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Preface

In the classical theory of the elliptic functions, due to Gauss, Jacobi, Schwarz, etc, there
exists a close relation among a family of elliptic curves, the Gauss hypergeometric differ-
ential equation and the elliptic modular function. This theory is often called the Gauss-
Schwarz theory. Set the family {S(A\)} of the elliptic curves

SNty =2z — 1)(x—N),

where A € C — {0, 1} is the complex parameter. The period mapping for {S(\)} is given
by the quotient of period integrals. This is a multivalued analytic mapping on C — {0, 1}.

Now, these period integrals are the linearly independent solutions of the Gauss hyperge-

11
ometric differential equation £ <§, 2 1; )\>, where the projective monodromy group is

isomorphic to the principal congruence subgroup I'(2). The period mapping for {S(\)}
11

22
the period mapping defines a modular function for I'(2), that is an meromorphic function
on H given by z +— A(z). Moreover, the modular function A\(z) has an explicit theta
expression

coincides with the Schwarz mapping of QEl( , 1 )\>. The inverse correspondence of

where Jgo(2) and Y1 (z) are the Jacobi theta constants.

z—space H
period mappi L
projection
A—space H/T'(2)
94
A= 0
Va0

We can regard K3 surfaces as 2-dimensional extension of the elliptic curves, for the
canonical bundle of a K3 surface is trivial. Several researchers tried to obtain modular
functions as the inverse correspondence of period mappings of families of K3 surfaces (for
example, see Shiga [Shgl] and Matsumoto, Sasaki and Yoshida [MSY] ).

In this thesis, we obtain an extension of this classical theory to the Hilbert modular
functions for Q(v/5) by using a family of K3 surfaces with 2 complex parameters. Namely,
we study the period mapping for the family F of K3 surfaces with explicit defining
equations. The period integrals satisfy a system of partial linear differential equations in
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2 variables of rank 4. The inverse correspondence of this period mapping gives a pair of
Hilbert modular functions for the field Q(y/5). This thesis is organized as follows.

In Chapter 0, we recall the classical elliptic functions without proofs and give a brief
survey of basic properties of K3 surfaces and elliptic surfaces. Especially, the period
mapping for marked K3 surfaces and some techniques of the Mordell-Weil latices shall be
used in this thesis.

In Chapter 1, we obtain the families Fy, F1, Fo and F3 of K3 surfaces with 2 param-
eters. Namely, we have the families of K3 surfaces derived from 3-dimensional reflexive
polytopes with at most terminal singularities with 5 vertices. We give elliptic fibrations
for our families. To obtain the period mappings for our families, we need the Néron-Severi
lattices and the transcendental lattices. By applying the injectivity of the Torelli theorem
for marked K3 surfaces, we show that the Picard numbers of our families are equal to 18
(Section 1.3). Moreover, using some techniques of the Mordell-Weil lattice, we determine
the lattice structures of the Néron-Severi lattices and the transcendental lattices (Section
1.4). Our period mappings are multivalued analytic mappings on the parameter spaces.
Then, we have the projective monodromy groups for our period mappings. In Section
1.5, we determine these projective monodromy groups by applying the surjectivity of the
Torelli theorem for marked K3 surfaces.

In Chapter 2, we give the systems of linear differential equations which are satisfied
by the period integrals for our families of K3 surfaces. These differential equations are
systems of linear partial differential equation in 2 variables of rank 4. In this thesis,
we call them the period differential equation for our families. They give counterparts
of the classical Gauss hypergeometric differential equation. In other words, they give
the differential equation determined by the Gauss-Manin connection for our families. In
Section 2.2, we focus on the family Fy. We show that the period differential equation for
Fo gives the uniformizing differential equation for the symmetric Hilbert modular orbifold
for the field Q(v/5). This implies that the family F is strongly related to the Hilbert
modular function for Q(v/5).

In Chapter 3, that is the main part of this thesis, we consider the period mapping for
the family F = {S(X,Y)} given by the affine equation

S(X,Y): 2% =2® —4y?*(4y — 5)2° + 20X y°z + Yy*.

The aim of this chapter is to show that the inverse correspondence of the period mapping
for F gives a pair of the Hilbert modular functions for Q(v/5) and to obtain an explicit
theta expression of this inverse correspondence. These results give an extension of the
classical theory of the elliptic modular functions.

The Hilbert modular functions for Q(\/g) have several remarkable properties. There
exist various studies on the structure of the field of the Hilbert modular functions or the
ring of the Hilbert modular forms (for example Gundlach [Gu], Hirzebruch [Hi] and Miiller
[Mul]). However, still now, to the best of the author’s knowledge, there has not appeared
an explicit expression of Hilbert modular functions as an inverse correspondence of the
period mapping for a family of algebraic varieties. In this thesis, we give an extension of
the above classical story to the Hilbert modular functions for Q(y/5) by using the family
F={S(X,Y)}.

In Section 3.1, we survey the study of the Hilbert modular orbifold (HxH)/(PSL(2, O), )

1+ /5

2

due to Hirzebruch, where O = Z + Z and 7 is an involution of H x H. In Sec-
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tion 3.2, we study the family F = {S(X,Y)}. A generic member S(X,Y) is birationally
equivalent to a generic member of the family F,. We obtain the weighted projective space
P(1:3:5) as a compactification of the parameter space of F. We define the multivalued
period mapping P(1,3,5) — {one point} — D for F, where D is a Hermitian symmetric
space of type I'V. We have a modular isomorphism between H x H and a connected
component D, of D. Our multivalued period mapping gives the developing mapping
of the Hilbert modular orbifold (H x H)/(PSL(2,0),7). The inverse correspondence
H x H — C x C given by (z1,22) — (X(21,22),Y (21, 22)) defines a pair of the Hilbert
modular function for Q(v/5). In Section 3.3, we consider the subfamily Fx = {S(X,0)}.
We have an explicit expression of the inverse correspondence of the period mapping for
Fx in the famous elliptic J-function. In Section 3.4, we give explicit expressions of

(21, 22) = (X (21, 22), Y (21, 22)

by Miiller’s modular form. This result gives an extension of the classical elliptic modular
A-function.

(21, 22)—space H x H ~ Dy

period mappi Lo
projection

(X,Y)—space (H x H)/{PSL(2,0), )

2 56 510 g5 510
(X,Y):(25-52-—,2 5 -—)
95 95
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0. Preliminaries

0.1 Classical elliptic modular functions

In the classical theory of elliptic modular functions, there is a closed relation among the
elliptic curve, the Gauss hypergeometric differential equation and the elliptic modular
functions. In this section, we recall the above classical topics. For detailed proof of the
topics in this section, see Griffiths [Grl], McKean and Moll [MM], Fujiwara [F], Yoshida
[Y] and Mumford [Mum].

0.1.1 Elliptic curves and period integrals

An elliptic curve is a compact Riemann surface X of genus 1. The elliptic curve X can
be represented by a smooth algebraic curve of degree 3 in P?(C) = {(¢y : (1 : ¢2)}. The
defining equation of X can be given by

GG = (G — a16o) (G — a260) (G — aslo), (0.1.1)

where a1, as and ag are distinct points in C. The holomorphic mapping

X —=>Ci((:CG:¢)—(¢C: )

gives a 2-sheeted covering of P'(C) = {({o : ¢1)} with 2(1 + 1) = 4 distinct branch points
(Co:C)=1:ay),(1:a2),(l:as) and (0:1). By a Mdbius transformation, we assume
a; =0, a; =1and a3 = A € C— {0,1}. Then, we obtain the following canonical affine
equation of a elliptic curve:

S :y? =a(z — 1)(z— N). (0.1.2)

The point A € C— {0, 1} is a complex parameter of the family {S(\)} the elliptic curves.
Let {71,72} be a basis of H;(S()\),Z) such that (v, - 72) = 1. See Figure 1.
Let w be a holomorphic 1-form on S(A). Since deg(w) = (2-1—2) = 0, we have

Q(S(\) ~ C.

The holomorphic 1-form
_dx dx

YTy T Jee- D

on S(A) is unique up to a constant factor.
Since dw = 0, the period integrals

Ll o, /ww (0.1.3)




Figure 1: The 1 cycles vy, and 5 on the complex torus

only depends on the homology class of v; (j = 1,2). So, these integrals are well-defined.
Set

T(A\) =

We note that 7 € H = {z € C|Im(z) > 0}. Let
A= {m1 + m27|m1,m2 € Z}(C C)

Then, the elliptic curve S(A) is identified with the complex torus C/A.
The correspondence C — {0,1} — H given by

QA= T1=17(N) (0.1.4)
is called the period mapping for the family {S(A)}. We note that ® is not a single-valued

but a multivalued analytic mapping.

Let us treat these period integrals as a integrals on A-plane. Let A € Rand 0 < A < 1.
Take the branch of /xz(z — 1)(z — A) for > 1 such that \/x(z — 1)(z — A) > 0. So,

> 0.

/ \/xx—l z— )

Similarly, we take \/z(x — 1)(x — \) € iR for A <z < 1. So,

/\/xas—l )z — ) € ~iR>0.

By Figure 2 and considering the analytic continuation, we have

[ Q/A;ws(x ——
fo=2) NeE =

(0.1.5)




Yi

Figure 2: The cycles v, and 7, on x-plane.

and

/1OO V(e —df)(x -\

E ZR>0

/A NEE —df)(x N

for 0 < A < 1.

0.1.2 The Gauss hypergeometric differential equation
To study the period mapping for {S(\)}, we consider the Gauss hypergeometric equation.

Let ¢ #0,—1,—2,---. The second-order linear differential equation
d*u du
E(a,b,c): A1 — )\)W +(c—(a+b+ 1))\)5 —abu=0 (0.1.6)

is called the Gauss hypergeometric equation. This is a Fuchsian differential equation with
3 regular singular points 0, 1 and co. One solution of (0.1.6) about A = 0 is given by the
Gauss hypergeometric series

ab a(a+ 1)b(b+ 1)

2F1<CL,b,C;)\):1+ A+
c

/\2
T i1 0 T

For Re(a) > 0,Re(c —a) > 0 and |A| < 1, we have the Eulerian integral

JFy(a, b)) = — ) )/1 791 — £)° (1 — \t) bt (0.1.7)

[(a)'(c—a

1
More generally, letting 0 < Re(a) < Re(c) < Re(b) +1 < 2 and p,q € {0, 1, 00, —}, the
x

integral

Fo(\) = / " pme(1 — emal (1 — At (0.1.8)

3
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A A

Figure 3: The Pochhammer arc.

is a solution of (0.1.6). Here, the integral arc is given by the Pochhammer arc (see Figure
3).
We have the Riemann scheme of (0.1.6)

A=0 A=1 M=o
0 0

l1—¢c c—a—>»

(0.1.9)

SR

Then, if ¢ € Z, we have a system {u,us} of solutions of (0.1.6) around A = 0 such that

u1(A) = (holomorphic),
uz(\) = A17¢(holomorphic).

If ¢ € Z, we can find a system {uy, us} of solutions of (0.1.6) around A = 0 such that

u1(A) = (holomorphic),
ug(A) = log(A) + (holomorphic),

where log stands for the principal value.
Let {y1(\), y2(A)} be a system of solutions of (0.1.6). We consider the mapping

10
()

NS

o:H—P(C): \—

~—

<

This is a multivalued analytic mapping. The image o(H) is a triangle bounded by 3 arcs
(i.e. parts of circles). This triangle is called a Schwarz triangle. The image under o of
the union (oo, 0) U (0,1) U (1, 00) gives the boundary of this Schwarz triangle. Due to the
Riemann scheme (0.1.9), we can determine the 3 angles:

|l —c| (at o(0))
mlce—a—>bl (at o(1))
mla—b (at o(c0)).

If |1 —¢|,|c—a—0] and |a — b|] < 1, the mapping o sends H bijectively to a Schwarz
triangle.

We apply the Schwarz reflection principle to the mapping ¢ defined on H and to the
intervals (—o0,0),(0,1) and (1,00). The analytic mapping o is extended to H_ = {z €
C|Im(z) < 0} through any of the above 3 intervals. Applying the same principle again on

4



H_, we obtain the analytic continuation o, along v € 7 (C — {0, 1}, *). There is a matrix

(Z’Z) € GL(2,C) such that

ac +b
— ) 0.1.10
T co+d ( )

Then, we obtain the multivalued analytic mapping

y2(A)

o:C—{0,1} - PHC); A — .

O =P 5
This mapping is called the Schwarz mapping for (0.1.6). The image of the multivalued
mapping o is given by conformal reflections of the original Schwarz triangle o(H). By
making an even number reflections, we have a linear fractional transformation as (0.1.10).

These transformations form the projective monodromy group I' for (0.1.6).
Set

1 1 1
N—c=-, |c—a—=b=-, |a—bl=-
p q r

where p,q,7 € {2,3,4,---} U {oc0}.

1

If —+ -+ = > 1, a finite numbers of the Schwarz triangles cover the whole P*(C). If
p q T

1 1 1 1 1 1

— + — + — =1, the Schwarz triangles cover the plane C(C P*(C)). If = + = + — > 1, the

g.a p g

Schwarz triangles cover the plane H(C P*(C)).

To study the period mapping (0.1.4), we consider the case

(a,b,c) = (%,%,1).

By (0.1.7), the integral

q 1 1 1
/ 31— )3 (1 — A)"Edt
p

11 1
is a solution of the Gauss hypergeometric equation o F; (5, 37 1) for p,q € {0,1, o0, X}

Performing a transformation ¢t = —,
x

//\ V(z —dlx)(x -’

/1Oo V(o —dlx)(:v —A)

11
are solutions of o £} (5, 3 1), those are period integrals of the elliptic curve S(A). There-

fore, we know that the period integrals

[ [
At 72

5



11
of S(A) gives a system of solutions of 5 £ (5, 2 1). Hence, the period mapping in (0.1.4)

w

)\}_) 2

[
7

11
for {S(A\)} gives a Schwarz mapping for o F (5, 3 1>.
In this case, we have p = ¢ = r = co. The projective monodromy group I'(co, 00, o)
is isomorphic to the principal congruence subgroup

P(Z):{(Z Z) € PSL(2,Z)a=d=1,b=c=0 (modz)}

of level 2. Therefore, the projective monodromy group of the period mapping for the

family {S(A\)} is I['(2).

0.1.3 The orbifold H/T'(2)

We consider the action of I'(2) on H = {7|Im(7) > 0} given by the transformation

a b at +b
ST )
c d cr+d
Since we saw that the projective monodromy group of the period mapping ® for {S(\)}

is I'(2), we have the single-valued analytic period mapping ® : C — {0, 1} — H/I'(2) given
by

A7 = d(N). (0.1.11)

The quotient space H/T'(2) is not compact. However, adding 3 points 0, 1 and v/—10c0,
H/I'(2) is compactified to
H/I'(2) ~ P'(C)
(see Figure 4).
The above mentioned 3 points 0,1 and v/—1o0c are called cusps.

Definition 0.1.1. Let the holomorphic function f on H satisfies

FEE2) = (er + ) s o),

for any (Z 2) € I'(2) and the Fourier expansion of f is in the form

f(r) = Z an exp(2my/—17).

n>0

Then we call f is a modular form for T'(2) of weight k.



ico

0 1 2

Figure 4: The orbifold (H)/I'(2).

Definition 0.1.2. The meromorphic function g on H satisfying

(aT—i-b
g ct +d

) = g(7)

for any (Ccl 2) € I'(2) is called a modular function for I'(2).

Of course, a modular function is a function on H/I'(2). If f; and f; are modular forms
of the same weight, then
_h

7

defines the modular function.

0.1.4 The Jacobi theta constants

We consider the ring of modular forms for I'(2). For z € H and (a,b) = (0,0), (0,1) or
(1,0),
Vap(2) = Z exp(wx/—l(n + g)z + 27r\/—1(n + g) (§)>
2 2

2
nel

is called the Jacobi theta constants. This is a holomorphic function on H.
We have the Jacobi identity

Voo (2) = 5, (2) + 91,(2). (0.1.12)

By the definition of the theta constants, we have

P -, (0.1.13)

i

where t € R and ¢ = e~



The theta constants satisfies the following formulae:

1900(2 —|— ].) = 1901(2)7
19()1(2 + 1) = 1900(2), (0114)

us}

1910(2 + 1) = €I1901(Z),

and
( ]_ s
1900( - ;) = e 1 /2000(2),
1 s’
1901( - ;> = e T 200(2), (0.1.15)
1 T
L 1910( — ;) = 6_7\/21901(2).
Set

Vap(00) = tlir?o Vap(it).
From (0.1.13), we have
Yoo(00) = 1,9p1(00) = 1,919(00) = 0. (0.1.16)
Then, from (0.1.14) and (0.1.15), we have
P00(0) : o1 (0) : ¥10(0) =1:0: 1, (0.1.17)
and

1900(1) : 1901(1) : ’&10(1) =0:e 1 :1. (()118)

By the way, because of (0.1.14) and (0.1.15), 93,, 93, and 9}, are modular forms for
['(2) of weight 2. Moreover, the ring of modular forms for I'(2) is given by

C[ﬁém 79317 79110]/(7930(2) = 7931(2) + 794110<Z)) = Cwém 7931]-

0.1.5 The theta expression of the inverse correspondence of the
period mapping

We saw that the period mapping

D:A—T7(N) = (0.1.19)

for {S(\)} is a multivalued analytic mapping with the projective monodromy group I'(2).
Then, the inverse correspondence 7 +— A\ = A(7) satisfies

A1) = A(2)

8



if
aTy +b
cr +d

Ty =

where (Z Z) € I'(2). Therefore, 7 — A(7) defines a modular function for I'(2).
We consider the integrals in (0.1.19). If A — 0, we have

/72 “T /AO NEE, —df)(ac — "

So, in this case, 7(A) — 0. By the same argument, if A — 1, then 7(\) — y/—1occ. From
this, together with the argument principle, we have

; 4
ﬁ—?fw—loo>=1,
1900
U
19—30(0) 0,
U5,

201 1Y) —
\ 1930” >

4
From this we can prove that 7 — A(7) and 7 — —2-(7) are the same modular functions

194
for T'(2).

00
So, we have

Theorem 0.1.1. For 7 € H,
(0.1.20)

holds.

Many mathematicians (Picard, Terada [T], Deligne and Mostow [DM], Shiga [Shgl],
Matsumoto, Sasaki and Yoshida [MSY], etc) attempted to extend this classical theory
of elliptic functions. Especially, [Shgl] and [MSY] studied the moduli of families of K3
surfaces and modular functions.

0.2 Complex surfaces

In this thesis, we study the Hilbert modular function for Q(v/5) via the moduli of a family
of elliptic K3 surfaces. We survey the results of complex surfaces we shall apply.

9



0.2.1 K3 surfaces

In this subsection, we recall the definitions and basic properties of K3 surfaces. For
detailed proof, see [BHPV].

Let X be a compact complex surfaces. Let Kx be the canonical bundle of X. Set

{ py(X) = dim(H*(X, Ox)) = dim(H(X, Ox (Kx))),

For a coherent sheaf F on X, the Euler characteristic

2

X(F) = (1) dim(H (X, F))

j=0
is well-defined. Especially, we have
X(Ox) =1 —q(X) +p(X).

Let ¢1(X) and c2(X) be the Chern classes of the tangent bundle 7'(X) of X. The cup
product
H*(X,Z) x H*(X,Z) — H*(X,Z) ~ 7Z

defines a non-degenerate quadratic form (namely lattice structure) Q). Then, for Dy, Dy €
H?*(X,Z), we have the intersection number (D; - Dy). Letting b7 (X) (b~ (X), resp.)
be the number of positive (negative, resp.) eigenvalues of Q(X), we have the index
T(X) =0T (X) — b (X).

Theorem 0.2.1. (1) (The Riemann-Roch theorem for surfaces) Let D be a divisor on
X. Then It holds that

X(Ox(D)) = 5(D - (D~ Kx)) + x(Ox).
(2) (Noether’s formula)
(X) = (Kx) 1‘502()()‘

(3) (The Hirzebruch index Theorem)

Cl(X)Q — 2CQ(X)

T(X) = 3

Definition 0.2.1. Let X be a compact complex surface. If the canonical bundle Kx of
X s trivial and H'(X,0x) =0, we call X be a K3 surface.

A K3 surface is simply connected. By Noether’s formula, we can see that the topolog-
ical Euler characteristic of X is equal to 24. We have that ¢;(X) = 0 and ¢2(X) = x(X).
Then, using the Poincaré duality, we have

rank(H?(X,7Z)) = rank(Hy (X, 7)) = 22.

10



Applying the index theorem, we obtain that the lattice Hy(X,Z) has signature (3,19).
Then, by the cup product pairing, we can prove that Hs(X,Z) has the following unimod-
ular lattice structure:

Hy(X,Z) = Es(-1) ® Es(~1) @ U o U B U, (0.2.1)

where Eg(—1) and U are given by the intersection matrices

-2 1
1 -2 1 O
1 -2 1
1 -2 1 0 1
Be(=1) = 1 -2 1 1 ’ U:(1 0)'
1 -2 0
0 10 -2 1
1 -2

Definition 0.2.2. Let us call
NS(X) = Div(X)/algebraically equivalent

the Néron-Severi lattice of X. This is a sub lattice of Hy(X.Z). The rank of Néron-Severi
lattice is called the Picard number. Let us call

Tr(X) = NS(X)*
the transcendental lattice of X.

From the exact sequence of the shaves
0—-2Z—0Ox — 0% —0,
we obtain the Chern class mapping
5 HY(X,0%) — H*(X, 7).

A line bundle over X is given by an image of the above mapping. We also have a canonical
homomorphism
j*H*(X,7) — H*(X,R).
Through the Poincaré duality, the image j* o 6*(H'(X,0%)) in H?(X,Z) is identified
with the Néron-Severi lattice. For an algebraic K3 surface, note that linear equivalence,
algebraic equivalence and numerical equivalence all coincide.
A K3 surface is a Kahler manifold. We have a Hodge structure

H*(X,7)® C = H?(X) ® H"'(X) ® H>'(X).

We have
NS(X) = Hl’l(X) N H2(X, 7).

/w:()
¥

where v € NS(X) and w is the unique holomorphic 2-form up to a constant factor.

Therefore, we have
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Theorem 0.2.2. (The Torelli theorem for K3 surfaces) Let S1 and Sy are K3 surfaces.
We suppose that there exists an effective Hodge isometry ¢ : Hy(S1,Z) — Hy(S:,Z).
Then, there exists a biholomorphic mapping f : S1 — Sy such that f. = ¢.

We shall apply this theorem to our lattice polarized K3 surfaces (Theorem 1.3.1,
Theorem 1.5.1, Proposition 3.2.3, etc).

0.2.2 Elliptic surfaces

In this thesis, we use some results for elliptic surfaces. In this subsection, we survey them.
For detailed proof, see Kodaira [Kod] or Shiga [Shgl], [Shg2].

Definition 0.2.3. An elliptic surface (S,m,C) is a smooth projective surface S with a
proper mapping © : S — C' to a smooth projective algebraic curve C' such that a generic
fibre 7 Y(p) (p € C) is an ellipic curve. A holomorphic mapping ¢ : C — S such that
mop =1ido 15 called a section of m.

We will consider the case for C' = P!(C).

Proposition 0.2.1. (/Shgl]) An elliptic surface (S, m,C) with sections is a K3 surface
if and only if C = PY(C) and the Fuler number of X is equal to 24.

An elliptic surface (S, 7, P}(C)) with sections is given by the compact non-singular
model of an affine algebraic surface in C3. If P!(C) = (t — sphere), the defining equation
of the affine surface is given by the form

y* =42’ — go(t)r — g3(t), (0.2.2)

where go(t) and g3(t) € C[t] and 7 is given by (z,y,t) — t. We call the above defining
equation the Kodaira normal form of (S, 7, P*(C)). If S is a K3 surface, polynomials g,
and g3 satisfy 5 < deg(gz) < 8 and 7 < deg(g3) < 12.

