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CHAPTER 1

INTRODUCTION



In this thesis, we are concerned with a computer-assisted proof method for exis-

tence and local uniqueness of solutions to elliptic systems:

—&?Au = f(u) —dv in €,
—Av=u—"yv in €2, (1)
u=v=0 on 0f2.

Here, ) is a bounded polygonal domain with arbitrary shape in R%. ¢ # 0, v and
§ are real parameters. A mapping [ : [}(Q) — L*(Q) is assumed to be Fréchet
differentiable, where H} and L? are function spaces defined in Section 2.1, respectively.

Our goal is that, using Newton-Kantorovich like theorem, we prove existence and
local uniqueness of solutions satisfying the system (1). As an introduction, we first
introduce previous works of the system (1) and Newton-Kantorovich like theorem.

Next, more detail for our purpose is stated.

1.1. PREVIOUS WORKS

Solutions of partial differential equations are applied to understand various phe-
nomena in physics, engineering, biology etc. In general, because it is difficult to find
the exact solution of a nonlinear partial differential equation, its approximate solution
is given by numerical computations. However, various errors occur in numerical com-
putations, e.g. discretization error, rounding error etc. Therefore, results of numerical
computations are not necessarily exact solutions of partial differential equations. To
overcome these difficulties, it is necessary to discuss how to prove the existence and
local uniqueness of exact solution from the approximate solution. That is the aim of
numerical verification method.

The basic approach of numerical verification method is interval arithmetic, which
have been proposed by T. Sunaga [31]. Interval arithmetic treat a rounding error
which occur to use floating-point numbers conforming IEEE 754 standard [2, 3]. M.T.

Nakao has presented an infinite-dimensional interval method [18, 19, 20, 21, 22,



23]. Nakao’s theory treat partial differential equations. M. Plum has also presented
another numerical verification method [25, 27] and other works. In [27], M. Plum
shows the Newton-Kantorovich like theorem by using Banach’s fixed point theorem.
Let X and Y be Banach spaces. To state a little bit more detail, we are concerned

with a problem of finding a solution u € X satisfying the following nonlinear equation:
F(u) =0, (2)

where the nonlinear operator F : X — Y is assumed to be Fréchet differentiable. M.

Plum has proved the following theorem;

THEOREM 1.1 (M. Plum [27]). Let & € X be an approzimate solution of (2). Let

W C X be a convex closed ball centered zero with radius p:
W={we X :|w|x <p}
Assuming that the Fréchet derivative F'[u] is nonsingular and satisfies
|F'[a) || vy < Ch (3)
for a certain positive constant Cy. Let Cy be a positive constant satisfying
IF @)y < Ca. (4)

Let Rt := {x € R: 2 > 0}, where R is the set of real numbers. We assume that there

exist nonlinear functions C3 : R™ — R* and Cy : RT — R satisfying

1
sup ‘ / (F'la + tw] — F'[a]) wdt]] < Cs(p) (5)
weW 0 Y
and
sup 1F [+ w] = Flalll x vy < Calp), (6)



respectively. If a constant p satisfies

Oy < Oﬁ — Cy(p) and CLC4(p) < 1, (7)

1

then there exists a solution u* € uw+ W of F(u) =0 and unique in 4+ W.

This theorem states that if there exists a p satisfying (7), then there exists a
solution u* of F(u) =0 in & + W and u* is unique in @ + W.

In this thesis, we consider a verification method for solutions to systems of ellip-
tic partial differential equations (1). The system (1) is derived from the FitzHugh-
Nagumo model [32]. The original one-dimensional parabolic differential equation,
which is called FitzHugh-Nagumo equation, was derived to serve as a prototype sim-
plification of nerve conduction equations [7, 17]. The system (1) has been well studied
from theoretical and numerical sides [28, 29, 32]. A numerical verification theory
for (1) on bounded convex domain has been proposed by Y. Watanabe [35]. Here,
following [35], we briefly sketch decoupling technique for the system. If v is not point
spectrum of the Laplace operator and w is a known function, the boundary value

problem:

—Av=u—yv inQQ,

(8)
v=20 on 0f)

has a unique solution by Riesz’s representation theorem. Then, v is presented by
v = Bu, where B : L*(Q2) — H}(Q2) is a solution operator of (2). Substituting this
for (1), it follows that
Au= L (f(u)— 6Bu) inQ
—Au=— (f(u) —0Bu) inQ,
e (9)
u=20 on 0f2.
Decoupling the original problem (1) into the linear Dirichlet problem (8) and the

nonlinear Dirichlet problem (9), according to [35] one can verify the existence and



local uniqueness of solutions for (8) and (9) using Nakao’s theory, which is based on

fixed-point theorems, respectively.

1.2. PURPOSE

Our goal is to prove existence and local uniqueness of solutions satisfying the
system (1) on a bounded polygonal domain with arbitrary shape. In particular, for
(9), we apply Theorem 1.1.

In the following, we will present the methods of calculating

a constant (; of norm estimation (3) for inverse of linearized operator.

an upper bound C of a residual norm (4).

nonlinear functions C3 and Cy satisfying (5) and (6), respectively.

an error bound for the linear Dirichlet problem (8).

e an inner inclusion of a region defined by (7).

The aim of this thesis is to treat a numerical verification method of (8) and (9) on
bounded nonconvex domains. On the nonconvex domain, calculating C5 of residual
norm for (9) is one of the most important tasks because exact solutions v* and v*
of (8) and (9) do not have HZ2-regularity, respectively. For the Dirichlet problem of
semilinear elliptic partial differential equations, several methods for calculation an
upper bound Cy are proposed in [36]. In [33], A. Takayasu, X. Liu and S. Oishi
have presented how to derive an upper bound (5 using the Raviart-Thomas mixed
finite element on a bounded polygonal domain. However, an upper bound Cy of (9)
including the solution operator B seem to have not yet be published. In this thesis, we
present the method of calculating for an upper bound C5 of (9) including a solution
operator B based on the Raviart-Thomas mixed finite element and properties of B.
In addition to this, an error bound of (8) is also shown by the Raviart-Thomas mixed
finite element.

Next, in order to apply Theorem 1.1, to find p satisfying (7) is one of the most

important tasks. By a series of papers M. Plum [25, 26, 27] has shown that such p



can be found for various interesting nonlinear partial differential equations. However,
a systematic way of finding p seems to have not yet be published. Therefore, we
present an algorithm of constructing an inner inclusion of a region defined by (7)
based on Moore-Jones’s algorithm of finding all solutions of one dimensional nonlinear
equations proposed in [16], which is based on Krawczyk’s operator [12, 13]. Here,
inclusion means a subset of a region defined by (7). One of the features of our
algorithm is that if a region of the solution for (7) is empty, we can prove that there

is no solution of (7).

1.3. OUTLINE

The outline of this paper is as follows: In Chapter 2, we provide a verification
theory for (1) on a bounded polygonal domain with arbitrary shape in R%. A main
point of this chapter is to develop a method of calculating for Cy of (9) involving a
solution operator B. In Chapter 3, we will present an algorithm of constructing an
inner inclusion of a region defined by (7). In Chapter 4, we provide some numerical
examples. We first demonstrate the algorithm of constructing an inner inclusion of a

region defined by (7). We also present results of numerical verifications for (1).



CHAPTER 2

V ERIFICATION THEORY



2.1. NOTATION AND BASIC THEOREMS

Let LP(2), p € [1,00) denote the functional space of the p-th power Lebesgue

integrable functions. For p = 2, let us define the inner product
(u,w)p2 = / u(z)w(z)dx
Q
and the norm

|l == v/ (w,u) L.

For s being a fixed positive real number, let H*(Q) denote the L? Sobolev space of

order s. Then, the function space Hj () is defined by
Hy(Q) :={ue H(Q):u=0 on 0Q}

with the inner product (u, w)pg := (Vu, Vw) 2 and the norm [[uf| g3 == [|[Vul|z2. Let
H~'(Q) be the topological dual space of H} (). We denote Tu € R by (T, u), where
T e HH(Q) and v € H}(2). The norm of T'€ H'(Q) is defined by

T/
[Tl = sup WLl
uw€HE ()\{0} ||U||H5

Let L>°(2) be the space of functions that are essentially bounded on Q with the norm
lul| o = ess sup |u(z)].
EASY)

X and Y are assumed to be Banach spaces. We denote the set of bounded linear

operators by L(X,Y’) with the operator norm

TU Y
ITlsey) = sup Wl
ueX\{0} [|ull x

Furthermore, there exists the constant C, , satisfying

[ullzr < Cep

ul| gy for u € H ()



from Sobolev’s embedding theorem. For concrete value of C, ,, see Appendix A.
Let X}, be the finite-dimensional subspace spanned by linearly independent I3 (€2)
conforming finite element base functions. Depending on the mesh size h (0 < h < 1),

the orthogonal projection Py, : H}(Q) — X, is defined by
(V(u—Pru),Vop)2 =0, Yo, € X. (10)
For Py, we have the constant C}, satisfying
lu = Prullgy < ChllAul| 2. (11)

For piecewise linear finite elements, the detailed method of calculating the constant
C}, is well studied by F. Kikuchi and X. Liu [10], and K. Kobayashi [11] on convex
domains. On nonconvex domains, C}, is computable by the method of X. Liu and S.
Oishi [15]. From Aubin-Nitsche’s trick for (11), we have ||[u — Prullrz < Cp||V(u —
Pru)l| 2.

2.2. VERIFICATION FRAMEWORK OF SEMILINEAR ELLIPTIC EQUA-

TION
Setting g(u) := (f(u) — 6 Bu)/e?, we rewrite (9) as

—Au = g(u) in§,
9(u) 12)
u=20 on 0f),

where the mapping g : H}(Q2) — L*(Q) is Fréchet differentiable. In fact, we have

llg(u+w) — g(u) — é(,f’[u]w — 0Bw)|| 2

= I w) = 6B+ w) — () — 6Bw) — (7l — 5B .

