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Chapter 1

Introduction

Recently, system-on-a-chip (SoC), which contains all the necessary electronic cir-
cuits and parts for a system on a single integrated circuit, is widely used in various
ICT devices and becomes the important ICT core technologies. SoC design has
already been switching from large-lot production of narrow-ranging products to
small-lot production of wider-ranging products. Therefore, SoC designers should
reduce non-recurring engineering (NRE) costs rather than recurring manufacturing
costs. Increasing design abstraction level is one of the most effective strategies for
improvements in design productivity. Fig. 1.1 shows estimated design cost of the
SoC low-power (SOC-LP) PDA [12]. In Fig. 1.1, the orange line shows the design
cost of register transfer level (RTL) methodology, which is currently used, and the
green line shows that of future methodology with higher level of abstraction. In
RTL design, circuits are described by hardware description language (HDL), such
as Verilog-HDL and VHDL, where designers consider something specific to hard-
ware such as registers and clock synchronization. High-level synthesis (HLS) is
the LSI design automation technique which obtains circuits from a behavior level.
HLS translates behavior level description which is described by higher abstract lan-
guage, such as C and C++, into RTL design. NRE costs can be reduced by HLS
tools since hardware specific description in RTL design automatically generated
by the algorithms in the HLS tools. HLS tools and the algorithms are evaluated
by the performance of the output SoC. In recent SoC design, energy-efficiency has
become one of the most important factors due to the growth of battery-powered
portable devices. For obtaining low-energy SoC design, (1) HLS should deal with
energy-efficient LSI design techniques and (2) module floorplanning in SoC should
be considered during HLS.

There are several energy-efficient LSI design techniques such as multiple supply
voltages (MSV) [41], dynamic multiple supply voltages (DMSV) [24,33], and mul-
tiple clock domains (MCD) [5,30]. Since any design decision made at earlier stages
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Figure 1.1: Impact of Design Technology on SOC LP-PDA Implementation Cost
[12].

has higher impacts on the final result, these energy-efficient techniques should
be applied during HLS. Several energy-aware high-level synthesis algorithms have
been proposed which deal with MSV [4,18,25,26,34,35,38,47,48], DMSV [6], and
MCD [23]. However, the conventional methods cannot reduce energy effectively
because they do not consider floorplanning. First, they cannot estimate circuit
delay accurately. As device feature size decreases, an interconnection delay, which
is a delay necessary for the communication between modules inside an LSI chip,
becomes the dominant factor of circuit total delay. Since the existing works only
consider a gate delay which is a delay necessary for the transistors to charge or
discharge, energy consumption of circuits cannot reduce as expected or the circuits
may be inoperable. Second, they cannot estimate energy consumption sufficiently.
For example, the energy consumption of clock signal cannot be estimated when the
module placement inside an LSI chip is unknown. In order to solve the problems
and reduce further energy consumption, module floorplanning should be integrated
into HLS algorithms.

Interconnection delay is another important issue in HLS because interconnec-
tion delay accounts for a large percentage of circuit delay as device feature size
decreases. There are several HLS algorithms which consider interconnection delay
effects [8,17,19,31,32]. They are not based on a traditional centralized-register
architecture, but they are based on distributed-register architecture (DR archi-
tecture) families. In DR architectures, chip area is divided into sufficiently small
partitions such that the interconnection delay inside each partition can be as-



sumed to be zero. The interconnection delay between the partitions is estimated
by placement information which can be obtained by floorplanning the partitions
during HLS. Furthermore, more various kinds of energy consumption, such as clock
signal energy and interconnection energy, can be estimated if DR architectures are
used. However, the objective of conventional DR architectures and synthesis al-
gorithms is the optimization of circuit latency and they do not consider energy
efficiency. Conventional methods are not suitable to adopt energy-efficient LSI
design techniques such as MSV, DMSV, and MCD.

In this disscrtation, I proposc new floorplan-driven SoC architectures to which
energy-efficient LSI design techniques, such as MSV, DMSV, and MCD, are easily
applicable. Furthermore, the associated HLS algorithms are proposed for energy
reduction based on the proposed the architectures. The proposed algorithms can
reflect floorplanning information in HLS by using iterative synthesis flows. By
using a floorplanning result, interconnection dela
estimated, and then optimized supply voltages and/or clock periods can be assigned
for energy reduction. Experimental results show that the proposed methods achieve
22.4% energy-saving by applying MSV, 43.9% energy-saving by applying DMSV,
and 57.0% energy-saving by applying MCD and MSV compared with the existing
methods.

This dissertation is organized as follows:

Chapter 2 [Related Works]| lated works. First, I
preview the low-power and low-energy LSI design techniques and energy-efficient
HLS algorithms which consider the techniques such as MSV, power gating (PG),
DMSV, and MCD. Next, I preview the DR architecture families and the HLS algo-
rithms for the architectures which can consider floorplanning during HLS. Chap-
ter 3 [A Multiple Supply Voltages Aware High-level Synthesis Algorithm
for HDR Architecture| proposes huddle-based distributed-register architecture
(HDR architecture) and an HLS algorithm associated with HDR architecture.
HDR architecture divides chip area into several partitions called huddles. Huddles
enable us to estimate interconnection dela ly and assign supply voltages
effectively. T propose the new HLS algorithm which can automatically apply MSV
to SoC by assigning voltages to huddles and outputs energy-efficient SoC designs.
Experimental results show that the proposed method achieves 22.4% energy-saving
compared with the conventional methods. Chapter 4 [MH*: Multiple Supply
Voltages Aware High-speed and High-efficiency High-level Synthesis Al-
gorithm for HDR architecture] proposes an improved HLS algorithm for HDR
architecture called MH*. The algorithm proposed in Chapter 3 has the two severe
problems: (A) the huddle-area and interconnection-delay oscillation during itera-
tions and (B) the insufficient huddle construction methods. I propose three new
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techniques, virtual area estimation, virtual area adaptation, and floorplanning-
directed huddling, to resolve the problems (A) and (B) and then proposes a new
multiple-supply-voltages aware high-speed and high-efficiency high-level synthesis
algorithm for HDR architecture. Experimental results show that the proposed al-
gorithm achieves 29.1% run-time-saving compared with the algorithm in Chapter
3, and successfully obtains a solution which cannot converge when the algorithm
in Chapter 3 is used. Chapter 5 [SAAV: Dynamic Multiple Supply Volt-
ages Aware High-level Synthesis Algorithm for AVHDR Architecture]
proposes adaptive voltage huddle-based distributed-register architecture (AVHDR
architecture) and an HLS algorithm associated with AVHDR architecture. First, I
propose a new distributed-register architecture called AVHDR architecture which
can apply DMSV. Next, I propose a new HLS algorithm for AVHDR architec-
ture called SAAV. In AVHDR architecture and SAAV, low supply voltages can be
assigned to non-critical operations and lecakage power can be cut off through PG.
Experimental results show that the proposed method achieves 43.9% energy-saving
compared with the conventional methods. ~Chapter 6 [SAMCID: Multiple
Clock Domains Aware High-level Synthesis Algorithm for HDR-mcd
Architecture] proposes HDR-mcd architecture and an HLS algorithm associated
with HDR-mcd architecture. First, I propose a new distributed-register archi-
tecture called HDR-mcd architecture which can apply MCD. Next, I propose a
new HLS algorithm for HDR-mcd architecture called SAMCID. Experimental re-
sults show that the proposed method which only considers MCD achieves 32.5%
energy-saving compared with the conventional methods. Furthermore, the pro-
posed method which can apply MCD and MSV simultaneously achieves 57.0%
energy-saving compared with the conventional methods. Chapter 7 [Conclu-
sion| summarizes the research and indicates future works.



Chapter 2

Related Works

2.1 Introduction

In this section, related works have been discussed. First, I preview the low-power
and low-energy LSI design techniques and energy-efficient HLS algorithms which
consider the techniques such as MSV, power gating (PG), DMSV, and MCD. Next,
I preview the DR architecture families and the HLS algorithms for the architectures
which can consider floorplanning during HLS.

2.2 Energy-efficient LSI Design Techniques
Power consumption in CMOS circuits [45] is:
Ptotal == denamic + Pstatic (21)

where Pyynamic s dynamic power consumption and Pyqc is static power consump-
tion. Pyynamic 1s:

denamic = L switching + Pshortcircuit (22)

where Psyitching 18 power consumption of charging and discharging load capaci-
tances as gate switch and Pjjopicireuit 1S that of short-circuit current while both
pMOS and nMOS stacks are partially ON. Py is:

Pstatic - (Isub + Igate + Ijunct + Icontention)VDD (23)

where Iy, is subthreshold leakage current through OFF transistors, g, is gate
leakage current through gate dielectric, Ijyne is junction leakage current from
source/drain diffusions, and I.oniention contention current in rationed circuits. When
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the chip is doing useful work, Pt is usually dominated by Psyitcning: Pswitching 19
expressed as:

Pswitching = QOV[Z)Df (24)

where « is a switching activity factor, C' is the capacitance of a transistor, Vpp is a
voltage source, and f is a clock frequency. LSI design techniques for energy and/or

power reduction aim to reduce the value of each variable in Egs. (2.1), (2.2), (2.3),
and (2.4).

Multiple supply voltages (MSV) techniques and high-level
synthesis considering MSV

Multiple supply voltages (MSV) technique [41] is an energy-efficient LSI design
which focuses on Vpp in Eq. (2.3) and Eq. (2.4). Supply voltage reduction is one
of the most effective techniques, but the delay increases with reducing Vpp. In
order to reduce energy consumption without degrading the performance, we divide
a chip into multiple voltage domains. In MSV, high supply voltages are assigned
to elements on critical paths and low supply voltages are assigned to elements on
the non-critical paths. Since Piyitching 15 proportional to the square of Vpp, it is
the most effective for dynamic and total energy reduction that Vpp is reduced.
Furthermore, Py can be reduced by the Vpp reduction because Piygyie is directly
proportional to Vpp. We have to insert level converters (level shifters) when data
are exchanged between different voltage domains [2,40,41]. Since inserted level
converters have an overhead of area, delay, and energy consumption, we should
consider the overheads when MSV technique is utilized. Fig. 2.1 shows a level
converter circuit [41].

Several energy-aware high-level synthesis algorithms have been proposed which
deal with multiple supply voltages [4, 18,21, 25-27, 34, 35, 37, 38, 46-48]. They
reduce energy consumption under time constraints [34], resource constraint [35],
and both of them [18,25,26,38,47,48]. In terms of algorithms, some of them
[4,18,25] do the exact optimization using integer linear programming (ILP) and
others [25, 26, 38,47,48] are based on heuristic algorithms. However, only a few
of them consider the level converter overheads. [47,48] assigned supply voltages
for acquiring the energy overheads of level converters. All of the conventional
methods always add or ignore the delay of level converters. As far as I know, there
are no methods which accurately consider the delay overheads of level converters.
Furthermore all of the conventional high-level synthesis algorithms do not consider
interconnection dela . Therefore, energy consumption of circuits cannot be
reduced as expected or the circuits may be inoperable based on the existing works.
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Power gating (PG) and dynamic multiple supply voltages
(DMSYV) techniques, and high-level synthesis considering
PG and DMSV

Power gating (PG) technique focuses on Pyygye. Switch transistors cut off the
electronic connection between a power gating block and the power rail and/or the
ground. Fig. 2.2 shows an example of the PG circuit [45]. Since “Vppy” equals
virtually zero when “Sleep” is ON, Py of “Power-Gated Block” can be reduced.

)

Several energy-efficient high-level synthesis methods which deal with PG have been
proposed [7,10]. However, they do not counsider interconnection dela
dynamic multiple supply voltages described later.

The dynamic multiple supply voltages (DMSV) technique has been proposed
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in recent years [24,33] in which non-critical components are assigned to lower
supply voltages to reduce dynamic energy consumption. In addition, multiple
supply voltages can be combined with power gating for leakage energy reduction.
Supply voltages are changed dynamically at run-time using switch transistors. The
panoptic dynamic voltage scaling (PDVS) is an ASIC architecture utilizing with
DMSV and Fig. 2.3 shows the PDVS architecture [33]. An HLS algorithm which
deals with dynamic multiple supply voltages has been proposed in [6]. However,
[6] only consider operation binding and voltage assignment. For further energy
reduction, scheduling and floorplanning problem should be optimized.

Multiple clock domains (MICD) and high-level synthesis con-
sidering MCD

Multiple clock domains (MCD) technique [5,30] focuses on switching activity « of
the clock and related registers in Eq. (2.4). [11] found that roughly one-third of
microprocessor power is spent on the clock. Furthermore, as Table DESN5 in ITRS
2011 [16] describes “Departure from fully synchronous design paradigm needed for
power reduction, latency insensitivity, variation-tolerance,” multiple clock domains
(MCD) techniques have been growing in importance in recent energy-efficient LSI
design.

There are two types of MCD techniques: (1) One can utilize arbitrary clock
frequencies but synchronization circuits are needed for the communication between
different clock domains. (2) The other can communicate with different clock do-
mains without synchronization circuits but can only utilize regular clock frequen-
cies which follow certain fixed patterns. Global asynchronous local synchronous
(GALS) [5] is well known as an example of Type (1). GALS can reduce energy
consumption effectively when optimal clocks are assigned to different cores in mul-
tiprocessor SoC or network-on-chip. Although GALS is often applied to multi-
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Figure 2.4: The architecture of the periodically all-in-phase [30].

processor SoC or network-on-chip, there are few high-level synthesis algorithms
considering GALS. In [23], an HLS algorithm by dealing with GALS has been pro-
posed. However, [23] can consider only two clock frequencies and cannot deal with
the clock domain division process.

Periodically all-in-phase proposed in [30] is Type (2) based MCD technique for
a smaller-scale circuit. In periodically all-in-phase technique, the clock periods of
the local clock signals are the integer multiples of reference clock signals and the
local clock signals can synchronize at the periods of common multiples without
any synchronization circuits. Fig. 2.4 shows the architecture of the periodically
all-in-phase technique. As far as I know there are no existing HLS algorithms
considering periodically all-in-phase.

There are the technique which can dynamically change clock frequency at run-
time, such as DVFS [3]. However, there are no conventional high-level synthesis
algorithms which consider DVFS. Scheduling algorithms and binding algorithms
of high-level synthesis is based on a clock periods which are fixed at run-time.
Therefore the problem definition which deal with frequency scaling is too difficult.
In this dissertation, the dynamically change of clock frequency is not considered
as well as conventional high-level synthesis algorithms.
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2.3 Distributed-register Architectures

Interconnection delay is another important issue in HLS because interconnection
delay accounts for a large percentage of circuit delay as device feature size de-
creases. Traditional HLS algorithms assume that the target circuit has a central-
ized register file and a global controllers. The architecture configuration aimed at
the minimization of the number of registers and/or the total circuit area. How-
ever, the interconnection delay between a functional unit and the register file may
become the biggest fraction of the total circuit delay. A circuit which is got by
a traditional HLS algorithm may not work as expected or the latency and the
associated energy consumption may increase. In order to deal with the intercon-
nection delay increase, we need new circuit architectures unlike the traditional
centralized-register architecture. There are several HLS algorithms which consider
interconnection dela [8,9,17.19,31,32]. They are not based on a tradi-
tional centralized-register architecture, but they are based on distributed-register
architecture (DR architecture) families. In DR architectures, chip area is divided
into sufficiently small partitions such that the interconnection dela

partition can be assumed to be zero. On the other hand, the inter-partition data
transfer is realized through multi-cycle interconnect communication between local
registers. The interconnection delay between partitions is estimated by placement

lanning during HLS.

A basic DR architecture has been proposed in [17,19]. Fig. 2.5 shows the
architecture ( [17]). In DR architecture, each functional unit performs computation
by using its dedicated local registers. Since the wire length between the functional
unit and its local registers is small enough the interconnection delay between the
functional unit and its local registers can be ignored. They proposed an HLS
algorithm for the DR architecture in [19] at first. Next, they proposed an iteration
based HLS algorithm shown in Fig. 2.5(b) ( [17]). Because placement results and
scheduling /binding results influence each other, iterative refinement flow in [17]
can obtain higher performance on resulting circuits. However, DR architecture
has the large overhead of area and energy because this architecture requires local
registers placed for each functional unit.

A regular distributed-register architecture (RDR architecture) is proposed in
[8]. Fig. 2.6 shows an example of RDR architecture and HLS algorithm for RDR
architecture called MCAS proposed in [8]. RDR architecture divides a chip into
uniform-sized islands and arranges functional units, a register file, and a controller
in each island. Inside an island, interconnection delay can be ignored by using
local registers. By introducing uniform-sized islands, RDR architecture realizes
multi-cycle interconnect communication during inter-island data transfer. In RDR
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Figure 2.5: Distributed-register architecture and a synthesis algorithm proposed
in [17]. (a) The architecture. (b) The algorithm.

architecture, it is very easy to predict interconnection delays even in high-level
synthesis stage since an entire chip is divided into uniform-sized islands. In addi-
tion, it is easy to cope with the module addition/deletion in an island since the
island abstracts modules inside. RDR architecture also has several improved ar-
chitectures: RDR-Pipe [8] decreases the number of connections by adding a new
module; DRFM [9] is proposed to implement the RDR architecture on FPGA de-
vices; a fault-secure high-level synthesis algorithm on RDR architectures proposed
in [39] improve soft error resistance by adding new modules to vacant islands.
However, RDR architecture has the area and energy overheads since it divides an
entire chip into uniform-sized islands. Area overhead causes useless modules and
will increase interconnection delays. Thus, [8] itself describes “The RDR architec-
ture is not suitable (or necessary) for low-frequency (and lowpower) designs as due
to its unnecessary area (and power) overhead.”

A generalized distributed-register architecture (GDR architecture) is proposed
in [32]. GDR architecture realizes multi-cycle interconnect communications by
preparing two kinds of registers: local registers and shared register groups, and two
kinds of controllers: global controllers and local controllers (Fig. 2.7(a)). In [32],
scheduling /binding as well as floorplanning are simultaneously optimized by using
iterative synthesis flow (Fig. 2.7(b)). Since functional units, shared/local registers,
and global/local controllers can be very flexibly arranged on GDR. architecture, it
can obtain high performance design. However, this flexibly can become a disadvan-
tage that its associated high-level synthesis problems are too complex [32] where
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Figure 2.6: RDR architecture and a synthesis algorithm called MCAS proposed
in [8]. (a) 2 x 3 island-based RDR architecture. (b) MCAS for RDR architecture.

we have to consider which register is shared or local as well as which controller is
global or local. If we apply energy-efficient LSI design techniques including multi-
ple supply voltages to GDR architecture, it is necessary to add new modules such
as level converters. It definitely increases the complexity of the high-level synthe-
sis problem and it must be very difficult to cope with energy-saving techniques in
GDR architecture synthesis.