For an elliptic surface (S, m, C), a fibre 7~!(p) (p € C) is generically a non-singular
elliptic curve. But, for some ¢ € C, 7~ !(q) is not a non-singular elliptic curve. In this
case, we call 771(q) a singular fibre.

If we have a Kodaira normal form (0.2.2) of (S, m,P*(C)), we can obtain the singular
fibres of (S, m,P'(C)). See Table 1.

ord(g2) ordi(gs) ordi(D) The Type of Singular Fibre

1) 0 0 b Iy
2) >2 >3 b+6 I;
3) >1 1 2 11
4) >2 2 4 v
(5) >3 4 8 v
6) >4 5 10 I
(7) 1 > 2 3 117
8) 3 > 5 9 117

Table 1: The singular fibres for the elliptic fibration.

Here, the types of singular fibre is due to Kodaira [Kod]. The irreducible components of
exceptional curves coming from the canonical resolutions of singular fibres are illustrated
in Figure 5, 6, 7.
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I, v

I* Ir

Figure 6: The singular fibres of type I; and II*.

0.2.3 The Mordell-Weil group of sections

We shall use the theory of the Mordell-Weil lattices due to T. Shioda. For detail, see
[Shol] and [Sho2].

Let S be a compact complex surface and C' be a algebraic curve. Let 7 : S — C be
an elliptic fibration with sections. For generic v € C, the fibre 7=!(v) is an elliptic curve.
In the following, we assume that the elliptic fibration 7 : S — (' has singular fibres.
C(C) denotes the field of meromorphic functions on C. If C' = P'(C), the field C(C) is
isomorphic to the field C(¢) of rational functions.

Here, E(C(C)) denotes the Mordell-Weil group of sections of = : S — C. For all
P € E(C(C)) and v € C, we have (P -7 !(v)) = 1. Note that the section P intersects
an irreducible component with multiplicity 1 of every fibre 77*(v). Let O be the zero of
the group E(C(C)). The section O is given by the set of the points at infinity on every
generic fibre.

Set

R={veC|r'(C) is a singular fibre of 7}.

13



-1
) -2
-1 -4

Figure 7: The singular fibres of type [11* and V™.

For all v € R, we have

my—1
ﬂ-_l(v) - @”U,O + Z /’L'U,j@U,j7 (023)
j=1
where m,, is the number of irreducible components of 77! (v), ©,; (j =0,--- ,m, — 1) are

irreducible components with multiplicity i, ; of 7 '(v), and ©,¢ is the component with

O 0 NO # ¢.
Let F' be a generic fibre of 7. Set

T = (F,0,0,,/ve R1<j<m,—1) C NS(S).

We call T' the trivial lattice for 7. For P € E(C(C)), (P) € NS(S) denotes the corre-
sponding element.

Theorem 0.2.3. (Shioda [Shol], see also [Sho2] Theorem (3-10))
(1) The Mordell-Weil group E(C(C)) is a finitely generated Abelian group.

(2) The Néron-Severi group NS(S) is a finitely generated Abelian group and torsion free.
(3) We have the isomorphism of groups E(C(C)) ~ NS(S)/T given by

P+ (P) modT.
We set T = (T ®z Q) N NS(S) for the trivial lattice T'.

Corollary 0.2.1. ([Shol], see also [Sho2] Proposition (3-11))
(1)
rank(E(C(C))) = rank(NS(S)) =2 = > (m, — 1).

vER

(2) Let E(C(C))tor be the torsion part of E(C(C)). Then,

E(C(C))ior = T/T.
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Set
E(C(0))’ ={P € E(C(C))|PN O, # ¢ for all ve R}.

We have
E(C(C))" € E(C(C))/E(C(C))1or (0.2.4)

(see [Shol], see also [Sho2] Section 5).
Let v € R. Under the notation (0.2.3), we set

= yi= Y e

0<j<my—1, iy j=1

where @i’j = 0,; — {singular points of 7 !(v)}. Set m) = Hilo<j<m, —1, py; =

1.

Theorem 0.2.4. ([Ne], [Kod], see also [Sho2] Section 7) Let v € R. The set (7 1(v))*
has a canonical group structure.

Remark 0.2.1. Especially, for the singular fibre 71 (v) of type I, (b > 1), we have
(77 () = C* x (Z/bZ).
For the singular fibre 7' (v) of type I} (b > 0), we have

Cx (Z/4Z) (be2Z+1),

(r (@) = {c X (ZJ22)? (b€ 22).

For each v € C, we introduce the mapping
spy : B(C(C)) — (' (v))*: P— PN t(v).

Note that

X
PNrt(v) = (z,a) € ((% ) x {finite group}
(see [Sho2] Section 7). We call sp, the specialization mapping.

Theorem 0.2.5. ([Sho2] Section 7) For all v € C, the specialization mapping

X

Spy: P—(x,0) € (%) x {finite group}

is @ homomorphism of groups.

Remark 0.2.2. Especially for the singular fibre 7= (v) of type I, (I}, resp.), the projection
of spo
E(C(C)) — (Z/bZ) ((ZJAZ) or (Z)2Z)*, resp.)

is @ homomorphism of groups.
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Proposition 0.2.2. ([Shol] or [Sho2]) For an elliptic K3 surface (S, m,P}(C)), let F be
a general fibre and P be a section of w. Then,

(F-F)=0, (F-P)=1, (P -P)=-2

Lemma 0.2.1. Let S be a K3 surface with the elliptic fibration 7 : S — P'(C) and F be
a fized general fibre. Then, 7 is the unique elliptic fibration up to Aut(P'(C)) which has
F as a general fibre.

Proof. Note that m € H(S,Og(F)). We shall prove

dim(H°(S, Og(F))) = 2.
By Serre’s duality,

H*(S,05(F)) ~ H°(S,0s(Ks — F)) = H*(S,0s(=F)) = 0.

So, by the Riemann-Roch Theorem and Proposition 0.2.2, we see that

X(Os(F)) = x(0s) = 2.
Then, we have

0 —dim(H' (S, Og(F))) + dim(H°(S, O5(F))) = 2.
From the exact sequence,
0— Og(—F) — Og — Op — 0,
we obtain the exact sequence
-+ — H'(S,0s) — H(F,Op) — H'(S,0s(~F)) — H'(S,05) — - .

Because S is a K3 surface, it holds that H'(S,Ogs) = 0. Moreover, H°(S,Os) —
H°(F,Or) is an onto mapping. Therefore, we have

Hl(‘sv OS'(F)) = H1(57 OS(_F)) =0.

Hence, we see that dim(H°(S, Og(F))) = 2. O
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Chapter 1

Periods for the families of K3
surfaces with 2 parameters derived
from the reflexive polytopes

To obtain an extension of the theory of classical elliptic functions, we need elliptic K3
surfaces with explicit defining equations. In this part, we use 3-dimensional reflexive
polytopes with 5 vertices to obtain K3 surfaces. We have the families F; (j = 0, 1,2, 3)
of K3 surfaces with 2 complex parameters from each polytope. We determine the generic
Picard numbers (Section 1.3), the Néron-Severi lattices and the transcendental lattices
(Section 1.4) of these family F; (j =,0,1,2,3) of K3 surfaces. We have the multivalued
period mappings for F; (j = 0,1,2,3). We determine the projective monodromy groups
of these period mappings applying the Torelli theorem for marked K3 surfaces (Section
1.5).

1.1 Toric varieties derived from reflexive polytopes

The reflexive polytopes is introduced by Batyrev [Ba] to study the mirror symmetry of
Calabi-Yau varieties. In this section, we survey the basic result of the reflexive polytopes.
For detail, see [Ba] or [Od].

Set N =27Z", Np = N®R, M = Homy(N,Z) ~ Z" and Mg = M @ R. Let () :
M x N — Z be the canonical Z—bilinear mapping. The pairing (-, -) is extended to the
R-bilinear mapping Mg x Ng — R.

If ny, -+ ,n, € Ng are given, we call the set 0 = R>on; + -+ + R5on, a cone. Set
0V ={x € Mg|(xz,y) >0, for all y € o}. This is called the dual to . We call the subset
7 of o a face if 7 = {y € o|(my,y) = 0} for my € ¢¥. If A be a set of cones with the two
properties
(i) every face of o € A is contained in A,

(ii) if 01,09 € A, then o1 N oy is a face of both oy and o9,
then A is called a fan.

Letting S, = M Na", set

Uy, ={u:S8, — Clu(0) = 1,u(m +n) = u(m)u(n), forall m,n € S,}.
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Proposition 1.1.1. The set
Tyemb(A) = | ] U,

gEA

gives an irreducible and normal variety of r dimension. Setting e(m)(u) = u(m) for
meS, and u € U,,
(e(mq),--- ,e(my)) : Uy — CP

defines an one to one mapping and U, coincides with the set of C-valued points of the

affine scheme Spec(C[S,]).

The variety Tyemb(A) is called a toric variety.
If o9 C 04, then U,, C U,,. Especially, any U, contains the algebraic torus Ty =
Hom(M, C*).

Proposition 1.1.2. The toric variety Tyemb(A) associated to a fan A is non-singular
complex manifold if and only if there exist a Z-basis {ny,--- ,n,.} of N and s < r such that
o =Rsony + -+ Rogng for any o € A. The toric variety Tyemb(A) is compact if and
only if A is a finite and complete fan, i.e., A is a finite set with the support |A| = U o

ocEA
coinciding with the entire Ng.

If v € Ng and b € R are given, set H(v,b) = {u € Mg|(u,v) > b}. We call
P =()H(v;,b,)
j=1

a polyhedron. A bounded polyhedron is called a polytope.

If r-dimensional polytope P(C Mpg) is given, take every point mg,- - ,mg of M N P.
We take dual o; to the cone ), . Roo(my, —my). Let A(P) be the fan consisting of all
faces of 0¢,- -+ ,05. Then, we obtain a toric variety T,,emb(A(P)).

Definition 1.1.1. If a polytope

S

P=()H(v,-1)

J=1

contains the origin as a inner point, we call P a reflexive polytope. Moreover, if every
vertex of P is a lattice point, the origin is the unique inner lattice point and only the
vertices are the lattice points on the boundary, we call P a reflexive polytope at most
terminal singularities.

In the following, we consider the toric variety associated to a finite and complete fan.
Let X = Tnxemb(A) and A(1) be the set of 1-dimensional cones of A. For p € A(1), let
n(p) be the primitive element of p.

If a continuous function h on Ng is linear on ¢ € A and h(y) € Z for y € N, h is
called A-linear support function. Let SF(IN, A) be the set of A-linear support functions.
If h € SF(N, A), there exists [, € M such that h(n) = (l,,n) for any n € o.
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Let o0 and 7 € A. Since c N7 € A, we have
B() = (o) = (lore, n) = (I, )
for any n € 0 N 7. So, we obtain
(lo = lyn) =(l; = l,,n) =0
and [, — [, and [, — [, € S,n-. Then, we have
e(l, —1;) € Ox (U, NU;).

So, {e(l, — I.)} gives a system of transition functions and define a line bundle over X.
This line bundle is denoted by L.
On the other hand, for h € SF(N, A), we define a Weil divisor

Dy =— > hn(p))V(p).

pEA(1)

This is a divisor given by the defining equation e(—I,) = 0 on U,. We note that [Dj] = Lj,.
For h € SE(N, A), we set

O, = {m € Mg|(m,n) > h(n), for any n € Ng}.
We can prove that [}, is a polytope.

Proposition 1.1.3. The cohomology group H°(X, Ox(Dy)) is a finitely dimensional vec-
tor space. Moreover, a system of generators of H°(X,Ox(Dy,)) is given by {e(m)|m €
O N M}

Proposition 1.1.4. In h € SF(N,A) satisfies h(ny) + h(ny) < h(ny 4+ n2) for ny and
ny € Ng. Then
HY(X,0x(Dy)) =0

forq > 1.

So, we consider the anti-canonical bundle —Kx of X. If a reflexive polytope P with at
most terminal singularities is given, there exists k € SF(N, A(P)) such that Dy coincides
with —Kx. Moreover, [, = P holds. Therefore, we see

HY(X,0x(—Kx)) = (e(m)|m € PN M)c.
From Proposition 1.1.4, we have
Proposition 1.1.5. Forg > 1,
HY(X,0x(—Kx)) =0.

If the fan A(P) is non-singular, we take k € SF(N, A) such that k(n(p)) = —1 for any
p € A(P).
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Example 1.1.1. Let r = 2. Set

2 -1 -1
-1 2 —-1)
We can check that X = Tyemb(A(P)) is P?*(C).

So, we obtain that

H'(X, Ox(~Kx)) = {e(m)|m € PN M)c

t t1 1 1 1 to
= {al + agty + asty + CL4— + as— + CLG— +ar— +as— + ag— + a10 |a] € C}

to to t1to ty

This is equal to the set of homogenous equations of order three. Therefore, this coincides
with the famous result Kp2cy = —3H, where H is a hyperplane section of P*(C).

1.2 A family of K3 surfaces and elliptic fibration

To obtain families of K3 surfaces with explicit defining equations, we use the 3-dimensional
reflexive polytopes with at most terminal singularities. These polytopes with 5-vertices
are given as

100 0 -1
=010 0 -1 (1.2.1)

001 -1 —2
100 -1 0 100 0 -1 100 -1 0
Pp=(010 0 -1], B=|010 -1 —1 P=(010 -1 0
001 -1 —1 001 -1 —1 001 0 -1
(1.2.2)

100 0 -1
Pr=(010 0 -1 (1.2.3)

001 -1 —1

where the column vectors correspond to the coordinates of the vertices (see [Ot] or [KS]).
Among the polytopes in (1.2.1), (1.2.2) and (1.2.3), Py, P», P; and P, are the Fano

polytopes.

Let us start from the polytope P, in (1.2.1).
surfaces from Py by the following canonical procedure (for detail, see [Od] Chapter 2):
(i) Make a toric 3-fold X from the reflexive polytope Fy. This is a rational variety.

(ii) Take a divisor D on X that is linearly equivalent to —Kx.

(iii) Generically, D is represented by a K3 surface.

In this case, D is given by

We obtain a family of algebraic K3

1 1
aq + a2t1 + dgtg + a4t3 + as— + ag—— 0, (124)
ts titot2

with complex parameters aq,--- ,ag. Every monomial in the left hand side corresponds

to a lattice point in F,. Setting

a2t1 agtg a4t3 a40ay agagai%
g _—, — -, g _—, )\ et 5 s /,L = —5, (125)
aq ay aq ai ai
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we obtain a family of K3 surfaces Fy = {So(A, 1)} with two parameters A, y with
So(\ 1) : Fo(m,y,2) = ay2®(z +y+ 2+ 1) + dzyz + p = 0. (1.2.6)

In the same way, we obtain the corresponding families of K3 surfaces F; = {S;(\, )}
for P; (j = 1,2,3) in (1.2.2) given by the affine equations

St ) s Fi(z,y,z) =ayz(z +y+ 2+ 1) + Azv 4 py = 0, (1.2.7)
So(A\ ) : Fy(z,y,2) =ayz(e+y+2z+ 1)+ e+ p =0, (1.2.8)
Ss(A\, ) - Fy(z,y,2) =ayz(x +y+ 2+ 1) + Az + pey = 0. (1.2.9)

Remark 1.2.1. Recently, Ishige [I2] has made a research on the family Fy derived from
the polytope Py in (1.2.3). He made a computer aided approximation of a generator of
the monodromy group of his differential equation. There, he noticed that his monodromy
group s isomorphic to the extended Hilbert modular group for Q(\/ﬁ)

In this section, we give elliptic fibrations for our families F; (j = 0,1,2,3) of K3
surfaces. The singular fibres of these fibration are given as in Table 1.1.

Family Fo Fi Fy Fy
Singular Fibres Ig+]15+6]1 Ig+[§+6]1 ]T+111+611 Ig+]9+6[1

Table 1.1: The types of singular fibres for our families.

1.2.1 Elliptic fibration for F

Proposition 1.2.1. (1) The surface Sy(X\, ) is birationally equivalent to the surface
defined by the equation

Y2 =4ad + (N2 20z + 2% 4+ 2022 + 223 + 2Nl + (—22pz — 2u2? — 2uz?)xo + p3d22.10)

This equation gives an elliptic fibration of So(\, ) over z-sphere.
(2) The elliptic surface given by (1.2.10) has the holomorphic sections

: = (0
Q z = (l’g,y1,2> ( 7:UZ7Z)a (1211>
R:zw (xg,11,2) = (0, —puz, 2).
Proof. (1) By the birational transformation
— I —A\To — Y1 + pz — Toz — Tez?
r = — _—
xo 2102 ’
(1.2.6) is transformed to (1.2.10).
(2) This is clear. O

Set

Ao = {(\ ) € CHAu(N (AN — 1)% — 2(2 + 25 (20A — 1)) — 3125u%) # 0}. (1.2.12)
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Proposition 1.2.2. Suppose (A, ) € Ag. The elliptic surface given by (1.2.10) has the

singular fibres of type I3 over z = 0, of type I15 over z = oo and other six fibres of type
L.

Proof. (1.2.10) is described in the Kodaira normal form
yi = 4} — ga(2)71 — g3(2), 2 # oo, (1.2.13)

with
4

1
ga(2) = 2—16(1&4 + 4320z + T20%2(1 + 2) + 108M\%2%(1 + 2)?
+T72223(1 + 2)3 + 182%(1 + 2)(24p + 22(1 + 2)?)),

g3(2) = 2_—12@6 + 36Xz + 6X°2(1 + 2) + 108\ 2 pz?(1 + 2) + 150122 (1 + 2)?
+108A 23 (1 4 2)2 + 200%23(1 + 2)® + 15A224(1 + 2)* + 6)2°(1 + 2)°
\ +22(216p2 + 36p2%(1 + 2)3 + 2*(1 + 2)%)),
and
ya = 4as — ho(21)x9 — hs(21), 21 # 00, (1.2.14)
with

1
ho(z1) = 2uz0 (1 4 21 + A22) + E(l + 21 + A22)*,
L s 23, 1 26 | 210
hs(z1) = —(6N21(1 + 21+ Azp)° + ﬂ(l + 21+ A7)+ pz),
where z; = 1/z. We have the discriminant of the right hand side of (1.2.13) for x; ((1.2.14)
for x4, resp.):
Doy = 64p323( N2 + 3022 + 2Tpz + 3X2% + 30222 + 23 + 623 + 321 + 321 + 32° + 29),
Do = 6413217 (1 + 321 + 327 4+ 327 + 23 + 623 + 3X2] + 32221 + 3A%27 + 2Tzt + A329),
(1.2.15)

respectively.
From these data, we obtain the required statement (see [Kod]). O

Remark 1.2.2. We have a parametrization

Aa) = %’ u(a) = (2a — 2)132(5a +1)2

of the locus N*(4X — 1)3 — 2(2 + 25X(20\ — 1))u — 31252 = 0. It is a rational curve. In
Section 2.1, we shall obtain the above Ay as the complement of the singular locus of the
period differential equation for Fo in the (X, )-space.

Remark 1.2.3. Let x denote the Euler characteristic. According to [Kod] Theorem 12.1
(see also [Shg2]), an elliptic fibred algebraic surface S over PY(C) is a K3 surface if and
only if x(S) = 24 provided S is given in the Kodaira normal form. Due to this criterion
and Proposition 1.2.2, we can check directly that So(\, i) is a K3 surface for (A, u) € Ay.
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(0)

Figure 1.1: The singular fibre at z = 0.

b6 7 7 b6 '

by

(0)

Figure 1.2: The singular fibre at z = oco.

For (A, i) € Ao, let O be the zero of the Mordell-Weil group of sections of the elliptic
fibration given by (1.2.10) over C(z). O is given by the set of the points at infinity on every
fibre. Let @ and R be the sections in (1.2.11). R is the inverse element of @) in the Mordell-
Weil group. Let F' be a general fibre of this fibration. Let I3 = ag+a;+a) be the irreducible
decomposition of the fibre at z = 0 given as in Figure 1.1. We may suppose O Nay #
b,QNa; # ¢ and RNa) # ¢. By the same way, let I15 =by+ by + -+ +by+b] +---+ 0.
be the irreducible decomposition of the fibre at z = co given as in Figure 1.2. We may

suppose O Nby # ¢, Q Nbs # ¢ and R N by # ¢.

We set a sublattice Ly = Lo(A, 1) C Ha(So(\, ), Z) for (A, ) € Ag by

LO()\HM) = <b17b27b37b4a b57vaﬁa b77b,17b/2a bgbb:hbgv Ra bgab,% F7 O)Z (1216)
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Set

Let E;; (1 < i,j < 18) be the matrix unit. We obtain the corresponding intersection
matrix M, for Ly:

My =A15(—1) +2E1717 — (Es7 + Erg) + (Es7 + Er5) — (Eras + Eis14) + (Ei315 + Er513)

— (Es9+ Eos) — (Eie17 + Fi716) + (Fear + Eire) + (Es 16 + Fiss) + (Eva1r + Eir14).
(1.2.17)

We have
det(My) = —5. (1.2.18)

Therefore, the generators of Ly are independent.

1.2.2 Elliptic fibration for F;

Proposition 1.2.3. The surface Sy(A, i) is birationally equivalent to the surface defined
by the equation

22 =y 4+ (P 2wy + ot — 42yt + (=8t — 8 x})yr + 16025, (1.2.19)
This equation gives an elliptic fibration of Sy(\, ) with the holomorphic section
Qw1 (21,y1,21) = (21,0,4)23). (1.2.20)

Proof. By the birational transformation

= 22y, Y= yi
—ANT} 4 pyr + Ty + 21 2wy (—4Ax? + pyr + 2191 + 21)
R —AA? + gy + 2 + 2
2x11 ’
(1.2.7) is transformed to (1.2.19). O

(1.2.19) gives an elliptic fibration for the surface Sy(A, ). Set
Ay = {(\, 1) € CHA(T290% — 54N(27p — 1) + (1 + 27u)* # 0)}. (1.2.21)

Proposition 1.2.4. Suppose (A, ) € Ay. The elliptic surface given by (1.2.19) has the
singular fibres of type Iy over x1 = 0, of type I over x1 = oo and other six fibres of type
L.
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Proof. (1.2.19) is described in the Kodaira normal form

25 = 4ys — ga(x1)y2 — g3(x1), 1 # 00, (1.2.22)

 Apad

3
203 ot 162t 8£B
— 8zl + L —1 - >

3 3 3 3
6 40z, 10p%z? 40 BA\fad  8utad 10!
KT Ty 1 BT Ty KTy 2.4
8
or T T TTog Ly 3 9 g oM

4pxy 16p%z; 225 8\xf o 6 32pxb 32X\uab
— — 16\"x] — =
9 e T 3

32ux] n 32u%xS  8xT  32X\x]  64uxl N 32z% 128x?>

— 8)\/m:{’

| 9 9 9 3 9 9 27

and
z?Q, = 4y§ — ho(z2)ys — hg(z2), X9 # 00, (1.2.23)
with

( 1622 8x3
=

3 3
izl ptah

3,..7
_3_3>’

12823 3223 8x5 32 x5 64pxy 228
holas) = —4( - 208, B20h Bef S\oj  Oduag | 2o
27 9 9 3 9 27
8A\z$§ R2uxs 32 pxs  32u2§  4uxl
167225 — 2 2 2 2
3 T 3 T T9 79
16228 n 32utzs
3
_ 16228 n 10p%25 8 32ut s B 32ut s
3 9 9 9
10 21E8 40 3 11 8\ 3,9 8 4.9 10 4 10 4 5 11 2 6 12
X KTy alkd W Ty M%—i- R X B 4 K )’
\ 9 27 3 9 9 9 27

_ay Shid + 16pry  4pxd
3
5
2

Sux

— 2}

—8A\uxh +

+

+ 8A\purs

where 1 = 1/x9. We have the discriminant of the right hand side of (1.2.22) for y;
((1.2.23) for ys, resp.):

Dy = 256229 (M\p® — pt + 3\pPay — 4pdxy + 3\pa? — 6p2a? + Aad + 27223
—4px? — 36w + 8plat — 2 — 36\t + 16px] + 823 — 1629),
Do = 256223 (—16 + 8x9 — 23 — 36A\x3 + 16ux3 + A\as + 27A\%w3 — 4pas — 36\
8u2xs + 3y — 6pxy + 3 ey — 4pdxd + b — ptah).