= I w) = f(w) — PRl Yo € HY(©)



From the Fréchet differentiability of f : HJ(Q2) — L*(Q), we have

1f(u+w) = f(u) = flujw)].2

[l

= o([lwllzy),

where o(||w|| 1) means faster convergence than |lw||zi — 0. Let @ be a finite element
approximation of the weak solution of (12). We assume ||f'[d]]|~ < +00. We

consider the weak form of (12). The weak formulation of (12) is to find u € H}(Q)

satisfying
(Vu, Vw) 2 = (g(u), w) 2, Yw € Hi(Q). (13)

For u € HJ (), we define the lincar operator A : 3 (Q) — IT7(€2) and the nonlincar
operator N : H3(Q2) — H *(Q) by

(Au,w) = (Vu,Vw)pe, Yw € Hy(Q) (14)
and
N(u),w) = (g(u),w)i2, Yw € Hy(Q),
respectively. The weak form is denoted by the following nonlinear operator equation:
Au = N(u) in H1(Q).
Let F be the nonlinear operator mapping from Hg () to H () described by
F(u) = Au— N (u).

The solution of

10



is equivalent to (13). For the nonlinear operator equation, we calculate verified
error bounds by using Theorem 1.1. For the verification method using Newton-
Kantorovich’s theorem of (15), see Appendix C. From the Fréchet differentiability of
g, the operator F is Fréchet differentiable. The Fréchet derivative of F at @ € Hg(Q)

is given by
F'lu] = A— N'[u],
where

(N[a]u, w) = (¢'[a]u, w), Yw € Hy (). (16)

2.3. SOLUTION OPERATOR OF LINEAR EQUATION AND ITS PROPER-

TIES

In this section, we discuss the solution operator of (8). For a given u € Hj (), the

solution operator B : L?(Q2) — HE() gives the weak solution v € H}(Q) satisfying
(Vo, V) e +y(v,w)e = (u,w) 2, Yw € Hy(S2). (17)

For w,v € H}(Q), we define the operator £ : H}(Q) — H~'(Q) and the identity
embedding operator Z : L?(Q2) — H~1(Q) by

(Lv,w) = (Vv,Vw)e +7(v,w) 2, Yw € Hg(Q) (18)
and
(Tu,w) = (u,w)gz, Yw € Hy(Q), (19)

respectively. Then, the equation (17) is denoted by Lv = Zu in H~'(Q). If the

operator L is invertible, the solution operator B is denoted the composite operator:

B:=L""T. (20)

11



REMARK 2.1. Let us define the elliptic operator A : H3**"(Q) N HL(Q) — L*(Q)
by
(Av,w) g2 = (Vu, Vw) 2, Yw € Hy (%),

where 0 < r < 1/2. This operator A has same spectrum as the Laplace operator. A
compact operator A~ : L*(Q) — H(Q) is defined by a inverse operator of A and a
embedding operator from H3/>7(Q) N HE(Q) to HL(SY). Using the operator A, (17) is
rewritten by (A+~)v = u in L*(Q2). We can also describe B = (A+~)~': L*(Q) —
HY(Q). A note that B¢ also is in H¥*¥7(Q) N H(Q) for any ¢ € L*(Q) [1].

Next, we consider the operator norm |[£71| -1, w3 using eigenvalues for the elliptic
operator A. Let us discuss whether the operator L is invertible or not. As a property

of the isometric operator A, we have

Aoy = sup  BAvl o (Ve V)|

= = 1ol a-
weHE (2)\{0} H’WHH; weHE (2)\{0} Hw||H5

Then, we find K > 0 satisfying

v v
R N 1 R

veHL(Q)\{0} [ Lol -1 veHL(Q)\{0} HA_l‘CUHH(} N

Let us consider the following eigenvalue problem: Find v € H}(Q) and A € R such

that
(Vo, Vw) 2 + (v, w) 2 = NV, V)2, Yw € HL Q). (21)

(21) is equivalent to the eigenvalue problem for the elliptic operator: Find v €

H}(Q2) and X € R such that
(Vo, V) = Mo, w) 2, Yw € HY(Q),

where we set A = —7/(1 — ). Note that the spectrum of the elliptic operator
is discrete. We denote spectrum of A by Spec(A). Moreover, each eigenvalue is

evaluated explicitly by Theorem A.1 in Appendix A. If A + v # 0 holds, then the

12



operator L is invertible and the following inequality holds for eigenvalues A,

A

v 1
HE_IHL(H*,H(}) = sup ol P

T4 1~ 10 > max
veHL(Q)\{0} ||A_1£’U||H5 AxeSpec(A)

‘ = K. (22)

Since Z is a compact operator, if £ is bounded, the solution operator B : L*(Q2) —
H}(Q2) becomes compact and self-adjoint.
For a given u, € Xj, the operator By : X, — X}, gives the discretized solution

v, € X, satisfying
(Vop, Vwp) 2 + y(vn, wp) 2 = (up, wp) 2, Yw, € X,
Thus, we have
vy, = Bruy,. (23)
Another orthogonal projection P, : Hj(2) = X, is also defined by
(V(u=Pryu), Von) 2 +7(u = Pry, )2 = 0, Yoy, € X,
Using this projection, we have
Pn~Blx, = B,

where |x, means that it restricts the domain L?*(9) to Xj.

2.4. VERIFICATION THEORIES FOR SEMILINEAR ELLIPTIC PROBLEM

2.4.1. Norm estimation for inverse of linearized operator. This part es-
timates the norm of inverse operator (3). In [24], S. Oishi shows a numerical method

that proves the existence of the inverse operator of F'[i]. C is assumed to satisfy
lullmy < CillF [afullg-1, Yu € Hy(€). (24)

13



From the isometric operator A, we have
1F @l v = | AT F (@]l gy, Yu € Ho(). (25)
Using N'[4] = Z¢'[4], the operator A~'F'[d] is transformed into
ATVF) =1 — A7 WN'a] = 1 = (ZA) 'Ig'fa) = I — A™'g'al.

From the compactness of A™! and boundedness of ¢'[a], the operator A™'¢'[a] is
compact. Then, A~'F'[d] becomes the Fredholm operator. From (24) and (25),
A1 F'[d] is one to one. Then, A~'F'[4] is bijection as per the Fredholm alternative
theorem. Since A is bijection, then F'[¢] is also bijection. Thus, it is proved that
F'[a] is invertible.

By using spectrum of linearized operator, we estimate C'; explicitly. For a different
method of calculating the upper bound C} for (15) using Theorem B.1, see Appendix
B. Let ¥ be the linear operator mapping from H}(Q2) to H(£),

(u, w) = (Vu, Vw) g2 + o (u, w) 2, Yw € Hy (),

where positive number ¢ is assumed to be satisfying (28). From Riesz’s representation
theorem, the inverse of W exists. Then, we define the o-inner product and the o-norm

by
(u,w), = (Vu,Vw)pz +o(u,w)z, Yw € Hy(Q)
and

lullo = v(w ),

14



respectively. For u € H}(f2), we have a property,

G
[l = sp 10
weHE (2)\{0} ||wHH§

|(u, w)o|
sup = [|lulls
weHE (2)\{0} |wlls

Before we introduce the procedure for estimating C, let us prepare the following

lemma.

LEMMA 2.2. Let A be each eigenvalue of the elliptic operator A. We consider the

eigenvalue problem: Find uw € H} () and n € R such that
(Vu, Vw) 2 +v(u, w) 2 = n(u, w) 2, Yw € Hy(9). (26)
We define the constant by

1
K1 := max {m : 7 is each eigenvalue of (26) with n # O} .

Then, K gives an upper bound of the following quantity for Yu € HZ (),

‘(BU, U)Lz‘

< K;.
(w,u)p2 — !

PROOF. Since the operator B is compact, the spectrum of B is point spectrum

and {0}. From the definition B = LT,

Bu = 1u in L*(Q) <= Lu=nTuin H'(Q).
n

It follows that

1

max —_—.
neSpec(z-1r) bl

B B 1 1
|(Bu, u)pe| < | Bul| 2 max{— R SpeC(B)} =
(u,u)re [[ull 2 "

il
O
We use spectrum of the linearized operator for calculating ', which is related to

the invertibility of the operator. We check whether spectrum of W1 F’[a] include {0}

15



or not with computer-assistance. Furthermore, the norm estimation of the inverse
operator is given by the minimal absolute value of spectrum. From the definition of

F'[u] and the property of W, it follows that

Pl oy = sp
ue HE (2)\{0} | F*[at] ] -
o ol
werg\foy [Aw — N[a]ul| -1
C s
wer@noy 107 (Au = Nafu),
< sup L - O

peSpec(v—1(A-N"[a])) z

Let us consider the following problem: Find u € Hy(Q2) and p € R such that
(Vu, Vw) e — (¢'[a]u, w) 2 = p(Vu, V) gz + o (u, w)r2), Yw € Hy(Q),
which is transformed into

(Vu, Vw) 2 — (¢'[a]u, w) 2 = p(Vu, Vw) g2 + po (u, w) 2,

<  (Vu,Vw)rz + o(u,w) 2 — (¢ [a)u, w) 2 = u(Vu, Vw) 2 + po(u, w) 2 + o(u, w) 2
= (1= p)(Vu, Vw)z +o(u,w)2) = o (u,w) 2 + (¢'[d]u, w) e
= (u,w), = 1 i - (U(u,w)Lz + (g'[ﬂ]u,w)Lg) , Yw € H} (Q). (27)

If the condition

o(u,u)p2 + (g'[a)u,u) 2 >0, Yu € Hy(9Q)

16



holds, the term in (27): o(u,w)z2 + (¢'[t]u,w)r2 becomes the inner product. From

Lemma 2.2, it follows that, for Vu € Hj (),

. L.
o(u,uw)rz + (¢'[a)u,u)p2 = o(u,u)pe + ;(f’[u]u,u),;z - ;(Bu,u)Lz
Lo 10 |(Bu, u)re|
> ((e+ = fla)u,u)pe — = ———(u,u) 2
o+ S - IR ),
> l ar — @K
> (o + 5 iy — K )
Thus, the assumption of ¢ is given as follows:
1 . .
o> = esxseglf f'la] — 0| Ky | - (28)

Let us define the d-inner product and the d-norm by
(w,w)g = o(u,w)pz + (¢[0)u,w)2, Yw € HJ(Q)
and
lulla = v/ (u, u)q,
respectively.
REMARK 2.3. Let D be the linear operator from H}(Q) to H(Q),
(Du,w) = o(u,w) 2 + (¢'[a]u, w) 2, Yw € Hy(Q).

