A Hybrid and Hierarchical Network-on-Chip
Architecture and its Configuration Algorithm
INA T)y R DRERE) s
FTF TRy T =72 DM

February 2014

Waseda University
Graduate School of Fundamental Science and Engineering

Department of Computer Science and Engineering,

Research on Imformation System Design

Seungju LEE
A

Contents

1 Introduction 1

2 BusMesh NoC: An NoC Architecture Composed of Bus-based

Connection and Global Mesh Routers 7
2.1 BMNoC architecture L. 9
2.1.1 Cluster node (CN) and network topology 9
2.1.2 Packet format oo 10
2.1.3 Mesh router (MR) and edge switch (ES) 11
2.2 Experiments 14
2.2.1 Experiment setup L. 14
2.2.2 Experimental evaluations: C-NoC, HNoC, and BMNoC . . . 14
2.3 Concluding remarks 19

3 A Locality-aware NoC Configuration Algorithm Utilizing the Com-

munication Volume among IP Cores 20
3.1 Problem formulation 22
3.2 Strategy 24
3.3 Algorithm overview 26

3.3.1 The algorithm oL 28
3.4 Experimentso Lo 37

3.4.1 Experiment setup L 37

iii

iv CONTENTS

3.4.2 Experimental evaluations: Ref. [33] and Our configuration
algorithm oo 37
3.5 Concluding remarks 40

4 BMNoC utilizing Packet Transmission Priority Control Method 41

4.1 Packet Transmission Priority Control Method 43
4.2 BMNoC utilizing Packet Transmission Priority Control Method . . 47
4.3 Experimentso 50
4.3.1 Experiment setup L. 50

4.3.2 Object detection systems 51

4.3.3 Experimental evaluations: HNoC and our BMNoC 53

4.4 Concluding remarkso 59

5 Related Works 60
5.1 Architectures 61
5.2 Algorithms. 63
5.3 Concluding remarkso 65

6 Conclusion 66
Acknowledgement 68
Reference 70

List of Publications 76

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

3.1

(a) C-NoC architecture and (b) HNoC architecture. 2
A generic architecture of BMNoC. 9
Packet structure and data structure of BMNoC. 11
MR and ES architecture.o 13
Traffic injection rate versus average packet latency for auto industry

benchmark. 18

Traffic injection rate versus average packet latency for telecom bench-

mark. ..o 18

An example of task graph. 23

vi

3.2

3.3
3.4

3.5

3.6

3.7

3.8

3.9

4.1
4.2
4.3

LIST OF FIGURES

Examples of bottom-up clusterings. (a) Seed-based clustering. (b)
Growing-region clustering. In (a), we first pick up a seed vertex and
find its local surroundings as a cluster. Then we pick up another seed
vertex and find its local surroundings as the next cluster. We repeat
this procedure until all the vertices are included in any cluster. In
(b), we first pick up a seed region R;. After that, we find out the next
region Ry, adjacent to R;. By repeating this process several times,
the regions (Ry, Ry, - - - , R;) will make a single cluster. Similarly, the
regions (R;+q,- -, Ri+;) will make a next single cluster. We repeat
this procedure until all the vertices are included in any region and
any cluster. We can naturally consider the locality of vertices and
adjust a cluster size in (b), whereas it is very difficult to do so in (a). 25
An example of the growth rate GR(Rg) of Rg. 32
Steps 1, 2 and 3 for the cluster node CN; ((4,2,1)-BMNoC and

Continuing Step 3 for the cluster node C'N, and Step 2 for the cluster
node CN3 ((4,2,1)-BMNoCand p=2). 35

Continuing Step 2 for the cluster node C'N3 and final BMNoC con-
figuration ((4,2,1)-BMNoC and p=2). 36

Traffic injection rate versus average packet latency for auto industry

benchmark. 39

Traffic injection rate versus average packet latency for telecom bench-

mark. ... 39

A round-robin router architecture. 43
In case of a blocked transmission. 44

New packet transmission priority control method. 45

LIST OF FIGURES vii

4.4 An example of transmission permission issue of arbiter. 46
4.5 A general architecture of novel BMNoC. 48
4.6 A router architecture of novel BMNoC. 49
4.7 NTT object detection system [2]. 52
4.8 The task graph of object detection systems. 56

4.9 Traffic injection rate versus average packet latency for telecom bench-
mark. ... o7
4.10 Traffic injection rate versus average packet latency for object detec-

tion system benchmark. 58

4.11 # LCs for BMNoC, BMNoC+PTPCM and HNoC architectures. . . 58

List of Tables

2.1 The comparison among C-NoC, HNoC, and BMNoC.
2.2 Area comparisons among C-NoC, HNoC and BMNoC

4.1 The comparison between HNoC and BMNoC.

viii

15

Chapter 1

Introduction

Future SoCs designed for ambient intelligence will be based on high-speed digital
signal processing including audio/video coding/decoding, wireless communication
and multilingual conversation. With the growing complexity in consumer embed-
ded products and increasing transistor density, the leading edge system-on-chip
(SoC) architectures will be composed of many complex heterogeneous cores called
multi-processor systems-on-chip (MPSoC). However, traditional communication
architectures based on shared communication resources (single shared buses or hi-
erarchy buses) or dedicated interconnections are not sufficient in many aspects,
such as scalability, flexibility, communication performance and power efficiency.
What is more, chip-wide synchronous operation is becoming extraordinarily diffi-
cult. Furthermore, with technology scaling, the global interconnects cause severe

on-chip synchronization errors, unpredictable delays, and high power consumption.

To mitigate these effects, the network-on-chip (NoC) approach has recently
emerged as a promising alternative to classical bus-based and point-to-point (P2P)
communication architectures [19, 29]. According to the multi-core chip evolution,
which forecasts tens and hundreds of cores in few years, logical and physical clusters
of cores have been considered as an approach to support parallel processing. The

next phase for this evolution can be called on-chip distributed computing, which

2 CHAPTER 1. INTRODUCTION

= IP core

<—>» = local bus

<+«— = Mesh NoC

9 (b)

Figure 1.1: (a) C-NoC architecture and (b) HNoC architecture.

consists of distributed clusters of cores to process a large number of different work-
loads [11, 15, 16, 42]. A cluster-based NoC (C-NoC) a modified model of Hermes
NoC (H-NoC) [31] is introduced by Seifi and Eshghi [42]. Each switch is attached
to one local core in H-NoC. Every transmission must be performed via switches
so the delay is increased. To solve this problem, the C-NoC switch has four local
ports and configures a cluster as shown in Fig. 1.1(a). The latency of C-NoC [42]
is decreased by 15.1% compared with the conventional NoC, SoCIN [50]. However,

its performance is still insufficient for heterogeneous cores and clusters.

Among numerous NoC topologies, mesh is a popular one due to the simplicity
and regularity. In mesh topology, each router is connected to several local cores and
adjacent routers. Since the router only connects to its neighboring routers, the data
packets transmitted from the source core to the destination core may travel long
distance, and affects the performance of whole SoC [7]. Besides, with increasing size
of NoC, the mesh topology has its disadvantage in the communication latency and
the concentration of the traffic in the center of the mesh topology (named hot-spot).
Although some studies have been made on effective core mapping methodologies to
solve the hot-spot problem [18, 33, 34], what seems to be lacking is a better on-chip

communication architecture. To solve the problems of the mesh topology for future

SoC design, many research papers have proposed a great number of approaches in
recent years and a hybrid bus-NoC architecture is one of them [5, 26, 45, 49]. A
hybrid bus-NoC architecture is a system platform which is based on a standard
NoC architecture, and contains several clusters which are composed of local buses.
In the hybrid bus-NoC architecture, cores with heavy traffic and communication
volume are placed in the same cluster with a local bus to avoid hot-spots and reduce
the transmission latency. Since the hybrid architecture is based on a standard mesh
NoC concept, the router of the hybrid system not only connects with its neighboring
routers but also connects to a cluster which is composed of several cores and a local
bus. It is noteworthy that new interface is not needed for each core in subsystem,
and it can further reduce the design cost.

It is very important for a configuration algorithm for hybrid bus-NoC archi-
tectures to decide which cores should be assigned to the same cluster and map
the clusters onto the network that the transmission latency is minimized and the
locality is contemplated. When partitioning cores, the cores with heavy traffic and
communication volume should be assigned to the same cluster and placed as close
as possible to reduce the transmission latency.

Unfortunately, the conventional NoC configuration algorithms [3, 17, 21, 22,
27, 33, 36, 44, 45] are not suitable for a hybrid bus-NoC architecture since they are
only greedy of communication volume or bandwidth requirement. The basic idea
of mapping algorithm in [45] and [25] are the same as [33]. The approach in [33]
maps each core to NoC architecture one by one, in breadth-first-search manner,
only in the order of its communication volume after picking up the two cores which
are connected by the highest communication volume in an input task graph. The
algorithm in [33] is used for a hybrid bus-NoC architecture as a makeshift now.
It may cause a poor result such as a longer latency and a low throughput since
the greedy approach does not contemplate the localities between cores. Thus, we
propose a novel configuration algorithm for a hybrid bus-NoC architecture called

BMNoC and decide to compare the performance of our proposed algorithm with

4 CHAPTER 1. INTRODUCTION

[33], which is used for a hybrid bus-NoC architecture as a makeshift now, to verify
its advantage.

In this dissertation, first of all, we decribe and define our target architecture,
which is called a busmesh NoC (BMNoC). BMNoC is a generalized version of
hybrid bus-NoC architectures. After that, we propose a configuration algorithm
for hybrid bus-NoC architecture (BMNoC configuration algorithm) which analyses
the data traffic of the target application and determines which core is the right
one to put into a certain cluster with its communication volume and locality. In
many applications, we have several cores which communicate with each other more
frequently than with other cores, such as a processor and cache memories. If
there is a higher communication volume between some specific cores, our BMNoC
configuration algorithm reduces network traffic and latency by mapping the cores
into the same local cluster node and connecting them with a local bus. Our BMNoC
configuration algorithm reduces the traffic load at the center of the network by a
hierarchical communication network.

Performance of many-core chip multiprocessors (CMPs) is significantly influ-
enced by performance of NoC which interconnects each core for on-chip commu-
nication. Specially, latency of packets in NoC remarkably effect performance of
applications executing on a many-core CMP. Because it is projected that executing
different applications concurrently on a many-core CMP becomes highly required
in the future, it will be important that a priority control which guarantees or dif-
ferentiates latency of packets. Thus, a new packet transmission priority control
method for NoCs has been proposed in [43] which can improve the efficiency of the
buffers.

We also propose a novel BMNoC utilizing packet transmission priority control
method. Our proposed BMNoC is a generalized and simplified version of a hybrid
NoC which is composed of local buses and global mesh routers. Our proposed
architecture is composed of clusters which are connected by mesh network, bor-

rowing the hierarchical model from the Internet and adapting it to communication

networks. In intra-cluster node, several cores which have a heavy communication
to each other are connected by a local bus. It can provide the better performance
in terms of the latency since local buses transmit data directly to other cores in the
same cluster node with a parallel fashion, which eliminates packetizing overhead.
Furthermore, Our proposed BMNoC utilizing packet transmission priority control
method can minimize the average packet latency by improving the efficiency of the
buffers.