From these deta, we obtain the required statement. O]
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Figure 1.3: An elliptic fibration for P;.

The elliptic fibration given by (1.2.19) is illustrated in Figure 1.3.

For this fibration, let O be the zero of the Mordell-Weil group, ) be the section in
(1.2.20) and F be a general fibre. Note that Q Nas # ¢ at 1 = 0 and Q Ny # ¢ at
r1 = 00. Set

Ll - <a17 A2, A3, A4, aip aga al27 a/17 C1, b07 b1> b27 b37 Co, Cs, 07 Qa F>Z (1224)
We have the following intersection matrix M; for L;:

M, =A15(—1) — (Esg + Egs) — (Fia15 + E1514) + (Ers15 + E1s.13) + (Es17 + Evrs)

+ (Era17 + Ei714) — (Evea7r + Err16) + (E161s + Eisi6) — (Eis16 + Eie1s) + 2E181s.
(1.2.25)

We have det(M;) = —9. Therefore, the generators of Ly are independent.

1.2.3 Elliptic fibration for F;

Proposition 1.2.5. The surface Sy(\, ) is birationally equivalent to the surface defined
by the equation

2= at + (A +y° 4+ 207 +yh)at + (=8uy’ — 8uy')ay + 1607yt (1.2.26)
This equation gives an elliptic fibration of Sa(\, p) with the holomorphic section
Q ‘Y= (xla Y, zl) = (0>y7 4“’?/2) (1227)

Proof. By the birational transformation

v — i :_Jfly—4ﬂy?+$1y+21
2y(21y — 4py® + 21y + 21) 2x1y 7
(1.2.8) is transformed to (1.2.26). O
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(1.2.26) gives an elliptic fibration for So(\, it). Set
Ay = {(\, 1) € CPHAu(N(1+ 270)% — 22p(1 + 189N) + (1 + 576\ u* — 2561%) # (}.2.28)

Proposition 1.2.6. Suppose (A, ) € Ay. The elliptic surface given by (1.2.26) has the
singular fibres of type I over y = 0, of type 11, over y = oo and other siz fibres of type
1.

Proof. (1.2.26) is described in the Kodaira normal form

23 =425 — g ()72 — g3(y), Y # 0, (1.2.29)
with
( 16022 8\y? Yy
= _4< — — Suy® — =
92(y) st 3 HY =3
16 \y* . A 8\ e Myt P
gt B e Ty
T3 L I T A R
128033 322%yt 32Xyt
9s(y) = —4< —— T 3 1647y
SA\y°  64XN2°  Suy® 32 uy® 2y 32)\°
U8 6N S 32”20 32y
9 9 3 3 27 9
2290 4y”  16M\y7 10y 32M\y8
et AP R A Sy + —2 —
+ 9 + sy + 9 3 + sy’ + 9 9
8,uy8 40y9 B 8)\y9 10y10 N 4y11 N 2y12)
\ 3 27 9 9 9 27 )’
and
232, = 4x§ — ha(yr1)xs — hs(yr), w1 # oo, (1.2.30)
with
( 1 4y 4y7 | 8\
h :—4(—————22——
2(y1) 57 3 n-—5 t—3
4 4 5 2.6
Sy 16y g 8Ay 5 16A y1>
3 3 Buyy + 3 8Ly 3 )

2 4y 1043 N 40y7 8y

ha(yy) = —4( =
3(v1) (27+ 9 9 27 9

0y _ 32hy1 8wyl 4y 16M

_ 5
9 9 3 9 3 8
205 32Xy 322%y0 S\yT  64X\%y7  8uy?d
—i—% _ 991 4 . Y1 4 S/Ly? _ 991 4 5 Y1 4 /;yl
322yl 32075 32 uyf s s 128M3y)
_ _ 1 _ _>
5 Ty 5 1wy A

\
where y = 1/y;. We have the discriminant of the right hand side of (1.2.29) for 25((1.2.30)
for x3, resp.):
Dy = —256p2y7 (1603 — 8\2y + 36 uy — 27’y + M\y? — 160%y% — pgy? + 36 uy? + 4y
—8A\2y3 — 3uy® + 6yt — 3uyt + 4\y® — py® + \yb),
Doo = —=256y1 (A + 4hy1 — pyn + 6AyF — 3uy? + 4 g7 — 8N*yf — 3uy? + Ayt — 160y}
— iyt + 36y — 8N*yY + 36 uy; — 271 Y] + 16A%yY).
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Figure 1.4: An elliptic fibration for P,
From these data, we obtain the required statement. O]

The elliptic fibration given by (1.2.26) is illustrated in Figure 1.4.
For this fibration, let O be the Mordell-Weil group, @ be the section in (1.2.27) and
F be a general fibre. Note (Q Nas # ¢ and Q) N cy # ¢. Set

L2 - <(11, az, ag, 4, as, a/57 CLZL, a;’n a/27 alla C1, b0> bla Co, C3, 07 Qa F)Z (1231)
We have the following intersection matrix My for Ls:

My =A15(—1) — (Ei011 + Er110) — (Es6 + Ei61s) + (Eaar + Evra) + (Biaar + Evra)

— (Ehaps + Eisia) + (Ersias + Eisas) — (Biear + Eirie) + (Eeas + Eisie) + 218,18
(1.2.32)

We have det(My) = —9.

1.2.4 Elliptic fibrations for F;

Proposition 1.2.7. The surface Ss(\, i) is birationally equivalent to the surface defined
by the equation
v =20 4+ (N4 22wy + 2] — dpat — 4a)) 2] + 162 2. (1.2.33)

This equation gives an elliptic fibration of Ss(\, 1) with the holomorphic sections

{Q 2= (w1, 0, 21) = (21, 4pat (o1 4 N), 4atp), (1.2.34)

O 2z — (551,?/1,21) = (331,070)-

The section O satisfies 20" = O.
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Proof. By the birational transformation

. 222 (4pux? — 21) oyt Az tra 21 (dpaf — 21)

) - R = )
Y1 + Azp + 1129 221 (4pa? — z1) 221 (y1 + A2y + 2121)

(1.2.9) is transformed to (1.2.33).

(1.2.33) gives an elliptic fibration for S5(\, i). Set

Az = {(\, 1) € CHAu(7290% — (4p — 1)% + 54AN(1 + 12u)) # 0}.

(1.2.35)

Proposition 1.2.8. Suppose (A, ) € Ag. The elliptic surface given by (1.2.33) has the
singular fibres of type Iy over z = 0, of type IS over z = oo and other six fibres of type

L.
Proof. (1.2.33) is described in the Kodaira normal form

yg - 423 - gQ(xl)ZQ - 93(x1>a T 3& 0,

with

(1.2.36)

S\2ux? ANz N 823 N 16\ pux?

3
92(1'1):—4<—————2>\2$%+ T 3 3

3 3 3 3 3 3 3
22_)\76 N 4)\;1’1 N 10);;%% B 8)\4:31:%
+40)\3x? 8o} 32\ pad N 10N 2] 32\%a]
27 9 9 9 9
16Ny N 320 at  Axy 160 ay 32Apua?
3 9 9 3 9
+16)\2/w‘;’ n 64Np% s n 2_1‘(15 B 328 L 32228
9 9 27 9 9
_8;@? n 32\ px$ n 32p2 29 B 12829 B 8_3:{

9 9 9 27 9
64Nz ] n 1627 n 64p%x] n 32z%  64pxt 12827

g3(r1) = —4<

9 9 9 9 9 27

and

y§ = 4Z§ — ha(w2)23 — ha(x2), X2 # 00,

29

3

x] N 16Az] N Suxi 16y} N 8z} | 16u} 1695(13)7

).

(1.2.37)



(e = —a( - 100 S Yok o 16 | Sund 16w} o)
o 3 3 3 3 3 3 3 3

+8)\2xg N 16\ x5

3 3

12823  32x5  64uxi  Sx5 64Xy 16u)

I :_4<_ 2 2 2 Oly 2 2
o(2) 7 9 9 9 9 9
64u2x§+2_xg 322xS  32X\%x§  8uaxf

9248 4 8NZuz§  4AN3xd )\4:153)
— :L‘ — —
? 3 3 3 )

9 27 9 9 9
+32)\uzxg+32u2x3 128p3xS 4 xl  16M%a)

9 9 27 9 3
32Xty N 16\ %pxl  32\328 N 64 px]

9 9 9 9
+10)\2x§ B 16A2 s n 40N3z) B 8\ B 3223 )
9 3 27 9 9
+1O/\4x§0 8N\ pd? n 4N xdt n 2/\%52)

9 9 9 9

\

where 1 = 1/x5. We have the discriminant of the right hand side of (1.2.36) for 2,
((1.2.37) for z3 resp):

Do = —256p321° (A" + 4X3z; + 60227 — 8\ 2pux? + 4 xd — 8\%xd — 16\ ux?
+xf — 16 x] — 8uxt + 1622 — 825 — 32uzf + 1629),
Do = —256p%25(16 — 8wy — 32uxs + 23 — 16 23 — 8uas + 16223
+4Ax3 — 8\2a3 — 16\ uws + 602y — 8N\ pxy + 4\3x5 + \1af).

From these data, we obtain the required statement. O

The elliptic fibration given by (1.2.33) is illustrated in Figure 1.5.
For this fibration, let O be the zero of the Mordell-Weil group, ) be the section in
(1.2.34) and F be a general fibre. Set

/ ! / / / /
L3 = <CL1,G,Q,CL3,CL4,O/O,CL4,CL3,CL2,al,Cl,bo,bl,bz,CQ,Cg,O,F, Q)Z (1238>

We have det(L;) = —36.

We need another elliptic fibration.

Proposition 1.2.9. The surface Ss(\, i) is birationally equivalent to the surface defined
by the equation

v = a4+ (% 4 2uz 4 27+ 2u2? 4 22° + 2N ad + (—8Apz® — 82t — 8M2°)xy + 16AEER.39)
This equation gives an elliptic fibration of S3(\, ) with the holomorphic sections

{ QO R (‘rhylaz) - (074)‘2372)7

1.2.40
Ro: 2o (zon.2) = (0,402, 2) 1240
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Figure 1.5: An elliptic fibration for Ps
Proof. By the birational transformation
4\z? —uxy — 1y — 2l — )2 + 4AN3
Tr = — / 7y - / Y
T 220z
(1.2.9) is transformed to (1.2.39). O

Proposition 1.2.10. Suppose (A, ) € As. The elliptic surface given by (1.2.39) has the
singular fibres of type Iy over z =0, of type Iy over z = oo and other siz fibres of type I.

Proof. (1.2.39) is described in the Kodaira normal form

Yy = 4$§ — g2(2)x2 — g3(2), 2z # o0, (1.2.41)



4 4 4
g2(2) = —4( — '% — % — 2?2 — % — % — 8 \u2® —4pt? gAz?t
5 4 6 4 7 8
—4pt — 2Pt — % 8N\2° — duz® — 228 — % — % — %),
2u8  ApPz 10ptz2? 4pS2?
_ 4(
9a(2) 7 "o TT9 Ty
40p323  8Aud3 N 200123 N 100224
27 3 9 9
40p320  10pt2t 4pd
8)\ 2.4
+3AU"Z" + 9 + 9 + 9
40 2.5 40 3.5 2 6
soast 0T s A0 230
9 27
820 20025 200225
+ 32 16220 ¢ SZ 16z + T E
40p325 427 402"
P 2 e+ T et
27 9
1028 40pz®  10p%2% 402°  8A2°
R L B
20027 n 1021% n 4,uzlog+ 421 n 2212)
\ 9 9 9 9 27 /)7
and
ya = 4a3 — hy(z1)xs — ha(z1), 21 # o0, (1.2.42)
with
s 1 4 4 2 4 3 4
h2<21>——4<—g—%—zzl—%—%—8)\2?—42%—2—1—8)\211
4 2o Apz 5 2.5
—A4pzy —2u 2 — 5 SA\pz] — 4ptz]
o2 A2y Atz ey )
! 3 3 3 /)
2 4z 1022 4pz2? 4023 8Az 20pz} 102
i _ _4(_ 221 1 1 1 1 1 L gyt
(1) 2779 9 o 27 '3 9 g "o\
A0pzf  10p%2f 427 40puz} 404225
+ g’zl + gzl +§+8Azi’+ PR el + ’;'Zl
229 8\z0 20029 20u%28  40p328
2 o 20 g 2000 A0
Apz? 400327 10p%28 10p%28 40p328
+—’§Zl + 82l + ’;Zl + ’;Zl + 82+ ’;Zl + %Zl
400329 N A3z N 2012} N 104210 N 40 210 N 40 21t N Z/f",zP)7
( 27 3 9 9 9 9 27
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Figure 1.6: Another elliptic fibration for P;

where z = 1/2z; We have the discriminant of the right hand side of (1.2.41) for a/5((1.2.42)
for 2’3, resp.):

Dy = 25632% (1 + 3p%2 + 3uz? + 3222 + 23 + 27A23 + 6pz® + 32% + 3uzt + 325 + 29),
Do = 256320 (1 + 321 + 322 + 3uz? + 23 4+ 27TA23 + 6uzd + 3pzf + 3u22 + 3p22) + 1329).

From these data, we obtain the required statement. O]

This fibration is illustrated in Figure 1.6.
For this fibration, let O be the zero of the Mordell-Weil group, )y and Ry be the
sections in (1.2.40) and F' be a general fibre. Set

L3 - <d17 d27 d37 d47 dip dga d/27 dlla €1, €2, €3, €4, 6/37 6,27 07 Q07 R07 F>Z (1243>
We have the following intersection matrix M3 for Ls:

Mz =Ai5(—1) +2E1515 — (Es9 + Eog) — (Era15 + E15.14) — (Ei2,13 + Ei312)
+ (Es16 + Eies) + (B 17 + Evre) + (Evia6 + Ei611) + (Ersar + Eiras)

— (E1s.16 + Ei615) + (E1518 + Eisas) + (Eieas + Eis16) — (Eie17 + Eir16)
(1.2.44)

We have det(Msz) = —9.

1.3 The Picard numbers

In this section, we define the period mappings and determine the Picard numbers for our
families. We state the precise argument only for the case of the family Fy of the K3
surfaces So(A, p).
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1.3.1 S-marked K3 surfaces
The lattice L := L in (1.2.16) is contained in NS(Sy(\, pt)) and of rank 18. So we have

Proposition 1.3.1.
rank NS(S(A, p)) > 18.

We have also
Proposition 1.3.2. L is a primitive sublattice of Ha(So(\, ), Z).

Proof. By (1.2.18), we have det(L) = —5. It does not contain any square factor. So L is
primitive. [

Definition 1.3.1. For a K3 surface So(A, 1) (A, 1) € A), set
Y5 = b1, Y6 = b2, 77 = b3, ¥ = b, Y9 = b5, 110 = Q,

Y11 = bg, Y12 = by, 113 = bll, Y14 = b/27 Y15 = bfg, Y16 = bﬁp
Y17 = bir,, ms = R, 719 = bé, Y20 = b/7, Vo1 = O, Yoo = I,

given by (1.2.16). Let Sy = So(Xo, o) be a reference surface for a fived point (N, j1o) €
A=Ay Set L = L(\o,p0) C Hy(S,7Z). We define a S-marking ¥ of So(\, 1) to be an
isomorphism 1 : Hy(S(\, 1), Z) — L with the property that b= (v;) = ; for 5 < j < 22.
We call the pair (So(A, i),v) an S-marked K3 surface.

By the above definition, a S-marking ) has the property:

VHF)=F,¢v7(0)=0, ¢ Q) =Q, v '(R) =R,
O by) = by, IO, =0 (1< <T).

Definition 1.3.2. Two S-marked K3 surfaces (S, ) and (S',v') are said to be isomorphic
if there is a biholomorphic mapping f : S — S" with

¢/ O f* e} w_l - lng(S,Z)

Two S-marked K3 surfaces (S,v) and (S',¢') are said to be equivalent if there is a
biholomorphic mapping f : S — S" with

Yo foovTp =id;.

By Proposition 1.3.2, the basis {5, -+, Y22} of L(C Ha(So(A, 1), Z)) is extended to a
basis

{717727737747757"' 7722} (131)

of Hy(So(\, 1), Z). Let {77, -+ ,735} be the dual basis of {71,722} with respect to
the intersection form (0.2.1). Set

Ly = (1,773, 70)z C Ha(So(As ), Z). (1.3.2)

We have L, = L*.
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1.3.2 Period mapping

First, we state the definition of the period mapping for general K3 surfaces.

For a K3 surface S, there exists unique holomorphic 2-form w up to a constant factor.
Let {71, y22} be a basis of Hy(S,Z).

n/:(Llw:...:/ w) c P*(C)

Y22

is called a period of S. Let {71, ,7} be a basis of Tr(S). Note that

/w =0, ("y € NS(9)). (1.3.3)

The period 7’ is reduced to

nz(ﬁlw:--w/w)eﬁ”’”_l((f).

Yr

We note that NS(S) is a lattice of signature (1,-) and Tr(S) is a lattice of the signature

(27 )

Definition 1.3.3. Let Sy = Sy(\o, o) be the reference surface. Take a small neighborhood
d of (Mo, o) in A so that we have a local topological trivialization

7 {So(\, )|\, i) € 8} — Sy x 6.
Let p: Sy x 8§ — Sy be the canonical projection, and set r = po . Then,
(A 1) = Tlse00)

gives a d@formvation of surfaces. We note that r’ preserves the lattice L. Take an S-
marking 1 of So. We obtain the S-markings of So(\, 1) by v =1 orl for (A, u) €. We
define the local period mapping ® = ®q : § — P3(C) by

B((\, 1)) = </w—1(w>w o /w—ww)’ (1.3.4)

where vy, ,74 € L are given by (1.3.1). We define the multivalued period mapping
A — P3(C) by making the analytic continuation of ® along any arc starting from (N, o)
in A.

In general, we have the Riemann-Hodge relation for the period:
My =0, My >0,

where M is the intersection matrix (7 - v;)1<jr<22-
For our case, according to the relation (1.3.3), the Riemann-Hodge relation is reduced
to

nAln =0, nAtn >0, (1.3.5)
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where

A= (7] - )i<ik<a

772(/ w:/ w:/ w:/ w).
P=L(m) P=L(y2) P=L(v3) =1 (ya)

Remark 1.3.1. In Theorem 1.4.1, we shall show that the above matrixz A is given by

and

0
A=Ay = (1)

O O = O
OO O =
=N OO

—2

Set
D=Dy={6= (& :&:8:8) e PY(C) | A = 0,64 > 0}
We have ®(A) C D. Note that D is composed of two connected components. Let Dt

be the component where (1 :1: —/—1:0) is a point of D". And let D~ be the other
component.

Definition 1.3.4. The fundamental group 71 (A, *) acts on the Z-module (= (1), - ;™ (74))z-
So, it induces the action on D. This action induces a group of projective linear transfor-
mations which is a subgroup of PGL(4,7). We call it the projective monodromy group of

the period mapping ® : A — D.

1.3.3 The Picard number

Definition 1.3.5. Let (S1,m,PY(C)) and (S, mo, PY(C)) be two elliptic surfaces. If there
exist a biholomorphic mapping f : Sy — Sy and ¢ € Aut(P*(C)) such that pom, = myo f,
we say (Sy, 71, PY(C)) and (Sy, 72, P (C)) are isomorphic as elliptic surfaces.

For an elliptic surface given by the Kodaira normal form y? = 423 — g(2)z — g3(2),
we define the j-invariant ( see [Kod] Section 7):

L 6(2) B
j(z) = B0 — 2707 € C(2). (1.3.6)

From the definition, we have

Proposition 1.3.3. Let (Sy, 7, PY(C)) and (Sy, w2, P1(C)) be two elliptic surfaces given
by the Kodaira normal forms. Let j1(z) and jo(z) be the corresponding j-invariants of the
Kodaira normal forms, respectively. If (Sy, 7, PY(C)) and (S, me, PY(C)) are isomorphic,
then there exists ¢ € Aut(PY(C)) such that 7, (p) and 75, (¢(p)) are the fibres of the
same type for any p € PY(C) and jy 0 o = j;.

For (\, ) € A, let
71 So(\, i) — PY(C) = (z-sphere)

be the canonical elliptic fibration given by (1.2.10).
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Lemma 1.3.1. Suppose (M1, 1), (Mo, pia) € Ao If (S(A1, 1), m1, PYH(C)) is isomorphic to
(S(A2, p12), w2, P(C)) as elliptic surfaces, then it holds (A1, 1) = (A2, p2).

Proof. Let f : S; — Sy be the biholomorphic mapping which gives the equivalence of
elliptic surfaces. According to Proposition 1.3.3, there exists ¢ € Aut(P'(C)) which
satisfies ¢ o m = m o f. By Proposition 1.2.2, we have 7; '(0) = I3 and 7 '(00) = I13
(7 =1,2). So, ¢ has the form ¢ : z — az with some a € C—0. Let Do(z; A\j, 1t;) (7 =1,2)
be the discriminant. From (1.2.15), we have

Do(2; Aj, 115)
64,u§?z3
= /\? + 3)52 +2Tpiz + 3X2° + 3/\?7:2 + 25+ 602° + 321+ 302" +32°+ 20 (1=1,2).
The six roots of Dg(z; A1, 1)/64u32% (Do(z; Ag, p12)/64u32°, resp.) give the six images of
singular fibres of type I of S(A1, 1) (S(Ag, i2), resp.). The roots of Dy(z; Ay, py)/64p523

are sent by ¢ to those of Dg(z; Aa, o) /641323, Observing the coefficients of Dy(z; Ay, 1)
and Dy(z; \g, pt2), we obtain that a = 1. Therefore, we have (A1, 1) = (g, p2). O

Proposition 1.3.4. Two S-marked K3 surfaces (S(A\1,p1),11) and (S(Ae, p2),vs) are
equivalent if and only if there exists an isomorphism of elliptic surfaces between (S(\y, p1), 71, P1(C))
and (S(Az, pi2), w2, PH(C)).

Proof. The sufficiency is clear. We prove the necessity. Let (A1, 1), (A2, o) € A. Suppose
the equivalence of S-marked K3 surfaces

(S(A1, 1), ¥1) = (S(Ag, 1), P2).

Then, there exists a biholomorphic mapping f : S(A1, 1) — S(Ag, p2) such that v, o
f« oL = idy. Especially, for general fibres I} € Div(S;) and F, € Div(S,), we have

f*(F1> — FQ.
So, S(Az, 112) has two elliptic fibrations 7, and 7 o f~! which have a general fibre F;.
According to Lemma 0.2.1, it holds

g =mo f!
up to Aut(P'(C)). O

Corollary 1.3.1. Let (A1, p1) and (Ag, pio) be in A. Two S-marked K3 surfaces (S(\1, p1), 1)
and (S(Aa, p2), 12) are equivalent if and only if (A, 1) = (Mg, f2).