Since I is compact operator and (o+¢'[4]) is bounded, D is bounded. The boundedness
of the linear operator V=1 yields that the composite operator V1D is compact. Then,

the problem (27) is rewritten by

Yy

=7 Du U Dy = (1 — p)u in H Q).
—

Therefore, the spectrum 1 — p becomes point spectrum and {0}. The spectrum p is

point spectrum and {1}.

17



By setting f := 1/(1 — p) for (27), we consider how to evaluate each eigenvalue
fi. To enclose eigenvalues of (27), we extend Liu and Oishi’s procedure [15] described

in Theorem A.1. Let us give the following theorem which encloses each eigenvalue of

(27).

THEOREM 2.4. Let {fix} be each eigenvalue of (27). il is assumed to be approz-
imate eigenvalues of the discrete problem of (27). C, o is computable constant which

is available from the constant Cj,. We define the constant Ky by
K = \/Ha+ / [2u]
€

€2, K3l < 1

o

Lo

If

holds, then we have the verified enclosure of each fu:

ik ;
— k< < A
T OF K -
REMARK 2.5. Theorem 2.4 is the extension of theorem A.1 by X. Liu and S.
Oishi [15] for the linearized problem of (9). The main feature is that our theorem

can treat the eigenvalue problem (27) whose the right-hand side contains the compact

self-adjoint operator B : L*(Q) — H}(Q).

PROOF. Let u; be each eigenfunction for eigenvalues jix. Let Fj be the linear
space which consists of base functions {u; }le. We define the space E} := {uy, € E}, :

|luglla = 1}. It follows that

(Vg V) + o(ug, ug) e lwlly
e — ks — 17— .
U(Uk’,a Uk,)L2 + (g [u]uk, Uk>L2 ||Uk,||d

The orthogonal projection Py, : H3(Q2) — X, is defined by
(u—Phou, wp)e =0, Ywy, € Xy

18



We consider how to calculate the constant C}, , that satisfies || u—Pp, sulls < Cho|[(A+

o)ul|zz. From the minimalization principle, we obtain

lu = Proully < fu—Prul
= [V(u—Puu)l[i> + ollu — Prulz2
< V(= Puu)lli> + oGV (u = Pru)z:

= (L4 0C})lu— Paullly

IN

(1+ ocCHO?| Aul|?,

< (14+oCHCH(A+ o)ul%..

Namely, C),, is estimated by Cy\/(1+ 0cC?). Aubin-Nitsche’s trick yields |u —
Phot||rz < Chollu — Photll,. From the min-max principle, we have

-h [ Ph,oullz

1, < max ——o

S T

2= = P2
wekl  ||u+ Ppou— ul3

R Jell2 = llu = Phul?
et Tl + 2(u. Prgu — w)a + [Pryu — ull

fr = |[u = Phoully

< max

T uenl 14 2(u, Prott — wa + [[Prou — ullf
N _ 2

< max fik — llu — Proulls

werl 1= 2||ul|gl|Phow — ulla + [|Prou — ul?

_ fu, — |lu = Paoull?
= max 5
uEE,i - 2H7Dh7cru - qu + HP}L,UU - U’Hd

[t — |Ju— Ppoull2
-

— mnax

29
web!l (1 —||u— Proulla) (29)
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We have the following inequality between ||u||q and ||u||zz,

lullz = (u,u)a

= o(u,u)r2 + (¢'[a]u, u) 2

J'[a 4
= o(u,u)2 + <%u7u> p — <§Bu, u) .

T r
< ‘((a—kl;u])u,u) +M/
12

(6220 e )
e

Since Ky = \/||a—|— f[u]HLoo + Ky | %],

(u, U)L2

IN

[|ul|z2 + K1

0
) 2

L2

IN

+K1

Julla < Kallull2.
Then, we give the following estimation

lu = Phoulla < Ksllu—Pnoulr

S Ch,JKQHU - Ph,ouHU-

Substituting this for (29), we have

A fie = l[u = Pl
h < max fie = [u ho 30
P = ueEl (1 - Chch2||u - ,PhauH ) ( )

Letting g(t) := (fx — t*)/(1 — Ch, Kst)?, g(t) is a monotone increasing function on
the range: ¢t < O}, ,Kajix and t < 1/(C),,K3). From the assumption ,[LkCiUKQQ <1,

it follows that

Cho Koy, < .
h,o 182k Ch,UKg
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If t < Ch»Ksfy, holds, then g(t) becomes a monotone increasing function. For u =

Z§:1 cju; € Fy, it satisfies
lv = Proulle < Choll(A+a)ullr

k
= Che Z ci(A+ o)y,

Jj=1

2

= Chyo ZCjﬂj(0+91[ﬂ])uy

2

< Chp |ik(o+ ¢ Z Cju;

= Cnollin(o +g [UDUIILz
({0 + g'[a])u, w) |

= ﬂkCh,g sup
weL2(Q)\{0} ||| 12
Sw
= (xChs  sup [, w)al

weL2(Q)\{0} [|w]| 2

< inCh, s el
weL2(Q)\{0} w22

By using [|w||q < Ks||w||z2 and [Jullg = 1, we have

Hu - Ph,n'uHa < /ijCh,ﬂKQ' (31)

Substituting (31) for (30), we obtain
~h /lk - ﬂ%cﬁ O’K22
= T o2
(1- MkOh,aKQ)
M
1 —uC} K3

Finally, this means that

o)
M

[ N A — < 1y X
ez K341 -

21



2.4.2. Residual norm. In this part, we discuss the constant C'y of residual norm
(4). A method of calculating Cy has been proposed by A. Takayasu, X. Liu and S.
Oishi [33]. This method gives a sharp bound of residual evaluation using the Raviart-
Thomas mixed finite element. We apply the method to our residual formulation. We
put the operator g : H} () — L?(Q) by g(u) = (f(u)—dBy) /. Let H(div, ) denote
the space of vector functions such that H(div,Q) := {¢ € (L*(2))? : div ¢ € L*(Q)}.

Let K}, be a triangle element in the triangulation of 2. We define
Py(K}) : the space of polynomials of degree less than or equal to k on Kj,.

The Raviart-Thomas finite element space RT} is given by

Qy, X
RT}, := {ph € (L*(Q)* : pulk, = +cp - g, b, e € Pr(Kh),
by Yy

Dh - 7 is continuous on the inter-element boundaries.},

where 77 is an outward unit normal vector on each K ». This is a finite dimensional

subspace of H(div,2). We define
My, = {v € L*(Q) :v|k, € Pu(Kp)}.

From the property div(RTy) = My, see [5], we define a subspace of RT} for given
gh € th

Wgh = {ph € RT, : div pr+gn=20 for gn € Mh}
Let another orthogonal projection Py ; : L?(Q2) — M), satisfy
(([ — Ph7k)§b,wh)L2 =0, Yw,, € M,

for ¢ € L?(Q). Let g5(0) := Pprg(a). We assume that the constant Cjj satisfies
Jw = Prpwllrz < Chpllwllyy for w € Hy(Q). Tf 1+ ~vCZ, > 0 holds, we define the
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~-inner product by
(v,w), == (Vo, Vw) 2 +v(v,w) 2, Yw € Hy(Q)
and the y-norm by

lwlly =/ (v,v)y, Yo € Hp(Q).

If we obtain the constant Cj , satisfying ||[v — Pp vy < Chyl|(A + 7)v L2, [v —
Phyvllrz < Chyllv — Pryvlly holds from Aubin-Nitsche’s trick. The detailed method

of calculating (4, is described in the last part of this section. For p, € Wy, 4, it
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follows that

IF (@)
Vva,V — 7
_ Sup |( u, w)L2 (g(u)vw)Lzl
weHL(Q\{0} l[wll 72
(Vi V)2 = (L, w) 2 + 5 (Bit, w) 12|
= sup
weHL(Q)\{0} ||w||H5
B sup (Va, Vw)z — (L2, w) 2 + S (Byi, w)e + S((B - By)it, w) 2]
weHY(Q)\{0} ”w”Hé
< (Vi, Vw) 2 — (§(@), w) 2| + | Z|((I = Phy) Bit, w) 2]
S sup
weHL ()\{0} l[wll 72
< sup (Vi — pp, Vw) 2 + (pp, Vw) 12 — (9(), w) 2]
weHL(Q)\{0} llwll
v swp | ST = Pry)Ball 2wl 2
we HL(Q\{0} Jwll 2
R div pp, + g(u),
< [Vi-ple+ sup  ERIIDDl o 0 0Ny, ) Bal,
weHA (Q)\{0} ||w||Hg
di X
< ||Vﬁ_ph”L2 + sup |( v ph+gh( )+g(U) (U),’UJ)L2|
weHL(2)\{0} lwll 1
—l—Ch ,YC’eg VB 2
R g(4) — gn(0), (I — Phrx)w
S ||vu_ph||L2+ sup |(g( ) gh( ) ( hJC) )L2’ Ch»yCeQ ||u||L2
wel}(@\{0} lwll ez
< |\Va —pallzz + Chkllg(@) — gn (@)l 2 + Cf yCez| 3 |llallzz.

Next, we consider how to calculate the constant Cj . From the minimization

principle, we obtain

IN

l = Prully lu = Prull§

= [V(u—Puu)lli> +llu = Puull7..
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If v > 0, then the error is given by

[ = Pryully < IV (u—Pru)||7: + 7RIV (w = Pru) |72
= (L+CP)lu = Prullin
< (1 +9C)HCH] A7
< 1+ CRINA + )l

The constant Cj,, is given by Cj,, = Cjy/1 +~C?. In the case of 7y < 0, from the

eigenvalue problem (21), estimation of C}, , has changed,

IN

lv = Pasoll; IV (v = Pro)lz-

T

IN

CyllAvllZ

IN

CrEII(A +)vllZe.

