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Abstract

Embedded hypervisors can execute an integrity checker to monitor the
state of a target OS and can isolate this integrity checker to enhance
security. However, they add overhead to the target OS, and their own
vulnerabilities may compromise the isolation, which undermines the
security efforts. A machine architecture called Limited-Local-Memory
(LLM) is proposed to implement a similar architecture on a multi-core
processor using a hardware-centric method to isolate the integrity
checker. It has some characteristics suitable for embedded systems,
such as low overhead, a small trusted code and minimal modifications
to the target OS. However, in current research, the LLM architec-
ture has only been emulated in the virtual machine monitor, NOT in
real platforms, and it somewhat assumed a large fraction of the local

memory. It has rarely been equipped on embedded processors.

In this paper, we propose a secure OS architecture based on the LLM
architecture for embedded systems and implement it on a real embed-
ded platform. We also extend the traditional LLM architecture by
automatically updating the integrity checker to enhance the security
functions without disturbing the running of the target OS. Further-
more, we apply many methods to reduce the demand on the local
memory and propose some hardware recommendations for the LLM
architecture. Our research illustrates the efficiency of the LLM ar-
chitecture and generalizes its application for embedded systems by
reducing the local memory requirement. In this work, we propose an
extensible secure architecture for embedded systems with low over-
head, which consumes a reasonable amount of resources on appropri-

ately configured processors.
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Introduction

Computing environments are now part of many aspects of life, including mobile
devices (phones, PDAs), desktop computers, notebooks, workstations and servers.
Computing environments can offer people great convenience with a rapid comput-
ing speed that is much higher than the same computation in the brain. However,
as people depend increasingly heavily on computing devices , the security of com-
puting devices is steadily becoming a more critical issue. No one wants to reveal
private information to those whom he or she does not trust, especially in busi-
nesses. At the same time, attackers always seek to acquire such informations,
and the potential benefits are often large enough to inspire many threats. Once
network connections are introduced to personal mobile devices, the situation be-
comes even worse. An attacker does not need to obtain your physical device,
break your password or other security measures and then obtain your sensitive
information. Instead, an attacker can access your computing devices from a dis-
tance via the network to try to obtain your data. We cannot expect end users
to have sufficient knowledge of computing technologies to protect against such
attacks, therefore, enhancing the security of the computing device becomes an

important part of system development.

A computing device includes hardware and software, both of which may be
attacked. Hardware security replies mainly on manufacturers, and if they pro-
duce vulnerable devices, the security of the software developed to run upon them

is irrelevant: the entire device can be easily attacked by hardware attackers to
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obtain control of the whole device, including the hardware and the software. The
software may be unsuitable to detect these attacks for existing hardware limita-
tions. We consider the hardware to be the foundation of the software security.
Sometimes the software can help to identify the vulnerabilities in the hardware.

However, software is more likely to rely on the hardware for security.

The software in computing devices is also vulnerable to attackers. Compared
to hardware vulnerabilities that may require hardware modifications to exploit,
software vulnerabilities can be attacked with little effort on the part of the at-
tacker. In fact, many attacking tools can be easily downloaded from the network,
and anyone with basic language can exploit them without great difficulty. During
a system lifetime, there are two critical factors in the security of the software: 1)
how to boot software in a secure manner and 2) how to ensure its security during
runtime. Trusted boot methods are proposed to solve the first problem. These
methods are usually based on a hardware unit called a Trusted Platform Module
(TPM) [2] [4] [8] [11] [24] [40] [42] [68]. A TPM is bonded to a unique hardware
platform and can verify the boot process of the platform. It can also produce
quotes for verification by third parties. Based on TPM technologies, Intel and
AMD have developed their own trusted boot technologies, the Trusted eXecu-
tion Technology (TXT) [4] [8] and Secure Virtual Machine (SVM), respectively,
which can securely boot up a process (late launch) during runtime [40]. Even if
other components of the system are malicious, these hardware mechanisms are
still guaranteed to boot the correct process. Some studies have further developed
the TPM technologies to virtualize the TPM and thus provide the trusted boot
functionality to multiple virtual machine instances that are intended to run on
hypervisors. Security upon booting up a system can help ensure that we can

access clean systems without malware.

After the system boot is completed, the system needs to use many kinds of
data that we input or receive from other interfaces. The operations that we
input may not be appropriate or attackers may try to hack the system. To
protect OSs, detection tools are imported into the OSs, as shown in Fig. 1.1.
These detection tools monitor critical behaviors of the system and judge whether

these behaviors are trustworthy. Omnce they detect abnormal behaviors, they
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Figure 1.1: Detection tools in host OS.

will inform users to deal with them or perform recoveries to ensure that the
system is running in a normal state. However, the detection tools cannot detect
all types of malware, and they must be updated to detect the newest malware.
There is a gap between the creation of new malware and applying detection
technologies to identify it, which allows the malware to attack the system during
certain periods and gives it the chance to infect the system kernel, which the
detection tools rely on for monitoring tasks, to invalidate the detection tools.
Once the system kernel is infected or the detection tools are invalidated, even if
the detection tools are updated to detect the newest malware, the infected system
might not execute the detection tools correctly. The user must then intervene
to restore the system to a clean state, which is somewhat difficult for most end
users. However, modern operating systems (OSs) may contains millions of lines
of codes, and the tests before releasing are often insufficient to ensure that the
code is completely trustworthy. This great amount of code broadens the system’s
vulnerability to attackers. The dependency on the system kernel makes it difficult
for detection tools to protect the system kernel against malware that exploits

unknown vulnerabilities.

Removing the dependency of the detection tools on the system kernel can
efficiently solve this problem. Many studies [23] [25] [29] [32] [52] [75] employ
hypervisors to accomplish this task, as shown in Fig. 1.2. Hypervisors are software
approaches that provide an abstract layer of underlying hardware for multiple
OSs running concurrently on a single hardware device. Hypervisors have many
advantages, such as high hardware resource usage, cost reduction, workbench

migration, legacy software support and security. Hypervisors directly control the
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Software
Isolation
Guest 05
Detection Guest
Tools | | OSs

Hypervisor

Underlying Hardware

Figure 1.2: Detection tools in hypervisors.

necessary access to hardware resources (e.g., memory, I/O) so that any running
OS can only access the permitted hardware resources and cannot touch other
OSs if the hypervisors do not allow it. This isolation provided by the hypervisors
can be used to move the detection tools out of the system and thus remove
the dependency on the system kernel. Then, the detection tools can check the
state of the system without falling victim to infection. However, this method
also introduces semantic barriers into the detection tools. They must acquire
some knowledge about the target systems, such as its data structure or binary
allocation, to obtain the necessary information to undergo checking tasks, and

they depend on the hypervisors to acquire this information correctly.

Although hypervisors are designed to be more privileged than guest OSs and
to be a thin software solution with good performance, they are not designed specif-
ically for security. Furthermore, as hypervisors are equipped with more functions,
the hypervisors become very large, thereby broadening the surface that is vul-
nerable to attackers. Many studies [6] [26] have shown that modern hypervisors,
such as Xen and KVM, already contain many vulnerabilities in modern. It is

foreseen that the situation may be worse in enterprise hypervisors, as a company



will always try to add more functions than its competitors to attract customers
to use its service, and new functions usually mean more complex code. Many
studies [22] [39] [58] [61] [66] have tried to design a small hypervisor. The basic
ideas in these approaches are splitting the hypervisor into pieces and granting
root privilege only to necessary components. Therefore, we would only need to
ensure that these root-level components would be secure enough for the correct
running of the hypervisors. However, some studies have shown that these com-
ponents must still interact with other untrustworthy code in the hypervisors, and
these operations may be exploited to compromise the root trust of the hypervisors
[7] [9]. However, instead of continually reducing the size of hypervisors for the
security purposes, it may be better to remove the hypervisor from the security
chain and use other technologies to isolate the detection tools from the target

system.

In embedded fields, microkernels and embedded hypervisors can also isolate
detection tools from the target OS. Unfortunately, microkernels usually cause
heavy performance overhead and require substantial modifications to the target
OS. However, embedded hypervisors are not always equipped with isolation be-
tween guest OSs in performance-critical cases. Embedded hypervisors can also
provide isolation functionality through the same method used by traditional hy-
pervisors, but with substantial overhead. More methods are still needed to im-
prove the performance of embedded hypervisors, such as importing hardware
virtualization extensions or applying a dedicated method based on a special pro-
cessor architecture. Obviously, embedded hypervisors themselves also face similar

vulnerabilities as do traditional hypervisors.

Although it was not specially designed for embedded systems, Kinebuchi et al.
proposed a machine architecture called Limited Local Memory (LLM) [34],which
uses with a hardware-centric method, as shown in Fig. 1.3, to provide isola-
tion, which can efficiently protect the detection tools and only depends on small
codes to be trustworthy. The LLM architecture assumes a small private memory
area for respective core and provides a tamper-proof execution environment for
a rootkit detector, which was built as part of the study, to monitor the target

OS without becoming infected. The LLM architecture provides some appropri-
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Figure 1.3: Detection tools in LLM machine architecture.

ate characteristics for embedded systems, such as isolation with low overhead, a
small Trusted code and minimal modifications to the target OS. We consider the
LLM architecture to be suitable for embedded systems with a security-specific
purpose. However, the implementation in Kinebuchi’s paper is emulated in a vir-
tual machine monitor (VMM) QEMU that virtualizes the x86 architecture and
assumes a local memory of 548 Kbytes, which is limited but moderately big. It
is difficult to consider that there is so much private memory space for cores in
embedded processors. For example, RP1 [76] and Cell B.E. [60] have a local-
memory-similar architecture with respective sizes of 128 Kbytes and 256 Kbytes.
Therefore, applying this method to a real embedded platform would be a well-
founded verification of this method and show the efficiency of the LLM machine

architecture, even when the local memory is very small.

In this paper, we apply this method to a real embedded platform with a LLM-
similar hardware configuration that is equipped with a much smaller local mem-
ory. We build a secure architecture that can efficiently enhance the security of the
embedded systems and extend the security functions in the architecture during
runtime to protect against the newest vulnerabilities found in the target OS. This
architecture requires only minimal modification to the target OS and causes low
overhead. Furthermore, some hardware recommendations are presented to make

the LLM architecture more applicable to real embedded processors. Our research



can illustrate the efficiency of the LLM architecture and generalize its application

to embedded systems by reducing the local memory requirement.

In summary, the contributions of this paper are as follows:

e Implementation of an integrity checking system on a real embedded hard-
ware with an LLM-similar architecture that is based on a small amount of
local memory. This implementation demonstrates the viability of the LLM
architecture for application on a real-world embedded processor to reduce

the local memory requirements.

e Detailed design methods within a real embedded platform. The RP1 board
is equipped with one SH-4A quad-cores processor with software-managed
TLB, which can help to reduce the required size of the local memory. There-
fore, the design details are significantly different from the design on a x86

platform with hardware-managed TLB.

e Building an extensible secure architecture that can efficiently enhance the
security of embedded systems. We can securely update the security func-
tions in the architecture without disturbing the normal running of the tar-
get OS to fix bugs, make optimizations or add new functions for the latest

security vulnerabilities.

e Hardware recommendations for the LLM machine architecture. Based on
the evaluation, we propose some recommendations to optimize the LLM
architecture. We consider that these recommendations can help simplify

and generalize the application of the LLM architecture.

The remainder of my dissertation is organized as follows. Section II introduces
both studies for improving hypervisor security and the LLM machine architecture,
and Section IIT describes how to build an extensible secure architecture on a real
embedded platform RP1 and evaluate the system to show the performance and
security of this architecture. In Section IV, I survey the hardware features used
in our design, and discuss the possibilities of using them in future embedded

systems. Section V draws some conclusions of the overall research, discusses our
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approach and proposes some hardware recommendations for the LLM machine

architecture. Section VI discusses future directions of our research.



2

Related Work

In this chapter, we will introduce work related to our research. Hypervisors
can provide a similar security functionality to our research with different mech-
anisms. Therefore, we first introduce hypervisors and how they achieve a secure
environment for running different OSs. Then, we introduce some approaches that
have been designed to improve the security of hypervisors, followed by two more
similar architectures, i.e., co-processor-based detection and the LLM machine ar-
chitecture. From those approaches, we proceed to the research reported in this

dissertation.

2.1 Introduction to Hypervisors

Since virtualization technology was proposed in the 1960s by IBM [41] [49], re-
searchers have continued to add new functions to and optimize hypervisors. Cur-
rently, there are many modern enterprise hypervisors that supply us for many
applications, such as cloud computing, workbench migration, legacy software
support and cost reduction. Hypervisors can be divided into two types: full-
virtualization and para-virtualization. Full-virtualization hypervisors can run
unmodified operating systems, but adding noticeable overhead to the perfor-
mance of guest operating systems. Conversely, para-virtualization hypervisors

require modifications to the guest operating systems, but it is possible to opti-
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Figure 2.1: Secure computing environment based on hypervisors.

mize the guest OSs to achieve better performance when running on a hypervisor.
Although security is not the primary purpose of hypervisors, they can control
access to hardware resources by guest operating systems to ensure that guest
operating systems cannot disturb one another’s normal running. This character-
istic has been applied in many works to build a secure computing environment
based on hypervisors [23] [25] [29] [32] [52] [75], as shown in Fig. 2.1. We briefly

introduce some details regarding these studies.