Proof. From the proposition and Lemma 1.3.1, we obtain the required statement. O

Theorem 1.3.1. (The local Torelli theorem for S-marked K3 surfaces) Let § C A be a
sufficiently small neighborhood of (Xo, po), and (A1, p1), (Mg, p2) € 0. Suppose P(Ay, p1) =
D (Ag, p2), then there exists an isomorphism of S-marked K3 surfaces (S(A1, 1), 11) =~

(SN2, p2),92).
We have

Theorem 1.3.2. For a generic point (A, p) € A, we have
rank NS(S(A, u)) = 18.
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Proof. By Proposition 1.3.1, we already have rank NS(Sp(A, 1)) > 18. Let 6 be a small
neighborhood of (A, p). Suppose we have rank NS(S(N, ') > 18 for all (XN, ') € 4.
Then, ®(9) cannot contain any open set of D. By Corollary 1.3.1 and Theorem 1.3.1, the
period mapping is injective. This is a contradiction. O

Corollary 1.3.2. The C-vector space generated by the germs of holomorphic functions

[ o]
Y= (1) Y1 (ya)

Proof. 1t is clear, for the rank of the transcendental lattice Tr(Sy(A, p)) is 22—18 =4. [

18 4-dimensional.

We can determine the Picard number of the family F; (j = 1,2,3) by the same
method. Recall the lattice Ly (Lo, L3, resp.) in (1.2.24) ((1.2.31), (1.2.43), resp.) for F;
(Fa, Fs,resp.). Set j € {1,2,3}. Let {7{,---,73,} be a basis of Hy(S;(\, 11), Z) such that
we have (77, ,7i)z = L;. Take a dual basis {71, , 722} of Hy(S;(A, ), Z), namely
it holds (v; - %) = dx (1 < j, k < 22). By the same procedure as for F;, we define the
multivalued analytic period mapping ®; : A; — D; given by

(A, 1) — (/%wj:...:/mwj»

where w; is the unique holomorphic 2-form on S;(A, 1) up to a constant factor and D;
is the domain of type IV defined by the intersection matrix (v - 9;)1<jr<a. Moreover,
we have the Kodaira normal forms of the elliptic fibrations (1.2.19), (1.2.26) and (1.2.39)
(these forms appear in the proofs of Proposition 1.2.4, 1.2.6 and 1.2.10). Observing
the coefficients of these forms, we can prove the lemmas corresponding to Lemma 1.3.1.
Therefore, we obtain the following theorem.

Theorem 1.3.3. The Picard number of a generic member of the families F; (j = 1,2, 3)
are equal to 18.

1.4 The Néron-Severi lattices

For our further study, we need the explicit lattice structures of the Néron-Severi lattices
and those of the transcendental lattices. In this section, we show the following theorem.

Theorem 1.4.1. The intersection matrices of Néron-Severi lattices NS and the transcen-
dental lattices Tr of a generic member of F; (j = 0,1,2,3) are given as in Table 1.2.

Remark 1.4.1. Koike [Koi] made a research on the families of K3 surfaces derived from
the dual polytopes of 3-dimensional Fano polytopes. The polytopes Py, Py and P3 in our
notation are the Fano polytopes. Due to Koike, we have Néron-Severi lattices for the dual
polytopes Py, Py and P35 (given by Table 1.3).

Table 1.3 and Table 1.2 support the mirror symmetry conjecture for the reflexive poly-
topes Py, P, and Ps.
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Polytope Family NS Tr

Py Fo Eg(—1) ® Eg(—1) @ G _12) Ue G _12) =: Ay
Py Fi Es(—1)® Es(—1) @ (g g) U® (g g) = A4
Py Fo Es(—1)® Es(—1) @ (g g) U® <g _32) =: A,
Py F3 Eg(—1) @ Eg(—1) @ (g _32> U (g 2) =: A3

Table 1.2: The Néron-Severi lattices and the transcendental lattices for the polytopes
PQ,Pl,PQ and Pg.

Dual Polytope NS Tr
. 2 1 2 1
Py (1 _2) U® Eg(—1) @ Eg(—1) @ (1 _2)
. 0 3 0 3
P; <3 _2) U® Eg(—1) © Es(—1) & (3 2)

Py (g ‘;) U Es(—1)® Eg(—1) @ (g _32)

Table 1.3: The Néron-Severi lattices and the transcendental lattices for the dual polytopes.

Remark 1.4.2. According to the above theorem, a generic member of F; (7 = 0,1,2,3)
has the Shioda-Inose structure. (see Morrison [Mo], Theorem 6.3 ).

Remark 1.4.3. The Néron-Severi lattices of K3 surfaces with non-symplectic involutions
are studied by Nikulin [Ni]. All of our cases are not contained in his results. The lattice
structures of 95 weighted projective K3 surfaces given by M. Reid are studied by Belcastro
[Bel|. Our lattice of Fy coincides with No.30 and No.86 in her list. Our lattices of Fy, Fo
and F3 are not contained in her results, neither.

1.4.1 Proof for the case F,

We prove Theorem 1.4.1 for the case Py in a naive way. Recall the lattice Ly in (1.2.16).
By Theorem 1.3.2, for generic (A, u) € Ay,

dim(NS(Sp(A, 1)) = 18 = dim(Ly).
According to Proposition 1.3.2, we have (L ®z Q) N NS(Sy(A, 1)) = Lo. Hence, we have
NS(SO()\a :u)) = LO

for generic (A, ) € Ao.
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Lemma 1.4.1. The lattice Ly is isomorphic to the lattice given by the intersection matriz

M= B(-ne Do (] ),

and its orthogonal complement is given by

2 1
weve(? 1),

Proof. Let My be the matrix given in (1.2.17). Set

j—th
=~
Tj:t((),"',o, 1,0,---,0) (1<j<18) (1.4.1)
and
vig = (=1, -2, -3, —4, -5, -2, —4, -3, —1,-2, -3, -4, -5, -2, -4, -2,1,1),
U7 = t(5; ].07 157 20; 257 13; ]-77 9’ 17 27 37 47 5’ 37 3’ 17 1’ _3)’
U]_S = t(_2’ _47 _67 _87 _10’ _67 _67 _27 07 07 07 07 O’ _1’ 1’ 27 _27 1)
Set

U — (Tla T2,73,T4,75,76,77,78,79,710,711, 712,713, 14, T'15, V16, V17, UlB)'

This is an unimodular matrix. Then, we have ‘UMyU = M/. By observing Fg(—1) @
Es(—1) @ U @ U @ U and M}, we obtain the matrix Ay. O

Therefore, we obtain Theorem 1.4.1 for F.

1.4.2 Proof for the case P,

Recall the elliptic fibration given by (1.2.19) and Figure 1.3.
The trivial lattice for this fibration is

Tl = <a17 A2, a3, A4, aip aé’n a’/27 alla C1, b07 bl; b27 b37 C2, C3, 07 F>Z
Let @ be the section in (1.2.20). From (1.2.24), we have
Ll = <Q7T1>Z-

This is a subgroup of NS(S;(A, i)). According to Theorem 1.3.3 and Theorem 0.2.3 (3),
we obtain

NS(Sl(A, /,L)) Kz @ - Ll Rz Q

We obtain also
NS(S1 (0 ) = ((@)a ANS(Si (A, ) + T (1.42)
for generic (A, ) € Ay. Since det(L;) = —9, we deduce that
INS(S1(A, ) : L] =1 or [NS(Si(A ) : Li] = 3. (1.4.3)
In the following, we prove
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Lemma 1.4.2. For generic (A, ) € Ay, T =1T;.

Proof. From (1.4.2) and (1.4.3), we have T} = T} or [T} : Ty] = 3. We assume [T} : T1] = 3.
Then, according to Corollary 0.2.1 (2),

E(C(21))tor ~ Ty /Ty ~ 7.)37.. (1.4.4)

Therefore there exists Ry € F(C(x1))sor such that 3Ry = O. By Remark 0.2.2 and (0.2.4),
we suppose that RyNaz # ¢ at 1 = 0 and RyNcy # ¢ at x, = co. Put (Ry-0O) =k €Z.
Set Ty = (11, Ry)z. By calculating the intersection matrix, we have

det(Th) = —72(1 + k + k*) # 0. (1.4.5)

On the other hand, due to (1.4.4), we have rank(7}) = 17 . So it follows det(7}) = 0.
This contradicts (1.4.5). O

By the above lamma, we have
NS(S1(\, 1)) = ((@)q NNS(S (A, ) + T (1.46)
Lemma 1.4.3. For generic (A, ) € Ay, NS(S1(A\, 1)) = Ly.

Proof. 1t is sufficient to prove [NS(S1(\, 1)) : L1] = 1. We assume [NS(S1(\, ) = L1] = 3.
By (1.4.6), there exists Ry € E(C(z1)) such that 3R; = (). According to Remark 0.2.2,

(Ry-c3) =1, at zy =00

and
(R, -ay) =1,
or
(Ry-ay4) =1, at ;= 0.
or
(Ry-a7) =1,

We assume (R; - O) = 0, for @ in (1.2.20) does not intersect O. By the addition theorem
for elliptic curves, we have 2¢) and we can check 2() does not intersect O. If we have
p € Ry NQ, then it holds R;|, = Q|,- By the assumption, we have (3R;)|, = Q|,. It
means that 2Q N O # ¢. But, it is not the case. So, we suppose (R; - Q) = 0 also. Set
L, = (L1, Ry)z. By calculating the intersection matrix, we have

12 (lf (Rl : (ll) = 1),
det(L;) = ¢ =30 (if (Ry-ay4)=1), (1.4.7)
On the other hand, we have rank(L;) = 18 from Theorem 1.3.3. Hence, we obtain
det(L1) = 0. This contradicts (1.4.7). Therefore, we have [NS(S1(\, u)) @ Ly] = 1. O
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Lemma 1.4.4. The lattice Ly is isomorphic to the lattice given by the intersection matriz

Ey(—1) @ Es(—1) @ (g g) ,

and its orthogonal complement is given by the intersection matriz

0 3
nva (09,

Proof. Let M be the intersection matrix in (1.2.25). Set

ot =(0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, —1,0, —1),
ol =1(11,22,33,26,19,12,5,-2,2,4,6,8,10,7,5,1, 18, —4),
ol =1(8,16,24,19,14,9,4, —1,2,4,6,8,10,7,5,—1,13, =5),
ol =1(91,182,273,214, 155,96, 37, —22, 18, 36, 54, 72, 90, 63, 45, 0, 150, —36).

Recall the vectors in (1.4.1). Set
1 @ 1) (1)
Ul (7"77 T6,T5,74,73,717,72,71,79, 710,711, 712,713, 15, vl5 ) /016 ) Ul? 3 U18 )

This is an unimodular matrix. We have

LML, = By(—1) @ Es(—1) & <0 3> |

3 0
O
Therefore, we obtain Theorem 1.4.1 for P;.
1.4.3 Proof for the case P
The elliptic fibration given by (1.2.26) is illustrated in Figure 1.4.
The trivial lattice for this fibration is
Ty = {ay, as, az, a, as, as, ay, ay, ay, ay, c1, b, by, ¢, c3, 0, F)7z.
Let @ be the section in (1.2.27). From (1.2.31), we have
Ly =(Q, T2)z.
This is a subgroup of NS(S2(A, 11)). As in the case Fi, so we obtain
NS(S2(A, ) = (@)@ NNS(Sz(A, 1)) + T
for generic (A, ) € Ag. Since det(Ly) = —9, we have
INS(Sa(A, ) : La] =1 or [NS(S2(A, p)) : Lo] = 3. (1.4.8)

In the following, we prove [NS(Sa(A, i) : Lo] = 1.

Lemma 1.4.5. For generic (\, i) € Ag, Ty =T,
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Proof. Because we have det(T) = —44 and (1.4.8), it follows T} = Tb. O

Therefore, we obtain
NS(S2(A, 1) = ((@)e NNS(S2(A, ) + T (1.4.9)
Lemma 1.4.6. For generic (A, 1) € Ay, NS(S2(\, 1)) = Lo.

Proof. We assume [NS(So(A, i) : L] = 3. From (1.4.9), there exists Ry € E(C(y)) such
that 3R; = Q. According to Remark 0.2.2, we obtain (R; - a3) = 1 and (R; - ¢3) =
1. Because the section @ in (1.2.27) and the section 2¢) do not intersect O, we have
(Ry-0) =0and (R, -Q) = 0. Set Ly = (Ly, Ry)z. Calculating its intersection matrix,
we have det(Ly) = —38. As in the proof of Lemma 1.4.3, this contradicts to Theorem
1.3.3. U

Lemma 1.4.7. The lattice Lo is isomorphic to the lattice given by the following intersec-
tion matrix

Ex(=1) @ By(—1) @ (g ;’) ,

and its orthogonal complement is given by the intersection matriz

0 3
A2_U@(3 _2>.

Proof. Let My be the intersection matrix in (1.2.32). Set

2 =1(5,4,15,26,13,10,8,6,4,2, 12,24, 36, 30, 18, —4, 24, —8),

2= 1(1,-2,3,8,1,0,0,0,0,0,6,12,18,15,9,0, 12, 1),

2 = (56,13, 162, 311, 120, 100, 80, 60, 40, 20, 170, 340, 510, 425, 255, —28, 340, —56),
2 =1(27,6,80, 154, 60, 50, 40, 30, 20, 10, 84, 168, 252, 210, 126, — 14, 168, —28).

_t

Recall the vectors in (1.4.1). Set

U, — (2) (2 2) (2
2 = (7“3,7”477“1777“14,7“13,7“15,7’1277’11,7"1077“9,7’877“7,7’677114 » U155 116, V17, U18 )

This is an unimodular matrix. We have

0 3
"UyMyUy = Eg(—1) @ Eg(—1) @ <3 2> :

Therefore, we obtain Theorem 1.4.1 for Ps.
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1.4.4 Proof for the case P;

The elliptic fibration given by (1.2.33) is illustrated in Figure 1.5.
The trivial lattice for this fibration is

T3 = <CL1, a2, a3, A4, Cl6, aip a’f}? a‘/27 a’/17 C1, b07 b17 b27 Co, C3, 07 F>Z
Let @ be the section in (1.2.34). From (1.2.38), we see
L/3 - <Q7T3>Z'

This is a subgroup of NS(S3(A, 11)) and we have det(Lgz) = —36. Moreover, the section O’
in (1.2.34) is a 2-torsion section for this elliptic fibretion. Due to Corollary 0.2.1, [T5 : T5]
is divided by 2. Hence, we have

INS(S3(A, )+ L] = 2 or [NS(Sy(\ ) : L] = 6. (1.4.10)
Lemma 1.4.8. For generic (\, ) € As, [Ty : Ts] = 2.
Proof. We have det(T3) = —40. From (1.4.10), we obtain [T} : T3] = 2. O
Lemma 1.4.9. For generic (A, ) € Az, [NS(S3(\, p)) : Li] = 2.

Proof. We shall show that [NS(S5(\, 1)) : L] = 2. We assume [NS(S3(A, u)) : L] = 6.
From Lemma 1.4.8, there exists Ry € F(C(z)) such that 3R; = ). According to Remark
0.2.2, (Ry-c2) =1 and (R; - ag) = 1. Also we have (R; - O) =0, for @ in (1.2.34) does
not intersect O. Moreover, we assume that (R; - Q) = 0 or 1, for the section 2P does not
intersect O at x1 # oo. Set Ly = (L4, R)z. Calculating the intersection matrix, we have

=16 (if (R-Q)=0)
det(L}) = {_112 it (Fo-Q)=1) (1.4.11)

On the other hand, Theorem 1.3.3 implies that rank(L}) = 18 and det(L}) = 0. This is a
contradiction to (1.4.11). O

Due to the above lemma, we have
|det(NS(S5(A, 1)) =9

for generic (A, ) € As.

To determine the explicit lattice structure for F3, we use another elliptic fibration
defined by (1.2.39). This fibration is illustrated in Figure 1.6.

Let Qo and Ry be the sections in (1.2.40) for this elliptic fibration. Recall

L3 = {dy,dy, d3, dy, d), dy, dy, d, €1, €9, €3, €4, €5, €5, O, Qo, Ro, ).
in (1.2.43). For generic (A, u) € As, since
Ly ®7 Q = NS(S3(\, 1)) @2 Q
and det(L5) = —9, we deduce that

L3 - NS<S3()‘7 :LL))
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Lemma 1.4.10. The lattice Lz is isomorphic to the lattice given by the intersection matriz

Ea(—1) & By(—1) @ (g _32) ,

and its orthogonal complement is given by the intersection matriz

0 3
teve (D)

Proof. Let Mj be the intersection matrix in (1.2.44). Set

o§¥ = 4(28,56,84,27,21, 15,10, 5, 34, 68,102,51, —1, -1, 1,85, —1, —16),
0¥ =1(5,10,15,5,4,3,2,1,6,12,18,9,0,0,0, 15,0, —3),
0¥ = 1(468,936, 1404, 432, 378, 324, 216, 108, 576, 1152, 1728, 864, 36, 18, 35, 1440, 54, —252).

Recall the vectors in (1.4.1). Set
Uy = ( ) ©) )
3=\, 2,73, 716,711,712, 710,79, V9 ", 714,713,717, 76, 5,77, 78, V17 , V18 ).

This is an unimodular matrix. We have

0 3
UsM3Us = Es(—1) ® Es(—1) @ (3 _2) :

Therefore, we obtain Theorem 1.4.1 for P;.

1.5 Monodromy groups

We defined the projective monodromy groups of our period mappings in Section 1.3. Those
are nothing but the projective monodromy groups of the period differential equations
determined by the previous section. We determine them in this section. We make a
precise argument only for the period mapping ® : Ay — Dy for Fy. In this section, we set
A=Ay, L:= Ly, A:= Ay and D := D.

First, take a generic point (A, o) € A. Let Sy = Sp(Xo, o) be a reference surface.
Set L = NS(S) which is generated by the system (1.2.16). Recalling the argument of
Section 1.3 and 1.4, we have a Z-basis {71, -+ , 722} of Hy(Sp, Z) with (75, -+ ,722)z = L.

A(= Ap) is the intersection matrix of the transcendental lattice given in Theorem
1.4.1. Set

PO(A,Z) = {g € GL(4,Z)|'gAg = A}, (1.5.1)

It acts on D by
€= g'¢ (£€D,g€ POALZ)).

Recall that D is composed of two connected components:

D=D.UD_.
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Definition 1.5.1. Let PO (A,7Z) denote the subgroup of PO(A,7Z) given by
{9 € PO(A,Z)|g(Ds) = D4}
Remark 1.5.1. PO(A,Z) is generated by the system:

;

11 -1 2 1 -1 -2 -1 010 0
01 0 O 0o 1 0 0 1 00 O
Glz 7G2: 7G3: )
00 1 0 0o 1 1 0 001 0
01 0 1 0 0 0 1 001 -1
10 0 0 0100
01 0 O 1
Hy = , Hy = vy
00 -1 0 0010
00 -1 1 0001

G1,Ge, G3, Hy generate PO (A, Z) (see [11] or [Ma]).

In the following, we show that the projective monodromy group of our period mapping
is isomorphic to the group POT(A,Z). To prove this, we apply the Torelli type theorem
for polarized K3 surfaces.

1.5.1 The Torelli theorem for P-marked K3 surfaces

First, we state necessary properties of polarized K3 surfaces.

Definition 1.5.2. Let S be an algebraic K3 surface. An isomorphism ¢ : Hy(S,Z) —
H(Sy,7) is said to be a P-marking if we have

(i) v (E) C NS(S),

(it) = (F),v71(0), v 1(Q), v~ (R), v~ (b;) and ') (1 < j < 7) are all effective

divisors,

(iii) =Y (F) is nef. Namely, (v~ (F)-C) >0 for any effective class C'.

A pair (5,7¢) of a K3 surface and a P-marking is called a P-marked K3 surface. A
S-marked K3 surface (Sp(\, i), ) is a P-marked K3 surface.

Definition 1.5.3. Two P-marked K3 surfaces (S1,11) and (Ss2,12) are said to be iso-
morphic if there is a biholomorphic mapping f : S1 — Sy with

w2 o f* © ¢;1 = ing(go,Z)'

Two P-marked K3 surfaces (S1,11) and (Sa,19) are said to be equivalent if there is a
biholomorphic mapping f : S1 — Sy with

Vg0 fi oz/;fllL = idj,.
The period of a P-marked K3 surface (S,) is defined by

B(S,1)) = (/w( w:m:/wwmw) (1.5.2)

)

We use some general facts. These are exposed in [KSTT].
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Proposition 1.5.1. (Pjateckii-Sapiro and Safarevic [PS]) Let S be a K3 surface.

(1) Suppose C' € NS(S) satisfies (C'-C) =0 and C # 0. Then there exists an isometry
v of NS(S) such that v(C') becomes to be effective and nef.

(2) Suppose C € NS(S) is effective, nef and (C - C) = 0. Then, for certain m € N
and an elliptic curve E € S, we have C' = m[E].

(3) A linear system of an elliptic curve E on S determines an elliptic fibration S —

P(C).

Proposition 1.5.2. A P-marked K3 surface (S,v) is realized as an elliptic K3 surface
which has Y~ (F) as a general fibre. Especially, if S is realized as a K3 surface So(\, 1)
by the Kodaira normal form for some (A, ) € A, it is a S-marked K3 surface.

Proof. Set C' = ¢~ (F) € Div(S). By Definition 1.5.3, C' is effective, nef and (C-C) = 0.
According to Proposition 1.5.1 (2), there exists a positive integer m and an elliptic curve
E such that C'= m[FE]. Since

m(E-¢~1(0)) = (C-¢71(0)) = (F-0) = 1,

we deduce that m = 1. Proposition 1.5.1 (3) says that there is an elliptic fibration
7S — PY(C) which has C =~ 1(F) as a general fibre. O

Let X be the isomorphic classes of P-marked K3 surfaces and set
[X] = X/ P-marked equivalence.
By (1.5.2), we obtain our period mapping ® : X — P3(C).

Theorem 1.5.1. (The Torelli theorem for polarized K3 surfaces)

(1) o(X) C D.

(2) ®: X — D is a bijective correspondence.

(3) Let Sy and Sy be algebraic K3 surfaces. Suppose an isometry ¢ : Hy(S1,Z) —
Hy (S5, Z) preserves ample classes. Then there exists a biholomorphic map f : S; — S
such that p = f,.

Here, we prove the following two key lemmas.

Lemma 1.5.1. A P-marked K3 surface (S, @Z{) is equivalent to the P-marked reference
surface (Sg, ) if and only if (S,1)) = g o ®(Sy, ) for some g € PO(A,Z).

Proof. The necessity is clear. We prove the sufficiency. Suppose (I)(SO,QL) =p € D.
Take g € PO(A,Z). According to Theorem 1.5.1 (2), we take a P-marked K3 surface
(Sy,1by) such that ®(S,,v,) = go ®(Sy,¢). Let L; be the transcendental lattice given
by (1.3.2). Note g € Aut(L;) = PO(A,Z). Due to Nikulin [Ni], g : L; — L; is extended
to an isomorphism § : Hy(Sy, Z) — H,(S,,Z) which preserves the Néron-Severi lattice L.
Then, by Theorem 1.5.1 (3), there is a biholomorphic mapping f : Sy — Sy such that
f« = §. Therefore, two P-marked K3 surfaces (Sp, ) and (Sg,1,) are equivalent. ]

Remark 1.5.2. PO(A,Z) is a reflection group (see [Ma]).

According to the Torelli theorem and Lemma 1.5.1, we identify [X] with D/PO(A,Z).
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Lemma 1.5.2. Let (S,v) be a P-marked K3 surface which is equivalent to (Sy,)). Then
(S, %) has a unique canonical elliptic fibration (S,7,P'(C)) that is given by the Kodaira
normal form of So = So(Xo, po) not coming from any other (A, u) € A.