The constant C}, , is given by C), , = C, K.
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2.4.3. The nonlinear function C3(p). In this part, we consider the nonlinear

function of (5). It follows that

IN

IN

sup ‘ /01 (F'[a + tw] — F'[a]) wdtH

weWw H-1

1
Sup/ H(F’['&thw]—]—"/[ﬂ])wHH_l dt
weW JOo

1

11 A

sup [ |7+ ) = P g ey g

! N+ tw] — N'[a@]) ¢, o
- p WA N0
weW JO ¢ peHE()\{0} ¢ H} (& H;

1 ar t AR
sup sup |((g [u+ U)] g [u])¢7¢)L2|dt”w”Hé
weW Jo  gperrd(@)\{0} &N £z [191] 2
sup . sup ’((f/[ﬂ +t’U)] — 0B — f/[ﬁ’] + 5B)¢7¢)L2’dt”w”Hl
weW Jo g perl(Q)\{0} e2[@ll g 191l gy 0
p [y MLy
weW Jo  ¢peHE(Q)\{0} 52||¢||H5||1/’||H5 0

For example, we put f(u) = au + fu?® + yu®, where a, 3, v € R. From Holder’s
inequality and Sobolev’s embedding theorem, C5(p) is derived by

IN

IN

IN

IN

IN

/01 (F'[a + tw] — F'[4)) wdtH

SUIVJ['
weW _
sup /1 sup |((a+2ﬁ(&+tw)+3’y(a+tw)2—(a+2612+3'yﬁ2))<;f>,w)L2|dtHw” .
H,
wew Jo gpenl(9)\{0} N6l 191l 0
sup /1 up |((25tw+37(2121571)+t2102))¢,1/))L2|dtHwH ]
wew Jo gpemi@) (o) 283 191 o
sup /1 sup |(2ﬁtw¢7¢)L2|+|(3PY(2ﬁt+tzwywd)yw)l/ﬂdf”w” 1
B 4 H
weWw Jo g yent(@)\{o} @l g 191 0
1 ! 3 v . 4 2 2
= /0 (25181 + Cal3nllal g ) 1260wl sy + CE b33Nl ) delwl g
1 3 4 ~ 4 2
= 5o ((C2all+302ahllalng ) el + CLahllelty ) vl
1 . .
= ((C2s181+3C2 sl 1 ) p+ C2aln1p®) p =: C3(p). (32)
2
13 0
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2.4.4. The nonlinear function Cy(p). In this part, we consider the nonlinear

function of (6). It follows that

sup || F'[a + w] — F/[@]HL(HS7H—1)

weWw
an P I o/ _
— sup sup [(F'[a@ + w] — F'[a]) ¢ -
weW ¢e i (2)\{0} HﬁbHHg
e BRI ES N
— sp s |((g'[a + w] — g'[a])p, V) 2]
weW ¢ peHL ()\{0} 1|z 14 112
_ [(f'[a +w] = 0B — f'[a] + 6B)§, ¥) 2]
= sup sup 5
weW ¢pe HY (2)\{0} 2|l ma 1] 12
e I
— sup s ((f [?HQ-W] S'Ta)) ¢, ) 2|
weW gpeHE(2)\{0} 2@ 191 12

For example, we put f(u) = au + fu® + yu®, where o, 3, v € R. We have an

upper bound using the same transformation in (32). The nonlinear function Cy(p) is

described by

IN

IN

sup [[F'[i +w] = F'lill| 3 1y,

weWw
sup sup (@ +28(i + w) + 3(a + w)? — ((a + 284 + 37i%)§, 1) 12|
weW ¢ peHE()\{0} Nl 1911y
|((2Bw + 37 (20w 4+ w?))p, 1) 2]
sup sup 5
weW ¢ e HL()\{0} ol gl

2 . 3
(G311 +3CK il o + 5 Chalrlo® =: Cap).

2.5. ERROR ESTIMATE FOR LINEAR EQUATION

In this section, we consider a method of calculating the error estimate [[v* — o[ ;1.

Let u, 0 € X be computable approximate solutions of (8) and (9). We define

k(D) =4 — 0 € L*(Q) and ky(0) := Pyrk(0) € M. By using the Raviart-Thomas

mixed finite element in the same way as in Subsection 2.4.2, for g, € Wy, (), we
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obtain from (22),

o = oll
< ML g mp 10" = L0] g
< K|Tu* — Tt + Ti — Lo]| g
< K(|Zu* = Tal| -1 + || Za — Lo|| 1)
Tu* — Ia .
= K sup [Zw — T, )| +  sup IZa = Lo, w)|
werg@\fop  lwlimg vem@ngoy Il
= K sup M + sup |(V’ﬁ, V’(U)L2 + 7('{)7w)L2 — (zl,w)L2|
wergnfoy Wl wemi@yo) Tl

IN

* Vo —qp, V
K 06272”“ - UHH(% + sup (Vo = gn, Vw) 2|
weH3 (2)\{0} [l g

+ sup |(le qn + K(U), 'UJ)L2 |
weH} (2)\{0} [l

IN

R div qp + kp(0) + k(D) — kp(0),w
K 0(32,2p+ ||VU _ qhHL2 + sup ’( 4dh h( ) ( ) h( ) )L2’
we HL(Q)\{0} Jwll 2

. k(D) — Kp(D), w — Pppw
K Ce2,2p + VD — qnllr2 + sup [(5(9) n(0) hkW) 2|
weHL (Q)\{0} llwll 2

IN

IN

C2,Kp+ K|V — qpl 2 + Ch K ||K(0) — 1,(0)]| 22
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CHAPTER 3
AN ALGORITHM OF IDENTIFYING
PARAMETERS SATISFYING A

SUFFICIENT CONDITION
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3.1. NOTATION AND DEFINITIONS

For a,b € R satisfying —oo < a < b < 0, [a, b] denotes an interval [a,b] := {x €
R:a <z <b}. Let IR be the set of intervals in R. For x € IR, sup(x) € R denotes
y € x satisfying x < y for all z € x. Similarly, inf(x) € R denotes y € x satisfying
y < x for all z € x. Let I be a set of floating-point numbers conforming IEEE 754
standard [2, 3]. The floating-point predecessor and successor of a real number x € R
are defined by pred(z) := max{f € F: f < x} and succ(z) := min{f € F: f > z},
respectively.

Let us define two nonlinear functions g¢;, ¢ : Rt — R by

91(p) :== C1Cs(p) — p+ C1Cs

and

ga2(p) == C1Cy(p) — 1,

respectively. We will propose an algorithm of identifying inner inclusions of regions

I'* and I'*, where

I :={peR":gq(p) <0}
and

= {peR":g(p) <0}

respectively. By definition, if p € I'* N T p satisfies the sufficient condition (1.1)
of Theorem 1.1. It is obvious that p = min{p : p € I*NI"} and p = max{p : p €
e T4},

3.2. ALGORITHM OF GENERATING INNER INCLUSIONS OF ' AND ['“

In this section, we propose an algorithm of obtaining such inner inclusions of I'®
and I'* based on Moore-Jones’s algorithm of finding all solutions of one dimensional

nonlinear equations proposed in [16], which is based on Krawczyk’s operator [12, 13].
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For Moore-Jones’s algorithm and Krawczyk’s operator, see Appendix D. Figure 3.1
(a) illustrates a behavior of the function g; in case that there exist p’s satisfying
g1(p) = 0. Let r be a positive real number. On the interval [0,7], we first identify
all solution of g;(p) = 0 by Moore-Jones’s algorithm.! For example, we usually put
r = ||4]| L~ because I'* NI relates to a maximum value of an approximate solution
a. Let I;(i = 1,2,--- ,n) be intervals such that each I; contains one and only one
positive solution p; of g1(p) = 0. We assume that I; N [; = ¢ for 1 < i < j < n.
If g1(p) = 0 have no solutions, then there does not exist any p > 0 satisfying (7)
provided that I'® is included in [0, r]. Figure 3.1 (b) shows an example of this case.
Let g; : IR — IR be an interval extension of the nonlinear function ¢g;. Put [, =
[0,0] € IR and 7,41 = [r,7] € IR. We show now how to construct an inner inclusion
of I'“:={p € [0,7r] : g1(p) < 0}. We first calculate

inf (7, I,
di = gl (ln ( +1)2—’_Sup( )) c HR,

fori=0,1,--- ,n. Put

[sup(1;),inf(/;41)] if sup(d;) <0,
¢ if sup(d;) > 0.

Je —

7

An inner inclusion I'® of I'® is given as

ﬁ:Om
=0

Algorithm 1 summaries this procedure of calculating re.

In this thesis, we assume that all solutions of g (p) = 0 can be obtained by Moore-Jones’s algorithm.
For the propose, we assume C3(p) is C? with respect to p. In this case, by Sard’s lemma, with
probability one we can choose a small negative € which is a regular value of ¢; [37]. If Moore-Jones’s
algorithm fails to find all solutions, then instead of g1 (p) = 0 considering g1(p) = €, without loss of
generality, we can assume that all solutions of g1 (p) = 0 can be obtained by Moore-Jones’s algorithm.
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On the interval [inf(I'®),7], we then identify all solution of g5(p) = 0 by Moore-
Jones’s algorithm.? Let I;(i = 1,2,--- ,n) be intervals such that each I; contains
one and only one positive solution p; of ga(p) = 0. We assume that ;N [; = ¢ for
1 <i<j<n. If g2(p) =0 have no solutions, then there does not exist any p > 0
satisfying (7) provided that T'* is included in [inf(T¢),r]. Let g, : IR — IR be an
interval extension of nonlinear functions go. Put I, = [inf(I'®),inf(I')] € IR and
I41 = [r,r] € IR. We show now how to construct an inner inclusion of T := {p €

[inf(T), 7] : ga(p) < 0}. We first calculate

di — gQ <1Hf([i+1) + Sup(]ﬂ) e ]IR7

2

fori=0,1,--- ,n. Put

[succ(sup(/;)), pred(inf(/;41))] if sup(d;) <0,
¢ if sup(d;) > 0.

=

An inner inclusion I'* of T'* is given as

f":ool,}‘.

Algorithm 2 summaries this procedure of calculating .
It is clear that if p € T°NI¥, then p satisfies the sufficient condition (7) of Theorem
1.1. Finally, calculate
pe = min{p: p € T°NT"}

and

pu = max{p:pe N}

2Similarly, we also assume that all solutions of 92(p) = 0 can be obtained by Moore-Jones’s algorithm.
For this end, we assume Cy(p) is C? with respect to p. In this case, by Sard’s lemma, with probability
one we can choose small negative € which is a regular value of go. If Moore-Jones’s algorithm fails
to find all solutions, then instead of ga(p) = 0 considering g2(p) = €, without loss of generality, we
can assume that all solutions of g2(p) = 0 can be obtained by Moore-Jones’s algorithm.
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Then p, and p, become approximating of p and p, respectively. If we search tighter
inclusions of all solutions of g;(p) = 0 and g2(p) = 0 and if T'*N T is include in [0, r],

then it is obvious p. and p, approach to p and p, respectively.