According to the above discussion, conventional DR architectures and synthe-
sis algorithms are not suitable to adopt energy-efficient LSI design techniques for
energy reduction. However, DR architectures can reduce total circuit delay more
than the traditional centralized-register architecture. Since energy-saving tech-
niques reduce energy consumption at the expense of circuit delay, DR architectures
can reduce energy consumption more than the centralized-register architecture by
applying energy-saving techniques. DR architectures suitable for applying energy-
saving techniques are the ones which have small area and low energy consumption
and in which it is easy to add new modules. Based on the discussion above, new
DR architectures and HLS algorithms are proposed for energy reduction later.

2.4 Conclusion

In this chapter, the related works for energy-reduction and interconnection delay
optimization in high-level LST design are briefly discussed. From the point of view
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Figure 2.7: GDR architecture and a synthesis algorithm for the architecture pro-
posed in [32]. (a) a GDR architecture. (b) An HLS algorithm for GDR architecture.

of energy-efficient LSI design, conventional HLS algorithms have two problems:
(1) Most energy-etficient HLS algorithms did not consider floorplanning during
high-level synthesis,

(2) Existing DR architectures are not suitable to adopt energy-efficient LSI de-
sign techniques for energy reduction. In the following sections, I propose new
distributed-register architectures called huddle-based distributed-register architec-
ture (HDR architecture) families to adopt energy-efficient LSI design techniques
such as MSV, DMSV. and MCD. Furthermore, I propose new energy-efficient HLS
algorithms for the architectures.



Chapter 3

A Multiple Supply Voltages

Aware High-level Synthesis
Algorithm for HDR Architecture

3.1 Introduction

In this Chapter, a high-level synthesis algorithm considering energy-efficiency and
interconnect delays simultaneously is proposed. First, a huddle-based distributed-
register architecture (HDR architecture), which is one of the distributed-register ar-
chitectures (DR architectures) focusing on energy-efficiency is proposed. In HDR
architecture, functional units, registers, controllers, and level converters are ab-
stracted into a non-uniform island, which is called a huddle. Second, a high-level
synthesis algorithm which is associated with an HDR architecture is proposed.
The proposed algorithm can reflect floorplan information in scheduling/binding
by using iterative synthesis flow. At that time, modules which are placed close
to each other are huddled into a non-uniform island. Then each huddle shares
functional units, registers, controllers, and level converters. Interconnection delays
inside a huddle can be ignored by using local registers inside and HDR also support
multi-cycle interconnect communications during inter-huddle data transfer. Every
huddle has its own supply voltage; low supply voltages are assigned to huddles
on non-critical paths and high supply voltages are assigned to huddles on criti-
cal paths. Experimental results show that the proposed algorithm achieves 22.4%
energy-saving compared with the conventional distributed-register architectures
and conventional algorithms.

14
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3.2 HDR Architecture

In this section, recent DR architectures, such as GDR architecture and RDR ar-
chitecture, are briefly reviewed and it is pointed out that they are not suitable for
applying energy-saving techniques. After that, a new distributed-register architec-
ture called HDR architecture is proposed.

Generalized distributed-register architecture (GDR architecture) proposed in
[32] can synthesize high-performance and small-area circuits by introducing shared
/ local registers and global / local controllers. Since functional units, shared / local
registers, and global / local controllers can be very flexibly arranged on a GDR
architecture, it can obtain high performance design. However, this flexibly can
become a disadvantage that its associated high-level synthesis problems are too
complex [32] where we have to consider which register is shared or local as well as
which controller is global or local. In order to realize power reduction using multiple
supply voltages, it is necessary to add new modules, such as level converters when
changing voltages. It definitely increases the complexity of the high-level synthesis
problem and it must be very difficult to cope with energy-saving techniques in
GDR architecture synthesis.

Regular distributed-register architecture (RDR architecture) proposed in [§]
can predict interconnection delays in high-level synthesis accurately by dividing a
chip into uniform-sized islands. It arranges functional units, local registers, and
a controller inside an island, and multi-cycle interconnect communication during
inter-island data transfer can be also realized. In RDR architecture, a module can
be easily added to an island since it abstracts each module inside. [39] realizes fault-
secure high-level synthesis using RDR architecture based on adding functional units
to an island. On the other hand, RDR architecture has significant area overhead
since they divide a chip into uniform-sized islands. Area overhead may lead the
increase of useless modules as well as interconnection delays. We can say that RDR
architecture is not suitable for applying energy-saving techniques, either.

DR architectures suitable for applying energy-saving techniques are the ones
which have small area and low power consumption and in which it is easy to add
new modules. Based on the discussion above, a huddle-based distributed-register
architecture (HDR architecture), which is one of the distributed-register architec-
ture but has energy-efficiency combining the advantages of RDR architecture and
GDR architecture, is proposed.

HDR architecture introduces a non-uniform sized island called a huddle into
GDR architecture in which each module inside is abstracted. As seen in RDR ar-
chitecture, it is very easy to add new modules into a non-uniform sized island. The
huddle has non-uniform rectangular area determined by clock period constraints
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Figure 3.2: HDR architecture.

which includes functional units, registers, controllers, and level converters. Since
the huddles have non-uniform rectangular area, HDR architecture can be synthe-
sized with small area and small energy consumption.

Fig. 3.1 shows a huddle configuration. A huddle A consists of the following
components:

Huddled Local Registers (HLRs): Dedicated local registers in h.

Huddled Functional Units (HFUs): Dedicated functional units in h. HFUs can
only access the HLRs in h.

Finite State Machine (FSM): A dedicated controller in h. FSM controls the HFU
and the HLR in A.
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Figure 3.3: Experimental results of HDR, GDR [32], and RDR [8] when DCT is
synthesized.

Huddled Level Converters (HLCs): Dedicated level converters in h. HLCs are used

during inter-huddle data transfer across different voltage huddles.

Huddles with different size and different components can be placed as in Fig. 3.2.
Interconnection delays can be ignored by using HLRs inside a huddle and multi-
cycle interconnect communication during inter-huddle data transfer can be realized.
HLCs are used during multi-cycle interconnect communication across different volt-

age huddles.

Example 3.1. Fig. 3.3 shows the high-level synthesis results of HDR architecture,
GDR architecture [32], and RDR architecture [8]. DCT is used as a benchmark
application. HDR architecture drastically reduces synthesis complexity as compared
to GDR architecture because HDR architecture abstracts modules by introducing
huddles. HDR architecture also reduces area overhead as compared to RDR archi-
tecture because huddles have non-uniform rectangular area. U

3.3 Problem Definition

A control-data flow graph (CDFG) G(V, E) is a directed graph, where a node set
N is composed of an operation node set N, and a branching control node set N,
(start and end nodes of conditional branches), and an edge set E is composed of a
data-flow edge set E,; and a control-flow edge E,. set. T, refers to a clock period
constraint and S,,,., refers to a control step constraint.

Let ' = {f1,---, f,} be a set of functional units and D(f;) be a delay of
the functional unit f; in F. S¢(f;) shows the number of control steps required to
execute the functional unit f; and S¢(f;) is defined by S¢(fi) = [Ds(fi)/Tar |- Let
E(f;) be the energy consumed by the functional unit f; in S¢(f;) steps.
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Let H = {hy,--- ,hy} be a set of huddles in the HDR architecture. Each
functional units are bound to any one of the huddles and the binding is defined by
a function Hud : F — H. Hud(f;) is the huddle to which f; is bound. F(h;) is a
set of functional units which are bound to h;. D,.4(h;) is a delay of HLRs in h;.

The three supply voltages, v, vy, and vy, (v; < v, < vy), which are assigned
to each huddle, are considered. V(h;) is a supply voltage which are assigned to
the huddle h;. Dj.(v,vy,) is a delay of a level converter which changes the voltage

from v; to v,,. Likewise, Dj.(v;, vy), Dic(vm,v1), and so on can be defined.
Slack(f;) is defined by:

Slack(f;) = Tux - Sp(fi) — D(fi)- (3.1)

Slack(f;) shows the slack time which can be used by data transfer for succeeding
operations.

The width and height of each huddle must satisfy the following huddle size
constraint:

2+ Duy(W(h;) + H(h;)) + Dreg(hy) < fig(l}llj){kglack(fi)} (3.2)
where W (h;) and H(h;) are the width and height of the huddle h;, respectively.
D,,(x) is an interconnection delay whose length is z. In the proposed algorithm, we
obtain the value of (W (h;) + H(h;)) so that it satisfies the huddle size constraint
and determine W (h;) and H(h;) by using the aspect ratio predefined for each
huddle.

Let Dist(h;, hi) be the Manhattan distance between the center of huddles h;
and hy. Then D, (Dist(h;, hi)) shows the interconnection delay between them.
Let f; be a functional unit bound to the huddle h;, i.e., Hud(f;) = h;. Tr(f;, h)
shows the inter-huddle data transfer delay from f; to HLRs in h; which is defined
by:

Tr(fi, hi) = Dy(Dist(hj, b)) + Die(V(hy), V(hi)) 4+ Dyeg(hy). (3.3)

DT(f;, hi) shows the number of clock cycles required to transfer data from f; to
hiy which is defined by:

0, (Slack(f;) > Tr(f;, hy))
DT(fi, hi) = (3.4)
[T’T‘(fi, ]’Lk)/Tde . (Sl(le‘(fl) < T’f‘(fi, ]’Lk))

In the case of Slack(f;) > Tr(fi, hx), the functional unit f; directly stores its
output in the register file of huddle hj,. Thus, the data transfer requires no extra
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Table 3.1: Delay/energy of functional units.
Adder Multiplier
vp | 1ns/1441J) | 2ns/14401£]
Um | 218/100£] | 41ns/1000 £J
v | 4ns/64f) | 8ns/640f]

Table 3.2: Level converter delays.

Uh, Um (Y
Vp, - 0.5ns | 1.0ns
U | 0.518 - 2.0ns

v; | 1.0ns | 2.0ns -

cycles. In the case of Slack(f;) < Tr(fi, hx), the functional unit f; first stores its
output into the local register file in its huddle h; (= Hud(f;)). In the next cycle,
the data transfer from the huddle h; to the huddle hy starts. The data transfer
requires [Tr(fi, hi)/Tur| cycles. Then the data transfer table DT can be defined
by a p x ¢ matrix whose (i, k)-element is expressed by DT'(f;, hy).

Example 3.2. Fig. 3.4 and Fig. 3.5 show an example of HDR architecture with a
clock period constraint T, = 3ns and a control step constraint Sy,.. = 5. Table
3.1 shows delay and energy consumption of each functional unit. Table 3.2 shows
delay of each level converter.

As in Fig. 3.4, the input functional units are f; = MUL1, fo = MUL2, f3 =
MUL3, and f, = ADD1. In this example, we have huddle configurations of F'(hy) =
{fi}, F(ha) = {fa}, and F(hs) = {fs, fa}. Voltages are assigned to the huddles as
in Fig. 3.4: V(hy) = V(hy) = vy and V (hg) = vp,.

Let D,,(Dist(hy, h3)) = 1ns and D,¢y(hs) = 0.5ns. Slack(f1) can be calculated
as:

Slack(f,) = 3ns x 1 — 2ns = 1ns.
Tr(f1,hs) is calculated by
Tr(f1,hs) = 1ns+ 0.5ns + 0.5ns = 2ns.
Since Slack(fy) < Tr(f1,hs), DT(f1,hs) can be calculated by:
DT (fi,hs) = [2/3] = 1.

Data transfer from the functional unit f, to the huddle hz requires 1 clock cycle.
As in Fig. 3.5, the data transfer from the node 4 (*) to the node 7 (+) requires
extra control step (CS3) for multi-cycle interconnect communication. 0
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Figure 3.4: An cxample of HDR architecture configuration.

; — MULT ,  MUL2 ; —~MUL3
* *
cst .
4 ¥ MULT  ~ MUL2
* *
cs2
6 MUL3

?@Dm
CS5

Figure 3.5: An example of scheduling/binding for HDR architecture.

Based on the above definitions, the high-level synthesis problem is defined as
follows:

Definition 3.1. The high-level synthesis problem is, for a given CDFG, a clock
cycle constraint, a control step constraint, and a set of functional units, to assign
each operation node to a control step and a functional unit, to bind each functional
unit to each huddle, and to assign a supply voltage to each huddle so that the given
CDFG 1is executed correctly considering multi-cycle interconnect communications.
The objective is to minimize the total energy consumption.

3.4 The HLS Algorithm

In this section, a new high-level synthesis algorithm targeting HDR architecture
is proposed. The algorithm deals with multiple supply voltages and multi-cycle
interconnect communication simultaneously.
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Generally, high-level synthesis algorithms considering multi-cycle interconnect
communication are composed of schedulings, bindings, and floorplannings and clas-
sified into the following two types:

Type 1: Schedulings, bindings, and floorplannings are executed a predetermined
number of times in a predetermined order.

Type 2: Schedulings, bindings, and floorplannings are executed repeatedly as an

iterative refinement flow.

In Type 1, a required time to synthesize a chip can be expected easily since how
many times each synthesis step is executed and its execution order are determined.
If we know in advance how many times we need to perform each high-level synthesis
step as well as its best execution order, Type 1 will be the best choice. MCAS
in [8], which is one of the RDR architecture synthesis algorithms, uses an approach
based on Type 1 above. Since RDR architectures have uniform-sized islands, inter-
island delays are unchanged even if RDR island configurations are changed. Then
we can execute a predetermined design flow as in Type 1 above.

In Type 2, several informations such as scheduling results and placement results
are fed back to each other since each synthesis step is executed repeatedly as many
times as needed. A GDR architecture synthesis algorithm proposed in [32] uses
an approach based on Type 2. By iteratively executing scheduling/binding steps
and floorplanning steps, a current scheduling/binding step can use interconnection
delays obtained in a previous floorplanning step. The shape and size of each
module are determined in a scheduling/binding step and a floorplanning step is
done using these module informations. Because each synthesis step affects each
other, an iterative refinement flow as in Type 2 must be the best choice targeting
GDR architectures.

As far as I know, all the existing high-level synthesis approaches based on Type
1 just ignore level converter delays or assume that level converters are inserted
between all the two modules [4, 18,25, 26, 34, 35, 38,47, 48]. This is because it
is very difficult to insert level converters and other required components when
they are needed. On the other hand, we can consider level converters and other
required components in scheduling and binding according to module configurations
determined at the previous iteration in Type 2. It is very natural that we develop
an algorithm based on Type 2 when we consider multiple supply voltages in HDR
architectures. Totally, Type 2 will be the best choice in HDR architecture synthesis
algorithms.

An HDR architecture synthesis algorithm based on Type 2 must have the fol-
lowing four steps in each iteration:
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scheduling /binding

register /controller synthesis and floorplanning

huddling, and

unhuddling.

In a scheduling/binding step, each operation node in a CDFG is assigned to a con-
trol step and a functional unit considering multiple supply voltages and multi-cycle
interconnect communications. In a register/controller synthesis and floorplanning
step, registers and controller configuration in each huddle are determined using a
scheduling /binding result and every huddle is placed on a chip. In a huddling step,
adjacent huddles are merged into a single huddle. In an unhuddling step, a single
huddle is partitioned into several huddles.

Now we face a problem when and how many times each of the above four syn-
thesis steps is executed in each iteration (see Fig. 3.6). Assume that we have initial
huddle configurations somehow. Then we can execute (i) a scheduling/binding step
based on them. After a scheduling/binding step is done, (ii) a register/controller
synthesis and floorplanning step must be executed since an operation scheduling
to a control step and binding to a function unit may be changed. After that we
can merge two or more huddles into a single huddle since floorplanning may be
changed. This means that (iii) a huddling step can be done after Step (ii). If
several huddles are merged into a single huddle, a register/controller synthesis is
needed since each huddle has a single registers and a controller. We need (iv) a
register/controller synthesis and floorplanning step again. Finally, we try (v) an
unhuddling step and if no huddles are unhuddled, we can finish the loop or we
continue Steps (i)—(v) again.

The remaining problem is how to obtain initial huddle configurations. We can
assume the following two initial huddle configuration options:

Option 1: As an initial state, we assume a single huddle which contains all the
given functional units.

Option 2: As an initial state, we assume several huddles, each of which includes
only a single functional unit.

In Option 1, the synthesis flow is roughly based on unhuddling a single huddle
into multiple huddles. However, we cannot find out which part in a huddle will
cause a multi-cycle commutation since we have only a single huddle or two in an
early iteration stage. Moreover, we cannot assign multiple supply voltages to a
single huddle since each huddle has its own supply voltage.
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In Option 2, the synthesis flow is roughly based on huddling two or more huddles
into a single huddle. If two or more huddles are placed close to each other, they
should be merged into a single huddle unless they cause interconnection delay
errors. We can also deal with multiple supply voltages by considering multiple
huddles and assigning an appropriate supply voltage to each of them.

Based on the above discussion, we can say that Option 2 is the best choice as
the initial huddle configurations. Overall, we can summarize that Fig. 3.6 shows
the best synthesis flow targeting HDR architectures. In initial huddling, initial
huddle configuration and placement are determined by given functional units. If
p functional units are given as input, we prepare just p huddles in which each
functional unit is assigned to each huddle. We merged huddles by huddling during
Steps (i)—(v) iteratively. When no huddles are partitioned in Step (v) (in other
words, no timing violations occur in Step (iv)), the iteration is finished.! In the
rest of this section, each process in Fig. 3.6 will be proposed. Note that only DFG
is used for simplicity as a motivated example but we can deal with CDFG similarly.
In the same way, adders and multipliers with fixed bit width as functional units
are used for simplicity.

3.4.1 Initial huddling

In initial huddling, initial huddle configuration and placement are determined by
given functional units. If p functional units are given as input, we prepare just p
huddles in which each functional unit is assigned to each huddle and the supply
voltage vy, is assigned to each huddle. All the huddles are overlapped with each
other where we can ignore interconnection delays between huddles here. F'(h;),
V(h;), and Dist(h;, h;) are set to be:

F(hi) ={fi}, (1<i<p)
V(hi) = vn, (1<i<p)
Dist(h;, h;) = 0. (1<4,j<p)

After initial huddling, we will start the first iteration.

Tt is not guaranteed that the proposed algorithm always generates converged results even
when there exists a feasible solution, but the algorithm has converged in 2-8 iterations in the
experimental results in Section 3.5. Note that other DR architecture synthesis algorithms also
have the similar convergence problem above.
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Figure 3.6: Energy-efficient high-level synthesis algorithm targeting HDR architec-
tures.

3.4.2 Scheduling/binding

When the supply voltage assigned to operations is changed, the execution timing
and the energy consumption of the operation are also changed. When low sup-
ply voltage is assigned to an operation, its execution time will increase and its
energy consumption will decrease. If an operation execution timing is changed,
we may change the operation scheduling and /or operation binding. The proposed
algorithm has five steps (i)—(v) but only Step (i) determines operation execution
timings. It is very natural that we assign supply voltages to huddles in the schedul-
ing /binding step and the other steps will be carried out based on supply voltages
determined in Step (i).