Proof. From Proposition 1.5.2, (S, ) ((So, ), resp.) has an elliptic fibration (S, 7, P*(C))
((So, 7, P*(C)), resp.) with a general fibre 1~ '(F) (¢~'(F), resp.). Because (S,¢) and
(Sp, 1) are equivalent as P-marked K3 surfaces, we have a biholomorphic mapping f :

S — Sy such that
Dofo=v (fo: Hy(S,Z) > Hy(Sp,Z)).
So, we have
fe=1.

It means that f preserves general fibres of S and Sy. According to the uniqueness of
the fibration (Lemma 0.2.1), (S, 7, P'(C)) and (Sy, 7, P*(C)) are isomorphic as elliptic
surfaces. Therefore, there exists ¢ € Aut(P!(C)) such that ¢ o = 7 o f.

Let y? = 423 — g2 (2)x — g3(2) (y? = 42% — §o(2)x — §3(2), resp.) be the Kodaira normal
form of (S, 7, PY(C)) ((Sy, 7, P'(C)), resp.). According to Proposition 1.3.3, we assume
7710) = I3 and 7 !(0c0) = I;5. So as in the proof of Lemma 1.3.1, ¢ is given by z — az
(a € C—0). Let j (j, resp.) be the j-invariant and D (D, resp.) be the discriminant of
S (50, resp.). By Proposition 1.3.3, we have D = Doy and j = jop. Observing the
expressions (1.2.14), (1.2.15) around z = oo and the definition of j-function (1.3.6), we
have a®> = 1. By the transformation z — wz or z — Wz (where w is a cubic root of unity),
we assume a = 1. Comparing j with j and D with D, we have g5 = g3 and g3 = g3. By
the transformations in the form z — wx or x +— wx or y — —y, we obtain g, = §o and
g3 = 3. Hence, as in the proof of Lemma 1.3.1, we have the required statement. m

Remark 1.5.3. According to the above two lemmas, A = Ag is embedded in [X].

1.5.2 Projective monodromy groups

Theorem 1.5.2. The projective monodromy group of the period mapping ® : A — D is
isomorphic to PO (A,Z).

Proof. Let * = (\g, 1to) be a generic point of A. Set Sy = So(No, f10). Note that NS(Sy) ~
L. Let G be the projective monodromy group induced from the fundamental group
m1 (A, %) (see Definition 1.3.4). We have clearly the inclusion G C PO (A, Z).

Therefore, we prove the converse inclusion PO (A,Z) C G. Take an element g €
PO*(A,Z), and let p = ®(S;p,7)) € D and let ¢ = g(p) € D. p,q are in the same
connected component of D. So we suppose that p,q € DT. Let a be an arc connecting
p and ¢ in D*. By the Torelli theorem, we obtain [®~!(a)] C [X]. By Lemma 1.5.1 and
Lemma 1.5.2, we have ¢ = ®(S, ¥) so that (Sy, ) is equivalent to (S, ). Hence, the end
point of [®~!(«)] is (Ao, o)-

Next, we show that there is a such that [®~!(a)] C A. For this purpose, it is enough
to show that A is a Zariski open set in some compactification K of [X]. Here, we note
that the compact (A, i) space P*(C) and K are birationally equivalent and they contain
A as a common open set. A is a Zariski open set in P?(C). Hence, A is Zariski open in K
also. Therefore, we obtain the required inclusion. O]
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We have the elliptic fibration (1.2.19) ((1.2.26), (1.2.39), resp.) for F; (Fa, Fs, resp.).
Using these fibrations, we can define the P-markings for F; (j = 1,2,3). Moreover, as
we prove Lemma 1.5.2, so we can prove the corresponding lemmas through observations
of the coefficients of the Kodaira normal forms of elliptic fibrations for F; (7 = 1,2, 3).
Therefore, we have

Theorem 1.5.3. Let j € {1,2,3}. The projective monodromy group of the period mapping
for the family F; is equal to POT(A;,Z).

Remark 1.5.4. This is essentially noticed in the research of Ishige [12] on the family
of K3 surfaces coming from the polytope Py. He found this result by a computer-aided
approximation of a generator system of the monodromy group. However, it is not given
an exact error estimation there. So, for our cases Py, P1, P, and Ps, we give here a proof
based on the Torelli theorem for polarized K3 surfaces.
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Chapter 2

Period differential equations

In this chapter, we obtain the differential equations satisfied by the period integrals for
the family F; (j = 0,1,2,3) (Section 2.1). To obtain them, we need the power series
expansions of the period integrals and the theory of the GKZ hypergeometric equations.
Then, we have a remarkable fact for the differential equation for Fy. Namely, this equation

gives an uniformizing differential equation for the symmetric Hilbert modular orbifold
(H x H)/{PSL(2,0), ) for Q(+/5) (Section 2.2).

2.1 Period differential equations for the families F, F;, F>
and fg

Recall F; (j =0,1,2,3) in (1.2.6), (1.2.7), (1.2.8) and (1.2.9). The unique holomorphic
2-form on S;(A, ) (7 =0,1,2,3) is given by
zdz N\ dx _dz ANdx

Wy =

= = =1,2 2.1.1

up to a constant factor.

Proposition 2.1.1. Let j € {0,1,2,3}. There is a 2-cycle I'; on S;(A\, p) such that
the period integral // wj has the following power series expansion, which is valid in a
Ly
sufficiently small neighborhood of (X, 1) = (0,0).
(0) (Periods for Fo)

(e}

nl(m!)3(2m + n)!

n,m=0

(1) (Periods for Fy)

N2 (3m + 3n)! o
i) = //r wn = (2mi)” ) 2 m ) P

(2) (Periods for Fy)

(e e}

wvi) = [[ = Cmip Y 1y o

n,m=0

o1



(3) (Periods for F3)

o0

O = [[ = erip Y o

Proof. Here, we state the detailed proof only for the case (0).
When (A, ) is sufficiently small, So(A, @) in (1.2.6) is regarded as a double cover by
the projection

p:(2,y,2) = (z,2).
Let & (2, 2), &(x, z) be the two roots of Fy(z,y,2) = 0 in y. Then, we have

Fo(z,y,2) = 22°(y — &2, 2)) (y — &, 2)).

and
%_P;(x,y,@ — 222((y — &a(,2)) + (y — s(x, 2))).

Therefore, at (z,&1(z, 2), 2) € So(\, 1),

OF, ,
Jy — (@, & (2, 2), 2) = 227 (& (2, 2) — &z, ).

We have a local inverse mapping of p

q:(x,z) — (x,&(x, 2), 2).

Let 71 (72, 73, resp.) be a cycle in z-plane (y-plane, z-plane, resp.) which goes around
the origin once in the positive direction. We suppose that there exists o > 0 such that it
holds

[61(x, 2)| = [&2(x, 2) > 0

for any (x,z) € 71 X 3. We assume that z = —1 stays outside of 71, z = —1 — z stays
outside of 3 for any x € 7, and that y = & (z, z) stays inside of v, and y = &(x, z) and
—1— 2 — z stay outside of y, for any (x, z) € 1 X 73. Moreover, by taking a neighborhood
U of the origin sufficiently small, we assume

Aryz + pf < ey (@ +y+ 2+ 1)

for any (z,y,2) € 11 X 72 X 3 and (A, ) € U. So, q(y1 X 73) is a 2-cycle on Sp(\, p).
Let us calculate the period integral on the 2-cycle g(y1 X 3) on Sp(\, p). Let w be the
holomorphic 2-form given in (2.1.1). By the residue theorem,

zdz N\ dx
//"le’yg ©T //ygxm Tz <€1<x Z) 52(1'72))
zdz N\ dx A dy
27T\/_ ///3x71><72 r2? y gl('r Z))(y_£2($7z>>
B zdz \Ndx N dy
B 2'/T\/__l ///Y3><’71><’72 zy2?(@+y+2+1) + Avyz +p (212)
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By the residue theorem and the binomial theorem, we have

/// zdz Ndz A\ dy
2my/—1 axnxy TYZ2( +y + 2+ 1)+ Aeyz +p

_ 1 /// 1 zdz N\ dx N\ dy
C2my/—1 N3 X1 X2 a:yﬁ(q:+y+z+1)1+%

zyz?(x+y+z+1)

(—Azyz — p)t
V= dz Ndx Nd
o /‘//73X71X72 :ry22 r+y+z+1))H! Y
Z /// m—+n 2"y 2" dy A dx A dy (A ()™
27'("\/ mn Y3 XY1 XY2 m (xyz2($ +y+z+ 1))m+n+1 2
_ Z /// (m +n)! dz A dx A dy T
V-1 vax x| IML A lymAL2mAntl (g gy g T )mnetd H

(2m +n) m dz N dx " .
Z // ml 2p! (_1) xm+122m+n+1(l.+z+ 1)2m+n+l (_)‘) (_:u)

n,m=0 Y3 X1
V= (3m +n) dz . N
27T ZO/ m' 3n! 22m+n+1(2 + 1>3m+n+1 (_A) <_/*L)
V/ (5m + 2n)!
( ™ ) Z ( ) ( .)3n!(2m—i—n)! 2
n,m=0
The above power series is holomorphic on U. 0O

Remark 2.1.1. In the case (1), our period reduces to the Appell Fy(see [Koi] ):

12 19 19
A :F<—,—,1,1;27)\,27 ):F(—,—,l; )F( 21 )
m ) =Fi3:3 a 30307 33 0Y

where F' is the Gauss hypergeometric function and x(1 —y) = 27T\, y(1 — z) = 27p.

From the divisor in (1.2.4), let us obtain the GKZ system of equations for the periods.
In the following, we use the notation

0 0
On=A—, 0,=p—.

Proposition 2.1.2. Let n;(A\, p) (7 = 0,1,2,3) be the periods given in Proposition 2.1.1.
Then,

DY\, 1) = DY n;(\, 1) = 0 (j=0,1,2,3),

where D and D are given as follows.
(0) (The GKZ system of equations for Fy )

DY = 6,(6x + 26,) — M26 + 50, + 1)(260 + 50, + 2),
Déo) = )\292 + u0x(0x — 1)(20, + 50,, + 1).
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(1) (The GKZ system of equations for Fi)

DV = A2 — 163,
DY = \(3603 + 36,)(360x + 30, — 1)(305 + 30, — 2).

(2) (The GKZ system of equations for JF3)

DY = N2+ (30, + 46, + 1),
DP = 0,(6x + 0,)2 + (305 + 40, + 1) (305 + 40, + 2) (305 + 40, + 3).

(3) (The GKZ system of equations for F3)

DY =02 — (365 + 26, + 1)(305 + 20, + 2),
DS =03 + A(30) + 26, + 1)(30x + 26, + 2)(30x + 26, + 3).

Proof. Extending the matrix P; (7 =0,1,2,3), set

1111 1 1 1111 1 1
0100 0 -1 0100 -1 0
A°_00100—1’ A1_00100—1’
0001 —1 —2 0001 -1 —1
1111 1 1 1111 1 1
0100 0 -1 0100 —1 0
“42*0010—1—1’ “43*0010—10’
0001 -1 —1 0001 0 -1
-1
and 0 = 8 . From the matrix A, (7 =0,1,2,3) and the vector 3, we have the GKZ
0

system for n;(A\, 1) (j = 0,1,2,3). In the following, we state the detailed proof only for
Fo.
The GKZ system of equations defined by Ay and  has a solution

/// Ryt e dty A dtg A dty
A

B / / tadty A dty A dts (2.1.3)

A (tltgtg(al + a/2t1 —f- a3t2 —|— a4t3) + a5t1t2t3 —|— CL6)7

where . .
Ro = a1 + asty + asts + aqls + as— + a6 9>
i3 t1tats

and A is a twisted cycle. By the parameter transformation (1.2.5), (2.1.3) is transformed

to
1 zdx Ndy N\ dz 1
- - = —n(\, p).
a Ay +y+z+ 1)+ deyz+p @

o4




The above mentioned GKZ system is given by the following equations

0
Set 0j = ajaT“j.
(2.1.4),(2.1.5) and (2.1.6) :

(01+62+03+04+05+96) -,
Oy — Og)n =
(Qg 06)77 = 0
(04 — 05 — 206)n = n,
0? 0?
= 2.1.5
8a48a5n 8@%”’ ( )
o3 o3
= 2.1.6
0a28a38a677 8&1&1%77 ( )
By (1.2.5), we have
Oy =05 0,=0.
So, from (2.1.4) we have
0277 = euna
031 = 0,1,
0.1 = (Ox + 260,)n,
thn = (=260, — 50, — 1)n.
From (2.1.5), we have
0? 1 1
0,05n = —— (0, + 20_1)0
8a48a5 a4a5 4051 a4a5( A+ 2001) 05,
o3 1 1
1 1 aj
Hence, we obtain
(05 +20,)n = MN(205 + 50, + 1)(205 + 50, + 2)n.
Similarly, from (2.1.6), we have
PR
= 0505060 = 63
8&28@38&677 20306 2v3%67) 20306 Mn,
> —190(0—1) 1(26’ 50, — 1)8,(0\ — 1)
80,180%77 - CL% 1Y5 5 T} a1a5 )\ M )\ )\ T]?
hence
N00n = —pu(205 + 50, + 1)0x(0r — L)n.
O
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We obtain 6 x 6 Pfaffian systems from the above GKZ systems Dy)u = Déj)u =0
(7 =0,1,2,3). These systems are integrable. Therefore, each system has a 6-dimensional
space of solutions. However, as we remarked in Corollary 1.3.2, we expect the systems
of differential equations with 4-dimensional space of solutions. It suggests that the above
systems are reducible. So, using the above ng ) (j =0,1,2,3), we determine the period
differential equation for F; (7 =0, 1,2, 3) with 4-dimensional spaces of solutions.

Theorem 2.1.1. Let j € {0,1,2,3}. Set the system of differential equations ng)u =
DY'u =0 as follows. Then,

DYV'n;(\, 1) = DY n;(\ 1) = 0,

where n;(\, ) is given in Proposition 2.1.1. The space of solutions of this system is
4-dimensional.
(0) (The period differential equation for Fy)

D\ = 0,(6x +26,) — A(20 + 56, + 1)(20, + 56, + 2),
DY = N2(463 — 20,0, + 502) (2.1.7)
—8)\3(1 + 3(9,\ + 50# + 293 + 59,\9,) + 25,[1,6‘)\(9)\ — 1)

(1) (The period differential equation for Fy)

DY = N2 4 105(365 + 46, + 1),
DY = M0,(30, + 26,,) (2.1.8)
+u0x(1 = 0,) + 9N (30, + 460, + 1)(30, + 46, + 2).

(2) (The period differential equation for F)

DY = N2+ pfn(30, + 46, + 1),
DS = X0,(30 + 26,,) + (1 — 6)) (2.1.9)
+9)\2(39)\ + 40, + 1)(30, + 40, + 2).
(3) (The period differential equation for F3)
D =02 — (360, + 260, + 1)(30, + 26, + 2),
DS = 0,(36) — 20,) + 4u0(305 + 20, + 1) (2.1.10)
FIN(30, + 26, + 1) (305 + 20, + 2).

Proof. We determine Déj ) (7 =0,1,2,3) by the method of indeterminate coefficients. Set
D = f1 + f29>\ + fgé’# + f49§\ + f59/\‘9/l + f69121’ where f1 cee fg S C[)\, u] Let j S {O, 1, 2, 3}
We can determine the polynomials fi,-- -, f¢ so that D satisfies Dn; = 0 (n; is given in
Proposition 2.1.1) and is independent of ng ), Thus, we obtain the above Déj ),

In the following, we prove that the spaces of solutions are 4-dimensional. Let j €
{0,1,2,3}. By making up the Pfaffian system of ng)u = ng)u = 0, we shall show
the required statement. Set ¢ = ?(1,6,,6,,03). We obtain the Pfaffian system ; =
a;dX + Bidp with de = Q¢ as follows. We can check that
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Therefore, each system D%j Iy = Déj Ju = 0 has the 4-dimensional space of solution.
(0) (The Pfaffian system for Fq)

Setting
t = )\2(4/\ — 1)3 —2(2+ 257 (201 — 1)) — 312542,
s =1— 15\ — 100\2,
we have
0 1 0 0
N 0 0 0 1
0 an/s (1,12/(2)\8) alg/(28) 6L14/(2)\S>
asi/(st) age/(2st) ass/(2st) asy/(2st)
with
(a1 = M1+ 20)), ara = 6A2 4+ 12073 + 1254,
a13 = 5/\(3 + 40)\), 14 = —(>\ + 16)\2 - 80)\3 + ]_25/1),

agr = —A%(2+ 21250 + A\(—17 + 616X — 2320\* + 2500(9 + 80A\)p)),
age = —(—2 (=1 + 4\)(8 + HA(—13 + 4\(83 + 401)))
+(—16 + 5A(94 + BA(59 + 10X (=73 + 20A(37 + 1601)))) )
+3125(—4 + 5A(21 + 200)))p?),
ass = —A?(22 + 268751 + A(—47 + 300000 + 100X (51 + 4X(—49 + 20\) + 20000u))),
agq = 12ts + 3s(15X — 2) + 2¢(—3(1 — 40)*A2(—1 + 10A) + 75A(—1 + 40\ ),

and
0 0 1 0
Gy = bi1/s blg/(2)2\s) bi3/(2s) 614/(2)2\3)
ba/(s)  Daz/(A°s)  bas/(s)  baa/(A°s)
bs1/(ts) bsa/(2Mts) bs3/(2ts) bsy/(2\ts)
with
[ by = A(1420)), by = 6A% + 12023 + 1254,
bis = SA(3 4 40)), by = —(A + 16A2 — 80A® + 125p),
boy = —2A(—1 + 4\), bys = —(6A3(—1 4+ 4X) — 5 + 50Au),
boz = —A(—11 + 20)), boy = —((1 — 4X)2\? — (5 — 50\ ),

byt = —(4(1 — AN)2\4(7 + 20\)
—A(—=4 4 25X (=3 4 2X\(=7 + 20A(1 + 80A)))) 1t + 3125A(1 + 20A)112),
bys = —(24(1 — 4A)2\3(7 + 20))
—2A(—4 4 BA(8 + A(—43 + 10A(=57 + 20A(7 + 160A)))))
—125(—4 + 25X(=3 + 32A(1 + 10A))) 2 + 3906254:%)),
bys = —(4X3(—1 4 AX) (=1 4+ 2X\(=32 4 25A\(1 + 121))) + 15625A(3 + 40)) 2
—BA(—=12 4 BA(=1 + 10A)(33 -+ 20A(23 + 160A))) 1),
bys = —(AXH(—1 4 4X)3(7 4 20A) + 3A(—4 + A(31 — 490X + 76000A3)) 11
4250(—2 4 25A(—2 + A(11 + 260)))2 — 39062543).
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(1) (The Pfaffian system for F;)

Setting
ty = T29\% — 54N(27p — 1) + (1 + 27u)?,
we have
0 1 0 0
o 0 0 0 1
! ~1/9  —1/2 —1/2  —(1+27A+27u)/(54))
ay/ty an/(2t1) ass/(2t1) aga/(2t1)
with

ars = 2TA(1 — 3\ +27p0),  ays = 3(=T20A2 + (1 + 27p)?),

and
0 0 1 0
om0 —12 —12 —@ o 27a 4 270)/(540)
b= 0 0 0 /A
bii/ti bia/(2t1) bis/(2t1) bia/(2t1)
with

bin = 3A(L+27TA = 27p),  biz = 27TA(1 + 27X — 3p),
bis = 3A(5 4 135X — 351p), by = (1 +27\)? + 108(27\ — 1) — 364542

(2) (The Pfaffian system for F5)

Setting
ty = /\2(1 + 27)\)2 —22u(1 + 189\) + (1 + 576/\),u2 — 2563,
so =1+ 108\ — 288,
we have
0 1 0 0
o — 0 0 0 1
? Cl11/82 a12/(2/\82) a13/(52) a14/(2)\32)
ag1/(tase) asn/(tass) ass/(tasa) aos/(t2s2)
with
((111 = —9/\7 19 = —<81A2 + Y ]_44)\,[,6)7
a1y = —54>\, 14 = —3>\(1 + 27T\ — 144#) + u,

(1 = —6A3(1 + 14582 — 2592\ + 61u(—55 + 4608)),
Qs = —3\2(11 + 54A(5 + 351X)) + A(1 + 4A(61 + SLOA(5 + T20)))p + 64(17 + 2808A)ps?
1474564 — 2(1 + 9A(53 + 32A(131 + 8640))) %,
ags = —8A3((2 — 27TA)? + 9(—133 + 2160A) 11 + 82944..%),
| @21 = 375y + 162Ar2 — 3Asp(A + 81N + 1458)\% — 378Au + pu(—1 + 288y)),
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and

0 0 1 0
By = b11/52 512/(2)\82) b13/82 514/(2/\52)
b21/(=5‘2) b22/()\282) 523/82 524/(/\252)
bs1/(tas2) baa/(2Mt282) bsa/(tas2) bas/(2Mt2s2)
with
(b1 = =9\, bz = —(81A% + pu — 144 \u),

b1z = —b4A\, big = —3N(1 + 27\ — 144p) + p,

by = 361, bay = p(A(—1 + 54\) 4 2p),

bag = 2161, bas = (3(1 = 54N A — 2p)p,

bs1 = BA(8IAP(1 + 27A) 4+ A(—1 + 36A) (=5 + 108N\ + 3(—1 + 32X)(1 + 432\)p® + 76847,
by = 2187TA(1 4+ 27)) — (1 + 192X (11 + 1164\)) e + 256(1 + 864\ )
—N2(2 + 2TA(4 4 IN(TT + 864N)) )it + A(5 + N(1279 + 864X (85 + 864N))) 12,
bsz = 2A(BN2(1 + 27A) (=1 + 135X) + 2A(23 + 54A(—11 + 972)\)) i
+9(—3 + 64X) (1 + 432\) % + 691243,
bsa = —(—=8IAH(1 4 27TAN)? + N2 (=7 + 9A(—58 + 27TA\(—125 + 3456))))
\ FA(8 4 9N(425 + 24192X0)) 2 — (1 + 3456\ (1 + 162X)) i + 256(1 + 1440\ ) p*.

N\

(3) (The Pfaffian system for F3)

Setting
fy = 72002 — (4 — 1)° + 54A(1 + 120),
s5= —54A + (1 — 4p)2,
we have
0 1 0 0
o 0 0 0 1
’ aj/ss  aiaf/(2s3)  ais/ss  ais/(2s3)
as/(tsss) as/(tsss) aos/(t3ss) aoa/(t383)
with
(CLH == 9)\, a12 = 81\ + 4(1 - 4,LL),M,
a1z = 27\, apy = 3+ 81\ — 4842,

a9y = —2N(—2187TA% + 27T\ (4p — 9) (4 — 1) — (=1 + 4p)3(3 + 8u)),

(25 = SA(9ATTA? + (1 — 420)%(—11 + 4pu(—9 + 161)) — 27A(25 + dpu(—31 + 400))),
(23 = 2X(T2002 + (—1 + 420 (11 + 1612) + 27TA(—1 + 441) (19 + 20p)),

a2 = SIA(—2 + 27X + 8u) (1 + 27\ — 1612),

and
0 0 1 0

511/83 b12/(253) b13/83 514/(253)
b21/83 522/83 523/83 524/83
ba1/(tsss) bsa/(2tsss) bss/(t3s3) bsa/(2t353)

Oy =
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with

(b1 =9, bia = 81\ + 4(1 — 4p)p1,
bz = 27, by = 34 81\ — 482,
bor = —2p(—1 4+ 4p), boo = —3u(—3 + 4p),
bos = —6u(—1+4pu), bos = (3 + 4p),
by = —3N(2187A% + 32(1 — 4u)? (1 + p) + 27TA(3 + 16(2 + 1))
by = —9N(6561A2 — 8IA(—3 + 4p) (1 + 8p1) + Apu(—1 + 440) (=33 + 4u(—3 + 161))),
bz = —3A(364502 + 2(1 — 4p)2(1 + 164(3 + 2p)) + 27A(7 + 16u(5 + 9p))),
| b3a = —7383 + 75(—8 + 351\ + 32u) + s5(9(7290% + (1 — 4p)% + 54X (1 + 8p1)).