(a) The function g; has a p satisfying
91(p) =0.

g; (o)

v

Faild because U I; = ¢.

(b) g1(p) = 0 have no solutions.

F1GURE 3.1. Example of the proposed algorithm.
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Algorithm 1 of obtaining ' = {p € [0,7] : g1(p) < 0}.

Find I; € IR (i = 1,2,--- ,n) that contain p; € RT of g;(p;) =0 in [0, 7].
if Ul; is empty then
error(‘Failure in verification’);
end if
.[0 = O,
[n+1 =
fori=0:ndo
d; = g (inf(1i1) + sup(1))/2);
if sup(d;) < 0 then
17 = [sup(/;), inf (£i41)];
else
Ii=9¢
end if
end for
Put I = U, I¢
if ¢ is empty then
error(‘Failure in verification’);
end if

Algorithm 2 of obtaining I'* = {p € [inf(T'®), 7] : g2(p) < 0}.

Find I; € IR (i = 1,2,--- ,n) that contain p; € R* of go(p;) = 0 in [inf(I'°), 7].
if U/; is empty then
error(‘Failure in verification’);
end if
.[0 = inf(Fe);
L1 =15
for:=0:ndo
di = g2((inf(£;11) + sup(1;))/2);
if sup(d;) < 0 then
I = [succ(sup(1;)), pred(inf(Z;11))];
else
=0
end if
end for
Put ¢ = U, ¢
if T% is empty then
error(‘Failure in verification’);
end if
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CHAPTER 4

NUMERICAL RESULTS
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In this chapter, we present some examples of numerical verification. All compu-
tations are carried on PC with 3.10 GHz Intel Xeon E5-2687W CPU, 128 G Byte
RAM and Cent OS 6.3. We use MATLAB2012a with INTLAB version 6 [30], a
toolbox for verified numerical computations. Gmsh [6] (http://geuz.org/gmsh/) is
used for obtaining triangular mesh. Table 4.1 shows several notations which are used

throughout this thesis.

TABLE 4.1. Explanation of variables.

C Norm estimation for inverse of linearized operator in (3).

Co Residual norm in (4).

Pe By Theorem 1.1, the existence of exact solution is proved in [lu — a| 51 < pe.

Pu By Theorem 1.1, the uniqueness of exact solution is proved in |lu — @/ ;1 < pu.

P An error bound [|v — || y1 < py via Theorem 1.1.

G By Newton-Kantorovich’s theorem, existence of a solution is proved in [ju — @[|g1 < Gi.

I By Newton-Kantorovich’s theorem, uniqueness of a solution is proved in |Ju — 12||H% < (a.
N-K C | The verification condition of Newton Kantorovich’s theorem. (To prove the existence,

the parameter describing the verified condition should be less than or equal to 1/2.)

4.1. ILLUSTRATIVE EXAMPLES OF ALGORITHMS 1 AND 2

We first present results of numerical verifications of applying Theorem 1.1 with
Algorithms 1 and 2 for some nonlinear elliptic Dirichlet boundary value problems.
We also compare these results with those obtained by Newton-Kantorovich’s theorem
[33]. Let us consider the following Dirichlet problem of a nonlinear elliptic partial

differential equation:

—Au=\Nu+u*>—u®) inQ,
(33)
u=20 on 0f),

where ) is a bounded polygonal domain. From the discussion in [33], a weak formula

for (33) can be represented as

F(u) =0, (34)



where F is a nonlinear mapping from H}(Q) — H~'(Q). We now consider to apply
Theorem 1.1 to (34). Several methods for calculating the constant C; and Cy are
proposed in [24, 18, 19, 20, 25, 33| and so on. In this Section 4.1, for the constant
(1, we use methods of calculating in [24, 19]. We also use a method presented in [33]
for the calculation of Cy. M. Plum [25, 27] has presented how to construct functions
Cs(p) and Cy(p).

We have calculated all approximate solutions by the finite element method with
piecewise quadratic base functions on a regular triangulation. Here, we denote a mesh
size by the second longest length of each side on a triangle element. In the following,

we present verified results of (33) on convex and nonconvex domains.

4.1.1. Example 1. We first consider the semilinear elliptic equation (33) on the
square domain (0,1) x (0,1) with an uniform mesh. The approximate solution «
for A = 36 is presented in Figure 4.1. Table 4.2 displays verification results of (33)
for A = 35.7, 36, 37.6 and 37.8. In the cases of A\ = 36, 37.6 and 37.8, Newton-
Kantorovich’s theorem is failed. On the other hand, Theorem 1.1 succeeded to verify
the existence of exact solutions in the cases of A = 36 and 37.6. For A = 37.8, both
methods are failed. Algorithms 1 and 2 proved that there is no solution satisfying
(7) for A = 37.8. In Figure 4.2, we show shapes of nonlinear functions ¢g; and go for
A = 36. By Algorithms 1 and 2, we obtained I'* = [2.782x 1072, 7.206x1072] and I'* =
2.782x1072,4.332x 107 2] so that T°NT™ = [2.782x 1072,4.332x 107 2]. If p € TN,
p satisfies the sufficient condition (7) of Theorem 1.1. Table 4.3 shows computational
time needed for verification. As seen from this table, the computational time needed
for Algorithms 1 and 2 is less than 0.5 [sec] which is negligible compared with that for
calculating C; and Cy which is more than 200 [sec]. Effect of introducing Algorithms
1 and 2 is seen from the fact that Theorem 1.1 with Algorithms 1 and 2 yields better

estimates than those of Newton-Kantorovich’s theorem.
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FIGURE 4.1. Approximate solution o for (33).

TABLE 4.2. Verification results of (33) (b = 27°).

A Ch Co Pe Pu N-K C C1 C2
35.7 1 2120 9.289 x 1073 [ 2.664 x 1072 4.398 x 1072 | 0.4858 3.370 x 10~2 3.936 x 107~
36 2.138 9.406 x 1073 | 2.782 x 1072 4.332 x 1072 | 0.5063 Failed Failed
37.6 [ 2.237 1.004 x 1072 | 3.986 x 1072 3.991 x 102 | 0.6299 Failed Failed
37.8 [ 2251 1.012x 1072 Failed Failed 0.6472 Failed Failed

TABLE 4.3. Computational time needed for verification of (33) h = 27°
with ([sec]).

A Ch C>  Algorithms 1 and 2
35.7 | 17.77 184.0 0.5000

36 | 20.27 183.0 0.1001
37.6 | 19.81 183.6 0.1258
37.8 | 18.17 184.3 0.0503

4.1.2. Example 2. Next, let us consider the case that €2 is a bounded nonconvex

polygonal domain whose vertices are given by
{(0.5,0), (1,0.5), (1, 1), (0.5,0.75), (0, 1), (0,0.5) }.

Figure 4.3 shows this bounded nonconvex polygonal domain 2. It is well-known
that the solution does not have H2-regularity at a reentrant corner. It causes slow
convergence. In order to improve the accuracy of approximate solutions, we use a
nonuniform mesh centered at that corner as shown in Figure 4.3. We consider the
Dirichlet problem of the semilinear elliptic equation (33) on this nonconvex domain {2
using this nonuniform mesh. For A = 35 and 45, approximate solutions u are shown

in Figure 4.4. In the cases of A = 35 and 45, verification results of (33) are shown in
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FIGURE 4.2. Nonlinear functions ¢g; and ¢, for A = 36.

Table 4.4. Although Theorem 1.1 proved the existence of a solution, verification by
Newton-Kantorovich’s theorem for A = 45 was failed. Table 4.5 shows computational
time needed for verification. As seen from this table, computational time needed for
Algorithms 1 and 2 is less than 0.11 [sec] which is negligible compared with that
for calculating C; and Cy which is more than 10? [sec]. As the previous example,
effect of introducing Algorithms 1 and 2 is seen from the fact that Theorem 1.1

with Algorithms 1 and 2 yields better estimates than those of Newton-Kantorovich’s

theorem.

T

=

FIGURE 4.3. Bounded nonconvex domain € (1.646 x 1072 < h <

2.644 x 1072).
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(a) A =35 (b) A = 45

FIGURE 4.4. Approximate solution @ of (33).

TABLE 4.4. Verification result of (33).

A C1 Cs Pe Pu N-K C G G2
35 [ 2747 7909 x 1073 [ 2510 x 1072 6.319 x 1072 | 0.1159 2.597 x 1072 4.346 x 102
452474 1.173x 1072 [ 4.218 x 10°2 5.105 x 102 | 0.5527 Failed Failed

TABLE 4.5. Computational time needed for verification of (33) with ([sec]).

A C1 Co Algorithms 1 and 2
35 | 2.468 x 10> 1.438 x 10* 0.0994
45 | 2.483 x 10° 1.437 x 10* 0.1095

4.2. NUMERICAL EXAMPLE FOR SYSTEMS OF ELLIPTIC PDES (CASE

OF A NONLINEAR TERM f(u) = u — u?)

Let us consider the following Dirichlet boundary value problem of a system of

nonlinear elliptic partial differential equations:

—Au=100(u —u® —v) inQ,
—Av=u—"v in Q, (35)
u=v=>0 on 0%,
where €2 is bounded polygonal domains. From the discussion in Chapter 2, we can
test a numerical existence of solutions for (35).

We have calculated all approximate solutions by the finite element method with

piecewise quadratic base functions on a regular triangulation. Here, we denote a mesh
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size by the second longest length of each side on a triangle element. In the following,

we present verified results of (35) on nonconvex domains.

4.2.1. Example 1. Let us consider the case that 2 is a bounded nonconvex

polygonal domain whose vertices are given by
{(0.5,0),(1,0.5),(1,1),(0.5,0.75), (0, 1), (0,0.5) }.