George W. Dunlap, Samuel T. King, Sukru Cinar et al. presented a system
logger called Revirt [23]. Revirt uses UMLinux as the virtual machine to provide
VMM to run guest OSs. The logger runs on the virtual machine, independent of
the guest operating system and can log sufficient information to replay and ana-
lyze attacks that consist of non-deterministic events. The loggers incur minimal
overhead, but the virtualization adds significant overhead to the kernel-intensive

workload.

Liveware [25] is a VMI IDS (Virtual Machine Introspection Intrusion De-
tection System) proposed by Garfinkel and Mendel Rosenblum. This system is
implemented by adding a hook to VMware and provides three useful properties to

the VMI IDS: isolation, inspection, and interposition. Using the interface library

10
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and policy engine presented in the paper, Liveware provides functions to interact
with the VMM and a host OS, detect VMM and the host OS status and respond

in an appropriate manner. However, it adds heavy overhead to the system.

Brian Hay and Kara Nance presented a suite of virtual introspection tools
developed for Xen (VIX tools) [29]. This VIX tool suite can be used for the
digital forensic examination of volatile system data in virtual machines. This
VMM requires many steps to translate the virtual address of Linux to an address
space that can be accessed by the trusted OS. With the address translation, the
VIX tool suite can acquire volatile system data to monitor the state of Linux.
However, this system would be improved by providing support for more operating
system types, such as Windows, and making the virtual introspection techniques

suitable to other virtualization platforms, such as VMware.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
proposed Lycosid: a VMM-based hidden process detection and identification sys-
tem [32]. This system contains two views for detection: one is a trusted view
achieved from within a VMM using a tool called Antfarm, and the other is an
untrusted view obtained from the guest OS using the ps (Linux) or pslist.exe
or tasklist.exe (Windows) commands. This system uses mathematical methods
to judge whether there are one or several hidden processes and to identify the
likely number of hidden processes. However, as the number of hidden processes
increases, the system requires more time to determine and identify the number

of the hidden processes.

Lares [52] is a VMM tool that features the ability to perform active monitoring
while still benefiting from the increased security of an isolated virtual machine.
In this paper, the architecture and a prototype implementation are discussed. In
Lares, the security VM can actively monitor the guest OS via a hook in the guest
OS, which is Windows XP running on Xen. The security and performance of
Lares are evaluated. The evaluation demonstrates that Lares has a low impact
on the system performance. However, malware may attack the hook in the guest
VM. Although there is security protection on the hooks, more effective protection

of the integrity of the hook remains a problem.

11
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Table 2.1: Size of hypervisors (KLOC).

Hypervisor Code Size
Xen 100 (4200, trusted VM)
KVM 220
ESXi 200

Hyper-V 100 (+more than 400, Windows Server 2008)

The pDenali [75] was designed, implemented and evaluated by Andrew Whitaker,
Richard S. Cox, Marianne Shaw et al. It is an extensible and programmable
virtual machine monitor that can run modern operating systems. It allows a
programmer to modify the virtual architecture to easily implement new virtual
services, such as manipulating disks or capturing and migrating virtual machine
states. They also presented an application-level API to simplify writing the ex-
tensions used to describe and evaluate the system. While pDenali is a flexible
virtual machine monitor that can easily add new virtual services, it also adds

significant overhead to the system.

Hypervisors can run in the host operating system or directly in rare hardware,
as shown in Fig. 2.2 and Fig. 2.3. Xen is unusual in that it requires a trusted VM
to manage the other VMs, as shown in Fig. 2.4. Hypervisors are assumed to be
thinner and more secure than the guest operating systems running upon them,
so that we should ordinarily trust hypervisors (including the trusted VM in Xen)
to control all access to the underlying hardware. However, modern hypervisors
are becoming complex, with a large code size, especially in enterprise hypervisor
products that include more functions to attract customers. The increasing code
size broadens the surface of modern hypervisors vulnerable to attackers [47] [61]
[63] and makes the existing vulnerabilities in hypervisors difficult to find and fix.
Table. 2.1 illustrates the size of some of the main modern hypervisors [5] [17] [21]
[37], some of which are comparable to a modern operating system. Some studies
[6] [26] [50] have investigated the security of hypervisors and shown that many

parts of the hypervisor are prone to be attacked.

However, embedded hypervisors ordinarily uses para-virtualization technolo-
gies, which can help reduce the influence of guest operating systems and is re-

quired to be designed with a small code-size due to the resource restrictions on

12
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Figure 2.2: Hypervisors on a host operating system.
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Figure 2.3: Hypervisors on rare hardware.
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Figure 2.4: Xen hypervisor architecture.

embedded systems and the goal of security purpose [10]. However, embedded hy-
pervisors sometimes do not manage all of the accesses of guest operating systems
and trust behaviors of guest operating systems to avoid interrupting each other
[48] [57]. These approaches assume that both the hypervisors and guest operat-
ing systems are trustworthy, which adds up to a large code size. Some embedded
hypervisors [30] [36] [56] use the same method to control resource accesses from
guest operating systems with traditional hypervisors, which would cause notice-
able overhead for the performance of guest operating systems. More methods are
still needed to optimize the performance of the embedded hypervisors, such as
importing hardware virtualization extensions [69] or applying dedicated methods
based on a specific processor architecture [43]. Microkernels, which may not be
considered as a type of hypervisor, can also control hardware resource accesses
from guest operating systems to isolate each guest operating system. However,
microkernels usually require considerable modifications to the guest operating
systems and may yield a heavy penalty to performance for the external pager.
Embedded hypervisors also have similar vulnerabilities to traditional hypervisors,

as discussed above.
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2.2 Security Approaches based on Hypervisors

and Peripheral Devices

Many researchers believe that reducing the size of the hypervisor can help to
solve these issues and have proposed many methods to build a hypervisor with a

small size of code that should be trustworthy.

BitVisor [61] focuses on the components of virtualizing I/O devices that en-
large the code size of hypervisors greatly and reduce the reliability of VMMs. It
proposes a para-pass-through architecture to allow most of the I/O access to pass
through the hypervisor and thus remove many functions for virtualizing 1/O de-
vices outside hypervisor to reduce the size. The guest operating systems running
on the hypervisor can do directly access the 1/O devices, with only the necessary
operations monitored by the hypervisor. The evaluations are mainly performed
using ATA storage devices, and the sizes of BitVisor and the para-pass-through
driver for guest OSs are respectively only 20 KLOC and 1.4 KLOC, which are
both significantly smaller than other hypervisors such as Xen (100 KLOC [17]).

NOVA [66] is designed and implemented as a thin and simple hypervisor to
show that this approach can significantly narrow the vulnerable surface of the
hypervisors and improve the overall security of the system. It can host multiple
unmodified guest operating systems and consists of a single micro-hypervisor with
a size of 9 KLOC that should be trustworthy and a VMM (20 KLOC). It uses fine-
grained functional decomposition to split a hypervisor into a micro-hypervisor,
root partition manager, multiple virtual machine monitors, device drivers and
other system services, and it only grants the highest privilege to the trustworthy
micro-hypervisor. This method can implement a hypervisor with a small code

size to improve the security of hypervisors by narrowing the vulnerable surface.

Xoar [22] applies similar methods to another famous open-source hypervisor,
Xen. Instead of splitting hypervisors, this approach tries to split the trusted
VM (with a large code size), which has the root privilege to manage other VMs,
into service VMs, each of which has its own simple purpose. The paper analyzes

the architecture of Xen, splits it into small components and restricts the VM for
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accessing the hypervisor. It is possible to reduce the code size of the trusted
VM (a Linux, 7.6 million codes) to a much smaller size of 13.5 KLOC, upon
an underlying hypervisor of 28 KLOC. A small size can reduce the potential
vulnerabilities in the trusted VM to enhance the security of the whole hypervisor

environment.

TrustVisor [39] is a special-purpose hypervisor that can provide code integrity,
date integrity and secrecy for the assigned applications. It utilizes the features of
modern processors from Intel and AMD to achieve both good performance and
high security. It also uses the hardware component TPM to attest the secure
boot of an application. Although it does focus on reducing the code size of the
hypervisors, the base code size of it is still very small (approximately 6 KLOC),
which makes verification feasible. The small size can also help to enhance the

comprehensive security of TrustVisor.

From the above researches, we find that most methods for reducing the size
of the trustworthy code involve splitting the hypervisors (or the trusted VM)
into small components and only granting root privilege as needed. A small code
size usually indicates a lower possibility of attackers finding bugs, and even after
being attacked, fixing simple codes is much easier than finding vulnerabilities
in millions of lines of codes in complex hypervisors. If we want to apply these
technologies, the modern hypervisor absolutely needs to be redesigned. However,
these solutions still have the issue that the trustworthy codes need to interact
with malicious codes in the hypervisor to complete normal functions. These
interacting operations may be exploited to attack hypervisors to break the root
trust of the whole systems [7] [9]. This type of security threat is difficult to be

eliminate in the current hypervisor architecture.

Formal verification such as Sel4 is another method for ensuring that a software
layer is trustworthy. It uses formal specifications to define the correct behaviors
of a operating system kernel and verify the kernel based on these specifications.
If a hypervisor can meet all of the requirements from the specifications, we con-
sider this hypervisor to be trustworthy for managing access to guest operating

systems to provide isolation. However, this method requires a long development
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Figure 2.5: Detection based on peripheral devices.

period and substantial modifications to the existing hypervisors. Once the for-
mal specifications are changed, the system needs to be reverified as trustworthy,
which would also take extensive time. For modern hypervisors with a large code
size, formal verification would require great design effort to change the current
implementation of hypervisors or the trusted VM, which may be not acceptable

for an enterprise hypervisor.

Some other approaches [15] [54] [77] are somewhat similar to hypervisors in
building a secure environment based on hardware-centric methods (additional
PCI cards or co-processors). Arati Baliga, Vinod Ganapathy and Liviu Iftode
presented Gibraltar [15], a novel rootkit detection technique running on an exter-
nal PCI card that automatically detects rootkits, which modify both control and
non-control kernel data. It uses Myrinet PCI intelligent network cards to inter-
connect the Gibraltar and the target machine via a secure back-end network. The
experimental results show that the Gibraltar can detect rootkits that modify both
the control and non-control data structure while causing negligible performance

overhead for the contention on the memory bus during detection tasks.

Copilot [54] is a co-processor-based kernel integrity monitor for the commodity
systems proposed by Nick L. Petroni, Jr. et al. It is executed on a PCI add-in
card that is connected to the host machine via an independent communication
link to ensure the isolation. The copilot can detect malicious modifications to
the host’s kernel. The experiments illustrate that it can correctly detect certain

real-world rootkits within a short time of their installation, with minimal penalty
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to the host’s performance.

These approaches are based on an additional PCI card to monitor the host
OS, as shown in Fig. 2.5, and cause minimal overhead to the host OS, which
meets the requirements of embedded systems. However, an additional computing
device might be unsuitable for embedded platforms, which would add to the cost

that is emphasized in embedded fields.

Kinebuchi et al. propose a machine architecture called Limited Local Memory
(LLM) [34], which uses a hardware-centric isolation method that can efficiently
protect of the detection tools and depends only on small-size codes to be trust-
worthy. The LLM architecture bases a small private memory area for respective
core and provides a tamper-proof execution environment for a rootkit detector de-
signed to monitor the target OS without becoming infected. Although the LLM
architecture was not developed specifically for embedded systems, it provides
some appropriate characteristics, such as low overhead, minimal modification to
the guest operating systems and a small code size that should be trustworthy.

We briefly introduce the LLM machine architecture to lead to our own research.

2.3 LLM Machine Architecture

The LLM machine architecture proposed by Kinebuchi et al. involves security
enforcement on a multi-core processor. It requires a local memory region for
respective core and an isolated Core(, which has the highest privilege to manage
other cores and is designed to run a monitor OS in its self-only accessible local
memory. Therefore, the monitor OS can execute an integrity checker to monitor
the state of a target OS running on other cores without becoming infected. It uses
a paging mechanism to execute the monitor OS in the local memory and emulates
a local memory with 584 Kbytes, which should be large enough to accommodate
the page tables for the monitor OS (256 Kbytes), the buffer data (128 Kbytes)
for executing and the paging functions. It also proposes a bootstrap process to
boot the system to a normal state. The architecture of the LLM is shown in
Fig. 2.6, and the critical points in the LLM machine architecture are introduced

as follows:
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Figure 2.6: LLM machine architecture.

e Multi-core architecture processor. We need a special core (Core0) to run
the monitor OS and there should be at least one more core (CoreU) for the
target OS.

e Local memory for respective core. The local memory can be exploited to

execute the monitor OS.

e Privilege function for isolating Core0. Core0 can be privileged to reset
or halt other cores, and its local memory should not be accessed by the
CoreUs. Therefore, the monitor OS running in Core(’s local memory can

avoid facing attacks from the CoreUs.

When the LLM machine architecture boots up, one core is selected as Core(
and is made privileged; it then executes the BIOS to load the bootloader into
memory. The bootloader prepares the execution environment for the monitor OS
and starts to run it. After running the monitor OS, Core0 begins to boot the
target OS running on other cores. While booting up, it assumes that the BIOS
and the bootloader can be trusted to work correctly to initialize the hardware

and load the required data structure.

There are two critical points in the LLM machine architecture: local mem-
ory for executing the rootkit detector and core isolation to protect the rootkit

detector. The two have somewhat similar applications in existing research.

The local memory approach is inspired by studies regarding the scratchpad
memory and locked cache methods [16] [18] [55] [70]. Although caches can greatly
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improve performance in desktop and server computing environments, cache inval-
idations usually introduce unpredictability into the performance of the applica-
tion, which is very important in embedded systems, especially in hard real-time
systems. The locked cache approach can help solve this problem by loading the
assigned content of an application into a locked cache region to avoid cache in-

validation during the runtime of the applications.