This dissertation is organized as follows:

Chapter 2 [BusMesh NoC: An NoC Architecture Composed of Bus-
based Connection and Global Mesh Routers| describes our proposed busmesh
NoC which is a novel NoC architecture composed of bus-based connection and
global mesh routers. We explain a busmsh NoC (BMNoC) at first. BMNoC is a
generalized version of a hybrid NoC with local buses. Recently, the mainstream
of NoC architecture is a hybrid bus-NoC architecture, which is based on a hierar-
chical model from Internet. We introduce several conventional NoC architectures.
We define a novel hybrid bus-NoC architecture, BMNoC, in this chapter. We
evaluate BMNoC as compared with conventional architectures with Ns-2 simula-
tor. Chapter 3 [A Locality-aware NoC Configuration Algorithm Utiliz-
ing the Communication Volume among IP Cores] describes our proposed
BMNoC configuration algorithm. We propose a locality-aware NoC configuration
algorithm (BMNoC configuration algorithm). BMNoC configuration algorithm for
hybrid bus-NoC architectures analyses the data traffic of the target application and
configures communication networks with cluster nodes, edge switches and mesh
routers to establish a hierarchical structure. Second, we introduce a breadth-first
approach algorithm for comparison purpose. We evaluate algorithms which are ap-
plied realistic applications with Ns-2 simulator. Chapter 4 [BMNoC utilizing
Packet Transmission Priority Control Method] describes our proposed BM-
NoC configuration algorithm utilizing packet transmission priority control method.

We explain packet transmission priority control methodat first. Packet transmis-

6 CHAPTER 1. INTRODUCTION

sion priority control method improves average delay by enhancing the efficiency of
the buffers are proposed for NoCs. We propose a novel BMNoC which is utilizing
packet transmission priority control method. We evaluate our proposed architec-
tures and algorithms with Ns-2. Chapter 5 [Related Works] introduces related
works. We introduce conventional NoC architectures, algorithms at first. We ex-
plain why a novel NoC architecture and its configuration algorithm are needed.

Chapter 6 [Conclusion] summarizes our research and indicates future works.

Chapter 2

BusMesh NoC: An NoC

Architecture Composed of
Bus-based Connection and Global

Mesh Routers

In this chapter, we define a hybrid bus-NoC architecture, called a busmesh NoC
(BMNoC), which is a generalized version of a hybrid NoC with local buses. Re-
cently, the mainstream of NoC architecture is a hybrid bus-NoC architecture, which
is based on a hierarchical model from Internet [5, 25, 26, 27, 45, 47]. The hybrid
bus-NoC architecture, called a busmesh NoC (BMNoC), is derived from the gen-
eralization of the previous topologies [5, 25, 26, 27, 45, 47].

In BMNoC, clusters which are composed of several cores are connected by a
standard mesh topology, borrowing the hierarchical model from the Internet and
adapting it to communication networks. BMNoC is composed of cluster nodes
(CNs), edge switches (ESes) and mesh routers (MRs) to establish a hierarchical
communication network. In intra-cluster node, several cores which have a heavy

communication with each other are connected by a local bus. It can provide the

8 CHAPTER 2. BUSMESH NOC

better performance such as the latency and the throughput since local buses trans-
mit data directly to other cores in the same cluster node in a parallel fashion, which

eliminates packetizing overhead.

2.1. BMNOC ARCHITECTURE 9

(a) Cluster node (CN) %
= ES Sot
MR1T T MR2

=NI ESt Eso gl
=1P

(—)=Bus @ ‘
=CN

(b) Network topology

Figure 2.1: A generic architecture of BMNoC.
2.1 BMNoC architecture

A generic architecture of BMNoC is depicted in Fig. 2.1. The network is composed
of mesh routers, edge switches and cluster nodes and in a cluster node, there exist
several cores which have a heavy communication volume between them. Since the
communication can be allocated in local and backbone network with the hierarchi-
cal structure, BMNoC can improve the performance in terms of the latency and

the throughput as compared with the standard NoCs [5].

2.1.1 Cluster node (CN) and network topology

A cluster node is a group of hardware cores that couple tightly with each other and

accomplish a specific task, together with corresponding firmware or software. For

10 CHAPTER 2. BUSMESH NOC

intra-cluster node communication, on-chip bus connection is more efficient than
expensive on-chip router. Then several cores which have a heavy communication
volume with each other are connected by a local bus with a network interface
(NI), as shown in Fig. 2.1(a). The cluster node is organized by the computation
complexity, communication requirement and functional relationship of cores. The
inter-cluster node communication is handled by NoC components such as the Nls
and routers; edge switches and mesh routers [39].

The tightly coupled cluster nodes interconnected by edge switches and mesh
routers will form a hierarchical network as shown in Fig. 2.1(b), just like the tightly
coupled cores are connected by local buses, and form a cluster node. Through this
classification, the traffic is limited to local cluster/network and the remote traffic
will be as little as possible. BMNoC could provide high performance network, and
this shared and classified network with independently cluster nodes also facilitates

modularity in large scale SoC designs.

2.1.2 Packet format

The packet has the source address (SrcAddr) and destination address (DstAddr)
in its header, together with an optional field (Flag), for example as illustrated in
Fig. 2.2, where M and N are determined for a specific BMNoC instance. The Flag
field contains SPB (Service Priority Bit) indicating whether the current packet is
guaranteed throughput (GT) or best-effort (BE). It also contains Pktld (packet
sequence number) which is needed by the partially adaptive routing that may
disturb the order of packets. CRC field is also optional, and system can provide
end-to-end error correction with it. Flit is the flow control unit, and the packet is
divided into a number of flits (designate to k flits in Fig. 2.2) to be transmitted in
the network. Each flit has N 42 bits: N for Data, and 2 for DataType field used to
control the routing process. 701”7 (710”) indicates the first (last) flit of the packet,

and ”700” means the transmission is in process. The address (the SrcAddr and

2.1. BMNOC ARCHITECTURE
Address : MRid ESid CNid
. 3bit 3bit __2bit
| P
= T T T
Packet : | DsrAddr | SrcAddr : Flag : Payload : CRC :
L L
- 8I:Lit\ 8 bit 8 bit Mbit _8bit
Packet 1 | Packet 2 | Packet 3 | Packet 4
’-L (8+8+8+M+8)+(2 X k) — >
Flit : Flit 1 Flit 2 Flit k
, N k=(8+8+8+M+8)/N
/ \
/ \
DataType| Data
2 bit N bit

Figure 2.2: Packet structure and data structure of BMNoC.

11

DstAddr filed) is the identification of each cluster node, and assigned according to

its location in the network. Every single cluster has a unique address (ID) which

contains the MRid, ESid and CNid.

2.1.3 Mesh router (MR) and edge switch (ES)

Fig. 2.3 depicts the hardware architecture of MR and ES. MR and ES have the same

structure. A router uses output queuing (OQ) scheme to get better performance of

bandwidth and latencies, and uses the wormhole switching scheme to optimize the

12 CHAPTER 2. BUSMESH NOC

buffer usage, because the router only needs to buffer several flits rather than the
whole packet. For routing technique, we use a distributed and partially-adaptive
routing [29]. Both ES and MR can route for a packet only with its DstAddr field.
The difference between MR and ES is the routing algorithm module in the inports.
MRs check a route table to route the packet. The route table contains possible
routes between MRs, whereas ES compares its MRid and ESid fields with those of
DstAddr to judge whether the packet is to forward to MR.

2.1

BMNOC ARCHITECTURE

>
Routing]

o ——>

— . >
Outport 01"
Inport O Arbiter

—> Inport 1 > Outport 1

= | —
—> Inport 2 - Outport 2

Figure 2.3: MR and ES architecture.

13

14 CHAPTER 2. BUSMESH NOC

2.2 Experiments

2.2.1 Experiment setup

In these experiments, we used wormhole routing. In wormhole routed networks,
each packet is divided into a sequence of flits which are transmitted over phys-
ical channels one by one in a pipeline fashion. A hop-to-hop credit mechanism
guarantees that a flit is transmitted only when the receiving port has free space
in its input buffer [9]. We assume each packet consists of 32 flits, each flit is 16
bits long and maximal link bandwidth of 200Mbits/s at 100MHz operation. Our
router requires five cycles to route a flit. The buffer size of edge switches and mesh
routers is 32 flits. We set up the bus arbitrations consume two cycles from request
to address transmission and then one cycle later, data transmission is executed,
resulting in three cycles from request to data transmission as in [37, 41]. We set up
the routers such as edge switches and mesh routers require four cycles to process a
header flit and one cycle to route a packet across the wires of the appropriate port
as in [37, 41].

Throughout the experiments, Ns-2 [12] was used for carrying out simulation
experiments. Ns-2 is the most typical network simulator which has facilities to de-
scribe network topology, network protocols, routing algorithms and communication

traffic generation. It provides many mechanisms for modelling traffic generation

1].

2.2.2 Experimental evaluations: C-NoC, HNoC, and BM-
NoC

Here, we evaluate the performance of BMNoC using two realistic applications,
auto industry and telecom which are widely used benchmarks for NoC experiments.
We compare them with conventional NoCs such as a cluster-based NoC (C-NoC)

[42] and a hybrid NoC (HNoC) [49]. Both of these applications retrieved from

2.2. EXPERIMENTS 15

Table 2.1: The comparison among C-NoC, HNoC, and BMNoC.

auto industry

Architectures | # of routers | # of CNs | # of ESes | # of MRs
C-NoC 10 - - -
HNoC 40 - - -
BMNoC - 10 bt 5

telecom

Architectures | # of routers | # of CNs | # of ESes | # of MRs
C-NoC 8 - - -
HNoC 32 - - -
BMNoC = 8 4 4

E3S benchmark suite [10] where auto industry has 40 vertices and telecom has 32
vertices. These applications, auto industry and telecom , are mapped onto (4,2, 1)-
BMNoC, using our proposed BMNoC configuration algorithm. Each cluster node
includes four vertices as in the previous papers [25, 27, 47| i.e., k = 4. Then, the
number m of edge switches connected to a single mesh router is set 1 i.e., m =1
as in [27, 45] and the number [of cluster nodes connected to a single edge switch
is set on 2 to implement a hierarchical structure i.e., [= 2. In this evaluation, four
vertices are in the same cluster node, two cluster nodes are connected to the same

edge switch and each edge switch is connected to the one mesh router.

We have applied the two applications to C-NoC, HNoC and our BMNoC. The
result is shown in Table 2.1. As in [14, 20, 32|, the variation of average packet
latency as a function of traffic injection rates for auto industry is given in Fig. 2.4.
Average packet latency equals the average cycles taken by a packet to go through
a communication path from its source to its intended sink. For example, when we

have an edge e = (u,v) and its communication volume c(e) in a given task graph,

16 CHAPTER 2. BUSMESH NOC

c(e) packets go through its commucation path from u to v and we can obtain its
required cycles t(e). Then we obatin its average cycle by calculating t(e)/c(e). We
calculate the average cycles for all the edges in a given task graph and then finally
have an average packet latency by averaging them.

The average number of packets which are transferred among CNs, ESes and
MRs are 152.5, 33 and 12, respectively for auto industry. The total time to com-
plete all traffic pattern of auto industry is 141,400 cycles.