Then the scheduling/binding problem is, for given a CDFG G(IV, E), a clock
period constraint T, a control step constraint S,,.., a set of functional units,
huddle configuration, an initial supply voltage assigned to each huddle, and huddle
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placement, to find scheduling and functional unit binding of every node in a given
CDFG and to determine supply voltages assigned to given huddles so as to minimize
the total energy consumption meeting clock period constraint and control step
constraint. Note that, interconnection delays arce ignored in the first iteration since
floorplanning is not carried out and we assume that all the huddles are overlapped
with each other.

The scheduling/binding is composed of the three phases: initial phase, voltage-
increasing phase, and voltage-decreasing phase. In the initial phase, scheduling
and binding are executed according to the previous huddle placement and voltages.
Since operation binding may be changed, its voltages may be changed in this phase
but huddle voltages are not changed. Voltage-increasing phase is executed when the
initial phase result does not satisfy the control step constraint and huddle voltages
are increased so as to satisfy the control step constraint. Voltage-decreasing phase
decreases huddle voltages so as to minimize total energy consumption while meeting
the control step constraint.

In order to minimize the energy consumption so as to satisfy control step con-
straint through the voltage-increasing phase and the voltage-decreasing phase, we
design a priority Ps(h;) for a huddle h;. We will change the supply voltage of h;
based on its priority. The priority Ps(h;) is calculated by:

Pi(h;) = > E(f)/D(f). (3.5)

fi€F(hy)

According to [26], Ps(h;) expresses the energy-efficient effect that is caused by
assigning the voltage to h;. If low voltage can be assigned to h; that has high
Py(h;), we can gain farther reduction of overall energy consumption.

Initial phase is executed as a first step of scheduling/binding according to huddle place-
ment and voltages obtained by the previous iteration. Fig. 3.7 shows the initial
phase. Basically, we use data-transfer-table based scheduling [31]. If the initial
phase result here does not satisfy the control step constraint, we will execute the
voltage-increasing phase. Otherwise, we will execute the voltage-decreasing phase.

Voltage-increasing phase is executed when the initial phase result does not satisfy the
control step constraint. Th voltage-increasing phase will increase huddle voltages
and satisfy the control step constraint. Fig. 3.8 shows the voltage-increasing phase.
We first try to increase the huddle voltage from v; to v, to satisfy the control step
constraint. At that time we pick up the huddle h; with the voltage v; whose
priority Ps(h;) is the smallest first. This is because, even if the supply voltage
of h; is increased to from v; to v,,, we expect that overall energy consumption
is as small as possible satisfying the control step constraint. If the control step
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Initial Phase.

1. Calculate data transfer table DT'(f;, hi) for each functional unit f; and each huddle
hi.

2. Perform scheduling/binding based on the data transfer table DT(f;, hi) [31].

3. If the result satisfics the control step constraint, perform (a)—(f) so as to minimize
energy consumption:

(a) If there are multipliers with the voltage v; and vy,

i. Select a multiplication node n which are executed with the voltage vy,.
ii. Assume that n is executed with the voltage v; (not vy,), and perform
scheduling/binding based on DT'(f;, hy) [31] without changing any other
operation voltages.
iii. If the result satisfies the control step constraint, we accept the result.
Otherwise, we execute n with the original voltage v,,.
iv. Repeat the above steps until we try all the multiplication nodes executed
with v,,.
(b) If there are multipliers with the voltage v; and vy, perform the same steps
above for multiplication node executed with the voltage vy,.

(c) If there are multipliers with the voltage v, and vy, perform the same steps
above for multiplication node executed with the voltage vp.

(d) If there are adders with the voltage v; and vy, perform the same steps above
for addition node executed with the voltage vy,.

(e) If there are adders with the voltage v; and vy, perform the same steps above
for addition node executed with the voltage vy,.

(f) If there are adders with the voltage vy, and vy, perform the same steps above
for addition node executed with the voltage vy,.

Figure 3.7: Initial phase in scheduling/binding,.

constraint is not satisfied when we increase all the huddle voltages from v; to vy,
we try to increase the huddle voltage from v,, to vj in a similar way.

Voltage-decreasing phase decreases huddle voltages so as to minimize total energy
consumption while meeting the control step constraint. Fig. 3.9 shows the voltage-
decreasing phase. We first try to decrease the huddle voltage from vy, to v, while
meeting the control step constraint. At that time we pick up the huddle h; with
the voltage v, whose priority Ps(h;) is the largest first. After that, we try to
decrease the huddle voltage from vy, to v; in a similar way.

Example 3.3. Let us consider a DFG as depicted in Fig. 3.10(a). Assume that
the clock cycle constraint of T, = 3ns and the control step constraint Sy, = 8
are given. Tables 3.1 and 3.2 summarize functional unit and level converter spec-
ifications. Huddle configurations of Fig. 3.10(b) are also given and we assume
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Voltage-increasing phase

1. Pick up a huddle h; with the smallest priority Ps(h;) among the huddles executed
with the voltage v;. Change its voltage from v; to vy,.

Perform the initial phase again (Fig. 3.7).
If the result satisfies the control step constraint, finish.

Repeat the above steps 1-3 until all the huddles with the voltage v; are tried.

AR el o

Pick up a huddle h; with the smallest priority Ps(h;) among the huddles executed
with the voltage v,,. Change its voltage from v,, to vy.

S

Perform the initial phase again (Fig. 3.7).
7. If the result satisfies the control step constraint, finish.

8. Repeat the above steps 57 until all the huddles with the voltage v,, are tried.

Figure 3.8: Voltage-increasing phase in scheduling/binding.

that the interconnection delays between the three huddles as D, (Dist(hy, hs)) =
D.,(Dist(hy, hy)) = Dy, (Dist(hs, hs)) = 1ns. Register delays are given by D,.cq(hy) =
D,eg(h2) = Dyeg(hs) = 0.5ns.

At the initial phase, a data transfer table DT'(f;, hy) is constructed first. F . 3.10(c)
shows the constructed data transfer table DT(f;, hy) and the input DFG is scheduled
as in Fig. 3.10(a). Since Fig. 3.10(a) does not satisfy the control step constraint,
we execute the voltage-increasing phase next.

In the voltage-increasing phase, we pick up the huddle hs in Fig. 3.10(b) with the
voltage v; having the smallest priority. Fig. 3.11(b) shows the result where the hud-
dle voltage V (h3) is changed from v, to v,,. After that, DT (f;, hy) is re-constructed
and the initial phase is executed again. In this case, we have DT(f;, hi) as in
Fig. 3.11(c) and we have a scheduling result of Fig. 3.11(a). Since Fig. 3.11(a)
satisfies the control step constraint, we execute the voltage-decreasing phase next.

In the voltage-decreasing phase, we first pick up a huddle with the voltage vy, with
the largest priority but there exists no huddles with the voltage vy, in Fig. 3.11(b).
Then we pick up the huddle hs with the voltage v,, having the largest priority and its
huddle voltage V (h3) is changed from v, to v;. In this case, we obtain a scheduling
result of Fig. 8.10(a), which is the same result of the initial phase. However, since
Fig. 3.10(a) does not satisfy the control step constraint, V(hg) is returned to the
original voltage v,,.

In a similar way, the voltage-decreasing phase continues. However, the result
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Voltage-decreasing phase

1. Pick up a huddle h; with the largest priority Ps(h;) among the huddles executed
with the voltage v;,. Change its voltage from vy, to v,,.

2. Perform the initial phase again (Fig. 3.7).

3. If the result does not satisfy the control step constraint, we assign the original
voltage vy, to h;.

4. Repeat the above steps 1-3 until all the huddles with the voltage vj, are tried.

5. Pick up a huddle h; with the largest priority Ps(h;) among the huddles executed
with the voltage v,,. Change its voltage from v,, to v;.

6. Perform the initial phase again (Fig. 3.7).

7. If the result does not satisfy the control step constraint, we assign the original
voltage vy, to h;.

8. Repeat the above steps 57 until all the huddles with the voltage v,, are tried.

Figure 3.9: Voltage-decreasing phase algorithm.

satisfying the control step constraint can not be obtained. So we can finally have a
result of Fig. 3.11(a) satisfying the control step constraint with the smallest energy
consumption. Ol

3.4.3 Register/controller synthesis and floorplanning

In the register/controller synthesis and floorplanning step, register and controller
configuration in each huddle is determined according to the result of a schedul-
ing/binding step and then huddle placement is optimized. The same algorithm
with GDR architectures [32] is applied to the register/controller synthesis for HDR
architectures. Since we can determine which components are assigned to each hud-
dle, we can also determine the total area of each huddle.

Huddle placement as well as its height and width is optimized by using a simu-
lated annealing (SA) strategy based on a sequence-pair representation [28]. In the
floorplanning, power network resources are considered as in [22]. In SA optimiza-

tion, its cost function cost is expressed by

A BB %4 w APN R
cost = +a +4 + 7
Atotal Tclock WM AX Atoml

(3.6)

where App is the rectangle area which includes all the huddles (dead space may
be included), Aypa; is the sum of huddles’ area (dead space is not included), Tiocx



3.4. THE HLS ALGORITHM

Cs6
+
cs8 Q
A
ADD1
(a) DFG.
h2v ht | h2 | h3
gl h3:vi
(HLC ) f1 0 1 2
f2 1 0 2
) f3:MUL3
ﬁﬂmﬁb £4:ADD1 B2 2 0
- f4 ‘ 2 ‘ 2 0

(b) Placement information.

(c) Data transfer table.

Figure 3.10: Inputs of the scheduling/binding.
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is the clock period constraint, V' is the sum of the excess data transfer time which
violates DT'(f;, hy,) of each f; and hy, W is the wire length, Wy 4x is the max wire
length calculated by (rectangle area’s height + width)xthe number of wires, and
Apnr is the sum of the rectangle area of the respective voltages which includes all
the huddles where the voltages are assigned (dead space may be included). «,

and v are parameters.

The initial solution of floorplan at each iteration is the floorplan solution rep-
resented by its sequence-pair of the previous result so that the entire iteration in

Fig. 3.6 can converge gradually. Initial temperature T; in floorplan at the i-th
iteration of the synthesis flow is computed by

Tit1 = KT;

(3.7)
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Figure 3.11: Outputs of the scheduling/binding.

where K is also a parameter and set to be K < 1.2

Note that Step (ii) of register/controller synthesis and floorplanning and Step

(iv) of register /controller synthesis and floorplanning in Fig. 3.6 are completely the
same steps.

3.4.4 Huddling

In huddling, we merge adjacent huddles into a single huddle based on the floorplan
result. Since the floorplanning cost is calculated by Eqn. (3.6), huddles that should
be merged into a single huddle must be placed close to each other.

In order to determine huddles that should be merged, adjacency Adj(h;, hy) for

2In the experiments, o = 100, 3 =1, v = 0.5 and K = 0.9 were set.
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(a) Adjacent huddles h; and hy.  (b) Not adjacent huddles h; and hy,.

Figure 3.12: An example of adjacency Adj(h;, hy).

huddles h; and hy, (j # k) is defined as:

+ — Dist(hy, hy).  (3.8)

Adj(hy, he) = [H(hj) N H(hk)] N [W(hj)

W(hk)]
2 2 2 2
Adj(hj, hy) will be positive when h; and hy are adjacent and Adj(h;, hy) will be
negative when h; and hy, are placed far away.® Fig. 3.12(a) shows the case that the
two huddles are adjacent and Adj(h;, hy) > 0. Fig. 3.12(b) shows the case that the
two huddles are not adjacent and Adj(h;, hy) < 0. HC(h;, hy) shows the number
of inter-huddle connections between huddles h; and hy where HC(h;, hy) > 0.

Then we can define the priority P, (h;, hy) which shows whether huddle h; and
hx should be merged or not:

Pu(hy, hy) = Adj(hy, hy,) - HC(hy, hy,). (3.9)

In a similar way, P, (h;,hy) will be positive when h; and hy are adjacent and
Py (hj, hi) will be negative when h; and hy, are placed far away. We first pick a pair
of huddles whose P, value is the largest and check whether these huddles satisfy
the merging condition. When they satisfy the merging condition, they are merged

3 Adj(h;, hi) can be positive even if the two huddles h; and hy, are not adjacent, but we can say
that the two huddles are close enough if Adj(h;, hi) is positive. This is because of the following
reason:

The merging priority Py (h;, ki) in Eqn. (3.9) should represent the amount HC/(h;, hy) of data
transfers in each combination of huddles. However, two huddles which are placed far away should
not be merged into a single huddle since a floorplanning result indicates some optimal situation.
Therefore we also require the criterion how much close the two huddles are placed. Thus we
define Adj(h;, hi) as in Eqn. (3.8). In fact, the huddling works well in the experiments in Section
3.5.
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Figure 3.13: Inputs of huddling.
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Figure 3.14: Outputs of huddling.

into a single huddle. The merging condition here is defined by

V(h;) =V (hy) and
(3.10)
h; and hy satisfy the huddle size constraint.

We continue to find a pair of huddles that satisfy the merging condition until no
pair of huddles satisfies the merging condition.

In the huddling, we do not consider overlapping of existing huddles and merged
huddles and all pairs of huddles satisfying the merging condition are merged. This
overlapping will be resolved at Step (iv) of register/controller synthesis and floor-
planning. By introducing this approach, we can have as small number of huddles
as possible and will have a floorplanning result consistent with Step (i) of schedul-
ing/binding.

Example 3.4. Fig. 3.13 shows an example of huddling. The huddle pair of hs
and hy are picked up since they have the mazimum priority Py,(hs, hy) = 15. Since
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V(hs) = V(hy) = v, and they also satisfy the huddle size constraint, they satisfy
the merging condition. Then hs and hy are merged into a single huddle hs.

We check other pairs of huddles, but hy and hy do not satisfy the huddle size
constraint and other pairs of huddles have different supply voltages.

Overall, we can finally have a new huddle configuration as in Fig. 3.14(a). O

3.4.5 Unhuddling

In Section 3.4.4, we have proposed a huddling step which merges several huddles
into a single huddle, but a synthesis solution may fall into a local minimum if we
only deal with huddling. We need an unhuddling step which partitions a single
huddle into several huddles.

In unhuddling, we also utilize huddle placement information. Let DT(f;, hx)
and DTy (f;, hi) be data transfer tables for a functional unit f; and a huddle hy,
just after (i) scheduling/binding step in the current iteration and just after (iv)
register/controller synthesis and floorplanning step in the current iteration, respec-
tively. Then we check whether the following equation holds true or not:

If Eqn. (3.11) holds, a data transfer delay from f; to hy may violate the given clock
period constraint. In this case, f; cannot be assigned to huddle h;(= Hud(f;)).
We eliminate f; from h;, construct a new huddle h;, and assign f; to the new
huddle h;. hy; is placed so as to overlap hy. In (ii) register/controller synthesis and
floorplanning step of the next iteration, registers and controller for the new huddle
h; will be constructed and the overlap of huddles will be resolved.

If no pair of huddles satisfy Eqn. (3.11), all the data transfer times based on
the current floorplanning do not exceed the times which are calculated in the

scheduling /binding. Then we will finish the the iterative improvement loop.

3.5 Experimental Results

In this section, the circuit models are described and the proposed algorithm are
evaluated.

The interconnection delay model

In this dissertation, the interconnection delays are assumed to be proportional to
the square of the wiring length and an interconnection delay was set to be 1ns
when wiring length is 250 gm. The interconnection delay model is the same model
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in [32]. In [32], they use the values in ITRS ’05 [13] and obtain the ratio between
gate delay and interconnection delay in CMOS 45nm technology. Then they apply
this ratio to CMOS 90nm technology and obtain an interconnection delay here.
This is because:

e They have only CMOS 90nm technology library, but they do not have CMOS
45nm technology.

e Multi-cycle interconnect communication is required in technology nodes finer
than 65nm technology, say 45nm technology.

In ITRS 05 [13], we can see:
Interconnection delay of CMOS 90nm technology: 1ns per 2272 pm.

Gate delay: Roughly saying, the gate delay of CMOS 45nm technology is 0.492
times smaller than that of CMOS 90nm technology.

Interconnection delay: Similarly, the interconnection delay of CMOS 45nm tech-
nology is 4.51 times larger than that of CMOS 90nm technology.

Then the converted interconnection delay in CMOS 90nm technology will become
2272/(4.51/0.492) = 248.31, meaning 1ns per 248.31 pm. Therefore in [32], the
interconnection delay is estimated as 1ns per 250 pm.

In [8], interconnection delay is directly proportional to the wire length and
about Ins per 50mm. This is because they are based on the interconnection de-
lay model on FPGAs. They are based on 70nm technology FPGA and they as-
sumed that optimal buffer insertion and wire sizing are performed. They have
been described “five clock cycles are still needed to go from corner-to-corner for
the predicted die of 28.3mmx 28.3mm in the 70-nm technology generation, assum-
ing a 5.63-GHz clock”. Then, we consider interconnection delay without optimal
buffer insertion in their experimental environment. The interconnection delay of
CMOS 68nm technology requires 890ps when wiring length is 1mm according to
ITRS ’07 [14]. By using this value, it takes approximately 2851168.4ps to transfer
28.3mm x 28.3mm (we also assume here that interconnection delay is proportional
to the square of wire length). In other words, it requires 16052 cycles in the case
of 5.63GHz clock (the buffers have to be inserted to prevent this situation).

In contrast, the distance which can be communicated in 1 clock cycle is about
437pm. These things lead to two conclusions:

e First, very large-scale circuits requires optimized buffer insertions in order to
optimize interconnection delays, as in [§].
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e Second, relatively small/middle-scale circuits without buffers require multi-
cycle interconnect communication. In this case, distributed-register architec-
tures which realize multi-cycle interconnect communication can be the best
answer.

In this chapter, the proposed algorithm is applied to up to 129600 zm?(360 um x
360 pm) circuits in Section 3.5. Then buffer insertion is not required.

Note that, the forecast of interconnection delays in ITRS 05 [13] is smaller
than the measured values in ITRS 07 [14] and ITRS ’09 [15]. In recent LSI
design, some wiring techniques, such as the copper wire and the low-k structure
for wire, have been proposed, but the trend of interconnection delay will continue
over successive years. Therefore the converted interconnection delay above is not
so exaggerated and the interconnection delay model is used in this dissertation.
This interconnection delay model is also used in the latter chapter.

The level converter model

In Chapter 3 and Chapter 4, the information of the level converter is obtained
from [40]. Since the information of level converters in [40] is based on the CMOS
65 nm technology, the circuit information is converted to that of the CMOS 90 nm
technology. In Chapter 3 and Chapter 4, level converters are inserted when data
is transfered not only from lower voltages to higher voltages but also from higher
voltages to lower voltages.