One study [70] combines both compile-time cache analysis and data cache
locking to estimate the worst-case memory performance (WCMP) and provide
an exact estimate of the WCMP of an application without heavy overhead. An-
other study [18] develops a generic algorithm to selectively load the content of
an application to locked cache to obtain fully predictable performance with pre-
dictable overhead. Another paper, in turn [16], proposes the scratchpad memory
method to provide a design alternative for locked caches, which can provide a
performance and area reduction method for executing applications in embedded
systems. A further study [55] compares scratchpad memories and locked caches
in hard real-time systems and illustrates that the better choice depends on the ar-
chitecture parameters (cache block size) and the application characteristics (basic
block size).

The scratchpad memory and locked cache methods can selectively load the
content of applications into scratchpad memory or a locked cache to reduce the
energy consumption or improve the predictability of the application performance,
which is significantly important in hard real-time embedded systems. These meth-
ods are similar to the local memory method, which executes applications in the
on-chip memory. However, they do not address about the usage of on-chip mem-

ory for security purposes.

Some previous studies have applied core isolation on a multi-core processor as
a security measure, such as NoHype [33], SecureCore [44] and the LLM machine
architecture [34]. NoHype is designed to replace hypervisors for running multiple
OSs on a multi-core platform. It assigns an isolated core and isolated hardware
resources to each OS to provide complete isolation between OSs. It also assumes

certain hardware features to avoid the denial of service attacks. However, because
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of the strict isolation between guest OSs, this design cannot use one OS to check
the state of another OS.

The SecureCore is somewhat similar in design to our research. It uses one
secure core to run detection tools to monitor the other applications running on
another core, while depending on a hypervisor to isolate the memory and other
hardware resources. The detection tools can check the state of a control applica-
tion running in an embedded system. SecureCore also describes some detection
details to improve the accuracy of the detection tools for correcting the control
application during the runtime. However, the isolation between cores still de-
pends on a hypervisor, which may broaden the vulnerability of a system with

extensive code.

The LLM machine architecture combines these two points to execute applica-
tions in an on-chip memory region (local memory) and protect the applications
depending on the isolation of this memory region supported by the hardware ar-
chitecture. The LLM machine architecture can ensure the security of the rootkit
detector with minimal overhead and modification. However, the implementation
of the LLM machine architecture is only emulated in a VMM QEMU and requires
a limited but somewhat large amount of local memory (548 Kbytes) that may
rarely be equipped on embedded platforms. Applying it to real embedded devices
with a small-size on-chip memory would verify the efficiency of the LLM machine

architecture.

Unfortunately, by now to our knowledge, there is not yet any hardware plat-
form that perfectly meets all the requirements of the LLM machine architecture.
Nonetheless, we have chosen a development board, RP1 [76], which is moderately
similar to the LLM machine architecture. RP1 is equipped with a quad-core
SH-4A processor and has a user memory region for each core that can be treated
as the local memory, which meets the main requirements of the LLM machine
architecture. However, it cannot provide a privileged core (Core0) with a self-
only-accessible local memory, and other cores can also reboot the entire platform.
We consider that this functionality can be equipped to a multi-core processor with
modest effort during processor manufacture and production. Thus, we eliminate

these requirements in RP1 and assume that the core used to execute the monitor
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OS is privileged and isolated from the other cores. Based on the above assump-
tion, we design an integrity checking system on RP1 to show the efficiency of the

LLM machine architecture.

The size of the user memory equipped to each core in RP1 is 128 Kbytes, which
is much smaller than in the QEMU emulation for the LLM machine architecture.
The application of a paging mechanism to run an integrity checker within a fully
functional OS (the monitor OS) in such a small memory region is a challenge in

our research.

22



3

A Local-Memory-Based
Extensible Secure Architecture
for Embedded Systems

3.1 RP1 and SuperH Processor Architecture

We choose a development board RP1, [76], shown in Fig. 3.1 that has a SuperH-
4A (SH-4A) processor with 4 cores each equipped with 128 Kbytes user memory,

which can be treated as local memory.

RP1 is a development board produced by Renesas Electricity Cooperation
for use in multimedia equipment, network and other applications in embedded
systems. It includes 4 cores running at 600 MHz, each of which incorporates an
FPU, a CPU and an MMU, which is equipped with a 4-entry fully associative
instruction TLB and a 64-entry fully associative unified TLB.

The SH-4A architecture has specific features that are useful for our design.
Firstly, it manages pages faults using software and is equipped with a special
memory architecture as shown in Fig. 3.2. The virtual memory space is divided
into many areas, each of which has its own configuration for memory translation
and caching. We can exploit this architecture flexibly to run different segments in

separate areas to avoid or enable page faults. If we want to execute segments with
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Figure 3.1: RP1 board.

page faults, we can simply jump to a start address in PO, while executing content
in P1 without page faults. Similarly, the caching can be enabled or disabled as we
choose, which is important in our design because we want to completely control

page faults for the paging mechanism.

The software-managed TLB in the SH-4A architecture allows us to use any
page table format in an OS that may be needed and to separate the TLB handler
from the OS, which is very useful in our design when we execute an OS kernel
in the direct address in PO. Not only do we know the virtual address that traps
a page fault, but we also acquire the address that stores the page. For user
processes that run from 0 at a virtual address, if we want to obtain the address
of the page trapping the fault, we must add extra elements to the page tables to
maintain the record. If we handle page faults in an OS externally, we must also

acquire the necessary information about process execution in the OS.

The user memory equipped in each core can be accessed using assigned ad-
dresses by the underlying core, allowing us to selectively load segments of pro-
grams into for execution. With the isolation of this core and its local-memory,
we consider the content running in the local memory to be reliable because other

cores cannot touch this part for effective attacks. We next introduce the detailed
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Figure 3.2: Memory architecture in SuperH.

method of our design.
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3.2 Methods

In this section, we first propose the detailed design methods. Then, we analyze
the threat model in our system. We focus on how to build a system to run a
fully functional OS that executes an integrity checker in a small and isolated
memory space. The checking technologies applied in the integrity checker and
the vulnerabilities of the target OS are not the focus of the paper, and we thus

discuss them only briefly discussion.

3.2.1 System Architecture

The basic system architecture applied to our research platform is shown in Fig. 3.3.
We use a monitor OS to execute an integrity checker as a user process. The in-
tegrity checker can check the integrity of the shared memory used by the target
OS. Importing an OS for the integrity checker offers two advantages: (1) the
management of the integrity checker, such as executing, halting, sleeping or run-
ning parallel instances, is easy; and (2) other checking technologies can be ported
to the monitor OS simply and effortlessly. The monitor OS running on Core0
executes the integrity checker to monitor the state of the target OS running on

other CoreUs that provide applications for users.

The monitor OS (containing the integrity checker) runs in the local memory
of Core0 and only uses the main memory to store swap content. A software
component, the secure pager, is designed to provide a paging mechanism to swap
in the needed content for running the monitor OS. Because the monitor OS and
the target OS share the main memory, the swap content stored in the shared
memory is vulnerable to attacks from the target OS. The secure pager also has
the duty to verify the integrity of the swap content when it is swapped in. The
secure pager is a critical component in our system, and we describe it in details

below.
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Figure 3.3: System architecture.

3.2.2 Secure Pager

To run the monitor OS in the local memory using a swap mechanism, the secure
pager shown in Fig. 3.4 should take control of any page faults that occur in the
monitor OS, judge whether a page has already located in the local memory or

not and set the page tables of the monitor OS to the correct TLB mapping.

The secure pager located permanently in the local memory maintains a hash
table for all the pages of the swap content in the shared memory, which is obtained
before booting of the monitor OS to check the hash values of any content that
must be loaded into the local memory to verify the integrity. If the integrity
remains unchanged, the secure pager loads the content to run the monitor OS.
Otherwise, the secure pager can detect the corruption, issue alarm messages about
the compromise of the target OS and reboot the platform to restore the system
to a normal state. We do not consider the resumption of the monitor OS during

runtime in our prototype.
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Figure 3.4: Work mechanism of secure pager.

In our system, we run the monitor OS at a virtual address that traps a page
fault when the monitor OS first accesses a page. The secure pager handles the
page fault, and judges whether this page belongs to the monitor OS kernel or to a
user processor. It then loads this page into the local memory and checks its hash
value. If the hash value is identical to the one computed in advance, the secure
pager sets the page table according to the page type (kernel or user process) for

the TLB mapping to run the monitor OS.

When the local memory is out of space and an extra page is needed for con-
tinued running, the secure pager searches the page tables of the monitor OS to
choose a page to swap out. Because this page may have been changed during

the running of the monitor OS, the secure pager calculates the hash of this page
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again to update the hash table and swaps it to the original address in the shared
memory that stores the page. It then clears this page and invalidates the entry
in the page table and the TLB. Finally, the secure pager loads the needed page
after it passes the integrity verification. To implement the swap-out mechanism,
the secure pager should log the original address of any page loaded into the local
memory. In our design, we deal with kernel pages and user process pages sepa-
rately. We run the kernel of the monitor OS in the PO address shown in Fig. 3.5,
and therefore, page faults occur when the kernel begins to run. We can obtain
the address in the shared memory that stores the kernel page from the virtual
address, where the page runs. Conversely, the user processes run at a virtual
address starting at 0x00000000. We can load the user processes directly into the
local memory to execute them. However, this approach would require the secure
pager to allocate some parts of the shared memory to swap out user processes if
the local memory runs out of space. We use another method to allocate portions
of the shared memory space for the user processes. We allow the monitor OS to
manage a small region of the shared memory and first load the user processes into
this part. We then use this region for the paging mechanism shown in Fig. 3.5.
The paging mechanism requires the responding relationship between the virtual
address where a user process runs and the physical address that stores the user

process. We use page tables to log this correspondence relationship.

We design page tables for the monitor OS in a one-level page table format.
Because of the software-managed TLB in RP1, we can design page tables freely
to reduce the size or improve the performance. In our work, we use two types of
page tables for the monitor OS shown in Fig. 3.6: the kernel page table and the
user process page table. One entry in the kernel page table contains a mapping
between a physical address (page address in the local memory) and a virtual ad-
dress (equal to the original address in the shared memory that stores the page).
One entry in the user process page table adds an extra factor called the interme-
diate address and thus consists of three parts, a physical address (page address in
the local memory), a virtual address (page address in user memory space) and an
intermediate address (original address in the shared memory). These page tables

help the secure pager complete both the swap mechanism and the TLB setting.
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Figure 3.5: Execution address for the monitor OS.
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Figure 3.6: Page table format of the monitor OS.
The secure pager must activate one of multiple user process page tables when

the monitor OS switches to another user process or executes a new one. To

choose the correct page table for the corresponding user process, the secure pager
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traps the operations of the user processes in the monitor OS and maintains a
record. Therefore, when it needs to activate the page table for use, the secure
pager determines that which table has been prepared for the current user process.
With this trapping, the secure pager can choose the corresponding page table to

execute the current user process in the monitor OS.

3.2.3 Reduce Size of Page Tables of the Monitor OS

There is a single kernel page table and may be several user process page tables
in the secure pager. We can restrict the number of user processes that can run
concurrently in the monitor OS to control the number of user process page tables,
which can reduce the space in the local memory that the page tables occupy.
Furthermore, the special format used in our work can further reduce the size
of the page tables. In some cases, a single user process may be large enough to
require larger page tables. We prefer to split this type of user process into smaller
processes and execute them sequentially to keep page tables within a small size.
With these methods, we can apply our system within even a very small local
memory. We then compare our method and the typical two-level page table in

the x86 architecture.

The x86 architecture with hardware-handled TLB ordinarily uses the type
of two-level page table shown in Fig. 3.7, which contains a page directory (PD)
to store addresses that point to page tables (PTs) and PTs that store physical
addresses (PA) to transfer a virtual address to a physical address, and the format
of the page tables is fixed. If a user process with 8 Kbytes runs in the x86
architecture with a page size of 4 Kbytes, it first allocates a page with 4 Kbytes
for the PD, and then allocates another page as a PT to store 2 entries for the
user process. The size of the page tables for this process adds up to 8 Kbytes.
Conversely, in our method, using a page size of 4 Kbytes, a one-level page table
means that each page of a user process only needs a page table entry with 8 bytes,
and we add another element to every entry in the page table to store the swap-out
address, which occupies another 4 bytes for each entry. Therefore, a user process

with 8 Kbytes occupies 24 bytes for its page table. This size difference decreases
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Figure 3.7: Two-level page table in x86 architecture.

when the size of the user process increases, as shown in Table. 3.1. However,
we prefer to use smaller user processes or split large user processes into small
pieces so that the page tables occupy a small space in the local memory. With
the restriction on the number of user processes that can concurrently run in the
monitor OS, we can efficiently control the size of the page tables to ensure that
the secure pager has a permanent location in the local memory for executing the

monitor OS.

The secure pager should also have certain other functionalities, such as mem-
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Table 3.1: Page table size comparison (Bytes).

User Process Size | SK 16K 512K 1M
x86 SK 8K SK SK
Our Method 24 48 1.536K 3.072K

ory management of the local memory, hash computation, hash table maintenance
and exception and interrupt handling, to assist the paging mechanism. An inter-

nal scheme is shown in Fig. 3.8 that further elucidates out secure pager design.