]

Remark 2.1.2. By changing the system ¢ =' (1,0,,0,,60%) to other ones, we see that
s = 0 is not a singularity. Together with the singularities of 0y and 0,, we obtain the
singular locus of the system (2.1.7):

A=0, p=0, M(4X—1)>—=2(2+ 2520\ — 1))u — 3125u> = 0. (2.1.11)

This is the locus mentioned in Remark 1.2.2.
By the same way, from the Puffian systems in the above proof, we obtain the singular
locus of the system (2.1.8):

A=0, pu=0, 729\ —54\(27u — 1) + (1 +27u)? = 0,
the singular locus of the system (2.1.9):
A=0, =0, X(1+27)\)2 =2 \u(1 + 189A) + (1 + 576\)u* — 256> = 0,
and the singular locus of the system (2.1.10):
A=0, pu=0, 729\ — (4 — 1)* +54\(1 + 12u) = 0.

Omitting these locus from C* we have the domain A; (j = 1,2, 3) in (1.2.21), (1.2.28) and
(1.2.35).

Remark 2.1.3. Takayama and Nakayama [TN] determined the systems of differential
equations for the Fano polytopes with 6 vertices by their new approximation method, that
1s a special use of D-module algorithm.

2.2 Period differential equation and the Hilbert mod-
ular orbifold for the field Q(/5)

Let O be the ring of integers in the real quadratic field Q(v/5). Set Hy = {z € C|£Im(z) >
0}. The Hilbert modular group PSL(2,0) acts on (Hy x Hy) U (H_ x H_) by

a B\ azy+ 0 o+
(7 5)'(Zl’ZQ)'_)(721—1—5’7’22—1—5’)’
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for g = (3 g) € PSL(2,0), where ' means the conjugate in Q(v/5).
Set

1 1
W=11-v5 1+5
2 2
It holds
A:UGB(? jz)zU@WUtW.

The correspondence
iz, ) — (1 =121 20) (L @WH)
defines a biholomorphic mapping
(Hy x Hy)U(H_ x H_) — D.

The group PSL(2,0) is generated by three elements

1 5
(11 (1 +2\/_ (0 1
0 1

Set

We have an isomorphism

j : (PSL(2,0),7) — PO*(A,7)

; g — jogoj t=7j(g) =g

Especially,
( 1 -1 2 1 1 -1 2 1
o 1 00 o 1 00
=10 -1 1 0l” > 1o -11 0
0 0 01 0 1 01
(2.2.1)
0 -1 0 0 100
3 -1 0 0 0 5 010 0
3 = ) T =
0 0 -1 —1 001 1
0O 0 0 1 000 —1

The above j gives a modular isomorphism

(H. x H,)U (H_ x H_), (PSL(2,0),7,7')) ~ (D., PO*(A, Z)).
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Especially, we have
j: (H x H,(PSL(2,0),7)) ~ (Dy, PO*(A,Z)). (2.2.2)

The mapping j lo® : A — H x H gives an explicit transcendental correspondence between
A and H x H.

There are several researches on the Hilbert modular orbifolds for the field Q(v/5).
Hirzebruch [Hi] studied the orbifold (H x H)/(I',7) (the group I' is given in (2.2.4)).
There, he used Klein’s icosahedral polynomials. Kobayashi, Kushibiki and Naruki [KKN]
studied the orbifold (H x H)/(PSL(2,0), ) and determined its branch divisor in terms
of the icosahedral invariants. Sato [Sa] gave the uniformizing differential equation (see
Definition 2.2.3) of the orbifold (H x H)/(PSL(2,0), ).

Because of the modular isomorphism (2.2.2) and Theorem 1.5.2; our period differential
equation (2.1.7) for the family Fo = {So(A, )} should be connected to the uniformizing
differential equation of the orbifold (H x H)/(PSL(2,O), ).

In this section, we realize the explicit relation between our period differential equation
and the uniformizing differential equation of the orbifold (H x H)/(PSL(2,0), 7). We
give the exact birational transformation (2.2.12) from our (A, u)-space to (z,y)-space,
where (x,y) are affine coordinates expressed by Klein’s icosahedral polynomials in (2.2.6).
Moreover, we show that the uniformizing differential equation with the normalization
factor (2.2.16) coincides with our period differential equation (2.1.7).

2.2.1 Linear differential equations in 2 variables of rank 4

First, we survey the study of Sasaki and Yoshida [SY]. It supplies a fundamental tool for
the research on uniformizing differential equations of the Hilbelt modular orbifolds.
We consider a system of linear differential equations

A4 =17 A4 bz A
{ XX xy tasZx + b4y + p4, (2.2.3)

ZYY = mZXy -+ CZX + dZY + qZ,

where (X,Y') are independent variables and Z is the unknown. We assume its space of
solutions is 4-dimensional.

Definition 2.2.1. We call the symmetric 2-tensor
1(dX)? +2(dX)(dY) + m(dY)?
the holomorphic conformal structure of (2.2.3) .

Remark 2.2.1. The above symmetric 2-tensor is equal to the holomorphic conformal
structure of the complex surface patch embedded in P3(C) defined by the projective solution
of (2.2.3).

Definition 2.2.2. Let Zy, Z,, Zy and Zs be linearly independent solutions of (2.2.3). Put
Z =YZy, Zy, Z, Z3). The function

620 = det(Z, Zx, Zy, ny)

is called the normalization factor of (2.2.3).
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Proposition 2.2.1. ([SY] Proposition 4.1, see also [Sa] p.181) The surface patch by the
projective solution of (2.2.3) is a part of non degenerate quadratic surface in P*(C) if and

only if

o L) L - 2 0),
b= o (loa(l) — ¢ 1),
- ) - 10

where & = log(1 — Ilm).

Proposition 2.2.2. ([SY] Section 3) Perform a coordinate change of the equation (2.2.3)
from (X,Y) to (U, V) and denote the coefficients of the transformed equation by the same
letter with bars. Then

(1=-\Nv, m=—u/v,
(R(U)B — S(U)a)/v, b= (R(V)B~S(V)a)/v,
(SU)y = RU)S)) /v, d=(S(V)y—R(V)d)/v,
(ag = Bp)/v, 7= (ép—"q)/v,

S]]
I

al
|

¥z
where
A =UxVy — Uy Vy,
A =1VZ — 2Vx Vi + mV2,
p =103 — 2UxUy + mU%,
v=I1UyVy —UxVy — Uy Vx + mUx Vx,
and
a=(VE-IVxW)/A, B=(VZ—-mVxW)/A,
vy = (U} — IUxUy) /A, 6= (U —mUxUy)/A,
(U) =Uxx — (lUxy + aUx + bUy),
S(U) = Uyy — (mUxy + cUx + dUy),
(V) =Vxx — (lVxy + aVx + bVy),
(V) = Vyy — (mVxy + cVyx + dVy).

2.2.2 Uniformizing differential equation of the Hilbert modular
orbifold (H x H)/(PSL(2,0), 1)

The quotient space (H x H)/(PSL(2,0), ) carries the structure of an orbifold. Let us
sum up the facts about the orbifold (H x H)/(PSL(2,0), ) and the result of Sato [Sa]
on the uniformizing differential equation.
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Remark 2.2.2. The results about this orbifold shall be stated more detailed in Section
3.1.

Set

I'(V5) = { (3 ?) € PSL(2,0)|la=6=1,=~v=0 (mod\/g)}. (2.2.4)

I is a normal subgroup of PSL(2, ©). The quotient group PSL(2, O)/T'(+/5) is isomorphic
to the alternating group As of degree 5. Aj is isomorphic to the icosahedral group I. Let
M be a compactification of an orbifold M. Hirzebruch [Hi] showed that H x H/(T, 7)
is isomorphic to P?(C). Therefore, P?(C) admits an action of the alternating group As.
This action is equal to the action of the icosahedral group I on P?(C) introduced by F.
Klein. We list Klein’s I-invariant polynomials on P?(C) = {((o: (1 : () }:

(QL(CO (G ) =G+ G,
B(Co: C1:Ca) =81l — 2G5¢EG + GG — Go(¢ + 63),
€(Co : G1: Ca) = 320¢¢T ¢G5 — 160¢5¢PCS + 2045¢ ¢y + 6¢7¢3
4G (¢ + )(32¢ — 2065¢iG +5¢EEE) + G + ¢,
120 (Go : G2 C2) = (GF — €3)(—1024¢3° + 3840¢5 12 — 3840¢5¢T ¢G5
+1200¢5¢P G5 — 100¢65¢1 ¢y + ¢7¢5)

\ +Go(G1” = 6°)(352¢5 — 160¢5¢1¢2 + 10¢FE3) + (¢1° = ¢°).
We have the following relation:
144D% = —1728B° + 720ACB> — S0A*C*B + 64A%(5B? — AC)? + ¢2. (2.2.5)

Kobayashi, Kushibiki and Naruki [KKN] showed that a compactification (H x H)/(PSL(2,O), )
is birationally equivalent to P?(C). Let

¢ :P*C) = (Hx H)/(I',7) — (H x H)/(PSL(2,0), 7) = P*(C)

be a rational mapping defined by
(Co:¢i:G)— (A AB - €).

¢ is a holomorphic mapping of P?(C) — {A = 0} to P?(C) — (a line at infinity L) C
(H x H)/(PSL(2,0),T). Set

B ¢

w T
X and Y are the affine coordinates identifying (1: X : Y) € P?(C)— Lo, with (X,Y) € C?
(These properties of the Hilbert modular orbifold shall be stated in detail in Section 3.1).

Proposition 2.2.3. ([KKN]) The branch locus of the orbifold (H x H)/(PSL(2,0), )
in P?(C) — Lo = C? is, using the affine coordinates (2.2.6),

X = (2.2.6)

D =Y (1728X° — 720X%Y + 80XY? — 64(5X* -~ Y)* = Y?*) =0

of index 2. The orbifold structure on (H x H)/(PSL(2,0), ) is given by (P*(C),2D +
00 Loo).
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We note that H x H is embedded in P!'(C) x P!(C) which is isomorphic to a non-
degenerate quadric surface in P3(C). Let 7 : H x H — (H x H)/(PSL(2,0), ) be the

canonical projection. The multivalued inverse mapping 7! is called the developing map
of the orbifold (H x H)/(PSL(2,0), ).

Definition 2.2.3. Let us consider a system of linear differential equations on the orbifold
(HxH)/(PSL(2,0), 1) with 4-dimensional space of solutions. Let zy, z1, 2o, 23 be linearly
independent solutions of the system. If

(H x H)/{PSL(2,0),7) — P3(C) : p — (20(p) : z1(p) : 22(p) : 23(p))

gives the developing map of the orbifold (H x H)/(PSL(2,0), 1), we call this system the
uniformizing differential equation of the orbifold.

From Proposition 2.2.3, T. Sato obtained the following result.

Theorem 2.2.1. ([Sa] Example. 4) The holomorphic conformal structure of the uni-
formizing differential equation of the orbifold (H x H)/(PSL(2,0),T) is

—20(4X?% + 3XY — 4Y) —2(54X3 — 50X2 — 3XY +2Y)

dX)? +2(dX)(dY dy)?
36X?% —32X —-Y (dX)"+ 2(dX)(dY) + 5Y (36X2% — 32X —Y) (dY)"
(2.2.7)
where (X,Y) is the affine coordinates in (2.2.6) .
Let
Zxx = lzxy + azx + bzy + pz, (22.8)
Zyy = mzxy + czx +dzy + gz

be the uniformizing differential equation of (H x H)/(PSL(2,0), 1), where (x,y) is the
affine coordinates in (2.2.6). We already obtained the coefficients [ and m (see Definition
2.2.1 and Theorem 2.2.1). If the normalization factor of (2.2.8) is given, the coefficients
a,b,c and d are determined by Proposition 2.2.1. The other coefficients p and ¢ are
determined by the integrability condition of (2.2.8).

Remark 2.2.3. Sato [Sa] determined the uniformizing differential equation of (H x H)/
(PSL(2,0),T)

zxx = lzxy + aszx + bszy + psz,
2yy = Mzxy + Csz2x + dszy + qs2

with
( (X7 —20(3X —2) b(X.Y) —10(8X +3Y)
a = =
A 36X2-32X —Y’ V7 36X2—-32X —Y’
3X —2 —198X?% + 180X + 7Y

cs(X,Y) =

ds(X,Y) =

By(36X% — 32X — V)’ 5Y(36X2 — 32X — V)’
—3 3

5X7Y_
Goxz—sx vy Y

J(X,Y) = — .
Ps(X,Y) 100Y (36X2 — 32X — Y)

\
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Here, the normalization factor

» —36X2+32X +Y

_ , 2.2.9
YI2(1728X5 — 720X3Y + 80XY2 — 64(5X% — Y )2 — Y3))3/2 (22.9)

e

exactly corresponds to the above data ag, b, cs,ds, ps and qs. It should coincides with the
original normalization factor in [Sa] p.185, because Sato used the above data. However,
it 1s not the case. We suppose there would be contained some typos in the original one.

2.2.3 Exact relation between period differential equation and
unifomizing differential equation

The modular isomorphism (2.2.2) implies that our period differential equation (2.1.7)
should be related to the uniformizing differential equation of the orbifold (HxH)/(PSL(2,O), ).
In this subsection, we show that the holomorphic conformal structure of (2.1.7) is trans-
formed to (2.2.7) in Theorem 2.2.1 by an explicit birational transformation. Moreover,

we determine a normalization factor which is different from that of Sato’s (2.2.9). The
uniformizing differential equation of the orbifold (H x H)/(PSL(2,0), ) with our nor-
malizing factor corresponds to the period differential equation (2.1.7).

Proposition 2.2.4. The period differential equation (2.1.7) is represented in the form

{ 2 = lozay + apzy + bozy + poz, (2.2.10)
Zup = MoZxay + Co2x + doz, + qoz
with
(| _ 2p(=1+15)+100)%) 2(A2 = 8XN% + 16M* + B — 50\p)
O T NTI6M02 80N + 12507 T (At 16X — 80X + 1254)
(=1 + 10A)(1 4 20)) 514(3 + 40))
0T N T 160 — 80N 1 12517 T A+ 16)2 — 80A3 + 125
5(—1+ 10)) —\ — 2002 + 96)% — 2004
O TN F 1602 — 80X + 1251)  ° T p(h + 16A2 — 80A3 + 1254)
2(1 + 20)) 10
0T N 1602 —800° + 12517 T T (N1 16)2 — 80N3 + 125)
Proof. Straightforward calculation. O

Especially, the holomorphic conformal structure of the period differential equation
(2.1.7) is

20(—1 + 15 4 100A2) 2(A2 — 8A3 4 16A% + 5y — 50\ )

d\)? +2(d\)(d dp)?.
A+ 16A2 — 80A3 + 125;1,( )"+ 20dN)(dp) + (A + 1622 — 803 + 125.) (d1)
(2.2.11)
Theorem 2.2.2. Set a birational transformation
250 312542
: X, Y) = — 2.2.12
O e S R O ey e yrv) (2:2.12)

from (X, p)-space to (x,y)-space. The holomorphic conformal structure (2.2.11) is trans-
formed to the holomorphic conformal structure (2.2.7) by f.
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Proof. The inverse f~! is given by

1 Y V&
AXY) =1 - 5xz MEY) = —15xs

(2.2.13)

We have
~-Y?(4X? -Y)(9X?2 -Y)
250X3(240X* — 88X2Y +8Y2 — XY?)’
—4000X3(100X?* — 40X?%Y + 3X3Y +4Y? — XY?)
Y2(240X* — 88X?Y +8Y?2 — XY?)

lo(A(X,Y), u(X,Y)) =

mO(A(Xv Y)v :u(Xa Y)) =

(2.2.14)
By (2.2.12) and (2.2.13), we have
60X°3 10°X°© 2-10°X°
X\ = v Yy =100Y?% X, = Ty o Y, = TTyr (2.2.15)

From (2.2.14) and (2.2.15) and Proposition 2.2.2, by the birational transformation f :
(A, 1) — (X, Y), the coefficients Iy and mg are transformed to

= _ 204X 4 3XY — 4Y) —2(54X° — 50X2 — 3XY +2Y)

T 36X2-32X —Y 5Y(36X2 — 32X —Y)

moy =

These are equal to the coefficients of the holomorphic conformal structure (2.2.7). There-
fore, the holomorphic conformal structure (2.2.11) is transformed to (2.2.7). O

Remark 2.2.4. The birational transformation (2.2.12) is obtained as the composition
of certain birational transformations. First, blow up at (A, ) = (1/4,0) € ((\, p)-space)

three times: (A, ) — (A, up) = <>\, )\—Ll/él» (Aur) = (A ug) = (Av \ _11/4 ’

1
(A, ug) = ()\, Au—21/4> Cancel A by \ = w2 + T Then, we have the following birational
transformation:
7 u
: A? ) - < Y >'
Yo p) = (uayus) = (55 ("1 7ape

(Its inverse is given by

U2

e - 1ol

o s (ug,ug) = (A p) = (_4’1 _§> )
On the other hand, blow up at (X,Y) = (0,0) € ((x,y)-space):
Y

v (0Y) = (Xs) = (X 5).

(Its inverse is given by
ot (X)) = (XY) = (X, Xs).)
Moreover, we define the holomorphic mapping
25
X (ug,ug) — (z,8) = (—ug, —25Ou2>.

2
We have f = ;" o x 0 1.
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Instead the normalization factor (2.2.9) used by Sato, that is referred in Remark 2.2.3,
we need a new normalization factor (2.2.16). Together with the conformal structure
coming from (I3, my) = (I,m), we obtain the new uniformizing differential equation which
we are looking for.

Proposition 2.2.5. The uniformizing differential equation of the orbifold (HxH)/(PSL(2,0), )
with the normalization factor
w X4(—36X2 + 32X +Y)

©YS/2(1728 X5 — 720X3Y + 80X Y2 — 64(5X2 — Y)2 — Y3)3/2

e (2.2.16)

18

(2.2.17)

zxx = lhizxy + a1zx + bizy + D1z,
Zyy = mMizZxy + c1zx +dizy + 12

with
(, _ —20(4X? + 3XY — 4Y) | —2(54X* — 50X — 3XY +2Y)
T T 36X —32x Y 0 YT T Y (36X 32X —Y)

_ 220X -BXY 4 OXPY +¥?)  10Y(-8 4+ 3X)

B XY(36X2—-32X —Y) = ' X(36X2—-32X —Y)’

—2(—25X2 4+ 27X3 4+ 2Y — 3XY)  —2(—120X7% 4 135X% — 2V — 3XY)
5Y2(36X2 — 32X —Y) T 5XY(36X2—32X —Y)
—2(8X —Y) B —2(—10 + 9X)

X2(36X2 — 32X —vV) 7T 25XV (36X2 32X — V)

a1

C1 =

p1 =

\
Proof. 1y and my are given in Theorem 2.2.1. According to Proposition 2.2.1, the other
coefficients are determined by [1,m; and 6 in (2.2.16). O

Theorem 2.2.3. By the birational transformation f in (2.2.12), our period differential
equation (2.2.10) is transformed to the uniformizing differential equation (2.2.17) of the
orbifold (H x H)/(PSL(2,0),T).

Proof. We have
, 400X2(3X% - Y)(6X% —Y)
GO()\(X, Y)v lu(Xa Y)) = Y(240X4 — 88X?2Y 4+ 8Y?2 — AXVY'Z)7

—Y2(13X2 — 2Y)
P, 1 X Y)) = S R I0XT — 88XV + 8Y7 — X772

2. 105X9(3X? — Y)
OOXY) X Y) = S X7 — ssxey + 877 — X779,
160000X°(175X* — 65X2Y +6Y2 — XY?)
Y3(240X% — 88X2Y + 8Y2 — XV?)
1600X*(6X? — Y)
Y (240X7 — 88X2Y + 8Y2 — XV?)’

(XL Y). (X, V) = S0
QA T IS T = Ya040 X% — 88X2Y +8Y2 — XY?2)

(2.2.18)

dO()‘(Xa Y)v :u(X7 Y)) =

pO()‘(Xv Y)a N(Xa Y)) =
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By (2.2.12) and (2.2.13), we have

4800X° 12000 * .
AN = o Y= —F5—, un =0,
Y® Y (2.2.19)
2. 101010 6 105X 2.107X7
i e O e

From (2.2.14), (2.2.15), (2.2.18) and (2.2.19) and Proposition 2.2.2, by the birational
transformation f : (A, u) — (X,Y), the coefficients ay, by, co, do, po and qo are transformed
to

( —2(20X3 —8XY 4+ 9X2Y +Y?) 10Y (—8 + 3X)

O TTXY(B6X? — 32X —v) 0 T X(36X%_32X —Y)

_ 2(-BXZ2TXP 42V —3XY) - —2(—120X2 + 135X3 — 2V — 3XY)
= BY2(36X2 — 32X —Y)  °° 5XY (36X2 — 32X — Y) ’
_ 28X —Y) _ —2(~10 + 9X)
\p O T X236x2 32X —vV) T 95XV (36X2 32X — V)

These are equal to the coefficients of (2.2.17). O

Therefore, the uniformizing differential equation of the orbifold (HxH)/(PSL(2, O), 1)
with the normalization factor (2.2.16) is connected to our family Fy = {So(\, )} of K3
surfaces.
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Chapter 3

A theta expression of the Hilbert
modular functions for /5 via the
period mapping for a family of K3
surfaces

According to Section 2.2, the period mapping for the family Fj of K3 surfaces
So(\, 1) = moyozg (To 4 Yo + 20 + 1) 4+ Azoyozo + 1 = 0, (3.0.1)

is strongly related to the Hilbert modular function for Q(v/5).

In this chapter, we consider the family F = {S(X,Y)} of K3 surfaces over P(1:3:5).
Note that a member S(X,Y") is birationally equivalent to a member Sy(A\, p) of Fy. Using
the results of Hirzebruch [Hi] and Miiller [Mul], we prove that the inverse correspondence
of the multivalued period mapping for our family F gives a pair of Hilbert modular

functions for Q(v/5).

3.1 The Hilbert modular orbifold (H x H)/{PSL(2,0), T)

Here, we recall the action of the Hilbert modular group on H x H.

Let O be the ring of integers in the real quadratic field Q(v/5). Set H. = {z €
C| £Im(z) > 0}. The Hilbert modular group PSL(2,0) acts on (H; x H;)U (H_ x H_)
by

a B azi+ 0 oz + G
(7 5) '(21722)’_) (721_1_57,_)/,2:2_'_5,)7

for g = (j g) € PSL(2,0), where ' means the conjugate in Q(v/5). We consider the

involution

T (21,22) — (22,21)

also.
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Definition 3.1.1. If a holomorphic function g on H x H satisfies the transformation law

azy +b dz+ b i .
g(CZ1 +d dze+ d’) = (cz1 +d)" (2 + d')"g(21, 22)

for any d

If (22, 21) = g(21,22), g is called a symmetric modular form. If g(ze,21) = —g(z1, 22), ¢
is called an alternating modular form.
If a meromorphic function f on H x H satisfies

b) € PSL(2,0), we call g a Hilbert modular form of weight k for Q(v/5).

<a21 +b dz+ U

cyy +d 2y + d’) = fla1,2)

for any (Z Z) € PSL(2,0), we call f a Hilbert modular function for Q(v/5).

Hirzebruch [Hi] studied the Hilbert modular orbifold (H x H)/(PSL(2,0), 7). Here,
we survey his results.