The results

The proposed algorithm have been implemented in C++4-. The algorithm has been
applied to DCT (a discrete cosine transform algorithm for 8 x 8 pixels, 48 nodes),
Jacobi (Jacobi method to solve linear equations with four unknown variables, 48
nodes), EWF3 (three elliptic wave filters are serially connected, 102 nodes), and
FIR filter (a seventh order finite impulse response filter, 75 nodes)*. Table 3.3
shows the functional unit specification and Table 3.4 shows the level converter
specification [40]°. All the functional units were assumed to have a bit width of
16, and their specifications were obtained by synthesizing them beforehand based
on the CMOS 90 nm technology. Controllers were synthesized by Synopsys Design

4The benchmarks use the condition vector (CV) [44] and are described by CoDaMa [20] which
are written in XML. The benchmarks are used in [31,32,39]. COPY and PARKER in the letter
chapter are the same.

®Since the information of level converters in [40] is based on the CMOS 65 nm technology, the
circuit information is converted to that of the CMOS 90 nm technology.
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Compiler in each iteration. The interconnection delays were assumed to be pro-
portional to the square of the wiring length and an interconnection delay was set
to be 1ns when wiring length is 250m [32].Energy consumption is obtained using
Synopsys Design Compiler.

The proposed algorithm targeting HDR architectures with multiple supply volt-
ages (“MHDR” in Table 3.5) is compared to a GDR architecture synthesis algo-
rithm [32] (“GDR” in Table 3.5), MCAS for RDR architectures [8] (“RDR” in Table
3.5), and the proposed algorithm targeting HDR architecture with a single supply
voltage (“HDR” in Table 3.5). The proposed algorithm is further compared with
the following strategy: the existing multiple supply voltage aware scheduling [48]
is first performed; based on this voltage assignment to each operation, MCAS for
RDR architecture is performed (“ [48] + RDR” in Table 3.5), and the proposed
algorithm targeting HDR architecture is performed (“ [48] + HDR” in Table 3.5).
The clock period constraint was given to be 2.5ns in all the experiments.

Table 3.5 summarizes the experimental results. In Table 3.5 “CS constraints”
shows the control step constraint. “Control steps” shows the number of required
control steps after synthesizing each circuit. “Area” and “Rectangular area” in
Table 3.5 represent the sum of module/huddle area and the minimum rectangle area
including all of them. “Dynamic energy” and “Leak energy” represent dynamic
energy consumption and leakage energy consumption. “All Energy” shows the
sum of “Dynamic energy” and “Leak energy”. “Iterations” shows the number of
iterations requred by each algorithm. “CPU Time” shows CPU time to synthesize
each circuit.

The experimental results show that the smallest area is “GDR”, HDRs(“HDR”,
“ [48] + HDR”, “MHDR”), and RDRs(“RDR”, “ [48] + RDR”) in that order.
However, “GDR” areas can be sometimes larger than “HDR” areas. This is because
of the following reason: “GDR” has shared register groups but, since its synthesis
flow is too complicated as pointed out in Section 3.2, several registers cannot be
shared into any shared register group and become local registers in order to meet
the timing constraints. On the other hand, the “HDR” has a strucutre of huddles
and all the regsters in each huddle are shared into the expected shared registers.

Between the areas considering single supply voltage and those considering mul-
tiple supply voltages, the latter will be larger in most cases. This is because the
level converter area must be added and the results considering multiple supply volt-
ages decrease register sharing. However, “M[HDR” areas can be sometimes become
smaller than “HDR” areas. This is just because of the proposed algorithm cannot
always have an optimal (or semi-optimal) result. Since the proposed algorithm is
based on an iterative improvement flow, it sometimes fall into an local optimum.
In the case of EWF3 using HDR, it is just the case.
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Table 3.3: Functional unit specification.

Functional Area | Delay | Dynamic | Leak

Unit [pm?] | [ns] energy | power

[£]] [ W]
Adder (1.2V) 386 | 0.75 92 3.9
Adder (LOV) | 386 | 1.22 64 3.2
Adder (0.8V) | 386 | 2.71 41 2.6
Subtractor (1.2V) | 417 | 0.78 97 4.2
Subtractor (1.0V) | 417 | 1.27 67 3.5
Subtractor (0.8V) | 417 | 2.82 43 2.8

Multiplier (1.2V) | 2161 | 1.65 | 1135 | 19.8
Multiplier (1.0V) | 2161 | 2.70 788 16.5
Multiplier (0.8V) | 2161 | 6.00 504 13.2
Divider (1.2V) | 6066 | 6.25 | 2306 | 837.6
Divider (1.0V) | 6066 | 10.21 | 1601 | 698.0
Divider (0.8V) | 6066 | 22.69 | 1234 | 524.0

The experimental results show that the dynamic energy consumption of “MHDR”
is reduced by a maximum of 48.2% and an average of 25.2% compared with the
other algorithms. All energy consumption of “MHDR” is also reduced by a max-
imum of 48.1% and an average of 22.4% compared with the other algorithms. In
“GDR”, “RDR”, and “HDR”, multiple supply voltages can not been considered.
Since “MHDR?” can assign lower voltages to non-critical pathes, “MHDR” achieved
maximally 48.1% energy reduction. The leakage energy consumption of “MHDR”
is reduced by a maximum of 60.3% , but is increased by an average 9.4% compared
with the other algorithms. This is because level converters increase the leakage
energy, but the overall energy consumpation is much reduced compared with other
algorithms.

Note that the objectives of synthesis algorithms of “GDR”, “RDR” and “HDR”
are to minimize the required control steps. Actually, their control steps are shorter
than the control step constraints. All the energies in Table 3.5 are evaluated
within the required control steps. These results can be fairly compared to results
obtained by ¢ [48]4+RDR”, “ [48]+HDR” and “MHDR”. The number of iterations
in “MHDR?” is up to three and we can have the CPU time comparable to the GDR
synthesis algorithm.
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Table 3.4: Level converters specification [40].

Vin = Vout Area | Delay | Dynamic Leak
[pm?] | [ns] | energy [fJ] | power W]

12V-10V ]| 113 | 0.17 83 49.1
1.2V -08V | 113 | 0.22 71 32.3
L0V -12V | 113 | 017 76 45.0
1.0V-08V | 113 | 0.30 55 18.3
0.8V-12V | 113 | 0.22 86 39.1
0.8V-10V| 113 | 0.30 55 18.3

3.6 Conclusion

In this chapter, I proposed huddle-based distributed register architecture (HDR ar-
chitecture) for multi-cycle interconnect communications and a new energy-efficient
high-level synthesis algorithm targeting HDR, architecture. The proposed algo-
rithm reduced energy consumption by a maximum of 48.1% and by an average of
22.4% compared with the conventional algorithms.
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Table 3.5: Experimental results
App. FUs Smax Architechture Cs Area Rectangular Dynamic Leak All 7 CPU time

[um2] area [um2] [pJ] [pJ] [pJ] [sec]

ewf3 Addx3 50 GDR 43 47792 55250 655.83 57.64 713.47 7 362.48
Mulx2 RDR 44 69530 69530 764.33 85.06 849.39 1 56.21

HDR 43 53926 59706 720.82 79.38 800.21 6 1169.40

[48] + RDR 50 109350 109350 570.41 84.57 654.98 1 127.98

[48] + HDR 50 57118 60882 577.89 108.90 686.80 8 1815.60

MHDR 50 44049 48208 520.20 91.07 611.27 2 487.20

fir Addx3 35 GDR 30 36840 48278 429.16 38.35 467.51 24 1212.06
Mulx 3 RDR 29 81920 81920 360.01 105.18 465.19 1 75.78

HDR 30 28493 32643 344.88 30.75 375.62 2 353.15

[48] + RDR 35 115200 115200 507.73 64.94 572.67 1 174.33

[48] + HDR 35 51795 59220 371.74 75.42 447.17 2 484.67

MHDR 35 40231 49580 284.64 44.63 329.27 2 484.10

fir Addx4 30 GDR 30 39407 42593 473.44 40.34 513.78 24 1314.37
Mulx 4 RDR 29 82816 82816 335.95 123.57 459.52 1 75.59

HDR 30 34967 41087 315.10 38.79 353.89 5 701.88

[48] + RDR 30 129600 129600 366.16 43.22 409.39 1 190.94

[48] + HDR 30 57672 66316 475.25 94.20 569.46 2 352.27

MHDR 30 48011 59175 246.41 49.09 295.49 2 576.32

jacobi Addx2 20 GDR 19 28026 33660 273.75 60.70 334.45 8 644.76
Subx1 RDR 20 57600 57600 224.93 94.94 319.87 1 138.06

Mulx2 HDR 19 32031 34686 201.13 91.78 292.91 2 288.77

Divx2 48] + RDR 20 115200 115200 224.32 119.43 343.74 1 144.62

48] + HDR 20 35124 38340 163.21 100.32 263.52 2 448.74

MHDR 20 36581 42210 163.56 93.41 256.98 2 447.97

dct Addx4 10 GDR 8 53864 58378 208.48 11.00 219.48 24 1378.30
Mulx 4 RDR 9 81476 81476 220.75 13.69 234.45 1 74.29

HDR 8 55709 58450 196.58 14.66 211.24 2 505.71

[48] + RDR 10 115200 115200 235.79 52.98 288.76 1 194.40

[48] + HDR 10 42272 44544 202.21 22.56 224.77 3 746.99

MHDR 10 50337 69030 169.16 25.53 194.69 3 822.64




Chapter 4

MH?*: Multiple Supply Voltages
Aware High-speed and
High-efficiency High-level
Synthesis Algorithm for HDR
architecture

4.1 Introduction

In Chapter 3, a high-level synthesis algorithm targeting huddle-based distributed-
register architectures (HDR architectures) has been proposed where energy-efficiency
and interconnection delays are considered simultaneously. The algorithm, however,
has the two severe problems: (A) the huddle-area and interconnection-delay oscil-
lation during iterations and (B) the insufficient huddle construction methods.

In this chapter, I propose three new techniques, virtual area estimation, virtual
area adaptation, and floorplanning-directed huddling to resolve the problems (A)
and (B) and then I propose a new multiple-supply-voltages aware high-speed and
high-efficiency high-level synthesis algorithm for HDR architecture called MH*.
Experimental results show that the proposed algorithm achieves about 29.1% run-
time-saving compared with the conventional methods, and successfully obtains a
solution which cannot be obtained by the algorithm proposed in Chapter 3.

40
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4.2 Problem Definition

The target of the proposed high-level synthesis algorithm is the HDR architec-
ture (Fig. 3.2) composed of huddles, where each huddle includes functional units
(HFU), dedicated registers (HLR), level converters (HLC), and dedicated FSM.
Rectangular area in each huddle is determined by clock period constraints. Details
are shown in Section 3.2.

A control-data flow graph (CDFG) G(N, E) is a directed graph, where a node
set N is composed of an operation node set N, and a branching control node set
N, (start and end nodes of conditional branches), and an edge set E is composed
of a data-flow edge set E; and a control-flow edge set E,.. T, refers to a clock
period constraint and S,,,, refers to a control step constraint.

Let F = {f1,---, f,} be a set of functional units and D¢(f;) be a delay of
the functional unit f; in F. S¢(f;) shows the number of control steps required to
execute the functional unit f; and S¢(f;) is defined by S¢(fi) = [Ds(fi)/Tex]. Let
E(f;) be the energy consumed by the functional unit f; in S¢(f;) steps.

Let H = {hy,--- ,h,} be a set of huddles in the HDR architecture. Each
functional units are bound to any one of the huddles and the binding is defined by
a function Hud : F' — H. Hud(f;) is the huddle to which f; is bound. F(h;) is a
set of functional units which are bound to h;. D,.4(h;) is a delay of HLRs in h;.

The three supply voltages, v;, v,,, and v, (v; < v, < vp,), which is assigned
to each huddle, are considered. V(h;) is a supply voltage which are assigned to
the huddle h;. Di.(v;,vy,) is a delay of a level converter which changes the voltage
from v, to v,,. Likewise, Dj.(v;, vy), Dic(vm,v1), and so on can be defined.

Slack(f;) is defined by:
Slack(fj) = Tclk‘ . Sf(fl) — Df(fl) (41)

Slack(f;) shows the slack time which can be used by data transfer for succeeding
operations.

The width and height of each huddle must satisfy the following huddle size
constraint:

2 Dy(W(hy) + () + Doogh) < min (Slack(f)} (1.2
i€ F(h;

where W (h;) and H(h;) are the width and height of the huddle h;, respectively.

D,,(x) is an interconnection delay whose length is z. In the proposed algorithm, we

obtain the value of (W (h;) + H(h;)) so that it satisfies the huddle size constraint

and determine W (h;) and H(h;) by using the aspect ratio predefined for each
huddle.
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Let Dist(h;, hi) be the Manhattan distance between the center of huddles h;
and hy. Then D, (Dist(h;, hy)) shows the interconnection delay between them.
Let f; be a functional unit bound to the huddle h;, i.e., Hud(f;) = h;. Tr(f;, h)
shows the inter-huddle data transfer delay from f; to HLRs in hj which is defined
by:

Tr(fi, hiw) = Dy(Dist(hj, hi)) + Die(V(h;), V(hi)) + Dyeg(hi). (4.3)

DT(fi, hx) shows the number of clock cycles required to transfer data from f; to
hy which is defined by:

0, (Slack(f;) > Tr(f;, hy))
DT(f;, hi) = (4.4)
[Tr(fi hi)/Tax- (Slack(f;) < Tr(f;, hy.))

In the case of Slack(f;) > Tr(fi, hx), the functional unit f; directly stores its
output in the register file of huddle hy. Thus, the data transfer requires no extra
cycles. In the case of Slack(f;) < Tr(fi, hx), the functional unit f; first stores its
output into the local register file in its huddle h; (= Hud(f;)). In the next cycle,
the data transfer from the huddle h; to the huddle h; starts. The data transfer
requires [Tr(fi, hi)/Tar| cycles. Then the data transfer table DT can be defined
by a p x ¢ matrix whose (i, k)-element is expressed by DT(f;, hy).

Based on the above definitions, the high-level synthesis problem is defined as
follows:

Definition 4.1. The high-level synthesis problem is, for a given CDFG, a clock
cycle constraint, a control step constraint, and a set of functional units, to assign
each operation node to a control step and a functional unit, to bind each functional
unit to each huddle, and to assign a supply voltage to each huddle. The objective
15 to minimaze the total energy consumption.

4.3 The MH* Algorithm

In Chapter 3, a high-level synthesis algorithm for HDR architectures have been
proposed. The scheduling/binding as well as floorplanning are simultaneously op-
timized by using iterative synthesis flow (Fig. 3.6). The algorithm proposed in
Chapter 3 has the two problems:

(A) Huddle-area and interconnection-delay oscillation:

First problem is that huddle areas and interconnection delays may be oscil-
lated during iterations where the same situations might be repeated in the
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Figure 4.1: Area oscillation example and the virtual area estimation. (a) Floor-
planning at the (i — 1)-th and (i + 1)-th iterations. (b) Scheduling/binding at the
i-th iteration. (c) Floorplanning at the i-th iteration. (d) Scheduling/binding at
the (i + 1)-th iteration. (e) Floorplanning result at the i-th iteration considering
virtual area estimation. (f) Scheduling/binding result at the (i + 1)-th iteration
considering virtual area estimation.
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Figure 4.2: The huddle construction methods.

iteration steps. For example, Fig. 4.1(a) shows the floorplanning result at the
(1—1)-th iteration where too many operations are bound to the huddle B and
timing constraints are not satisfied. At the i-th iteration, scheduling/binding
is executed based on Fig. 4.1(a). Since the data transfer between the huddles
A and C requires shorter time, many operations are bound to C' this time
and we have the result of Fig. 4.1(b). In this iteration, we have the floor-
planning result of Fig. 4.1(c) based on Fig. 4.1(b). C has the larger area in
i-th iteration and Fig. 4.1(c) cannot satisfy the timing constraint, either.

In the same way, scheduling/binding is executed based on Fig. 4.1(c) at the
(i + 1)-th iteration and we have Fig. 4.1(d). When we have the floorplanning
result based on Fig. 4.1(d), we will go back to the Fig. 4.1(a) and these steps
may be repeated.

(B) The insufficient huddle construction methods:

Second problem is the inefficiency of the huddle construction methods. In
the original algorithm proposed in Chapter 3, huddles are generated by the
two steps huddling and unhuddling. Since they are not much dependent
on each other, we may have poor huddle construction finally. Moreover,
huddle construction is composed of merge, partition, and transfer as shown
in Fig. 4.2, but the original algorithm only considers merge and partition.

In order to resolve the above problems, I propose three new techniques as
follows:

1. Virtual area estimation: A virtual area is introduced into each huddle. Vir-
tual areas of huddles do not oscillate in the iterations.
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2. Virtual area adaptation: Virtual area estimation above may have some area
and interconnection delay overheads. The virtual area adaptation relaxes
these overheads as the iterations proceed.

3. Floorplanning-directed huddling: In the algorithm proposed in Chapter 3,
the two steps, huddling and unhuddling, are executed based on floorplan-
ning results but I embed them into floorplanning as floorplanning-directed

huddling.

Based on these three techniques, I propose a new multiple-supply-voltages aware
high-speed and high-efficiency high-level synthesis algorithm for HDR architectures
called MH* (Fig. 4.3). MH* is mainly composed of the three processes: initial pro-
cess, iteration process, and adjustment process. In the initial process, initial huddle
placement is determined. In the iteration process, scheduling/binding and floor-
planning are performed repeatedly based on wirtual area estimation/adaptation,
where huddles are constructed by floorplanning-directed huddling. When no tim-
ing violations occur in floorplanning-directed huddling, the iteration is finished and
we go to the adjustment process. In the adjustment process, real area of each hud-
dle is estimated by the scheduling/binding result obtained in the iteration process.
Huddles which no functional unit is assigned to are eliminated in the adjustment
process.

Since the processes in MH?* other than wirtual area estimation, virtual area
adaptation, and floorplanning-directed huddling are the same as the ones in Section
3.4, I explain here each of the three new techniques.

4.3.1 Virtual area estimation

Problem (A) is mainly caused by huddle area reduction in iterations. If we employ
the mazimum area obtained in each iteration as an estimated huddle area, the
huddle area oscillation will not happen and we can expect that the solution will
converge very fast without oscillating. The estimated area here is called wvirtual
area.

Let A,cqi(h;) be the original area estimation of the huddle h; and Ayjrtua(h;)
be the virtual area of huddle h;. A,.q(h;) is called a real area. Initial value of
Avirtuat(hj) is set to be the real area obtained by the initial process in MH%. In
each iteration, the A, tuq(h;) is updated if we have larger real area for the huddle
h;. However the A,y (h;) is not updated if we have the same or smaller real
area for the huddle h;.