3.2.4 Extensibility

When we need to fix bugs, make optimizations or add new features to the integrity
checker, the normal running of the target OS should not be disturbed. Automatic
updating is a good method to solve this problem. The main purpose of the
automatic update is the security. The update procedure must be safe enough
to ensure that the integrity checker is updated correctly. We add an automatic
update function to the secure pager, which is trusted for permanent existence
in the local memory. The details of this method are discussed in the section on
implementation. Using this function, we can freely extend the functions of the

integrity checker to perform optimizations or add features.

3.3 Threat Model

3.3.1 Assumption

Firstly, we want to propose some assumptions about the threat model, including

the following:

e The internal hardware configuration is trustworthy, including isolation for
Core0 from the CoreUs and that Core(’s local memory is accessible only to
itself.
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e Because the RP1 loads a system image from a remote server via the network
in our research, the remote server is managed with good security, and the
network connection and hardware firmware are trustworthy. Therefore the
firmware can receive a correct system image and boot to a normal running

state.

e The secure pager and the monitor OS are designed well to avoid not malice.

We do not assume other hardware features in our architecture that may help
to construct our architecture or improve the performance. For example, if the
hardware can provide read, write and execution protection on a memory area for
assigned cores, we can assign that CoreUs cannot read, write and execute any
content in the swap content region. In this way, we do not need to concern the
security of the swap content and this will improve the performance because there
only needs a pure paging mechanism without any other protection methods. In
our research, we do not concern these features and try to construct our system

with the basic hardware assumptions.

Based on these basic assumptions, we can ensure that our system can boot
to the normal state and eliminate hardware attacks and vulnerabilities that exist
during the image loading and network connection. Our discussion focuses on the
runtime security of our architecture. We divide the security of this architecture
into three parts: the security of the target OS, the security of the monitor OS

and the security of the secure pager.

3.3.2 Security of the Target OS

In our system, the vulnerable component is the target OS, which faces many
attacks in a real computing environment and may be infected. There are already
many form of malware that can attack OSs to control them or steal sensitive
information. Rootkits are a popular method for attackers and are easy to obtain.
Our method can easily be used for protection against these rootkits if we know
their mechanisms; however, we cannot foresee future rootkits or other malware

technologies and the rootkit checker may become obsolete. Therefore, there is
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a tendency to adapt a generic method for protecting the target OS instead of
specific rules to protect against individual rootkits. The generic methods monitor
the target OS in a secure environment over a long period and obtain necessary
information representing the integrity of the target OS during runtime. This
information can also be used in our architecture to ensure the correct execution of
the target OS, which is a more broadly applicable method for monitoring different
OSs in various platforms. It is important to recall that it takes a long time to
obtain enough data to represent the integrity of a running OS. Furthermore,
when more data are required, the monitoring time is increased substantially,
which adds to the time-cost of development. It may be more efficient to combine
rootkit detection for existing rootkits and integrity checking for future unknown
vulnerabilities to maintain a reasonable development time. In our work, we refer

to both of these methods as integrity checking within an integrity checker.

The monitor OS checks the shared memory content used by the target OS to
perform the integrity checking. Thus a concrete rootkit detector or the generic
method to check the integrity can be applied in our architecture. We consider
that checking technologies based on shared memory inspection are suitable for the
integrity checker to monitor the target OS. However, in our architecture, we do not
provide a secure hardware mechanism for Core0 to obtain the register information
of other CoreUs, and this is a natural limitation for the integrity checker. If the
malware infects the system via the internal registers, the integrity checker is
restricted to detecting this kind of attacks in our architecture. We can modify
the target OS to dump the internal registers into the shared memory during
runtime, but we cannot make sure that the infected target OS can complete this
task correctly. Therefore, it is difficult to provide an effective method for Core0 to
obtain the correct information about other cores’ registers. However, an integrity
checker based on hypervisors can acquire this information because hypervisors

can access the underlying hardware, including each core in the processor.

Although the security of this part is related to users, it is not the most critical
part in our architecture. Even if the target OS is infected, the integrity checker
is still monitoring it and may detect that the target OS is no longer trustful. The

integrity checker would do some related operations based on the functionalities
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equipped on it. It should firstly try to recover the target OS to the normal state
and then if it cannot resume the target OS from a fatal or unknown security

vulnerability, it would reboot the target OS to avoid this kind of attacks.

3.3.3 Security of the Secure Pager

Because of the secure pager is located permanently in the local memory, its se-
curity depends on the hardware architecture in the RP1. We assume that one
core in the RP1 is selected as Core0 and can be isolated well from the other cores
with self-only-accessible local memory. As long as the local memory cannot be
accessed by the other cores, the secure pager can implement a completely secure

paging mechanism to run the monitor OS.

Although the security of this part is most important in our architecture, be-
cause the hardware assumptions can assure the security of this part, we do not

need to concern about it in our research.

3.3.4 Security of the Monitor OS

During the normal running, the target OS should never access the shared memory
space used to store the swap content of the monitor OS. However, the target OS
can access this part, and may be infected with instructions to read or modify the
swap content. Read attacks are less critical in our architecture because they reveal
the messages about the monitor OS but do not influence its normal running. The
write attacks are much worse than read attacks in our system that may disturb
the running of the monitor OS. The monitor OS would execute infected pages for
the detection tools. However, both of these attacks are dangerous for the security
of the monitor OS.

The secure pager is used to detect these attacks. The encryption on the swap
content in the shared memory is exploited in the secure pager, and therefore, even
if these pages are read, the target OS cannot acquire any meaningful information.
However, the secure pager can check the integrity of the swap content to be loaded

into the local memory. If write attacks occur, the secure pager can detect them
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and reboot the system to prevent the infected monitor OS from continuing to run.
Our method can ensure that only the correct monitor OS (the integrity checker)
can run in the Core(’s local memory and the integrity checker can monitor the

state of the target system.

The security of this part is also very important in our architecture. Although
the read attacks cannot disturb the normal running of the integrity checker, once
the write attacks occur, the integrity checker may be unable to be executed cor-
rectly in our system. This violates the basic feature of our secure architecture,
and the integrity checker should only be running in a normal state. We can try
to place multiple backup images in the shared memory to restore the modified
content. However, it is difficult to make sure that these backup images are not
attacked by the target OS. Under this situation, we cannot 100% recover the
integrity checker. We prefer to reboot the whole system to ensure the correct
execution of the integrity checker, which is the basic feature of our secure archi-

tecture to improve the overall security.

After the system image is loaded into the shared memory for booting, the
bootloader inside of it loads the secure pager into Core(’s local memory and
loads the monitor OS and the target OS into the shared memory. It then transfers
control to Core0 to boot up the secure pager to execute the monitor OS. After
completing the boot process of the monitor OS, Core0 informs CoreUs to begin
running the target OS. During runtime, the monitor OS runs the integrity checker
to monitor the state of the target OS and the target OS runs various applications
to meet user requirements. If the integrity checker finds that the target OS is
infected, it handles this vulnerability depending on the functionalities equipped
to it. If the infected target OS has modified the swap content of the monitor OS,
we consider the root trust of our system to be compromised. The secure pager

would reboot the entire platform to avoid this type of attack.

3.4 Implementation

In this section, we first introduce the implementation environment of our sys-

tem. The integrity checking, execution and automatic update of the integrity
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checker are then illustrated. Finally, the system architecture using two schemes

is proposed.

3.4.1 Implementation Environment

Because we focus on applying our architecture to embedded systems, possibly
including real-time systems, it is better to use a passive integrity checker without
disturbing the normal running of the target OS to reduce the overhead. We
choose an integrity checker that can check the entries of the Linux system call
table and detect the hide_task rootkit that uses the DKOM (Direct Kernel Object

Manipulation) mechanism to infect the kernel data [59].

We select a Unix-like OS called xv6! as the monitor OS. Xv6, developed at
M.L.T., is very simple and provide a virtual memory functionality. It was origi-
nally written for the x86 architecture, so we ported it to an SH-4A architecture

for our research. To port xv6, several modifications were required.

e The boot loader should be removed because, unlike the x86 architecture,
the RP1 can load a kernel directly to a fixed address to boot. There is no
BIOS in the SH-4A architecture. The firmware will perform the primary
initialization of the RP1 and load the system image to the shared memory,

and the RP1 will execute this image to boot our system.

e The processor initiation and context switch must be modified. The assembly
used for the processor initialization and the context switch is architecture
specific, and they must be reimplemented using the SuperH assembly to

reimplement these parts.

e Exception and interrupt handlers need to be added at specific addresses.
The exception and interrupt handlers in SH-4A are assigned to locations at
specific fixed addresses; therefore, they must be moved to these addresses.
These parts must also be rewritten with a specific assembly to run on the
SH-4A architecture

1Xv6, a simple Unix-like teaching operating system.
http://pdos.csail.mit.edu/6.828/2012/xv6.html.
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e Because RP1 does not support IDE devices, the IDE driver is removed from
the kernel, and the file system is modified to use other types of devices. We
select a RAM file system (fs.img) that is attached to the kernel to solve
this problem. The output function cprintf() needs to be modified to use

the SCIF port, a serial controller, to print debug messages.

e Xv6 is intended to run on one core of the processor. Removing the multi-

core support makes the code simpler and easier to control.

After porting, we divide xv6 into two parts: the kernel and the RAM file system.
We prefer not to use the same storage as the target OS to narrow the vulnerable
surface. xv6 uses 1 Mbytes of the shared memory space to store the kernel and
the RAM file system, and another 1 Mbytes space to store the swap content of

the user processes.

We choose an embedded Linux with kernel version 2.6.16 as the target OS
because embedded Linux supports the SH-4A processor architecture. The em-
bedded Linux uses 64 Mbytes memory space in the RP1 board and a network
file system exported by a remote server. The embedded Linux requires minimal
modifications to avoid using Core0 or touching the shared memory region that

stores the swap content of xv6.

We write a secure pager from scratch. It includes many functionalities such
as a paging mechanism, SHA1 hash computation, page table maintenance, page
fault handling, TLB setting, local memory management and other assisting func-
tions. The prototype implementation occupies less than 44 Kbytes in the local
memory, which contains a hash table of 10 Kbytes and the page tables for xv6.
The size of the secure pager may vary, as we may add more functions in the fu-
ture, or the configuration of the number of user process page tables may change.
However, we can make further optimizations and restrict the number and the size
of concurrently running user processes in xv6 to ensure that the size of the secure
pager remain acceptable for permanent location in the local memory. We next

provide a more detailed description of the code for the secure pager.

The secure pager contains many files with different functions. The number of
lines of code (LOC) of each file are shown in Table. 3.2. The code can be divided
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Table 3.2: LOC of files in the secure pager.

File LOC Function
kernel.S (assemble) 516 Exceptions and interrupt routing
exp.c 521  Exception handler (mainly TLB handler)
kalloc.c 87 Local memory space management
main.c 33 Boot the secure pager
print.c 213 Print out debug messages
proc.c 330 Log operations of user processes
put.c, scif.c 52 Scif interface driver
string.c 125 Memory copy function
dtu.c 37 DTU driver
mdb.c 242 MD5 hash mechanism
shal.c 228 SHAT1 hash mechanism
RSA.c 831 RSA algorithm
RC4.c 200 RC4 algorithm
h 1270 Head files for programs
Makefile 40 Make for the system image
Total 4804

into many types. The critical functions, including exception and interrupt system
routing (516 LOC), the TLB and exception handler (521 LOC), the encryption
and decryption mechanism (RSA and RC4,1031 LOC), hash function (SHA1 or
MD5, 242 or 228 LOC) and debug function add up to 4804 LOC. For comparison
with Kinebuchi’s research, we show the LOC from his research in Table. 3.3. His
paper does not give many details regarding the functions in his LLM architecture;
therefore, we can only compare the total code and the similar functionalities. The
total LOCs are on similar levels and a similar mechanism can be implemented
using an approximative number of LOC. We add more functionalities to enhance
the security of our system and extend the monitor functions during runtime, but
these codes can still be kept to a small size. To limit the size of the local memory,
we do not add too many functions to our secure pager, which may need to be
formally verified to be granted higher security. These codes are sufficient to meet

the requirements of our architecture.

The host machine is running Ubuntu 13.04 with a quad-core 12.66 GHz ntel
Core 2 processor 9400, 4 GB RAM and a 320 GB hard disk. We use the host
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Table 3.3: Code size in Kinebuchi’s research.

Types LOC
Change to xv6 404
Secure pager 592
SHA-1 539

OS loader 146

machine to compile the system boot image and complete the encryption part in

the automatic update.

3.4.1.1 Boot Mechanism

RP1 can directly load the system boot image file into an assigned address via
network from the remote host machine. When RP1 boots, firstly, the boot image
is loaded into a fixed address. Then the boot loader in the system image will
relocate the secure pager into the local memory and relocate xv6 and Linux into
shared memory. Linux does not boot until the secure pager starts to execute the

integrity checker. Finally, Linux starts to boot to run user applications.

During this procedure, firstly we assume that the host machine, which can be
managed well to ensure the security, and the RP1 firmware are trustworthy. The
communication between the host machine and RP1 can be protected by existing
technologies (not implemented in current work), such as SSL [71]. It is considered
that the boot image can be loaded into shared memory correctly. We also assume
that the only attacker is the vulnerable Linux. Because Linux does not start to
boot until the loading and the booting of the secure pager are completed, the
loading process of the secure pager is unable to be compromised by Linux. The
system can boot to the normal working state. In the following sections, we will

introduce functions of our system.

3.4.2 Integrity Verification of Integrity Checker

In this section, we propose how the integrity of the integrity checker is verified.

When the integrity checker is loaded into the local memory, the integrity needs
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to be verified whether the content is modified or not.

