5
1

t3
+ a6

1

t1t2t23
= 0, (1.2.4)

with complex parameters a1, · · · , a6. Every monomial in the left hand side corresponds
to a lattice point in P0. Setting

x =
a2t1
a1

, y =
a3t2
a1

, z =
a4t3
a1

, λ =
a4a5

a2
1

, μ =
a2a3a

2
4a6

a5
1

, (1.2.5)
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we obtain a family of K3 surfaces F0 = {S0(λ, μ)} with two parameters λ, μ with

S0(λ, μ) : F0(x, y, z) = xyz2(x + y + z + 1) + λxyz + μ = 0. (1.2.6)

In the same way, we obtain the corresponding families of K3 surfaces Fj = {Sj(λ, μ)}
for Pj (j = 1, 2, 3) in (1.2.2) given by the affine equations

S1(λ, μ) : F1(x, y, z) = xyz(x + y + z + 1) + λx + μy = 0, (1.2.7)

S2(λ, μ) : F2(x, y, z) = xyz(x + y + z + 1) + λx + μ = 0, (1.2.8)

S3(λ, μ) : F3(x, y, z) = xyz(x + y + z + 1) + λz + μxy = 0. (1.2.9)

Remark 1.2.1. Recently, Ishige [I2] has made a research on the family F4 derived from
the polytope P4 in (1.2.3). He made a computer aided approximation of a generator of
the monodromy group of his differential equation. There, he noticed that his monodromy
group is isomorphic to the extended Hilbert modular group for Q(

√
2).

In this section, we give elliptic fibrations for our families Fj (j = 0, 1, 2, 3) of K3
surfaces. The singular fibres of these fibration are given as in Table 1.1.

Family F0 F1 F2 F3

Singular Fibres I3 + I15 + 6I1 I9 + I∗
3 + 6I1 I∗

1 + I11 + 6I1 I9 + I9 + 6I1

Table 1.1: The types of singular fibres for our families.

1.2.1 Elliptic fibration for F0

Proposition 1.2.1. (1) The surface S0(λ, μ) is birationally equivalent to the surface
defined by the equation

y2
1 = 4x3

0 + (λ2 + 2λz + z2 + 2λz2 + 2z3 + z4)x2
0 + (−2λμz − 2μz2 − 2μz3)x0 + μ2z2.(1.2.10)

This equation gives an elliptic fibration of S0(λ, μ) over z-sphere.
(2) The elliptic surface given by (1.2.10) has the holomorphic sections{

Q : z �→ (x0, y1, z) = (0, μz, z),

R : z �→ (x0, y1, z) = (0,−μz, z).
(1.2.11)

Proof. (1) By the birational transformation

x =
−μ

x0

, y =
−λx0 − y1 + μz − x0z − x0z

2

2x0z
,

(1.2.6) is transformed to (1.2.10).
(2) This is clear.

Set

Λ0 = {(λ, μ) ∈ C2|λμ(λ2(4λ − 1)3 − 2(2 + 25λ(20λ − 1))μ − 3125μ2) 
= 0}. (1.2.12)
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Proposition 1.2.2. Suppose (λ, μ) ∈ Λ0. The elliptic surface given by (1.2.10) has the
singular fibres of type I3 over z = 0, of type I15 over z = ∞ and other six fibres of type
I1.

Proof. (1.2.10) is described in the Kodaira normal form

y2
1 = 4x3

1 − g2(z)x1 − g3(z), z 
= ∞, (1.2.13)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2(z) =
1

216
(18λ4 + 432λμz + 72λ3z(1 + z) + 108λ2z2(1 + z)2

+72λz3(1 + z)3 + 18z2(1 + z)(24μ + z2(1 + z)3)),

g3(z) =
−1

216
(λ6 + 36λ3μz + 6λ5z(1 + z) + 108λ2μz2(1 + z) + 15λ4z2(1 + z)2

+108λμz3(1 + z)2 + 20λ3z3(1 + z)3 + 15λ2z4(1 + z)4 + 6λz5(1 + z)5

+z2(216μ2 + 36μz2(1 + z)3 + z4(1 + z)6)),

and

y2
2 = 4x3

2 − h2(z1)x2 − h3(z1), z1 
= ∞, (1.2.14)

with ⎧⎪⎪⎨
⎪⎪⎩

h2(z1) = 2μz5
1(1 + z1 + λz2

1) +
1

12
(1 + z1 + λz2

1)
4,

h3(z1) = −(
1

6
μz5

1(1 + z1 + λz2
1)

3 +
1

216
(1 + z1 + λz2

1)
6 + μ2z10

1 ),

where z1 = 1/z. We have the discriminant of the right hand side of (1.2.13) for x1 ((1.2.14)
for x2, resp.):{

D0 = 64μ3z3(λ3 + 3λ2z + 27μz + 3λz2 + 3λ2z2 + z3 + 6λz3 + 3z4 + 3λz4 + 3z5 + z6),

D∞ = 64μ3z15
1 (1 + 3z1 + 3z2

1 + 3λz2
1 + z3

1 + 6λz3
1 + 3λz4

1 + 3λ2z4
1 + 3λ2z5

1 + 27μz5
1 + λ3z6

1),

(1.2.15)

respectively.
From these data, we obtain the required statement (see [Kod]).

Remark 1.2.2. We have a parametrization

λ(a) =
(a − 1)(a + 1)

5
, μ(a) =

(2a − 3)3(a + 1)2

3125

of the locus λ2(4λ − 1)3 − 2(2 + 25λ(20λ − 1))μ − 3125μ2 = 0. It is a rational curve. In
Section 2.1, we shall obtain the above Λ0 as the complement of the singular locus of the
period differential equation for F0 in the (λ, μ)-space.

Remark 1.2.3. Let χ denote the Euler characteristic. According to [Kod] Theorem 12.1
(see also [Shg2]), an elliptic fibred algebraic surface S over P1(C) is a K3 surface if and
only if χ(S) = 24 provided S is given in the Kodaira normal form. Due to this criterion
and Proposition 1.2.2, we can check directly that S0(λ, μ) is a K3 surface for (λ, μ) ∈ Λ0.
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Figure 1.1: The singular fibre at z = 0.
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b5
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b1'
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b4'

b5'

b6'b7'

Figure 1.2: The singular fibre at z = ∞.

For (λ, μ) ∈ Λ0, let O be the zero of the Mordell-Weil group of sections of the elliptic
fibration given by (1.2.10) over C(z). O is given by the set of the points at infinity on every
fibre. Let Q and R be the sections in (1.2.11). R is the inverse element of Q in the Mordell-
Weil group. Let F be a general fibre of this fibration. Let I3 = a0+a1+a′

1 be the irreducible
decomposition of the fibre at z = 0 given as in Figure 1.1. We may suppose O ∩ a0 
=
φ,Q∩ a1 
= φ and R∩ a′

1 
= φ. By the same way, let I15 = b0 + b1 + · · ·+ b7 + b′1 + · · ·+ b′7
be the irreducible decomposition of the fibre at z = ∞ given as in Figure 1.2. We may
suppose O ∩ b0 
= φ,Q ∩ b5 
= φ and R ∩ b′5 
= φ.

We set a sublattice L0 = L0(λ, μ) ⊂ H2(S0(λ, μ), Z) for (λ, μ) ∈ Λ0 by

L0(λ, μ) = 〈b1, b2, b3, b4, b5, Q, b6, b7, b
′
1, b

′
2, b

′
3, b

′
4, b

′
5, R, b′6, b

′
7, F,O〉Z. (1.2.16)
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Set

A18(−1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2
. . .
. . .
. . . −2 1

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
18

.

Let Ei,j (1 ≤ i, j ≤ 18) be the matrix unit. We obtain the corresponding intersection
matrix M0 for L0:

M0 =A18(−1) + 2E17,17 − (E6,7 + E7,6) + (E5,7 + E7,5) − (E14,15 + E15,14) + (E13,15 + E15,13)

− (E8,9 + E9,8) − (E16,17 + E17,16) + (E6,17 + E17,6) + (E8,16 + E16,8) + (E14,17 + E17,14).
(1.2.17)

We have

det(M0) = −5. (1.2.18)

Therefore, the generators of L0 are independent.

1.2.2 Elliptic fibration for F1

Proposition 1.2.3. The surface S1(λ, μ) is birationally equivalent to the surface defined
by the equation

z2
1 = y3

1 + (μ2 + 2μx1 + x2
1 − 4x3

1)y
2
1 + (−8λμx3

1 − 8λx4
1)y1 + 16λ2x6

1. (1.2.19)

This equation gives an elliptic fibration of S1(λ, μ) with the holomorphic section

Q : x1 �→ (x1, y1, z1) = (x1, 0, 4λx3
1). (1.2.20)

Proof. By the birational transformation

x = − 2x2
1y1

−4λx3
1 + μy1 + x1y1 + z1

, y =
y2

1

2x1(−4λx3
1 + μy1 + x1y1 + z1)

,

z = −−4λx3
1 + μy1 + x1y1 + z1

2x1y1

,

(1.2.7) is transformed to (1.2.19).

(1.2.19) gives an elliptic fibration for the surface S1(λ, μ). Set

Λ1 = {(λ, μ) ∈ C2|λμ(729λ2 − 54λ(27μ − 1) + (1 + 27μ)2 
= 0)}. (1.2.21)

Proposition 1.2.4. Suppose (λ, μ) ∈ Λ1. The elliptic surface given by (1.2.19) has the
singular fibres of type I9 over x1 = 0, of type I∗

3 over x1 = ∞ and other six fibres of type
I1.
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Proof. (1.2.19) is described in the Kodaira normal form

z2
2 = 4y3

2 − g2(x1)y2 − g3(x1), x1 
= ∞, (1.2.22)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2(x1) = −4
(
− μ4

3
− 4μ3x1

3
− 2μ2x2

1 −
4μx3

1

3
− 8λμx3

1

+
8μ2x3

1

3
− x4

1

3
− 8λx4

1 +
16μx4

1

3
+

8x5
1

3
− 16x6

1

3

)
,

g3(x1) = −4
(2μ6

27
+

4μ5x1

9
+

10μ4x2
1

9
+

40μ3x3
1

27
+

8λμ3x3
1

3
− 8μ4x3

1

9
+

10μ2x4
1

9
+ 8λμ2x4

1

+
4μx5

1

9
+ 8λμx5

1 −
16μ2x5

1

3
+

2x6
1

27
+

8λx6
1

3
+ 16λ2x6

1 −
32μx6

1

9
− 32λμx6

1

3

−32μ3x4
1

9
+

32μ2x6
1

9
− 8x7

1

9
− 32λx7

1

3
+

64μx7
1

9
+

32x8
1

9
− 128x9

1

27

)
,

and

z2
3 = 4y3

3 − h2(x2)y3 − h3(x2), x2 
= ∞, (1.2.23)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2(x2) = −4
(
− 16x2

2

3
+

8x3
2

3
− x4

2

3
− 8λx4

2 +
16μx4

2

3
− 4μx5

2

3

−8λμx5
2 +

8μ2x5
2

3
− 2μ2x6

2 −
4μ3x7

2

3
− μ4x8

2

3

)
,

h3(x2) = −4
(
− 128x3

2

27
+

32x4
2

9
− 8x5

2

9
− 32λx5

2

3
+

64μx5
2

9
+

2x6
2

27

+
8λx6

2

3
+ 16λ2x6

2 −
32μx6

2

9
− 32λμx6

2

3
+

32μ2x6
2

9
+

4μx7
2

9

−16μ2x7
2

3
+ 8λμ2x8

2 −
32μ4x8

2

9
+ 8λμx7

2

−16μ2x7
2

3
+

10μ2x8
2

9
+ 8λμ2x8

2 −
32μ4x8

2

9
− 32μ4x8

2

9

+
10μ2x8

2

9
+

40μ3x11
2

27
+

8λμ3x9
2

3
− 8μ4x9

2

9
+

10μ4x10
2

9
+

4μ5x11
2

9
+

2μ6x12
2

27

)
,

where x1 = 1/x2. We have the discriminant of the right hand side of (1.2.22) for y1

((1.2.23) for y2, resp.):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0 = 256λ2x9
1(λμ3 − μ4 + 3λμ2x1 − 4μ3x1 + 3λμx2

1 − 6μ2x2
1 + λx3

1 + 27λ2x3
1

−4μx3
1 − 36λμx3

1 + 8μ2x3
1 − x4

1 − 36λx4
1 + 16μx4

1 + 8x5
1 − 16x6

1),

D∞ = 256λ2x9
2(−16 + 8x2 − x2

2 − 36λx2
2 + 16μx2

2 + λx3
2 + 27λ2x3

2 − 4μx3
2 − 36λμx3

2

8μ2x3
2 + 3λμx4

2 − 6μ2x4
2 + 3λμ2x5

2 − 4μ3x5
2 + λμ3x6

2 − μ4x6
2).

From these deta, we obtain the required statement.
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Figure 1.3: An elliptic fibration for P1.

The elliptic fibration given by (1.2.19) is illustrated in Figure 1.3.
For this fibration, let O be the zero of the Mordell-Weil group, Q be the section in

(1.2.20) and F be a general fibre. Note that Q ∩ a3 
= φ at x1 = 0 and Q ∩ c2 
= φ at
x1 = ∞. Set

L1 = 〈a1, a2, a3, a4, a
′
4, a

′
3, a

′
2, a

′
1, c1, b0, b1, b2, b3, c2, c3, O,Q, F 〉Z. (1.2.24)

We have the following intersection matrix M1 for L1:

M1 =A18(−1) − (E8,9 + E9,8) − (E14,15 + E15,14) + (E13,15 + E15,13) + (E3,17 + E17,3)

+ (E14,17 + E17,14) − (E16,17 + E17,16) + (E16,18 + E18,16) − (E15,16 + E16,15) + 2E18,18.
(1.2.25)

We have det(M1) = −9. Therefore, the generators of L1 are independent.

1.2.3 Elliptic fibration for F2

Proposition 1.2.5. The surface S2(λ, μ) is birationally equivalent to the surface defined
by the equation

z2
1 = x3

1 + (−4λy + y2 + 2y3 + y4)x2
1 + (−8μy3 − 8μy4)x1 + 16μ2y4. (1.2.26)

This equation gives an elliptic fibration of S2(λ, μ) with the holomorphic section

Q : y �→ (x1, y, z1) = (0, y, 4μy2) (1.2.27)

Proof. By the birational transformation

x =
x2

1

2y(x1y − 4μy2 + x1y + z1)
, z = −x1y − 4μy2 + x1y + z1

2x1y
,

(1.2.8) is transformed to (1.2.26).
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(1.2.26) gives an elliptic fibration for S2(λ, μ). Set

Λ2 = {(λ, μ) ∈ C2|λμ(λ2(1 + 27λ)2 − 2λμ(1 + 189λ) + (1 + 576λ)μ2 − 256μ3) 
= 0}.(1.2.28)

Proposition 1.2.6. Suppose (λ, μ) ∈ Λ2. The elliptic surface given by (1.2.26) has the
singular fibres of type I∗

1 over y = 0, of type I11 over y = ∞ and other six fibres of type
I1.

Proof. (1.2.26) is described in the Kodaira normal form

z2
2 = 4x3

2 − g2(y)x2 − g3(y), y 
= ∞, (1.2.29)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2(y) = −4
(
− 16λ2y2

3
+

8λy3

3
− 8μy3 − y4

3

+
16λy4

3
− 8μy4 − 4y5

3
+

8λy5

3
− 2y6 − 4y7

3
− y8

3

)
,

g3(y) = −4
(
− 128λ3y3

27
+

32λ2y4

9
− 32λμy4

3
+ 16μ2y4

−8λy5

9
+

64λ2y5

9
+

8μy5

3
− 32λμy5

3
+

2y6

27
− 32λy6

9

+
32λ2y6

9
+ 8μy6 +

4y7

9
− 16λy7

3
+ 8μy7 +

10y8

9
− 32λy8

9

+
8μy8

3
+

40y9

27
− 8λy9

9
+

10y10

9
+

4y11

9
+

2y12

27

)
,

and

z2
3 = 4x3

3 − h2(y1)x3 − h3(y1), y1 
= ∞, (1.2.30)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2(y1) = −4
(
− 1

3
− 4y1

3
− 2y2

1 −
4y2

1

3
+

8λy3
1

3

−y4
1

3
+

16λy4
1

3
− 8μy4

1 +
8λy5

1

3
− 8μy5

1 −
16λ2y6

1

3

)
,

h3(y1) = −4
( 2

27
+

4y1

9
+

10y2
1

9
+

40y3
1

27
− 8λy3

1

9

+
10y4

1

9
− 32λy4

1

9
+

8μy4
1

3
+

4y5
1

9
− 16λy5

1

3
+ 8μy5

1

+
2y6

1

27
− 32λy6

1

9
+

32λ2y6
1

9
+ 8μy6

1 −
8λy7

1

9
+

64λ2y7
1

9
+

8μy9
1

3

−32λμy7
1

3
+

32λ2y8
1

9
− 32λμy8

1

3
+ 16μ2y8

1 −
128λ3y9

1

27

)
,

where y = 1/y1. We have the discriminant of the right hand side of (1.2.29) for x2((1.2.30)
for x3, resp.):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0 = −256μ2y7(16λ3 − 8λ2y + 36λμy − 27μ2y + λy2 − 16λ2y2 − μy2 + 36λμy2 + 4λy3

−8λ2y3 − 3μy3 + 6λy4 − 3μy4 + 4λy5 − μy5 + λy6),

D∞ = −256μ2y11
1 (λ + 4λy1 − μy1 + 6λy2

1 − 3μy2
1 + 4λy3

1 − 8λ2y3
1 − 3μy3

1 + λy4
1 − 16λ2y4

1

−μy4
1 + 36λμy4

1 − 8λ2y5
1 + 36λμy5

1 − 27μ2y5
1 + 16λ3y6

1).
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Figure 1.4: An elliptic fibration for P2

From these data, we obtain the required statement.

The elliptic fibration given by (1.2.26) is illustrated in Figure 1.4.
For this fibration, let O be the Mordell-Weil group, Q be the section in (1.2.27) and

F be a general fibre. Note Q ∩ a2 
= φ and Q ∩ c2 
= φ. Set

L2 = 〈a1, a2, a3, a4, a5, a
′
5, a

′
4, a

′
3, a

′
2, a

′
1, c1, b0, b1, c2, c3, O, Q, F 〉Z. (1.2.31)

We have the following intersection matrix M2 for L2:

M2 =A18(−1) − (E10,11 + E11,10) − (E15,16 + E16,15) + (E4,17 + E17,4) + (E14,17 + E17,4)

− (E14,15 + E15,14) + (E13,15 + E15,13) − (E16,17 + E17,16) + (E16,18 + E18,16) + 2E18,18.
(1.2.32)

We have det(M2) = −9.

1.2.4 Elliptic fibrations for F3

Proposition 1.2.7. The surface S3(λ, μ) is birationally equivalent to the surface defined
by the equation

y2
1 = z3

1 + (λ2 + 2λx1 + x2
1 − 4μx2

1 − 4x3
1)z

2
1 + 16μx5

1z1. (1.2.33)

This equation gives an elliptic fibration of S3(λ, μ) with the holomorphic sections{
Q : z1 �→ (x1, y1, z1) = (x1, 4μx2

1(x1 + λ), 4x2
1μ),

O′ : z1 �→ (x1, y1, z1) = (x1, 0, 0).
(1.2.34)

The section O′ satisfies 2O′ = O.
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Proof. By the birational transformation

x =
2x2

1(4μx2
1 − z1)

y1 + λz1 + x1z2

, y =
y1 + λz1 + x1z1

2x1(4μx2
1 − z1)

, z = − z1(4μx2
1 − z1)

2x1(y1 + λz1 + x1z1)
,

(1.2.9) is transformed to (1.2.33).

(1.2.33) gives an elliptic fibration for S3(λ, μ). Set

Λ3 = {(λ, μ) ∈ C2|λμ(729λ2 − (4μ − 1)3 + 54λ(1 + 12μ)) 
= 0}. (1.2.35)

Proposition 1.2.8. Suppose (λ, μ) ∈ Λ3. The elliptic surface given by (1.2.33) has the
singular fibres of type I10 over z = 0, of type I∗

2 over z = ∞ and other six fibres of type
I1.

Proof. (1.2.33) is described in the Kodaira normal form

y2
2 = 4z3

2 − g2(x1)z2 − g3(x1), x1 
= ∞, (1.2.36)

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2(x1) = −4
(
− λ4

3
− 4λ3x1

3
− 2λ2x2

1 +
8λ2μx2

1

3
− 4λx3

1

3
+

8λ2x3
1

3
+

16λμx3
1

3

−x4
1

3
+

16λx4
1

3
+

8μx4
1

3
− 16μ2x4

1

3
+

8x5
1

3
+

16μx5
1

3
− 16x6

1

3

)
,

g3(x1) = −4
(2λ6

27
+

4λ5x1

9
+

10λ4x2
1

9
− 8λ4μx2

1

9

+
40λ3x3

1

27
− 8λ4x3

1

9
− 32λ3μx3

1

9
+

10λ2x4
1

9
− 32λ3x4

1

9

−16λ2μx4
1

3
+

32λ2μ2x4
1

9
+

4λx5
1

9
− 16λ2x5

1

3
− 32λμx5

1

9

+
16λ2μx5

1

9
+

64λμ2x5
1

9
+

2x6
1

27
− 32λx6

1

9
+

32λ2x6
1

9

−8μx6
1

9
+

32λμx6
1

9
+

32μ2x6
1

9
− 128μ3x6

1

27
− 8x7

1

9

+
64λx7

1

9
+

16μx7
1

9
+

64μ2x7
1

9
+

32x8
1

9
+

64μx8
1

9
− 128x9

1

27

)
,

and

y2
3 = 4z3

3 − h2(x2)z3 − h3(x2), x2 
= ∞, (1.2.37)
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with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2(x2) = −4
(
− 16x2

2

3
+

8x3
2

3
+

16μx3
2

3
− x4

2

3
+

16λx4
2

3
+

8μx4
2

3
− 16μ2x4

2

3
− 4λx5

2

3

+
8λ2x5

2

3
+

16λμx5
2

3
− 2λ2x6

2 +
8λ2μx6

2

3
− 4λ3x7

2

3
− λ4x8

2

3

)
,

h3(x2) = −4
(
− 128x3

2

27
+

32x4
2

9
+

64μx4
2

9
− 8x5

2

9
+

64λx5
2

9
+

16μx5
2

9

+
64μ2x5

2

9
+

2x6
2

27
− 32λx6

2

9
+

32λ2x6
2

9
− 8μx6

2

9

+
32λμx6

2

9
+

32μ2x6
2

9
− 128μ3x6

2

27
+

4λx7
2

9
− 16λ2x7

2

3

−32λ2μ2x7
2

9
+

16λ2μx7
2

9
− 32λ3x8

2

9
+

64λμ2x7
2

9

+
10λ2x8

2

9
− 16λ2μx8

2

3
+

40λ3x9
2

27
− 8λ4x9

2

9
− 32λ3μx9

2

9

+
10λ4x10

2

9
− 8λ4μx10

2

9
+

4λ5x11
2

9
+

2λ6x12
2

9

)
,

where x1 = 1/x2. We have the discriminant of the right hand side of (1.2.36) for z2

((1.2.37) for z3 resp):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0 = −256μ3x10
1 (λ4 + 4λ3x1 + 6λ2x2

1 − 8λ2μx2
1 + 4λx3

1 − 8λ2x3
1 − 16λμx3

1

+x4
1 − 16λx4

1 − 8μx4
1 + 16μ2x4

1 − 8x5
1 − 32μx5

1 + 16x6
1),

D∞ = −256μ2x8
2(16 − 8x2 − 32μx2 + x2

2 − 16λx2
2 − 8μx2

2 + 16μ2x2
2

+4λx3
2 − 8λ2x3

2 − 16λμx3
2 + 6λ2x4

2 − 8λ2μx4
2 + 4λ3x5

2 + λ4x6
2).