For example, let us consider the case of Figs. 4.1 (a) and (b). After obtaing
Fig. 4.1(b), Avirtua(hc) is updated but Ayireue(hp) is not in MH* (Fig. 4.1(e)).
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Figure 4.3: The proposed MH* algorithm.

When we see the Fig. 4.1(b) and Fig. 4.1(e), we know that the timing violation
occurs between the huddles A and C. We finally have the scheduling/binding result
of Fig. 4.1(f). After obtaining Fig. 4.1(f), we can also have the same floorplaining
result as Fig. 4.1(e) which satisfies the timing constraint. Then we can finish the
algorithm iteration.

Overall, the virtual area of the huddle h; is estimated in the iteration process
when its huddle construction is changed as follows:

1. Ayeq(h;) is calculated by summng up the areas of functional units, registers,
a controller, and level converters inside h;.

2. If Avirtuar(Rj) = Avear(h;), Avirtuar(Rj) is not updated.

3. If Avirtual(hj) < A7'eal<hj)7 we set Avi7'tual(hj> = Areal(hj)-
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4.3.2 Virtual area adaptation

Virtual area estimation, however, may increase interconnection delays between
huddles as the iterations proceed. To solve this problem, we should decrease the
difference between virtual area and real area.

We execute virtual area adaptation after floorplanning-directed huddling. Be-
cause this step is just before scheduling/binding at the next iteration, we can use
virtual areas closer to real areas at the next iteration.

Virtual area adjustment is executed as follows:

1. Let Auir(h;) = Avirtuar(hj) — Ayear(h;) be the difference between real area
A, eai(h;) and virtual area A,jpuq(h;) of the huddle h;.

2. We set Ayirtuar(h;) = Avear(hj) + ¢ - Agir(hy).

where ¢ is an adaptation parameter. In order to decrease ¢ as the iterations
proceed, we set ¢ = max{l — 0.09¢,0} at the i-th iteration.

Note that the virtual area estimations are returned to their real area in the
adjustment process.

4.3.3 Floorplanning-directed huddling

Virtual area estimation may cause vacant huddles which no functional unit is
assigned to but which has a virtual area. By effectively using vacant huddles,
all of the three huddle construction methods merge, partition, and transfer can be
represented by just using transfer (Figs. 4.4(a) and (b)). This idea can resolve the
problem (B).

Huddle construction correlates with floorplanning. It is better for us to in-
tegrate huddle construction methods into floorplanning. In floorplaning, huddle
placement as well as its height and width is optimized by using a simulated an-
nealing (SA) strategy based on a sequence-pair representation proposed in [28].
In sequence-pair, each module packing is represented by a pair of module name
sequences. In the floorplanning-directed huddling, I'y and I"_ are the huddle name
sequences and a pair of I', and I'_ represents a placement of huddles. In this step,
we consider the four moves as follows:

Move 1: Select two elements and exchange them in ['y.
Move 2: Select two elements and exchange them in I'y and ['_.

Move 3: Select one element and change its aspect ratio.
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Figure 4.4: (a) Merge using transfer. (b) Partition using transfer.

Move 4:  Select functional unit f; and transfer it from the huddle h; to the
huddle hy(# h;).

In SA optimization, its cost function cost is expressed by

App V W Apnr
cost = + + +
Atotal Tclock ' WMAX Atotal

(4.5)

where App is the rectangle area which includes all the huddles (dead space may
be included), Aypar is the sum of huddles’ area (dead space is not included), Teocx
is the clock period constraint, V' is the sum of the excess data transfer time which
violates DT'(f;, hy) of each f; and hy, W is the wire length, Wy 4x is the max wire
length calculated by (rectangle area’s height + width)xthe number of wires, and
Apnr is the sum of the rectangle area of the respective voltages which includes
all the huddles where the voltages are assigned (dead space may be included). «,
£ and v are parameters. The initial solution of floorplan at each iteration is the
floorplan solution represented by its sequence-pair of the previous result. Initial
temperature 7; in floorplan at the i-th iteration of the synthesis flow is computed

by
Tioy = KT, (4.6)

where K is also a parameter and set to be K < 1.1

4.4 Experimental results

The proposed algorithm has been implemented in C++. The algorithm has been
applied to DCT (a discrete cosine transform algorithm for 8 x 8 pixels, 48 nodes),

'In the experiments, & = 100, 3 = 1, v = 0.5 and K = 0.9 were set.
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EWF3 (three elliptic wave filters are serially connected, 102 nodes) FIR filter (a
seventh order finite impulse response filter, 75 nodes), and COPY (provided by a
company, 378 nodes, including conditional branches) where COPY is a practical
application example. The same functional units and level converters as in Chapter
3 (Table 3.3 and Table 3.4) were used. Selectable voltages were assumed to v; =
0.8V, v,, = 1.0V, and v, = 1.2V. Controllers inside huddles were synthesized
by Synopsys Design Compiler in each iteration. The interconnection delays were
assumed to be a proportion to square of the wiring length and an interconnection
delay is set to be 1 ns when wiring length is 250m. Energy consumption is obtained
using Synopsys Design Compiler.

The proposed algorithm (“MH?*” in Table 4.1) has been compared to the GDR
architecture synthesis algorithm [32] (“GDR” in Table 4.1), MCAS for RDR archi-
tectures [8] (“RDR” in Table 4.1), the HLS algorithm targeting HDR architectures
with a single supply voltage (“HDR” in Table 4.1), the HLS algorithm targeting
HDR architectures with multiple supply voltages (“MHDR” in Table 4.1) and the
proposed algorithm with a single supply voltage (“MH* (Single)” in Table 4.1).

The experimental results show that all energy consumption of MH* is reduced
by a maximum of 30.4% and an average of 18.2% compared with the other algo-
rithms applied to single supply voltage. The CPU time of MH* and MH* (Single)
are reduced by a maximum of 63.9% and an average of 29.1% compared with HDR,
and MHDR. MH* and MH* (Single) can obtain a feasible result for COPY which
cannot be obtained by HDR and MHDR. All energy consumption in COPY using
MH* is reduced by a maximum of 57.6% compared with MH* (Single). HDR and
MHDR can obtain a feasible result for COPY when the clock period constraint
was set to be 5.5ns. In this case, however, all huddles are assigned to 0.8 V. Thus,
there is no need to apply multiple supply voltages.

The effectiveness of the adaption parameter ¢ was verified in COPY because the
results of them have several iterations and may have large virtual area overheads.
The experimental results show that all energy consumption of ¢ = 1 — 0.09: is
reduced by a maximum of 16.2% and an average of 13.3% compared with that of
¢ = 1.0 which did not execute virtual area adaptation.

4.5 Conclusion

In this chapter, I propose a multiple-supply-voltages aware high-speed and high-
efficiency high-level synthesis algorithm for HDR architectures. The proposed al-
gorithm reduced energy consumption by an average of 18.2% compared with the
single-supply-voltage aware algorithms and reduced CPU times by an average of
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Table 4.1: Experimental results.

App. FUs Clock Steps Architecture o Rectangular All en- CPU time Itera-
[ns] and algorithm area [pm?] ergy [pJ] [sec] tions
EWF3 Addx3 1.5 65 GDR - 42432 476.70 830.43 24
Mulx 2 RDR - 78400 537.74 105.35 1
HDR - 50445 473.72 401.25 2
MHDR - 47817 403.12 480.73 2
MH* (Single) 1—0.094¢ 45034 487.60 344.74 2
MH* 1 - 0.097¢ 48399 404.36 357.50 2
FIR Addx3 1.5 30 GDR — 22165 198.52 2597.54 24
Mulx 3 RDR — 99225 241.89 191.02 1
HDR — 41856 247.04 635.23 2
MHDR — 40040 178.34 725.91 2
MH* (Single) 1 - 0.094¢ 25992 197.09 523.97 2
MH? 1—0.09¢ 37856 171.91 503.32 2
DCT Addx4 1.5 15 GDR - 64925 138.07 1338.14 24
Mulx 4 RDR - 96800 181.25 191.41 1
HDR - 60456 164.74 726.11 2
MHDR - 65565 129.01 1372.02 4
MH* (Single) 1 -0.094¢ 57912 164.74 559.91 2
MH? 1—0.09¢ 60060 135.86 495.07 2
COPY Addx3 1.5 170 HDR - - - > 1 day -
Subx1 MHDR - - - > 1 day -
Compx1 MH?* (Single) 1 338976 8699.10 1900.19 7
Rshift x 2 1—0.09:¢ 433246 7805.45 2179.72 6
ANDx1 MH* 1 402992 3949.53 3618.05 9
Mulx 5 1 - 0.094¢ 325420 3307.97 2501.39 4
5.5 90 HDR - 355320 5714.42 2283.05 4
MHDR - 414080 2840.63 2531.08 4
MH* (Single) 1—0.094¢ 374490 5542.46 1091.08 2
MH* 1 - 0.097¢ 336432 2804.23 1822.92 4

29.1% compared with the original algorithm targeting HDR architectures proposed
in Chapter 3. The proposed algorithm can successfully obtain optimum high-level
synthesis solution which cannot be obtained by the algorithm proposed in Chapter
3.



Chapter 5

SAAV: Dynamic Multiple Supply
Voltages Aware High-level
Synthesis Algorithm for AVHDR

Architecture

5.1 Introduction

In this chapter, I propose an adaptive voltage huddle-based distributed-register ar-
chitecture (AVHDR architecture), which integrates dynamic multiple supply volt-
ages and floorplanning into HLS. Next, based on the proposed AVHDR, architec-
ture, an HLS algorithm is proposed for energy reduction. By using a floorplanning
result, the number of non-critical operations can be increased by managing inter-
connection delay with multi-cycle interconnect communication, and then optimized
supply voltages can be assigned for energy reduction. For example, low supply volt-
ages can be assigned to non-critical operations and leakage power can be cut off
through power gating. When compared with existing works, on average the energy
consumption could be reduced by 43.9%.

5.2 AVHDR Architecture

In this section, the recently proposed distributed-register architectures are briefly
reviewed and then the new adaptive voltage huddle-based distributed-register archi-
tecture (AVHDR architecture) is proposed.

In distributed-register architectures (DR architectures) [8,17,19,31,32], a large
circuit is divided into several small partitions. By doing this, 1) the interconnec-

o1
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tion delay in each partition is assumed to be zero; and 2) the inter-partition data
transfer (i.e. the data transfer between partitions) is realized through multi-cycle
interconnect communication. Several distributed-register architectures, such as
generalized distributed-register architecture (GDR architecture) [32] and regular
distributed-register architecture (RDR architecture) [8] have been proposed, but
energy-aware HLS algorithms targeting at them have not been proposed. Huddle-
based distributed-register architecture (HDR architecture) with the corresponding
synthesis algorithm was proposed in Chapter 3 and Chapter 4. HDR architec-
ture can deal with multiple supply voltages (MSV), but this architecture did not
consider power gating (PG) and/or dynamic multiple supply voltages (DMSV).

To integrate DMSV and interconnection delay into HLS, a new distributed-
register architecture called adaptive voltage huddle-based distributed-register ar-
chitecture (AVHDR architecture) is proposed. AVHDR architecture introduces
a non-uniform sized island called a huddle in which several functional units are
abstracted. The huddle has non-uniform rectangular area under huddle size con-
straint, determined by clock period constraints. We can assume the interconnection
delay inside each huddle to be virtually zero and we only need to consider the data
transfer time during inter-huddle communication in HLS. In each AVHDR, huddle,
two types of power supply rails are prepared for applying dynamic multiple supply
voltages. One is for adaptive voltage logic (AVL) and the other is for fized volt-
age logic (FVL). An AVHDR example is shown in Fig. 5.1, in which a huddle, h,
consists of AVL and FVL.

Adaptive Voltage Logic (AVL)
AVL is composed of several AVFUs, and the voltage of each AVFU can be
changed.

Adaptive Voltage Functional Unit (AVFU): A dedicated functional
unit and I/O level converters in h. Each pair of a functional unit and I/0
level converters is connected to its dedicated power supply rail (Fig. 5.2). Its
supply voltages are controlled by its PMOS header switches dynamically.

Fixed Voltage Logic (FVL)
FVL is composed of HLRs, FSM, and HLCs, and only one constant voltage
is assigned to FVL.

Huddled Local Registers (HLRs): Dedicated local registers in i and
input multiplexers. AVFUs can only access the HLRs in h. We ignore the

mterconnection dela lose to

the HLRs.
Finite State Machine (FSM): A dedicated controller in h. FSM controls



5.3. PROBLEM DEFINITION 23

AVL FVL
AVFU | HLRs

| Huddle a i .

Huddle T AVFU III @IIII
[ —

Huddle 6\
— | lHuddle Q ()

h N HLCs
Huddle q W

Figure 5.1: An AVHDR architecture.

the AVFUs and the HLRs in h. FSM control the supply voltages for the
AVFUs at runtime.

Huddled Level Converters (HLCs): Dedicated level converters in h.
HLCs are used during inter-huddle data transfer from lower voltage huddles.

The AVHDR architecture realizes two energy saving contributions:

(1) Huddles realize the strategy which take interconnection delay into consider-
ation in HLS with relatively little area overheads.

(2) AVL and FVL realize the smart supply voltages selection with dynamic mul-
tiple supply voltages.

Based on huddles, the number of non-critical operations can be increased by
managing interconnection delay, and then optimized supply voltages can be as-
signed to AVL and FVL for energy reduction.

5.3 Problem Definition

To develop energy efficient HLS algorithms for the proposed AVHDR architecture,
the problem could be modeled as follows. A control-data flow graph (CDFG)
G(N, E) is a directed graph, where a node set N is composed of an operation node
set N, and a branching control node set N, (start and end nodes of conditional
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Figure 5.2: The number of AVFU level converters.

branches), and an edge set E is composed of a data-flow edge set E; and a control-
flow edge set E.. Let CV ={00...0 < CV, < 11...1} be a set of a-bit condition
vector (CV) [44], which is a bitwise encoding of distinct conditional branches. We
consider the three supply voltages, v;, v, and v, (v; < v, < wv,), which are
assigned to each operation node n,. V(n,) is a supply voltage that is assigned to
the operation node n,. T,y refers to a clock period constraint and 5,,,, refers to
a control step (CS) constraint. Let S = {1,---, Sy} be a set of CSs. Let S; be
a CS (1 <8 < Saa)-

Let F'={fi,---, f,} be a set of functional units. We consider the three supply
voltages, vy, Uy, and vy, (v, < v, < v,), which are assigned to each functional unit
in each step. Let vgqe be a state of power gating when none of the three voltages,
Uy, U, and vy, are assigned to functional units. Let D¢(f;,v;) be the delay of the
functional unit f; in F' to which v; is assigned. Let Ey(f;, v;) be the dynamic energy
consumed by the functional unit f; to which v; is assigned. Let P(f;,v;) be the
leak power consumed by the functional unit f; to which v; is assigned. Likewise,
we can define D¢(f;, vm), Ea(fi,vn), P(fi,vm), and so on. Let SWE(f;, v, vp,) be
the energy consumed by the functional unit f; when the supply voltage is switched
from v; to v,,. Likewise, we can define SWE(f;, vy, vn), SWE(fi, Vgate, v1), and so
on. Let AVT(f;, S, CV;) be the supply voltage which is assigned to the functional
unit f; in the CS S; of the conditional vector C'V},. Then the adaptive voltage table
AV'T can be defined by a p X Spe: X @ matrix whose (i, ¢, b)-element is expressed
by AVT(f;, S, CVA).

Let Gain(f;,v;,vy) be the dynamic energy saving when the supply voltage of
the functional unit f; is changed from v; to v,. Gain(f;, v, vy,) is calculated by as
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follows:

Gain(fivvlv Uh) = y{Ed<f27 Uh) - Ed(fivvl>} (51)

where g is the number of executed operations when v; is assigned to f;.

Let BET(fi,v;,vn) be the break even time [36] when the supply voltage of the
functional unit f; is changed from v; to v,. BET(f;,v,v) is calculated by as
follows:

SWE(fi, v, vn) — Gain( fi, v, vg)
Pl(fz’avh) - Pl(fz',Ul) '

Let H = {hy,---,hy} be a set of huddles in the AVHDR architecture. Each
functional unit is bound to any one of the huddles and the binding is defined by
a function Hud : F — H. Hud(f;) is the huddle to which f; is bound. F'(h;)
is a set of functional units which are bound to hj. D,.,(h;) is a delay of HLRs

BET(fZ',’Ul,Uh) = (52)

in h;. We consider the three supply voltages, v;, vy, and v, (v, < vy, < V),
which are assigned to each FVL. V(h;) is a supply voltage which is assigned to the
FVL inside huddle h;. Dj.(v;, vy,) is a delay of a level converter which changes the
voltage from v; to v,,. Likewisc, we can define Dy.(vy, vp), Die(Vm, vs), and so on.

Diotai(hj, fi, vi) shows the delays required to execute the functional unit f; €
F(h;) to which v, is assigned. Diotai(hy, f;,v;) is defined by:

Diotar(hy, fisvi) = Dy(fi, v1) + Dyeg(hy) + Dic(vi, V (hy)). (5.3)

S¢(h;, fi,vi) shows the number of CSs required to execute the functional unit f; €
F(h;) to which v, is assigned. S¢(h;, fi, ) is defined by:

D s
Sy(hy. fi o) = { tOt“l(Th”f““ﬂ . (5.4)
clk
Slack(fi, Si, CV}) is defined by:
Sl(le‘(fia St, OV;)) :Tclk . Sf(h'ja fi, AVT(fZ, St, C%))

Slack(fi, St, C'V;) shows the slack time of the functional unit f; € F(h;) which can
be used by data transfer for succeeding operations in the CS S; of the conditional
vector C'V;,. MinSlack(f;) is defined by:

MinSlack(f;) = sediin Slack(fi, S, CVp). (5.6)
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MinSlack(f;) shows the minimum slack time through all steps. The width and
height of each huddle must satisfy the following huddle size constraint:

2+ Dy,(W(hj) + H(hy)) < fiénbj(lfle){MinSlack:(fi)} (5.7)
where W (h;) and H(h;) are the width and height of the huddle h;, respectively.
D,,(x) is an interconnection delay whose length is z. In the proposed algorithm, we
obtain the value of (W (h;) + H(h;)) so that it satisfies the huddle size constraint
and determine W (h;) and H(h;) by using the aspect ratio predefined for each
huddle.

Let Dist(h;, hi) be the Manhattan distance between the the center of huddles
h; and hg. Then D, (Dist(h;, hy)) shows the interconnection delay between them.
Let f; be a functional unit bound to the huddle h;, i.e., Hud(f;) = h;. Tr(f;, h)
shows the inter-huddle data transfer delay from f; to HLRs in hj which is defined
by:

Tr(fi, hi) = Dy (Dist(hj, b)) + Die(V(hy), V(hi)) 4+ Dyeg(hi). (5.8)

DT(f;, hi) shows the number of clock cycles required to transfer data from f; to
hy. which is defined by:

0 (MinSlack(f;) = Tr(fi, hi)),

DT (fi, hi) = (5.9)

[Tr(fis hwe) [ Tar )
(MinSlack(f;) < Tr(fi, he)).