Recall
I'(V5) = { (: ?) ‘azéz 1,=6=0 (mod\/g)}.

in Section 2.2.2. The group PSL(2,0)/T'(v/5) is isomorphic to the alternating group

As. Hirzebruch [Hi] studied the canonical bundle of the orbifold (H x H)/I'(v/5) by an
algebrogeometric method. He proved

Proposition 3.1.1. ([Hi] pp.307-310) (1) The non-singular model of (H x H)/(I'(v/5), 7)
is P*(C) = {(Co;¢1;¢)} by adding sixz points. A homogeneous polynomial of degree k in
Co, G and (y defines a modular form for T'(\/5) of weight k.

(2) The ring of symmetric modular forms for PSL(2,O) is isomorphic to the ring

C[2,B,¢,D]/(R(,B, ¢, D) = 0),

where R(2A,B,C, D) is the Klein relation (2.2.5). A (B, €, D, resp.) gives a symmetric
modular form for PSL(2,0) of weight 2 (6,10, 15, resp.).

(3) There exists an alternating modular form ¢ of weight 5 such that ¢* = €. The ring
of Hilbert modular forms for PSL(2, Q) is isomorphic to the ring

C, B, ¢, D]/(R(,B,*,D) =0).
For our further study, we need the weighted projective space P(1,3,5). Let c € C—{0}.
(ag, a1, az) ~ (cag, c*ay, ’ay)
gives an equivalence relation on C* —{(0,0,0)}. We call P(1,3,5) := (C>—{(0,0,0)})/ ~
the weighted projective space of weight (1,3,5). This is a 2-dimensional algebraic variety.

Let ¢ € C — {0}. We consider the action ((o, (1,¢2) — ('Co, 'C1, (). Because 2
(B, €, resp.) is a homogeneous polynomial of degree 2 (6,10, resp) in (o, (; and (3, we
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have the action (2,9, €) — (2, 5B, °C). Therefore, we regard (2, B, €)-space as
the weighted projective space P(1,3,5). Especially,
B ¢ )

X1 = (g g

in (2.2.6) gives a system of affine coordinates on {2 # 0}.
By the arguments of Klein [KI], [Hi] and Kobayashi, Kushibiki and Naruki [KKN], we

know the following properties of the action of As on (H x H)/(I'(v/5),7) = P*(C) = {¢ :
Gt Gt

Proposition 3.1.2. (1) The correspondence (o = ¢ = G) — (A(Go : G = G) = B
G:G) € G &) gives an identification between P?(C)/As and P(1,3,5). Then,
the Hilbert modular orbifold (H x H)/(PSL(2,0), ) is identified with P(1,3,5). The cusp
(v/—1oo,v/—100) € (H x H)/(PSL(2,0),7) is given by the point (A : B : €) = (1:0:0).
So, the quotient space (H x H)/(PSL(2,0),T) corresponds to P(1,3,5) — {(1:0:0)}.

(2) The divisor {D = 0} consists of fifteen lines in P?(C). These fifteen lines of
{D = 0} are the reflection lines of fifteen involutions of As (note that As is generated by
three involutions).

(3) The involution T induces an involution on the orbifold (H x H)/PSL(2,0). The
branch locus of the canonical projection (H x H)/PSL(2,0) — P(1, 3,5) is given by {€ =
0}.

Set

X={(X,Y) e CHY(1728X° — 720X*Y + 80X Y? — 64(5X* — Y)* — Y?) #£ 0}.(3.1.1)

3.2 The period of the family F

3.2.1 The family F of K3 surfaces

By a birational transformation, we obtain a new family of K3 surfaces with explicit
defining equations from the family Fy = {So(\, )} in (3.0.1).

Proposition 3.2.1. The family of K3 surfaces Fo = {So(A\, p)} for (\, 1) € A is trans-
formed to the family F = {S(X,Y)} for (X,Y) € X:

S(X,Y): 2% =2° — 4y*(4y — 5)2” + 20X y’x + Yy (3.2.1)
Proof. By the transformation (2.2.12) and the birational transformation given by

( Yy
a’,‘ f—
"7 10X 2,

B 4Y 22y}

50X 2Y iy — XY 2P +5XY 2]
10X Yoy + Y - Yy

L 0= 20X Yz ’

Yo
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the family Fo = {So(\, 1)} is transformed to the family F; = {S1(X,Y)} given by
SI(X,Y) : 2f =Y (2] — 4y (4yr — 5)at + 20Xy, + V)
1
over X. Then, by the correspondence (x1,41,21) — (x,y,2) = <$1,y1, W@), we have
the family F = {S(X,Y)} given by (3.2.1). O

Because we have the biholomorphic mapping (2.2.12) and S(\, x) is birationally equiv-
alent to S(X,Y’), we obtain the multivalued analytic period mapping

XD (XY) e / t/ /‘ / (3.2.2)
I I’ I's Iy

dr A d
T2 s the unique holomorphic 2-form on S(X,Y’) up to a constant factor

where w =

z
and I'y,--- [y are certain 2-cycles on S(X,Y) (this period mapping is stated in detail at
the beginning of Section 3.2.2).

Remark 3.2.1. The correspondence (x1,y1,21) — (z,y,2) = (1,91, \/L?zl) in the proof
of Proposition 3.2.1 induces the double covering X' — X given by (X,Y’) — (X,Y) =
(X,Y"™). However, (X,Y’) and (X,-Y") € X' define mutually isomorphic P-marked K3
surfaces (see Definition 3.2.1 ). So, we obtain the above period mapping ®1 on X.

Due to Theorem 1.3.2, Theorem 1.4.1, we have clearly
Theorem 3.2.1. (1) For a generic point (X,Y) € X,
rank(NS(S(X,Y))) = 18.

(2) For a generic point (X,Y) € X, the intersection matriz of the transcendental lattice
Tr(S(X,Y)) is given by

A=Uo (f _12) . (3.2.3)

(3) The projective monodromy group of the multivalued analytic period mapping ® :
X — D, is isomorphic to POT(A,Z).

(4) The period differential equation for the family F = {S(X,Y)} is given by (2.2.17).

Proposition 3.2.2. Under the correspondence (2.2.6), the surface S(X,Y) is birationally
equivalent to

S(A:B: Q) : 22 =2 — 4(4y® — 5Ay*)2” + 20By’z + ¢y (3.2.4)

B ¢
Proof. Putting X = %,Y b to (3.2.1), we have

Az = Ax® + (2092 — 16°)A2? + 20A*By’x + oy

Then, by the correspondence

we obtain (3.2.4). O
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Remark 3.2.2. For two surfaces

SERL:B: )22 =% — 4(dy® — 5Ay?) 2 + 20V + Cyt,
S(k2A : kOB : k19¢) « 22 = 2% — 4(4y® — 5K Ay?)x? + 20k°By3z + k1O0Cy*,

we have an isomorphism S(2A : B : €) — S(E*A : kB : k'°C) given by (x,y,2) —
(KSx, Ky, k°z) as elliptic surfaces. Therefore, (A : B : €) € P(1 : 3 : 5) gives an
1somorphism class of these elliptic K3 surfaces.

Weset K; = {Y = 0} and K, = {1728 X°—720X3Y +80X Y2—64(5X2—Y)2—Y® = 0}.

Theorem 3.2.2. The (A : B : €)-space P(1,3,5) gives a compactification of the parameter
space X of the family F = {S(X,Y)} of K3 surfaces given by (3.2.1). Namely, if (1:0:
0) # (A:B:¢) € P(1,3,5), then the corresponding surface S(2A : B : €) is a K3 surface.
On the other hand, S(1:0:0) is a rational surface.

Proof. First, we prove the case 2 # 0. In this case, we consider S(X,Y) in (3.2.1). We
have the Kodaira normal form of (3.2.1):

=2} — py)r —gs(y)  (y# o0), (3.2.5)
with
3 16 4 2
92(y) = —(ZOXy - 3Y (4y —5) )
80 128
gs(y) = — (Yy4 + §y5(4y —5)X — 7y6(4y — 5)3),
and
25 = x5 — ha(y1)zs — ha(y1) (y #0), (3.2.6)
with
256 640 400
ha(yn) = —(QOXZ/? — TZ/% + ?Z/f - Tyil)’
320 400 8192 10240 12800 16000
I :_<Y8 i OV O S 3 4 5 6)
3(y1) yit Xy o Xy - it o Uit o)

1

where y; = —. The discriminant Dy (D, resp.) of the right hand side of (3.2.5) ((3.2.6),
Y

resp.) is given by

Dy = y5(27Y2 + 32000X 3y — 7200X Yy — 160000.X 22 + 32000Y 12

F5T60X Y2 + 256000X 2 — 76800 33 — 102400X 2y + 61440Y y* — 16384Y 1),
Do = 411 (—16384Y — 102400X 2y + 61440 3y + 256000X 22 — 76800 32

—160000X 23 + 3200033 + 5760X Y y? + 32000X 34 — 7200X Yy + 27V 23).

If (X,Y) € X, then we have

ord, (Do) =8, ord,(g2) = 3, ord,(g3) = 4,
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so 7~ 1(0) is the singular fibre of type IV*. Similarly, we have
ordy(Ds) = 11, ord,(hy) = 2, ord,(hs) = 3,

so m1(00) = I}. We have other 5 singular fibres of type I;. Therefore, for (X,Y) € X,
S(X,Y) is an elliptic K3 surface whose singular fibres are of type IV* + 51, + I,

By the same way, we know the structure of the elliptic surface S(X,Y") for (X,Y) & X.
If X #0and Y =0 (namely, (X,Y) € K; —{(0,0)}), then S(X,0) is an elliptic K3
surface with the singular fibres of type I11*+ 31, + [§. If (X,Y) € K;—{(0,0)}, S(X,Y)
is an elliptic K3 surface with the singular fibres of type IV* + 311 + I, + 7. However, if
(X,Y) = (0,0), we can check that S(0,0) is birationally equivalent to P!(C) x P!(C). So,
S(0,0) is not a K3 surface, but a rational surface.

Next, we consider the case 2 = 0. In this case, note that (B, &) # (0,0). We have the
equation of S(0: B : €): 22 = 2® — 16y32? + 20By>z + €y*. On {A = 0} C P(1,3,5), we

3 . QS / Q:Q / \/@ !/
use the parameter [ = B By the transformation z = itV = gt = et Ve
have
S(1) : 2% = 2™ — 16ly"2" + 20y’ + y".

The discriminant of the right hand side is given by y®(27+32000%'+57601y? —1024001%y" —
16384[y’®). From this, we can see that S(I) is an elliptic K3 surface with the singular
fibres of type IV* + 51, + I7. m

Hence, we obtain the extended family {S(2(:B : €)[(A:B: &) € P(1,3,5) —{(1:0:
0)}} of K3 surfaces. For simplicity, let F denotes this extended family.

Remark 3.2.3. In Section 1.5, we proved that the parameter space A of the family Fy =
{So(\, )} is birationally equivalent to the symmetric Hilbert modular orbifold. However,
it 18 difficult to obtain an exact compactification of the parameter space A. For example,
the period j= o ®g(\, u) for Fo on A does not give the point in the diagonal A = {(z,2) €
H x H}, for the set (771 o ®)71(A) is blowed down to one point in (\, u)-space.

For a precise study of the period mapping, we need the new family F = {S(X,Y)}
on the orbifold (H x H)/(PSL(2,0), 7). By the birational transformation (2.2.12), A is
birationally equivalent to this Hilbert modular orbifold. As in Section 3.1, this orbifold has
an ezxact compactification by adding one point (namely the cusp). Moreover, for example,
we can see that the image of the divisor {Y = 0} gives the diagonal A. Therefore, this
new family F is suitable to study the modular property.

3.2.2 The extension of the period mapping

Set ¢g = (1 : 0:0) € P(1,3,5). In this subsection, we extend the period mapping
¢, : X — Dy in (3.2.2) to P(1,3,5) — {cp} — D;.

First, we recall the S-marking on X. According to Theorem 3.2.2 and its proof, we
have the elliptic K3 surface

Tme) : S(RA: B ¢€) — P!(C) = (y—sphere)

for any (A:%B:¢) € P(1,3,5) — {co}- )
Take a generic point (Xg,Yy) € X. The elliptic K3 surface S = S(Xo, Yy) given by
(3.2.5) and (3.2.6) has the singular fibres of type IV* 451 + IZ. Let F' be a general fibre
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(0) by Pz

Figure 3.1: An elliptic fibration for S(X,Y).

of this elliptic fibration and O be the zero of the Mordell-Weil group of sections. We have
two irreducible components of the divisor C' given by {z = 0,2% = Yy'}. We take the

section R given by y — (x,y,2) = (0,y,vY%?). This gives a component of the divisor
6 9

C'. Let us consider the irreducible decomposition U a; (U b;, resp.) of the singular fibre
Jj=0 J=0

W(_)}yy)(()) (W(_)éy)(oo), resp.) of type IV* (I}, resp.). These curves are illustrated in Figure

3.1. Note that ag N O # ¢, by N O # ¢, ag N R # ¢ and by N R # ¢.

As we stated in Remark 3.2.3, we need the improved family F for a precise study of
the period mapping. So, we define the S-marking and P-marking for F as in Section 1.5
to consider the period mapping exactly.

We set F5 = F,FG = O,F7 = R, F8+k3 = Ak+1 (0 S k S 5), F14+l = bl+1 (O S {
We have the lattice L = (D5, -+, Tyg)z C HQ(S,Z). We can check that ]det(L)\
Hence, from Theorem 3.2.1 (2), we have

< 8).
= 5.

L = NS(S).
Since L is a primitive lattice, there exists I'y,--- Ty € Hy(S,Z) such that
<F17 e 7F47 F57 e 7F22>Z - HQ(S7 Z)

Let {I'i,--- %} be the dual basis of {I'y,--- Ty} in Hy(S,Z). Then, (I'f,--- %)z is
the transcendental lattice. We may assume that its intersection matrix is

(I Tiicjrca = A (3.2.7)

where A is given by (3.2.3). We define the period of S by

B, (X0, Yo) = (/Flw:...:/mw).
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Take a small connected neighborhood Uy of (Xj, Yp) in X so that we have a local topological
trivialization

7:{S(p)lp € Up} — S x U. (3.2.8)
Let w: S x Uy — S be the canonical projection. Set r = w o 7. Then,

T]/a = 7"|S(p)

gives a deformation of surfaces. For any p € Uy, we have an isometry v, : Ho(S(p),Z) —
Hy(S,Z) given by

Up = T,
We call this isometry the S-marking on U,. By an analytic continuation along an arc

a C X, we define the S-marking on X. This depends on the choice of . The S-mariking
preserves the Néron-Severi lattice. We define the period mapping ®, : X — D, by

pr—></ w:---:/ w).
Py ' (T'1) Py ' (T's)

This is equal to the period mapping in (3.2.2).
Definition 3.2.1. Let S be an algebraic K3 surface. An isometry
Y Hy(S,7) — Hy(S,7)

is called the P-marking if

(i) 61 (NS(S)) € NS(S),

(i) 1 (F), 6 1(0), 6 (R), ¥ (a;) (1 < j < 6) and ¥~ 1(b) (1 < j < 9) are all
effective divisors,

(iii) (p~Y(F)-C) >0 for any effective class C'. Namely, 1)~ (F) is nef. A pair (S,)
1s called a P-marked K3 surface.

Definition 3.2.2. Two P-marked K3 surfaces (S1,11) and (Ss2,12) are said to be iso-
morphic if there is a biholomorphic mapping f : S1 — Sy with

Py 0 fuoy ! =idy,s -

Two P-marked K3 surfaces (S1,11) and (Sa,1s) are said to be equivalent if there is a
biholomorphic mapping f : S — Sy with

(Y20 fuo b )nss) = idnss).

Remark 3.2.4. The other connected component R’ of the divisor C' given by the section
y — (z,y, —V/Yy?) intersects ay (bs, resp.) aty = 0 (y = oo, resp.). Letting q be the
involution of S(X,Y) given by (z,y,z) — (x,y,—2), we have ¢.(R') = R, q¢.(as) = ag,
¢.(as) = as and q.(bg) = by. Then, we can see that P-marked K3 surfaces (S,id) and

(S, q.) are isomorphic by q. This shows that our argument does not depend on the choice
of the curves R or R'.
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The period of a P-marked K3 surface (S,) is given by

&/(S, ) = </w‘1(F1)w o /w—m)w) (3.2.9)

It is a point in D. Let X be the isomorphism classes of P-marked K3 surfaces and let
[X] = X/(P—marked equivalence).

By the Torelli theorem for K3 surfaces, the period mapping @ : X — D for P-marked
K3 surfaces defined by (3.2.9) gives an identification between X and D. Moreover, a
P-marked K3 surface (S7,1;) is equivalent to a P-marked K3 surface (S, ) if and only
if

'(S1,¢1) = g o V'(S2,¢2)

for some g € PO(A,Z) (see [Na2] Lemma 5.1). Therefore, we identify [X] with
D/PO(A,Z) =D, /PO*(A,Z) ~ (H x H)/(PSL(2,0), 7). (3.2.10)

Recall that the above isomorphism is given by the modular isomorphism j in (2.2.2).

We note that X is embedded in [X] (see Section 1.5.1). Then, an S-marked K3 surface is
a P-marked K3 surface and the period mapping for P-marked K3 surfaces is an extension
of the period mapping for S-marked K3 surfaces. From @ : X — D, we obtain a
multivalued mapping ¢’ : [X] — D,. We have

| = Dy, (3.2.11)

where ® is the period mapping in (3.2.2) for S-marked K3 surfaces.

Now, we extend the period mapping ®; : X — D, in (3.2.2) to ®*** : P(1,3,5)—{co} —
D.. We recall that (P(1,3,5) — {c}) — X = (K; UKo U{A=0}) — {c}.

First, since the local topological trivialization on X in (3.2.8) is naturally extended
to {2 = 0}, there exist S-markings on {2 = 0} and the period mapping (3.2.2) on X is
extended to P(1,3,5) — (K U Ky U{c}) — D;.

According to (3.2.10), Theorem 3.2.1 (3) and Proposition 3.1.2 (3) (Proposition 3.1.2
(2), resp.), the local monodromy of the period mapping ®; in (3.2.2) around K; (Ko,
resp.) is locally finite. Hence, the period mapping P(1,3,5) — (K; U Ky U {¢p}) — Dy
can be extended to P(1,3,5) — {co} — D;. We note that this extension is assured by
Theorem (9.5) in Griffiths [Gr2].

Therefore, we have the extended period mapping

>t P(1,3,5) — {co} — D4 (3.2.12)
with
e[ = . (3.2.13)

Since we have (3.2.10) and Proposition 3.1.2 (1), the P-marked equivalence classes [X]
is identified with P(1,3,5) — {co}. Because we have (3.2.11), (3.2.13) and X is a Zariski
open set in P(1,3,5) — {co}, ' in (3.2.12) is equal to the period mapping @’ on [X].

Let [@°**(p)] € D, /PO"(A,Z) be the equivalence class of ®**!(p) € D,. From the
above argument, we have
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Proposition 3.2.3. The period mapping O : [X] — D, for P-marked K3 surfaces is given
by the period mapping ®** in (3.2.12) for the family F = {S(p)lp € P(1,3,5) — {co}}
of K3 surfaces. This is an extension of the period mapping in (3.2.2) for S-marked K3
surfaces. Especially, if [ (py)] = [@*(pg)] in Dy /POY(A,Z), then py = ps.

In the following, ® denotes the above extended period mapping ®*** in (3.2.12). For
pE IED(17 37 5) - {CO}7 let
wp : HQ(S(p)7Z) - H2(SJ Z)

be a P-marking naturally induced by the above proposition. The period of S(p) is given

by
d(p) = (/ w :/ w :/ w :/ w). (3.2.14)
Py ' (T'1) ¥y H(T2) ¥y ' (T's) Py ' (T4)

According to Theorem 3.2.1 (3) (or Theorem 2.2.3), the multivalued analytic mapping
(7o ®@)|x : X — H x H gives a developing map of the canonical projection IT : H x H —
(HxH)/(PSL(2,0), 7). Here, by Proposition 3.2.3, (j~'o®)|x is extended to the analytic
mapping

jlo®:P(1,3,5) — {co} — H x H.

This gives a developing map of II.

Remark 3.2.5. Sato [Sa] showed that the system of differential equations on X

uxx = Luxy + Aux + Buy + Pu,

uyy = Muxy + Cux + Duy + Qu
—20(4X? 4+ 3XY —4Y) _ —2(54X° —50X? — 3XY +2Y)

36X2-32X-Y 5Y(36X2 — 32X —Y)

ing differential equation of (H x H)/(PSL(2,0), ). Namely, taking linearly independent
solutions yo, y1,y2 and yz, the mapping p — (yo(p) : -+ : y3(p)) gives a developing map
X — Dy. Of course, our equation (2.2.17) is also an unifomizing differential equation
in this sense. But, note that we do not know whether we can extend it to the singu-
lar locus applying the theory of the uniformizing differential equations. Since we regard
P(1,3,5) — {co} as the parameter space of F and p — (yo(p) : --- : ys3(p)) is the period
mapping for F, we obtain the extension of the solutions of (2.2.17) to the singular locus.

with L = is an uniformiz-

Hence, we obtain the following theorem.

Theorem 3.2.3. The mapping j~' o ® : P(1,3,5) — {co} — H x H gives the developing
map of II. Namely, the inverse mapping of I1 : Hx H — (H x H)/(PSL(2,0), 1) is given
by 5~ o @ through the identification (H x H)/(PSL(2,0), 1) ~P(1,3,5) — {co} given by
Proposition 3.1.2 (1).

Let A be the diagonal:
A= {(2’1,2’2) € H x H|21 = 22}.

From the above theorem and Proposition 3.1.2 (3), we have
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Corollary 3.2.1.
II(A) = {(2: B :0)} —{co}

through the identification (Hx H)/(PSL(2,0),7) ~P(1,3,5) —{co} given by Proposition
3.1.2 (1).

Due to Theorem 3.2.3, we obtain the system of coordinates (z1, 29) of H x H coming
from the period (3.2.14) of K3 surface S(p):

</F3w+1f/mw /J“Bﬁ/m‘”),
J.* J.*

Here, for simplicity, let I'; denotes the 2-cycle ¢ Y(T';) on S(p) for j =1,2,3,4.

According to Proposition 3.1.2 (1), by adding one cusp, we have the compactification
(H x H)/{PSL(2,0), 7). Then, putting 1o j~t o ®(cy) = (v/—100,/—10), we obtain
an extended mapping

(z1(p), 22(p)) = (3.2.15)

Moj~'o®:P(1,3,5) — (H x H)/(PSL(2,O), 1), (3.2.16)

where (v/—1o0,v/—100) stands for the (PSL(2,0), ) orbit of (v/—1oo,/—100).

3.3 The family Fx and the period differential equa-
tion

In this section, we consider the familly Fy = {S(X,0)}. The period mapping for Fx
gives a multivalued mapping to the diagonal

A={(z1,2) € Hx H|z = 2}

The inverse correspondence of the period mapping for Fyx is expressed in terms of the
elliptic J-function.

3.3.1 The family Fx

In Section 3.2, we have the K3 surfaces S(2: B : €) for (A : B : ) € P(1,3,5) — {co}
and the period mapping (3.2.14). Restricting them to {€ = 0}, we obtain the familly
{SRA:B:0)[(A:DB:0)# ¢} of K3 surfaces with S(2: B :0) : 22 = 23 — 4y?(dy —
5A)x* + 20By>z. Then, we have the family Fx = {S(X,0)} of K3 surfaces with

S(X,0): 2% = 2% — 4y?(4y — 5)2” + 20X ¢z,

B
where X( = %> € PY(C) — {0}. In this section, we consider the family Fy and the
period mapping for Fyx.
25
Set 3 = (X — sphereP!(C)) — {0, =, co}. Because we have Proppsition 3.2.3, we can

27
prove the following theorem for the subfamily Fy = {S (X,0)|X € E} as in [Nal].
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Theorem 3.3.1. (1) For a generic point X € %, rank(NS(S(X,0))) = 19.
(2) For a generic point X € X, the intersection matriz of the Néron-Severi lattice
NS(S(X,0)) is given by
Es(—1)® Es(-1) o U @ (—2)

and that of transcendental lattice Tr(S(X,0)) is given by

(3) The projective monodromy group of the multivalued period mapping for F'y is
isomorphic to PO*(Ax,Z).