From these data, we obtain the required statement.

The elliptic fibration given by (1.2.33) is illustrated in Figure 1.5.
For this fibration, let O be the zero of the Mordell-Weil group, Q be the section in

(1.2.34) and F be a general fibre. Set

L′
3 = 〈a1, a2, a3, a4, a

′
0, a

′
4, a

′
3, a

′
2, a

′
1, c1, b0, b1, b2, c2, c3, O, F, Q〉Z. (1.2.38)

We have det(L′
3) = −36.

We need another elliptic fibration.

Proposition 1.2.9. The surface S3(λ, μ) is birationally equivalent to the surface defined
by the equation

y2
1 = x3

1 + (μ2 + 2μz + z2 + 2μz2 + 2z3 + z4)x2
1 + (−8λμz3 − 8λz4 − 8λz5)x1 + 16λ2z6.(1.2.39)

This equation gives an elliptic fibration of S3(λ, μ) with the holomorphic sections{
Q0 : z �→ (x1, y1, z) = (0, 4λz3, z),

R0 : z �→ (x1, y1, z) = (0,−4λz3, z).
(1.2.40)
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Figure 1.5: An elliptic fibration for P3

Proof. By the birational transformation

x = −4λz2

x′
1

, y =
−μx′

1 − y′
1 − x′

1z − x′
1z

2 + 4λz3

2x′
1z

,

(1.2.9) is transformed to (1.2.39).

Proposition 1.2.10. Suppose (λ, μ) ∈ Λ3. The elliptic surface given by (1.2.39) has the
singular fibres of type I9 over z = 0, of type I9 over z = ∞ and other six fibres of type I1.

Proof. (1.2.39) is described in the Kodaira normal form

y2
2 = 4x3

2 − g2(z)x2 − g3(z), z 
= ∞, (1.2.41)
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with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2(z) = −4
(
− μ4

3
− 4μ3z

3
− 2μ2z2 − 4μ3z2

3
− 4μz3

3
− 8λμz3 − 4μ2z3 − z4

3
− 8λz4

−4μz4 − 2μ2z4 − 4z5

3
− 8λz5 − 4μz5 − 2z6 − 4μz6

3
− 4z7

3
− z8

3

)
,

g3(z) = −4
(2μ6

27
+

4μ5z

9
+

10μ4z2

9
+

4μ5z2

9

+
40μ3z3

27
+

8λμ3z3

3
+

20μ4z3

9
+

10μ2z4

9

+8λμ2z4 +
40μ3z4

9
+

10μ4z4

9
+

4μz5

9

+8λμz5 +
40μ2z5

9
+ 8λμ2z5 +

40μ3z5

9
+

2z6

27

+
8λz6

3
+ 16λ2z6 +

20μz6

9
+ 16λμz6 +

20μ2z6

3

+
40μ3z6

27
+

4z7

9
+ 8λz7 +

40μz7

9
+ 8λμz7

+
10z8

9
+ 8λz8 +

40μz8

9
+

10μ2z8

9
+

40z9

27
+

8λz9

3

+
20μz9

9
+

10z10

9
+

4μz10

9
+

4z11

9
+

2z12

27

)
,

and

y2
3 = 4x3

3 − h2(z1)x3 − h3(z1), z1 
= ∞, (1.2.42)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2(z1) = −4
(
− 1

3
− 4z1

3
− 2z1 − 4μz2

1

3
− 4z3

1

3
− 8λz3

1 − 4z3
1 −

z4
1

3
− 8λz4

1

−4μz4
1 − 2μ2z2

1 −
4μz5

1

3
− 8λμz5

1 − 4μ2z5
1

−2μ2z6
1 −

4μ3z6
1

3
− 4μ3z7

1

3
− μ4z8

1

3

)
,

h3(z1) = −4
( 2

27
+

4z1

9
+

10z2
1

9
+

4μz2
1

9
+

40z3
1

27
+

8λz3
1

3
+

20μz3
1

9
+

10z4
1

9
+ 8λz4

1

+
40μz4

1

9
+

10μ2z4
1

9
+

4z5
1

9
+ 8λz5

1 +
40μz5

1

9
+ 8λμz5

1 +
40μ2z5

1

9

+
2z6

1

27
+

8λz6
1

3
+ 16λ2z6

1 +
20μz6

1

9
+ 16λμz6

1 +
20μ2z6

1

3
+

40μ3z6
1

27

+
4μz7

1

9
+ 8λμ2z7

1 +
40μ3z7

1

9
+

10μ2z8
1

9
+ 8λμ2z8

1 +
10μ4z8

1

9
+

40μ3z8
1

9

+
40μ3z9

1

27
+

8λμ3z9
1

3
+

20μ4z9
1

9
+

10μ4z10
1

9
+

4μ5z10
1

9
+

4μ5z11
1

9
+

2μ6z12
1

27

)
,
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Figure 1.6: Another elliptic fibration for P3

where z = 1/z1 We have the discriminant of the right hand side of (1.2.41) for x′
2((1.2.42)

for x′
3, resp.):{

D0 = 256λ3z9(μ3 + 3μ2z + 3μz2 + 3μ2z2 + z3 + 27λz3 + 6μz3 + 3z4 + 3μz4 + 3z5 + z6),

D∞ = 256λ3z9
1(1 + 3z1 + 3z2

1 + 3μz2
1 + z3

1 + 27λz3
1 + 6μz3

1 + 3μz4
1 + 3μ2z4

1 + 3μ2z5
1 + μ3z6

1).

From these data, we obtain the required statement.

This fibration is illustrated in Figure 1.6.
For this fibration, let O be the zero of the Mordell-Weil group, Q0 and R0 be the

sections in (1.2.40) and F be a general fibre. Set

L3 = 〈d1, d2, d3, d4, d
′
4, d

′
3, d

′
2, d

′
1, e1, e2, e3, e4, e

′
3, e

′
2, O,Q0, R0, F 〉Z. (1.2.43)

We have the following intersection matrix M3 for L3:

M3 =A18(−1) + 2E18,18 − (E8,9 + E9,8) − (E14,15 + E15,14) − (E12,13 + E13,12)

+ (E3,16 + E16,3) + (E6,17 + E17,6) + (E11,16 + E16,11) + (E13,17 + E17,13)

− (E15,16 + E16,15) + (E15,18 + E18,15) + (E16,18 + E18,16) − (E16,17 + E17,16)
(1.2.44)

We have det(M3) = −9.

1.3 The Picard numbers

In this section, we define the period mappings and determine the Picard numbers for our
families. We state the precise argument only for the case of the family F0 of the K3
surfaces S0(λ, μ).
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1.3.1 S-marked K3 surfaces

The lattice L := L0 in (1.2.16) is contained in NS(S0(λ, μ)) and of rank 18. So we have

Proposition 1.3.1.
rank NS(S(λ, μ)) ≥ 18.

We have also

Proposition 1.3.2. L is a primitive sublattice of H2(S0(λ, μ), Z).

Proof. By (1.2.18), we have det(L) = −5. It does not contain any square factor. So L is
primitive.

Definition 1.3.1. For a K3 surface S0(λ, μ) ((λ, μ) ∈ Λ), set⎧⎪⎨
⎪⎩

γ5 = b1, γ6 = b2, γ7 = b3, γ8 = b4, γ9 = b5, γ10 = Q,

γ11 = b6, γ12 = b7, γ13 = b′1, γ14 = b′2, γ15 = b′3, γ16 = b′4,

γ17 = b′5, γ18 = R, γ19 = b′6, γ20 = b′7, γ21 = O, γ22 = F,

given by (1.2.16). Let Š0 = S0(λ0, μ0) be a reference surface for a fixed point (λ0, μ0) ∈
Λ = Λ0. Set Ľ = L(λ0, μ0) ⊂ H2(Š, Z). We define a S-marking ψ of S0(λ, μ) to be an
isomorphism ψ : H2(S(λ, μ), Z) → Ľ with the property that ψ−1(γj) = γj for 5 ≤ j ≤ 22.
We call the pair (S0(λ, μ), ψ) an S-marked K3 surface.

By the above definition, a S-marking ψ has the property:

ψ−1(F ) = F, ψ−1(O) = O, ψ−1(Q) = Q, ψ−1(R) = R,

ψ−1(bj) = bj, ψ−1(b′j) = b′j (1 ≤ j ≤ 7).

Definition 1.3.2. Two S-marked K3 surfaces (S, ψ) and (S ′, ψ′) are said to be isomorphic
if there is a biholomorphic mapping f : S → S ′ with

ψ′ ◦ f∗ ◦ ψ−1 = idH2(Š,Z).

Two S-marked K3 surfaces (S, ψ) and (S ′, ψ′) are said to be equivalent if there is a
biholomorphic mapping f : S → S ′ with

ψ′ ◦ f∗ ◦ ψ−1|Ľ = idĽ.

By Proposition 1.3.2, the basis {γ5, · · · , γ22} of L(⊂ H2(S0(λ, μ), Z)) is extended to a
basis

{γ1, γ2, γ3, γ4, γ5, · · · , γ22} (1.3.1)

of H2(S0(λ, μ), Z). Let {γ∗
1 , · · · , γ∗

22} be the dual basis of {γ1, · · · , γ22} with respect to
the intersection form (0.2.1). Set

Lt = 〈γ∗
1 , γ

∗
2 , γ

∗
3 , γ

∗
4〉Z ⊂ H2(S0(λ, μ), Z). (1.3.2)

We have Lt = L⊥.
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1.3.2 Period mapping

First, we state the definition of the period mapping for general K3 surfaces.
For a K3 surface S, there exists unique holomorphic 2-form ω up to a constant factor.

Let {γ1, · · · γ22} be a basis of H2(S, Z).

η′ =
(∫

γ1

ω : · · · :

∫
γ22

ω
)
∈ P21(C)

is called a period of S. Let {γ1, · · · , γr} be a basis of Tr(S). Note that∫
γ

ω = 0, (∀γ ∈ NS(S)). (1.3.3)

The period η′ is reduced to

η =
(∫

γ1

ω : · · · :

∫
γr

ω
)
∈ Pr−1(C).

We note that NS(S) is a lattice of signature (1, ·) and Tr(S) is a lattice of the signature
(2, ·).
Definition 1.3.3. Let Š0 = S0(λ0, μ0) be the reference surface. Take a small neighborhood
δ of (λ0, μ0) in Λ so that we have a local topological trivialization

τ : {S0(λ, μ)|(λ, μ) ∈ δ} → Š0 × δ.

Let p : Š0 × δ → Š0 be the canonical projection, and set r = p ◦ τ . Then,

r′(λ, μ) = r|S0(λ,μ)

gives a deformation of surfaces. We note that r′ preserves the lattice L. Take an S-
marking ψ̌ of Š0. We obtain the S-markings of S0(λ, μ) by ψ = ψ̌ ◦ r′∗ for (λ, μ) ∈ δ. We
define the local period mapping Φ = Φ0 : δ → P3(C) by

Φ((λ, μ)) =
(∫

ψ−1(γ1)

ω : . . . :

∫
ψ−1(γ4)

ω
)
, (1.3.4)

where γ1, · · · , γ4 ∈ L are given by (1.3.1). We define the multivalued period mapping
Λ → P3(C) by making the analytic continuation of Φ along any arc starting from (λ0, μ0)
in Λ.

In general, we have the Riemann-Hodge relation for the period:

η′M tη′ = 0, η′M tη̄′ > 0,

where M is the intersection matrix (γ∗
j · γ∗

k)1≤j,k≤22.
For our case, according to the relation (1.3.3), the Riemann-Hodge relation is reduced

to

ηAtη = 0, ηAtη̄ > 0, (1.3.5)
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where

A = (γ∗
j · γ∗

k)1≤j,k≤4

and

η =
(∫

ψ−1(γ1)

ω :

∫
ψ−1(γ2)

ω :

∫
ψ−1(γ3)

ω :

∫
ψ−1(γ4)

ω
)
.

Remark 1.3.1. In Theorem 1.4.1, we shall show that the above matrix A is given by

A = A0 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 2 1
0 0 1 −2

⎞
⎟⎟⎠ .

Set
D = D0 = {ξ = (ξ1 : ξ2 : ξ3 : ξ4) ∈ P3(C) | ξAtξ = 0, ξAtξ̄ > 0}.

We have Φ(Λ) ⊂ D. Note that D is composed of two connected components. Let D+

be the component where (1 : 1 : −√−1 : 0) is a point of D+. And let D− be the other
component.

Definition 1.3.4. The fundamental group π1(Λ, ∗) acts on the Z-module 〈ψ−1(γ1), · · · , ψ−1(γ4)〉Z.
So, it induces the action on D. This action induces a group of projective linear transfor-
mations which is a subgroup of PGL(4, Z). We call it the projective monodromy group of
the period mapping Φ : Λ → D.

1.3.3 The Picard number

Definition 1.3.5. Let (S1, π1, P
1(C)) and (S2, π2, P

1(C)) be two elliptic surfaces. If there
exist a biholomorphic mapping f : S1 → S2 and ϕ ∈ Aut(P1(C)) such that ϕ◦π1 = π2 ◦f ,
we say (S1, π1, P

1(C)) and (S2, π2, P
1(C)) are isomorphic as elliptic surfaces.

For an elliptic surface given by the Kodaira normal form y2 = 4x3 − g2(z)x − g3(z),
we define the j-invariant ( see [Kod] Section 7):

j(z) =
g3
2(z)

g3
2(z) − 27g2

3(z)
∈ C(z). (1.3.6)

From the definition, we have

Proposition 1.3.3. Let (S1, π1, P
1(C)) and (S2, π2, P

1(C)) be two elliptic surfaces given
by the Kodaira normal forms. Let j1(z) and j2(z) be the corresponding j-invariants of the
Kodaira normal forms, respectively. If (S1, π1, P

1(C)) and (S2, π2, P
1(C)) are isomorphic,

then there exists ϕ ∈ Aut(P1(C)) such that π−1
1 (p) and π−1

2 (ϕ(p)) are the fibres of the
same type for any p ∈ P1(C) and j2 ◦ ϕ = j1.

For (λ, μ) ∈ Λ, let
π : S0(λ, μ) → P1(C) = (z-sphere)

be the canonical elliptic fibration given by (1.2.10).
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Lemma 1.3.1. Suppose (λ1, μ1), (λ2, μ2) ∈ Λ. If (S(λ1, μ1), π1, P
1(C)) is isomorphic to

(S(λ2, μ2), π2, P
1(C)) as elliptic surfaces, then it holds (λ1, μ1) = (λ2, μ2).

Proof. Let f : S1 → S2 be the biholomorphic mapping which gives the equivalence of
elliptic surfaces. According to Proposition 1.3.3, there exists ϕ ∈ Aut(P1(C)) which
satisfies ϕ ◦ π1 = π2 ◦ f . By Proposition 1.2.2, we have π−1

j (0) = I3 and π−1
j (∞) = I15

(j = 1, 2). So, ϕ has the form ϕ : z �→ az with some a ∈ C−0. Let D0(z; λj, μj) (j = 1, 2)
be the discriminant. From (1.2.15), we have

D0(z; λj, μj)

64μ3
jz

3

= λ3
j + 3λ2

jz + 27μjz + 3λjz
2 + 3λ2

jz
2 + z3 + 6λjz

3 + 3z4 + 3λjz
4 + 3z5 + z6 (j = 1, 2).

The six roots of D0(z; λ1, μ1)/64μ3
1z

3 (D0(z; λ2, μ2)/64μ3
2z

3, resp.) give the six images of
singular fibres of type I1 of S(λ1, μ1) (S(λ2, μ2), resp.). The roots of D0(z; λ1, μ1)/64μ3

1z
3

are sent by ϕ to those of D0(z; λ2, μ2)/64μ3
2z

3. Observing the coefficients of D0(z; λ1, μ1)
and D0(z; λ2, μ2), we obtain that a = 1. Therefore, we have (λ1, μ1) = (λ2, μ2).

Proposition 1.3.4. Two S-marked K3 surfaces (S(λ1, μ1), ψ1) and (S(λ2, μ2), ψ2) are
equivalent if and only if there exists an isomorphism of elliptic surfaces between (S(λ1, μ1), π1, P

1(C))
and (S(λ2, μ2), π2, P

1(C)).

Proof. The sufficiency is clear. We prove the necessity. Let (λ1, μ1), (λ2, μ2) ∈ Λ. Suppose
the equivalence of S-marked K3 surfaces

(S(λ1, μ1), ψ1) � (S(λ2, μ2), ψ2).

Then, there exists a biholomorphic mapping f : S(λ1, μ1) → S(λ2, μ2) such that ψ2 ◦
f∗ ◦ ψ−1

1 |L = idL. Especially, for general fibres F1 ∈ Div(S1) and F2 ∈ Div(S2), we have
f∗(F1) = F2.

So, S(λ2, μ2) has two elliptic fibrations π2 and π1 ◦ f−1 which have a general fibre F2.
According to Lemma 0.2.1, it holds

π2 = π1 ◦ f−1

up to Aut(P1(C)).

Corollary 1.3.1. Let (λ1, μ1) and (λ2, μ2) be in Λ. Two S-marked K3 surfaces (S(λ1, μ1), ψ1)
and (S(λ2, μ2), ψ2) are equivalent if and only if (λ1, μ1) = (λ2, μ2).

Proof. From the proposition and Lemma 1.3.1, we obtain the required statement.

Theorem 1.3.1. (The local Torelli theorem for S-marked K3 surfaces) Let δ ⊂ Λ be a
sufficiently small neighborhood of (λ0, μ0), and (λ1, μ1), (λ2, μ2) ∈ δ. Suppose Φ(λ1, μ1) =
Φ(λ2, μ2), then there exists an isomorphism of S-marked K3 surfaces (S(λ1, μ1), ψ1) �
(S(λ2, μ2), ψ2).

We have

Theorem 1.3.2. For a generic point (λ, μ) ∈ Λ, we have

rank NS(S(λ, μ)) = 18.
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Proof. By Proposition 1.3.1, we already have rank NS(S0(λ, μ)) ≥ 18. Let δ be a small
neighborhood of (λ, μ). Suppose we have rank NS(S(λ′, μ′)) > 18 for all (λ′, μ′) ∈ δ.
Then, Φ(δ) cannot contain any open set of D. By Corollary 1.3.1 and Theorem 1.3.1, the
period mapping is injective. This is a contradiction.

Corollary 1.3.2. The C-vector space generated by the germs of holomorphic functions∫
ψ−1(γ1)

ω, · · · ,

∫
ψ−1(γ4)

ω

is 4-dimensional.

Proof. It is clear, for the rank of the transcendental lattice Tr(S0(λ, μ)) is 22−18 = 4.

We can determine the Picard number of the family Fj (j = 1, 2, 3) by the same
method. Recall the lattice L1 (L2, L3, resp.) in (1.2.24) ((1.2.31), (1.2.43), resp.) for F1

(F2,F3, resp.). Set j ∈ {1, 2, 3}. Let {γ∗
1 , · · · , γ∗

22} be a basis of H2(Sj(λ, μ), Z) such that
we have 〈γ∗

1 , · · · , γ∗
4〉Z = L⊥

j . Take a dual basis {γ1, · · · , γ22} of H2(Sj(λ, μ), Z), namely
it holds (γj · γ∗

k) = δjk (1 ≤ j, k ≤ 22). By the same procedure as for F0, we define the
multivalued analytic period mapping Φj : Λj → Dj given by

(λ, μ) �→
(∫

γ1

ωj : · · · :

∫
γ4

ωj

)
,

where ωj is the unique holomorphic 2-form on Sj(λ, μ) up to a constant factor and Dj

is the domain of type IV defined by the intersection matrix (γ∗
j · γ∗

k)1≤j,k≤4. Moreover,
we have the Kodaira normal forms of the elliptic fibrations (1.2.19), (1.2.26) and (1.2.39)
(these forms appear in the proofs of Proposition 1.2.4, 1.2.6 and 1.2.10). Observing
the coefficients of these forms, we can prove the lemmas corresponding to Lemma 1.3.1.
Therefore, we obtain the following theorem.

Theorem 1.3.3. The Picard number of a generic member of the families Fj (j = 1, 2, 3)
are equal to 18.

1.4 The Néron-Severi lattices

For our further study, we need the explicit lattice structures of the Néron-Severi lattices
and those of the transcendental lattices. In this section, we show the following theorem.

Theorem 1.4.1. The intersection matrices of Néron-Severi lattices NS and the transcen-
dental lattices Tr of a generic member of Fj (j = 0, 1, 2, 3) are given as in Table 1.2.

Remark 1.4.1. Koike [Koi] made a research on the families of K3 surfaces derived from
the dual polytopes of 3-dimensional Fano polytopes. The polytopes P0, P2 and P3 in our
notation are the Fano polytopes. Due to Koike, we have Néron-Severi lattices for the dual
polytopes P ◦

0 , P ◦
2 and P ◦

3 (given by Table 1.3).
Table 1.3 and Table 1.2 support the mirror symmetry conjecture for the reflexive poly-

topes P0, P2 and P3.
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Polytope Family NS Tr

P0 F0 E8(−1) ⊕ E8(−1) ⊕
(

2 1
1 −2

)
U ⊕

(
2 1
1 −2

)
=: A0

P1 F1 E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 0

)
U ⊕

(
0 3
3 0

)
=: A1

P2 F2 E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 2

)
U ⊕

(
0 3
3 −2

)
=: A2

P3 F3 E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 −2

)
U ⊕

(
0 3
3 2

)
=: A3

Table 1.2: The Néron-Severi lattices and the transcendental lattices for the polytopes
P0, P1, P2 and P3.

Dual Polytope NS Tr

P ◦
0

(
2 1
1 −2

)
U ⊕ E8(−1) ⊕ E8(−1) ⊕

(
2 1
1 −2

)

P ◦
2

(
0 3
3 −2

)
U ⊕ E8(−1) ⊕ E8(−1) ⊕

(
0 3
3 2

)

P ◦
3

(
0 3
3 2

)
U ⊕ E8(−1) ⊕ E8(−1) ⊕

(
0 3
3 −2

)

Table 1.3: The Néron-Severi lattices and the transcendental lattices for the dual polytopes.