Hash algorithms are popular for integrity checking of digital content. They
are one-way mathematical algorithms that take an arbitrary length input and
produce a fixed length output string. A hash value of a fixed data segment is
unique, and it is almost impossible to find two different data strings with the
same value. Besides, the hash values themselves are small and take little space

in the local memory. It is suitable for integrity verification in our system.

We apply MD5 and SHA1 hash algorithms in the system. MD5 is not so
robust in [73]. However, we use MD5 here to compare with SHA1 that has a

more complex algorithm and better security.

The mechanism of the checking procedure shown in Fig. 3.9 is introduced as

following:

e Firstly, hash values of all the pages of the integrity checker are calculated by
the secure pager and stored into the hash table that exists permanently in
the local memory. Then, the integrity checker is encrypted, and the secure

pager starts to execlute it.

e When a page of the integrity checker is needed for running, it will firstly be
copied into the local memory and decrypted. The hash value of this page
is calculated again by the secure pager, and compared to the value stored
in the hash table. If they are different, it shows that the integrity checker
is compromised, and the whole system needs to reboot to ensure that the
system is running in a trustworthy state. Otherwise, the secure pager will

set the TLB mapping for executing the integrity checker.

e When all the space in the local memory is used and there needs to load
in a page for the integrity checker, the secure pager will choose a page in
the local memory and swap it out. Because this page’s content may change
during the running of the integrity checker after it is loaded into the local
memory and in this case, it is different from the original page stored in
shared memory. The secure pager will recalculate the hash value, update

the value stored in the hash table, encrypt this page, copy it back into
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Figure 3.9: Integrity checking.

shared memory and free this page. Then, the needed page can be loaded

into the local memory as the previous step.

3.4.3 Execution of Integrity Checker

The integrity checker can be executed as a binary file with the secure pager at
kernel space. However, it needs to add many extra features to the secure pager

if we want to manage the integrity checker, such as sleeping, exiting, or running
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multiple monitoring instances.

To solve this problem, we use xv6 [3] as the monitor OS to execute the integrity
checker as a user process. Xv6 can provide some standard APIs and virtual
memory functionality. With xv6, we can develop or optimize an integrity checker
conveniently, and it is also easy to manage or execute multiple instances. Xv6,
which is originally developed for the x86 architecture, is ported to running on
SH-4A architecture for our implementation. After porting, xv6 can be divided
into two parts: a kernel part (very small) and a RAM file system part (fs.img,

needs to be much larger) that contains the integrity checker and other files.

3.4.4 Automatic Update of Integrity Checker

We can extend our system freely by the automatic update function implemented

in the secure pager, such as making optimizations or adding new features.

However, we intend to use Linux as the target OS for loading the update file to
shared memory, from where the secure pager can acquire it, thus the update file
may reveal information to Linux. To avoid this problem, we use the encryption
method, and the decryption key is only stored in the secure pager. The update
file is encrypted in the remote machine before Linux touches it, therefore Linux

cannot get the decrypted content of the update file.

However, the encryption method only ensures that Linux that does not have
the decryption key cannot get the decrypted content, but the encrypted content
may be modified. The modified part can still be decrypted, but into meaningless
data. In order to execute the correct update file, the integrity of the update file
needs to be verified. Hash values of the update file, which are calculated before
encryption, are used for validating the integrity during the update process. The
hash values are prefixed to the update file to compose a new update file. With

these steps, we can update the integrity checker in a secure manner.

A safe update procedure shown in Fig. 3.10 is explained as following:

e Host machine: Hash values of every page of the update file are calculated

in the host machine. The hash values are added as a prefix to the update
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Figure 3.10: Automatic update.

file. Then the new update file is encrypted and copied into the Linux file

system.

e Linux: The encrypted file is loaded into shared memory, and flags are set

to show loading states.

e Secure pager: The prefixed part is firstly decrypted into the local memory

to get the hash values. Then, the remaining part of the encrypted file is

decrypted into the local memory in 1 or 2 pages at one time. The secure

pager calculates hash values of these pages and compares them with the

prefixed ones. If the hash values are equal, this part can be written to a

new file in the xv6 RAM file system. Otherwise, the secure pager will ignore

this update, delete the new file and continue to run the original integrity

checker. This procedure is repeated with the integrity verification until the

whole new update file is written into the file system. Then the update

file will be executed to replace the original one or parallel with it. Since
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the update file can be divided into small parts for decryption, this method
can also be applied to large integrity checkers, even larger than the local

memory.

During the automatic update process, how the decryption key is stored is the
key problem to keep the security. The decryption key is stored in the remote
host machine, and is inserted into the secure pager image when the host machine
compiles the system boot image, which contains the secure pager image. We
assume that the host machine, which can be well managed, and the RP1 firmware
is trustworthy, hence Linux is unable to attack the host machine to get the key.
RP1 can load the system boot image from the remote host machine via network.
The decryption key is also stored in the system boot image when it is loaded
into shared memory. This region will be swiped by the secure pager before Linux
boots. During running, the key is only stored in the secure pager in the local
memory, and Linux cannot access it. With these steps, Linux cannot get any

information about the decryption key.

We should remind that this procedure can only ensure that only the correct
update file can be applied in the monitor OS. We do not equip the mechanism
to ensure that this update is successful. We consider that the system manager
or maintainer should take this responsibility to confirm that the system has been
running the update file. If the update procedure failed with the cracked update
file, the secure pager can alarm this fail but cannot obtain any information about
the update file or redo the update. The system manager or maintainer should try
to restart the update procedure and make sure that the latest integrity checker

is running in our system.

We can adopt two ways to update the integrity checker: single integrity
checker pattern (S-pattern) and multiple integrity checkers pattern (M-pattern).
The S-pattern only runs one integrity checker in the system. Therefore, the space
in the local memory used by the integrity checker is small, which is valuable due
to the size of the local memory. However, the update introduces an interruption
between ending the old integrity checker and starting the new one. The halt of
the integrity checker may be a security hole in our system. On the other hand, the

M-pattern executes multiple integrity checkers at the same time, which occupy
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more space in the local memory or need more execution time for page swaps.
The M-pattern is suitable for adding new functions to the old integrity checker
without disturbing the monitoring functions. However, we have to replace the
old integrity checker if there are some bugs that make it not viable for monitoring
Linux. The ideal style could be the mixture of the S-pattern and the M-pattern.
If the old integrity checker needs to be replaced, the S-pattern is used, and if
only new functions need to be added into the system, it is preferred to choose the

M-pattern.

However, because of the small local memory space in the development board,
the S-pattern is chosen to update the integrity checker in our system. We will

introduce system schemes in the following section.

3.4.5 System Architecture

In our research, we propose two main system schemes. Firstly, we implement
the system architecture with an nature-straight scheme. However, we intend to
find some manners to improve the performance of the original scheme. We call
the modified one the optimized scheme. The details of these two schemes will be

introduced in the following part.

3.4.5.1 Original Scheme

The original scheme is shown in Fig. 3.11. When the system starts, the secure
pager is relocated into the local memory, and xv6 and Linux are relocated into
shared memory. The secure pager firstly calculates hash values of all the pages
of xv6, stores them into the hash table and runs xv6 to execute the integrity
checker. After the integrity checker starts, Linux will start to provide applications
for users. The integrity checker monitors the state of Linux, and its integrity is
checked by the secure pager. At the same time, the secure pager checks the flags
whether there needs to update the integrity checker. If the integrity checker is
compromised, the secure pager can detect it and reboot to restore the whole
system. With the integrity verification and the automatic update of the integrity

checker, it can provide a reliable system with extensibility.
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Figure 3.11: Original scheme.

3.4.5.2 Optimized Scheme

Based on the original scheme, we propose an optimized scheme with changes of
the xv6 relocation shown in Fig. 3.12. As mentioned above, we know that xv6 is
divided into a kernel part (small) and a RAM file system part (fs.img, comparable
large). Therefore, we place the kernel part permanently in the local memory and
only place the fs.img in shared memory. When the system boots, the secure pager
and the xv6 kernel are loaded into the local memory, and the fs.img is relocated

into shared memory. Then it jumps to run the secure pager. The secure pager
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Figure 3.12: Optimized scheme.

only calculates hash values of the fs.img, and starts to run xv6. Page swaps
occur only when some content stored in the fs.img needs to be used. Because the
xv6 kernel would occupy part of the local memory, the space used for executing
the integrity checker decreases. We consider that this method may reduce the
overhead by lowering the number of page swaps between shared memory and the

local memory. We will discuss more details in the next section.
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3.5 Evaluation

In this section, we will introduce system configurations for the evaluation firstly.
Then, we evaluate whether our system causes influence to the performance of
Linux. Functions of our system are also verified. After this, decryption perfor-
mance in the automatic update and overhead that may occur in the secure pager

are analyzed. Finally, a conclusion is presented for this section.

3.5.1 System Configuration

In order to evaluate our system, we use 3 kinds of configurations shown in
Fig. 3.13. In (A), Linux runs on 3 cores and xv6 runs on the other one core’s local
memory with the original scheme; in (B), Linux runs on 3 cores and xv6 runs
in the other one core’s local memory with the optimized scheme; in (C), there is

only a Linux running on 3 cores.

Because the technology of the integrity checker is not the focus of this paper,
we only apply limited functions into it as a sample integrity checker that can
monitor the state of the embedded Linux. We consider that this is enough to
evaluate our architecture effectively. We choose an integrity checker, which can
check the kernel system call table of Linux and the hide_task rootkit, and calculate
the execution time of the integrity checker to evaluate the overhead. The size of
the integrity checker is less than 8 Kbytes, the size of the xv6 kernel is smaller
than 64 Kbytes and the hash algorithm is SHAT.

We evaluated functions and the performance of our system with these configu-
rations. Firstly, we want to make sure whether our system causes heavy overhead
to the Linux, which is the most important in our architecture because it relates

firmly to users that operate directly in the Linux.
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Figure 3.13: System configuration.
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Figure 3.14: Dhry2reg results (10° loops).
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Figure 3.15: Whetstone results (MWIPS).

We verified whether the performance of Linux was influenced by our architecture.
We ran several test tools from Unixbench [28] in configuration (A) and configu-
ration (C) to evaluate the performance of Linux. Three tools were chosen from
Unixbench: Dhrystone 2 using registers variables (Dhry2reg), Double-Precision
Whetstone (Whetstone) and System Call Overhead (Syscall). These three tools
ran 10 times with a single task and 5 times with 4 parallel tasks. The average

scores are shown in Fig. 3.14, Fig. 3.15, Fig. 3.16.

Then we run the same tools in configuration (B) to make more verification
and the result is shown in Fig. 3.17, Fig. 3.18, Fig. 3.19. It is predictable that we
did not obtain results that are significantly different from results in configuration

(A) and (C). The difference among them is minimal.

From these figures, we can argue that the performance of Linux is minimally
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Figure 3.16: Syscall results (10° loops).
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Figure 3.17: Dhry2reg results (10° loops).
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Figure 3.18: Whetstone results (MWIPS).

influenced by our architecture. We consider that the influence is from the passive
integrity checker, which would occupy memory bus during runtime. The secure
pager may increase the execution time of the integrity checker, which may lead to
more bus time occupation. However, because the integrity checker does not use
a core shared with Linux, it does not block the running of Linux. As the results

show, the secure pager have minimal influence on the performance of Linux.
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Syscall (1 task) Syscall (4 tasks)

30 28.672 28.672 30
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Figure 3.19: Syscall results (10° loops).

Because the difference between these configurations is very small, we consider
that the random performance variation on the platform may have influence on
it. This illustrates that a light integrity checker does not have a significant larger
influence on the performance of Linux, which should be minimal in the embedded

environments.

3.5.3 Integrity Check Function

We ran the integrity checker in configuration (A) and loaded a kernel module in
Linux that could crack the content of xv6 stored in shared memory. When the
modified content needed to be loaded into the local memory, the secure pager

could detect these changes, print out error messages and reboot the system.

The secure pager can ensure the reliability of the integrity checker by veri-
fying the integrity when Linux runs. The whole reliability of the system is also

improved.

3.5.4 Automatic Update Function

In order to validate the automatic update function, firstly we ran an integrity
checker that could only check the kernel system call table, and then we tried to
update it to another one that added the function of checking the hide_task rootkit.
We used a kernel module in Linux that could crack the content of the encrypted

update file, and used another kernel module for hiding a task as malware.
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Table 3.4: Decryption time of update file.

Encryption Mechanism  Decryption Time

Simple 3.3 ms
DES 748.6 ms
RSA More Than 25 Mins

When the first module was not loaded in our experiment, the integrity checker
could be updated normally, and it could detect the hide_task rootkit that existed
in Linux to show the successful update. When we did load this module in our
experiment, the secure pager could detect the modification on the encrypted
update file, print out error messages, reject the update and continue to execute

the original integrity checker.

Since the decryption key is only stored in the secure pager and the prefixed
hash values can be utilized to verify the integrity of the update file, the secure
pager only allows the correct file to be updated. This function provides an easy

and secure manner to update the integrity checker.

3.5.5 Decryption Performance of Update File

Since the encryption is able to be done in the host machine that has much better
performance than embedded processors and users care nothing about the encryp-
tion time, we focused on the decryption performance in our system. We used 3
encryption mechanisms separately in configuration (A): RSA, DES and a simple
encryption mechanism, which only divides every page of the integrity checker
into 2 parts and exchanges them. Although the simple mechanism may reveal
messages about the update file, it is used as a sample to analyze the influence
of the encryption method by comparing to other mechanisms. DES mechanism
is less complex than RSA. However, both of them is popular in today’s security
applications. We encrypted the same integrity checker with these 3 mechanisms
in the host machine and did the update in RP1. The time listed in Table. 3.4

shows the decryption performance.