Figure 4.5 shows this bounded nonconvex polygonal domain €. It is also known that
an exact solution does not have H?2-regularity at a reentrant corner. It causes slow
convergence. In order to improve the accuracy of approximate solutions, we used

a nonuniform mesh centered at that corner as shown in Figure 4.5. In Figure 4.6,

0 0.2 0.4 0.6 0.8 1

FIGURE 4.5. Bounded nonconvex domain € (7.270 x 107 < h <
2.696 x 1072).

we show approximate solutions tin the case of v = 1.2. In Figure 4.7, we also show
approximate solutions tin the case of v = —1.2. Using Theorem 1.1 with Algorithms 1
and 2, verification results for (35) on € such as Figure 4.5 are given in Table 4.6. From
Table 4.6, we succeed to prove the existence and local uniqueness of solutions which
are located in neighborhood of these approximate solutions. Verification results for
(35) using Newton-Kantorovich’s theorem are also shown in Table 4.7. Comparing
these two tables, Theorem 1.1 with Algorithms 1 and 2 gives shaper error bounds

and larger regions of uniqueness. Table 4.8 shows computational time needed for
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verification. As seen from this table, computational time needed for Algorithms 1

and 2 is less than 0.31 [sec] which is negligible compared with that for calculating C
and C which is more than 27800 [sec]|.

FIGURE 4.7. Approximate solution @ (left) and v (right) of (35) (v = —1.2).

TABLE 4.6. Verification results of (35) using Theorem 1.1 with Algo-
rithms 1 and 2.

¥ Ch Cy Pe Pu Pv
1.2 [ 1.855 9.932x 107> 2.146 x 1072 4.823 x 10> 7.248 x 10~ *
-1.2[1.853 9918 x 10°° 2.139x 10 2> 4.829 x 102 7.349 x 10~ ¢

TABLE 4.7. Verification results of (35) using Newton-Kantorovich’s
theorem.

v [N-KC G G
1.2 [ 03794 2471 x 1072 3.684 x 102
-1.27[ 03777 2459 x 102 3.676 x 10~ 2

4.2.2. Example 2. Next, let us consider the case that €2 is a bounded nonconvex

polygonal domain whose vertices are given by

{(0,0),(0.2,0), (0.2,0.4), (0.8,0.4), (0.8,0), (1,0), (1,0.5), (0.5, 1), (0.1, 0)}.
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TABLE 4.8. Computational time needed for verification of (35) with ([sec]).

0% Ch Co Algorithms 1 and 2
1.2 [2.038 x 103 2.174 x 10? 0.3032
-1.2 ] 2.056 x 10° 2.174 x 10* 0.1155

Figure 4.8 shows this bounded nonconvex polygonal domain 2. It is also known that
an exact solution does not have H2-regularity at a reentrant corner. It causes slow
convergence. In order to improve the accuracy of approximate solutions, we used a

nonuniform mesh centered at that corner as shown in Figure 4.8. In Figure 4.9, we

0.4 06 08

FIGURE 4.8. Bounded nonconvex domain € (1.625 X 1072 < h <
2.686 x 1072).

show approximate solutions tin the case of v = 1.2. In Figure 4.10, we also show
approximate solutions tin the case of v = —1.2. Using Theorem 1.1 with Algorithms
1 and 2, verification results for (35) on 2 such as Figure 4.8 are given in Table 4.9.
From Table 4.9, we succeed to prove the existence and local uniqueness of solutions
which are located in neighborhood of these approximate solutions. Verification re-
sults for (35) using Newton-Kantorovich’s theorem are also shown in Table 4.10.
Although Theorem 1.1 can prove the existence of a solution, verification by Newton-
Kantorovich’s theorem is failed. Table 4.11 shows computational time needed for
verification. As seen from this table, computational time needed for Algorithms 1
and 2 is less than 0.33 [sec] which is negligible compared with that for calculating C
and Cy which is more than 85200 [sec].
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anis

FIGURE 4.9. Approximate solution @ (left) and v (right) of (35) (v = 1.2).

FIGURE 4.10. Approximate solution @ (left) and ¢ (right) of (35) (y =
~1.2).

TABLE 4.9. Verification results of (35) using Theorem 1.1 with Algo-
rithms 1 and 2.

Y Ch Cy Pe Pu Pv
1.2 | 2.048 1.245x 1072 3.219x 1072 4.735x 1072 8.961 x 10~ *
-1.2 12047 1244 x 1072 3210x 1072 4.738 x 102 9.060 x 10~ *

TABLE 4.10. Verification results of (35) using Newton-Kantorovich’s
theorem.

Y N-K C 41 Cz
1.2 | 0.5133 Failed Failed
-1.2 | 0.5114 Failed Failed

4.3. NUMERICAL EXAMPLE FOR SYSTEMS OF ELLIPTIC PDEs (CASE
OF A NONLINEAR TERM f(u) = u + u? — u?)

Now, let us consider the following Dirichlet boundary value problem of a system

of nonlinear elliptic partial differential equations:

—Au=ANu+uv?>—u?—v) inQ,
—Av=u—12v in Q, (36)
u=v=>0 on 0f),
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TABLE 4.11. Computational time needed for verification of (35) with

([sec]).
vy Ch Cs Algorithms 1 and 2
1.2 | 8.258 x 10>  7.697 x 107 0.1248
-1.2 | 8277 x 103 7.714 x 107 0.3291

where (2 is an unit square, (0,1) x (0,1) or a bounded nonconvex polygonal domain.
For (9), we apply Theorem 1.1 with Algorithms 1 and 2. From the discussion in
Chapter 2, we can test a numerical existence of solutions for (36).

We have calculated all approximate solutions by the finite element method with
piecewise quadratic base functions on a regular triangulation. Here, we denote a mesh
size by the second longest length of each side on a triangle element. In the following,

we present verification results for (36) on convex and nonconvex domains.

4.3.1. In case of square domain. We first consider the elliptic system (36)
on the square domain (0,1) x (0,1). In Figure 4.11 and Figure 4.12, we show two
approximate solutions, say Type I : (41,01) and Type II : (49, 03), in the case of
A = 17. Verification results for (36) using Theorem 1.1 with the proposed algorithm
are given in Table 4.12. Verification results for (36) using Newton-Kantorovich’s
theorem are also shown in Table 4.13. The mesh size is taken as h = 27°. Comparing
these two tables, Theorem 1.1 with Algorithms 1 and 2 gives shaper error bounds
and larger regions of uniqueness. Table 4.14 shows computational time needed for
verification. As seen from this table, computational time needed for Algorithms 1
and 2 is less than 0.16 [sec| which is negligible compared with that for calculating
Cy and Cy which is more than 850 [sec|. Also in this case, the effect of introducing
Algorithms 1 and 2 is seen from the fact that Theorem 1.1 with Algorithms 1 and 2

yields better estimates than those of Newton-Kantorovich’s theorem.

TABLE 4.12. Verification results of (36) using Theorem 1.1 with Algo-
rithms 1 and 2 (h = 279).

Type Cy (& Pe Pu Pv
I 6.993 2.101 x 1073 [ 1.766 x 1072 4.206 x 1072 9.899 x 10~*
11 12.41 1.101 x 1073 [ 1.688 x 1072 3.403 x 1072 9.059 x 10~*
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FIGURE 4.12. Type Il : 45 (left) and 09 (right) of (36).

TABLE 4.13. Verification results of (36) using the method proposed in
[33] (h=279).

Type | N-K C G1 ¢2
I 0.2841 1.773x 1077 2938 x 10~ °
11 0.4858 1.692 x 1072 2.732x 10~ °

TABLE 4.14. Computational time needed for verification of (36) h =
27° with ([sec]).

Type Ch Cs Algorithms 1 and 2
I 781.2 171.6 0.1588
11 738.8 169.8 0.1493

4.3.2. In case of a bounded nonconvex polygonal domain. Next, let us
consider the case that €2 is a bounded nonconvex polygonal domain whose vertices

are given by

{(0.5,0),(1,0.5), (1,1), (0.5,0.75), (0, 1), (0,0.5) }.

Figure 4.13 shows this bounded nonconvex polygonal domain 2. It is also known that

an exact solution does not have H2-regularity at a reentrant corner. It causes slow
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convergence. In order to improve the accuracy of approximate solutions, we used a

nonuniform mesh centered at that corner as shown in Figure 4.13.

0 0.2 0.4 0.6 0.8 1

FIGURE 4.13. Bounded nonconvex domain 2 (7.270 x 107 < h <
2.696 x 1072).

We consider the nonlinear elliptic system (36) on this nonconvex domain . For
A = 35, Figure 4.14 shows approximate solutions @ and v. Table 4.15 presents the
result of verification based on Theorem 1.1 with Algorithms 1 and 2. We got C; =
3.136, Cy = 6.121 x 1072 for this nonuniform mesh triangulation. Based on Table 4.15,
the verification parameter describing the sufficient condition of Newton-Kantorovich’s
theorem was calculated as 0.2642. For each case, Theorem 1.1 with Algorithms 1 and 2
yields better estimate than that by Newton-Kantorovich’s theorem. Table 4.16 shows
computational time needed for verification. As seen from this table, computational
time needed for Algorithms 1 and 2 is less than 0.1 [sec] which is negligible compared

with that for calculating C; and Cy which is more than 10? [sec].

FIGURE 4.14. Approximate solution u (left) and ¢ (right) of (36).
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TABLE 4.15. Verification result for (36).

Pe Pu Pov Cl CQ
2207 x 1072 5.814 x 1072 7.165 x 10~* [ 2.276 x 1072 3.838 x 102

TABLE 4.16. Computational time needed for verification of (36) with

(fsec]).

Ch Co Algorithms 1 and 2
1.790 x 107 1.776 x 10* 0.0974

4.4. NUMERICAL RESULTS FOR SYSTEM OF ORDINARY DIFFERENTIAL

EQUATIONS

Let us consider the following system of nonlinear ordinary differential equations:

(2 1 1 5
_au <——u—|——u2—u3—0.211> in —1l<z<l1,

dz?  0.082 4 4
d*

—d—l;:u in —1<z<l, (37)
T

M.T. Nakao and Y. Watanabe have studied numerical verification methods, which
are called FN-Int and IN-Linz, of the above system in [21]. For (37), we also apply
the proposal numerical verification method in Chapter 2. We calculated approximate
solutions by the finite element method with piecewise quadratic base functions. Let
N be a number of equidistant partitions for the interval [-1,1].