Remark 1.4.2. According to the above theorem, a generic member of Fj (j = 0, 1, 2, 3)
has the Shioda-Inose structure. (see Morrison [Mo], Theorem 6.3 ).

Remark 1.4.3. The Néron-Severi lattices of K3 surfaces with non-symplectic involutions
are studied by Nikulin [Ni]. All of our cases are not contained in his results. The lattice
structures of 95 weighted projective K3 surfaces given by M. Reid are studied by Belcastro
[Be]. Our lattice of F0 coincides with No.30 and No.86 in her list. Our lattices of F1,F2

and F3 are not contained in her results, neither.

1.4.1 Proof for the case P0

We prove Theorem 1.4.1 for the case P0 in a naive way. Recall the lattice L0 in (1.2.16).
By Theorem 1.3.2, for generic (λ, μ) ∈ Λ0,

dim(NS(S0(λ, μ))) = 18 = dim(L0).

According to Proposition 1.3.2, we have (L ⊗Z Q) ∩ NS(S0(λ, μ)) = L0. Hence, we have

NS(S0(λ, μ)) = L0

for generic (λ, μ) ∈ Λ0.
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Lemma 1.4.1. The lattice L0 is isomorphic to the lattice given by the intersection matrix

M ′
0 = E8(−1) ⊕ E8(−1) ⊕

(
2 1
1 −2

)
,

and its orthogonal complement is given by

A0 = U ⊕
(

2 1
1 −2

)
.

Proof. Let M0 be the matrix given in (1.2.17). Set

rj = t(0, · · · , 0,

j−th︷︸︸︷
1 , 0, · · · , 0) (1 ≤ j ≤ 18) (1.4.1)

and⎧⎪⎨
⎪⎩

v16 = t(−1,−2,−3,−4,−5,−2,−4,−3,−1,−2,−3,−4,−5,−2,−4,−2, 1, 1),

v17 = t(5, 10, 15, 20, 25, 13, 17, 9, 1, 2, 3, 4, 5, 3, 3, 1, 1,−3),

v18 = t(−2,−4,−6,−8,−10,−6,−6,−2, 0, 0, 0, 0, 0,−1, 1, 2,−2, 1).

Set
U = (r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, v16, v17, v18).

This is an unimodular matrix. Then, we have tUM0U = M ′
0. By observing E8(−1) ⊕

E8(−1) ⊕ U ⊕ U ⊕ U and M ′
0, we obtain the matrix A0.

Therefore, we obtain Theorem 1.4.1 for P0.

1.4.2 Proof for the case P1

Recall the elliptic fibration given by (1.2.19) and Figure 1.3.
The trivial lattice for this fibration is

T1 = 〈a1, a2, a3, a4, a
′
4, a

′
3, a

′
2, a

′
1, c1, b0, b1, b2, b3, c2, c3, O, F 〉Z.

Let Q be the section in (1.2.20). From (1.2.24), we have

L1 = 〈Q, T1〉Z.

This is a subgroup of NS(S1(λ, μ)). According to Theorem 1.3.3 and Theorem 0.2.3 (3),
we obtain

NS(S1(λ, μ)) ⊗Z Q = L1 ⊗Z Q.

We obtain also

NS(S1(λ, μ)) = (〈Q〉Q ∩ NS(S1(λ, μ))) + T̂1 (1.4.2)

for generic (λ, μ) ∈ Λ1. Since det(L1) = −9, we deduce that

[NS(S1(λ, μ)) : L1] = 1 or [NS(S1(λ, μ)) : L1] = 3. (1.4.3)

In the following, we prove
[NS(S1(λ, μ)) : L1] = 1.
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Lemma 1.4.2. For generic (λ, μ) ∈ Λ1, T̂1 = T1.

Proof. From (1.4.2) and (1.4.3), we have T̂1 = T1 or [T̂1 : T1] = 3. We assume [T̂1 : T1] = 3.
Then, according to Corollary 0.2.1 (2),

E(C(x1))tor � T̂1/T1 � Z/3Z. (1.4.4)

Therefore there exists R0 ∈ E(C(x1))tor such that 3R0 = O. By Remark 0.2.2 and (0.2.4),
we suppose that R0 ∩ a3 
= φ at x1 = 0 and R0 ∩ c0 
= φ at x1 = ∞. Put (R0 ·O) = k ∈ Z.
Set T̄1 = 〈T1, R1〉Z. By calculating the intersection matrix, we have

det(T̄1) = −72(1 + k + k2) 
= 0. (1.4.5)

On the other hand, due to (1.4.4), we have rank(T̄1) = 17 . So it follows det(T̄1) = 0.
This contradicts (1.4.5).

By the above lamma, we have

NS(S1(λ, μ)) = (〈Q〉Q ∩ NS(S1(λ, μ))) + T1. (1.4.6)

Lemma 1.4.3. For generic (λ, μ) ∈ Λ1, NS(S1(λ, μ)) = L1.

Proof. It is sufficient to prove [NS(S1(λ, μ)) : L1] = 1. We assume [NS(S1(λ, μ)) : L1] = 3.
By (1.4.6), there exists R1 ∈ E(C(x1)) such that 3R1 = Q. According to Remark 0.2.2,

(R1 · c3) = 1, at x1 = ∞

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(R1 · a1) = 1,

or

(R1 · a4) = 1,

or

(R1 · a7) = 1,

at x1 = 0.

We assume (R1 ·O) = 0, for Q in (1.2.20) does not intersect O. By the addition theorem
for elliptic curves, we have 2Q and we can check 2Q does not intersect O. If we have
p ∈ R1 ∩ Q, then it holds R1|p = Q|p. By the assumption, we have (3R1)|p = Q|p. It
means that 2Q ∩ O 
= φ. But, it is not the case. So, we suppose (R1 · Q) = 0 also. Set
L̃1 = 〈L1, R1〉Z. By calculating the intersection matrix, we have

det(L̃1) =

⎧⎪⎨
⎪⎩

12 (if (R1 · a1) = 1),

−30 (if (R1 · a4) = 1),

6 (if (R1 · a7) = 1).

(1.4.7)

On the other hand, we have rank(L̃1) = 18 from Theorem 1.3.3. Hence, we obtain
det(L̃1) = 0. This contradicts (1.4.7). Therefore, we have [NS(S1(λ, μ)) : L1] = 1.
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Lemma 1.4.4. The lattice L1 is isomorphic to the lattice given by the intersection matrix

E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 0

)
,

and its orthogonal complement is given by the intersection matrix

A1 = U ⊕
(

0 3
3 0

)
.

Proof. Let M1 be the intersection matrix in (1.2.25). Set⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v
(1)
15 = t(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,−1, 0,−1),

v
(1)
16 = t(11, 22, 33, 26, 19, 12, 5,−2, 2, 4, 6, 8, 10, 7, 5, 1, 18,−4),

v
(1)
17 = t(8, 16, 24, 19, 14, 9, 4,−1, 2, 4, 6, 8, 10, 7, 5,−1, 13,−5),

v
(1)
18 = t(91, 182, 273, 214, 155, 96, 37,−22, 18, 36, 54, 72, 90, 63, 45, 0, 150,−36).

Recall the vectors in (1.4.1). Set

U1 = (r7, r6, r5, r4, r3, r17, r2, r1, r9, r10, r11, r12, r13, r15, v
(1)
15 , v

(1)
16 , v

(1)
17 , v

(1)
18 ).

This is an unimodular matrix. We have

tU1M1U1 = E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 0

)
.

Therefore, we obtain Theorem 1.4.1 for P1.

1.4.3 Proof for the case P2

The elliptic fibration given by (1.2.26) is illustrated in Figure 1.4.
The trivial lattice for this fibration is

T2 = 〈a1, a2, a3, a4, a5, a
′
5, a

′
4, a

′
3, a

′
2, a

′
1, c1, b0, b1, c2, c3, O, F 〉Z.

Let Q be the section in (1.2.27). From (1.2.31), we have

L2 = 〈Q, T2〉Z.

This is a subgroup of NS(S2(λ, μ)). As in the case F1, so we obtain

NS(S2(λ, μ)) = (〈Q〉Q ∩ NS(S2(λ, μ))) + T̂2

for generic (λ, μ) ∈ Λ2. Since det(L2) = −9, we have

[NS(S2(λ, μ)) : L2] = 1 or [NS(S2(λ, μ)) : L2] = 3. (1.4.8)

In the following, we prove [NS(S2(λ, μ)) : L2] = 1.

Lemma 1.4.5. For generic (λ, μ) ∈ Λ2, T̂2 = T2.
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Proof. Because we have det(T2) = −44 and (1.4.8), it follows T̂2 = T2.

Therefore, we obtain

NS(S2(λ, μ)) = (〈Q〉Q ∩ NS(S2(λ, μ))) + T2. (1.4.9)

Lemma 1.4.6. For generic (λ, μ) ∈ Λ2, NS(S2(λ, μ)) = L2.

Proof. We assume [NS(S2(λ, μ)) : L2] = 3. From (1.4.9), there exists R1 ∈ E(C(y)) such
that 3R1 = Q. According to Remark 0.2.2, we obtain (R1 · a′

3) = 1 and (R1 · c3) =
1. Because the section Q in (1.2.27) and the section 2Q do not intersect O, we have
(R1 · O) = 0 and (R1 · Q) = 0. Set L̃2 = 〈L2, R1〉Z. Calculating its intersection matrix,
we have det(L̃2) = −38. As in the proof of Lemma 1.4.3, this contradicts to Theorem
1.3.3.

Lemma 1.4.7. The lattice L2 is isomorphic to the lattice given by the following intersec-
tion matrix

E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 2

)
,

and its orthogonal complement is given by the intersection matrix

A2 = U ⊕
(

0 3
3 −2

)
.

Proof. Let M2 be the intersection matrix in (1.2.32). Set

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v
(2)
14 = t(5, 4, 15, 26, 13, 10, 8, 6, 4, 2, 12, 24, 36, 30, 18,−4, 24,−8),

v
(2)
15 = t(1,−2, 3, 8, 1, 0, 0, 0, 0, 0, 6, 12, 18, 15, 9, 0, 12, 1),

v
(2)
17 = t(56, 13, 162, 311, 120, 100, 80, 60, 40, 20, 170, 340, 510, 425, 255,−28, 340,−56),

v
(2)
18 = t(27, 6, 80, 154, 60, 50, 40, 30, 20, 10, 84, 168, 252, 210, 126,−14, 168,−28).

Recall the vectors in (1.4.1). Set

U2 = (r3, r4, r17, r14, r13, r15, r12, r11, r10, r9, r8, r7, r6, v
(2)
14 , v

(2)
15 , r16, v

(2)
17 , v

(2)
18 ).

This is an unimodular matrix. We have

tU2M2U2 = E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 2

)
.

Therefore, we obtain Theorem 1.4.1 for P2.
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1.4.4 Proof for the case P3

The elliptic fibration given by (1.2.33) is illustrated in Figure 1.5.
The trivial lattice for this fibration is

T3 = 〈a1, a2, a3, a4, a
′
0, a

′
4, a

′
3, a

′
2, a

′
1, c1, b0, b1, b2, c2, c3, O, F 〉Z.

Let Q be the section in (1.2.34). From (1.2.38), we see

L′
3 = 〈Q, T3〉Z.

This is a subgroup of NS(S3(λ, μ)) and we have det(L′
3) = −36. Moreover, the section O′

in (1.2.34) is a 2-torsion section for this elliptic fibretion. Due to Corollary 0.2.1, [T̂3 : T3]
is divided by 2. Hence, we have

[NS(S3(λ, μ)) : L′
3] = 2 or [NS(S3(λ, μ)) : L′

3] = 6. (1.4.10)

Lemma 1.4.8. For generic (λ, μ) ∈ Λ3, [T̂3 : T3] = 2.

Proof. We have det(T3) = −40. From (1.4.10), we obtain [T̂3 : T3] = 2.

Lemma 1.4.9. For generic (λ, μ) ∈ Λ3, [NS(S3(λ, μ)) : L′
3] = 2.

Proof. We shall show that [NS(S3(λ, μ)) : L′
3] = 2. We assume [NS(S3(λ, μ)) : L′

3] = 6.
From Lemma 1.4.8, there exists R1 ∈ E(C(x1)) such that 3R1 = Q. According to Remark
0.2.2, (R1 · c2) = 1 and (R1 · a4) = 1. Also we have (R1 · O) = 0, for Q in (1.2.34) does
not intersect O. Moreover, we assume that (R1 ·Q) = 0 or 1, for the section 2P does not
intersect O at x1 
= ∞. Set L̃′

3 = 〈L′
3, R〉Z. Calculating the intersection matrix, we have

det(L̃′
3) =

{
−16 (if (R1 · Q) = 0)

−112 (if (R1 · Q) = 1)
. (1.4.11)

On the other hand, Theorem 1.3.3 implies that rank(L̃′
3) = 18 and det(L̃′

3) = 0. This is a
contradiction to (1.4.11).

Due to the above lemma, we have

|det(NS(S3(λ, μ)))| = 9

for generic (λ, μ) ∈ Λ3.
To determine the explicit lattice structure for F3, we use another elliptic fibration

defined by (1.2.39). This fibration is illustrated in Figure 1.6.
Let Q0 and R0 be the sections in (1.2.40) for this elliptic fibration. Recall

L3 = 〈d1, d2, d3, d4, d
′
4, d

′
3, d

′
2, d

′
1, e1, e2, e3, e4, e

′
3, e

′
2, O,Q0, R0, F 〉Z.

in (1.2.43). For generic (λ, μ) ∈ Λ3, since

L3 ⊗Z Q = NS(S3(λ, μ)) ⊗Z Q

and det(L′
3) = −9, we deduce that

L3 = NS(S3(λ, μ)).
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Lemma 1.4.10. The lattice L3 is isomorphic to the lattice given by the intersection matrix

E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 −2

)
,

and its orthogonal complement is given by the intersection matrix

A3 = U ⊕
(

0 3
3 2

)
.

Proof. Let M3 be the intersection matrix in (1.2.44). Set⎧⎪⎨
⎪⎩

v
(3)
9 = t(28, 56, 84, 27, 21, 15, 10, 5, 34, 68, 102, 51,−1,−1, 1, 85,−1,−16),

v
(3)
17 = t(5, 10, 15, 5, 4, 3, 2, 1, 6, 12, 18, 9, 0, 0, 0, 15, 0,−3),

v
(3)
18 = t(468, 936, 1404, 432, 378, 324, 216, 108, 576, 1152, 1728, 864, 36, 18, 35, 1440, 54,−252).

Recall the vectors in (1.4.1). Set

U3 = (r1, r2, r3, r16, r11, r12, r10, r9, v
(3)
9 , r14, r13, r17, r6, r5, r7, r8, v

(3)
17 , v

(3)
18 ).

This is an unimodular matrix. We have

tU3M3U3 = E8(−1) ⊕ E8(−1) ⊕
(

0 3
3 −2

)
.

Therefore, we obtain Theorem 1.4.1 for P3.

1.5 Monodromy groups

We defined the projective monodromy groups of our period mappings in Section 1.3. Those
are nothing but the projective monodromy groups of the period differential equations
determined by the previous section. We determine them in this section. We make a
precise argument only for the period mapping Φ : Λ0 → D0 for F0. In this section, we set
Λ := Λ0, L := L0, A := A0 and D := D0.

First, take a generic point (λ0, μ0) ∈ Λ. Let Š0 = S0(λ0, μ0) be a reference surface.
Set Ľ = NS(Š0) which is generated by the system (1.2.16). Recalling the argument of
Section 1.3 and 1.4, we have a Z-basis {γ1, · · · , γ22} of H2(Š0, Z) with 〈γ5, · · · , γ22〉Z = Ľ.

A(= A0) is the intersection matrix of the transcendental lattice given in Theorem
1.4.1. Set

PO(A, Z) = {g ∈ GL(4, Z)|tgAg = A}. (1.5.1)

It acts on D by
tξ �→ gtξ (ξ ∈ D, g ∈ PO(A, Z)).

Recall that D is composed of two connected components:

D = D+ ∪ D−.
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Definition 1.5.1. Let PO+(A, Z) denote the subgroup of PO(A, Z) given by

{g ∈ PO(A, Z)|g(D±) = D±}.
Remark 1.5.1. PO(A, Z) is generated by the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1 =

⎛
⎜⎜⎜⎝

1 1 −1 2

0 1 0 0

0 0 1 0

0 1 0 1

⎞
⎟⎟⎟⎠ , G2 =

⎛
⎜⎜⎜⎝

1 −1 −2 −1

0 1 0 0

0 1 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , G3 =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 1 −1

⎞
⎟⎟⎟⎠ ,

H1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 −1 1

⎞
⎟⎟⎟⎠ , H2 =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

G1, G2, G3, H2 generate PO+(A, Z) (see [I1] or [Ma]).

In the following, we show that the projective monodromy group of our period mapping
is isomorphic to the group PO+(A, Z). To prove this, we apply the Torelli type theorem
for polarized K3 surfaces.

1.5.1 The Torelli theorem for P-marked K3 surfaces

First, we state necessary properties of polarized K3 surfaces.

Definition 1.5.2. Let S be an algebraic K3 surface. An isomorphism ψ : H2(S, Z) →
H2(Š0, Z) is said to be a P-marking if we have

(i) ψ−1(Ľ) ⊂ NS(S),
(ii) ψ−1(F ), ψ−1(O), ψ−1(Q), ψ−1(R), ψ−1(bj) and ψ−1(b′j) (1 ≤ j ≤ 7) are all effective

divisors,
(iii) ψ−1(F ) is nef. Namely, (ψ−1(F ) · C) ≥ 0 for any effective class C.

A pair (S, ψ) of a K3 surface and a P-marking is called a P-marked K3 surface. A
S-marked K3 surface (S0(λ, μ), ψ) is a P-marked K3 surface.

Definition 1.5.3. Two P-marked K3 surfaces (S1, ψ1) and (S2, ψ2) are said to be iso-
morphic if there is a biholomorphic mapping f : S1 → S2 with

ψ2 ◦ f∗ ◦ ψ−1
1 = idH2(Š0,Z).

Two P-marked K3 surfaces (S1, ψ1) and (S2, ψ2) are said to be equivalent if there is a
biholomorphic mapping f : S1 → S2 with

ψ2 ◦ f∗ ◦ ψ−1
1 |Ľ = idĽ.

The period of a P-marked K3 surface (S, ψ) is defined by

Φ(S, ψ) =
(∫

ψ−1(γ1)

ω : · · · :

∫
ψ−1(γ4)

ω
)
. (1.5.2)

We use some general facts. These are exposed in [KSTT].
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Proposition 1.5.1. (Pjateckĭi-Šapiro and Šafarevič [PS]) Let S be a K3 surface.
(1) Suppose C ∈ NS(S) satisfies (C ·C) = 0 and C 
= 0. Then there exists an isometry

γ of NS(S) such that γ(C) becomes to be effective and nef.
(2) Suppose C ∈ NS(S) is effective, nef and (C · C) = 0. Then, for certain m ∈ N

and an elliptic curve E ∈ S, we have C = m[E].
(3) A linear system of an elliptic curve E on S determines an elliptic fibration S →

P1(C).

Proposition 1.5.2. A P-marked K3 surface (S, ψ) is realized as an elliptic K3 surface
which has ψ−1(F ) as a general fibre. Especially, if S is realized as a K3 surface S0(λ, μ)
by the Kodaira normal form for some (λ, μ) ∈ Λ, it is a S-marked K3 surface.

Proof. Set C = ψ−1(F ) ∈ Div(S). By Definition 1.5.3, C is effective, nef and (C ·C) = 0.
According to Proposition 1.5.1 (2), there exists a positive integer m and an elliptic curve
E such that C = m[E]. Since

m(E · ψ−1(O)) = (C · ψ−1(O)) = (F · O) = 1,

we deduce that m = 1. Proposition 1.5.1 (3) says that there is an elliptic fibration
π : S → P1(C) which has C = ψ−1(F ) as a general fibre.

Let X be the isomorphic classes of P-marked K3 surfaces and set

[X] = X/ P-marked equivalence.

By (1.5.2), we obtain our period mapping Φ : X → P3(C).

Theorem 1.5.1. (The Torelli theorem for polarized K3 surfaces)
(1) Φ(X) ⊂ D.
(2) Φ : X → D is a bijective correspondence.
(3) Let S1 and S2 be algebraic K3 surfaces. Suppose an isometry ϕ : H2(S1, Z) →

H2(S2, Z) preserves ample classes. Then there exists a biholomorphic map f : S1 → S2

such that ϕ = f∗.

Here, we prove the following two key lemmas.

Lemma 1.5.1. A P-marked K3 surface (S, ψ) is equivalent to the P-marked reference
surface (Š0, ψ̌) if and only if Φ(S, ψ) = g ◦ Φ(Š0, ψ̌) for some g ∈ PO(A, Z).

Proof. The necessity is clear. We prove the sufficiency. Suppose Φ(Š0, ψ̌) = p ∈ D.
Take g ∈ PO(A, Z). According to Theorem 1.5.1 (2), we take a P-marked K3 surface
(Sg, ψg) such that Φ(Sg, ψg) = g ◦ Φ(Š0, ψ̌). Let Lt be the transcendental lattice given
by (1.3.2). Note g ∈ Aut(Lt) = PO(A, Z). Due to Nikulin [Ni], g : Lt → Lt is extended
to an isomorphism ĝ : H2(Š0, Z) → H2(Sg, Z) which preserves the Néron-Severi lattice L.
Then, by Theorem 1.5.1 (3), there is a biholomorphic mapping f : Š0 → Sg such that
f∗ = ĝ. Therefore, two P-marked K3 surfaces (Š0, ψ̌) and (Sg, ψg) are equivalent.

Remark 1.5.2. PO(A, Z) is a reflection group (see [Ma]).

According to the Torelli theorem and Lemma 1.5.1, we identify [X] with D/PO(A, Z).
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Lemma 1.5.2. Let (S, ψ) be a P-marked K3 surface which is equivalent to (Š0, ψ̌). Then
(S, ψ) has a unique canonical elliptic fibration (S, π, P1(C)) that is given by the Kodaira
normal form of Š0 = S0(λ0, μ0) not coming from any other (λ, μ) ∈ Λ.

Proof. From Proposition 1.5.2, (S, ψ) ((Š0, ψ̌), resp.) has an elliptic fibration (S, π, P1(C))
((Š0, π̌, P1(C)), resp.) with a general fibre ψ−1(F ) (ψ̌−1(F ), resp.). Because (S, ψ) and
(Š0, ψ̌) are equivalent as P-marked K3 surfaces, we have a biholomorphic mapping f :
S → Š0 such that

ψ̌ ◦ f∗ = ψ (f∗ : H2(S, Z) � H2(Š0, Z)).

So, we have

f∗ = ψ.