These plots show that our BMNoC shifts the critical traffic load from 0.27 to
0.38 (approximately 29% improvement) as compared to C-NoC and from 0.34 to
0.38 (approximately 11% improvement) as compared to HNoC. Similarly, the aver-
age packet latency for BMNoC is consistently smaller as compared to conventional
NoCs such as C-NoC and HNoC. For instance, at 0.25 packet injection rate, the
latency drops from 88 to 54 cycles, giving about 39.0% reduction as compared to
C-NoC.

Regulating the communication volumes of cores hierarchically is very important
not to congest the network with generated packets. At low traffic loads, the average
packet latency exhibits a weak dependence on the traffic injection rate. However,
when the traffic injection rate exceeds a critical traffic load, the packet delivery
cycles rise abruptly and the network throughput starts collapsing.

Similar improvements have been observed for telecom as shown in Fig. 4.9. The
average number of packets which are transferred among CNs, ESes and MRs are
104.2, 21.4 and 8.2, respectively for telecom. The total time to complete all traffic
pattern of telecom is 95,900 cycles. Specifically, the critical traffic load is improved
from 0.43 to 0.63 showing approximately 32% improvement as compared to C-NoC
and from 0.57 to 0.63 showing approximately 10% improvement as compared to
HNoC. Likewise, the latency at 0.35 traffic injection rate drops from 95 to 59 cycles
as compared to C-NoC.

For reference, BMNoC, HNoC and C-NoC architectures, applied auto industry
and telecom, were evaluated in TSMC 0.13 pm technology and synthesized using

2.2. EXPERIMENTS

Table 2.2: Area comparisons among C-NoC, HNoC and BMNoC

17

auto industry

Architectures | # of buffers Area (mm?)
IP cores | Routers/ESes/MRs/NIs | Bus | Total
C-NoC 38 27.6403 3.2209 - 30.8612
HNoC 100 5.3212 - 32.9523
BMNoC 30 2.7929 0.192 | 30.6252

telecom

Architectures | # of buffers Area (mm?)
IP cores | Routers/ESes/MRs/NIs | Bus | Total
C-NoC 32 21.4903 1.9859 - 23.4762
HNoC 82 3.6189 - 25.1092
BMNoC 18 1.4368 0.160 | 23.0871

Synopsys Design Compiler. We consider the area for the bus architecture for area

evaluation as in [23]. As shown in Table 2.2, we can find that our BMNoC has

more reduced area overhead as compared with C-NoC and HNoC due to the total

number of buffers dominates major part of area.

18 CHAPTER 2. BUSMESH NOC

=4=C-NoC =#=HNOC =lli=BMNoC
| |

250 |
_ | 11%
& 200 i i
o
Z 150 | | |
g |]
5 39%
50 <
———29%——
. .
| | |

0 0.05 0.1 0.15 0.2 025 0.3 035 0.4
Injection rate(flits/cycle)

Figure 2.4: Traffic injection rate versus average packet latency for auto industry

benchmark.
e C-NoC ==HNOC e==ll=BMNo0C

250

@ 200
o
S

= 150
(8]
[=

2 100
©
-]

50

0

0 005 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05 055 0.6 0.65
Injection rate(flits/cycle)

Figure 2.5: Traffic injection rate versus average packet latency for telecom bench-

mark.

2.3. CONCLUDING REMARKS 19

2.3 Concluding remarks

In this chapter, we has defined a hybrid bus-NoC architecture, called a busmesh
NoC (BMNoC), which is a generalized version of a hybrid NoC with local buses.
Recently, the mainstream of NoC architecture is a hybrid bus-NoC architecture.
The basic idea of BMNoC is to develop a NoC architecture with clusters connected
by mesh network, borrowing the hierarchy model from Internet and adapting it to
communication networks. BMNoC is to develop a NoC architecture with clus-
ters connected by mesh network and IP cores in intra-cluster connected by buses.
It provides the better performance such as scalability, flexibility and latency. The
network is composed of mesh routers (MRs), edge switches (ESs) and cluster nodes
(CNs). With this architecture, the communication can be allocated in local and
backbone network. Experimental results using the two realistic applications ver-
ified that the critical traffic load and the average packet latency of BMNoC are
consistently smaller as compared to conventional NoCs such as C-NoC [42] and
HNoC [49]. Moreover, our BMNoC has more reduced area overhead as compared

with conventional NoCs.

Chapter 3

A Locality-aware NoC
Configuration Algorithm Utilizing
the Communication Volume

among IP Cores

In this chapter, we propose a locality-aware NoC configuration algorithm utilizing
the communication volume among IP cores. When we configure BMNoC architec-
ture based on a given application task set, we need to consider traffic congestion
in the network, the node connectivity and the diameter which directly affect the
transmission of BMNoC in order to decide the best packet route. A long packet
path in an NoC may increase the final transmission time between cores. Adapting
the topology for the communication pattern of these applications onto BMNoC

can be the best solution to reduce this long path.

As we desribed in Chapter 2, BMNoC architecture is based on a hierarchical
model from the Internet and we adapt it to communication networks. It has high
locality in each cluster and a mesh network composed of switches and routers.

However, recently proposed NoC configuration algorithms [3, 17, 21, 22, 33, 36, 44]

20

21

cannot be applied to BMNoC since they consider only communication volume
among cores when they configure an architecture. In BMNoC, the latency across
switches and routers and the localities of cores should be considered in determining

which core is the right one to put in a certain cluster.

22CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

3.1 Problem formulation

Now we define our BMNoC configuration problem. A task graph G = (V, E) is
a graph, where each vertex v € V shows a task and, if there are some communi-
cations between two tasks vy and vy, G has an edge e = (u,v) € E. Each edge
e = (u,v) has a commucation volume denoted by c¢(e) or ¢((u,v)) which shows
communication volume between the two tasks u and v. In this paper, we assume
that each task is executed by an identical hardware core, i.e., there is a one-to-one
mapping between each task and each core. In other words, we can use a core and
a task interchangably. An example of task graph is shown in Fig. 3.1

Users can specify several control parameters; the maximum number £ of cores
connected to a single bus, i.e., a cluster node is composed of up to k cores, the
number [of cluster nodes connected to a single edge switch, and the number m of
edge switches connected to a single mesh router. Then a parameterized BMNoC
is denoted as (k,l,m)-BMNoC. If a mapping from a task graph to a particular
(k,1,m)-BMNoC is given, we can obtain a latency which can be defined by average
cycles required between any two tasks having communications. Then we can define

our BMNoC configuration problem as follows:

Definition 1 For given a (k,l,m)-BMNoC and a task graph, our BMNoC' config-
uration problem is to map a vertex in the task graph to a (k,l,m)-BMNoC so as

to minimaize its latency.

3.1. PROBLEM FORMULATION

Figure 3.1: An example of task graph.

23

24CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

3.2 Strategy

In order to solve the BMNoC configuration problem above, we have roughly two
algorithm candidates; one is top-down partitioning, such as min-cut partition, and
the other is bottom-up clustering. A poor result early in top-down partitioning
process imposes an unnatural circuit hierarchy and will likely lead to a suboptimal
solution as in [49]. On the other hand, bottom-up clustering algorithms provide
a solution to the problems encountered when partitioning very large circuits as in
[49]. A bottom-up clustering algorithm can be naturally integrated into clustering
local vertices and making a hierarchical structure. We can say that bottom-up
clustering is superior to top-down patitioning in BMNoC.

In bottom-up clustering, there exist two basic approaches: One is seed-based
clustering which is shown in Fig. 3.2(a) and the other is growing-region clustering
which is shown in Fig. 3.2(b). While capable of achieving tight packings, seed-
based clustering is greedy and may become trapped in local minima. Particularly,
each independent seed and its surroundings are localized but it is very hard to
configure a hierarchical structure that meets parameterized BMNoC. On the other
hand, growing-region clustering can consider both communication volume and the
localities of vertices. We can say that growing-region clustering is superior to

seed-based clusterings in BMNoC [50].

In [33], a kind of growing-region-clustering-based approach has been proposed
for NoCs. After picking up the two vertices in an input task graph connected
by the highest communication volume, the approach in [33] maps each vertex to
NoC architecture one by one in a breadth-first-search manner in the order of its
communcation volume. It may cause a poor result such as a longer latency and
a low throughput since a direct breadth-first approach does not contemplate the

localities between vertices.

Based on the discussions above, we propose a BMNoC configuration algorithm

in this section. In our proposed algorithm, we configure a hierarchical structure

3.2. STRATEGY 25

Task graph

\ Growing
— region

£oe

(a) Seed-based clustering (b) Growing-region clustering

Figure 3.2: Examples of bottom-up clusterings. (a) Seed-based clustering. (b)
Growing-region clustering. In (a), we first pick up a seed vertex and find its local
surroundings as a cluster. Then we pick up another seed vertex and find its local
surroundings as the next cluster. We repeat this procedure until all the vertices
are included in any cluster. In (b), we first pick up a seed region R;. After that,
we find out the next region R, adjacent to R;. By repeating this process several
times, the regions (Ry, Ry, - -+ , R;) will make a single cluster. Similarly, the regions
(Ris1,- -+, Riy;) will make a next single cluster. We repeat this procedure until all
the vertices are included in any region and any cluster. We can naturally consider
the locality of vertices and adjust a cluster size in (b), whereas it is very difficult

to do so in (a).

of BMNoC which is composed of both a global mesh network and local buses
to improve the latency of BMNoC. Cores having a heavy communication volume
between them are mapped into the same cluster node with a local bus. Cluster
nodes can have communication with each other via edge switches and mesh routers.
By this hybrid and hierarchical structure, BMNoC configured by our proposed

algorithm can own the better performance than conventional NoCs.

26CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

3.3 Algorithm overview

Now we describe our proposed BMNoC configuration algorithm overview. As
discussed in the previous subsection, our proposed algorithm adopts bottom-up
growing-region clustering as in Fig. 3.2(b).

In our proposed algorithm, each growing region includes p or fewer vertices
where p < k and k shows the maximum number of cores connected to a single bus.
We map them to the same cluster node. Firstly, we configure an empty cluster
node C'N; and find the first growing region R;. Then we map all the vertices in
Ry to CN;. Next we find the second growing region Ry and map their vertices
to CNy. If C Ny is full, we configure an empty cluster node C'Ny and connect it
to C'Ny by using an edge switch. We find the next growing region and map their
vertices to C'N, and contitue this process until all the vertices in a given task graph
are mapped to BMNoC. In this process, we configure another edge switch every
time we configure [cluster nodes. We configure another mesh router every time
we configure m edge swithces. Mesh routers are configured by a reversed-snail
array in its order [13]. In this approach, as the regions in the task graph grow, its
BMNoC architecture also grows. Thus adjacent regions are mapped onto adjacent
BMNoC structure very naturally and hierarchical locality is preserved.