Approximate solutions @ and ¢ are shown in Figure 4.15. Verification results for
(37) are provided in Table 4.17. In Table 4.18, we present verification results through
Newton-Kantorovich’s theorem. For five approximate solutions S1, S3, AS1, AS2 and
AS3, Theorem 1.1 with Algorithms 1 and 2 proved the existence and local uniqueness
of each solution. However, for two approximate solutions S2 and S4, both methods
failed. For all approximate solutions, M.T. Nakao and Y. Watanabe [21] have suc-
ceeded to prove the existence of solutions which are located in neighborhood of these

approximate solutions using Nakao’s IN-Linz method, which is based on Schauder’s
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fixed point theory. Although M.T. Nakao and Y. Watanabe [21] do not give the
uniqueness results for AS1 and AS3, for these problems, the local uniqueness of each
solution can be proved using Theorem 1.1 with Algorithms 1 and 2. Table 4.19 shows
computational time needed for verification. As seen from this table, computational
time needed for Algorithms 1 and 2 is less than 0.18 [sec| which is negligible compared

with that for calculating C; and Cy which is more than 10 [sec].

Cws R
@ s
o @as a2

e

FIGURE 4.15. Approximate solutions u (blue) and ¢ (green) for (37).
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TABLE 4.17. Verification result of (37) using Theorem 1.1 with Algo-

rithms 1 and 2.

Type N C1 Co Pe Pu Pv
S1 512 | 3.282 4.410x 107° | 1.648 x 10~ 6.764 x 10~* 7.545 x 10°°
S2 1024 | 13.90 2.034 x 10~ ° Failed Failed Failed
S3 512 | 4.162 4.552x 107° | 2.650 x 10~* 4.646 x 10~* 1.117 x 10~ *
S4 1024 | 7.521 2.803 x 10> Failed Failed Failed
AS1 1024 | 4.857 3.436 x 107> [ 2.236 x 10~* 4.404 x 10~* 1.002 x 10~ *
AS2 512 | 5202 2621 x10°° [ 1.585x 107+ 5.661 x 10°* 6.613 x 10>
AS3 512 | 3643 4.179x 10°° | 1.765 x 107 % 6.413 x 10~ 7.945 x 10°°

TABLE 4.18. Verification result of (37) using the method proposed in [33].

Type | N-K C C1 ¢
S1 [ 0.2139 | 1.648 x 10°* 2.894 x 10~*
S2 1.3967 Failed Failed
S3 | 0.4077 | 2.650 x 10~ 3.789 x 10~ *
S4 0.6733 Failed Failed
AS1 [ 0.3787 [ 2.236 x 10°% 3337 x 107 *
AS2 [ 0.2407 [ 1.585 x 10~% 2.726 x 10~ %
AS3 [ 0.2373 | 1.765 x 10°% 3.045 x 10~ *

TABLE 4.19. Computational time needed for verification of (37) with

([sec]).

Type | Ci C>  Algorithms 1 and 2
S1 8.128 3.627 0.1470
S2 76.72 18.82 0.0809
S3 10.38 3.602 0.1640
S4 72.59 18.75 0.0945

AS1 | 50.56 18.87 0.1532

AS2 | 11.29 3.656 0.1727

AS3 | 8.100 3.645 0.1343
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CHAPTER 5

CONCLUSION
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We presented a numerical verification method for solutions to systems of linear
and semilinear elliptic partial differential equations on a bounded polygonal domain
with arbitrary shape in R?.

In Chapter 2, we provided a numerical verification method for solutions to systems
of linear and semilinear elliptic partial differential equations. The aim of this chapter
is to treat a numerical verification method of the equations on bounded nonconvex
domains. In particular, we presented the methods of calculating an upper bound of a
residual norm for equations including a solution operator. In Chapter 3, we proposed
an algorithm of constructing an inner inclusion of a region defined by a sufficient
condition of the Newton-Kantorovich like theorem. The algorithm bases on Moore-
Jones’s algorithm, which is based on Krawczyk’s operator, of finding all solutions of
one dimensional nonlinear equations. One of the features of our algorithm is that
if a region defined by a sufficient condition of the Newton-Kantorovich like theorem
is empty, we can prove that there is no solution satisfying a sufficient condition of
the Newton-Kantorovich like theorem. In Chapter 4, we provided some numerical
examples. We presented results of a numerical verification method for solutions to
systems of linear and semilinear elliptic partial differential equations on bounded
nonconvex domains.

Finally, we would like to prove existence and local uniqueness for solutions to
systems of semilinear and semilinear elliptic partial deferential equations as our future

work.
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CHAPTER A
ENCLOSE METHOD FOR EIGENVALUES
OF THE LAPLACE OPERATOR AND
METHODS OF CALCULATING FOR THE

EMBEDDING CONSTANT Ce p
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There is a lot of study considering enclose methods for eigenvalue of the Laplace
operator. For example, using Katou’s bound and Lehmann-Goerisch’s theorem [4,
8, 14], the lower bound of nth eigenvalue is proved by the lower bound of n + 1th
eigenvalue. Verified evaluation methods for eigenvalues of the Laplace operator have
been studied by M. Plum [26], M.T. Nakao et al. [23], and X. Liu et al [15].

The eigenvalue problem is transformed into the variational problem:
Find A € R and v € Hy(Q) s.t. (Vv, Vw) = Av,w), w € Hy(Q). (38)

Denoting the eigenpairs of (38) by {\;, v;}, these eigenpairs are simply the stationary

value and critical points of the Rayleigh quotient in HJ(£2):

") = S

Let each eigenfunction be orthogonally normalized under L? norm. Let us introduce

the following theorem which encloses each eigenvalue of the Laplace operator.

THEOREM A.1 (Liu-Oishi [15]). Let {\;} be eigenvalues of the Laplace operator.
{\!} are assumed to be approzimate eigenvalues of the discrete problem of (38). Cy,

is computable error constant of the orthogonal projection defined in (11). If
C2NI < 1
holds, then we have the verified enclosure of each eigenvalue \;,

b h
i<\ <A
L+ 2N =70

Next, we introduce methods of calculation for the embedding constant C,,. For
p = 2, the embedding constant C, 4 is given by the minimal eigenvalue A\; of the

Laplace operator as follows:

=
=
N

Cea = sup —HUHL2 = sup =

1
ue HX (2)\{0} HUHHg B w€HG ({0} /(u,u) gy 7

Yu € H} ().
\/)\—1 U 0()

o/

o4



Furthermore, we can estimate the minimal eigenvalue A; using Theorem A.1 and we
get the embedding constant C 5.
For the embedding constant C., of p € [2,00), M. Plum has been proposed

following lemma:

LEMMA A.2 (M. Plum [27]). Let 0 :=1/)\;. Let p € [2,00). With v denoting the
longest integer < p/2, C.,, holds for

1 %+M 2

S (P P 2
= (B
Ces (2) [2(2 o Ve

where if v = 1, then we have [g (g—l)---(g—y+2)} = 1.

M.T. Nakao and N. Yamamoto have also presented another method of calculating

for C,, [22], which is based on Talenti’s best constant in Sobolev inequality [34].

LEMMA A.3 (Nakao-Yamamoto [22]). Let |Q] be a measure of Q. Let p € [3,00).
Let ¢ = 2p/(p + 2) be a real number satisfying 1 < q < 2. We have Talenti’s best

constant Cp in Sobolev inequality satisfying

et (2 Q-9

where I'(-) means a Gamma function. Then, C., holds for

SIS

2—q
Cop=Cr|Q = .
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CHAPTER B
NORM ESTIMATION FOR INVERSE OF
LINEARIZED OPERATOR USING
NAKAO-HASHIMOTO-WATANABE’S

THEOREM
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In Section 2.4.1, we present the method of calculating the upper bound ' for
(15) using Theorem 2.4. M.T. Nakao, K. Hashimoto and Y. Watanabe [19] have
proposed a different type of calculating C; for a nonlinear elliptic Dirichlet boundary

value problem as below.

THEOREM B.1 (Nakao-Hashimoto-Watanabe [19]). Let N'[d] : H3(Q2) — H ()
be the linear compact operator defined in (16) and X, be the finite dimensional sub-
space of H}(Q) spanned by finite element base functions. Let Py, : Hy(Q) — H ()
be the orthogonal projection defined in (10). For three constants K3, Ky and Ks, we

assume

lg'[@ullz: < Ksllullgy, Yu € Hy(),

g'al(I = Pu)ullz < Kall(I = Pu)ullgs, Yu € Hy(9),
and
[PRATN[a) (I = Prullgs < Ks|l(I = Pr)ullgs, Yu € Hy(Q).

Assuming that finite dimensional operator Pp(I — A7N'[0])|x, : Xn — X}, is invert-

ible with
[(Pu(I — ATN[a))] x,) g iy < 7

Here, Py(I — A7*N'[d])|x, is the restriction of Py(I — AN'[4]) : HI(Q) — X,
to Xp. We put k := Ch(Ks7Ks + Ky). If k < 1, then the linear operator F'[d] is

mvertible and we estimate
IF" (@] "Ml o1, mz) < Ch
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Here,

—K

H 1 n C’thrK ) K

where || - ||z means Euclid norm.

We introduce the method of calculating the upper bound K3, K4, K5 and 7 for
(15).

B.1. CALCULATING METHOD OF CONSTANTS K3, K; AND Kj

From the definition of K3, for u € H}(£2), we have

Iglalulle = | (Flau— 6Bu)

2

=5 (17 alull 2 + 16Bull2)

IN

/.2 ~
< =2 (1l + 18 1Bl ey ) el

A upper bound of the operator norm of B are estimated by C.o and K, which is
defined by (22), as follow:

Bl Liz2,mpy < Ce2K. (39)

Furthermore, we put

C -
Ky = 52’2 (/T oo + CepK16]) .
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For u € HJ (), we can also estimate using (39) and Aubin-Nitsche’s trick for (11)

as follow:
Io 7 =Pl = || 5 (P =P = 0B = Pu)|
< S T = Pyl + 1B = Poull)
< 2 (Il + 10118 gs ) 17 = Pl
< Sl + Con KIS 10— Py
Furthermore, we put
Ko = S (1 il + Cua 18],

£2

For u € H}(Q), we have

1Pr AT N [G)(1 = Pr)ull?
= (PRATN[a)(I = Pr)u, PhATN[a](I — Pr)u) gz
= (VAT'W'a)(I = Pr)u, VPLATN[a](I — Pr)u) g

= (f'[al(I = P)u, Pn A" N[a)(I — Pr)u)

IN

£ (@) (1 = Po)ull 2 [ PrATN[@] (1 — Pa)ull e

IN

Kal[(T = Pr)ul| s Ce ol [PRAT N[0 (T = Pp)ul gz
Furthermore, we put

K5 - 0372[(4.