It means that f preserves general fibres of S and Š0. According to the uniqueness of
the fibration (Lemma 0.2.1), (S, π, P1(C)) and (Š0, π̌, P1(C)) are isomorphic as elliptic
surfaces. Therefore, there exists ϕ ∈ Aut(P1(C)) such that ϕ ◦ π = π0 ◦ f .

Let y2 = 4x3−g2(z)x−g3(z) (y2 = 4x3− ǧ2(z)x− ǧ3(z), resp.) be the Kodaira normal
form of (S, π, P1(C)) ((Š0, π̌, P1(C)), resp.). According to Proposition 1.3.3, we assume
π−1(0) = I3 and π−1(∞) = I15. So as in the proof of Lemma 1.3.1, ϕ is given by z �→ az
(a ∈ C − 0). Let j (ǰ, resp.) be the j-invariant and D (Ď, resp.) be the discriminant of
S (Š0, resp.). By Proposition 1.3.3, we have D = Ď ◦ ϕ and j = ǰ ◦ ϕ. Observing the
expressions (1.2.14), (1.2.15) around z = ∞ and the definition of j-function (1.3.6), we
have a3 = 1. By the transformation z �→ ωz or z �→ ω̄z (where ω is a cubic root of unity),
we assume a = 1. Comparing j with ǰ and D with Ď, we have g3

2 = ǧ3
2 and g2

3 = ǧ2
3. By

the transformations in the form x �→ ωx or x �→ ω̄x or y �→ −y, we obtain g2 = ǧ2 and
g3 = ǧ3. Hence, as in the proof of Lemma 1.3.1, we have the required statement.

Remark 1.5.3. According to the above two lemmas, Λ = Λ0 is embedded in [X].

1.5.2 Projective monodromy groups

Theorem 1.5.2. The projective monodromy group of the period mapping Φ : Λ → D is
isomorphic to PO+(A, Z).

Proof. Let ∗ = (λ0, μ0) be a generic point of Λ. Set Š0 = S0(λ0, μ0). Note that NS(Š0) �
L. Let G be the projective monodromy group induced from the fundamental group
π1(Λ, ∗) (see Definition 1.3.4). We have clearly the inclusion G ⊂ PO+(A, Z).

Therefore, we prove the converse inclusion PO+(A, Z) ⊂ G. Take an element g ∈
PO+(A, Z), and let p = Φ(Š0, ψ̌) ∈ D and let q = g(p) ∈ D. p, q are in the same
connected component of D. So we suppose that p, q ∈ D+. Let α be an arc connecting
p and q in D+. By the Torelli theorem, we obtain [Φ−1(α)] ⊂ [X]. By Lemma 1.5.1 and
Lemma 1.5.2, we have q = Φ(Š0, ψ) so that (Š0, ψ) is equivalent to (Š, ψ̌). Hence, the end
point of [Φ−1(α)] is (λ0, μ0).

Next, we show that there is α such that [Φ−1(α)] ⊂ Λ. For this purpose, it is enough
to show that Λ is a Zariski open set in some compactification K of [X]. Here, we note
that the compact (λ, μ) space P2(C) and K are birationally equivalent and they contain
Λ as a common open set. Λ is a Zariski open set in P2(C). Hence, Λ is Zariski open in K
also. Therefore, we obtain the required inclusion.
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We have the elliptic fibration (1.2.19) ((1.2.26), (1.2.39), resp.) for F1 (F2, F3, resp.).
Using these fibrations, we can define the P-markings for Fj (j = 1, 2, 3). Moreover, as
we prove Lemma 1.5.2, so we can prove the corresponding lemmas through observations
of the coefficients of the Kodaira normal forms of elliptic fibrations for Fj (j = 1, 2, 3).
Therefore, we have

Theorem 1.5.3. Let j ∈ {1, 2, 3}. The projective monodromy group of the period mapping
for the family Fj is equal to PO+(Aj, Z).

Remark 1.5.4. This is essentially noticed in the research of Ishige [I2] on the family
of K3 surfaces coming from the polytope P4. He found this result by a computer-aided
approximation of a generator system of the monodromy group. However, it is not given
an exact error estimation there. So, for our cases P0, P1, P2 and P3, we give here a proof
based on the Torelli theorem for polarized K3 surfaces.
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Chapter 2

Period differential equations

In this chapter, we obtain the differential equations satisfied by the period integrals for
the family Fj (j = 0, 1, 2, 3) (Section 2.1). To obtain them, we need the power series
expansions of the period integrals and the theory of the GKZ hypergeometric equations.
Then, we have a remarkable fact for the differential equation for F0. Namely, this equation
gives an uniformizing differential equation for the symmetric Hilbert modular orbifold
(H × H)/〈PSL(2,O), τ〉 for Q(

√
5) (Section 2.2).

2.1 Period differential equations for the families F0,F1,F2

and F3

Recall Fj (j = 0, 1, 2, 3) in (1.2.6), (1.2.7), (1.2.8) and (1.2.9). The unique holomorphic
2-form on Sj(λ, μ) (j = 0, 1, 2, 3) is given by

ω0 =
zdz ∧ dx

∂F0/∂y
, ωj =

dz ∧ dx

∂Fj/∂y
(j = 1, 2, 3), (2.1.1)

up to a constant factor.

Proposition 2.1.1. Let j ∈ {0, 1, 2, 3}. There is a 2-cycle Γj on Sj(λ, μ) such that

the period integral

∫∫
Γj

ωj has the following power series expansion, which is valid in a

sufficiently small neighborhood of (λ, μ) = (0, 0).
(0) (Periods for F0)

η0(λ, μ) =

∫∫
Γ0

ω = (2πi)2

∞∑
n,m=0

(−1)m
(5m + 2n)!

n!(m!)3(2m + n)!
λnμm.

(1) (Periods for F1)

η1(λ, μ) =

∫∫
Γ1

ω1 = (2πi)2
∑ (3m + 3n)!

(n!)2(m!)2(m + n)!
λnμm.

(2) (Periods for F2)

η2(λ, μ) =

∫∫
Γ2

ω2 = (2πi)2

∞∑
n,m=0

(−1)n
(4m + 3n)!

(m!)2n!((m + n)!)2
λnμm.
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(3) (Periods for F3)

η3(λ, μ) =

∫∫
Γ3

ω3 = (2πi)2

∞∑
n,m=0

(−1)n
(3m + 2n)!

(m!)2(n!)3
λnμm.

Proof. Here, we state the detailed proof only for the case (0).
When (λ, μ) is sufficiently small, S0(λ, μ) in (1.2.6) is regarded as a double cover by

the projection

p : (x, y, z) �→ (x, z).

Let ξ1(x, z), ξ2(x, z) be the two roots of F0(x, y, z) = 0 in y. Then, we have

F0(x, y, z) = xz2(y − ξ1(x, z))(y − ξ2(x, z)).

and
∂F0

∂y
(x, y, z) = xz2((y − ξ1(x, z)) + (y − ξ2(x, z))).

Therefore, at (x, ξ1(x, z), z) ∈ S0(λ, μ),

∂F0

∂y
(x, ξ1(x, z), z) = xz2(ξ1(x, z) − ξ2(x, y)).

We have a local inverse mapping of p

q : (x, z) �→ (x, ξ1(x, z), z).

Let γ1 (γ2, γ3, resp.) be a cycle in x-plane (y-plane, z-plane, resp.) which goes around
the origin once in the positive direction. We suppose that there exists δ > 0 such that it
holds

|ξ1(x, z)| − |ξ2(x, z)| ≥ δ

for any (x, z) ∈ γ1 × γ3. We assume that x = −1 stays outside of γ1, z = −1 − x stays
outside of γ3 for any x ∈ γ1, and that y = ξ1(x, z) stays inside of γ2 and y = ξ2(x, z) and
−1−x−z stay outside of γ2 for any (x, z) ∈ γ1×γ3. Moreover, by taking a neighborhood
U of the origin sufficiently small, we assume

|λxyz + μ| ≤ |xyz2(x + y + z + 1)|

for any (x, y, z) ∈ γ1 × γ2 × γ3 and (λ, μ) ∈ U . So, q(γ1 × γ3) is a 2-cycle on S0(λ, μ).
Let us calculate the period integral on the 2-cycle q(γ1 ×γ3) on S0(λ, μ). Let ω be the

holomorphic 2-form given in (2.1.1). By the residue theorem,∫∫
q(γ1×γ3)

ω =

∫∫
γ3×γ1

zdz ∧ dx

xz2(ξ1(x, z) − ξ2(x, z))

=
1

2π
√−1

∫∫∫
γ3×γ1×γ2

zdz ∧ dx ∧ dy

xz2(y − ξ1(x, z))(y − ξ2(x, z))

=
1

2π
√−1

∫∫∫
γ3×γ1×γ2

zdz ∧ dx ∧ dy

xyz2(x + y + z + 1) + λxyz + μ
. (2.1.2)
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By the residue theorem and the binomial theorem, we have

1

2π
√−1

∫∫∫
γ3×γ1×γ2

zdz ∧ dx ∧ dy

xyz2(x + y + z + 1) + λxyz + μ

=
1

2π
√−1

∫∫∫
γ3×γ1×γ2

1

xyz2(x + y + z + 1)

zdz ∧ dx ∧ dy

1 + λxyz+μ
xyz2(x+y+z+1)

=
1

2π
√−1

∞∑
l=0

∫∫∫
γ3×γ1×γ2

z(−λxyz − μ)l

(xyz2(x + y + z + 1))l+1
dz ∧ dx ∧ dy

=
1

2π
√−1

∞∑
m,n=0

∫∫∫
γ3×γ1×γ2

(
m + n

m

)
xnynzn+1dz ∧ dx ∧ dy

(xyz2(x + y + z + 1))m+n+1
(−λ)n(−μ)m

=
1

2π
√−1

∞∑
m,n=0

∫∫∫
γ3×γ1×γ2

(m + n)!

n!m!

dz ∧ dx ∧ dy

xm+1ym+1z2m+n+1(x + y + z + 1)m+n+1
(−λ)n(−μ)m

=
∞∑

n,m=0

∫∫
γ3×γ1

(2m + n)!

(m!)2n!
(−1)m

dz ∧ dx

xm+1z2m+n+1(x + z + 1)2m+n+1
(−λ)n(−μ)m

= (2π
√−1)

∞∑
n,m=0

∫
γ3

(3m + n)!

(m!)3n!

dz

z2m+n+1(z + 1)3m+n+1
(−λ)n(−μ)m

= (2π
√−1)2

∞∑
n,m=0

(−1)m
(5m + 2n)!

(m!)3n!(2m + n)!
λnμm.

The above power series is holomorphic on U .

Remark 2.1.1. In the case (1), our period reduces to the Appell F4(see [Koi] ):

η1(λ, μ) = F4

(1

3
,
2

3
, 1, 1; 27λ, 27μ

)
= F

(1

3
,
2

3
, 1; x

)
F
(1

3
,
2

3
, 1; y

)
,

where F is the Gauss hypergeometric function and x(1 − y) = 27λ, y(1 − x) = 27μ.

From the divisor in (1.2.4), let us obtain the GKZ system of equations for the periods.
In the following, we use the notation

θλ = λ
∂

∂λ
, θμ = μ

∂

∂μ
.

Proposition 2.1.2. Let ηj(λ, μ) (j = 0, 1, 2, 3) be the periods given in Proposition 2.1.1.
Then,

D
(j)
1 ηj(λ, μ) = D

(j)
2 ηj(λ, μ) = 0 (j = 0, 1, 2, 3),

where D
(j)
1 and D

(j)
2 are given as follows.

(0) (The GKZ system of equations for F0 ){
D

(0)
1 = θλ(θλ + 2θμ) − λ(2θλ + 5θμ + 1)(2θλ + 5θμ + 2),

D
(0)
2 = λ2θ3

μ + μθλ(θλ − 1)(2θλ + 5θμ + 1).
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(1) (The GKZ system of equations for F1){
D

(1)
1 = λθ2

μ − μθ2
λ,

D
(1)
2 = λ(3θλ + 3θμ)(3θλ + 3θμ − 1)(3θλ + 3θμ − 2).

(2) (The GKZ system of equations for F2){
D

(2)
1 = λθ2

μ + μθλ(3θλ + 4θμ + 1),

D
(2)
2 = θλ(θλ + θμ)

2 + λ(3θλ + 4θμ + 1)(3θλ + 4θμ + 2)(3θλ + 4θμ + 3).

(3) (The GKZ system of equations for F3){
D

(3)
1 = θ2

λ − μ(3θλ + 2θμ + 1)(3θλ + 2θμ + 2),

D
(3)
2 = θ3

λ + λ(3θλ + 2θμ + 1)(3θλ + 2θμ + 2)(3θλ + 2θμ + 3).

Proof. Extending the matrix Pj (j = 0, 1, 2, 3), set

A0 =

⎛
⎜⎜⎝

1 1 1 1 1 1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 −1 −2

⎞
⎟⎟⎠ , A1 =

⎛
⎜⎜⎝

1 1 1 1 1 1
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 1 −1 −1

⎞
⎟⎟⎠ ,

A2 =

⎛
⎜⎜⎝

1 1 1 1 1 1
0 1 0 0 0 −1
0 0 1 0 −1 −1
0 0 0 1 −1 −1

⎞
⎟⎟⎠ , A3 =

⎛
⎜⎜⎝

1 1 1 1 1 1
0 1 0 0 −1 0
0 0 1 0 −1 0
0 0 0 1 0 −1

⎞
⎟⎟⎠ ,

and β =

⎛
⎜⎜⎝
−1
0
0
0

⎞
⎟⎟⎠ . From the matrix Aj (j = 0, 1, 2, 3) and the vector β, we have the GKZ

system for ηj(λ, μ) (j = 0, 1, 2, 3). In the following, we state the detailed proof only for
F0.

The GKZ system of equations defined by A0 and β has a solution∫∫∫
Δ

R−1
0 t−1

1 t−1
2 t−1

3 dt1 ∧ dt2 ∧ dt3

=

∫∫∫
Δ

t3dt1 ∧ dt2 ∧ dt3
(t1t2t23(a1 + a2t1 + a3t2 + a4t3) + a5t1t2t3 + a6)

, (2.1.3)

where

R0 = a1 + a2t1 + a3t2 + a4t3 + a5
1

t3
+ a6

1

t1t2t23
,

and Δ is a twisted cycle. By the parameter transformation (1.2.5), (2.1.3) is transformed
to

1

a1

∫∫∫
Δ

zdx ∧ dy ∧ dz

xyz2(x + y + z + 1) + λxyz + μ
=

1

a1

η(λ, μ).
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Set θj = aj
∂

∂aj
. The above mentioned GKZ system is given by the following equations

(2.1.4),(2.1.5) and (2.1.6) :⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(θ1 + θ2 + θ3 + θ4 + θ5 + θ6)η = −η,

(θ2 − θ6)η = 0,

(θ3 − θ6)η = 0,

(θ4 − θ5 − 2θ6)η = η,

(2.1.4)

∂2

∂a4∂a5

η =
∂2

∂a2
1

η, (2.1.5)

∂3

∂a2∂a3∂a6

η =
∂3

∂a1∂a2
5

η. (2.1.6)

By (1.2.5), we have

θλ = θ5, θμ = θ6.

So, from (2.1.4) we have ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ2η = θμη,

θ3η = θμη,

θ4η = (θλ + 2θμ)η,

θ1η = (−2θλ − 5θμ − 1)η.

From (2.1.5), we have⎧⎪⎪⎨
⎪⎪⎩

∂2

∂a4∂a5

η =
1

a4a5

θ4θ5η =
1

a4a5

(θλ + 2θ μ)θλη,

∂3

∂a2
1

η =
1

a2
1

θ1(θ1 − 1)η =
1

a2
1

(2θλ + 5θμ + 1)(2θλ + 5θμ + 2)η.

Hence, we obtain

(θλ + 2θμ)η = λ(2θλ + 5θμ + 1)(2θλ + 5θμ + 2)η.

Similarly, from (2.1.6), we have⎧⎪⎪⎨
⎪⎪⎩

∂3

∂a2∂a3∂a6

η =
1

a2a3a6

θ2θ3θ6η =
1

a2a3a6

θ3
μη,

∂3

∂a1∂a2
5

η =
1

a2
5

θ1θ5(θ5 − 1)η =
1

a1a2
5

(−2θλ − 5θμ − 1)θλ(θλ − 1)η,

hence

λ2θ3
μη = −μ(2θλ + 5θμ + 1)θλ(θλ − 1)η.
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We obtain 6 × 6 Pfaffian systems from the above GKZ systems D
(j)
1 u = D

(j)
2 u = 0

(j = 0, 1, 2, 3). These systems are integrable. Therefore, each system has a 6-dimensional
space of solutions. However, as we remarked in Corollary 1.3.2, we expect the systems
of differential equations with 4-dimensional space of solutions. It suggests that the above
systems are reducible. So, using the above D

(j)
1 (j = 0, 1, 2, 3), we determine the period

differential equation for Fj (j = 0, 1, 2, 3) with 4-dimensional spaces of solutions.

Theorem 2.1.1. Let j ∈ {0, 1, 2, 3}. Set the system of differential equations D
(j)
1 u =

D
(j)
3 u = 0 as follows. Then,

D
(j)
1 ηj(λ, μ) = D

(j)
3 ηj(λ, μ) = 0,

where ηj(λ, μ) is given in Proposition 2.1.1. The space of solutions of this system is
4-dimensional.

(0) (The period differential equation for F0)⎧⎪⎨
⎪⎩

D
(0)
1 = θλ(θλ + 2θμ) − λ(2θλ + 5θμ + 1)(2θλ + 5θμ + 2),

D
(0)
3 = λ2(4θ2

λ − 2θλθμ + 5θ2
μ)

−8λ3(1 + 3θλ + 5θμ + 2θ2
λ + 5θλθμ) + 25μθλ(θλ − 1).

(2.1.7)

(1) (The period differential equation for F1)⎧⎪⎨
⎪⎩

D
(1)
1 = λθ2

μ + μθλ(3θλ + 4θμ + 1),

D
(1)
3 = λθλ(3θλ + 2θμ)

+μθλ(1 − θλ) + 9λ2(3θλ + 4θμ + 1)(3θλ + 4θμ + 2).

(2.1.8)

(2) (The period differential equation for F2)⎧⎪⎨
⎪⎩

D
(2)
1 = λθ2

μ + μθλ(3θλ + 4θμ + 1),

D
(2)
3 = λθλ(3θλ + 2θμ) + μθλ(1 − θλ)

+9λ2(3θλ + 4θμ + 1)(3θλ + 4θμ + 2).

(2.1.9)

(3) (The period differential equation for F3)⎧⎪⎨
⎪⎩

D
(3)
1 = θ2

λ − μ(3θλ + 2θμ + 1)(3θλ + 2θμ + 2),

D
(3)
3 = θλ(3θλ − 2θμ) + 4μθλ(3θλ + 2θμ + 1)

+9λ(3θλ + 2θμ + 1)(3θλ + 2θμ + 2).

(2.1.10)

Proof. We determine D
(j)
3 (j = 0, 1, 2, 3) by the method of indeterminate coefficients. Set

D = f1 + f2θλ + f3θμ + f4θ
2
λ + f5θλθμ + f6θ

2
μ, where f1 · · · f6 ∈ C[λ, μ]. Let j ∈ {0, 1, 2, 3}.

We can determine the polynomials f1, · · · , f6 so that D satisfies Dηj = 0 (ηj is given in

Proposition 2.1.1) and is independent of D
(j)
1 . Thus, we obtain the above D

(j)
3 .

In the following, we prove that the spaces of solutions are 4-dimensional. Let j ∈
{0, 1, 2, 3}. By making up the Pfaffian system of D

(j)
1 u = D

(j)
3 u = 0, we shall show

the required statement. Set ϕ = t(1, θλ, θμ, θ
2
λ). We obtain the Pfaffian system Ωj =

αjdλ + βjdμ with dϕ = Ωjϕ as follows. We can check that

dΩj = Ωj ∧ Ωj.
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Therefore, each system D
(j)
1 u = D

(j)
3 u = 0 has the 4-dimensional space of solution.

(0) (The Pfaffian system for F0)
Setting {

t = λ2(4λ − 1)3 − 2(2 + 25λ(20λ − 1))μ − 3125μ2,

s = 1 − 15λ − 100λ2,

we have

α0 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1

a11/s a12/(2λs) a13/(2s) a14/(2λs)
a21/(st) a22/(2st) a23/(2st) a24/(2st)

⎞
⎟⎟⎠

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = λ(1 + 20λ), a12 = 6λ2 + 120λ3 + 125μ,

a13 = 5λ(3 + 40λ), a14 = −(λ + 16λ2 − 80λ3 + 125μ),

a21 = −λ3(2 + 2125μ + λ(−17 + 616λ − 2320λ2 + 2500(9 + 80λ)μ)),

a22 = −(−2λ3(−1 + 4λ)(8 + 5λ(−13 + 4λ(83 + 40λ)))

+(−16 + 5λ(94 + 5λ(59 + 10λ(−73 + 20λ(37 + 160λ)))))μ

+3125(−4 + 5λ(21 + 200λ))μ2),

a23 = −λ3(22 + 26875μ + λ(−47 + 300000μ + 100λ(51 + 4λ(−49 + 20λ) + 20000μ))),

a24 = 12ts + 3s(15λ − 2) + 2t(−3(1 − 4λ)2λ2(−1 + 10λ) + 75λ(−1 + 40λ)μ),

and

β0 =

⎛
⎜⎜⎝

0 0 1 0
b11/s b12/(2λs) b13/(2s) b14/(2λs)

b21/(s) b22/(λ
2s) b23/(s) b24/(λ

2s)
b31/(ts) b32/(2λts) b33/(2ts) b34/(2λts)

⎞
⎟⎟⎠

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 = λ(1 + 20λ), b12 = 6λ2 + 120λ3 + 125μ,

b13 = 5λ(3 + 40λ), b14 = −(λ + 16λ2 − 80λ3 + 125μ),

b21 = −2λ(−1 + 4λ), b22 = −(6λ3(−1 + 4λ) − 5μ + 50λμ),

b23 = −λ(−11 + 20λ), b24 = −((1 − 4λ)2λ2 − (5 − 50λ)μ),

b31 = −(4(1 − 4λ)2λ4(7 + 20λ)

−λ(−4 + 25λ(−3 + 2λ(−7 + 20λ(1 + 80λ))))μ + 3125λ(1 + 20λ)μ2),

b32 = −(24(1 − 4λ)2λ5(7 + 20λ)

−2λ(−4 + 5λ(8 + λ(−43 + 10λ(−57 + 20λ(7 + 160λ)))))μ

−125(−4 + 25λ(−3 + 32λ(1 + 10λ)))μ2 + 390625μ3)),

b33 = −(4λ3(−1 + 4λ)(−1 + 2λ(−32 + 25λ(1 + 12λ))) + 15625λ(3 + 40λ)μ2

−5λ(−12 + 5λ(−1 + 10λ)(33 + 20λ(23 + 160λ)))μ),

b34 = −(4λ4(−1 + 4λ)3(7 + 20λ) + 3λ(−4 + λ(31 − 490λ + 76000λ3))μ

+250(−2 + 25λ(−2 + λ(11 + 260λ)))μ2 − 390625μ3).
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(1) (The Pfaffian system for F1)
Setting

t1 = 729λ2 − 54λ(27μ − 1) + (1 + 27μ)2,

we have

α1 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1

−1/9 −1/2 −1/2 −(1 + 27λ + 27μ)/(54λ)
a11/t1 a12/(2t1) a23/(2t1) a24/(2t1)

⎞
⎟⎟⎠

with {
a11 = 3λ(1 − 27λ + 27μ), a12 = 3λ(5 − 351λ + 135μ),

a13 = 27λ(1 − 3λ + 27μ), a14 = 3(−729λ2 + (1 + 27μ)2),

and

β1 =

⎛
⎜⎜⎝

0 0 1 0
−1/9 −1/2 −1/2 −(1 + 27λ + 27μ)/(54λ)

0 0 0 μ/λ
b11/t1 b12/(2t1) b13/(2t1) b14/(2t1)

⎞
⎟⎟⎠

with{
b11 = 3λ(1 + 27λ − 27μ), b12 = 27λ(1 + 27λ − 3μ),

b13 = 3λ(5 + 135λ − 351μ), b14 = (1 + 27λ)2 + 108(27λ − 1)μ − 3645μ2.