The problem here is how to find the next growing region. Assume that we
already have growing regions R; to Rs as shown in Fig. 3.2(b) and their vertices
are already mapped onto BMNoC. Assume that we are now configuring the clus-
ter node C'IN; and we can map p or more vertices to C'IV;. Assume that C'NV; is
connected to the edge switch ES; and ES; is connected to the mesh router M Rj,.
Now let us consider the next growing regtion Rg. Rg has at most p vertices. Then

the growth rate GR(Rgs) of R is defined by:

GR(Rg) = Z cost(v), (3.1)

where

3.3. ALGORITHM OVERVIEW 27

cost(v) = Z cost(e). (3.2)

each edge e € E connected to v
Suppose that all the vertices in Rg are mapped onto C'N;, i.e., v € Rg is mapped
onto C'N;. Then the edge cost cost(e) for e = (u,v) is defined by:

Cy x c¢((u,v)) if u is already mapped to C'N;.
Cy x ¢((u,v)) if u is not mapped to C'N;

but to the same edge switch ES;.
C3 x ¢((u,v)) if u is neither mapped to C'N;

nor to the same edge switch ES;,

cost(e) = (33)

but to the same mesh router M Ry,.
Cy x c¢((u,v)) if u is already mapped to

somewhere in BMNoC but

does not fall into the above.

0 ohterwise.

We design C > Cy > O3 > (C, in the cost function above.! When more than

two combinations have the highest growth rate to make the next growing region,

we grade the combinations according to their localities. 2

'In our implementation result, we set C; = 100, Cy = 10, C3 = 5, and Cy = 1.
2For example, two combinations R, and R, have the same highest growth rate, 500;

If GR(R,) = GR(R,) = 500;

Assume Cy = 100, Cy = C3 = C4 = 0 and re-calculate GR(R,;) and GR(R,);
if GR(R,) > GR(R,); The next growing region is GR(R,).
if GR(R,) < GR(R,); The next growing region is GR(Ry).
if GR(R,) = GR(R,);

Assume C'1 =100,C2 =10,C3 = C4 = 0 and re-

calculate GR(R,) and GR(R,);
if GR(R;) > GR(R,); The next growing region is GR(Ry).
if GR(R,) < GR(R,); The next growing region is GR(Ry).
if GR(R,) = GR(R,);
Assume C'1 =100,C2 =10,C3 =5,C4 = 0 and re-

28CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

Then a growth rate GR is heavily dependent on the locality of already mapped
vertices. The more communications with local vertices we have, the higher the
growth rate becomes. We try all the combination of p vertices in the unmapped
vertices in the task graph and pick up the one with the highest growth rate as the
next growing region Rg. Then we map the p vertices in Rg onto the current cluster
node C'N;.

An example of the growth rate GR(Rs) of Rg is shown in Fig. 3.3 in the case
of (3,2,1)-BMNoC and p = 2.

How to determine the value of p is the next problem. This must be dependent
on the size of a task graph. Roughly saying, p must be up to three in large task
graphs since enumeration of all combination of three vertices requires O(|V|?) time.

Based on this discussion, we set p = 3 as in our experiments.

3.3.1 The algorithm

In this subsection, we describe our proposed algorithm with a detailed example
as shown in Figs. 3.4-3.7. We consider here the (4,2,1)-BMNoC and p is set to
two (p = 2) for simplicity. We also assume that C; = 100, Cy = 10, C3 = 5, and
Cy = 1. The variable z means how many vertices can be mapped more to the same
cluster node. For example, when z = 4, we can map four more vertices to the same
cluster node.

In the initial step (Step 1 in Fig. 3.4), we configure an empty cluster node C'N;
and map two vertices A and B which have the highest communication volume

in the task graph. After that (Step 2 and Step 2.2 in Fig. 3.4), we compute

calculate GR(R,) and GR(R,);
if GR(R,) > GR(R,); The next growing region is GR(R,).
if GR(R,) < GR(Ry); The next growing region is GR(Ry).
if GR(R,) = GR(R,);

The next growing region is GR which is made at first.

3.3. ALGORITHM OVERVIEW 29

how many vertices can be mapped more to the same cluster node C'N;. Since
we can map two more vertices to C'Ny, i.e., z = 2, we will find a growing region
which includes just two unmapped vertices. We compare the growth rate defined
by Eqn. (3.1) for every two unmapped vertices and pick up the one with the
highest growth rate. In our proposed algorithm, vertices C' and D, which have a
heavy communication, are mapped to the same cluster node. However, since the
approach in [33] maps each core to NoC architecture one by one in the order of its
communication volume, vertices C' and H are mapped to the same cluster node. It
causes a longer packet latency because the communication volume between vertices
C and H is comparatively lower than the communication volume between vertices
C and D. As such, our proposed algorithm determines which core is the right
one to put into a certain cluster with both its communication volume and locality.
Thus, our proposed algorithm is superior to [33] in BMNoC.

Then we have the cluster node C'N; that includes four vertices as in Step 3 of
Fig. 3.4. After that (Step 3 in Fig. 3.4), we configure the next empty cluster node
C'Ns, since the first cluster node C'N; is full of vertices. We connect C' N7 and C' N,
using FS;.

Going back to Stepl, we compute how many vertices can be mapped more to
the cluster ndoe C'Ny. Since C'N, is empty, we can map four more vertices to C' Ny
and then z = 4. Since z > p = 2, we now consider a growing region that includes
just p = 2 unmapped vertices (Step 2 and Step 2.1 of Fig. 3.5). We try all the
possible growing regions composed of two unmapped vertices and pick up the one
with highest growth rate. Then we have the cluster node C'N; that includes two
vertices.

Again going back to Stepl, we compute how many vertices can be mapped
more to the cluster node C' Ny, since C'N, already has two vertices, we can map
two more vertices to C'Ny and then z = 2. As in the first cluster C'Ny, we can map
two vertices onto C'Ny (Step 2 and Step 2.2 of Fig. 3.5).

In the same way, we have the next cluster node C'N3 as shown in Fig. 3.6 and

30CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

Fig. 3.7. Then, we finally have a complete BMNoC configuration.

We can summarize our BMNoC configuration algorithm as follows:

Step 1: Configure the first cluster node C'Ny, the first edge switch ES; and the first
mesh router M R; which are all empty. Find the two vertices which have the
highest communication volume in the task graph G = (V, E) and map them onto
CN;. Let CN; = CNy, ES; = ES1 and MR, = M R;. Repeat Steps 1-3 below

until all the vertices in G are mapped.

Step 2: Compute how many vertices can be mapped more to the current cluster node

CN;. Assume that z more vertices can be mapped to C'N;.

(2.1) If p < z, compare the growth rates of all the possible growing regions com-
posed of p unmapped vertices. Map the vertices in the growing region having

the highest growth rates to C'V;.

(2.2) If p > z, compare the growth rates of all the possible growing regions com-
posed of z unmapped vertices. Map the vertices in the growing region having

the highest growth rates to C'IV;.

Step 3: Execute the following Steps:

(3.1) If C'N; can have one or more vertices, go to Step 1.

(3.2) Otherwise (C'N; is full), we configure the next empty cluster node C'N;q.
11+ 1.

(8.3) If the current edge switch E'S; can have one more cluster node, we connect
CN; to ES;. Go to Step 1.

(3.4) Otherwise (ES; is full), we configure the next empty edge switch ESj.
j—j+1.

(3.5) If the current mesh router M Ry, can have one more edge switch, we connect

CN; to ES; and ES; to MRy,. Go to Step 1.

3.3. ALGORITHM OVERVIEW 31

(3.6) Otherwise (MR, is full), we configure the next mesh router MRyyq1. k «—
k+ 1. MRy is connected to M Rj_1 in a reversed-snail order. We connect

CN; to ES; and ES; to MRy,. Go to Step 1.

32CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

- -
Edge fﬁ'

Switch 1

Router 1 E‘
\ witch 2

Mapped (R1, R2, -, R5)

| R6 communication volume

C1x100 (c(Rs, j)) + C1 % 150 (c(Rs, j))+ C1 % 35 (c(Rs,Rs)) +
GR(R6) = €2 x50 (c(Rs, h)) +
C3 x 20 (c(Rs, b))

Figure 3.3: An example of the growth rate GR(Rg) of Rg.

3.3. ALGORITHM OVERVIEW 33

®
T

Network
/ Interface

\
/

GR=282000 GR=52000 GR = 2000
(22000+60000) (22000+30000) (1500+500)

Network
Interface \

Network
Interface

ES1

Figure 3.4: Steps 1, 2 and 3 for the cluster node C'N; ((4,2,1)-BMNoC and p = 2).

34CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

GR = 11500 GR = 7500
(1500+10000) (1500+6000) (50+150)

Network
Interface

GR = 9000 GR = 6800 GR =200
(6000+3000) (6000+800) (150+50)

Network
Interface Interface

ES1
Mesh

@outer 1

Figure 3.5: Continuing Step 2 for the cluster node C'Ny ((4,2,1)-BMNoC and
p=2).

3.3. ALGORITHM OVERVIEW 35

Network
Interface

Network
Interface

Network 7/

\
Interface \ /

Mesh Mesh
Router 1 Router 2

[Step 2 and Step 2_1 for CN3. |

Network
/ Interface

0
@@@ o,

(80+30) (80+15) (15+5)

Network
Interface

Figure 3.6: Continuing Step 3 for the cluster node C'Ny and Step 2 for the cluster
node C'N3 ((4,2,1)-BMNoC and p = 2).

36CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Mesh Mesh
Router 1 Router 2

Figure 3.7: Continuing Step 2 for the cluster node C'N3 and final BMNoC config-
uration ((4,2,1)-BMNoC and p = 2).

3.4. EXPERIMENTS 37

3.4 Experiments

3.4.1 Experiment setup

We have developed a BMNoC configuration algorithm described in the previous
section by using the C++ programming language and performed several exper-
iments. In these experiments, we used wormhole routing. In wormhole routed
networks, each packet is divided into a sequence of flits which are transmitted over
physical channels one by one in a pipeline fashion. A hop-to-hop credit mechanism
guarantees that a flit is transmitted only when the receiving port has free space
in its input buffer [9]. We assume each packet consists of 32 flits, each flit is 16
bits long and maximal link bandwidth of 200Mbits/s at 100MHz operation. Our
router requires five cycles to route a flit. The buffer size of edge switches and mesh
routers is 32 flits. We set up the bus arbitrations consume two cycles from request
to address transmission and then one cycle later, data transmission is executed,
resulting in three cycles from request to data transmission as in [37, 41]. We set up
the routers such as edge switches and mesh routers require four cycles to process a
header flit and one cycle to route a packet across the wires of the appropriate port
as in [37, 41].

Throughout the experiments, Ns-2 [12] was used for carrying out simulation
experiments. Ns-2 is the most typical network simulator which has facilities to de-
scribe network topology, network protocols, routing algorithms and communication

traffic generation. It provides many mechanisms for modelling traffic generation

[1].

3.4.2 Experimental evaluations: Ref. [33] and Our config-

uration algorithm

We have also applied the two realistic applications; auto industry and telecom, to

the different two BMNoCs; One is configured by our proposed BMNoC configura-

38CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

tion algorithm and the other is configured by a breadth-first approach algorithm
[33] for comparison purpose. The synthesized BMNoC topology is the same for
[33] and both our algorithm but the mappings from task graphs to cluster nodes
are different. The CPU time of running our algorithm was 11534 milliseconds and
that of running [33] was 9954 milliseconds for auto industry. 9934 milliseconds and
8526 milliseconds for telecom, respectively.