We prepare two types of data transfer mode:

Mode 1: In the case of MinSlack(f;) > Tr(f;, ki), the functional unit f; € F(h;)
directly stores its output into the registers in the huddle h,. Thus, the data
transfer requires no extra cycles.

Mode 2: In the case of MinSlack(f;) < Tr(f;, hy), the functional unit f; € F(h;)
first stores its output into the registers in the huddle h;. In the subsequent
cycles, we perform the data transfer from the huddle £; to the huddle 7.
The data transfer requires [Tr(f;, hy)/Tur] cycles.

Then the data transfer table DT can be defined by a p x ¢ matrix whose (i, k)-
element is expressed by DT'(f;, h)-

Based on the above definitions, the HLS problem is defined as follows:
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Definition 5.1. The HLS problem s, for a given CDFG, a clock cycle constraint,
a CS constraint, and a set of functional units, to assign each operation node to a CS
and a functional unit to bind each functional unit to a huddle, and to assign a supply
voltage to each operation, each functional unit, and each FVL, so that the given
CDFG s executed correctly considering multi-cycle interconnect communications.
The objective is to minimize the total energy consumption. 0

With the above definition, we can manipulate pipelined functional units. For
instance, a two-stage multiplier can be managed by partitioned into three compo-
nent as follows:

e The first half of the multiplier,
e the pipeline register,
e the last half of the multiplier.

The first half and the last half of the multiplier are considered to be AV-
FUs, and the pipeline register is considered to be a HLR. Furthermore, pipelined
multiplication-node n,, is split into the first half multiplication-node n,,; and the
last half multiplication-node n,,2. A data-flow edge e,,, is inserted between n,,;
and n,,2. According to the above transformation, the definition can be applied to
pipelined functional units.

5.4 The SAAV Algorithm

In this section, a new high-level Synthesis Algorithm for Adaptive Voltage huddle-
based distributed-register architecture called SAAV is proposed.

Generally, high-level synthesis algorithms considering multi-cycle interconnect
communication are composed of schedulings, bindings, and floorplannings and clas-
sified into the following two types:

Type 1: Schedulings, bindings, and floorplannings are executed a predetermined
number of times in a predetermined order.

Type 2: Schedulings, bindings, and floorplannings are executed repeatedly as an

iterative refinement flow.

In Type 1, a required time to synthesize a chip can be expected easily since the
number of executed synthesis steps and the execution order are determined. If we
know in advance how many times we need to perform each high-level synthesis step
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as well as its best execution order, Type 1 will be the best choice. MCAS [§], one
of the RDR architecture synthesis algorithms, uses an approach based on Type 1
above. Since RDR architecture contains uniform-sized islands, inter-island delays
arc unchanged cven if RDR island configurations arc changed. Then we can execute
a predetermined design flow.

In Type 2, several informations such as scheduling results and placement results
are fed back to each other since each synthesis step is executed repeatedly as many
times as needed. A GDR architecture synthesis algorithm [32] and HDR archi-
tecture synthesis algorithms (Chapter 3 and Chapter 4) use approaches based on
Type 2. By iteratively executing scheduling/binding steps and floorplanning steps,
a current scheduling/binding step can consider interconnection delay obtained in
a previous floorplanning step. The shape and size of each module are determined
in a scheduling/binding step and a floorplanning step is done using these module
informations. Because each synthesis step affects each other, iterative refinement
flows as in Type 2 must be the best choice targeting GDR and HDR.

In SAAV, we must consider the design influence of level converters and power
switches which are required for dynamic multiple supply voltages. It is very dif-
ficult to predict the influence of these components in algorithms based on Type
1. Therefore Type 2-based synthesis flow is suitable for the proposed AVHDR, ar-
chitecture, in which global optimization could be achieved by considering dynamic
multiple supply voltages.

Based on Type 2, a virtual-area-based iterative refinement flow proposed in
Chapter 4 is used in SAAV. SAAV is composed of the following seven steps in each
iteration:

e initial huddling,

scheduling /binding,

register /controller synthesis,

e huddle voltage adaptation,

floorplanning,
e floorplanning-directed huddling,
e virtual area adaptation.

In a initial huddling step, initial huddle configuration and placement are deter-
mined by given functional units. In a scheduling/binding step, each operation
node in a CDFG is assigned to a CS and a functional unit considering dynamic
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multiple supply voltages and multi-cycle interconnect communications. In a regis-
ter /controller synthesis step, HLR and FSM configurations in each huddle are de-
termined using the scheduling/binding result. In huddle voltage adaptation step,
we assign an optimal voltage to each FVL considering energy consumption of level
converters. In a floorplanning step, every huddle is placed. In a floorplanning-
directed huddling step, the configuration and placement of each huddle is deter-
mined simultaneously. In a virtual area adaptation step, we reduce the virtual area
overhead during iteration. Fig. 5.3 shows the SAAV algorithm. In the rest of this
scetion, we will desceribe the virtual-arca-base iterative refinement flow and cach
step in Fig. 6.3. Note that we deal with only DFG, only two voltages such as vy,
and v;, and only one operation type for simplicity as a motivated example but we
can deal with CDFG, v,,, and any other operation type similarly.

SAAV uses a virtual-area-based iterative refinement flow. Initially we prepare
two types of area, called a real area and a virtual area. Let A, ., (h;) be the real
area of the huddle h;, and which is the sum of functional unit areas and register
areas inside h;. Let Ayirtuai(h;) be the virtual area of huddle h;, and it is estimated
in the iteration when its huddle construction is changed as follows:

1. In each iteration, A,.q(h;) is calculated by summing up the areas of func-
tional units, registers, a controller, and level converters inside h;.

2. If Avirtuar(Rj) = Avear(h;), Avirtuar(Rj) is not updated.

3- If Avirtual(hj) < Areal(hj)> we set Avirtual(hj) - Areal(h'j)~

At the beginning of the iteration process, A,irtuqai(h;) of the huddle h; is initialized
to be A,eqi(h;). SAAV is mainly composed of the three processes: initial process,
iteration process, and adjustment process. In the initial process and the adjustment
process, huddle placement is determined based on a real area of each huddle. In
the iteration process, we perform scheduling/binding and floorplanning repeatedly
based on virtual area of each huddle. When no timing violation occurs in the
iteration process, we go to the adjustment process for real area estimation.

5.4.1 Initial huddling

In initial huddling, initial huddle configuration and placement are determined by
given functional units (as shown in Fig. 5.4). If p functional units are given which
we prepare just p huddles in which each functional unit is assigned to each huddle
and the supply voltage vy, is assigned to each of AVLs and FVLs. All the huddles are
overlapped with each other so as to ignore interconnection delay between huddles.
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Figure 5.3: The SAAV algorithm.

Example 5.1. In initial huddling, initial huddle configuration and placement are
determine by a given set of functional units F'. The input and the output are as
follows:

Input
o F={fi.f2. f5, [a}-
Output :
e huddle configuration (Fig. 5.4).

Because all the huddles are overlapped with each other, we can ignore the intercon-
nection delay between huddles in the initial process.



5.4. THE SAAV ALGORITHM 61

Huddle A
AVL FVL

\

2 |

Vi

— |
-

[ 1 I‘

Figure 5.4: The result of initial huddling.

5.4.2 Scheduling/binding

The scheduling/binding problem is, for given a CDFG G(N, E), a clock period
constraint 1., a CS constraint S,,.,, a set of functional units, and huddle config-
uration, to find scheduling, functional unit binding, and supply voltage binding of
every node in a given CDFG and to determine supply voltages assigned to given
AVL and FVL so as to minimize the energy consumption of AVL and minimize
the supply voltage of FVL.

The scheduling/binding is composed of three phases: (a) FVL voltage decreas-
ing phase (Algorithm 5.1), (b) AVL voltage decreasing phase (Algorithm 5.2), and
(c) dynamic voltage assignment phase (Algorithm 5.3). In all the phases, we use
data-transfer-table-based list scheduling [31] in order to search for the optimal volt-
age. We can consider interconnection delay and conditional branch by using the
scheduling.

In the FVL voltage decreasing phase, we design a priority Ps(h;) for a huddle
h;. The priority Ps(h;) is expressed as the sum of energy consumptions of AVFUs
inside the huddle h; and calculated by:

P.(hj)= > E(f) (5.10)
fi€F(hj)

We pick up the huddle whose priority Ps(h;) is the largest first and try to decrease
its FVL voltage. We repeat this process unless a scheduled CDFG violates the CS
constraint S,z

Example 5.2. This ezample shows that the step (v) just after the initial process.
In scheduling/binding, operation scheduling and functional unit binding are ex-
ecuted. The inputs and the outputs are as follows:

Inputs :
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Algorithm 5.1 (a) FVL voltage decreasing phase

10:
11:
12:
13:
14:
15:

1
2
3
4
5:
6
7
8
9

. Assign V' (h;) < vy, for each huddle h;.
. Execute scheduling/binding based on DT'(f;, hy) [31].
: Calculate Py(h;).
: for h; in the descending-order of Ps(h;) do
if V(h;) = v, then
V(h;) < vp.
Execute scheduling/binding based on DT'(f;, hy).
if the resultant scheduling exceeds S,,,, then
V(h]> < Vp.
end if
end if
end for
for h; in the descending-order of P;(h;) do
if V/(h;) = vy, then perform (4)—(12) with V(h;) < v;.
end for

of

Table 5.1: Component information.
Up Uy
FU | 1.0ns | 2.0ns
REG | 0.2ns | 0.4ns
U = vy
LC 0.1ns

e DFG G(N,FE) (Fig. 5.5(a)),

e Component information (Table 5.1),
e T, =1.5ns,

e S =4, and

o huddle configuration (Fig. 5.5(b)).

e scheduled DFG (Fig. 5.9(a)),
e adaptive voltage table AVT (Fig. 5.9(b)), and
e voltage assignment to FVL (Fig. 5.9(c)).

First, we assume interconnection delay between huddles by the huddle placement
step (iv). According to the example showing in Fig 5.6(c), the interconnection
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Algorithm 5.2 (b) AVL voltage decreasing phase

1: Assign AVT(f;, S, 11...1) < v, for each AVFU f; and each CS S;.
2: for f; in the descending-order of E,(f;) do

3. if AVT(f;,1,11...1) = v;, then

4: for S; in S do

5: AVT(fi, Si, 11...1) <= vy

6: end for

7: Execute scheduling/binding based on DT'(f;, hy).
8: if the resultant scheduling exceeds 5,,,, then
9: for S; in S do

10: AVT(fi, Si, 11...1) < vy,

11: end for

12: end if

13:  end if

14: end for

15: for f; in the descending-order of E,(f;) do

6. if AVT(f;,1,11...1) = v, then perform (2)—(14) with
AVT(fi, Sy, 11...1) « v,

17: end for

delay can be assumed as follows:

D, (Dist(A, B)) = D, (Dist(A,C))
= D, (Dist(B, D)) = D,,(Dist(C, D)) = 0.2 ns, (5.11)

D, (Dist(A, D)) = D, (Dist(B,C)) = 0.4ns. (5.12)

FVL voltage decreasing phase Algorithm 5.1 shows the FVL wvoltage de-
creasing phase algorithm. First, the voltage vy, is assigned to each functional
unit and each register as shown in Fig. 5.6(c). Next, DT(f;, hy) is calculated.
Dyt (A, f1,u,) can be calculated by:

Dtotal(A> fla Uh) :Df(fb 'Uh) + Dreg(A) + ch(vha V(A))
=1.0ns+ 0.2ns + Ons
=1.2ns.
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Algorithm 5.3 (c) Dynamic voltage assignment phase

1:
2:

4
5
6
7
8.
9

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:

21:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

Execute scheduling/binding based on DT'(f;, hy.).
for N, in N, do
if V(N,) = v, then
Let FLAG + false.
for f; in F' do
for S; in S do
for C'V, in CV do
if AVT(f;,S;, CV,) = v, then
FLAG + true.
end if
end for
end for
end for
if FLAG = true then
Execute scheduling/binding based on DT'(f;, hy) without changing any
other operation voltages.
if the resultant scheduling does not exceeds S,,,, then
go to next N,.
end if
end if
V(N,) ¢« v not changing the binding result of (1) utilizing dynamic
multiple supply voltages.
Execute scheduling/binding based on DT'(f;, hy) without changing any
other operation voltages.
if the resultant scheduling exceeds S,,,, then
V(Nx> — Vp.
end if
end if
end for
for N, in N, do
if V(V,) = vy, then perform (2)-(26) with V(N,) « v,.
end for
for N, in N, do
if V(N,) = vy, then perform (2)—(26) with V(N,) < v,,.
end for
Reassign AVT(f;, St, C'V;,) with the scheduling/binding result in this phase.
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Figure 5.5: The inputs of scheduling/binding,.

St(A, fi,vh) is calculated by:

Sf<A7 f17 Uh) — ’VDtOtal (71—'4;]6](‘1’ Uh)—‘

B 1.2ns
- | 1.5ns

=1.

Because there are no conditional branches and dynamically voltage changing,
MinSlack(f1) is calculated by:

MinSlack(f1) =Tar - S¢(A, fi,vn) — D¢(f1,vn)
=1.5ns-1-1.0ns
=0.5ns.

Tr(fi, B) is calculated by:

Tr(f1,B) =Dy(Dist(A, B)) + Di.(V(A),V(B)) + Diey(B)
=0.2ns+0ns+ 0.2ns
=0.4ns.

Because MinSlack(f) > Tr(f1, B), the data transfer Mode 1 is selected and the
data transfer time is calculated to be DT(f1, B) = 0. Similarly, Mode 1 is applied

to the data transfer from f to C' and DT(f1,C) = 0. On the other hand, Tr(f1, D)
15 calculated by:

T’l"(fl, D) :Dw(DZSt(A> D)) + ch(V(A)a V(D)) + DT@Q(D)
=0.4ns + 0ns + 0.2ns
=0.6ns.
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Figure 5.6: The result of Algorithm 5.1(1-2).

Because MinSlack(f) < Tr(f1, D), the data transfer Mode 2 is selected and the
data transfer time DT(f1, D) is calculated by:

DT(fi, D) =[Tr(fis hi)/Tar]
=[0.6ns/1.5ns]
=1.

In this way, DT(f;, hy) is constructed as shown in Fig. 5.6(d). Based on the
DT(f;, hy), the input DFG is scheduled as shown in Fig. 5.6(a).

Next, we pick up the huddle D in Fig. 5.6(c) with the voltage v, and change
V(D) from vy, to v;. Since the scheduling result satisfies the CS constraint Sy,q.,
we pick up the huddle C, huddle B, and huddle A and change their voltages sim-
ilarly. Finally, Fig. 5.7(c) shows the huddle configuration, Fig. 5.7(d) shows the
constructed data transfer table DT'(f;, hy), and the DFG is scheduled as shown in
Fig. 5.7(a). Since there are no huddles with the voltage vy, we execute the AVL
voltage decreasing phase next. Note that in this phase, the voltage vy, is assigned
to each functional unit in each CS(Figs. 5.6(b) and 5.7(b)).
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Figure 5.7: The result of FVL voltage decreasing phase.

AVL voltage decreasing phase Algorithm 5.2 shows the AVL voltage decreas-
ing phase algorithm. First, we pick up the functional unit fy of huddle D in
Fig. 5.7(c) with the voltage vy, and change f; voltage from vy, to v, (Fig. 5.8(b)).
Fig. 5.8(d) shows the constructed data transfer table and the DFG is scheduled as
shown in Fig. 5.8(a). The result satisfies the CS constraint Sy,q.. Next, we pick
up the functional unit fs of huddle C in Fig. 5.7(c) with the voltage vy, and change
f3 woltage from vy, to v; but the scheduling result exceeds the CS constraint Sp,qz.
Therefore we return the voltage of f3 from v; to v,. We pick up the functional unit
fa and fi and change their voltage similarly, but all the results cannot satisfy the
CS constraint Spa.. Finally, we get the scheduled DFG as shown in Fig. 5.8(a),
Fig. 5.8(b) shows the adaptive voltage table, Fig. 5.8(c) shows the huddle config-
uration, and Fig. 5.8(d) shows the data transfer table. We ezxecute the dynamic
voltage assignment phase next.

Dynamic voltage assignment phase Algorithm 5.3 shows the dynamic volt-
age assignment phase algorithm. First, we pick up the node ny in Fig. 5.8(a) with
the voltage vy, and change ny voltage from vy, to v;. We execute scheduling/binding
based on DT(f;, hy) but the result exceeds the CS constraint Sy,q.. Next, we assign
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Figure 5.8: The result of AVL voltage decreasing phase.

the wvoltage v; to my not changing the binding result of Fig. 5.8(a). We execute
scheduling/binding based on DT(f;, hx) again but the result exceeds the CS con-
straint Syae. We pick up the node ny, - -+, ns and change their voltage similarly
but the scheduling result exceeds the CS constraint.

When we pick up the node ng, we can assign the voltage v; to ng with dynamic
multiple supply voltages. First, we pick up the node ng in Fig. 5.8(a) and change
ne voltage from vy, to v;. We execute scheduling/binding based on DT(f;, hy) but
the result exceeds the CS constraint S,,... Next, we assign the voltage v; to ng not
changing the binding result of Fig. 5.8(a). We execute scheduling/binding based on
DT\(fi, hi) again then the result can satisfy the CS constraint Spa. (Fig. 5.9(a)).

We repeat this step on the node ny; and ng but the scheduling result exceeds
the CS constraint. Finally, we get the scheduled DFG as shown in Fig. 5.9(a),
Fig. 5.9(c) shows the huddle configuration, and Fig. 5.9(d) shows the data transfer
table. Based on the scheduled DFG (Fig. 5.9(a)), we assign the adaptive voltage
table AVT as shown in Fig. 5.9(b).
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Figure 5.9: The result of dynamic voltage assignment phase. Fig. 5.9 (a) shows the
final result of scheduling/binding. Figs. 5.9 (b)—(d) show its associated adaptive

voltage table, huddle configuration, and data transfer table.

5.4.3 Register/controller synthesis

In the register /controller synthesis step, the register and controller configuration
in each huddle is determined according to the result of the previous schedul-
ing /binding step.

In controller synthesis, first we synthesize the adaptive voltage table AVT by
taking BET of each pair of voltages into consideration. Algorithm 5.4 shows the al-
gorithm of BET-aware AVT synthesis. Based on the synthesized AV'T, the signals
for power switching and control signals for multiplexers are synthesized.