(2) (The Pfaffian system for F2)
Setting {

t2 = λ2(1 + 27λ)2 − 2λμ(1 + 189λ) + (1 + 576λ)μ2 − 256μ3,

s2 = 1 + 108λ − 288μ,

we have

α2 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1

a11/s2 a12/(2λs2) a13/(s2) a14/(2λs2)
a21/(t2s2) a22/(t2s2) a23/(t2s2) a24/(t2s2)

⎞
⎟⎟⎠

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = −9λ, a12 = −(81λ2 + μ − 144λμ),

a13 = −54λ, a14 = −3λ(1 + 27λ − 144μ) + μ,

a21 = −6λ3(1 + 1458λ2 − 2592λμ + 6μ(−55 + 4608μ)),

a22 = −3λ2(11 + 54λ(5 + 351λ)) + λ(1 + 4λ(61 + 810λ(5 + 72λ)))μ + 64(17 + 2808λ)μ3

−147456μ4 − 2(1 + 9λ(53 + 32λ(131 + 864λ)))μ2,

a23 = −8λ3((2 − 27λ)2 + 9(−133 + 2160λ)μ + 82944μ2),

a24 = 3r2s2 + 162λr2 − 3λs2(λ + 81λ2 + 1458λ3 − 378λμ + μ(−1 + 288μ)),
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and

β2 =

⎛
⎜⎜⎝

0 0 1 0
b11/s2 b12/(2λs2) b13/s2 b14/(2λs2)

b21/(s2) b22/(λ
2s2) b23/s2 b24/(λ

2s2)
b31/(t2s2) b32/(2λt2s2) b33/(t2s2) b34/(2λt2s2)

⎞
⎟⎟⎠

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 = −9λ, b12 = −(81λ2 + μ − 144λμ),

b13 = −54λ, b14 = −3λ(1 + 27λ − 144μ) + μ,

b21 = 36μ, b22 = μ(λ(−1 + 54λ) + 2μ),

b23 = 216μ, b24 = (3(1 − 54λ)λ − 2μ)μ,

b31 = 3λ(81λ3(1 + 27λ) + λ(−1 + 36λ)(−5 + 108λ)μ + 3(−1 + 32λ)(1 + 432λ)μ2 + 768μ3,

b32 = 2187λ5(1 + 27λ) − (1 + 192λ(11 + 1164λ))μ3 + 256(1 + 864λ)μ4

−λ2(2 + 27λ(4 + 9λ(77 + 864λ)))μ + λ(5 + λ(1279 + 864λ(85 + 864λ)))μ2,

b33 = 2λ(3λ2(1 + 27λ)(−1 + 135λ) + 2λ(23 + 54λ(−11 + 972λ))μ

+9(−3 + 64λ)(1 + 432λ)μ2 + 6912μ3,

b34 = −(−81λ4(1 + 27λ)2 + λ2(−7 + 9λ(−58 + 27λ(−125 + 3456λ)))μ

+λ(8 + 9λ(425 + 24192λ))μ2 − (1 + 3456λ(1 + 162λ))μ3 + 256(1 + 1440λ)μ4.

(3) (The Pfaffian system for F3)
Setting {

t3 = 729λ2 − (4μ − 1)3 + 54λ(1 + 12μ),

s3 = −54λ + (1 − 4μ)2,

we have

α3 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1

a11/s3 a12/(2s3) a13/s3 a14/(2s3)
a21/(t3s3) a22/(t3s3) a23/(t3s3) a24/(t3s3)

⎞
⎟⎟⎠

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = 9λ, a12 = 81λ + 4(1 − 4μ)μ,

a13 = 27λ, a14 = 3 + 81λ − 48μ2,

a21 = −2λ(−2187λ2 + 27λ(4μ − 9)(4μ − 1) − (−1 + 4μ)3(3 + 8μ)),

a22 = 3λ(9477λ2 + (1 − 4μ)2(−11 + 4μ(−9 + 16μ)) − 27λ(25 + 4μ(−31 + 40μ))),

a23 = 2λ(729λ2 + (−1 + 4μ)3(11 + 16μ) + 27λ(−1 + 4μ)(19 + 20μ)),

a24 = 81λ(−2 + 27λ + 8μ)(1 + 27λ − 16μ2),

and

β3 =

⎛
⎜⎜⎝

0 0 1 0
b11/s3 b12/(2s3) b13/s3 b14/(2s3)
b21/s3 b22/s3 b23/s3 b24/s3

b31/(t3s3) b32/(2t3s3) b33/(t3s3) b34/(2t3s3)

⎞
⎟⎟⎠
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with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b11 = 9λ, b12 = 81λ + 4(1 − 4μ)μ,

b13 = 27λ, b14 = 3 + 81λ − 48μ2,

b21 = −2μ(−1 + 4μ), b22 = −3μ(−3 + 4μ),

b23 = −6μ(−1 + 4μ), b24 = 9μ(3 + 4μ),

b31 = −3λ(2187λ2 + 32(1 − 4μ)2μ(1 + μ) + 27λ(3 + 16μ(2 + μ)))

b32 = −9λ(6561λ2 − 81λ(−3 + 4μ)(1 + 8μ) + 4μ(−1 + 4μ)(−33 + 4μ(−3 + 16μ))),

b33 = −3λ(3645λ2 + 2(1 − 4μ)2(1 + 16μ(3 + 2μ)) + 27λ(7 + 16μ(5 + 9μ))),

b34 = −r3s3 + r3(−8 + 351λ + 32μ) + s3(9(729λ2 + (1 − 4μ)2 + 54λ(1 + 8μ)).

Remark 2.1.2. By changing the system ϕ =t (1, θλ, θμ, θ
2
λ) to other ones, we see that

s = 0 is not a singularity. Together with the singularities of θλ and θμ, we obtain the
singular locus of the system (2.1.7):

λ = 0, μ = 0, λ2(4λ − 1)3 − 2(2 + 25λ(20λ − 1))μ − 3125μ2 = 0. (2.1.11)

This is the locus mentioned in Remark 1.2.2.
By the same way, from the Puffian systems in the above proof, we obtain the singular

locus of the system (2.1.8):

λ = 0, μ = 0, 729λ2 − 54λ(27μ − 1) + (1 + 27μ)2 = 0,

the singular locus of the system (2.1.9):

λ = 0, μ = 0, λ2(1 + 27λ)2 − 2λμ(1 + 189λ) + (1 + 576λ)μ2 − 256μ3 = 0,

and the singular locus of the system (2.1.10):

λ = 0, μ = 0, 729λ2 − (4μ − 1)3 + 54λ(1 + 12μ) = 0.

Omitting these locus from C2 we have the domain Λj (j = 1, 2, 3) in (1.2.21), (1.2.28) and
(1.2.35).

Remark 2.1.3. Takayama and Nakayama [TN] determined the systems of differential
equations for the Fano polytopes with 6 vertices by their new approximation method, that
is a special use of D-module algorithm.

2.2 Period differential equation and the Hilbert mod-

ular orbifold for the field Q(
√

5)

Let O be the ring of integers in the real quadratic field Q(
√

5). Set H± = {z ∈ C|±Im(z) >
0}. The Hilbert modular group PSL(2,O) acts on (H+ × H+) ∪ (H− × H−) by(

α β
γ δ

)
: (z1, z2) �→

(αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
,
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for g =

(
α β
γ δ

)
∈ PSL(2,O), where ′ means the conjugate in Q(

√
5).

Set

W =

⎛
⎝ 1 1

1 −√
5

2

1 +
√

5

2

⎞
⎠ .

It holds

A = U ⊕
(

2 1
1 −2

)
= U ⊕ WU tW.

The correspondence

j : (z1, z2) → (z1z2 : −1 : z1 : z2)(I2 ⊕ tW−1)

defines a biholomorphic mapping

(H+ × H+) ∪ (H− × H−) → D.

The group PSL(2,O) is generated by three elements

g1 =

(
1 1
0 1

)
, g2 =

⎛
⎝1

1 +
√

5

2

0 1

⎞
⎠ , g3 =

(
0 1
−1 0

)
.

Set ⎧⎨
⎩

τ : (z1, z2) → (z2, z1),

τ ′ : (z1, z2) →
( 1

z1

,
1

z2

)
.

We have an isomorphism

j̃ : 〈PSL(2,O), τ〉 → PO+(A, Z)

; g �→ j ◦ g ◦ j−1 = j̃(g) =: g̃.

Especially,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃1 =

⎛
⎜⎜⎜⎝

1 −1 2 1

0 1 0 0

0 −1 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ , g̃2 =

⎛
⎜⎜⎜⎝

1 −1 2 1

0 1 0 0

0 −1 1 0

0 1 0 1

⎞
⎟⎟⎟⎠

g̃3 =

⎛
⎜⎜⎜⎝

0 −1 0 0

−1 0 0 0

0 0 −1 −1

0 0 0 1

⎞
⎟⎟⎟⎠ , τ̃ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 −1

⎞
⎟⎟⎟⎠ .

(2.2.1)

The above j gives a modular isomorphism

((H+ × H+) ∪ (H− × H−), 〈PSL(2,O), τ, τ ′〉) � (D+, PO+(A, Z)).
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Especially, we have

j : (H × H, 〈PSL(2,O), τ〉) � (D+, PO+(A, Z)). (2.2.2)

The mapping j−1◦Φ : Λ → H×H gives an explicit transcendental correspondence between
Λ and H × H.

There are several researches on the Hilbert modular orbifolds for the field Q(
√

5).
Hirzebruch [Hi] studied the orbifold (H × H)/〈Γ, τ〉 (the group Γ is given in (2.2.4)).
There, he used Klein’s icosahedral polynomials. Kobayashi, Kushibiki and Naruki [KKN]
studied the orbifold (H × H)/〈PSL(2,O), τ〉 and determined its branch divisor in terms
of the icosahedral invariants. Sato [Sa] gave the uniformizing differential equation (see
Definition 2.2.3) of the orbifold (H × H)/〈PSL(2,O), τ〉.

Because of the modular isomorphism (2.2.2) and Theorem 1.5.2, our period differential
equation (2.1.7) for the family F0 = {S0(λ, μ)} should be connected to the uniformizing
differential equation of the orbifold (H × H)/〈PSL(2,O), τ〉.

In this section, we realize the explicit relation between our period differential equation
and the uniformizing differential equation of the orbifold (H × H)/〈PSL(2,O), τ〉. We
give the exact birational transformation (2.2.12) from our (λ, μ)-space to (x, y)-space,
where (x, y) are affine coordinates expressed by Klein’s icosahedral polynomials in (2.2.6).
Moreover, we show that the uniformizing differential equation with the normalization
factor (2.2.16) coincides with our period differential equation (2.1.7).

2.2.1 Linear differential equations in 2 variables of rank 4

First, we survey the study of Sasaki and Yoshida [SY]. It supplies a fundamental tool for
the research on uniformizing differential equations of the Hilbelt modular orbifolds.

We consider a system of linear differential equations{
ZXX = lZXY + aZX + bZY + pZ,

ZY Y = mZXY + cZX + dZY + qZ,
(2.2.3)

where (X,Y ) are independent variables and Z is the unknown. We assume its space of
solutions is 4-dimensional.

Definition 2.2.1. We call the symmetric 2-tensor

l(dX)2 + 2(dX)(dY ) + m(dY )2

the holomorphic conformal structure of (2.2.3) .

Remark 2.2.1. The above symmetric 2-tensor is equal to the holomorphic conformal
structure of the complex surface patch embedded in P3(C) defined by the projective solution
of (2.2.3).

Definition 2.2.2. Let Z0, Z1, Z2 and Z3 be linearly independent solutions of (2.2.3). Put
Z = t(Z0, Z1, Z2, Z3). The function

e2θ = det(Z, ZX , ZY , ZXY )

is called the normalization factor of (2.2.3).
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Proposition 2.2.1. ([SY] Proposition 4.1, see also [Sa] p.181) The surface patch by the
projective solution of (2.2.3) is a part of non degenerate quadratic surface in P3(C) if and
only if ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a =
∂

∂X

(1

4
ξ + θ

)
− l

2

∂

∂Y

(
log(l) − 1

4
ξ + θ

)
,

b =
l

2

∂

∂X

(
log(l) − 3

4
ξ − θ

)
,

c =
m

2

∂

∂Y

(
log(m) − 3

4
ξ − θ

)
,

d =
∂

∂Y

(1

4
ξ + θ

)
− m

2

∂

∂X

(
log(m) − 1

4
ξ + θ

)
,

where ξ = log(1 − lm).

Proposition 2.2.2. ([SY] Section 3) Perform a coordinate change of the equation (2.2.3)
from (X, Y ) to (U, V ) and denote the coefficients of the transformed equation by the same
letter with bars. Then⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l = −λ/ν, m = −μ/ν,

a = (R(U)β − S(U)α)/ν, b = (R(V )β − S(V )α)/ν,

c = (S(U)γ − R(U)δ))/ν, d = (S(V )γ − R(V )δ)/ν,

p = (αq − βp)/ν, q = (δp − γq)/ν,

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ = UXVY − UY VX ,

λ = lV 2
Y − 2VXVY + mV 2

X ,

μ = lU2
Y − 2UXUY + mU2

X ,

ν = lUY VY − UXVY − UY VX + mUXVX ,

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = (V 2
X − lVXVY )/Δ, β = (V 2

Y − mVXVY )/Δ,

γ = (U2
X − lUXUY )/Δ, δ = (U2

Y − mUXUY )/Δ,

R(U) = UXX − (lUXY + aUX + bUY ),

S(U) = UY Y − (mUXY + cUX + dUY ),

R(V ) = VXX − (lVXY + aVX + bVY ),

S(V ) = VY Y − (mVXY + cVX + dVY ).

2.2.2 Uniformizing differential equation of the Hilbert modular
orbifold (H × H)/〈PSL(2,O), τ〉

The quotient space (H × H)/〈PSL(2,O), τ〉 carries the structure of an orbifold. Let us
sum up the facts about the orbifold (H × H)/〈PSL(2,O), τ〉 and the result of Sato [Sa]
on the uniformizing differential equation.

63



Remark 2.2.2. The results about this orbifold shall be stated more detailed in Section
3.1.

Set

Γ(
√

5) =
{(

α β
γ δ

)
∈ PSL(2,O)

∣∣∣ α ≡ δ ≡ 1, β ≡ γ ≡ 0 (mod
√

5)
}

. (2.2.4)

Γ is a normal subgroup of PSL(2,O). The quotient group PSL(2,O)/Γ(
√

5) is isomorphic
to the alternating group A5 of degree 5. A5 is isomorphic to the icosahedral group I. Let
M be a compactification of an orbifold M . Hirzebruch [Hi] showed that H × H/〈Γ, τ〉
is isomorphic to P2(C). Therefore, P2(C) admits an action of the alternating group A5.
This action is equal to the action of the icosahedral group I on P2(C) introduced by F.
Klein. We list Klein’s I-invariant polynomials on P2(C) = {(ζ0 : ζ1 : ζ2)}:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(ζ0 : ζ1 : ζ2) = ζ2
0 + ζ1ζ2,

B(ζ0 : ζ1 : ζ2) = 8ζ4
0ζ1ζ2 − 2ζ2

0ζ
2
1ζ

2
2 + ζ3

1ζ
3
2 − ζ0(ζ

5
1 + ζ5

2 ),

C(ζ0 : ζ1 : ζ2) = 320ζ6
0ζ

2
1ζ

2
2 − 160ζ4

0ζ
3
1ζ

3
2 + 20ζ2

0ζ
4
1ζ

4
2 + 6ζ5

1ζ
5
2

−4ζ0(ζ
5
1 + ζ5

2 )(32ζ4
0 − 20ζ2

0ζ1ζ5 + 5ζ2
1ζ

2
2 ) + ζ10

1 + ζ10
2 ,

12D(ζ0 : ζ1 : ζ2) = (ζ5
1 − ζ5

2 )(−1024ζ10
0 + 3840ζ8

0ζ1ζ2 − 3840ζ6
0ζ

2
1ζ

2
2

+1200ζ4
0ζ

3
1ζ

3
2 − 100ζ2

0ζ
4
1ζ

4
2 + ζ5

1ζ
5
2 )

+ζ0(ζ
10
1 − ζ10

2 )(352ζ4
0 − 160ζ2

0ζ1ζ2 + 10ζ2
1ζ

2
2 ) + (ζ15

1 − ζ15
2 ).

We have the following relation:

144D2 = −1728B5 + 720ACB3 − 80A2C2B + 64A3(5B2 − AC)2 + C3. (2.2.5)

Kobayashi, Kushibiki and Naruki [KKN] showed that a compactification (H × H)/〈PSL(2,O), τ〉
is birationally equivalent to P2(C). Let

ϕ : P2(C) = (H × H)/〈Γ, τ〉 → (H × H)/〈PSL(2,O), τ〉 = P2(C)

be a rational mapping defined by

(ζ0 : ζ1 : ζ2) �→ (A5 : A2B : C).

ϕ is a holomorphic mapping of P2(C) − {A = 0} to P2(C) − (a line at infinity L∞) ⊂
(H × H)/〈PSL(2,O), τ〉. Set

X =
B

A3
, Y =

C

A5
. (2.2.6)

X and Y are the affine coordinates identifying (1 : X : Y ) ∈ P2(C)−L∞ with (X,Y ) ∈ C2

(These properties of the Hilbert modular orbifold shall be stated in detail in Section 3.1).

Proposition 2.2.3. ([KKN]) The branch locus of the orbifold (H × H)/〈PSL(2,O), τ〉
in P2(C) − L∞ = C2 is, using the affine coordinates (2.2.6),

D = Y (1728X5 − 720X3Y + 80XY 2 − 64(5X2 − Y )2 − Y 3) = 0

of index 2. The orbifold structure on (H × H)/〈PSL(2,O), τ〉 is given by (P2(C), 2D +
∞L∞).
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We note that H × H is embedded in P1(C) × P1(C) which is isomorphic to a non-
degenerate quadric surface in P3(C). Let π : H × H → (H × H)/〈PSL(2,O), τ〉 be the
canonical projection. The multivalued inverse mapping π−1 is called the developing map
of the orbifold (H × H)/〈PSL(2,O), τ〉.
Definition 2.2.3. Let us consider a system of linear differential equations on the orbifold
(H×H)/〈PSL(2,O), τ〉 with 4-dimensional space of solutions. Let z0, z1, z2, z3 be linearly
independent solutions of the system. If

(H × H)/〈PSL(2,O), τ〉 → P3(C) : p �→ (z0(p) : z1(p) : z2(p) : z3(p))

gives the developing map of the orbifold (H × H)/〈PSL(2,O), τ〉, we call this system the
uniformizing differential equation of the orbifold.

From Proposition 2.2.3, T. Sato obtained the following result.

Theorem 2.2.1. ([Sa] Example. 4) The holomorphic conformal structure of the uni-
formizing differential equation of the orbifold (H × H)/〈PSL(2,O), τ〉 is

−20(4X2 + 3XY − 4Y )

36X2 − 32X − Y
(dX)2 + 2(dX)(dY ) +

−2(54X3 − 50X2 − 3XY + 2Y )

5Y (36X2 − 32X − Y )
(dY )2,

(2.2.7)

where (X,Y ) is the affine coordinates in (2.2.6) .

Let {
zXX = lzXY + azX + bzY + pz,

zY Y = mzXY + czX + dzY + qz
(2.2.8)

be the uniformizing differential equation of (H × H)/〈PSL(2,O), τ〉, where (x, y) is the
affine coordinates in (2.2.6). We already obtained the coefficients l and m (see Definition
2.2.1 and Theorem 2.2.1). If the normalization factor of (2.2.8) is given, the coefficients
a, b, c and d are determined by Proposition 2.2.1. The other coefficients p and q are
determined by the integrability condition of (2.2.8).

Remark 2.2.3. Sato [Sa] determined the uniformizing differential equation of (H × H)/
〈PSL(2,O), τ〉 {

zXX = lzXY + aszX + bszY + psz,

zY Y = mzXY + cszX + dszY + qsz

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

as(X, Y ) =
−20(3X − 2)

36X2 − 32X − Y
, bs(X,Y ) =

−10(8X + 3Y )

36X2 − 32X − Y
,

cs(X, Y ) =
3X − 2

5y(36X2 − 32X − Y )
, ds(X, Y ) =

−198X2 + 180X + 7Y

5Y (36X2 − 32X − Y )
,

ps(X, Y ) =
−3

(36X2 − 32X − Y )
, qs(X,Y ) =

3

100Y (36X2 − 32X − Y )
.
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Here, the normalization factor

e2θ =
−36X2 + 32X + Y

Y 1/2(1728X5 − 720X3Y + 80XY 2 − 64(5X2 − Y )2 − Y 3))3/2
. (2.2.9)

exactly corresponds to the above data as, bs, cs, ds, ps and qs. It should coincides with the
original normalization factor in [Sa] p.185, because Sato used the above data. However,
it is not the case. We suppose there would be contained some typos in the original one.

2.2.3 Exact relation between period differential equation and
unifomizing differential equation

The modular isomorphism (2.2.2) implies that our period differential equation (2.1.7)
should be related to the uniformizing differential equation of the orbifold (H×H)/〈PSL(2,O), τ〉.
In this subsection, we show that the holomorphic conformal structure of (2.1.7) is trans-
formed to (2.2.7) in Theorem 2.2.1 by an explicit birational transformation. Moreover,
we determine a normalization factor which is different from that of Sato’s (2.2.9). The
uniformizing differential equation of the orbifold (H × H)/〈PSL(2,O), τ〉 with our nor-
malizing factor corresponds to the period differential equation (2.1.7).