The variation of average packet latency as a function of traffic injection rates for
auto industry is given in Fig. 3.8. These plots show that our proposed algorithm
shifts the critical traffic load from 0.30 to 0.38 (approximately 22% improvement)
as compared to the one configured by a breadth-first approach algorithm [33].
Similarly, the average packet latency for our BMNoC is consistently smaller as
compared to [33]. For instance, at 0.29 packet injection rate, the latency drops
from 100 to 54 cycles, giving about 46% reduction.

Similar improvements have been observed for telecom as shown in Fig. 3.9.
Specifically, the critical traffic load is improved from 0.48 to 0.63 showing approx-
imately 24% improvement as compared to the counterpart [33]. Likewise, the la-
tency at 0.47 traffic injection rate drops from 110 to 65 cycles giving approximately
41% reduction.

3.4. EXPERIMENTS 39

—e—BMNoC configured by [33]
-=-BMNoC configured by our proposed algorithm

250 | |
/I /l
z 20 | |
< [
2] 150 | |
N’
)
2 AJ l |
= J46% |
q —o——0—0o—F¢
50
I I
0 T T T T T T t 1
0 0.05 0.1 0.15 0.2 0.25 0.3I 0.35 ! 0.4

Injection rate(flits/cycle)

Figure 3.8: Traffic injection rate versus average packet latency for auto industry

benchmark.

-e-BMNoC configured by [33]
-#-BMNoC configured by our proposed algorithm

250 ’| ﬁl
200 | |
150 . I
Ji

A |

100 o |
50 - |
|

|

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 b.S 0.55 0.6

Latency(cycles)

Injection rate(flits/cycle)

Figure 3.9: Traffic injection rate versus average packet latency for telecom bench-

mark.

40CHAPTER 3. OUR PROPOSED BMNOC CONFIGURATION ALGORITHM

3.5 Concluding remarks

In this Chapter, we proposed a novel BMNoC configuration algorithm with a tar-
get architecture, BMNoC. Our proposed BMNoC algorithm not only utilizes the
communication volume between cores but also makes aware the localities of cores
and BMNoC architectures. It reduces network traffic and latency by mapping the
cores, which have the heavy communication with each other, into the same lo-
cal cluster node and connecting them with a local bus. Therefore, our BMNoC
configuration algorithm reduces the traffic load at the center of the network by
a hierarchical communication network. Experimental results using the two real-
istic applications verified that BMNoC configured by the proposed algorithm can

significantly improve the critical traffic load and the average packet latency.

Chapter 4

BMNoC utilizing Packet
Transmission Priority Control

Method

In this chapter, we propose a BMNoC configuration algorithm utilizing packet
transmission priority control method. Performance of many-core chip multiproces-
sors (CMPs) is significantly influenced by performance of NoC which interconnects
each core for on-chip communication. Specially, latency of packets in NoC remark-
ably effect performance of applications executing on a many-core CMP. Because
it is projected that executing different applications concurrently on a many-core
CMP becomes highly required in the future, it will be important that a priority
control which guarantees or differentiates latency of packets. Our proposed BM-
NoC configuration algorithm utilizing packet transmission priority control method
minimizes the average packet latency by improving the efficiency of the buffers.
Packet transmission priority control methods give transmission priority to a port,
in cases of that a payload flit is blocked in the port during a header and its sub-
sequent flits have passed through a crossbar. A new packet transmission priority

control method does not need additional buffers since it just gives priority to the

41

42 CHAPTER 4. BMNOC UTILIZING PTPCM

transmission permission issue of arbiters.

4.1. PACKET TRANSMISSION PRIORITY CONTROL METHOD 43

| » Outport 0 ¥
Xbar
=/
A > Outport 1
SW Arbiter .
|
$ N
> Inport 0 - Scheduler L»| Outport2 [
~ Inport O
> Inport 1 _
Inport 2 Inport 1
| Inport 2 j v

Figure 4.1: A round-robin router architecture.

4.1 Packet Transmission Priority Control Method

A round-robin arbiter is used to resolve conflicting requests generated from various
sources for a shared resource in a directional and cyclic order for wormhole routings.
Round-robin describes a method of choosing a resource for a task from a list of
available ones, usually for the purposes of load balancing. As the basic algorithm,
the scheduler selects a resource pointed to by a counter from a list, after which
the counter is incremented and if the end is reached, returned to the beginning of
the list as shown in Fig. 4.1. However, Round-Robin policy causes large delay for
a wormhole switching on parallel computers in cases of stuck network pipelines as
shown in Fig. 4.2. New packet transmission priority control methods that improve
average delay by improving the efficiency of the buffers are proposed for NoCs.
The New packet transmission priority control method gives transmission prior-

ity to a port, in cases of that a payload flit is blocked in the port during a header

44 CHAPTER 4. BMNOC UTILIZING PTPCM

A vacancy router is between the head flit and the payload flit
since the transmission is locked.

Figure 4.2: In case of a blocked transmission.

and its subsequent flits have passed through a crossbar. The method does not need
additional buffers since it just gives priority to the transmission permission issue of
arbiters. We can summarize the new packet transmission priority control method

as follows and shown in Fig. 4.3:

e [f the transmission is blocked, give transmission priority to the blocked port

which is revoked crossbar permission.

e [f the next buffer is not full, the blocked port takes transmission priority and

if the buffer is full, return to the round-robin method.

e When the end flit is reached to the destination, the transmission priority is

revoked and return to round-robin method.

4.1. PACKET TRANSMISSION PRIORITY CONTROL METHOD 45

N

Give transmission priority to the blocked port

The next buffer is full?

Transmission finished

Nol Yes
Transmission
v \2

Return to the round-robin method.

Figure 4.3: New packet transmission priority control method.

If 2 more ports have obtained transmission priority, it again gives them trans-
mission priority by round-robin. Thus, the method can improve average delay
by improving the efficiency of the buffers are proposed for NoCs. An example of
transmission permission issue of arbiter is shown in Fig. 4.4.

Although port 2 starts transmission at some point, the transmission is blocked
since the buffer of destination is full. In round-robin, ports obtain transmission
permission in order of a list evenly, whereas in the new packet transmission prior-
ity control method, port 2 which has been blocked transmission has transmission

permission first when the buffer of destination is available.

46

CHAPTER 4. BMNOC UTILIZING PTPCM

Buffer Transmission blocked

Figure 4.4: An example of transmission permission issue of arbiter.

4.2. BMNOC UTILIZING PACKET TRANSMISSION PRIORITY CONTROL METHODA7

4.2 BMNoC utilizing Packet Transmission Pri-
ority Control Method

In this section, we propose a novel busmesh NoC utilizing packet transmission
priority control method. The basic idea of BMNoC is to develop an NoC architec-
ture with clusters which are connected by mesh network, borrowing the hierarchical
model from the Internet and adapting it to communication networks. Our proposed
BMNoC is a generalized and simplified version of BMNoC as shown in Fig. 4.5.
A novel BMNoC is composed of cluster nodes (CNs) and mesh routers (MRs). In
intra-cluster node, several cores which have a heavy communication to each other
are connected by a local bus. It can provide the better performance in terms of
the latency and the throughput since local buses transmit data directly to other
cores in the same cluster node with a parallel fashion, which eliminates packetizing
overhead. Furthermore, our proposed novel BMNoC is applied packet transmis-
sion priority control method in [43] that minimizes the average packet latency by
improving the efficiency of the buffers. Packet transmission priority control meth-
ods give transmission priority to a port, in cases of that a payload flit is blocked
in the port during a header and its subsequent flits have passed through a cross-
bar. A new packet transmission priority control method does not need additional
buffers since it just gives priority to the transmission permission issue of arbiters.
Fig. 4.6 shows the architecture of router for our proposed BMNoC utilizing packet

transmission priority control method.

48 CHAPTER 4. BMNOC UTILIZING PTPCM

(a) Cluster node (CN)

@=MR
&=NI
S
(—)=Bus
(O=cN

(b) Network topology

Figure 4.5: A general architecture of novel BMNoC.

4.2. BMNOC UTILIZING PACKET TRANSMISSION PRIORITY CONTROL METHODA49

Priority Matrix Arbiter

priority

¢ E VC Allocator

Next Route
Computation

\¢«——>| Crossbar Allocator

Input O
P > * Trequest
-« empty
Request Controller e
N Next Route gutput 0
Computation L >

Input 5 q Output 5

Crossbar Switch

Figure 4.6: A router architecture of novel BMNoC.

90 CHAPTER 4. BMNOC UTILIZING PTPCM

4.3 Experiments

4.3.1 Experiment setup

In these experiments, we used wormhole routing. In wormhole routed networks,
each packet is divided into a sequence of flits which are transmitted over physical
channels one by one in a pipeline fashion. A hop-to-hop credit mechanism guar-
antees that a flit is transmitted only when the receiving port has free space in its
input buffer. We assume each packet consists of 8 flits, each flit is 34bits long and
maximal link bandwidth of 200Mbits/s at 100MHz operation. Our router requires
five cycles to route a flit. The buffer size of edge switches and mesh routers is 8
flits. We set up the bus arbitrations consume two cycles from request to address
transmission and then one cycle later, data transmission is executed, resulting in
three cycles from request to data transmission as in [37, 41]. We set up the routers
such as edge switches and mesh routers require four cycles to process a header
flit and one cycle to route a packet across the wires of the appropriate port as in
(37, 41].

Throughout the experiments, Ns-2 [12] was used for carrying out simulation
experiments. Ns-2 is the most typical network simulator which has facilities to de-
scribe network topology, network protocols, routing algorithms and communication

traffic generation. It provides many mechanisms for modelling traffic generation.

4.3. EXPERIMENTS ol

4.3.2 Object detection systems

In experiments, we take object dection systems as a target application. Object de-
tection is a key capability for applications in robotics, surveillance, or automated
personal assistance. The main challenge is the amount of variations in visual ap-
pearance owing to clothing, articulation, cluttering backgrounds and illumination
conditions particularly in outdoor scenes. A number of different approaches for de-
tecting object in images using some feature representations and learning methods
have been proposed in the literatures. The use of orientation histograms has been
extensively used in [8, 28, 30, 48]. The Histograms of Oriented Gradients HOG
features have provided excellent performance contrast to other existing edge- and
gradient-based features by Dalal and Triggs [8]. To overcome the affects of geo-
metric and rotational variations, the system automatically assigns the dominant
orientations of each block-based feature encoding by using the rectangular- and
circular-type histograms of orientated gradients (HOG), which are insensitive to
various lightings and noises at the outdoor environment.

The Adaboost approach has established itself as a powerful learning algorithm
that can be used for feature selection [46]. The Adaboost approach selects a small
set of discriminative HOG features, which well suited for human detection by
constructing a cascade-of-rejecter system. The Adaboost algorithm [46] is used to
select a small number of weighted HOG features, i.e. weak classifiers, to integrate
into a strong classifier. Each weak classification is selected by evaluating training
datasets of positive and negative, each classifier showing the lowest error is chosen.
A powerful feature selection algorithm, Adaboost, is performed to automatically
select a small set of discriminative HOG features with orientation information in
order to achieve robust detection results.

The object detection system is shown in Fig. 4.7.