According to Table. 3.4, it shows that RSA takes much more time than DES
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Table 3.5: Read attack protection overhead (ms).

Encryption Mechanism Execution Time
None 94.3
RC4 172.9

and the simple encryption mechanism. This complex encryption mechanism may
be unusable on embedded platforms for the limited performance of embedded
processors. The performance of the simple encryption mechanism is very good
but with the vulnerability of revealing information. The DES mechanism is a
viable method in our platform. We should remind that this overhead only occurs
when the integrity checker needs to be updated, does not influence the perfor-
mance of the integrity checker during runtime and cannot be noticed by users.
In real applications, a proper encryption mechanism is required to be chosen to
suit configuration of embedded platforms to obtain a good balance between the

security and the performance.

3.5.6 Read Attacks Protection Overhead

We can use encryption methods on the part of xv6 stored in shared memory
to avoid "read attacks”. However, the encryption and the decryption of this
part should cause overhead to the performance of the integrity checker and this
overhead influences the integrity checker continually. According to Table. 3.4,
complex encryption methods are unsuitable for embedded systems. We chose
an encryption mechanism, stream cipher RC4 [45], to evaluate the overhead in
configuration (A), and computed the execution time of the integrity checker with

or without RC4 encryption.

The results shown in Table. 3.5 illustrate that this encryption mechanism in-
troduces a reasonable overhead during the running of the integrity checker. The
encryption mechanism should be applied depending on the hardware configura-

tion to obtain a reasonable tradeoff between the security and the performance.
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Table 3.6: Integrity checker evaluation.

Configuration | Execution Time (ms) Page Swaps (times)
A 94.3 22
B 4.2 0

3.5.7 Comparison between Original and Optimized Schemes

In order to compare the original scheme and the optimized scheme, we ran the
same integrity checker in configuration (A) and configuration (B), and the exe-

cution time of the integrity checker was calculated shown in Table. 3.6.

From Table. 3.6, it indicates that the execution time in configuration (B) is
much shorter than in configuration (A) and there are 22 page swaps in configura-
tion (A). We consider that the number of page swaps incurs this large difference.
In the original scheme, both the fs.img (containing the integrity checker) and the
xv6 kernel are stored in the shared memory. When the integrity checker uses
system calls, pages of the xv6 kernel are swapped in and out to run the integrity
checker. Due to page copy and hash calculation during the page swap, the speed
of the integrity checker in the original scheme is slow. However, in the optimized
scheme, the xv6 kernel is located in the local memory permanently. Even if sys-
tem calls occur, no pages need to be swapped, and the speed is not slowed as the
original scheme. Then, the overhead of the page copy and the hash calculation

in our system were evaluated.

Firstly, we used a hardware method to copy pages between the shared memory
and the local memory with the data transfer unit (DTU). Compared to memory
copy using software instructions, copying pages with DTU should be faster. After
we applied both methods in configuration (A), we obtained the execution time
of the integrity checker in Table. 3.7 and the copy time of each page (22 pages)
is 0.5 ms (software method) or 0.005 ms (DTU). It shows that the DTU method
is much faster than the software method, and the memory copy takes much time

during the execution of the integrity checker.

Secondly, we used another hash algorithm MD5 in the secure pager with
simpler complexity and less computing calculation than SHA1. We applied these

o8



3.5 Evaluation

Table 3.7: Page copy overhead evaluation (ms).

Copy Type | Execution Time Per Page (22 pages)
Software 94.3 0.5
DTU 83.7 0.005

Table 3.8: Hash calculation overhead evaluation (ms).

Hash Algorithm | Execution Time Per Page (22 pages)
SHA1 83.7 3.4
MD5 33.8 1.1

two methods to the secure pager in configuration (A) to get the execution time
of the integrity checker shown in Table. 3.8 and the computing time of each page
(22 pages) is 3.4 ms (SHA1) or 1.1 ms (MDb5). We can find that the computing
time with MD5 is much less than RSA, and the hash calculation occupies most
execution time of the integrity checker. Although MD?3 is not so robust in today’s
applications, the results show that a proper hash mechanism needs to be selected

to provide a good tradeoff between the security and the performance.

We then introduce a large integrity checker into our system. To reduce the
page tables required by this integrity checker, we split it into many smaller
instances and execute these instances sequentially in our system, as shown in
Fig. 3.20. We do not build a true large integrity checker, but we instead as-
sume that the multiple integrity checkers used in our evaluation contains a large
integrity checker. We run these instances sequentially in (A) and (B) for 20
times, equivalent to executing a large integrity checker of 160 Kbytes, and we

only allowed one instance to be run concurrently.

The execution time of the integrity checker consists of two main parts: the
loading time in which xv6 forks the user process and loads the small instances
into the local memory and the execution time of the small instances, which is the
same as in the above evaluations. We should recall that the loading time is part
of the above evaluations. However, it occurs only once during the loading of the
integrity checker, and the integrity checker performs its tasks repeatedly without
reloading its own content. Therefore, we eliminated the loading time from the

previous evaluations. In this evaluation, the loading time would be much larger
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Figure 3.20: Split large integrity checkers.

because every time an instance is executed, the content of the instance must be
loaded. We calculated the total execution time from the start to the end of the
execution as well as the execution time of each single instance of running the

checking tasks.

The total execution time of the large integrity checker is shown in Table. 3.9
for configuration (A) and in Table. 3.10 in configuration (B). The execution time
for each instance of running the checking tasks is shown in Table. 3.11 for con-
figuration (A) and in Table. 3.12 for configuration (B).

Regarding the total execution time, configuration (B) is much faster than
configuration (A) due to the much smaller number of page swaps, which influences
the performance of an instance significantly. Based on the execution time for each
individual instance, we argue that in configuration (A), the pages are not loaded
according to a fixed pattern for each instance or many instances. The execution
time varies from 12.4 ms to 86.1 ms and the number of page swaps varies from 4 to
22. The average execution time is 53.8 ms, and the average number of page swaps
is 14.1. In contrast, in configuration (B), the execution time of each instance is

constant (4.2 ms) with a single 8 Kbytes integrity checker.

The secure pager loads into the required pages for the instance. In configu-
ration (A), because the pages in the local memory are swapped out randomly,
the number of page swaps is flexible for different instances, which increase the

overhead. In configuration (B), it is unsurprising that the execution time of each
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Table 3.9: Total execution time of the large integrity checker in configuration

(A).
Execution Time (ms)
Total 5882.4
Average 294.1

Table 3.10: Total execution time of the large integrity checker in configuration

(B).

Execution Time (ms)
Total 269.5
Average 13.5

Table 3.11: Single instance execution time in configuration (A).

Time | Execution Time (ms) Page Swap (times)
1 53.4 14
2 53.4 14
3 69.8 18
4 20.6 6
5 86.1 22
6 37.0 10
7 37.0 10
8 78.0 20
9 20.6 6
10 77.9 20
11 78.0 20
12 12.5 4
13 86.1 22
14 28.8 8
15 45.2 12
16 86.1 22
17 45.2 12
18 86.1 22
19 28.8 8
20 45.2 12

Average 53.8 14.1

instance remains almost the same. During the runtime of the integrity checker

in configuration (B), no page swaps are required, and the performance of the
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Table 3.12: Single instance execution time in configuration (B).

Time | Execution Time (ms) Page Swap (times)
1 4.2 0
2 4.2 0
3 4.2 0
4 4.2 0
) 4.2 0
16 4.2 0
17 4.2 0
18 4.2 0
19 4.2 0
20 4.2 0
Average 4.2 0

integrity checker is not affected.

When we just want to run a small integrity checker, we only need to load in it
for the first time and execute it circularly. However, if we execute a large integrity
checker by running small instances, we must load in one instance, execute it, exit,
clear its memory space and begin to load in the next instance. Each instance
requires such a procedure, therefore, the execution of the instance only takes
part of the whole execution time and other parts consume most part of the whole
execution time. We can find that this method brings in great overhead to the
performance of the integrity checker. However, with this method, our architecture

can also be applied on large integrity checkers to extend the application.

3.5.8 Future Analysis of the Influence of the Secure Pager

In the optimized scheme, we found that placing the kernel part entirely in the local
memory could avoid page swaps during the runtime of the integrity checker, which
improves the performance of our architecture significantly. We then perform a
more detailed analysis to improve the performance of the integrity checker. We
made some modifications on configuration (B), which could only place .start and

.bss sections permanently into the local memory and other parts into the shared
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Figure 3.21: kernel.o is located permanently in local memory in configuration

(A).

memory, as shown in Fig. 3.21. We then calculated the execution time for each

instance and for the large integrity checker shown in Table. 3.13 and Table. 3.14.

We can find that the execution speed is much slower in this modification than
in configuration (B) and similar to configuration (A). In fact, this system config-
uration is more similar to configuration (A) than to configuration (B). Therefore,
the page-swap situation is somewhat similar to the situation in configuration (A).
However, the overall time required by the integrity checker is much slower than

in configuration (B) and still much faster than in configuration (A).

Because kernel.o contains the critical system call route and interrupt handler
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Table 3.13: Total execution time of the large integrity checker with kernel.o
located in local memory in configuration (A).

Execution Time (ms)
Total 761.5
Average 38.1

Table 3.14: Single instance execution time with proc.o located in local memory.

Time | Execution Time (ms)
1 85.0
2 85.0
3 85.0
4 85.0
5 85.0
16 85.0
17 85.0
18 85.0
19 85.0
20 85.0
Average 85.0

route, it can help reduce the number of page swaps during the loading of the
instances if it is located in the local memory. Therefore, the total execution time
is faster in this configuration than it is in configuration (A). However, this change
alone does not influence the page swap situation significantly during the runtime

of each instance, and thus their execution times are similar to configuration (A).

Then, we moved the proc.o, which completed the operations regarding the user
processes, such as scheduling, sleeping, waking and waiting, into the local mem-
ory, as shown in Fig. 3.22, and recalculated the execution time of each instances

and the large integrity checker.

The results in Table. 3.15 and Table. 3.16 show that the execution time of each
instances is 4.2 ms, which is nearly equal to the execution time in configuration
(B), and indicates that during no page swap is needed during the execution of
each instance. These results indicate that even small changes to the kernel may

change the page swap situation during the execution of each instances. However,
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Figure 3.22: Add proc.o into local memory.
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the total execution time of the integrity checker is similar (764.5 ms and 764.8
ms) to the previous evaluation, which was configured with only kernel.o located
in the local memory, thus showing that even if the number of page swaps for
each instances is greatly reduced, the number of page swaps during the execution
of the whole integrity checker is changed minimally. This evaluation shows that

modifications to the kernel relocation are sensitive and the effect is difficult to

Next, we performed some similar evaluations with the relocation of the kernel
of xv6. One case involved placing console.o into the local memory together with

kernel.o, as shown in Fig. 3.23, and another added scif.o into the local memory, as
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Table 3.15: Total execution time of the large integrity checker with proc.o located
in local memory.

Execution Time (ms)
Total 767.8
Average 38.4

Table 3.16: Single instance execution time with kernel.o located in local memory.

Time | Execution Time (ms)
1 4.2
2 4.2
3 4.2
4 4.2
) 4.2
16 4.2
17 4.2
18 4.2
19 4.2
20 4.2
Average 4.2

Table 3.17: Total execution time of the large integrity checker with console.o or
console.o + scif.o located in local memory.

Execution Time (ms) | console.o console.o + scif.o
Total 891.0 884.4
Average 44.6 42.2

shown in Fig. 3.24. The execution time for each instance and the large integrity
checker were calculated for these two cases, and the results are shown in the
Table. 3.17 and Table. 3.18.

The execution times of each instances are a little slower than in configuration
(B); only a few page swaps are needed during the runtime of each instance.
However, we find that the total execution time is not changed according to a
fixed rule. Adding scif.o can slightly reduce the execution time of the whole
integrity checker, but both configurations take longer than configuration that

only places kernel.o into the local memory.
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Figure 3.23: Add console.o into local memory.

The page usage situation during the loading and execution of the instances can
be very complex. Therefore, placing only one .o file into the local memory may
reduce the number of page swaps during the runtime of each instance, but it does
not significantly influence the page usage situation throughout the execution of
the large integrity checker. Conversely, the .o occupies space in the local memory
and would therefore reduce the space in the local memory for the content of the
instances. Especially in our evaluations, because we manage the local memory
using 4 Kbytes pages, the .o still uses a full page even if it is smaller than 4 Kbytes,
which would waste valuable local memory space. We argue that this issue also

contributes to the low speed of the integrity checker with small instances.
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Figure 3.24: Add console.o and scif.o into local memory.

To verify this reason. we placed random .o files into the local memory and
obtained a situation that significantly harmed the overall performance of the
large integrity checker. This special configuration is shown in Fig. 3.25, with
ide.o exec.o and scif.o placed into the local memory, and the execution time
of each instances and the entire integrity checker are shown in Table. 3.20 and
Table. 3.19. The total execution time of the integrity checker is much slower
than in the other configurations, which shows that relocating the xv6 kernel does
not always speed up the execution of each instances, and the entire integrity
checker. When we want to load parts of the xv6 kernel into the local memory

and never swap out, we should consider about the tradeoff between the space
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Table 3.18: Single instance execution time with console.o or console.o + scif.o
located in local memory.