Proposition 2.2.4. The period differential equation (2.1.7) is represented in the form{
zλλ = l0zλμ + a0zλ + b0zμ + p0z,

zμμ = m0zλμ + c0zλ + d0zμ + q0z
(2.2.10)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l0 =
2μ(−1 + 15λ + 100λ2)

λ + 16λ2 − 80λ3 + 125μ
, m0 =

2(λ2 − 8λ3 + 16λ4 + 5μ − 50λμ)

μ(λ + 16λ2 − 80λ3 + 125μ)
,

a0 =
(−1 + 10λ)(1 + 20λ)

λ + 16λ2 − 80λ3 + 125μ
, b0 =

5μ(3 + 40λ)

λ + 16λ2 − 80λ3 + 125μ
,

c0 = − 5(−1 + 10λ)

μ(λ + 16λ2 − 80λ3 + 125μ)
, d0 =

−λ − 20λ2 + 96λ3 − 200μ

μ(λ + 16λ2 − 80λ3 + 125μ)
,

p0 =
2(1 + 20λ)

λ + 16λ2 − 80λ3 + 125μ
, q0 = − 10

μ(λ + 16λ2 − 80λ3 + 125μ)
.

Proof. Straightforward calculation.

Especially, the holomorphic conformal structure of the period differential equation
(2.1.7) is

2μ(−1 + 15λ + 100λ2)

λ + 16λ2 − 80λ3 + 125μ
(dλ)2 + 2(dλ)(dμ) +

2(λ2 − 8λ3 + 16λ4 + 5μ − 50λμ)

μ(λ + 16λ2 − 80λ3 + 125μ)
(dμ)2.

(2.2.11)

Theorem 2.2.2. Set a birational transformation

f : (λ, μ) �→ (X,Y ) =
( 25μ

2(λ − 1/4)3
,− 3125μ2

(λ − 1/4)5

)
(2.2.12)

from (λ, μ)-space to (x, y)-space. The holomorphic conformal structure (2.2.11) is trans-
formed to the holomorphic conformal structure (2.2.7) by f .
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Proof. The inverse f−1 is given by

λ(X, Y ) =
1

4
− Y

20X2
, μ(X, Y ) = − Y 3

105X5
. (2.2.13)

We have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l0(λ(X, Y ), μ(X,Y )) =
−Y 2(4X2 − Y )(9X2 − Y )

250X3(240X4 − 88X2Y + 8Y 2 − XY 2)
,

m0(λ(X,Y ), μ(X, Y )) =
−4000X3(100X4 − 40X2Y + 3X3Y + 4Y 2 − XY 2)

Y 2(240X4 − 88X2Y + 8Y 2 − XY 2)
.

(2.2.14)

By (2.2.12) and (2.2.13), we have

Xλ =
60X3

Y
, Yλ = 100Y 2, Xμ = −105X6

Y 3
, Yμ = −2 · 105X5

Y 2
. (2.2.15)

From (2.2.14) and (2.2.15) and Proposition 2.2.2, by the birational transformation f :
(λ, μ) �→ (X,Y ), the coefficients l0 and m0 are transformed to

l0 =
−20(4X2 + 3XY − 4Y )

36X2 − 32X − Y
, m0 =

−2(54X3 − 50X2 − 3XY + 2Y )

5Y (36X2 − 32X − Y )
.

These are equal to the coefficients of the holomorphic conformal structure (2.2.7). There-
fore, the holomorphic conformal structure (2.2.11) is transformed to (2.2.7).

Remark 2.2.4. The birational transformation (2.2.12) is obtained as the composition
of certain birational transformations. First, blow up at (λ, μ) = (1/4, 0) ∈ ((λ, μ)-space)

three times: (λ, μ) �→ (λ, u1) =
(
λ,

μ

λ − 1/4

)
, (λ, u1) �→ (λ, u2) =

(
λ,

u1

λ − 1/4

)
, (λ, u2) �→

(λ, u3) =
(
λ,

u2

λ − 1/4

)
. Cancel λ by λ =

u2

u3

+
1

4
. Then, we have the following birational

transformation:

ψ0 : (λ, μ) �→ (u2, u3) =
( μ

(λ − 1/4)2
,

μ

(λ − 1/4)3

)
.

(Its inverse is given by

ψ−1
0 : (u2, u3) �→ (λ, μ) =

(u2

u3

+
1

4
,
u3

2

u2
3

)
.)

On the other hand, blow up at (X,Y ) = (0, 0) ∈ ((x, y)-space):

ψ1 : (X,Y ) �→ (X, s) =
(
X,

Y

X

)
.

(Its inverse is given by

ψ−1
1 : (X, s) �→ (X, Y ) = (X, Xs).)

Moreover, we define the holomorphic mapping

χ : (u2, u3) �→ (x, s) =
(25

2
u3,−250u2

)
.

We have f = ψ−1
1 ◦ χ ◦ ψ0.
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Instead the normalization factor (2.2.9) used by Sato, that is referred in Remark 2.2.3,
we need a new normalization factor (2.2.16). Together with the conformal structure
coming from (l1,m1) = (l, m), we obtain the new uniformizing differential equation which
we are looking for.

Proposition 2.2.5. The uniformizing differential equation of the orbifold (H×H)/〈PSL(2,O), τ〉
with the normalization factor

e2θ =
X4(−36X2 + 32X + Y )

Y 5/2(1728X5 − 720X3Y + 80XY 2 − 64(5X2 − Y )2 − Y 3)3/2
(2.2.16)

is {
zXX = l1zXY + a1zX + b1zY + p1z,

zY Y = m1zXY + c1zX + d1zY + q1z
(2.2.17)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1 =
−20(4X2 + 3XY − 4Y )

36X2 − 32X − Y
, m1 =

−2(54X3 − 50X2 − 3XY + 2Y )

5Y (36X2 − 32X − Y )
,

a1 =
−2(20X3 − 8XY + 9X2Y + Y 2)

XY (36X2 − 32X − Y )
, b1 =

10Y (−8 + 3X)

X(36X2 − 32X − Y )
,

c1 =
−2(−25X2 + 27X3 + 2Y − 3XY )

5Y 2(36X2 − 32X − Y )
, d1 =

−2(−120X2 + 135X3 − 2Y − 3XY )

5XY (36X2 − 32X − Y )

p1 =
−2(8X − Y )

X2(36X2 − 32X − Y )
, q1 =

−2(−10 + 9X)

25XY (36X2 − 32X − Y )
.

Proof. l1 and m1 are given in Theorem 2.2.1. According to Proposition 2.2.1, the other
coefficients are determined by l1,m1 and θ in (2.2.16).

Theorem 2.2.3. By the birational transformation f in (2.2.12), our period differential
equation (2.2.10) is transformed to the uniformizing differential equation (2.2.17) of the
orbifold (H × H)/〈PSL(2,O), τ〉.
Proof. We have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0(λ(X, Y ), μ(X,Y )) =
400X2(3X2 − Y )(6X2 − Y )

Y (240X4 − 88X2Y + 8Y 2 − XY 2)
,

b0(λ(X, Y ), μ(X,Y )) =
−Y 2(13X2 − 2Y )

25X(240X4 − 88X2Y + 8Y 2 − XY 2)
,

c0(λ(X, Y ), μ(X,Y )) =
2 · 108X9(3X2 − Y )

Y 4(240X4 − 88X2Y + 8Y 2 − XY 2),

d0(λ(X, Y ), μ(X, Y )) =
160000X5(175X4 − 65X2Y + 6Y 2 − XY 2)

Y 3(240X4 − 88X2Y + 8Y 2 − XY 2)
,

p0(λ(X, Y ), μ(X,Y )) =
1600X4(6X2 − Y )

Y (240X4 − 88X2Y + 8Y 2 − XY 2)
,

q0(λ(X,Y ), μ(X, Y )) =
8 · 108X11

Y 4(240X4 − 88X2Y + 8Y 2 − XY 2)
.

(2.2.18)
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By (2.2.12) and (2.2.13), we have⎧⎪⎪⎨
⎪⎪⎩

Xλλ =
4800X5

Y 2
, Yλλ =

12000X4

Y
, Xμμ = 0,

Yμμ =
2 · 1010X10

Y 5
, Xλμ =

−6 · 106X8

Y 4
, Yλμ =

−2 · 107X7

Y 3
.

(2.2.19)

From (2.2.14), (2.2.15), (2.2.18) and (2.2.19) and Proposition 2.2.2, by the birational
transformation f : (λ, μ) �→ (X,Y ), the coefficients a0, b0, c0, d0, p0 and q0 are transformed
to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 =
−2(20X3 − 8XY + 9X2Y + Y 2)

XY (36X2 − 32X − Y )
, b0 =

10Y (−8 + 3X)

X(36X2 − 32X − Y )
,

c0 =
−2(−25X2 + 27X3 + 2Y − 3XY )

5Y 2(36X2 − 32X − Y )
, d0 =

−2(−120X2 + 135X3 − 2Y − 3XY )

5XY (36X2 − 32X − Y )
,

p0 =
−2(8X − Y )

X2(36X2 − 32X − Y )
, q0 =

−2(−10 + 9X)

25XY (36X2 − 32X − Y )
.

These are equal to the coefficients of (2.2.17).

Therefore, the uniformizing differential equation of the orbifold (H×H)/〈PSL(2,O), τ〉
with the normalization factor (2.2.16) is connected to our family F0 = {S0(λ, μ)} of K3
surfaces.
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Chapter 3

A theta expression of the Hilbert
modular functions for

√
5 via the

period mapping for a family of K3
surfaces

According to Section 2.2, the period mapping for the family F0 of K3 surfaces

S0(λ, μ) : x0y0z
2
0(x0 + y0 + z0 + 1) + λx0y0z0 + μ = 0, (3.0.1)

is strongly related to the Hilbert modular function for Q(
√

5).

In this chapter, we consider the family F = {S(X,Y )} of K3 surfaces over P(1 : 3 : 5).
Note that a member S(X,Y ) is birationally equivalent to a member S0(λ, μ) of F0. Using
the results of Hirzebruch [Hi] and Müller [Mul], we prove that the inverse correspondence
of the multivalued period mapping for our family F gives a pair of Hilbert modular
functions for Q(

√
5).

3.1 The Hilbert modular orbifold (H × H)/〈PSL(2,O), τ〉
Here, we recall the action of the Hilbert modular group on H × H.

Let O be the ring of integers in the real quadratic field Q(
√

5). Set H± = {z ∈
C| ± Im(z) > 0}. The Hilbert modular group PSL(2,O) acts on (H+ ×H+)∪ (H− ×H−)
by (

α β
γ δ

)
: (z1, z2) �→

(αz1 + β

γz1 + δ
,
α′z2 + β′

γ′z2 + δ′

)
,

for g =

(
α β
γ δ

)
∈ PSL(2,O), where ′ means the conjugate in Q(

√
5). We consider the

involution

τ : (z1, z2) �→ (z2, z1)

also.
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Definition 3.1.1. If a holomorphic function g on H×H satisfies the transformation law

g
(az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
= (cz1 + d)k(c′z2 + d′)kg(z1, z2)

for any

(
a b
c d

)
∈ PSL(2,O), we call g a Hilbert modular form of weight k for Q(

√
5).

If g(z2, z1) = g(z1, z2), g is called a symmetric modular form. If g(z2, z1) = −g(z1, z2), g
is called an alternating modular form.

If a meromorphic function f on H × H satisfies

f
(az1 + b

cz1 + d
,
a′z2 + b′

c′z2 + d′

)
= f(z1, z2)

for any

(
a b
c d

)
∈ PSL(2,O), we call f a Hilbert modular function for Q(

√
5).

Hirzebruch [Hi] studied the Hilbert modular orbifold (H × H)/〈PSL(2,O), τ〉. Here,
we survey his results.

Recall

Γ(
√

5) =
{(

α β
γ δ

) ∣∣∣α ≡ δ ≡ 1, β ≡ δ ≡ 0 (mod
√

5)
}

.

in Section 2.2.2. The group PSL(2,O)/Γ(
√

5) is isomorphic to the alternating group

A5. Hirzebruch [Hi] studied the canonical bundle of the orbifold (H × H)/Γ(
√

5) by an
algebrogeometric method. He proved

Proposition 3.1.1. ([Hi] pp.307-310) (1) The non-singular model of (H × H)/〈Γ(
√

5), τ〉
is P2(C) = {(ζ0; ζ1; ζ2)} by adding six points. A homogeneous polynomial of degree k in
ζ0, ζ1 and ζ2 defines a modular form for Γ(

√
5) of weight k.

(2) The ring of symmetric modular forms for PSL(2,O) is isomorphic to the ring

C[A, B, C, D]/(R(A, B,C, D) = 0),

where R(A, B, C,D) is the Klein relation (2.2.5). A (B, C, D, resp.) gives a symmetric
modular form for PSL(2,O) of weight 2 (6, 10, 15, resp.).

(3) There exists an alternating modular form c of weight 5 such that c2 = C. The ring
of Hilbert modular forms for PSL(2,O) is isomorphic to the ring

C[A, B, c,D]/(R(A,B, c2, D) = 0).

For our further study, we need the weighted projective space P(1, 3, 5). Let c ∈ C−{0}.

(a0, a1, a2) ∼ (ca0, c
3a1, c

5a2)

gives an equivalence relation on C3−{(0, 0, 0)}. We call P(1, 3, 5) := (C3−{(0, 0, 0)})/ ∼
the weighted projective space of weight (1, 3, 5). This is a 2-dimensional algebraic variety.

Let c′ ∈ C − {0}. We consider the action (ζ0, ζ1, ζ2) �→ (c′ζ0, c
′ζ1, c

′ζ2). Because A

(B,C, resp.) is a homogeneous polynomial of degree 2 (6, 10, resp) in ζ0, ζ1 and ζ2, we
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have the action (A, B,C) �→ (c′2A, c′6B, c′10C). Therefore, we regard (A, B,C)-space as
the weighted projective space P(1, 3, 5). Especially,

(X, Y ) =
( B

A3
,

C

A5

)
in (2.2.6) gives a system of affine coordinates on {A 
= 0}.

By the arguments of Klein [Kl], [Hi] and Kobayashi, Kushibiki and Naruki [KKN], we

know the following properties of the action of A5 on (H × H)/〈Γ(
√

5), τ〉 = P2(C) = {ζ0 :
ζ1 : ζ2}.
Proposition 3.1.2. (1) The correspondence (ζ0 : ζ1 : ζ2) �→ (

A(ζ0 : ζ1 : ζ2) : B(ζ0 :

ζ1 : ζ2) : C(ζ0 : ζ1 : ζ2)
)

gives an identification between P2(C)/A5 and P(1, 3, 5). Then,

the Hilbert modular orbifold (H × H)/〈PSL(2,O), τ〉 is identified with P(1, 3, 5). The cusp

(
√−1∞,

√−1∞) ∈ (H × H)/〈PSL(2,O), τ〉 is given by the point (A : B : C) = (1 : 0 : 0).
So, the quotient space (H × H)/〈PSL(2,O), τ〉 corresponds to P(1, 3, 5) − {(1 : 0 : 0)}.

(2) The divisor {D = 0} consists of fifteen lines in P2(C). These fifteen lines of
{D = 0} are the reflection lines of fifteen involutions of A5 (note that A5 is generated by
three involutions).

(3) The involution τ induces an involution on the orbifold (H × H)/PSL(2,O). The
branch locus of the canonical projection (H × H)/PSL(2,O) → P(1, 3, 5) is given by {C =
0}.

Set

X = {(X,Y ) ∈ C2|Y (1728X5 − 720X3Y + 80XY 2 − 64(5X2 − Y )2 − Y 3) 
= 0}.(3.1.1)

3.2 The period of the family F
3.2.1 The family F of K3 surfaces

By a birational transformation, we obtain a new family of K3 surfaces with explicit
defining equations from the family F0 = {S0(λ, μ)} in (3.0.1).

Proposition 3.2.1. The family of K3 surfaces F0 = {S0(λ, μ)} for (λ, μ) ∈ Λ is trans-
formed to the family F = {S(X,Y )} for (X, Y ) ∈ X:

S(X,Y ) : z2 = x3 − 4y2(4y − 5)x2 + 20Xy3x + Y y4. (3.2.1)

Proof. By the transformation (2.2.12) and the birational transformation given by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 =
Y y

10Xx1

,

y0 =
4Y 2x1y

2
1

−50X2Y x1y1 − 5XY 2y2
1 + 5XY z1

,

z0 = −10XY x1y1 + Y 2y2
1 − Y z1

20XY x1y1

,
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the family F0 = {S0(λ, μ)} is transformed to the family F1 = {S1(X, Y )} given by

S1(X,Y ) : z2
1 = Y (x3

1 − 4y2
1(4y1 − 5)x2

1 + 20Xy3
1x1 + Y y4

1)

over X. Then, by the correspondence (x1, y1, z1) �→ (x, y, z) =
(
x1, y1,

1√
Y

z1

)
, we have

the family F = {S(X,Y )} given by (3.2.1).

Because we have the biholomorphic mapping (2.2.12) and Š(λ, μ) is birationally equiv-
alent to S(X, Y ), we obtain the multivalued analytic period mapping

Φ1 : X → D+; (X, Y ) �→
(∫

Γ1

ω :

∫
Γ2

ω :

∫
Γ3

ω :

∫
Γ4

ω
)
, (3.2.2)

where ω =
dx ∧ dy

z
is the unique holomorphic 2-form on S(X,Y ) up to a constant factor

and Γ1, · · · , Γ4 are certain 2-cycles on S(X, Y ) (this period mapping is stated in detail at
the beginning of Section 3.2.2).

Remark 3.2.1. The correspondence (x1, y1, z1) �→ (x, y, z) = (x1, y1,
1√
Y

z1) in the proof

of Proposition 3.2.1 induces the double covering X′ → X given by (X,Y ′) �→ (X, Y ) =
(X, Y ′2). However, (X,Y ′) and (X,−Y ′) ∈ X′ define mutually isomorphic P -marked K3
surfaces (see Definition 3.2.1 ). So, we obtain the above period mapping Φ1 on X.

Due to Theorem 1.3.2, Theorem 1.4.1, we have clearly

Theorem 3.2.1. (1) For a generic point (X, Y ) ∈ X,

rank(NS(S(X,Y ))) = 18.

(2) For a generic point (X, Y ) ∈ X, the intersection matrix of the transcendental lattice
Tr(S(X,Y )) is given by

A = U ⊕
(

2 1
1 −2

)
. (3.2.3)

(3) The projective monodromy group of the multivalued analytic period mapping Φ :
X → D+ is isomorphic to PO+(A, Z).

(4) The period differential equation for the family F = {S(X, Y )} is given by (2.2.17).

Proposition 3.2.2. Under the correspondence (2.2.6), the surface S(X,Y ) is birationally
equivalent to

S(A : B : C) : z2 = x3 − 4(4y3 − 5Ay2)x2 + 20By3x + Cy4. (3.2.4)

Proof. Putting X =
B

A3
, Y =

C

A5
to (3.2.1), we have

A5z2 = A5x3 + (20y2 − 16y3)A5x2 + 20A2By3x + Cy4.

Then, by the correspondence

x �→ x

A3
, y �→ y

A
, z �→ z√

A9
,

we obtain (3.2.4).
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Remark 3.2.2. For two surfaces{
S(A : B : C) : z2 = x3 − 4(4y3 − 5Ay2)x2 + 20By3x + Cy4,

S(k2A : k6B : k10C) : z2 = x3 − 4(4y3 − 5k2Ay2)x2 + 20k6By3x + k10Cy4,

we have an isomorphism S(A : B : C) → S(k2A : k6B : k10C) given by (x, y, z) �→
(k6x, k2y, k9z) as elliptic surfaces. Therefore, (A : B : C) ∈ P(1 : 3 : 5) gives an
isomorphism class of these elliptic K3 surfaces.

We set K1 = {Y = 0} and K2 = {1728X5−720X3Y +80XY 2−64(5X2−Y )2−Y 3 = 0}.
Theorem 3.2.2. The (A : B : C)-space P(1, 3, 5) gives a compactification of the parameter
space X of the family F = {S(X, Y )} of K3 surfaces given by (3.2.1). Namely, if (1 : 0 :
0) 
= (A : B : C) ∈ P(1, 3, 5), then the corresponding surface S(A : B : C) is a K3 surface.
On the other hand, S(1 : 0 : 0) is a rational surface.

Proof. First, we prove the case A 
= 0. In this case, we consider S(X, Y ) in (3.2.1). We
have the Kodaira normal form of (3.2.1):

z2
1 = x3

1 − g2(y)x − g3(y) (y 
= ∞), (3.2.5)

with ⎧⎪⎨
⎪⎩

g2(y) = −
(
20Xy3 − 16

3
y4(4y − 5)2

)
g3(y) = −

(
Y y4 +

80

3
y5(4y − 5)X − 128

27
y6(4y − 5)3

)
,

and

z2
2 = x3

2 − h2(y1)x2 − h3(y1) (y 
= 0), (3.2.6)

with⎧⎪⎨
⎪⎩

h2(y1) = −
(
20Xy5

1 −
256

3
y2

1 +
640

3
y3

1 −
400

3
y4

1

)
,

h3(y1) = −
(
Y y8

1 +
320

3
Xy6

1 −
400

3
Xy7

1 −
8192

27
y3

1 +
10240

9
y4

1 −
12800

9
y5

1 +
16000

27
y6

1

)
,

where y1 =
1

y
. The discriminant D0 (D∞, resp.) of the right hand side of (3.2.5) ((3.2.6),

resp.) is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D0 = y8(27Y 2 + 32000X3y − 7200XY y − 160000X2y2 + 32000Y y2

+5760XY y2 + 256000X2y3 − 76800Y y3 − 102400X2y4 + 61440Y y4 − 16384Y y5),

D∞ = y11
1 (−16384Y − 102400X2y1 + 61440Y y1 + 256000X2y2

1 − 76800Y y2
1

−160000X2y3
1 + 32000Y y3

1 + 5760XY y3
1 + 32000X3y4

1 − 7200XY y4
1 + 27Y 2y5

1).

If (X, Y ) ∈ X, then we have

ordy(D0) = 8, ordy(g2) = 3, ordy(g3) = 4,
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so π−1(0) is the singular fibre of type IV ∗. Similarly, we have

ordy(D∞) = 11, ordy(h2) = 2, ordy(h3) = 3,

so π−1(∞) = I∗
5 . We have other 5 singular fibres of type I1. Therefore, for (X, Y ) ∈ X,

S(X,Y ) is an elliptic K3 surface whose singular fibres are of type IV ∗ + 5I1 + I∗
5 .