52 CHAPTER 4. BMNOC UTILIZING PTPCM

| FPGA 1A _
"| Core logic -
Select image Ch.
—> Processed by >
—» Input Core Logic _ FPGA 1B _ Outputl::
—| Select "| Core logic 7| select
—> —
/ > Output 3| Output »> Output > Output
/ +—> Ch. y Ch. > Ch. v 4 Ch.
Select Select ”|_Select ”|_Select
A 7 4 4

Process
image selec

Process
image selec

Process
image selec

Process
image selec

FPGA 2A FPGA 2B FPGA 3A FPGA 3B
Core logic Core logic Core logic Core logic

Figure 4.7: NTT object detection system [2].

4.3. EXPERIMENTS 23

Table 4.1: The comparison between HNoC and BMNoC.

object dection system
Architectures | # of routers | # of CNs | # of MRs
HNoC 72 - -
BMNoC - 18 9

4.3.3 Experimental evaluations: HNoC and our BMNoC

Here, we evaluate the performance of BMNoC using two realistic applications,
telecom and object detection systems , and compare it with a conventional NoC
such as a hybrid NoC (HNoC) [49]. A telecom application is retrieved from E3S
benchmark suite [10] where telecom has 32 vertices. A telecom , is mapped onto
(4,2)-BMNoC where 4 cores are put into a CN and 2 CNs are connected to a
MR as in [25, 45]. The object detection systems application is retrieved from NTT
Microsystem Integration Lab. The object detection system using 6 pairs of fea-
ture extraction and image recognition algorithms [2] which has 72 vertices. The
task graph of object detection systems is shown in Fig. 4.8. A object detection sys-
tem is also mapped onto (4, 2)-BMNoC using our proposed BMNoC configuration
algorithm as in [25, 45].

We have applied the applications to HNoC, BMNoC, HNoC utilizing packet
transmission priority control method (HNoC+PTPCM) and BMNoC utilizing packet
transmission priority control method (BMNoC+PTPCM). The result is shown in
Table 4.1

Asin [14], the variation of average packet latency as a function of traffic injection
rates for telecom is given in Fig. 4.9. Average packet latency equals the average
cycles taken by a packet to go through a communication path from its source
to its intended sink. For example, when we have an edge e = (u,v) and its

communication volume c(e) in a given task graph, c(e) packets go through its

o4 CHAPTER 4. BMNOC UTILIZING PTPCM

communication path from u to v and we can obtain its required cycles t(e). Then
we obatin its average cycle by calculating t(e)/c(e). We calculate the average
cycles for all the edges in a given task graph and then finally have an average
packet latency by averaging them.

These plots show that our proposed BMNoC utilizing packet transmission pri-
ority control method improves the critical traffic load by approximately 20% as
compared to HNoC and approximately 15% as compared to HNoC+PTPCM.
Furthermore, BMNoC+PTPCM improves the critical traffic load as compared
to conventional BMNoC (approximately 6% improvement). Similarly, the aver-
age packet latency for BMNoC+PTPCM is consistently smaller as compared to
HNoC, HNoC+PTPCM and conventional BMNoC.

Regulating the communication volumes of cores hierarchically is very important
not to congest the network with generated packets. At low traffic loads, the average
packet latency exhibits a weak dependence on the traffic injection rate. However,
when the traffic injection rate exceeds a critical traffic load, the packet delivery
cycles rise abruptly and the network throughput starts collapsing.

Similar improvements have been observed for object detection system as shown
in Fig. 4.10. Specifically, in BMNoC+PTPCM, the critical traffic load is improved
by approximately 22% as compared to HNoC and approximately 13% improve-
ment as compared to HNoC+PTPCM. Furthermore, BMNoC+PTPCM improves
the critical traffic load as compared to conventional BMNoC (approximately 7%
improvement). Likewise, the average packet latency for BMNoC+PTPCM is con-
sistently smaller as compared to HNoC, HNoC+PTPCM and conventional BM-
NoC.

Also, we implemented BMNoC, BMNoC+PTPCM and HNoC architectures in
order to evaluate the difference of areas including architectural components such
as routers, network interfaces and buses (we do not consider the area of IP cores in
this experiment). We consider the area for the bus architecture for area evaluation

as in [23]. The architectures were synthesized in a Vertex-4 xc4vlx15-12sf363 by

4.3. EXPERIMENTS 25

using Xilinx ISE Design Suite 11. Area results, presented in Fig. 4.11, show that
BMNoC can save up to 70% of the number of LCs as compared to HNoC. Although
BMNoC+PTPCM has the imperceptible larger areas as compared to BMNoC, it

can also save up to 65% of the number of LCs as compared to HNoC.

o6 CHAPTER 4. BMNOC UTILIZING PTPCM

450
N 2008 1y

ven.vYgo [Pre-v 15, ;20

1A Mem10 1B 2A : :
350 150 \50 380\ | Mem12

400 50 rsl.v
N
Meml [100, |50

dit.v A |/bnrv

1A J]3%0 TR 1B
350 H 150

erdV\| 11 ey

1A i1:¢’10 1B
350 L] 30

nrm.v\| 50 :2'00 nrm.v

1A V¥ 1B
300 Mem?2 100

rab.v T grd.v

1A 30 1! 1B
350 11|30 Moo

250 1 13(

Y ERAGY

30 Mem3 50 A100

rsl.v zom.v

1A 20 1B
350 150

ven.v 150 prg.v

1A 1B
200 80

f;fAv > Meml1 f:-fév

Figure 4.8: The task graph of object detection systems.

4.3. EXPERIMENTS 57

—4— HNoC —#— BMNoC

—+— HNoC+PTPCM ——BMNoC+PTPCM

J

250 I'<-|J|—20% I
| |
‘5 200 I ,5a=15%$=T'4—
E [II |
0,
S 150 i FO%y
>
o I/ [1]
< Y| }1.}|
2 100 T T / T
s : _:_-:é | Ié/l |
50 -
[[
0 L L

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Injection rate(flits/cycle)

Figure 4.9: Traffic injection rate versus average packet latency for telecom bench-

mark.

o8

CHAPTER 4. BMNOC UTILIZING PTPCM

—a— HNoC —#— BMNoC

—— HNoC+PTPCM —&— BMNoC+PTPCM

250

200

150

Latency(cycles)

I
100 L
M"

50 - |

0

|
I
| |
0 005 0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5 0.55

.6 0.65

Injection rate(flits/cycle)

Figure 4.10: Traffic injection rate versus average packet latency for object detection

system benchmark.

B HNoC

B BMNoC B BMNoC+PTPCM

40000

35000

30000

25000
20000 -
15000 -
10000 -
5000 -

Area

16 Data width (bits) 32

Figure 4.11: # LCs for BMNoC, BMNoC+PTPCM and HNoC architectures.

4.4. CONCLUDING REMARKS 29

4.4 Concluding remarks

In this Chapter, we proposed a novel BMNoC utilizing packet transmission priority
control method with synthesis results using Vertex-4 FPGA. It reduces network
traffic and latency by mapping the cores, which have the heavy communication
with each other, into the same local cluster node and connecting them with a local
bus. Therefore, our proposed BMNoC reduces the average delay on the network by
improving the efficiency of the buffers with a packet transmission priority control
method. Experimental results verified that our BMNoC can significantly improve
the critical traffic load and the average packet latency is consistently smaller as
compared to conventional NoC such as HNoC [49]. Furthermore, BMNoC and
BMNoC+PTPCM can save the number of LCs as compared to HNoC.

Chapter 5

Related Works

In this chapter, we introduce related works. Microprocessor performance has in-
creased exponentially over the last four decades as advancing semiconductor tech-
nology has vastly increased the quantity and improved the speed of on-chip tran-
sistors available to circuit designers. Traditionally, computer designers took advan-
tage of these resources to improve uniprocessor structures because of its simpler
programming model compared to systems with distributed structures [29]. How-
ever, power consumption and wire delay have recently limited the continued scaling
of uniprocessor systems making chip multiprocessor architectures more appealing
[31]. In addition, network-on-chip (NoC) has become the emerging paradigm for
communication within large chip multiprocessor systems to overcome scalability,

power, delay, and other issues with global interconnects.

60

5.1. ARCHITECTURES 61

5.1 Architectures

According to the multi-core chip evolution, which forecasts tens and hundreds of
cores in few years, logical and physical clusters of cores have been considered as an
approach to support parallel processing. The next phase for this evolution can be
called on-chip distributed computing, which consists of distributed clusters of cores
to process a large number of different workloads [11, 15, 16, 42]. A cluster-based
NoC (C-NoC) a modified model of Hermes NoC (H-NoC) [31] is introduced by Seifi
and Eshghi [42]. Every H-NoC switch is attached to one core. Each core needs to
communicate with other cores. Therefore, they must send packets to other switches
and the delay is increased. To solve this problem, the C-NoC switch has four local
ports and configures a cluster as shown in Fig. 1.1(a). The latency of C-NoC [42]
is decreased by 15.1% compared with the conventional NoC, SoCIN [50]. However,

its performance is still insufficient for heterogeneous cores and clusters.

Among numerous NoC topologies, mesh is a popular one due to the simplicity
and regularity. In mesh topology, each router is connected to several local cores and
adjacent routers. Since the router only connects to its neighboring routers, the data
packets transmitted from the source core to the destination core may travel long
distance, and affects the performance of whole SoC [7]. Besides, with increasing size
of NoC, the mesh topology has its disadvantage in the communication latency and
the concentration of the traffic in the center of the mesh topology (named hot-spot).
Although some studies have been made on effective core mapping methodologies to
solve the hot-spot problem [18, 33, 34], what seems to be lacking is a better on-chip
communication architecture. To solve the problems of the mesh topology for future
SoC design, many research papers have proposed a great number of approaches in
recent years and a hybrid bus-NoC architecture is one of them [5, 26, 45, 49]. A
hybrid bus-NoC architecture is a system platform which is based on a standard
NoC architecture, and contains several clusters which are composed of local buses.

In the hybrid bus-NoC architecture, cores with heavy traffic and communication

62 CHAPTER 5. RELATED WORKS

volume are placed in the same cluster with a local bus to avoid hot-spots and reduce
the transmission latency. Since the hybrid architecture is based on a standard mesh
NoC concept, the router of the hybrid system not only connects with its neighboring
routers but also connects to a cluster which is composed of several cores and a local
bus. It is noteworthy that new interface is not needed for each core in subsystem,

and it can further reduce the design cost.

5.2. ALGORITHMS 63

5.2 Algorithms

The configuration problem for NoCs has been first addressed by Hu and Mar-
culescu [21], where a branch and bound algorithm is proposed to map a given set
of cores onto a regular NoC architecture such that the total communication energy
is minimized. At the same time, the performance of the resulting communica-
tion system is guaranteed to satisfy the specified design constraints through band-
width reservation. Murali and De Micheli [33] propose a configuration algorithm
for NoC architectures which supports traffic splitting. Srinivasan and Chatha [44]
present a configuration algorithm to minimize the communication energy subject to
bandwidth and latency constraints. A multi-objective configuration algorithm for
mesh-based NoC architectures is presented by Ascia, Catania, and Palesi [3]. This
approach finds the Pareto mappings that optimize performance and power con-
sumption using evolutionary computing techniques. Improving upon these studies,
Hansson, Goossens and Radulescu [17] propose a more general unified approach
for application mapping and routing-path selection which considers both of best

effort and guaranteed service traffic.