Execution Time (ms) | console.o console.o + scif.o
1 5.0 5.0
2 5.0 5.0
3 5.0 5.0
4 5.0 5.0
5 5.0 5.0
16 5.0 5.0
17 5.0 5.0
18 5.0 5.0
19 5.0 5.0
20 5.0 5.0
Average 5.0 5.0

Table 3.19: Total execution time of the large integrity checker with a bad case.

Execution Time (ms)
Total 24965.6
Average 1248.3

for storing the swap content and the space for storing the permanent content
of the kernel. We should place the most commonly used pages into the local
memory, which reduces the number of page swaps during the whole execution
or the runtime of the instances. This type of kernel relocation can improve the
execution speed of each instances, but may not reduce the number of page swaps
during the overall execution of the integrity checker. We also predict that if
the checking functions in the integrity checker changes, the page swap situation
may also change significantly during the running of the integrity checker. Once
we make some optimizations on the execution of the integrity checker, careful
experiments should be performed to verify the improvement in the performance.
A complex kernel execution situation may incur some unexpected page swaps

that harm the performance optimization of our configuration.

Next, we examined how the size of the spare space in the local memory in-

fluences the integrity checker. We reduced the spare space in the local memory
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Figure 3.25: A bad case of relocation of the kernel.

for swapping in the integrity checker in configuration (A) with a single integrity
checker. Initially, there was 76 Kbytes (19 pages) of space in the local memory
to execute the integrity checker. We reduced this value in increments of 4 Kbytes
(1 page) and calculated the execution time of the integrity checker. The results
are shown in the Table. 3.21.

We can find that when the spare space is reduced from 19 pages to 18 or 17
pages, the execution time of the integrity checker does not change very much,
but remains in a stable state throughtout the runtime of the integrity checker.
However, when the number of the spare pages is reduced to 15, the execution

time of the integrity checker rises to a hyperbolic value, which is not the same
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Table 3.20: Single instance execution time with a bad case.

Time | Execution Time (ms)
1 85.9
2 85.5
3 85.5
4 85.5
) 85.9
16 85.9
17 85.5
18 85.5
19 85.5
20 85.5
Average 85.5

level observed in the previous cases. We argue that the size of the spare space
in the local memory is not sensitive to the page swaps during the runtime of
the integrity checker. Up to a certain point, it can loads in the required pages
for the integrity checker, and maintain a similar execution time for the integrity
checker in a similar level. However, if the spare space in the local memory is
reduced sufficiently, the page swaps for the execution of the integrity checker
would increase enough to significantly influence the performance of the integrity
checker. In other words, if we can maintain the desired level of spare space in
the local memory, we can achieve an acceptable performance for the integrity
checker. If there is enough space in the local memory for the entire monitor
OS, the performance is optimal because there is no need for a paging mechanism
with a secure pager and there is no extra overhead during the runtime of the
integrity checker. However, the local memory is rarely this large. We still need
to determine that how to optimize the execution of an integrity checker for a

reasonable speed.

The page usage of an OS is very complex, and it is thus difficult to make
absolute judgments and rules on how to design an integrity checker within good
performance. Many elements can influence the execution of an integrity checker,

and one element can influence another during runtime. For example, we executed
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Table 3.21: Execution time in configuration (A) with reduction of spare space.

Time | 19 pages (ms) 18 pages (ms) 17 pages 16 pages (ms)
1 69.8 94.3 94.3 4810.8
2 94.3 94.3 94.3 4516.3
3 86.2 94.3 94.3 4516.3
4 86.2 94.3 94.3 4516.3
5 86.2 94.3 94.3 4516.3
6 94.3 94.3 94.3 4516.3
7 94.3 94.3 94.3 4516.3
16 94.3 94.3 94.3 4516.3
17 94.3 94.3 94.3 4516.3
18 94.3 94.3 94.3 4516.3
19 94.3 94.3 94.3 4516.3
20 94.3 94.3 94.3 4516.3
Average 91.7 94.3 94.3 4531.0

the integrity checker 1 times/s with a sleep() system call in configuration (A).
However, we also removed this system call and recalculated the execution time

of the integrity checker, as shown in Table. 3.22.

We find that the second time we execute the integrity checker, the execution
time becomes very different, and the integrity checker runs much faster with-
out sleeping. This result verifies that the sleep() function would swap out some
pages that are required during the runtime of the integrity checker. To execute
the integrity checker again, these pages must therefore be swapped into the lo-
cal memory, which reduces the performance of the integrity checker. Thus even
simple modifications to the integrity checker might significantly affect its perfor-

mance.

Finally, we wanted to find a way to optimize the performance of the integrity
checker. We tried to log the number of times that certain critical functions were
called during the runtime of the integrity checker. Through analysis of the xv6
kernel, it can be determined that some functions are called frequently during
runtime to perform certain actions such as file reading and loading or process
scheduling. We added counters to many functions to obtain the number of times

these functions were called during the runtime in configuration (A), as shown in

72



3.5 Evaluation

Table 3.22: Execution time in configuration (A) with or without a sleep() func-
tion.

Execution Time (ms) | with sleep() without sleep()
1 69.8 69.8
2 94.3 5.0
3 86.2 5.0
4 86.2 5.0
) 86.2 5.0
6 94.3 5.0
7 94.3 5.0
8 94.3 5.0
16 94.3 5.0
17 94.3 5.0
18 94.3 5.0
19 94.3 5.0
20 94.3 5.0
Average 91.7 8.24

Table. 3.23. Based on the results, we can determine which files are used more
frequently, and should therefore be permanently located in the local memory at a
higher privilege level. It can also be determined that a single integrity checker and
a large integrity checker with many instances differ differ greatly in the number

of times that many functions are called.

Two factors should be considered in this evaluation. First, the counters or
other debug codes may influence the page swaps during the runtime of the in-
tegrity checker; therefore, the performance of the integrity checker when we try
to obtain the counter number may not be accurate without these debug codes.
Second, as shown in Table. 3.23, the page usage situation may change greatly
when we redesign the integrity checker. Therefore we must perform this evalu-
ation every time we apply a new integrity checker for optimization. However,
for a specific integrity checker, the number of times that the functions are called
can help us determine which files are more frequently required by the integrity
checker and therefore should have a preferred placement in the local memory

without swapping out. This approach is more likely to improve the performance
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Table 3.23: Execution times of functions in configuration (A) (sample).

Function Name | File Name Integrity Checker Single Integrity Checker
With Instances
swich() proc.o 121 35
wait() proc.o 20 1
exec() exec.o 21 2
fork() proc.o 20 1
consolewrite() | console.o 1118 1118

ide_start() ide.o 378 36
yield() proc.o 5 0
sleep() proc.o 35 32
wakeup() proc.o 40 32
kill() proc.o 0 0
ezit() proc.o 20 1

of an integrity checker than it is to harm its execution.

We also consider another method of optimizing the execution of the integrity
checker; redesigning the monitor OS kernel. We can divide the kernel into many
pages and place files that contains corresponding functions into each page. We
prefer to place the most frequently required functions into one page so that the
integrity checker does not require other pages to be loaded into the local memory
for execution during runtime. However, this method has three issues. First, it is
difficult to make one file or the sum of multiple files exactly fit the size of one
page or several pages (4 Kbytes or 4*[N] Kbytes). This method would therefore
waste some spaces when the size of a file or files is not an exact multiple of 4
Kbytes. Second, substantial design effort is required. We have to consider the
size of the file when implementing the functions, which adds considerable extra
effort. Finally, if we want to add new functions or optimizations, the size handling
makes the process tedious with significant development time. We prefer not to
modify the monitor OS in ways that would require extensive design effort and
therefore consider this method to be unsuitable for a project that may experience

much nondeterminacy during development.

Based on the above evaluation, we can make some suggestions regarding how

to improve the performance of an integrity checker in the LLM architecture, in
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addition to using more powerful processors.

e Use system calls carefully in the integrity checker. The system calls access

kernel pages, which may incur page swaps.

e Place the most frequently used pages in the local memory and never swap
them out. This method can efficiently decrease the number of page swaps

and thus reduce overhead.

e Optimize the integrity checker based on an accurate understanding of the
page usage situation in the kernel. Not every attempt to optimize the
integrity checker has a positive effect on its performance of the integrity
checker. The page usage situation in the kernel is very complex; therefore,
an accurate understanding situation of the page usage plays as a key role

in any optimizations.

e Use hardware to transfer pages and calculate hash values. Generally, hard-
ware computation is faster than software computation, and the CPU can

address other workloads during the hardware computation.
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Discussion

Our approach replies on several hardware processor features to improve the se-
curity or reduce the size requirements for the local memory. In this chapter,
we first introduce many studies regarding these features, including hypervisor
support on embedded processors and software cache&TLB architecture. Next
we analyze our approach and discuss whether these features can be equipped
on future processors. Finally, we discuss our current research and propose some

hardware recommendations to generalize the LLM machine architecture.

4.1 Hardware Virtualization Support in Embed-

ded Processors

Hypervisors are currently being introduced into embedded systems. The inspi-
ration for embedded hypervisors is not the same as the reasoning for traditional
hypervisors. Embedded systems commonly contain many critical or real-time
tasks along with more general tasks, and embedded hypervisors are expected
to manage them with the appropriate privileges and isolation. For example, in
smart phones, the mobile talk service and the 2G /3G communication service are
critical tasks that are basic functions of a phone and should be managed with

high privilege and security. Conversely, web survey and multi-media services are
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general purpose tasks that do not need to be managed so carefully. With em-
bedded hypervisors, we can run a real-time or a secure OS and a general-purpose
OS concurrently to execute tasks with the appropriate privilege and security. Al-
though many studies [30] [48] [57] have tried to build multiple OS environments
on embedded processors, they should consider about the performance and design

effort required to apply their methods.

While main-stream desktop and server processors such as Intel and AMD have
already been equipped with some level of virtualization extensions, virtualization
support is not a common feature in embedded processors. Most ARM processors,
which dominate the embedded market, do not incorporate hardware virtualiza-
tion extensions. However, the latest ARM processors, Cortex A15 [1] [27], have
been announced as being equipped with virtualization extensions. Intel, which
has advanced virtualization technologies in its hardware and software, has already
produced many desktop and server processors with hardware virtualization and
has begun to equip its high-end embedded processor with such features. With im-
provements in the performance and manufacturing processes, hypervisors might
become a necessary feature of embedded platforms and hardware virtualization
extensions may become a standard configuration in future embedded processors.
However, at the same time, many embedded applications remain sensitive to cost
and do not require hardware virtualization extensions. Adding virtualization ex-
tensions to these embedded processors would be a waste of resources. We foresee
that future embedded platforms, there should contain both embedded processors

both with and without virtualization extensions depending on their applications.

However, our approach does not aim to replace hypervisors and can coexist
with a hypervisor. This approach can be applied as a security enhancement for
hypervisors using an LLM-similar architecture processor, and we can incorporate
checking technologies into the integrity checker that can check the target OS and
the hypervisor simultaneously. Our approach also provides a good low-overhead

security solution for embedded systems without importing hypervisors.

The development of hypervisors can apply pressure toward the hardware de-
velopment process. Researchers find many issues when they implement a hyper-

visor on an embedded device, and they must consider both software and hardware
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methods to solve them. Because the hardware features are not specific to these
solutions, potential hardware improvement are usually found when the solutions
are evaluated, and the performance overhead and design effort can be reduced
significantly using suitable hardware features. After ARM announced the vir-
tualization support in its Cortex A15, several projects were proposed to utilize
these features in implementing hypervisors. These hardware features would also

promote the development of further software technologies.

We now investigate the development of other features equipped in processors,

such as the hardware-managed TLB and the hardware-coherency cache.

4.2 TLB Management

Hardware-managed translation lookaside buffer (TLB) is commonly applied in the
modern x86 processors and ARM processors. To establish TLB automatically in
the processor hardware, the format of the page tables of the guest OS must be
fixed. When page faults do occur, the processor can then search the page tables
of the system and set the corresponding address translation in TLB. However,
this approach introduces some problems, in that it is very difficult to add extra
features to page tables if the processor is not equipped with this feature, and
fixed-format page tables would restrict the application of hardware-managed TLB
in size-critical cases. Other modern processors prefer to use software-managed
TLBs, such as MIPS, Alpha, SPAC, and PA-RISC, which can provide flexibility in
the format of page tables that can improve the performance of many applications
[31] [53] [65] [72].

The research proposed by Asmer Jaleel and Bruce Jacob [31] uses a novel
method based on the reorder buffer to improve the performance of precisely han-
dling of software-managed interrupts. It focuses on the most frequently occurring
TLB miss interrupts, which may incur noticeable overhead for the overall system
performance, and uses the reorder buffer to store frequently accessed data to
avoid reloading and re-executing. The evaluation shows that this method can
avoid 50%-90% of TLB interrupts and improve the performance of the system by
5-25%.
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Torong & Day applied an imprecise-interrupt mechanism [65] to handle in-
terrupts that are transparent to application program semantics. It can stores
the instruction data form the reordered buffer when an interrupt is trapped and
can selectively restore them when the interrupt exits. The evaluation shows that
this approach is more suitable for a heavy interrupt handler, and is less useful
for recently TLB interrupts with relatively low overhead, for which this approach

may require more processor operations.

Jinzhan Peng et al. applied many hardware/hardware combined TLB algo-
rithms for execute Java applications [53] and compare their performance. They
test many methods of reducing TLB miss rates and TLB miss latency and even
include a NO-TLB design to remove the TLB overhead. The experimental re-
sults illustrate that there is a consistent performance bottleneck with the TLB,
and the hardware TLB mechanisms have different performance implications. The
software method including the NO-TLB design is somewhat suitable for execut-
ing a Java application. Bothe hardware-managed and software-managed TLB
have their own pros and cons, and developers should determine to how to build

a system based on specific situations.