By the same way, we know the structure of the elliptic surface S(X, Y ) for (X, Y ) 
∈ X.
If X 
= 0 and Y = 0 (namely, (X, Y ) ∈ K1 − {(0, 0)}), then S(X, 0) is an elliptic K3
surface with the singular fibres of type III∗ +3I1 + I∗

6 . If (X, Y ) ∈ K2−{(0, 0)}, S(X,Y )
is an elliptic K3 surface with the singular fibres of type IV ∗ + 3I1 + I2 + I∗

5 . However, if
(X, Y ) = (0, 0), we can check that S(0, 0) is birationally equivalent to P1(C)×P1(C). So,
S(0, 0) is not a K3 surface, but a rational surface.

Next, we consider the case A = 0. In this case, note that (B, C) 
= (0, 0). We have the
equation of S(0 : B : C): z2 = x3 − 16y3x2 + 20By3x + Cy4. On {A = 0} ⊂ P(1, 3, 5), we

use the parameter l =
C3

B5
. By the transformation x =

C3

B4
x′, y =

C2

B3
y′, z =

√
C9

B6
z′, we

have
S(l) : z′2 = x′3 − 16ly′3x′2 + 20y′3x′ + y′4.

The discriminant of the right hand side is given by y′8(27+32000y′+5760ly′2−102400l2y′4−
16384l3y′5). From this, we can see that S(l) is an elliptic K3 surface with the singular
fibres of type IV ∗ + 5I1 + I∗

5 .

Hence, we obtain the extended family {S(A : B : C)|(A : B : C) ∈ P(1, 3, 5)− {(1 : 0 :
0)}} of K3 surfaces. For simplicity, let F denotes this extended family.

Remark 3.2.3. In Section 1.5, we proved that the parameter space Λ of the family F0 =
{S0(λ, μ)} is birationally equivalent to the symmetric Hilbert modular orbifold. However,
it is difficult to obtain an exact compactification of the parameter space Λ. For example,
the period j−1 ◦Φ0(λ, μ) for F0 on Λ does not give the point in the diagonal Δ = {(z, z) ∈
H × H}, for the set (j−1 ◦ Φ)−1(Δ) is blowed down to one point in (λ, μ)-space.

For a precise study of the period mapping, we need the new family F = {S(X, Y )}
on the orbifold (H × H)/〈PSL(2,O), τ〉. By the birational transformation (2.2.12), Λ is
birationally equivalent to this Hilbert modular orbifold. As in Section 3.1, this orbifold has
an exact compactification by adding one point (namely the cusp). Moreover, for example,
we can see that the image of the divisor {Y = 0} gives the diagonal Δ. Therefore, this
new family F is suitable to study the modular property.

3.2.2 The extension of the period mapping

Set c0 = (1 : 0 : 0) ∈ P(1, 3, 5). In this subsection, we extend the period mapping
Φ1 : X → D+ in (3.2.2) to P(1, 3, 5) − {c0} → D+.

First, we recall the S-marking on X. According to Theorem 3.2.2 and its proof, we
have the elliptic K3 surface

π(A:B:C) : S(A : B : C) → P1(C) = (y−sphere)

for any (A : B : C) ∈ P(1, 3, 5) − {c0}.
Take a generic point (X0, Y0) ∈ X. The elliptic K3 surface Š = S(X0, Y0) given by

(3.2.5) and (3.2.6) has the singular fibres of type IV ∗ + 5I1 + I∗
5 . Let F be a general fibre
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Figure 3.1: An elliptic fibration for S(X, Y ).

of this elliptic fibration and O be the zero of the Mordell-Weil group of sections. We have
two irreducible components of the divisor C given by {x = 0, z2 = Y y4}. We take the
section R given by y �→ (x, y, z) = (0, y,

√
Y y2). This gives a component of the divisor

C. Let us consider the irreducible decomposition
6⋃
j=0

aj (
9⋃
j=0

bj, resp.) of the singular fibre

π−1
(X,Y )(0) (π−1

(X,Y )(∞), resp.) of type IV ∗ (I∗
5 , resp.). These curves are illustrated in Figure

3.1. Note that a0 ∩ O 
= φ, b0 ∩ O 
= φ, a6 ∩ R 
= φ and b9 ∩ R 
= φ.

As we stated in Remark 3.2.3, we need the improved family F for a precise study of
the period mapping. So, we define the S-marking and P-marking for F as in Section 1.5
to consider the period mapping exactly.

We set Γ5 = F, Γ6 = O, Γ7 = R, Γ8+k = ak+1 (0 ≤ k ≤ 5), Γ14+l = bl+1 (0 ≤ l ≤ 8).
We have the lattice Ľ = 〈Γ5, · · · , Γ22〉Z ⊂ H2(Š, Z). We can check that |det(Ľ)| = 5.
Hence, from Theorem 3.2.1 (2), we have

Ľ = NS(Š).

Since Ľ is a primitive lattice, there exists Γ1, · · · , Γ4 ∈ H2(Š, Z) such that

〈Γ1, · · · , Γ4, Γ5, · · · , Γ22〉Z = H2(Š, Z).

Let {Γ∗
1, · · · , Γ∗

22} be the dual basis of {Γ1, · · · , Γ22} in H2(Š, Z). Then, 〈Γ∗
1, · · · , Γ∗

4〉Z is
the transcendental lattice. We may assume that its intersection matrix is

(Γ∗
j · Γ∗

k)1≤j,k≤4 = A (3.2.7)

where A is given by (3.2.3). We define the period of Š by

Φ1(X0, Y0) =
(∫

Γ1

ω : · · · :

∫
Γ4

ω
)
.
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Take a small connected neighborhood U0 of (X0, Y0) in X so that we have a local topological
trivialization

τ : {S(p)|p ∈ U0} → Š × U0. (3.2.8)

Let � : Š × U0 → Š be the canonical projection. Set r = � ◦ τ . Then,

r′p = r|S(p)

gives a deformation of surfaces. For any p ∈ U0, we have an isometry ψp : H2(S(p), Z) →
H2(Š, Z) given by

ψp = rp
′
∗.

We call this isometry the S-marking on U0. By an analytic continuation along an arc
α ⊂ X, we define the S-marking on X. This depends on the choice of α. The S-mariking
preserves the Néron-Severi lattice. We define the period mapping Φ1 : X → D+ by

p �→
(∫

ψ−1
p (Γ1)

ω : · · · :

∫
ψ−1

p (Γ4)

ω
)
.

This is equal to the period mapping in (3.2.2).

Definition 3.2.1. Let S be an algebraic K3 surface. An isometry

ψ : H2(S, Z) → H2(Š, Z)

is called the P-marking if
(i) ψ−1(NS(Š)) ⊂ NS(S),
(ii) ψ−1(F ), ψ−1(O), ψ−1(R), ψ−1(aj) (1 ≤ j ≤ 6) and ψ−1(bj) (1 ≤ j ≤ 9) are all

effective divisors,
(iii) (ψ−1(F ) ·C) ≥ 0 for any effective class C. Namely, ψ−1(F ) is nef. A pair (S, ψ)

is called a P-marked K3 surface.

Definition 3.2.2. Two P-marked K3 surfaces (S1, ψ1) and (S2, ψ2) are said to be iso-
morphic if there is a biholomorphic mapping f : S1 → S2 with

ψ2 ◦ f∗ ◦ ψ−1
1 = idH2(Š,Z).

Two P-marked K3 surfaces (S1, ψ1) and (S2, ψ2) are said to be equivalent if there is a
biholomorphic mapping f : S1 → S2 with

(ψ2 ◦ f∗ ◦ ψ−1
1 )|NS(Š) = idNS(Š).

Remark 3.2.4. The other connected component R′ of the divisor C given by the section
y �→ (x, y,−√

Y y2) intersects a4 (b8, resp.) at y = 0 (y = ∞, resp.). Letting q be the
involution of S(X, Y ) given by (x, y, z) �→ (x, y,−z), we have q∗(R′) = R, q∗(a4) = a6,
q∗(a3) = a5 and q∗(b8) = b9. Then, we can see that P -marked K3 surfaces (Š, id) and
(Š, q∗) are isomorphic by q. This shows that our argument does not depend on the choice
of the curves R or R′.
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The period of a P-marked K3 surface (S, ψ) is given by

Φ̃′(S, ψ) =
(∫

ψ−1(Γ1)

ω : · · · :

∫
ψ−1(Γ4)

ω
)
. (3.2.9)

It is a point in D. Let X be the isomorphism classes of P-marked K3 surfaces and let

[X] = X/(P−marked equivalence).

By the Torelli theorem for K3 surfaces, the period mapping Φ̃′ : X → D for P-marked
K3 surfaces defined by (3.2.9) gives an identification between X and D. Moreover, a
P-marked K3 surface (S1, ψ1) is equivalent to a P-marked K3 surface (S2, ψ2) if and only
if

Φ̃′(S1, ψ1) = g ◦ Φ̃′(S2, ψ2)

for some g ∈ PO(A, Z) (see [Na2] Lemma 5.1). Therefore, we identify [X] with

D/PO(A, Z) = D+/PO+(A, Z) � (H × H)/〈PSL(2,O), τ〉. (3.2.10)

Recall that the above isomorphism is given by the modular isomorphism j in (2.2.2).
We note that X is embedded in [X] (see Section 1.5.1). Then, an S-marked K3 surface is

a P-marked K3 surface and the period mapping for P-marked K3 surfaces is an extension
of the period mapping for S-marked K3 surfaces. From Φ̃′ : X → D, we obtain a
multivalued mapping Φ′ : [X] → D+. We have

Φ′|X = Φ1, (3.2.11)

where Φ is the period mapping in (3.2.2) for S-marked K3 surfaces.

Now, we extend the period mapping Φ1 : X → D+ in (3.2.2) to Φext : P(1, 3, 5)−{c0} →
D+. We recall that (P(1, 3, 5) − {c0}) − X = (K1 ∪ K2 ∪ {A = 0}) − {c0}.

First, since the local topological trivialization on X in (3.2.8) is naturally extended
to {A = 0}, there exist S-markings on {A = 0} and the period mapping (3.2.2) on X is
extended to P(1, 3, 5) − (K1 ∪ K2 ∪ {c0}) → D+.

According to (3.2.10), Theorem 3.2.1 (3) and Proposition 3.1.2 (3) (Proposition 3.1.2
(2), resp.), the local monodromy of the period mapping Φ1 in (3.2.2) around K1 (K2,
resp.) is locally finite. Hence, the period mapping P(1, 3, 5) − (K1 ∪ K2 ∪ {c0}) → D+

can be extended to P(1, 3, 5) − {c0} → D+. We note that this extension is assured by
Theorem (9.5) in Griffiths [Gr2].

Therefore, we have the extended period mapping

Φext : P(1, 3, 5) − {c0} → D+ (3.2.12)

with

Φext|X = Φ1. (3.2.13)

Since we have (3.2.10) and Proposition 3.1.2 (1), the P-marked equivalence classes [X]
is identified with P(1, 3, 5) − {c0}. Because we have (3.2.11), (3.2.13) and X is a Zariski
open set in P(1, 3, 5) − {c0}, Φext in (3.2.12) is equal to the period mapping Φ′ on [X].

Let [Φext(p)] ∈ D+/PO+(A, Z) be the equivalence class of Φext(p) ∈ D+. From the
above argument, we have
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Proposition 3.2.3. The period mapping Φ′ : [X] → D+ for P-marked K3 surfaces is given
by the period mapping Φext in (3.2.12) for the family F = {S(p)|p ∈ P(1, 3, 5) − {c0}}
of K3 surfaces. This is an extension of the period mapping in (3.2.2) for S-marked K3
surfaces. Especially, if [Φext(p1)] = [Φext(p2)] in D+/PO+(A, Z), then p1 = p2.

In the following, Φ denotes the above extended period mapping Φext in (3.2.12). For
p ∈ P(1, 3, 5) − {c0}, let

ψp : H2(S(p), Z) → H2(Š, Z)

be a P-marking naturally induced by the above proposition. The period of S(p) is given
by

Φ(p) =
(∫

ψ−1
p (Γ1)

ω :

∫
ψ−1

p (Γ2)

ω :

∫
ψ−1

p (Γ3)

ω :

∫
ψ−1

p (Γ4)

ω
)
. (3.2.14)

According to Theorem 3.2.1 (3) (or Theorem 2.2.3), the multivalued analytic mapping
(j−1 ◦Φ)|X : X → H×H gives a developing map of the canonical projection Π : H×H →
(H×H)/〈PSL(2,O), τ〉. Here, by Proposition 3.2.3, (j−1◦Φ)|X is extended to the analytic
mapping

j−1 ◦ Φ : P(1, 3, 5) − {c0} → H × H.

This gives a developing map of Π.

Remark 3.2.5. Sato [Sa] showed that the system of differential equations on X{
uXX = LuXY + AuX + BuY + Pu,

uY Y = MuXY + CuX + DuY + Qu

with L =
−20(4X2 + 3XY − 4Y )

36X2 − 32X − Y
,M =

−2(54X3 − 50X2 − 3XY + 2Y )

5Y (36X2 − 32X − Y )
is an uniformiz-

ing differential equation of (H × H)/〈PSL(2,O), τ〉. Namely, taking linearly independent
solutions y0, y1, y2 and y3, the mapping p �→ (y0(p) : · · · : y3(p)) gives a developing map
X → D+. Of course, our equation (2.2.17) is also an unifomizing differential equation
in this sense. But, note that we do not know whether we can extend it to the singu-
lar locus applying the theory of the uniformizing differential equations. Since we regard
P(1, 3, 5) − {c0} as the parameter space of F and p �→ (y0(p) : · · · : y3(p)) is the period
mapping for F , we obtain the extension of the solutions of (2.2.17) to the singular locus.

Hence, we obtain the following theorem.

Theorem 3.2.3. The mapping j−1 ◦ Φ : P(1, 3, 5) − {c0} → H × H gives the developing
map of Π. Namely, the inverse mapping of Π : H×H → (H×H)/〈PSL(2,O), τ〉 is given
by j−1 ◦ Φ through the identification (H × H)/〈PSL(2,O), τ〉 � P(1, 3, 5) − {c0} given by
Proposition 3.1.2 (1).

Let Δ be the diagonal:

Δ = {(z1, z2) ∈ H × H|z1 = z2}.

From the above theorem and Proposition 3.1.2 (3), we have
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Corollary 3.2.1.
Π(Δ) = {(A : B : 0)} − {c0}

through the identification (H×H)/〈PSL(2,O), τ〉 � P(1, 3, 5)−{c0} given by Proposition
3.1.2 (1).

Due to Theorem 3.2.3, we obtain the system of coordinates (z1, z2) of H × H coming
from the period (3.2.14) of K3 surface S(p):

(
z1(p), z2(p)

)
=

(
−

∫
Γ3

ω +
1 −√

5

2

∫
Γ4

ω∫
Γ2

ω

,−

∫
Γ3

ω +
1 +

√
5

2

∫
Γ4

ω∫
Γ2

ω

)
. (3.2.15)

Here, for simplicity, let Γj denotes the 2-cycle ψ−1
p (Γj) on S(p) for j = 1, 2, 3, 4.

According to Proposition 3.1.2 (1), by adding one cusp, we have the compactification

(H × H)/〈PSL(2,O), τ〉. Then, putting Π ◦ j−1 ◦ Φ(c0) = (
√−1∞,

√−1∞), we obtain
an extended mapping

Π ◦ j−1 ◦ Φ : P(1, 3, 5) → (H × H)/〈PSL(2,O), τ〉, (3.2.16)

where (
√−1∞,

√−1∞) stands for the 〈PSL(2,O), τ〉 orbit of (
√−1∞,

√−1∞).

3.3 The family FX and the period differential equa-

tion

In this section, we consider the familly FX = {S(X, 0)}. The period mapping for FX

gives a multivalued mapping to the diagonal

Δ = {(z1, z2) ∈ H × H|z1 = z2}.
The inverse correspondence of the period mapping for FX is expressed in terms of the
elliptic J-function.

3.3.1 The family FX

In Section 3.2, we have the K3 surfaces S(A : B : C) for (A : B : C) ∈ P(1, 3, 5) − {c0}
and the period mapping (3.2.14). Restricting them to {C = 0}, we obtain the familly
{S(A : B : 0)|(A : B : 0) 
= c0} of K3 surfaces with S(A : B : 0) : z2 = x3 − 4y2(4y −
5A)x2 + 20By3x. Then, we have the family FX = {S(X, 0)} of K3 surfaces with

S(X, 0) : z2 = x3 − 4y2(4y − 5)x2 + 20Xy3x,

where X
(

=
B

A3

)
∈ P1(C) − {0}. In this section, we consider the family FX and the

period mapping for FX .

Set Σ = (X − sphereP1(C)) − {0, 25

27
,∞}. Because we have Proppsition 3.2.3, we can

prove the following theorem for the subfamily F ′
X =

{
S(X, 0)

∣∣∣X ∈ Σ
}

as in [Na1].
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Theorem 3.3.1. (1) For a generic point X ∈ Σ, rank(NS(S(X, 0))) = 19.
(2) For a generic point X ∈ Σ, the intersection matrix of the Néron-Severi lattice

NS(S(X, 0)) is given by
E8(−1) ⊕ E8(−1) ⊕ U ⊕ 〈−2〉

and that of transcendental lattice Tr(S(X, 0)) is given by

U ⊕ 〈2〉 =: AX .

(3) The projective monodromy group of the multivalued period mapping for F ′
X is

isomorphic to PO+(AX , Z).

From the period mapping Φ in (3.2.14), the system of coordinates (z1, z2) in (3.2.15),
Corollary 3.2.1 and the above theorem, we obtain a multivalued period mapping ΦX for
FX such that

j−1 ◦ ΦX : {X|X ∈ P1(C) − {0}} → Δ, (3.3.1)

where ΦX is given by X �→ (ξ1 : ξ2 : ξ3 : ξ4) =
(∫

Γ1

ω :

∫
Γ2

ω :

∫
Γ3

ω : 0
)
∈ D+ with the

Riemann-Hodge relation
(∫

Γ1

ω
)(∫

Γ2

ω
)

+
(∫

Γ3

ω
)2

= 0. Set Σ =
(
X−sphere P1(C)

)−{
0,

25

27
,∞

}
. The fundamental group π1(Σ, ∗) induces the projective monodromy group

MX for ΦX . According to the above theorem (3), MX is isomorphic to PO+(AX , Z).
From (3.2.15), we have the coordinate z of Δ � H:

z = −

∫
Γ3

ω∫
Γ2

ω

. (3.3.2)

Recalling (3.2.16), we obtain an extended mapping Π ◦ j−1 ◦ ΦX : P1(C) → Δ/MX . We
note Π◦j−1◦ΦX(0) is the MX orbit of (

√−1∞,
√−1∞). The action of MX on Δ(⊂ H×H)

induces the action of PSL(2, Z) on H, for we have the coordinate z in (3.3.2). Namely,
there exist γ1, γ2 ∈ π1(Σ, ∗) such that

γ1(z) = z + 1, γ2(z) = −1

z
. (3.3.3)

So, Δ/MX is identified with the orbifold H/PSL(2, Z) � P1(C).

Remark 3.3.1. The projective monodromy group MX � PO+(AX , Z) of the period map-
ping ΦX is generated by two elements:⎛

⎝1 −1 2
0 1 0
0 −1 1

⎞
⎠ ,

⎛
⎝ 0 −1 0
−1 0 0
0 0 −1

⎞
⎠ . (3.3.4)

These are induced by the monodromy matrices in (2.2.1).
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3.3.2 The Gauss hypergeometric equation 2E1

( 1

12
,

5

12
, 1; t

)
We recall the Gauss hypergeometric equation

2E1

( 1

12
,

5

12
, 1; t

)
: t(1 − t)

d2

dt2
u + (1 − 3

2
t)

d

dt
u − 5

144
u = 0. (3.3.5)

The Riemann scheme of 2E1

( 1

12
,

5

12
, 1; t

)
is given by

⎧⎨
⎩

t = 0 t = 1 t = ∞
0 0 1/12
0 1/2 5/12

⎫⎬
⎭ .

We can take the solutions y1(t) and y2(t) of 2E1

( 1

12
,

5

12
, 1; t

)
such that the inverse

mapping of the Schwarz mapping

σ : t �→ y2(t)

y1(t)
= σ(t) = z0 ∈ H (3.3.6)

is given by

z0 �→ 1

J(z0)
, (3.3.7)

where J(z) is the elliptic J function with J
(1 +

√−3

2

)
= 0, J(

√−1) = 1 and J(
√−1∞) =

∞.

Remark 3.3.2. The above J function is given by

J(z) =
1

1728

(1

q
+ 744 + 196884q + · · ·

)
, (3.3.8)

where q = e2π
√−1z.

Note that the Schwarz mapping σ is a multivalued analytic mapping. We can choose
the single-valued branch of the Schwarz mapping σ on (0, 1) ⊂ R such that σ(t) ∈ √−1R

and

lim
t→+0

σ(t) =
√−1∞, lim

t→1−0
σ(t) =

√−1. (3.3.9)

Then, the single-valued branch of the solutions y1(t) and y2(t) near (0, 1)(⊂ R) is in the
form {

y1(t) = u11(t),

y2(t) = log(t) · u21(t) + u22(t),
(3.3.10)

where ujk(t) are unit holomorphic functions around t = 0 and log stands for the principal
value.
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The projective monodromy group of 2E1

( 1

12
,

5

12
, 1; t

)
is isomorphic to PSL(2, Z). In

other words, the action of the fundamental group π1(P
1(C)− {0, 1,∞}, ∗) on H =

{
z0 =

y2

y1

}
is generated by the two actions

z0 �→ z0 + 1 z0 �→ − 1

z0

, (3.3.11)

if we normalize a basis y1, y2 of the solutions of 2E1(
1
12

, 5
12

, 1; t) around a base point.

Remark 3.3.3. The projective monodromy group for the system (y2
2(t);−y2

1(t); y1(t)y2(t))
is 〈B1, B2〉 where

B1 =

⎛
⎝1 −1 2

0 1 0
0 −1 1

⎞
⎠ , B2 =

⎛
⎝ 0 −1 0
−1 0 0
0 0 −1

⎞
⎠ .

These matrices are equal to those of (3.3.4).

3.3.3 The period differential equation for the diagonal Δ

In this subsection, we determine the period differential equation for FX . Considering the
solutions of this period differential equation, we obtain the expression of X using the
coordinate z in (3.3.2).

Proposition 3.3.1. On the locus {Y = 0}, the period differential equation (2.2.17) is
restricted to the following ordinary differential equation of rank 4:

d4

dX4
u +

3(243X2 − 4060X + 2000)

2X(81X2 − 1155X + 1000)

d3

dX3
u

+
2034X2 − 40680X + 8000

8X2(81X2 − 1155X + 1000)

d2

dX2
u +

15(3X − 80)

8X2(81X2 − 1155X + 1000)

d

dX
u = 0.

(3.3.12)

Proof. Recalling the period differential equation (2.2.17), set{
E1u = L1uXY + A1uX + B1uY + P1u,

E2u = M1uXY + C1uX + D1uY + Q1u.