It is very important for a configuration algorithm for hybrid bus-NoC archi-
tectures to decide which cores should be assigned to the same cluster and map
the clusters onto the network that the transmission latency is minimized and the
locality is contemplated. When partitioning cores, the cores with heavy traffic and
communication volume should be assigned to the same cluster and placed as close

as possible to reduce the transmission latency.

We note that many mapping algorithms use, directly or indirectly, the average
packet hop count as a cost function by relating the average number of packet hops to
the communication energy consumption [22] or communication cost [33]. However,
these algorithms [3, 17, 21, 22, 27, 33, 36, 44] cannot be applied to a hybrid bus-
NoC architectures since they consider only communication rate between cores and

do not take into account the locality that hybrid bus-NoC architectures have.

64 CHAPTER 5. RELATED WORKS

In [27], several cores, which have heavy communication volume among them,
are connected to the same router and the routers are connected to the upper level
routers. This idea is rather similar to C-NoC [42] which has a specific switch having
8 bidirectional ports: 4 local ports and 4 links (North, South, East, and West).
Although it is similar to our proposed algorithm in terms of using a hierarchical
architecture, [27] does not use any clusters and subsystems whereas cluster nodes,
edge switches and mesh routers are used for a hybrid and hierarchical structure
in our proposed algorithm. In [45], a hybrid NoC architecture which is composed
of routers and subsystems is proposed. Although it is similar to our proposed
algorithm in terms of using a hybrid architecture, [45] does not partition cores into
a hierarchical structure which is composed of clusters and routers differently from
our proposed algorithm. The architecture and algorithm in [45] are not generalized
so it is difficult to apply it to many applications.

Furthermore, the basic idea of mapping algorithm in [27, 45] are the same as
[33]. The approach in [27, 45] and [33] maps each core to NoC architecture one by
one, in breadth-first-search manner, only in the order of its communication volume
after picking up the two cores which are connected by the highest communication
volume in an input task graph. Although it may cause a poor result such as a longer
latency and a low throughput since the greedy approach does not contemplate
the localities between cores, the algorithm in [33] is used for a hybrid bus-NoC

architecture as a makeshift now.

5.3. CONCLUDING REMARKS 65

5.3 Concluding remarks

In this chapter, we introduce related works. First of all, we introduce conventional
NoC architectures such as C-NoC and HNoC. After that, we decribe and define
our target architecture, which is called a busmesh NoC (BMNoC). BMNoC is a
generalized version of hybrid bus-NoC architectures. Furthermore, we introduce
conventional NoC configuration algorithms and a breadth-first approach algorithm
which is used for a hybrid bus-NoC architecture as a makeshift now. Unfortu-
nately, the conventional NoC configuration algorithms are not suitable for a hy-
brid bus-NoC architecture since they are only greedy of communication volume or
bandwidth requirement. Breadth-first approach algorithm maps each core to NoC
architecture one by one, in breadth-first-search manner, only in the order of its
communication volume after picking up the two cores which are connected by the
highest communication volume in an input task graph. It may cause a poor result
such as a longer latency and a low throughput since the greedy approach does not
contemplate the localities between cores. Thus, we propose a novel configuration

algorithm for a hybrid bus-NoC architecture.

Chapter 6

Conclusion

In this dissertation, we described and defined our target architecture, which is
called a busmesh NoC (BMNoC). BMNoC is a generalized version of hybrid bus-
NoC architectures. After that, we proposed a novel BMNoC configuration algo-
rithm with a target architecture, BMNoC. Our proposed BMNoC algorithm not
only utilizes the communication volume between cores but also makes aware the
localities of cores and BMNoC architectures. It reduces network traffic and latency
by mapping the cores, which have the heavy communication with each other, into
the same local cluster node and connecting them with a local bus. Therefore, our
BMNoC configuration algorithm reduces the traffic load at the center of the net-
work by a hierarchical communication network. Our target architecture is called
BMNoC which is based on a hierarchical model from the Internet and it adapts
it to communication networks. It is composed of bus-based connection and global
mesh routers to enhance the performance of on-chip communication. Experimen-
tal results using the two realistic applications verified that BMNoC configured by
the proposed algorithm can significantly improve the critical traffic load and the
average packet latency for BMNoC is consistently smaller as compared to conven-
tional NoCs such as C-NoC [42] and HNoC [49]. Moreover, our BMNoC has more

reduced area overhead as compared with conventional NoCs. We also proposed a

66

67

novel BMNoC utilizing packet transmission priority control method with synthesis
results using Vertex-4 FPGA. It reduces network traffic and latency by mapping
the cores, which have the heavy communication with each other, into the same
local cluster node and connecting them with a local bus. Therefore, our proposed
BMNoC untilizing packet transmission priority control method reduces the average
delay on the network by improving the efficiency of the buffers with a packet trans-
mission priority control method. Experimental results verified that our BMNoC
can significantly improve the critical traffic load and the average packet latency is
consistently smaller as compared to conventional NoC such as HNoC [49]. Further-
more, BMNoC and BMNoC+PTPCM can save the number of LCs as compared
to HNoC.

For future implementations of BMNoC, we contemplate a floorplan for reducing
the latency caused by wire-length. Furthermore, we want to define a generic tile
interface so that BMNoC can be embedded in a multi-tile SoC. It will support

several types of communication and application that can be used by the designers.

Acknowledgement

I would like to express my profound gratitude and appreciation to my advisor, Prof.
Nozomu Togawa, for his constant guidance, support and encouragement during my
years at Waseda University. He models many of the high quality characteristics
that I aspire to emulate during my professional and personal life. Working with

him has been and will continue to be a source of honor and pride for me.

I also thank Prof. Tatsuo Ohtsuki and Prof. Masao Yanagisawa for being my
associate advisors and being in my dissertation reading committee. Without them,
[am not able to study at Waseda University. I am very grateful for their invaluable
help during the preparation of this thesis and several papers. It will always be a
source of honor for me to have had the names of these world-class professors on

my dissertation.

I also thank Professor Satoshi Goto, Professor Shinji Kimura and Professor Keiji
Kimura of Waseda University for giving me a lot of helpful advices and continuous
encouragement during my research. I also thank Professor Shinji Kimura and
Professor Keiji Kimura of Waseda University for being in my dissertation reading

committee.

I also thank Professor Youhua Shi for giving me a lot of helpful advices and

support my research.

I have greatly appreciated all of the students, my friends and colleagues in
Professor Goto’s laboratory, Professor Kimura’s laboratory, Professor Yangisawa’s

laboratory and Professor Togawa’s laboratory, for their cooperations.

68

69

Last but certainly not least, I want to thank my family who have been a main
source of success in my life. Their prayer, love and support carried me through the
most difficult moments in my life. I thank my wife, Naoko Tosa, who always stand
by my side and never give up on me. There are no words that I can use to thank

her and lovely my baby, Mirae.

References

1]

M. Ali, M. Welzl, A. Adnan and F. Nadeem: Using the Ns-2 network simulator
for evaluating network on chips (NoC), Proceedings of ICET 2006, pp. 506-512
(2006).

T. Aoki, E. Hosoya, T. Otsuka and A. Onozawa: A novel hardware algo-
rithm for real-time image recognition based on real AdaBoost classification,

Proceedings of ISCAS 2012 (2012),

G. Ascia, V. Catania, and M. Palesi: Multi-objective mapping for meshbased
NoC architectures, Proceedings of Int. Conf. Hardware-Softw. CodesignSyst.
Synthesis, pp. 182-187 (2004).

D. Bertozzi, R. Tamhankar and L. Benini: NoC synthesis flow for customized
domain specific multiprocessor systems-on-chip, IEEE Transactions on Par-

allel and Distributed Systems, vol. 16, no. 2, pp. 113-129 (2005).

L. Benini and G. D. Micheli: Networks on chips: a new SoC paradigm, Com-
puter, vol. 35, no. 1, pp. 70-78 (2002).

T. Bjerregaard and S. Mahadevan: A survey of research and practices of

network-on-chip, ACM Computer Survey, vol. 38, no. 1, pp. 1-51 (2006).

S. Bourduas and Z. Zilic: A hybrid ring/mesh interconnect for networkon-
chip using hierarchical rings for global routing, Proceedings of International

Symposium on Network-on-Chip 2007, pp. 195-204 (2007).

70

REFERENCES 71

8]

[10]

[11]

[15]

N. Dalal and B. Triggs: Histogram of Oriented Gradients for Human Detec-
tion, In: CVPR. IEEE Conf. on Computer Vision and Pattern Recognition,
vol. 2, pp. 886-893 (2005).

W. J. Dally and B. Towles: Route packets, not wires: On-chip interconnection

networks, Proceedings of Design Automation Conference, pp. 684-689 (2001).

R. Dick: Embedded System Synthesis Benchmarks Suites (E3S) [Online],
Available: http://ziyang.eecs.umich.edu/ dickrp/e3s/.

J. Dongarra, 1. Foster, G. C. Fox, W. Gropp, K. Kennedy, L. Torczon and A.
White: The Sourcebook of parallel computing, Morgan Kaufmann (2003).

K. Fall and K. Varadhan: The Ns manual, The VINT Project (2001).

A. G. Farrell: Introduction to maple programming, The Maws, Kilcock Co.
Kildare, Ireland (2005).

G. Fen, W. Ning and W. Qi: Simulation and performance evaluation for
network on chip design using OPNET, Proceedings of TENCON 2007, pp.
1-4 (2007).

A. Y. Grama, A. Gupta and V. Kumar: Isoefficiency: Measuring the scala-
bility of parallel algotithms and architecures, IEEE Parallel and Distributed
Technology, vol. 1, no. 3, pp. 12-21 (1993).

J. L. Gustafson: Reevaluating Amdahl’s Law, Communications of the ACM,
vol. 31, no. 5, pp. 532-533 (1988).

A. Hansson, K. Goossens and A. Radulescu: A unified approach to mapping
and routing on a network-on-chip for both best-effort and guaranteed service

traffic, Hindawi VLSI Design, vol. 2007, pp. 243-264 (2007).

72

[18]

[19]

[20]

[21]

[22]

[24]

[25]

REFERENCES

H. M. Harmanani and R. Farah: A method for efficient mapping and reliable
routing for noc architectures with minimum bandwidth and area, Proceedings
of IEEE Northeast Workshop on Circuits and Systems and TAISA Conference
2008, pp. 29-32 (2008).

J. Henkely, W. Wolfz and S. Chakradhary: On-chip networks: A scalable
and communication-centric embedded system design paradigm, Proceedings

of ICVLSI Design, pp. 845-851 (2004).

R. Holsmark, M. Palesi and S. Kumar: Deadlock free routing algorithms for
mesh topology NoC systems with regions, Proceedings of DSD 2006, pp. 696-
703 (2006).

J. Hu and R. Marculescu: Energy-aware mapping for tile-based NOC architec-
tures under performance constraints, Proceedings of Asia South Pacific Des.

Autom. Conf., pp. 233-239 (2003).