Based on the above, the hardware-managed TLB and software-managed TLB
are useful for different applications and none of them have a fatal weak point.
We can choose suitable TLB algorithms depending on the specific application.
To meet various requirements in the modern computing environment, we expect

that both of these features would exist in the main-stream processors.

4.3 Cache Management

A cache is a high-access-speed memory region equipped to a processor that is used
to adapt the difference between the extra high computing speed of the processors
and the low access speed of the main memory. The cache can load the content
of the main memory for the processor access to improve the overall throughput
of the whole systems. The cache is usually managed by processors and is trans-
parent to the software, so that when we develop a software application, there is

no need to consider the cache utilization. In a desktop or server, the hardware
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cache can improve the overall performance of the system. However, a hardware
cache is not always suitable for embedded systems, especially in real-time sys-
tems, because the predictability of tasks in a real-time system is very important,
and unexpected cache misses may influence the predictability significantly. In
traditional solutions, people prefer to disable the cache mechanism in processors
or use processors without a cache to achieve absolute predictability for real-time
tasks, which sacrifices the system throughput performance. Furthermore, in a
multi-core system, we must consider about cache coherency. Cache-coherency
means that when many cores want to access the same memory block, the hard-
ware should ensure that they would access the latest values in the block. If one
core uses stall values, the whole system may run in an abnormal state. In a
desktop or server processor, where the number of cores armed to a single pro-
cessors is increasing, developing a hardware-coherency cache requires a complex
hardware mechanism and immense design effort, although some projects have
tried to implement scalable hardware-dependent cache-coherency protocols [19]
[38] [64]. Other studies have maintained that in many-core processors, the hard-
ware design for cache coherency becomes extremely difficult, and that using a
software-coherency cache is thus unavoidable in many-core or scalable systems
[12] [51]. To solve these problems, a software cache including software coherency
is proposed to manage the system cache [14] [20] [46] [62] [67]. The software
cache mainly optimizes task behavior to improve the system throughput and can
be implemented either in the compiling phase [46] or in the running phase of the
system kernel [20]. Both approaches increase the software design effort required
to implement an applications by selectively loading the needed content into the
cache during runtime. We do not take a strong position on which type of cache
coherency is better but consider it to be a reasonable trade-off to move the design

complexity from the hardware (hardware cache) to software (software cache).

One approach [46] implements compiler support for the software cache to
improve the predictability of a preemptive system. It uses a software-based cache
partition to control the behavior of tasks and associate distinct portions with real-
time tasks. The compiler takes responsibility for partitioning the instructions and

codes for tasks for cache utilization. It can improve the response times of tasks
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after context-switch, but it produces overhead through cache reduction for each

task and the additional instructions for data partition.

Another approach [14] using on the Cell-BE processor also tries to imple-
ment a software cache depending on a compiler. It implements a runtime library
that can help the compiler to generate code to maximize the chances for over-
lapping communication and computation. It introduces basic code generation
mechanisms in the compiler and optimization methods. The evaluations show
a significant improvement in the performance against the Stream and Random

Access benchmark.

Software cache methods can be included to improve the performance of specific
tasks [20] [62]. The study [20] applies a software method to a scalable and efficient
implementation of OpenMP on the IBM CELL architecture to help improve the
performance. The study[62] provides an enhancement for the sum-products on
Graphics Processing Units (GPUs). It designs memory-bound algorithms to allow
high data reuse using the software-managed memory equipped on GPUs. The
evaluations show a greatly improved speed of random data access and a significant

improvement in performance on real-life genetic analysis datasets.

The possibility can still be raised that the development of a software-coherency
cache may downgrade the overall throughput of the system or require more effort
in task design. To achieve a good balance, some hardware support is proposed to
help implement a software-coherency cache more easily and with better perfor-
mance [13]. A novel hybrid hardware-software coherency mechanism is proposed,
in which the software is responsible for trapping the coherency actions includ-
ing self-invalidations and writebacks, and the hardware applies Bloom filters to
perform more selective self-invalidation. The experimental results shows that
against some benchmarks there is only a low performance downgrade, but some
cases show severe performance penalties making this approach unviable for real
applications. However, the selective invalidation in this approach can achieve as
much as a 93% improvement in the worst-case performance and offers similar

performance to full-hardware cache coherency.

We find that the issues in using a hardware-coherency cache encourage the

development of software coherency and that the issues in software-coherency in
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turn encourage the optimization of the hardware cache architecture. The hybrid
cache architecture can then provide a reasonable balance between the design effort

applied to hardware and software and system throughput.

4.4 Hardware Features in Our Approach

We use local memory that is similar to a software cache to execute our monitor
OS and use core isolation to provide security for the execution of the monitor OS,
which improves the overall security of our system. A software-coherency cache has
already been equipped in many embedded processors, such as Coldfire MCF5249,
PowerPC 440, MPC5554, ARM 940, ARM 946E-S [16] and AT91M40400 [55].
Core isolation, however, is not a common feature in modern processors, either
in embedded fields or in desktop and server fields. We hope that our approach
suggests that an isolated privileged core would be a reasonable feature for en-
hancing the security on a multi-core processor and that our implementation can
illustrate that with modest hardware support and design effort, the construction

of our architecture is a realistic solution for embedded systems.

Our approach also exploits the software-managed TLB in the RP1 to reduce
the size of the page tables for the monitor OS. Software-managed TLB are also
equipped on many processors for various purposes. Our approach introduces
more ways to utilize the software cache and software-managed TLB, which is
expected to add to the demand for a processor with these features. We also use
a software paging mechanism to further extend the local memory to execute a
fully functional monitor OS. Similar to the hybrid cache architecture design, the
hybrid design in our system can provide enhanced security to embedded systems

without significant design effort.

As discussed above, there are many types of processors around the world.
Proposing a general technology suitable for most of processors is very important
to the application of this technology, as general suitability can reduce the design
effort of porting it to other processors. However, there are many processor manu-
facturers in today’s market. It is difficult to equip all processors with truly similar

hardware, which is also not good for competition and future development. We
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consider that the extreme optimization of a solution for a specialized hardware
choice is also a good approach for improving the performance or reducing the
design effort. In real cases, we should apply the best technologies without the
concern for a generic hardware feature. After solving problems, we should con-
sider whether the proposed method can be generalized or whether the restrictions

are excessive.

4.5 Discussion and Hardware Recommendation

We have evaluated and analyzed some factors that may influence the performance
of our architecture. To conclude, our architecture and secure pager provide func-
tions of integrity verification and the automatic update of the integrity checker
without introducing excessive overhead in Linux. The encryption mechanism,
the page copy method and the hash algorithm must be chosen carefully for good

performance on embedded platforms.

We should note that devoting one core of the processor to security in our
architecture may lead to resource waste in embedded systems. However, we also
foresee that using a special core to enhance the reliability would be reasonable
when the number of cores in one processor increases to 16 or more. Further-
more, there is a type of processors called heterogeneous multi-core architecture
processors [35, 74], in which each core can have its own individual configura-
tion for different workloads to provide a good balance between the performance
and resource consumption. We can configure a single core with an appropriate
configuration to execute the secure pager and the integrity checker, obtaining
a reasonable tradeoff between resource consumption and security. However, we
prefer software-managed TLB architecture for flexibly designing the page tables
of the monitor OS, which can efficiently reduce the size of the secure pager. In
hardware-managed TLB architecture, more design effort may be required to re-

strict the size of the page tables, which we leave for future work.

Based on the above discussion, we present some hardware recommendations

that may make the LLM architecture more applicable to real processors.
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e An additional monitor core with a local memory, as shown in Fig. 4.1. This
core (Core0) is supposed to execute the integrity checker with a novel con-
figuration, including appropriate power and hardware configurations (e.g.,
DTU, hash algorithm IC) to provide reasonable resource consumption for
security purposes. In fact, it is not necessary to equip a local memory to a
core if no applications in the target OS are using it. Adding an additional
monitor core can also help reduce the number of modifications made to the
target OS required due to not using Core0 in the original LLM machine

architecture.

e A small piece of reserved shared memory space for storing the swap content
of the monitor OS. This reserved space can avoid modifications to the target
OS to avoid touching this part of the shared memory space. Together with
the previous recommendation, this recommendation allows the target OS
to run in the LLM machine architecture without any modifications, which

substantially reduce the design effort.

e Trusted boot for the secure pager and the monitor OS. We recommend
to loading the secure pager and monitor OS images from a secure remote
server or an on-chip read-only memory to ensure the integrity of the images.
However, if these images need to be loaded from local storage, we prefer
to add some hardware units such as the TPM to help boot up the secure

pager and the monitor OS to a normal working state.

85



4. DISCUSSION

Shared Memory

Local Monitor
Reserved Memory Core

Memory Bus

™ ™y
( Core Core {

\ J N /

I ™y
] Core

Figure 4.1: Recommended hardware architecture.
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Conclusion

In this dissertation, we propose an extensible architecture to enhance the security
of the monitor OS for improved overall security with low overhead for the target

OS.

In the first chapter, we introduce the background and the motivation of our
research. We introduce the issue of security in current computing environments
and describe why we began our current investigations. We then briefly introduce

our own contributions and the structure of this dissertation.

In the second chapter, we focus on the embedded field and introduce the use
of embedded hypervisors and microkernels to provide isolation for guest OSs.
This topic leads to the introduction of the LLM machine architecture, which
can enhance the integrity checker through a hardware-centric method, and thus
can provide some characteristics suitable for embedded systems, such as minimal
overhead, a small trusted code and minimal modification to the target OS. How-
ever, The LLM machine architecture still has some limitations, including that it
is only emulated in QEMU, which is a virtual machine monitor, and assumes a
limited but rather large local memory that may rarely be equipped on embedded

Processors.

In the third chapter, we discuss the design, implementation details and evalu-
ation of our system. We first introduce our basic system architecture. Because of

the small size of the local memory in RP1, we adapt a software component, the
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secure pager, to virtually extend the local memory using a paging mechanism.
We also utilize a software-managed TLB to reduce the size of the page tables of
the monitor OS, which can reduce the local memory space occupied by the secure
pager. Furthermore, we add extensibility to our system by automatically updat-
ing the integrity checker. We next discuss the security of our architecture. In
the implementation section,we present all of the necessary details regarding the
design method. The evaluation section discusses many tests that we performed

to demonstrate the security and the performance of our system.

In the fourth chapter, we discuss our research beginning with the introduc-
tion of related hardware processor features, including the hardware virtualization
extensions, cache architecture and TLB architecture. Then, we discuss whether
they can be equipped on future embedded processors based on our analysis. We
further discuss our research and propose some hardware recommendations that

may generalize the application of the LLM machine architecture.

Our architecture is implemented on a real embedded platform with a hardware
configuration similar to LLM but equipped with a much smaller local memory.
This implementation provides a robust isolation between the integrity checker
and the target OS based on local memory, a hardware feature. To generalize
this architecture, we employ a secure pager to virtually extend the physically
small local memory space using a swap mechanism with integrity checking for
the integrity checker. The secure pager can also update the integrity checker to
extend the security functions without disturbing the running of the target OS.
Comprehensive evaluations are made within our framework, using one instance
of embedded Linux as the target OS and an isolated integrity checker running
with the secure pager. The results demonstrate the functions of the secure pager
and its influence of the secure pager on Linux in our system. We also present
some hardware recommendations to make the LLM architecture more applicable
to real embedded processors. Our research illustrates the efficiency of the LLM
architecture and generalizes its application to embedded systems by reducing the
local memory size. On processors with a suitable architecture, we can build an
extensible and secure architecture with reasonable resource consumption, without

the issue of heavy overhead interfering the target OS.
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Future Work

Based on the discussions presented in the previous chapter, we have developed

future plans for our continued research.

First the current prototype we built on the RP1 does not include a hypervisor
and cannot support multiple target OSs. Our architecture can be extended to
support multiple target OSs by inserting a hypervisor, as shown in Fig. 6.1, and
the integrity checker can be equipped with more functions to monitor the state
of both the hypervisor and the target OSs. This step will further generalize
further the application of our research, and we can choose the specific system

configuration to suit individual concrete applications.

Next, we should choose the security functions that should be equipped to the
integrity checker. It seems that more functionalities usually provide good secu-
rity. However, in our architecture, more functionalities requires a large integrity
checker, and the large size usually requires more page swaps during the loading
and execution of the integrity checker, causing heavy overhead. If the execution
time of the integrity checker is very long, there will be a security hole between
the ending of one security function and the beginning of the next. Therefore, we
should select only the necessary functionalities for the integrity checker that are
critical for the target OS. However, equipping more functionalities while control-
ling the size of the integrity checker is another valid approach to achieve the same

goal.
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Figure 6.1: Extended system architecture.

Furthermore, more methods should be proposed to optimize the integrity
checker. In our research, we have already tried many approaches to construct an
integrity checker with good performance. However, to apply this architecture to
a real embedded platform, more methods must be evaluated to obtain a reason-
able performance. Because different optimizations may be needed for different

integrity checkers, a generic method of optimizing the integrity checker would be

a valuable approach to solve this issue.

Finally, the software-managed TLB helps reduce the size of the page tables of
the monitor OS to efficiently control the size of the secure pager. For processors
with hardware-managed TLB, because the format of the page tables is fixed,

more effort is required to restrict the size of the page tables, and more kernel

modifications to the monitor OS may be needed to reduce the size.
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