Example 5.3. In register/controller synthesis, the register and controller config-
uration in each huddle is determined according to the result of scheduling/binding
step. The inputs and the outputs are as follows:

Input

e BET information (Table 5.2),
o scheduled DFG (Fig. 5.9(a)), and
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Algorithm 5.4 BET-aware AVT synthesis

1: for functional unit f; € F' do

2:

9:
10:
11:

12:
13:

14:
15:

16:
17:
18:
19:

if f; executes operation less than BET'(f;, v, vy,) in the CS S; and the con-
ditional vector C'V, then
AVT(fi, Sy, CVy) = vy
end if
if f; executes operation less than BET(f;, v, vy) in the CS S; and the con-
ditional vector C'V, then
AVT(f;, Sy, CVy) <= vy,
end if
if f; executes operation less than BET(f;, vy, vs) in the CS S; and the
conditional vector C'V}, then
AVT(f;, Sy, CVy) <= vy,
end if
if f; sleep longer than BET(f;, Vgate, Vafter) in the CS Sy and the conditional
vector C'V4, where vgerer is the assign voltage after sleep then
Do nothing.
else if f; sleep longer than BET(f;, v, Vafter) in the CS Sy and the condi-
tional vector C'V}, where v,feser is the assign voltage after sleep then
AVT(f;, Sy, CVy) vy
else if f; sleep longer than BET(fi, U, Vafter) in the CS S; and the condi-
tional vector C'V;, where v, e, is the assign voltage after sleep then
AVT(fi, Sy, CVy) <= vpp.
else
AVT(f;, Sy, CVy) <= vy,
end if

20: end for
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Table 5.2: BET informations
Vgate — U Vgate — Up U — Up

BET | 2.5ns(= 2steps) | 3.5ns(= 3steps) | 2.0ns(= 2steps)

CS f; fo f3 fs CS fi f. f3 fs

1 Vh Vh Vh 1 Vh Vh
2 Ve Veate 2
\/ Vi VA
3 Veat 3 Vere | Vi
— Vi Vi
4 4
(a) Input AVT. (b) BET-a

Figure 5.10: The result of BET-aware AVT synthesis.
e adaptive voltage table AVT (Fig. 5.9(b)).

Output :

e huddle configuration (Fig. 5.11) and

e adaptive voltage table AVT (Fig. 5.10(b)).

Algorithm 5.4 shows the BET-aware AVT synthesis algorithm. First, we pick
up functional unit f1. The sleep step of fi is CS 2. Because the sleep step is
shorter than BET (f1, Vgate, vn) and BET (f1, v, vp), vy, is assigned to AVT(f1,2,1)
(because there are no conditional branches, CV, = 1). Next, we pick up func-
tional unit fo. The sleep steps of fo are CS 2-CS J. Because the sleep steps are
longer than BET(fa, Vgate, Un), Ugate 1S assigned to AVT(fy,2,1), AVT(fs,3,1),
and AV'T(fy,4,1). Then we pick up functional unit f3. The sleep step of f3
is CS 2. The sleep step is shorter than BET(fs, vgate,vi), but is longer than
BET(f3,v,v)(= 0). Therefore v is assigned to AVT(f3,2,1). Finally, we pick
up functional unit fy but it has no sleep steps. The controller configuration in each
huddle is determined by the synthesized AVT.

In the iteration process, we estimate each huddle area based on wvirtual area.
In Fig. 5.11, the area of huddle A in this phase is smaller than that in the initial
process. However, the virtual area of huddle A does not decrease in Fig. 5.11.
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Figure 5.11: The result of register/controller synthesis.

5.4.4 Huddle voltage adaptation

In the huddle voltage adaptation step, the supply voltage of each FVL is reassigned
so as to minimize the total energy consumption. In the scheduling/binding step,
we minimize each FVL voltage. However, level converters of AVFU and HLC may
consume wasted energy when we just assign the minimum voltage to each FVL.
We should optimize the supply voltage of each FVL in order to minimize the total
energy consumption including level converter energy. Since each FVL voltage is
minimized in scheduling/binding step, we just consider increasing the FVL voltage
accordingly. We pick up the voltage increasing FVL by using P;(h;) which is the
same value in the scheduling/binding step and try to increase the FVL voltage.
If the total energy consumption decreases, we really assign the increasing voltage
to the FVL. We repeat this process until all the huddles’ FVL voltages have been
examined as shown in Fig. 5.12.

Example 5.4. In huddle voltage adaptation step, we reassign the supply voltage
of FVL. The inputs and the output are as follows:

Inputs :

e scheduled DFG (Fig. 5.9(a)) and
e huddle configuration (Fig. 5.11).

Output
e huddle configuration (Fig. 5.12).

In scheduling/binding, FVL voltage decreasing phase minimize the FVL voltage
of each huddle. However, level converters of AVFU and HLC may consume wasted



5.4. THE SAAV ALGORITHM 73

Huddle D
A FVL
AVL | | FVL
%2
-« Huddle C
H Huddle A A L
H AL [FL
.
.
H
.
.
.
[§

Figure 5.12: The result of huddle voltage adaptation.

energy when we just assign the minimum voltage of each FVL. In Fig. 5.9(a) and
Fig. 5.9(c), the voltage v, is assigned to the FVL of huddle A. In this case, we
must use level converters of AVEU and HLC in ny, ns, ng. If we assign the voltage
v, to huddle A, we do not use level converters and can decrease the total energy
consumption. We change the FVL voltage of huddle A from v; to vy, and get the
huddle configuration as shown in Fig. 5.12.

5.4.5 Floorplanning and floorplanning-directed huddling

The huddle is the partition on the floorplanning which express the area where data
transfers inside huddle finish within one clock cycle. Tt is better for us to inte-
grate huddle construction methods into floorplanning. In floorplanning-directed
huddling, huddle placement as well as its height and width are optimized by using
a simulated annealing (SA) strategy based on a sequence-pair representation. In
this step, we consider the four moves as follows:

Move 1:  Select two elements and exchange them in I',.
Move 2:  Select two elements and exchange them in I'y and T'_.
Move 3:  Select one element and change its aspect ratio.

Move 4:  Select functional unit f; and transfer it from the huddle h; to the huddle
hi(# hj).

In floorplanning, we only consider Move 1, Move 2, and Move 3. In SA optimiza-
tion, its cost function cost is expressed by

A Vv W A
cost = =25 4 ¢ + + PN
Atotal

5.13
Atotal Tclock ' W]WAX ( )
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where Agp is the rectangle area which includes all the huddles (dead space may be
included), Ao is the sum of huddles’ area (dead space is not included), Tyjper is
the clock period constraint, V' is the sum of violations of clock period constraint,
W is the wire length, Wy, 4x is the max wire length calculated by (rectangle area’s
height + width)xthe number of wires, and Apyg is the sum of power network
resource. «, 5 and y are parameters.

The initial solution of floorplanning and floorplanning-directed huddling at each
iteration is the solution represented by its sequence-pair of the previous result so
that the entire iteration in Fig. 5.3 can converge gradually. Initial temperature
T; in floorplanning and floorplanning-directed huddling at the i-th iteration of the
synthesis flow is computed by

T = KT, (5.14)
where K is also a parameter and set to be K < 1.1

Example 5.5. In floorplanning directed huddling, huddle placement and huddle
configuration are optimized simultancously. The input and the output are as fol-
lows:

Input

e huddle configuration (Fig. 5.12).
Output

e huddle configuration (Fig. 5.13).

In the example, functional unit fy transfers into huddle C.

5.4.6 Virtual area adaptation

Virtual area may increase interconnection delay between huddles as the iterations
proceed. To solve this problem, we should gradually decrease the difference between
virtual area and real area.

n the experiments, . = 100, 8 = 1, v = 0.5 and K = 0.9 were set. In Eqn. (5.13) o = 100
was set because the most important objective is to eliminate timing violations. Wire length is

correlated with wire dynamic energy consumption, and 222 and —%
Atotal Wnaax

length. Therefore 3 was set to be 1 so as to evaluate them equally. Since % contributes to

merging huddles (Move 4), some weights were putted on it and v = 0.5 was set. Some conventional

are affected by the wire

methods [31,32] based on iterative refinement flow set K = 0.9 in their experimental evaluations.
Therefore in Eqn. (5.14) K = 0.9 was also set in the experimental evaluation. These parameters
may not be optimum but the experimental results show that the proposed algorithm obtains the
best results compared with the conventional methods.
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Figure 5.13: The result of floorplanning directed huddling.

We execute virtual area adaptation after floorplanning-directed huddling. Be-
cause this step is just before scheduling/binding at the next iteration, we can use
virtual area closer to real area at the next iteration.

Virtual area adjustment is executed as follows:

1. Let Agif(hj) = Avirtual (hj) — Arear(hj) be the difference between real arca Areqr(hj)
and virtual area Ay;reuqr(h;) of the huddle hj;.

2. We set Avirtual(hj) = Areal(hj) + d) : Adlf(h‘j)

where ¢ is an adaptive parameter. In order to decrease ¢ as the iterations proceed,
we set ¢ = max{1 — 0.09¢,0} at the i-th iteration.

Example 5.6. In virtual area adaptation, we decrease the virtual area. The input and
the output are as follows:

Input :

e huddle configuration (Fig. 5.13).
Output

e huddle configuration (Fig. 5.14).

In the example, the virtual area of huddle A and D are decreased.
In this example, since no timing violations occur, we go to the adjustment process.

5.5 Experimental Results

In this section, the circuit models are described and the proposed algorithm are
evaluated.



76 CHAPTER 5. SAAV FOR AVHDR ARCHITECTURE

Huddle D
Huddle B L
AL FL Huddle C
V, -
AVL |\,
Huddle A

AVL FVL

; v,

Figure 5.14: The result of virtual area adaptation.

The dynamic multiple supply voltages model

The circuit informations using the dynamic multiple supply voltages were obtained
by Synopsys Design Compiler and Synopsys HSPICE based on CMOS 90 nm tech-
nology. First, functional units, such as Adder and Subtractor, were synthesized
by Synopsys Design Compiler and the gate-level descriptions are obtained. Next,
the gate-level descriptions were converted to the SPICE netlists. Then multiple
power rails and PMOS header switches were inserted to the SPICE netlists and
the circuits were simulated by Synopsys HSPICE. The values in Table 5.3 were
obtained by the results of Synopsys Design Compiler and Synopsys HSPICE.

The level converter model

The circuit informations of level converters were obtained by Synopsys HSPICE
based on CMOS 90 nm technology. The SPICE netlists based on a level converter
circuit shown in Fig. 2.1 were described and the circuits were simulated by Syn-
opsys HSPICE. The values in Table 5.5 were obtained by the results of Synopsys
HSPICE. In Chapter 5 and Chapter 6, level converters are only inserted when data
is transfered from lower voltages to higher voltages.

The results

The proposed algorithm have been implemented in C++4 on UNIX 2.5 GHz x2
with 16 GB memory. The algorithm has been applied to DCT (a discrete cosine
transform algorithm for 8 x 8 pixels, 48 nodes), EWF3 (three elliptic wave filters
are serially connected, 102 nodes), FIR filter (a seventh order finite impulse re-
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sponse filter, 75 nodes), PARKER [29] (22 nodes, including conditional branches),
and COPY (provided by a company, 378 nodes, including conditional branches).
Comparing the experimental environment with the ones in [6-8,17-19, 25, 26, 31,
32,34, 35,38,47, 48], we cannot always say that the experimental environment is
practical enough in terms of application size, but we can say that it is reasonable
to demonstrate the effectiveness of the algorithm. Table 5.3 shows the functional
units specification. Table 5.4 shows the registers and the multiplexers specification.
Table 5.5 shows the level converters specification. Memories were assumed to be
prepared outside. Therefore the memory access was assumed to be a special type
of functional unit as shown in Table 5.3. All the functional units were assumed to
have a bit width of 16. All the functional units, power switch [42], and BET were
obtained based on CMOS 90 nm technology. Selectable voltages were assumed to
be as v; = 0.8V, v,, = 1.0V, and v, = 1.2V. The clock period constraint was
given to be 1.5ns in all experiments. The interconnection delay were assumed to
be a proportion to square of the wiring length and an interconnection delay is set
to be 1ns when wiring length is 250pm? [32].

Table 5.6 and Table 5.7 summarize the experimental results. In Table 5.6,
“Smaz shows the CS constraint S,,,, and “CPU time” shows CPU time to syn-
thesize each circuit. “Average PG steps” in Table 5.7 represents the average power
gating steps( = the sum of the power gating steps of all the functional units /
the number of the functional units). In Table 5.7, “Dynamic energy”, “Leak en-
ergy”, and “Wire energy” represent dynamic energy consumption, leakage energy
consumption, and wire dynamic energy consumption. “All energy” shows the sum
of “Dynamic energy”, “Leak energy”, and “Wire energy”. “Imp.” shows the im-
provement of energy reduction over previous works.

The proposed SAAV algorithm (SAAV in Table 5.6 and Table 5.7) has been
compared to a traditional shared-register architecture synthesis algorithm [31],
GDR architecture synthesis algorithm [32], MCAS for RDR architectures [8], HDR
architecture synthesis algorithm with single supply voltage (MH* (Single) in Table
5.6 and Table 5.7), HDR architecture synthesis algorithm with multiple supply
voltages (MH* in Table 5.6 and Table 5.7). The proposed algorithm has been fur-
ther compared with the following strategy: the existing dynamic-multiple-supply-

?Huddle size constraint (Eqn. (5.7)) of a huddle h; is calculated by the clock period constraint
Tur = 1.51ns, the interconnection delay, Table 5.3, Table 5.4, and Table 5.5. In general, huddle
size will be minimized when the huddle contains the functional unit which gives the minimum
slack defined by Eqn. (5.6). Huddle size will be maximized when the AVL in the huddle only
contains the functional unit which gives the maximum slack. In this experiment, the minimum
huddle size is W (h;) + H(hj) = 41 pum (h; contains 0.8 V-shifters and 0.8 V-FVL), and the
maximum huddle size is W(h;) + H(h;) = 152 pm (h; only contains 1.2 V-16bit AND gates and
0.8 V-FVL).
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Table 5.3: Informations of functional units.
Adder Area : 386 um?
1.2V 1.0V 0.8V
Delay/|ns] 0.75 1.22 2.71
Dynamic energy|[fJ] 103.97 64.00 33.22
Leak power|[puW] 5.97 3.20 1.74
from 1.0V [{]] 23.69 - -
from 0.8V [fJ] 7762 | 14.58 -
from OV [fJ] 81.06 47.85 28.99
BET[ns] 1358 | 14.95 | 16.65
Area : 417 um?
Subtractor T2V [ 1.0V | 08V
Delay|ns] 0.78 1.27 2.82
Dynamic energy|fJ] 109.49 67.40 34.99
Leak power[uW¥] 6.53 3.50 1.90
from 1.0V [fJ] 24.94 - -
from 0.8V [fJ] 81.74 | 15.36 -
from OV [fJ] 85.37 50.39 30.53
BET[ns] 13.08 | 14.40 | 16.03
s Area : 2161 um?
Multiplier T2V [ 1.0V | 0.8V
Delay|ns] 1.65 2.70 6.00
Dynamic energy[fJ] | 1324.38 | 788.00 | 495.13
Leak power|[puW] 29.70 16.50 8.25
from 1.0V [f]] 305.87 - -
from 0.8V [f]] 999.09 188.33 -
from OV [fJ] 1136.25 | 728.75 | 373.51
BET/[ns] 38.26 44.17 45.27
. Area : 294 um?
Shifter 12V [ 1.0V | 0.8V
Delay/|ns] 0.54 0.89 1.98
Dynamic energy|[fJ] 84.64 52.10 27.05
Leak power|[puW] 3.92 2.10 1.14
from 1.0V [fJ] 19.28 - -
from 0.8V [fJ] 63.19 | 11.87 -
from OV [fJ] 65.99 38.95 23.60
BET[ns] 16.85 | 18.55 | 20.66
- 2
.
Delay|ns] 0.51 0.83 1.84
Dynamic energy|fJ] 19.17 11.80 6.13
Leak power[uW¥] 1.25 0.67 0.36
from 1.0V [fJ] 4.37 - -
from 0.8V [fJ] 1431 | 2.69 -
from OV [£J] 14.95 | 882 | 535
BET[ns] 1196 | 13.17 | 14.68
. Area : 68 wm?
16bit AND T2V [ 1.0V | 0.8V
Delay|ns] 0.4 0.66 1.47
Dynamic energy|[fJ] 5.85 3.60 1.87
Leak power|[pW] 1.23 0.66 0.36
from 1.0V [f]] 1.33 - -
from 0.8V [£]] 4.37 0.82 -
from OV [£]] 4.56 269 | 1.63
BET|ns] 3.70 408 | 4.54
Area : — um?
Memory access 12V [ 1.0V | 08V
Delay |ns] 2.70 — —
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Table 5.4: Informations of registers. and multiplexers.
Area: 330  pum?
1.2V 1.0V | 0.8V
Delay/ns] 0.29 0.47 | 1.05
Dynamic energy[fJ] | 305.22 | 187.88 | 97.53
Leak power[puW] 2.75 1.47 | 0.80
Area: 576  um?
1.2V | 1.0V | 0.8V
Delay[ns] 0.13 0.21 | 047
Dynamic energy[fJ] | 162.72 | 100.16 | 52.00
Leak power[puW] 16.65 | 8.93 | 4.86

16bit Register

16bit MUX

Table 5.5: Informations of level converters.

Area | Delay | Dynamic Leak
‘/infvvout 2
[pm?] | [ns] | energy [fJ] | poewr [pW]
1.0V-1.2V | 113 | 0.0423 1.92 2.473
0.8V-1.2V | 113 | 0.0737 3.257 2.118
0.8V-1.0V | 113 | 0.0589 2.221 3.553
voltage-a ltage assignment first was performed to each operation [6]; based

on this voltage assignment, the proposed algorithm targeting for AVHDR archi-
tectures ( [6] + AVHDR in Table 5.6 and Table 5.7) was performed. Because the
algorithm in [6] only consider voltage assignment, the propose register /controller
synthesis and floorplanning was performed after [6] for the energy comparison.

Table 5.9 and Table 5.8 show the huddle configurations of the experimental
results. In Table 5.9 and Table 5.8, “FU” shows the functional units in each
huddle. “AVL” shows the voltage assigned to functional units. “#REG” shows
the number of registers in each huddle. “FVL” shows the voltage which is assigned
to the FVL. MH* (Single) and MH* do not consider AVL and FVL, and they
assign a single voltage to each huddle. Therefore, “AVL” and “FVL” values of
each huddle are the same.

The experimental results show that all energy consumption of AVHDR is re-
duced by 70.4% at the maximum and by 43.9% on average compared with the other
algorithms. In SR [31], GDR [32], RDR [8], MH* (Single), and MH*, dynamic
multiple supply voltages can not been considered. Since AVHDR can dynamically
assign voltages, SAAV achieved maximally 70.4% energy reduction. The energy
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Table 5.6: Experimental results other than energy consumption.