From the period mapping ® in (3.2.14), the system of coordinates (21, z2) in (3.2.15),
Corollary 3.2.1 and the above theorem, we obtain a multivalued period mapping ®y for
Fx such that

i ltodx : {X|X € P(C) - {0}} — A, (3.3.1)

WhereCDXisgivenbeH(ﬁl:{2:53:54):(/w:/w:/w:0>€D+withthe
r Iy I's

Riemann-Hodge relation (/ w) (/ w) + </ w>2 =0.Set ¥ = (X—Sphere ]pl((C)) -
I I I

25
{0, 57 oo} The fundamental group (3, %) induces the projective monodromy group
My for ®x. According to the above theorem (3), My is isomorphic to PO*(Ax,Z).
From (3.2.15), we have the coordinate z of A ~ H:

/
F3
/ “
Fz

Recalling (3.2.16), we obtain an extended mapping ITo j~ ! o @y : P1(C) — A/Myx. We
note Ioj~to®x(0) is the My orbit of (v/—1oo, v/—100). The action of Mx on A(C HxH)
induces the action of PSL(2,7Z) on H, for we have the coordinate z in (3.3.2). Namely,
there exist 71,72 € m (2, %) such that

Z = —

(3.3.2)

m(z) =2+1, Ya(z) = —=. (3.3.3)

So, A/My is identified with the orbifold H/PSL(2,Z) ~ P'(C).

Remark 3.3.1. The projective monodromy group Mx ~ POY(Ax,Z) of the period map-
ping ®x is generated by two elements:

1 -1 2 0 -1 0
01 0], -1 0 o0 |. (3.3.4)
0 -1 1 0 0 -1

These are induced by the monodromy matrices in (2.2.1).
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1 5
3.3.2 The Gauss hypergeometric equation 2E1(E, 13’ 1;t)

We recall the Gauss hypergeometric equation

1 5 & 3.d 5
E(—T—Jﬁ>ﬁ1—t—— 1205 - 2u=no 3.3.5
2M1\12'12 (=05t (=505 = v (3:3.5)

1
The Riemann scheme of 2E1< 1; t) is given by

Lo
12'12°
t=0 t=1 t=o0

0 0 1/12
0 1/2 5/12

1 5
We can take the solutions y;(t) and y(t) of 2 E) <E’ o 1; t) such that the inverse
mapping of the Schwarz mapping

ya(t)
o: t— =o0(t)=2 €H 3.3.6
yl(t) ( ) 0 ( )
is given by
SR (3.3.7)
— — 3.
0 J(Z[)),
14 +/—
where J(z) is the elliptic J function with J<+T3> =0,J(vV—1)=1land J(vV—1o0) =

Q.

Remark 3.3.2. The above J function is given by

1 /1
J =:————(- 744 + 196884 ---), 3.3.8
() = Tmg g T 74+ q+ (3.3.8)

where q = e*™V 12,

Note that the Schwarz mapping ¢ is a multivalued analytic mapping. We can choose
the single-valued branch of the Schwarz mapping o on (0,1) C R such that o(t) € vV—1R
and

lim o(t) = v —1oo, hyhaﬁ):v¢if. (3.3.9)

t—+40 t—1-

Then, the single-valued branch of the solutions () and y,(¢) near (0,1)(C R) is in the
form

yi(t) = un(?),
{ Yo (t) = log(t) - ugy (t) + uga(t), (3.3.10)

where u,(t) are unit holomorphic functions around ¢ = 0 and log stands for the principal
value.
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1 5
The projective monodromy group of 5 F <E’ 12 1; t) is isomorphic to PSL(2,7Z). In
other words, the action of the fundamental group 7 (P'(C) — {0, 1, 00}, %) on H = {zo =

%} is generated by the two actions
Y1

1
Zol—)Zo—Fl 20— —), (3311)
20

if we normalize a basis ¥,y of the solutions of gEl(%, %, 1;t) around a base point.

Remark 3.3.3. The projective monodromy group for the system (ya(t); —yi(t); yi(t)y2(t))
is (By, By) where

1 —1 2 0 -1 0
Bi=(0 1 o], By=[|-1 0 o0
0 -1 1 0 0 -1

These matrices are equal to those of (3.3.4).

3.3.3 The period differential equation for the diagonal A

In this subsection, we determine the period differential equation for Fx. Considering the
solutions of this period differential equation, we obtain the expression of X using the
coordinate z in (3.3.2).

Proposition 3.3.1. On the locus {Y = 0}, the period differential equation (2.2.17) is
restricted to the following ordinary differential equation of rank 4:

d' . 3(243X° — 4060X +2000)
u Uu
dX* " 2X(81X? — 1155X + 1000) dX3
2034X2 — 40680X + 8000 2 15(3X — 80) d

——u=0.
SX2(81X2 — 155X + 1000) dX2 " " 8X2(81X? — 1155X + 1000) dX
(3.3.12)
Proof. Recalling the period differential equation (2.2.17), set
Elu = L1UXY + A1UX + B1Uy + Plu,
Eyu = Myuxy + Ciux + Diyuy + Q.
Deriving these equations, we have the system of equations
( E 0 E 0 E
U = U U = ——=L1Uu u = ——Lhu
XX 1y UXXX = o bt uxxy = 5o,
0? 0?
UXXXX X2 11U,  UXXXY XY 14U, . .
[ Wy = Esu,  uxyy = 0_XE2u’ Uyyy = 8_YE2U’ UXXYY = mEﬂL = WEQU-
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Our periods satisfy this system. From this system, canceling the terms uy, uxy, uyy, uxxy,
UXyYy,Uyyy,UXXXY and Uxxyy, we can obtain the differential equation

as(X,Y)uxxxx + a3(X,Y)uxxx + ao(X,Y)uxx + a1 (X, Y)ux + ao(X,Y)u = 0,

where a;(X,Y) (7 = 1,2,3,4) is a polynomial in X and Y. Putting ¥ = 0, we have
(3.3.12). O

Set

B0 = [  Gerd),

The equation (3.3.12) has the 4-dimensional space of solutions generated by 71 (X ), 72(X), 773(X)
and 1. The Riemann scheme of (3.3.12) is geven by

X=0 X=2527 X=40/3 X =00

0 0 0 0

1 1/2 1 —5/6
1 1 2 ~1/2
1 2 4 ~1/6

25
Setting X = 2—725, the equation (3.3.12) is transposed to

W4U =0 s
where

d' | 16200 — 29232 4 15552t d | 565(° — 12204 42592 & 25t — 1720 d
dtr T T2e2(t— 1) (5t —72)  dt’? | 3612(t — 1)(5t — 72) dt2 T262(t — 1)(5t — 72) dt

Wy =

Straightforward calculation shows the following.

Proposition 3.3.2. Set

W3:d—3—f—Ld—2+ ot — 36 i_}_ 72 — 5t '
a2t —1)de? | 36t2(t—1)at | T213(t — 1)
Then,
2 _
e (e e,
Set n;(t) = 1, (;—?t) for j € {1,2,3}.
Proposition 3.3.3. The periods n,(t),n:(t) and n3(t) are the solutions of
Wiu =0
satisfying
mie + 15 = 0. (3.3.14)
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Proof. Set
d 15t — 298t + 216

ai = )Gi—T2)
Let V' = (n1,m2,m3)c and V' = (Wsn, Wine, W3ns)c. Since the linear mapping given by
f — W3 f is monodromy-equivalent and V' is an irreducible representation, according to

Schur’s lemma, we have V' ~ V' or V' = {0}. It follows from (3.3.13) that V' C Ker(W).
Because dim(Wy(W;)) = 1, we have V' = {0}. O

15
5 12,1;25), then tu?(t), tu3(t)

and tuy(t)uy(t) are solutions of the period differential equation Wiu = 0.

W, =

Proposition 3.3.4. If uy and us are solutions of 2E1<

1 5
Proof. Take any solutions of 2E1<12 o 1,t> 1(t) and wus(t). For j € {1,2},
1—3t/2 5
= = 3.3.15
YT s — 1) (3.3.15)
then
3 D352 —TI5t+288 ,  5(Tt—4)
2 — oy 3.3.16
4 1ae2(t— 1)z 7 288t — 1)z (3:3.16)

Here, by a straightforward calculation, we have

113t — 36 3(3t — 2)
W (tU,1U2) m 2 + —36t(t _ 1) (U1U,2 + U1U2) + —t 1 u’lu’Q
3(3t —2
—2((t — 1)) (g + wyuly) + 3t(uhuly + uluh) + t(wPug + wu)).
(3.3.17)
Substituting (3.3.15) and (3.3.16) for (3.3.17), we have W3(tujuy) = 0. O

d
Remark 3.3.4. According to (3.3.12), the derivation prill ( =1,2,3) of the period is a

solution of the equation

d* 16201 — 202321 4 15552t o
—U —=U
dt? 7212(t — 1) (5t — 72)  di?
1130¢2 — 24408t 4 5184 d 25t — 720

— =0. (3.3.18
R -5t —72) di T2t - 1)l —72)" (8:3.18)
Then, set
115 1 715
St_F< ,1,1,) F( ,1,1,t>
) =sF2\5 25 50626
where 3Fy is the generalized hypergeometric series:
= CL ) az, as, n
sl (ay, az, as; by, by;t) ; 1b1, Qb% )3 )t ~
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We see that S(t) is a holomorphic solution of (3.3.18) around t = 0. The indefinite
integral of S(t) with the integral constant 0 is given by

115 1 (715

t- 3F2<6 2 6,1,2;t>+5t 3F2 6 2 6,1,2;t>

6 115 6 1 5 2
=t 3F2< ) 71717t):_t<2F1<_7_717t>> .
5} 626 5 12712

Here, we apply Clausen’s formula. From the above proposition, this gives a holomorphic
solution of Wsu = 0 around t = 0.

1 5
Let y;(t) and yo(t) are the single-valued branch of the solutions of 2E1(12 T 1; t)
near (0,1) C R given in (3.3.9). Let

si(t) = tyi(t), sa(t) = tyr(t)yalt), ss(t) = tys(t).
Note that, if ¢ € (0,1) C R, we have
Sl(t) =t- U11<t),

Sg(t) =t (10g<t>1}21(t) + U22<t)), (3319)
s3(t) =t - (log®(t)us1 (t) + log(t)vsa(t) + vss(t)),

where v, (t) are unit holomorphic functions around ¢ = 0. Moreover, they satisfy
(= s1(t)) - s3(t) + s3(t) = 0. (3.3.20)
Lemma 3.3.1. Taking a branch of the multivalued analytic mapping t — (n1(t) : no(t) -

773(t))7
(m(t) :ma(t) s (1) = (s3(t) : —s1(¢) : s2(t)) € P*(C).

Proof. Because we have Proposition 3.1.2 (1) and the coordinate z in (3.3.2), we take
the single-valued branch of the multivalued period mapping ¢ — (71 (t) : 72(¢) : 73(t)) on
€ (0,1) C R such that

() o
Jim nz(t)_ﬁ : (3.3.21)

In this proof, we consider n;(t), n2(t) and n3(t) near (0,1)(C R).
According to Proposition 3.3.4, we have

t) =Y asi(t) (j=1,2.3),

where aj; (j,k = 1,2,3) are constants. Since we have (3.3.21), we obtain as; = 0. So,
N2(t) = ag151(t) + agsa(t). From (3.3.19), we see that 1, ()ny(t) does not contain log*(t).
Then, from (3.3.14), we have az3 = 0. Recalling (3.3.21) again, we obtain agp = 0.
Because we consider y — (m1(t) : ma(t) : m3(t)) € P*(C), we assume that as; = —1. Then,
the single-valued branches 7;(t) (j = 1,2, 3) are in the form

m(t) = ay1s1(t) + aresa(t) + aizss(t),
na(t) = —s1(1),
n3(t) = az151(t) + azasa(t).
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Hence, using (3.3.6), the coordinate z in (3.3.2) is given by

So9(2)

s1(2)

Considering the actions of 7;(P!(C) — {0,1,00}) on z = B -space in (3.3.3) and
Up

Z = a3z + az; = agzzo + aszy.

20 = ¥ -space in (3.3.11), az; = 0 and agy = 1 follows.
Y1
Therefore, using (3.3.14) again, we obtain

m(t) = ss(t), m2(t) = —s1(t), n3(t) = sa(t).

[
Corollary 3.3.1. A coordinate z in (3.3.2) of the diagonal A(~ H) is equal to
L )
y(t)
Proof. From the above lemma, this is clear. O

Theorem 3.3.2. The inverse of the multivalued period mapping j = o ®x : X + (2, 2) is
given by

where z € H is given in (3.3.2).

Proof. From the above Corollary and the inverse Schwarz mapping (3.3.7), we have t(z) =

TG Therefore,
z
25 25 1

X(z,z)zﬁwf(z) :2—7-J(2>

3.4 The theta expressions of X and Y

In this section, we obtain the explicit theta expression of the multivalued period mapping
for F ={S(X,Y)} of K3 surfaces.

3.4.1 The classical elliptic modular forms

First, we recall the classical elliptic forms. Let z € H.
The classical Eisenstein series are given by

Ga(z) =60 Y - Gi(z) =140 Y~ !

4 Y 6 .
(0,0)#£(m,n)eZ? (mz T n) (0,0)#(m,n)€Z? (mz T TL)
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Go(2) (G3(z), resp.) is a modular form of weight 4 (6, resp.) for PSL(2,7Z). The
4 4
ring of modular forms for PSL(2,7Z) is C[Gy,G3]. We have Go(v—1oo) = % and
6
2
Gs3(V—1o0) = 82% Let Ey(z) = %Gg(z) and Fg(z) = 8—76G3(z) be the normalized
7r T
Eisenstein series. The discriminant form is
A(z) = G3(2) — 27TG3(2).

We have A(y/—1oo) = 0. This is a cusp form of weight 12. The cusp form of weight 12
is A up to a constant factor. The J function in (3.3.8) is given by

GG
G3(2) — 27G3(2)  A(z)

The field of modular functions for the modular group PSL(2,Z) is C(J(z)).
For a,b € {0,1}, the Jacobi theta constants are defined by

Vap(2) = Z eXP(\/—_17T (n + g)zz + 2\/—_17T(n + E) é)

2/ 2
nel

for (a,b) = (0,0),(0,1) and (1,0). 93,,93, and 97, are the modular form of weight 2 for
the principal congruence subgroup I'(2) = { (?; ?) la=d=1,=v=0 (mod 2)}

J(2) (3.4.1)

The ring of modular forms for I'(2) is
C[Jo0, Io1: V10l/ (For + V1o = Vo) = Clgo, Iy

We note that

1 3 \3 1
1728 (H) A(z) = 55060 (2) 951 (2)95 (2)-

3.4.2 Muller’s modular forms

Next, we survey the theta functions for Hilbert modular forms for Q(v/5). They are
introduced by Miiller [Mul].
Set
Gy = {Z € Mat(2,2)['Z = Z,Im(Z) > 0}.

This is the Siegel upper half plane consisting of 2 x 2 complex matrices. For a,b € {0,1}?
with fab = 0 (mod2), set
1 1
W(Zia,b) = > exp(nV=1("(g+50)Z(g+ 50) +'9b)).
gEZ2

We use the mapping ¢ : H x H — S5 given by
Tr(%%) Tr(\/iglz

€
n(z) (- %)

_ L ((1 + \/5)21 — (]_ — \/5)212 2(21 — ZQ) )
25 2(21 — 2) (=1+VB)zr + (1 +V5)z )’

(21722) = C =
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J 0 1 2 3 4 ) 6 7 8 9

(0,0) (1,1) (0,1) (1,0)
(1,1) (1,1) (0,0) (0,0)

Table 3.1: The correspondence j, a and b.

where € =

1++/5
5
For j € {0,1,---,9}, we set

93'(21, ZQ) = ﬁ(w(zla 22)7 a, b)7

where the correspondence between j and (a, b) is given by Table 3.1: These theta constants
are the holomorphic functions on H x H.
LetaEZandjl,---,jTE{O -, 9}. We set 05 =05 05 .

“Jr
Set s5 = 27%0y193456780. This is an alternating modular form of weight 5. The following

g2 (86, S10, S15, resp.) is a symmetric Hilbert modular form of weight 2 (6,10, 15, resp.)

for Q(v/5).

( 92 = U145 — O1279 — O3478 + G268 + 03569,

S¢ = 2" (€012478 + 0012569 + 0034568 + 0236789 + 9134579)

S10 = 35 =271 90123456789’

s15 = —27 105075021 — 055036000 + 055005016 — 09055016 + 09076025 — 07053050
015051007 — 05,07007 — 036063058 — 05,007,018 — 039057023 — 05,05,015
089053067 — 03073057 + 075009025 — 003036058 + 015055000 — 02035003
— 055000016 — 037039013 + 05,0390 + 035056003 + 057073010 — 05303067

\ +015007024 + 053035046 + 03308,09 + 03902,015 — 073037040 + 073039057).

(3.4.2)

Proposition 3.4.1. ([Mul] Satz 1) (1) The ring of the symmetric Hilbert modular forms
for Q(V/5) is given by

C[QQ, 56,510, 815]/(M(92, 56,510, 515) = 0);

where

M(927 56, 510, S15)
53 1 3?2 . 5 1 1
= (55310 5 —g35657 + 24933% + ngsgsw — §g333310 — 23] + ﬂgg’sé)

(3.4.3)
(2) The ring of the Hilbert modular forms for Q(v/5) is given by
Clgz, 55, 56, 515) / (M (g2, SE, s6,515) = 0).

Miiller’s modular forms have the following properties:
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Proposition 3.4.2. ([Mul] pp.244-245)

g2(i00,i00) = 1,

2 3 \3 1
50(2,2) = 1o (13) AR = ()5 ()5 (2)

s10(z, z) = 0.
Especially,

A7t At
792(2,2) = ?Eﬁl(z) = GQ(Z),

21 ml256(2, 2) = Gi(2) — 27G3(2) = A(2).

3.4.3 The theta expression of X-function and Y-function

Now, we obtain the theta expressions of the parameters X and Y. According to Propo-

sition 3.1.1, X = % and Y = % define the Hilbert modular functions for Q(v/5). From

Theorem 3.2.3, via the period mapping for F, we can regard X and Y as the functions of
variables z; and 2o in (3.2.15). Here, using this system of coordinates (21, z2), we represent

X and Y as the quotients of Miiller’s modular forms.
2

For our argument, we set Z = % This defines a Hilbert modular function for Q(y/5)

also.

Lemma 3.4.1. The modular functions X (z1, 23),Y (21, 22) and Z(z1, z3) have the expres-
s10MS

Y(Zl, ZQ) = 1{32—810(21’ Z2) (344)

for some ki, ky and k3 € C.

B
Proof. Since X = TR X is given by the quotient of Hilbert modular forms of weight

6 and its denominator is the cube of a Hilbert modular form of weight 2. Note that, a
Hilbert modular form of weight 2 is equal to g» up to a constant factor. Then, we have

ki1se(z1, 22) + k12g5(21, 22)
k?13g§’(21, 22)

X(Zl, ZQ) =

?

where kq1, k12 and ki3 are constants. Recalling Proposition 3.1.2 (1), we have X (v/—100,v/—100) =
0. Then, from Proposition 3.4.2, we obtain ki, = 0, so

36(317 22)
X =k —=.
(2’1722) 1g§’(21,zg)
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¢
Since Y = CTER Y is given by the quotient of Hilbert modular forms of weight 10. Its

denominator is the 5-th power of a modular form of weight 2. Then,

ko1510(21, 22) + /f229§(217 z9) + k239§(21, 29)86(21, 22)

k24g§ (Zl, 22)

Y(Zl, Zg) = )
where ko, koo, kog and koy are constants. By Proposition 3.1.2 (3), we have Y (z, z) = 0.
According to (3.4.2) and Proposition 3.4.2, if a modular form g of weight 10 vanishes on
the diagonal A, then we have g = const - s19. So, we obtain kes = ko3 = 0. Therefore,

Recalling Proposition 3.1.1 (2), we note that ® defines a symmetric Hilbert modular
2

form of weight 15. Since Z = Z is given by the quotient of modular forms of weight

30. Its denominator is the 15-th power of a modular form of weight 2 and its numerator is
given by the square of a symmetric modular form of weight 15. According to Proposition
3.4.1 (2), a symmetric modular form of weight 15 is given by const - s15. Then, we have

s2:(z1, 22)
Z(21, 29) = kg 220722
(21, 22) 3955(21>Z2)

[]

Theorem 3.4.1. The inverse correspondence of the multivalued mapping j~1o® : (X,Y) —
(21, 29) for the family F is given by the quotient of Miiller’s modular forms:

86(21, 22)

93(21>Z2)’
810(2’17 2'2)

93(217 22)

X(Zl,ZQ) = 25 : 52 :

Y (21, 2) = 2% - 5°.

Y

where (z1, z9) is the system of coordinates given by (3.2.15).

Proof. First, we obtain the expression of X. To obtain it, we determine the constant k;
in (3.4.4). Due to Theorem 3.3.2, (3.4.1) and Proposition 3.4.2, we have

X(z.2) 25 1 25 2M7r'254(2, 2) 05 . 52 s6(z, 2)

Z.Z) = —- —_— — . — . B ——

’ 27 J(z) 27 4w*\3 4 g3(z,2)
(?> 95(2, 2)

So, we obtain k; = 2° - 52.
Next, we determine the constant k3 in (3.4.4). By (2.2.5), we have

1442(21, ZQ) = —1728X5(21, 22) + 720X3(21, ZQ)Y(Zl, Zg)
- SOX(Zl, 22>Y2(Zl, ZQ) + 64(5X2(21, ZQ) — Y(Zl, 22))2 + Yg(Zl, 22). (345)

Recalling that Y'(z,z) = 0, we have
1447 (2, 2) = —1728X°(2,2) + 64 - 25 - X*(z, 2)

s gﬁ ; ~1) (;g%: 3) (3.4.6)
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On the other hand, from (3.4.3), we have

sis(21,22) 55<810(2172’2)>3 - 5_3(86(21,22)> <$10(21,22)>2

9%5(21722) B 93(31722) 2 93(21722) 93(21722)
n 32 (56 21, 22) ) (810 21, 22) ) . l<510(21,22)>2
93(21, 22) 95(21, 22) 24\ g5(21, 22)
1 /s6(21,22)\2 /510(21, 22) 57 S6(21,22)\% 1 /s6(21,22)\4
~ 53 =235 —7) Tl o)
23\ g3 (21, 22) 95(21, 22) g5(21, 22) 24\ g5(21, 22)
3.4.7)

So, because s19(z, z) = 0, we have

(535(2,@): 1(_25 4356(2 Z)H)(sﬁ(z,z)){ (3.4.8)

9°(2,2)) 2! 95 (2, ) 95(2,2)

Since

comparing (3.4.6), (3.4.8), we have k3 = 226 . 510.372,
Finally, from (3.4.5), (3.4.7), k; = 2° - 5% and k3 = 2% - 50 372 we have

k'g = 210 : 55.
[]

Thus, we have an expression of the pair of the Hilbert modular functions X and Y as
the pair of the quotients of Miiller’s modular forms via the period mapping for our family
F of K3 surfaces.
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