Deriving these equations, we have the system of equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uXX = E1u, uXXX =
∂

∂X
E1u, uXXY =

∂

∂Y
E1u,

uXXXX =
∂2

∂X2
E1u, uXXXY =

∂2

∂X∂Y
E1u,

uY Y = E2u, uXY Y =
∂

∂X
E2u, uY Y Y =

∂

∂Y
E2u, uXXY Y =

∂2

∂Y 2
E1u =

∂2

∂X2
E2u.
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Our periods satisfy this system. From this system, canceling the terms uY , uXY , uY Y , uXXY ,
uXY Y , uY Y Y , uXXXY and uXXY Y , we can obtain the differential equation

a4(X, Y )uXXXX + a3(X, Y )uXXX + a2(X, Y )uXX + a1(X, Y )uX + a0(X, Y )u = 0,

where aj(X, Y ) (j = 1, 2, 3, 4) is a polynomial in X and Y . Putting Y = 0, we have
(3.3.12).

Set

η̌j(X) =

∫
Γj

ω (j ∈ 1, 2, 3).

The equation (3.3.12) has the 4-dimensional space of solutions generated by η̌1(X), η̌2(X), η̌3(X)
and 1. The Riemann scheme of (3.3.12) is geven by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X = 0 X = 25/27 X = 40/3 X = ∞
0 0 0 0
1 1/2 1 −5/6
1 1 2 −1/2
1 2 4 −1/6

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Setting X =
25

27
t, the equation (3.3.12) is transposed to

W4u = 0,

where

W4 =
d4

dt4
+

1620t3 − 29232t2 + 15552t

72t2(t − 1)(5t − 72)

d3

dt3
+

565t2 − 12204t + 2592

36t2(t − 1)(5t − 72)

d2

dt2
+

25t − 720

72t2(t − 1)(5t − 72)

d

dt
.

Straightforward calculation shows the following.

Proposition 3.3.2. Set

W3 =
d3

dt3
+

3

2(t − 1)

d2

dt2
+

5t − 36

36t2(t − 1)

d

dt
+

72 − 5t

72t3(t − 1)
.

Then,

W4 =
( d

dt
+

15t2 − 298t + 216

t(t − 1)(5t − 72)

)
◦ W3. (3.3.13)

Set ηj(t) = η̌j

(25

27
t
)

for j ∈ {1, 2, 3}.

Proposition 3.3.3. The periods η1(t), η2(t) and η3(t) are the solutions of

W3u = 0

satisfying

η1η2 + η2
3 = 0. (3.3.14)
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Proof. Set

W1 =
d

dt
+

15t2 − 298t + 216

t(t − 1)(5t − 72)
.

Let V = 〈η1, η2, η3〉C and V ′ = 〈W3η1,W3η2,W3η3〉C. Since the linear mapping given by
f �→ W3f is monodromy-equivalent and V is an irreducible representation, according to
Schur’s lemma, we have V � V ′ or V ′ = {0}. It follows from (3.3.13) that V ′ ⊂ Ker(W1).
Because dim(W1(W1)) = 1, we have V ′ = {0}.

Proposition 3.3.4. If u1 and u2 are solutions of 2E1

( 1

12
,

5

12
, 1; t

)
, then tu2

1(t), tu
2
2(t)

and tu1(t)u2(t) are solutions of the period differential equation W3u = 0.

Proof. Take any solutions of 2E1

( 1

12
,

5

12
, 1; t

)
u1(t) and u2(t). For j ∈ {1, 2},

u′′
j =

1 − 3t/2

t(t − 1)
u′
j −

5

144t(t − 1)
uj, (3.3.15)

then

u
(3)
j =

535t2 − 715t + 288

144t2(t − 1)2
u′
j +

5(7t − 4)

288t2(t − 1)2
uj. (3.3.16)

Here, by a straightforward calculation, we have

W3(tu1u2) =
5

72t(t − 1)
u1u2 +

113t − 36

36t(t − 1)
(u′

1u2 + u1u
′
2) +

3(3t − 2)

t − 1
u′

1u
′
2

+
3(3t − 2)

2(t − 1)
(u′′

1u2 + u1u
′′
2) + 3t(u′

1u
′′
2 + u′′

1u
′
2) + t(u

(3)
1 u2 + u1u

(3)
2 ).

(3.3.17)

Substituting (3.3.15) and (3.3.16) for (3.3.17), we have W3(tu1u2) = 0.

Remark 3.3.4. According to (3.3.12), the derivation
d

dt
ηj (j = 1, 2, 3) of the period is a

solution of the equation

d3

dt3
v +

1620t3 − 29232t2 + 15552t

72t2(t − 1)(5t − 72)

d2

dt2
v

+
1130t2 − 24408t + 5184

72t2(t − 1)(5t − 72)

d

dt
v +

25t − 720

72t2(t − 1)(5t − 72)
v = 0. (3.3.18)

Then, set

S(t) = 3F2

(1

6
,
1

2
,
5

6
; 1, 1; t

)
+

1

5
3F2

(7

6
,
1

2
,
5

6
; 1, 1; t

)
,

where 3F2 is the generalized hypergeometric series:

3F2(a1, a2, a3; b1, b2; t) =
∞∑
t=0

(a1, n)(a2, n)(a3, n)

(b1, n)(b2, n)n!
tn.

86



We see that S(t) is a holomorphic solution of (3.3.18) around t = 0. The indefinite
integral of S(t) with the integral constant 0 is given by

t · 3F2

(1

6
,
1

2
,
5

6
; 1, 2; t

)
+

1

5
t · 3F2

(7

6
,
1

2
,
5

6
; 1, 2; t

)
=

6

5
t · 3F2

(1

6
,
1

2
,
5

6
; 1, 1; t

)
=

6

5
t ·

(
2F1

( 1

12
,

5

12
, 1; t

))2

.

Here, we apply Clausen’s formula. From the above proposition, this gives a holomorphic
solution of W3u = 0 around t = 0.

Let y1(t) and y2(t) are the single-valued branch of the solutions of 2E1

( 1

12
,

5

12
, 1; t

)
near (0, 1) ⊂ R given in (3.3.9). Let

s1(t) = ty2
1(t), s2(t) = ty1(t)y2(t), s3(t) = ty2

2(t).

Note that, if t ∈ (0, 1) ⊂ R, we have⎧⎪⎨
⎪⎩

s1(t) = t · v11(t),

s2(t) = t · (log(t)v21(t) + v22(t)),

s3(t) = t · (log2(t)v31(t) + log(t)v32(t) + v33(t)),

(3.3.19)

where vjk(t) are unit holomorphic functions around t = 0. Moreover, they satisfy(− s1(t)
) · s3(t) + s2

2(t) = 0. (3.3.20)

Lemma 3.3.1. Taking a branch of the multivalued analytic mapping t �→ (η1(t) : η2(t) :
η3(t)), (

η1(t) : η2(t) : η3(t)
)

=
(
s3(t) : −s1(t) : s2(t)

) ∈ P2(C).

Proof. Because we have Proposition 3.1.2 (1) and the coordinate z in (3.3.2), we take
the single-valued branch of the multivalued period mapping t �→ (

η1(t) : η2(t) : η3(t)
)

on
t ∈ (0, 1) ⊂ R such that

lim
t→+0

−η3(t)

η2(t)
=

√−1∞. (3.3.21)

In this proof, we consider η1(t), η2(t) and η3(t) near (0, 1)(⊂ R).
According to Proposition 3.3.4, we have

ηj(t) =
3∑

k=1

ajksk(t) (j = 1, 2, 3),

where ajk (j, k = 1, 2, 3) are constants. Since we have (3.3.21), we obtain a23 = 0. So,
η2(t) = a21s1(t) + a22s2(t). From (3.3.19), we see that η1(t)η2(t) does not contain log4(t).
Then, from (3.3.14), we have a33 = 0. Recalling (3.3.21) again, we obtain a22 = 0.
Because we consider y �→ (

η1(t) : η2(t) : η3(t)
) ∈ P2(C), we assume that a21 = −1. Then,

the single-valued branches ηj(t) (j = 1, 2, 3) are in the form⎧⎪⎨
⎪⎩

η1(t) = a11s1(t) + a12s2(t) + a13s3(t),

η2(t) = −s1(t),

η3(t) = a31s1(t) + a32s2(t).
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Hence, using (3.3.6), the coordinate z in (3.3.2) is given by

z = a32
s2(z)

s1(z)
+ a31 = a32z0 + a31.

Considering the actions of π1(P
1(C) − {0, 1,∞}) on z = −η3

η2

-space in (3.3.3) and

z0 =
y2

y1

-space in (3.3.11), a31 = 0 and a32 = 1 follows.

Therefore, using (3.3.14) again, we obtain

η1(t) = s3(t), η2(t) = −s1(t), η3(t) = s2(t).

Corollary 3.3.1. A coordinate z in (3.3.2) of the diagonal Δ(� H) is equal to

z =
y2(t)

y1(t)
.

Proof. From the above lemma, this is clear.

Theorem 3.3.2. The inverse of the multivalued period mapping j−1 ◦ΦX : X �→ (z, z) is
given by

X(z, z) =
25

27
· 1

J(z)
,

where z ∈ H is given in (3.3.2).

Proof. From the above Corollary and the inverse Schwarz mapping (3.3.7), we have t(z) =
1

J(z)
. Therefore,

X(z, z) =
25

27
· t(z) =

25

27
· 1

J(z)

3.4 The theta expressions of X and Y

In this section, we obtain the explicit theta expression of the multivalued period mapping
for F = {S(X, Y )} of K3 surfaces.

3.4.1 The classical elliptic modular forms

First, we recall the classical elliptic forms. Let z ∈ H.
The classical Eisenstein series are given by

G2(z) = 60
∑

(0,0) 
=(m,n)∈Z2

1

(mz + n)4
, G3(z) = 140

∑
(0,0)
=(m,n)∈Z2

1

(mz + n)6
.
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G2(z) (G3(z), resp.) is a modular form of weight 4 (6, resp.) for PSL(2, Z). The

ring of modular forms for PSL(2, Z) is C[G2, G3]. We have G2(
√−1∞) =

4π4

3
and

G3(
√−1∞) =

8π6

27
. Let E4(z) =

3

4π4
G2(z) and E6(z) =

27

8π6
G3(z) be the normalized

Eisenstein series. The discriminant form is

Δ(z) = G3
2(z) − 27G2

3(z).

We have Δ(
√−1∞) = 0. This is a cusp form of weight 12. The cusp form of weight 12

is Δ up to a constant factor. The J function in (3.3.8) is given by

J(z) =
G3

2(z)

G3
2(z) − 27G2

3(z)
=

G3
2(z)

Δ(z)
. (3.4.1)

The field of modular functions for the modular group PSL(2, Z) is C(J(z)).
For a, b ∈ {0, 1}, the Jacobi theta constants are defined by

ϑab(z) =
∑
n∈Z

exp
(√−1π

(
n +

a

2

)2

z + 2
√−1π

(
n +

a

2

) b

2

)
for (a, b) = (0, 0), (0, 1) and (1, 0). ϑ4

00, ϑ
4
01 and ϑ4

10 are the modular form of weight 2 for

the principal congruence subgroup Γ(2) =
{(

α β
γ δ

)
|α ≡ δ ≡ 1, β ≡ γ ≡ 0 (mod 2)

}
.

The ring of modular forms for Γ(2) is

C[ϑ4
00, ϑ

4
01, ϑ

4
10]/(ϑ

4
01 + ϑ4

10 = ϑ4
00) = C[ϑ4

00, ϑ
4
01].

We note that
1

1728

( 3

4π4

)3

Δ(z) =
1

28
ϑ8

00(z)ϑ8
01(z)ϑ8

10(z).

3.4.2 Müller’s modular forms

Next, we survey the theta functions for Hilbert modular forms for Q(
√

5). They are
introduced by Müller [Mul].

Set
S2 = {Z ∈ Mat(2, 2)|tZ = Z, Im(Z) > 0}.

This is the Siegel upper half plane consisting of 2× 2 complex matrices. For a, b ∈ {0, 1}2

with tab ≡ 0 (mod2), set

ϑ(Z; a, b) =
∑
g∈Z2

exp
(
π
√−1

(
t
(
g +

1

2
a
)
Z
(
g +

1

2
a
)

+ tgb
))

.

We use the mapping ψ : H × H → S2 given by

(z1, z2) = ζ �→

⎛
⎜⎜⎝Tr

( εζ√
5

)
Tr

( ζ√
5

)
Tr

( ζ√
5

)
Tr

(
− ε′ζ√

5

)
⎞
⎟⎟⎠

=
1

2
√

5

(
(1 +

√
5)z1 − (1 −√

5)z2 2(z1 − z2)

2(z1 − z2) (−1 +
√

5)z1 + (1 +
√

5)z2

)
,
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j 0 1 2 3 4 5 6 7 8 9
ta (0, 0) (1, 1) (0, 0) (1, 1) (0, 1) (1, 0) (0, 0) (1, 0) (0, 0) (0, 1)
tb (0, 0) (0, 0) (1, 1) (1, 1) (0, 0) (0, 0) (0, 1) (0, 1) (1, 0) (1, 0)

Table 3.1: The correspondence j, a and b.

where ε =
1 +

√
5

2
.

For j ∈ {0, 1, · · · , 9}, we set

θj(z1, z2) = ϑ(ψ(z1, z2); a, b),

where the correspondence between j and (a, b) is given by Table 3.1: These theta constants
are the holomorphic functions on H × H.

Let a ∈ Z and j1, · · · , jr ∈ {0, · · · , 9}. We set θaj1,··· ,jr = θaj1 · · · θajr .
Set s5 = 2−6θ0123456789. This is an alternating modular form of weight 5. The following

g2 (s6, s10, s15, resp.) is a symmetric Hilbert modular form of weight 2 (6, 10, 15, resp.)
for Q(

√
5).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g2 = θ0145 − θ1279 − θ3478 + θ0268 + θ3569,

s6 = 2−8(θ2
012478 + θ2

012569 + θ2
034568 + θ2

236789 + θ2
134579),

s10 = s2
5 = 2−12θ2

0123456789,

s15 = −2−18(θ9
07θ

5
18θ24 − θ9

25θ
5
16θ09 + θ9

58θ
5
03θ46 − θ9

09θ
5
25θ16 + θ9

09θ
5
16θ25 − θ9

67θ
5
23θ89

+θ9
18θ

5
24θ07 − θ9

24θ
5
18θ07 − θ9

46θ
5
03θ58 − θ9

24θ
5
07θ18 − θ9

89θ
5
67θ23 − θ9

07θ
5
24θ18

+θ9
89θ

5
23θ67 − θ9

49θ
5
13θ57 + θ9

16θ
5
09θ25 − θ9

03θ
5
46θ58 + θ9

16θ
5
25θ09 − θ9

46θ
5
58θ03

−θ9
25θ

5
09θ16 − θ9

57θ
5
49θ13 + θ9

67θ
5
89θ23 + θ9

58θ
5
46θ03 + θ9

57θ
5
13θ49 − θ9

23θ
5
89θ67

+θ9
18θ

5
07θ24 + θ9

03θ
5
58θ46 + θ9

23θ
5
67θ89 + θ9

49θ
5
57θ13 − θ9

13θ
5
57θ49 + θ9

13θ
5
49θ57).

(3.4.2)

Proposition 3.4.1. ([Mul] Satz 1) (1) The ring of the symmetric Hilbert modular forms
for Q(

√
5) is given by

C[g2, s6, s10, s15]/(M(g2, s6, s10, s15) = 0),

where

M(g2, s6, s10, s15)

= s2
15 −

(
55s3

10 −
53

2
g2
2s6s

2
10 +

1

24
g5
2s

2
10 +

32 · 52

2
g2s

3
6s10 − 1

23
g4
2s

2
6s10 − 2 · 33s5

6 +
1

24
g3
2s

4
6

)
.

(3.4.3)

(2) The ring of the Hilbert modular forms for Q(
√

5) is given by

C[g2, s5, s6, s15]/(M(g2, s
2
5, s6, s15) = 0).

Müller’s modular forms have the following properties:
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Proposition 3.4.2. ([Mul] pp.244-245)⎧⎪⎪⎨
⎪⎪⎩

g2(i∞, i∞) = 1,

s6(z, z) =
2

1728

( 3

4π4

)3

Δ(z) =
1

27
ϑ8

00(z)ϑ8
01(z)ϑ8

10(z),

s10(z, z) = 0.

Especially, ⎧⎪⎨
⎪⎩

4π4

3
g2(z, z) =

4π4

3
E4(z) = G2(z),

211π12s6(z, z) = G3
2(z) − 27G2

3(z) = Δ(z).

3.4.3 The theta expression of X-function and Y -function

Now, we obtain the theta expressions of the parameters X and Y . According to Propo-

sition 3.1.1, X =
B

A3
and Y =

C

A5
define the Hilbert modular functions for Q(

√
5). From

Theorem 3.2.3, via the period mapping for F , we can regard X and Y as the functions of
variables z1 and z2 in (3.2.15). Here, using this system of coordinates (z1, z2), we represent
X and Y as the quotients of Müller’s modular forms.

For our argument, we set Z =
D2

A15
. This defines a Hilbert modular function for Q(

√
5)

also.

Lemma 3.4.1. The modular functions X(z1, z2), Y (z1, z2) and Z(z1, z2) have the expres-
sions ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

X(z1, z2) = k1
s6(z1, z2)

g3
2(z1, z2)

,

Y (z1, z2) = k2
s10(z1, z2)

g5
2(z1, z2)

,

Z(z1, z2) = k3
s2
15(z1, z2)

g15
2 (z1, z2)

,

(3.4.4)

for some k1, k2 and k3 ∈ C.

Proof. Since X =
B

A3
, X is given by the quotient of Hilbert modular forms of weight

6 and its denominator is the cube of a Hilbert modular form of weight 2. Note that, a
Hilbert modular form of weight 2 is equal to g2 up to a constant factor. Then, we have

X(z1, z2) =
k11s6(z1, z2) + k12g

3
2(z1, z2)

k13g3
2(z1, z2)

,

where k11, k12 and k13 are constants. Recalling Proposition 3.1.2 (1), we have X(
√−1∞,

√−1∞) =
0. Then, from Proposition 3.4.2, we obtain k12 = 0, so

X(z1, z2) = k1
s6(z1, z2)

g3
2(z1, z2)

.
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Since Y =
C

A5
, Y is given by the quotient of Hilbert modular forms of weight 10. Its

denominator is the 5-th power of a modular form of weight 2. Then,

Y (z1, z2) =
k21s10(z1, z2) + k22g

5
2(z1, z2) + k23g

2
2(z1, z2)s6(z1, z2)

k24g5
2(z1, z2)

,

where k21, k22, k23 and k24 are constants. By Proposition 3.1.2 (3), we have Y (z, z) = 0.
According to (3.4.2) and Proposition 3.4.2, if a modular form g of weight 10 vanishes on
the diagonal Δ, then we have g = const · s10. So, we obtain k22 = k23 = 0. Therefore,

Y (z1, z2) = k2
s10(z1, z2)

g5
2(z1, z2)

.

Recalling Proposition 3.1.1 (2), we note that D defines a symmetric Hilbert modular

form of weight 15. Since Z =
D2

A15
, Z is given by the quotient of modular forms of weight

30. Its denominator is the 15-th power of a modular form of weight 2 and its numerator is
given by the square of a symmetric modular form of weight 15. According to Proposition
3.4.1 (2), a symmetric modular form of weight 15 is given by const · s15. Then, we have

Z(z1, z2) = k3
s2
15(z1, z2)

g15
2 (z1, z2)

.

Theorem 3.4.1. The inverse correspondence of the multivalued mapping j−1◦Φ : (X, Y ) �→
(z1, z2) for the family F is given by the quotient of Müller’s modular forms:⎧⎪⎪⎨

⎪⎪⎩
X(z1, z2) = 25 · 52 · s6(z1, z2)

g3
2(z1, z2)

,

Y (z1, z2) = 210 · 55 · s10(z1, z2)

g5
2(z1, z2)

,

where (z1, z2) is the system of coordinates given by (3.2.15).

Proof. First, we obtain the expression of X. To obtain it, we determine the constant k1

in (3.4.4). Due to Theorem 3.3.2, (3.4.1) and Proposition 3.4.2, we have

X(z, z) =
25

27
· 1

J(z)
=

25

27
· 211π12s6(z, z)(4π4

3

)3

g3
2(z, z)

= 25 · 52 · s6(z, z)

g3
2(z, z)

.

So, we obtain k1 = 25 · 52.
Next, we determine the constant k3 in (3.4.4). By (2.2.5), we have

144Z(z1, z2) = −1728X5(z1, z2) + 720X3(z1, z2)Y (z1, z2)

− 80X(z1, z2)Y
2(z1, z2) + 64(5X2(z1, z2) − Y (z1, z2))

2 + Y 3(z1, z2). (3.4.5)

Recalling that Y (z, z) = 0, we have

144Z(z, z) = −1728X5(z, z) + 64 · 25 · X4(z, z)

= −226 · 510 ·
(
25 · 33 · s6(z, z)

g3
2(z, z)

− 1
)(s6(z, z)

g3
2(z, z)

)4

. (3.4.6)
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On the other hand, from (3.4.3), we have

s2
15(z1, z2)

g15
2 (z1, z2)

= 55
(s10(z1, z2)

g5
2(z1, z2)

)3

− 53

2

(s6(z1, z2)

g3
2(z1, z2)

)(s10(z1, z2)

g5
2(z1, z2)

)2

+
32 · 52

2

(s6(z1, z2)

g3
2(z1, z2)

)2(s10(z1, z2)

g5
2(z1, z2)

)
+

1

24

(s10(z1, z2)

g5
2(z1, z2)

)2

− 1

23

(s6(z1, z2)

g3
2(z1, z2)

)2(s10(z1, z2)

g5
2(z1, z2)

)
− 2 · 33

(s6(z1, z2)

g3
2(z1, z2)

)5

+
1

24

(s6(z1, z2)

g3
2(z1, z2)

)4

.

(3.4.7)

So, because s10(z, z) = 0, we have

(s2
15(z, z)

g15
2 (z, z)

)
=

1

24

(
− 25 · 33 s6(z, z)

g3
2(z, z)

+ 1
)(s6(z, z)

g3
2(z, z)

)4

. (3.4.8)

Since

Z(z, z) = k3
s2
15(z, z)

g15
2 (z, z)

,

comparing (3.4.6), (3.4.8), we have k3 = 226 · 510 · 3−2.
Finally, from (3.4.5), (3.4.7), k1 = 25 · 52 and k3 = 226 · 510 · 3−2, we have

k2 = 210 · 55.

Thus, we have an expression of the pair of the Hilbert modular functions X and Y as
the pair of the quotients of Müller’s modular forms via the period mapping for our family
F of K3 surfaces.
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Publ. Math. I. H. E. S., 21, 1964.

[Od] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und
ihrer Grenzgebiete, 3, vol. 15, Springer-Verlag, 1988.

[Ot] M. Otsuka, 3-dimensional reflexive polytopes, Master Thesis, Chiba Univ., 1998.
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