B.2. CALCULATING METHOD OF THE CONSTANT T

Let ¢; be piecewise base functions satisfying

Xh = Span{¢)17 ¢27 o ’d)n} C H&(Q)a
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where n is the number of node points. Let u, w € R™ be real vector and uy,, w;, € Xpbe

the elements satisfying

u = (U17u27"' 7un)T ’ uh:<¢17¢27"' 7§bn)'u7
W = (w17w27"' 7wn)T ) U)h:<§b1,¢2,"' 7¢n)'wy
respectively. Let G and D be real n x n matrices whose elements are given by

Gij = (V;,Vei)r2 — (d'[ald), di) e,

Dy = (V¢;,Vi)r2,

for1 <i<mand1 < j <mn. Since D is positive definite, D has Cholesky factorization

D = HH". For any u; € X}, we have a property
HuhHH(} =u'Du=u"HH"u= (H"n)"(H"u) = |H ul,. (40)

If GG is nonsingular, then P, (I — A7'A’[d])|x, is nonsingular. Putting w;, € Xh

as
(un, ¢i) gy = (Pu(I — A7N[a))|x,) " wny 6i) gy, 1 <0 <. (41)
(41) is transformed into

(T = AT N [@)yun, @)y = (wny $i) g, 1 <0< (42)
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For the left-hand side of (42), we have

(1 = A Na)un, i)y = (I = A7 g'[a])un, éi)
= (un, di)my — (A~ g [a]up, i)y
= (Vun, Véi)my — (g'[a]un, ¢i)r2

S ((Vé5, Vi) g — ('la)65, 01)1 )

j=1
n
= E Gijuj.
j=1

For the right-hand side of (42), we have

n

(wn, 9y = > (05, P1)mw

j=1
= Z Dij“)j~
j=1
Furthermore, we obtain
u=_G"'Dw. (43)

Finally, from (40) and (43), we can estimate

Pl — AN'[a N —Lw 1
[P~ AN ) Moy = sup LR @) 1x,) " wnllg

wi,€X,\{0} [[whll

[

= sup
wnexn\{o} [lwnll e

— [H u2
wnexp\{0y [T W][2

- [H' G~ Dw];

T wexnm W]

L LG,
wnEXR\{0} | HTw |l

|H G|, = 7.

IN
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CHAPTER C
VERIFICATION THEORY FOR
SOLUTIONS TO SYSTEM OF ELLIPTIC
PDES USING

NEWTON-KANTOROVICH’S THEOREM
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In this appendix, we consider a verification method of (15) using Newton-Kantorovich’s
theorem. The numerical verification method of elliptic boundary value problems us-
ing Newton-Kantorovich’s theorem has been studied by A. Takayasu, X. Liu and S.
Oishi [33]. We apply the frame work to our verification procedure for (15).

We first introduce Newton-Kantorovich’s theorem.

THEOREM C.1 (Newton-Kantorovich [9]). Let i € X be an approximate solution

of (2). Assuming that the Fréchet derivative F'[4] is nonsingular and satisfies
1F" @]~ F (@)l < o

for a certain positive a. Then, let B(,2a) = {v € H}(Q) : ||v — illgy < 20} be a
closed ball and D D B(ﬂ, 2a) be an open ball. We assume that the following holds for

a certain positive w,
|F (@)~ (F [w] = F' ) pomg,mpy < wllw —mllgg, Yw,m e D.

If aw < 1/2 holds, then there exists a solution u € H(Q) of F(u) =0 satisfying

1—v1-2
lu =l < pi= ————— S (44)

Furthermore, the solution u is unique in D.

COROLLARY C.2. To apply Theorem C.1, we will calculate three constants C, Cy and Cs.

These satisfy the following inequalities

IF (e =,y < Ch,

[F@la—r < G,

IN

1F [w] = Fmlllpag m-y < Csllw—mllgy, Yw,me D. (45)

64



If C3CyC5 < 1/2 holds, then there is a solution u € H}(Q) of F(u) =0 satisfying

1—/1-202C5C;

CC5

lu =l < pi=

Furthermore, the solution u is unique in B(t,2C,Cy) = {v € HSQ) : |Ju — il gy <

20102} c D.

For constants (7 and (s, see Section 2.4. We consider the Lipschitz constant

of 7'« HYQ) — L(HE, H™Y).

Here, we assume that ¢ : H}(Q2) — L(H}, L?) is

the Lipschitz continuous on the open ball D O B(#,2a). There exists the positive

constant (', satisfying

((S'Tw] = S ImD) @, ) 2] < Cpllw = mllig 100 g 19111y

Yw,¥m € D and Vo, Vi € Hj ().

For w,m € D, we have

IN

1F Tw] = F'Imlll g 1)

IV [w] = N[m]ll g, 1)
[N Tw] = N[m])dl|

sup

seHL()\{0} Izl
1, _ 17, p
sup sup [((N'[w] = N'[m])¢, )]
peHI(Q)\{0} veHE()\{0} H(/)HH(} H’é/)HHg
’ )
sup sup [((¢'[w] = g'Im])p, V)12
seHY(\{0} peHL(Q)\{0} 1l 11l
"Tw] — 6B — 0B
sup sup [((f'[w] ['lm] +0B)p, )|
$eH(\{0} peHL(Q)\{0} [z [0 12
’ o
sup sup [((f'Tw] = f'[m])¢, V) 12|
$eH(\{0} peHL(Q)\{0} ez 191 1

Crllw =ml[m

Therefore, one can put (5 := (.
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For example, we put f(u) = au + Bu® + yu?, where o, 3, v € R. From Holder’s
inequality and Sobolev’s embedding theorem, for w,m € D and ¢, € H}(Q)), Cs is

derived by

[((f'Tw] = fIm]) e, ¥) r2]
= [((a+26w +3yw?) — (a +28m + 3ym*)¢, ¢) 2|
= [((a+26w +3yw?) — (a +28m + 3ym*)¢, ¥) 2|
< 28w —m)o, ¥)r2| + |(B3y(w +m)(w — m)¢, V) 12|
< 128[|lw = mllzslollzs ol s + 3v][[w + m| allw — m || a]| @] a ][] 4

< 218|C25 11w — ml g |Gl arg 19|y + 3VICEallw +m gl — ml g |91 g [190] -
Since w, m € D, it follows that
[w +mllg < 2[al| g +4(C1C + €).
Therefore, we have

Cs = 201C3, + 6111C2 ([l my +2(C1Cs + €)).
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CHAPTER D

MOORE-JONES’S ALGORITHM
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In this appendix, we introduce Moore-Jones’s algorithm. Moore-Jones’s algo-
rithm, which is based on Krawczyk’s operator [12, 13], find all solutions of nonlinear
equations [16]. We first introduce Krawczyk’s operator for one dimensional nonlinear

equations.

D.1. KRAWCZYK’S OPERATOR FOR ONE DIMENSIONAL NONLINEAR

EQUATIONS

Krawczyk’s operator yields a numerical existence test of solutions for finite dimen-
sional nonlinear equations. For x € IR, mid(x) € R denotes (sup(x) + inf(x))/2. Let
g1 : R = R be a C*'-function. We are concerned with a problem of finding a solution

p € R satisfying the following nonlinear equation:
91(p) = 0.
Let I € R\ {0}. For x € IR, we define Krawczyk’s operator K : IR — IR by
K(x) := mid(x) — "' g1 (mid(x)) + (1 — I g}(x))(x — mid(x)), (48)
where ¢ is an interval extension of derivative of the nonlinear function g;. If
K(x) C x and sup(|]1 —I7'gl(x)|) < 1

holds, there exists a solution p € x of g;(u) = 0 and unique in x. Algorithm 3

summaries this procedure of calculating x.
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Algorithm 3 of obtaining x € IR, which include p € R satisfying ¢;(p) = 0.

Kx = mid(x) — I !¢ (mid(x)) + (1 — I !¢} (x)(x — mid(x))
uni = sup(|1 —17"g; (x)|)
if Kx C x and uni < 1 then

loop
rx =X
x = Kx

Kx = mid(x) — 7' ¢y (mid(x)) + (1 — "¢} (x)(x — mid(x))
if Kx D x then
return rx
end if
end loop
else
error(‘Failure in verification’);
rx = NalN
return rx

end if

D.2. MOORE-JONES’S ALGORITHM

Following [16], we briefly sketch Moore-Jones’s algorithm for one dimensional
nonlinear equations. Let B € IR be an starting interval. List T is the list of subregions
of B yet to be tested and T; € IR is the i-th element of T. List P is the list of
subregions of B contain a solution p to g1(p) = 0.

For any p € T;, we first check whether g;(p) = 0 have no solutions or not. Put
g = q(T;) € IR. If 0 € g, then g;(p) = 0 have no solutions for any p € T; and
we delete T;. Next, as a interval x = T}, we try to a numerical existence test using
Algorithm 3. If Algorithm 3 succeed, we put P; = rx and we delete 7. If rx = NalV,

we put
Ti1 = [mid(T;), sup(T;)]
and
T; = [inf(7}), mid(T3)].

Algorithm 4 illustrates Moore-Jones’s algorithm.
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Algorithm 4 Moore-Jones’s algorithm.

Set list P to empty
T,=B
i=1
j=1
while 7 # 0 do
9=g(T7)
if 0 ¢ g then
flag =0 // There is no solution in T;
else
Compute rx using Algorithm 3 as starting value x = T;
if rx == NaN then
Jlag = -1
else
flag =1 //g1(p) = 0 have a exact solution in T;
end if
end if
if flag == 0 then
Delete T;
1=1—1
else if flag == 1 then
P; =rx
Delete T;
1=1—1
j=i+1
else
Ty = mid(T3), sup(T})
T, = [inf(T;), mid(T})
t=1+1
end if
end while
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