J. Hu and R. Marculescu: Energy- and performance-aware mapping for regu-
lar NoC architectures, IEEFE Transactions on Compututer-Aided Design Inte-
greted Circuits and System, vol. 24, no. 4, pp. 551-562 (2005).

B.J. LaMeres, K. Gulati and S. P. Khatri: Controlling inductive cross-talk
and power in off-chip buses using CODECs, Proceedings of ASP-DAC 2006,
pp. 6-12 (2006).

H. G. Lee and N. H. Chang: On-chip communication architecture explo-
ration: A quantitative evaluation of point-to-point, bus and network-on-chip

approaches, ACM Transactions on DAES, vol. 12, no. 3, pp. 1-20 (2007).

W. Lee and G. E. Sobelman: Mesh-Star Hybrid NoC Architecture with CDMA
Switch, Proceedings of ISCAS 2009, pp. 1349-1352 (2009).

REFERENCES 73

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

X. Leng, N. Xu, F. Dong and Z. Zhou: Implementation and simulation of a
cluster-based hierarchical NoC architecture for multi-processor SoC, Proceed-

ings of ISCIT 2005, vol. 2, pp. 1203-1206 (2005).

S. Lin, L. Su, H. Su, D. Jin and L. Zeng: Hierarchical cluster-based irregular
topology customization for Networks-on-Chip, Proceedings of EUC 08, vol. 1,
pp. 373-377 (2008).

D. G. Lowe: Distinctive Image Features from Scale-Invariant Keypoints, Pro-

ceedings of IJCV, pp. 91-110 (2004).

R. Marculescu, U. Y. Ogras, L. S. Peh, N. E. Jerger, and Y. Hoskote: Out-
standing research problems in NoC design: system, microarchitecture, and

circuit perspectives, IEEE Transactions on Computer-Aided Design Integreted

Circuits and System, vol. 28, no. 1, pp. 3-21 (2009).

K. Mikolajczyk, C. Schmid and A. Zisserman: Human Detection Based on
a Probabilistic Assembly of Robust Part Detections, Proceedings of ECCV
2004. LNCS, pp. 69-81 (2004).

F. Moraes, N. Calazans, A. Mello, L. Moller and L. Ost: HERMES: An infras-
tructure for low area overhead packet-switching networks-on-chip, Integration

The VLSI Journal, vol. 38, pp. 69-93 (2004).

S. Mostafavi, A. Khonsari, M. S. Talebi and M. O. Khaoua: Rate con-
trol for scalable multimedia applications in Network-on-Chips, Proceedings

of SCALCOM-EMBEDDEDCOM’09, pp. 621-626 (2009).

S. Murali and G. D. Micheli: Bandwidth-constrained mapping of cores onto
NoC architectures, Proceedings of Des., Autom. Test Eur. Conf., pp. 896-901
(2004).

74

[34]

[35]

[36]

[38]

[39]

[40]

REFERENCES

M. Modarressi and H. Sarbazi-Azad: Power-aware mapping for reconfigurable
noc architectures, Proceedings of IEEE International Conference on Com-

puter Design 2007, pp. 417-422 (2007).

L. M. Ni and P. K. McKinley: A survey of wormhole routing techniques in
direct networks, Computer, vol. 26, no 2, pp. 62-76 (1993).

J. Niemann, M. Porrmann and U. Ruckert: A scalable parallel SoC architec-
ture for network processors, IEEE Annual Symposium on VLSI, pp. 311-313
(2005).

U. Y. Ogras, R. Marculescu, H. G. Lee and N. Chang: Communication archi-
tecture optimization: making the shortest path shorter in regular networks-

on-chip, Proceedings of DATE 06, pp. 6-12 (2006).

U. Orgas, J. Hu, and R. Marculescu: Key research problems in NoC design:
a holistic perspective, Proceedings of CODES+ISSS, pp. 69-74 (2005).

A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema, P.
Wielage and K. Goossens: An efficient on-chip NI offering guaranteed services,
shared-memory abstraction, and flexible network configuration, IEEE Trans-
actions on Computer-Aided Design Integreted Circuits and System, vol. 24,

no. 1, pp. 4-17 (2005).

E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,
P. Wielage and E. Waterlander: Trade-offs in the design of a router with
both guaranteed and best-effort services for networks on chip, Proceedings of

Computers and Digital Techniques, vol. 150, no. 5, pp. 294-302 (2003)

T. D. Richardson, C. Nicopoulos, D. Park,V. Narayanan, Y. Xie, C. Das
and V. Degalahal: A hybrid SoC interconnect with dynamic TDMA-based

transaction-less buses and on-chip networks, Proceedings of ICVLSI Design

2006, pp. 8-16 (2006).

REFERENCES 75

[42]

[43]

[47]

[48]

[49]

[50]

M. R. Seifi and M. Eshghi: A clustered NoC in group communication, Pro-
ceedings of TENCON 2008, pp. 1-5 (2008).

Y. Sekihara, T. Aoki and A. Onozawa: Efficient packet transmission priority
control method for network-on-chip, Proceedings of SASIMI 2012, pp. 503-507
(2012).

K. Srinivasan and K. S. Chatha: A technique for low energy mapping and
routing in network-on-chip architectures, Proceedings of Int. Symp. Low Power

FElectron. Des., pp. 387-392 (2005).

K. L. Tsai, F. Lai, C. Y. Pan, D. S. Xiao, H. J. Tan and H. C. Lee: Design
of Low latency on-chip communication based on hybrid NoC Architecture,

Proceedings of NEWCAS 2010, pp. 257-260 (2010).

P. Viola and M. Jones: Rapid object detection using a boosted cascade of

simple features, IEEE Conf. on CVPR, pp. 511-518 (2001).

Y. Wei, P. Hongbing, P. Peng, L. Li, G. Minglun, H. Ning, D. Gaoming and
Z. Duoli: Application-level pipelining on Hierarchical NoC, Proceedings of
ISCAS 2010, pp. 3873-3876 (2010).

B. Wu and R. Nevatia: Detection of multiple, partially occluded humans in
a single image by bayesian combination of edgelet part detectors, Proceedings

of ICCV, pp. 90-97 (2005).

P. Zarkesh-Ha, G. B. P. Bezerra, S. Forrest, and M. Moses: Hybrid network
on chip (HNoC): Local buses with a global mesh architecture, Proceedings of
SLIP 2010, pp. 9-14 (2010).

C. A. Zeferino and A. A. Susin: SoCIN: A parametric and scalable network-
on-chip, Proceedings of SBCCI 2003, pp. 169-174 (2003).

List of Publications

Journal

e (O 8S. Lee, M. Yanagisawa, and N. Togawa, “A locality-aware hybrid NoC con-

figuration algorithm utilizing the communication volume among IP cores,”
IEICE TRANSACTIONS on Fundamentals of Electronics, Communications
and Computer Sciences, Vol. E95-A; No. 9, pp. 1538-1549 (2012).

International Conference

e (O S. Lee, M. Yanagisawa and N. Togawa, “A Locality-aware Hybrid NoC
Configuration Algorithm Utilizing the Communication Volume among IP

Cores with a Router Soft-core,” in Proceedings of AKC 2013 (2013).

e (O S. Lee, N. Togawa Y. Sekihara, T. Aoki, M. Nakanishi and A. Onozawa,
“An FPGA Based BMNoC Architecture Consisting of Hybrid Connections

and Hierarchical Structures with a Router Soft-core,” in Proceedings of 1TC-

CSCC 2013 (2013).

e (O S. Lee, N. Togawa, Y. Sekihara, T. Aoki and A. Onozawa, “An FPGA
based hybrid NoC architecture utilizing packet transmission priority control

method,” in Proceedings of ICEIC 2013 (2013).

e (O S. Lee, N. Togawa, Y. Sekihara, T. Aoki and A. Onozawa, “A hybrid
NoC architecture utilizing packet transmission priority control method,” in

Proceedings of APCCAS 2012, pp 404-407 (2012).

76

7

e (O S. Lee, N. Togawa, T. Aoki and A. Onozawa, “A locality-aware hybrid
NoC configuration algorithm and its application to object detection systems,”

in Proceedings of ITC-CSCC 2012 (2012).

e (O S. Lee, N. Togawa, T. Aoki and A. Onozawa, “A novel BMNoC configu-
ration algorithm utilizing communication volume and locality among cores,”

in Proceedings of ISCAS 2012, pp 1668-1671 (2012).

e (O S. Lee, M. Yanagisawa, T. Ohtsuki and N. Togawa, “A throughput- and
bandwidth- aware novel NoC architecture comprised of bus-based connection

and global mesh routers,” in Proceedings of ITC-CSCC 2011 (2011).

e (O S. Lee, M. Yanagisawa, T. Ohtsuki and N. Togawa, “BusMesh NoC: A
novel NoC architecture comprised of bus-based connection and global mesh

routers,” in Proceedings of APPCAS 2010, pp. 712-715 (2010).

e (O S. Lee, M. Yanagisawa, T. Ohtsuki and N. Togawa, “A throughput-aware
busmesh NoC configuration algorithm utilizing the communication rate be-

tween IP cores,” in Proceedings of SASIMI 2010, pp. 96-101 (2010).

Invited Talks

e 201342 1 S. Lee, N. Togawa, T. Aoki and A. Onozawa, “A locality-aware
hybrid NoC configuration algorithm and its application to object detection

systems,” The Korean Scientists and Engineerings Association in Japan, [f

RSN P

e 20134 1 1 S. Lee, M. Yanagisawa, and N. Togawa, “A locality-aware hy-
brid NoC configuration algorithm utilizing the communication volume among
IP cores,” KOTRA Global Career Vision 2013, Ph.D Research Presentation

Section.

78

e 201242 J1 S. Lee, M. Yanagisawa, T. Ohtsuki and N. Togawa, “BusMesh
NoC: A novel NoC architecture comprised of bus-based connection and global
mesh routers,” The Korean Scientists and Engineerings Association in Japan,

s 27 L2,

Domestic Conference

o KIZSEL MAKE - A % MR R, ERE, P SHETEA
T DGR~ F 7 = 7 ORETAORE, B FHHEBEEES
K2z, A-3-7 (2012).

o sl HL, FFE., P, HAKZE, BE&N, . RELZEL
7= IVF FPGA ¥ 2T LA ¥ 2 7 < v ¥ v 7k, VLSI et sE 2,
vol. 113, no. 416, VLD2013-126, pp. 143148 (2014).

Patent

o (FEWIE) BAEILS, HAFE, FIE, ZFAE, (HHA) HAREE BRI,
SERGE NFRGHE S, SRR 2T A, V— v EE N v MR EB LY
Ju 7T L KR 2013-122601, 2013 45 6 11 [HiBA.

o (JEWIEE) NEFEER, HAE, FINSE, F=FE, (IHA) BAEEHFERASAL,

SRR N R RRE RS, FERA 2012-153450, HE Y 27 4, UFEEE ROGEHE
VAT LIZHBT AT AM ST, 2012487 H 9 H HFA.

o (FEMIFE) NEFERR, HAFE, FIIY, Z=FAE, (HFA) HABRGEIESH,
FREE NFRB K, FRBE 2012-033894, IBi{R AL > X 5 L DR B L O
HERL 72, 2012 452 J1 20 H HiFHA.