App. FUs Smaz Architecture Rectangular ) CPU time
and algorithm | area [pm?] [sec]
EWF3 Addx3 65 SR [31] 64664 2 53.97
Mulx2 GDR [32] 42432 24 830.43
RDR 8] 78400 1 105.35
MH*(Single) 48500 2 363.03
MH* 48360 5 632.65
[6] + AVHDR 54766 2 378.86
SAAV 52891 2 393.48
FIR Addx4 30 SR [31] 74214 10 261.52
Mulx 4 GDR [32] 22165 24 2597.54
Memx 1 RDR [8] 99225 1 191.02
MH* (Single) 31920 2 429.19
MH* 62238 4 1014.98
[6] + AVHDR 60357 2 474.96
SAAV 49440 5 1034.42
DCT Addx4 15 SR [31] 62624 2 50.23
Mulx 4 GDR [32] 64925 24 1338.14
RDR 8] 96800 1 191.41
MH* (Single) 63940 2 562.50
MH* 66766 4 919.89
[6] + AVHDR 62040 2 575.40
SAAV 68575 2 569.03
COPY Addx3 175 SR [31] 440212 10 716.07
Subx 1 GDR [32] NA - NA
Compx1 RDR [§] NA - NA
Rshiftx 2 MH* (Single) 433246 6 2179.72
Mulx5 MH* 396924 5 4178.51
ANDx1 [6] + AVHDR 415004 6 2936.31
Mem x 1 SAAV 384849 7 6160.19
PARKER | Addx2 10 SR [31] 18018 2 47.62
Subx2 GDR [32] 13464 2 92.68
Compx1 RDR 8] 20000 1 119.13
MH* (Single) 10080 2 299.40
MH* 11120 2 306.83
[6] + AVHDR 11421 2 331.26
SAAV 14852 2 309.34

consumption of AVHDR is reduced by 44.3% at the maximum and by 32.0% on
the average compared with [6]. This is because the proposed algorithm can assign
dynamic multiple supply voltages in scheduling/binding but [6] can assign voltages
in only binding, which can provide more opportunities for assigning low voltage to
non-critical operations or power gating steps.

5.6 Conclusion

In this chapter, I propose an adaptive voltage huddle-based distributed-register ar-
chitecture (AVHDR architecture), which integrates dynamic multiple supply volt-
ages and interconnection delay into high-level synthesis. Next, I propose a high-
level synthesis algorithm for AVHDR architecture. Experimental results show that
the proposed algorithm achieves 43.9% energy-saving compared with conventional
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Table 5.7: Energy comparison of experimental results.

81

App. Architecture Average Dynamic Leak Wire All energy | Imp.
and algorithm | PG steps | energy [pJ] energy [pJ] energy [pJ] [pJ] (%]
EWF3 SR [31] - 441.89 152.47 122.90 717.26 57.8
GDR [32] - 470.09 81.17 97.00 648.26 53.3
RDR [8] - 522.47 116.56 72.48 711.51 57.5
MH* (Single) - 458.69 92.41 66.43 617.53 51.0
MH* - 385.73 85.89 83.27 554.89 45.5
[6] + AVHDR 6.0 400.65 90.35 52.57 543.56 44.3
SAAV 17.4 225.84 49.87 26.98 302.69 -
FIR SR [31] - 347.10 100.06 55.95 503.10 70.4
GDR [32] - 210.50 17.75 51.80 280.06 46.8
RDR [§] - 250.17 27.37 82.30 359.84 58.6
MH* (Single) - 210.17 27.50 38.01 275.67 46.0
MH* - 203.13 30.74 41.70 275.57 46.0
[6] + AVHDR 15.6 165.39 28.57 44.94 238.91 37.7
SAAV 14.1 104.92 17.18 26.77 148.87 -
DCT SR [31] - 161.04 25.46 43.20 229.70 48.8
GDR [32] - 139.68 20.36 40.51 200.56 41.3
RDR [§] - 186.08 23.57 51.63 261.27 55.0
MH?* (Single) - 162.85 20.19 37.41 220.45 46.6
MH* - 166.39 21.77 35.26 223.41 47.3
[6] + AVHDR 1.8 128.02 18.55 25.16 171.73 31.5
SAAV 4.4 83.08 12.98 21.64 117.70 -
COPY SR [31] - 8404.39 2534.78 853.88 11793.10 67.3
GDR [32] NA NA NA NA NA NA
RDR [§] NA NA NA NA NA NA
MH* (Single) - 7742.40 1695.14 583.27 10020.80 61.6
MH* - 3468.65 606.40 488.60 4563.65 15.6
[6] + AVHDR 106.6 3377.95 591.73 570.11 4539.79 15.2
SAAV 102.4 2840.98 517.82 492.62 3851.42 -
PARKER SR [31] - 38.07 3.65 14.42 56.14 50.4
GDR [32] - 28.42 2.57 33.67 64.67 56.9
RDR [8] - 30.91 2.41 3.87 37.20 25.1
MH* (Single) - 24.66 2.48 5.90 33.04 15.7
MH* - 21.67 1.33 6.53 29.54 5.7
[6] + AVHDR 2.2 26.68 1.29 12.51 40.48 31.2
SAAV 1.8 16.58 1.77 9.51 27.86 -
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Table 5.8: Huddles configurations of MH* (Single) and Mh*.

EWF3
MH? (Single) MH?

FU (AVL[V]) | #REG | FVL[V] | FU (AVL[V]) | #REG | FVL[V]
Add (1.2) 5 12 Add (1.2) 6 12
Add (1.2) 5 12 Mul (1.2)

Add (1.2) 1 12 Add (1.2) 2 12
Mul (1.2) 2 1.2 Mul (1.2)
Mul (1.2) 2 12 Add (1.2) 5 12

FIR

MH? (Single) MH?

FU (AVL|V]) | #REG | FVL[V] | FU (AVL[V]) | #REG | FVL[V]
Add (1.2) 3 12 Add (1.0) 3 1.0
Mul (1.2) Mul (1.0)

Mem () Mul (1.2) 4 1.2
Add (1.2) 4 1.2 Mem (-)
Add (1.2) Add (1.0) 3 1.0
Add (1.2) 3 12 Add (1.0) 3 1.0
Mul (1.2) Add (1.0) 2 1.0
Mul (1.2) 2 12 Mul (1.0) 2 1.0
Mul (1.2) 2 12 Mul (1.0) 2 1.0
DCT
M (Single) M

FU (AVL[V]) | #REG | FVL[V] | FU (AVL[V]) | #REG | FVL[V]
Add (1.2) 5 12 Add (1.0) 5 1.0
Add (1.2) 3 1.2 Mul (1.0)

Add (1.2) 3 12 Add (1.2) 5 12
Add (1.2) 3 12 Add (1.2) 5 12
Mul (1.2) 1 12 Add (1.0) 2 1.0
Mul (1.2) 1 12 Mul (1.2) 1 12
Mul (1.2) 3 12 Mul (1.0) 3 1.0
Mul (1.2) 3 12 Mul (1.0) 3 1.0
COPY
M (Single) M
FU (AVL[V]) | #REG | FVL[V] | FU (AVL[V]) | #REG | FVL[V]
Add (1.2) 28 12 Add (0.8) 30 08
Comp (1.2) Add (0.8) 15 0.8
Mem () Add (0.8) 7 08
Add (1.2) 34 12 Sub (0.8) 10 08
Rshift (1.2) Comp (1.0) 2 1.0
AND (1.2) 2 12 Rshift (1.0) 10 1.0
Mul (1.2) Rshift (0.8) 9 08
Add (1.2) 0 12 Mul (0.8) 5 08
Sub (1.2) 26 12 Mul (0.8) 5 08
Rshift (1.2) 26 12 Mul (0.8) 1 08
Mul (1.2) 8 1.2 Mul (0.8) 1 0.8
Mul (1.2) 7 1.2 Mul (0.8) 1 0.8
Mul (1.2) 7 1.2 AND (0.8) 16 0.8
Mul (1.2) 6 1.2 Mom () 16 1.2
PARKER
MH? (Single) MH?

FU (AVL[|V]) | #REG | FVL[V] | FU (AVL[V]) | #REG | FVL[V]
Add (1.2) 5 12 Add (1.0) 1 1
Add (1.2) Sub (1.0)

Comp (1.2) Comp (1.0)
Sub (1.2) 3 1.2 Add (0.8) 1 0.8
Sub (1.2) 1 1.2 Sub (1.2) 2 1.2
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Table 5.9: Huddles configurations of [6] + AVHDR and SAAV.

EWEF3
[6] + AVHDR SAAV
FU (AVL[V]) #REG | FVL[V] FU (AVL[V]) #REG | FVL[V]
Add (1.2, 1.0) 6 12 Add (1.2) 7 1.0
Add (1.2, 1.0) 6 12 Add (1.0, 0.8) 3 03

Add (0.8) 2 08 Add (1.0, 0.8) 3 08

Mul (1.0) 1 1.0 Mul (1.0, 0.8) 1 08

Mul (1.0) 1 1.0 Mul (1.2, 0.8) 1 08

FIR
[6] + AVHDR SAAV
FU (AVL[V]) #REG | FVL[V] FU (AVL[V]) #REG | FVL[V]

Add (1.0) 6 1.0 Add (0.8) 1 03
Add (1.0, 0.8) Mul (1.2, 0.8)

Mul (1.0) Mul (1.2, 1.0, 0.8) 3 03
Mul (1.2, 1.0) 2 12 Mul (1.2, 0.8)

Mem (-) Add (1.0, 0.8) 2 0.8
Mul (1.2, 1.0) 2 1.2 Add (1.0, 0.8) 2 03
Mul (1.2, 1.0) Add (1.0, 0.8) 2 08

Add (1.2, 1.0, 0.8) 3 12 Mul (1.2, 0.8) 3 08

Add (0.8) 0 08 Mem () 0 12

DCT
[6] + AVIIDR SAAV
FU (AVL[V]) ZREG | FVL[V] FU (AVL[V]) #REG | FVL[V]

Mul (1.0) 6 1.0 Add (1.2) 5 1.0

Mul (1.0) Add (1.2, 1.0, 0.8) 3 03

Mul (1.0) 1 1.0 Add (1.0, 0.8) 3 03

Mul (1.0) Add (1.0, 0.8) 3 08
Add (1.2, 1.0) 1 12 Mul (1.2, 0.8) 3 08
Add (1.2, 1.0) 3 12 Mul (1.0, 0.8) 3 08
Add (1.0, 0.8) 3 1.0 Mul (1.0, 0.8) 2 08
Add (1.0, 0.8) 3 1.0 Mul (1.0, 0.8) 2 0.8

COPY
[6] + AVIIDR SAAV
FU (AVL[V]) ZREG | FVL[V] FU (AVL[V]) #REG | FVL[V]
Add (1.0, 0.8) 28 1.0 Mul (1.0, 0.8) 1 08

Add (0.8) 11 03 AND (0.8)

Add (0.8) 13 03 Add (1.0, 0.8) 29 03

Sub (0.8) 18 03 Add (1.0, 0.8) 18 03

Comp (0.8) 2 08 Add (1.0, 0.8) 12 08
Rshift (1.0, 0.8) 27 1 Sub (0.8) 21 08
Rshift (0.8) 3 08 Comp (0.8) 2 08

Mul (0.8) 5 08 Rshift (1.0, 0.8) 8 1.0

Mul (0.8) 1 08 Rshift (0.8) 26 08

Mul (0.8) 1 08 Mul (1.0, 0.8) 5 08

Mul (0.8) 1 03 Mul (1.0, 0.8) 1 03

Mul (0.8) 1 03 Mul (0.8) 1 03

AND (0.8) I 03 Mul (0.8) 1 03

Mem (-) 3 1.2 Mem (-) 3 1.2

PARKER
[6] + AVIIDR SAAV
FU (AVL[V]) #REG | FVL[V] FU (AVL[V]) #REG | FVL[V]
Add (1.0, 0.8) 4 1.0 Add (1.0, 0.8) 4 0.8
Sub (1.0, 0.8) Sub (1.0, 0.8)

Add (0.8) 1 08 Sub (1.2) 1 1.0
Sub (1.2, 0.8) 2 1.2 Comp (1.0, 0.8)

Comp (1.0, 0.8) 3 1.0 Add (0.8) I 03

83
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algorithms.



Chapter 6

SAMCID: Multiple Clock
Domains Aware High-level

Synthesis Algorithm for
HDR-mcd Architecture

6.1 Introduction

In this chapter, I first propose an HDR-mcd architecture, which integrates multiple
clock domains and interconnection delay into high-level synthesis. In HDR-mecd,
an entire chip is divided into several huddles whose sizes are determined by in-
terconnection delay, and huddles are assumed to belong to clock domains. By
doing this, HDR-mcd can realize synchronization between different clock domains
in which interconnection delay is required and should be considered during high-
level synthesis. Next, I propose a high-level synthesis algorithm for HDR-mcd,
which can reduce energy consumption by optimizing configuration and placement
of huddles. In the proposed iterative improvement based algorithm, low-frequency
clocks are assigned to non-critical huddles under resource and latency constraints
for energy efficiency improvement. Experimental results show that the proposed
method achieves 32.5% energy-saving compared with the existing single clock do-
main based methods. Furthermore, the proposed method which can apply MCD
and MSV simultaneously achieves 57.0% energy-saving compared with the conven-
tional methods.
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6.2 HDR-mcd Architecture

In this section, the conventional distributed-register architectures (DR architec-
tures) and the conventional multiple clock domains techniques are briefly reviewed.
Next, a new target architecture is proposed.

As devise feature size decreases, interconnection delays have become the dom-
inant factor of the circuit total latency. Several DR architectures and synthesis
algorithms [8,17,19,31,32] have been proposed in order to realize the HLS algo-
rithms which consider not only the gate delays, such as the delays of functional
units, but also the interconnection delays. In DR architectures, chip area is di-
vided into sufficiently small partitions such that the interconnection delay inside
each partition can be assumed to be zero. On the other hand, the inter-partition
data transfer is realized through multi—cycle interconnect communication. The
data transfer time of the multi-cycle interconnect communication is estimated by
placement information which is obtained by partitions floorplanning during HLS.
Several DR, architectures, such as regular distributed-register architecture (RDR
architecture) [8] and generalized distributed-register architecture (GDR architec-
ture) [32] have been proposed. Their objectives are latency minimization and no
energy-aware HLS algorithms for them have been proposed. For energy reduction,
huddle-based distributed register architecture (HDR architecture) families with the
corresponding synthesis algorithms were proposed. They utilized multiple supply
voltages (MSV) (Chapters 3 and 4), clock gating [1], and power gating (PG) and/or
dynamic multiple supply voltages (DMSV) (Chapter 5) in order to minimize energy
consumption.

On the other hand, there are the techniques which can dynamically change
clock frequency at run-time, such as DVFS [3]. However, there are no conventional
high-level synthesis algorithms which consider DVFS. Scheduling algorithms and
binding algorithms of high-level synthesis is based on a clock periods which are fixed
at run-time. Therefore the problem definition which deal with frequency scaling
is too difficult. F

lock scaled circuits. In this dissertation, different clock frequencies are
going to be assigned to huddles which are the islands for the interconnection delay
estimation of HDR architecture. In this case, the energy overheads of the synchro-
nization circuits cannot be ignored. In this dissertation, the dynamically change
of clock frequency is not considered as well as conventional high-level synthesis al-
gorithms. This dissertation focuses on multiple clock domains (MCD) techniques
and apply the MCD to the HDR architecture aiming at further energy reduction.

There are two types of MCD techniques: (1) One can utilize arbitrary clock
frequencies but synchronization circuits are needed for the communication between
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Figure 6.1: An HDR-mcd architecture.

different clock domains. (2) The other can communicate with different clock do-
mains without synchronization circuits but can only utilize regular clock frequen-
cies which follow certain fixed patterns. Global asynchronous local synchronous
(GALS) [5] is well known as an example of Type (1). GLAS can reduce energy
consumption effectively when optimal clocks are assigned to different cores in mul-
tiprocessor SoC or network-on-chip. On the other hand, GALS may increase energy
consumption because of the synchronization circuit when GALS is applied to not
so large circuits. In this dissertation, different clock frequencies are going to be as-
signed to huddles. In this case, the energy overheads of the synchronization circuits
cannot be ignored because huddles are much smaller than processors or IP cores
in order to ignore the interconnection delays inside huddles. Therefore, an MCD
technique of Type (2) is applied. Periodically all-in-phase [30] is one of the MCD
techniques of Type (2). In periodically all-in-phase technique, the clock periods of
the local clock signals are the integer multiples of reference clock signals. Because
the local clock signals can synchronize at the periods of common multiples, any
synchronization circuits are not necessary.

However, original periodically all-in-phase cannot be applied to original HDR
architecture. The reason is that periodically all-in-phase do not consider the inter-
connection delays between different clock domains. Furthermore, HDR architecture
and synthesis algorithms assume that only one clock frequency is assigned to all
huddles.

In order to apply periodically all-in-phase to HDR architecture, I propose a new
distributed register architecture called HDR-mcd architecture. In the HDR-med
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architecture, chip areas are divided into several huddles which abstract functional
units (FUs), registers, and controllers inside them. An HDR-mcd architecture
example is shown in Fig. 6.1. A huddle A consists of the following components:

Huddled Local Registers (HLRs):

Dedicated local registers in h.
Huddled Functional Units (HFUs):

Dedicated functional units in h. HF'Us can only access the HLRs in h.
Finite State Machine (FSM):

A dedicated controller in h. FSM controls the HFUs and the HLRs in h.

Clock frequencies are assigned to huddles and T (h) is the clock period which
is assigned to huddle hA. In HDR-mecd architecture, the selectable clock periods
are limited to powers of 2 of the reference clock period. T (h) is calculated by
Tur(h) = Tegmin - 2™ where Togmin is the reference clock period and n is an integer
value greater than or equal to 0. We describe 2" as a clock factor C'F'(h) of a huddle
h. T of each huddle is determined during HLS process. The height and width
of each huddle are limited by the assigned clock frequency value. This restriction
is called huddle size constraint. Data transfer time inside huddles can be ignored
because huddles are sufficiently small by introducing huddle size constraint. Inter-
connection delay between huddles is estimated by placement information which is
obtained by huddle floorplanning during HLS.

Conventional HDR architectures and algorithms proposed in previous Chap-
ters only consider single clock domain and manage only one huddle size constraint.
However, because HDR-mcd architectures can deal with multiple clock domains,
the huddle size constraint of each huddle is mutually different according to each
assigned clock frequency. An appropriate huddle size constraint realizes suitable
clock domain division and synchronization between different clock domains requir-

ing interconnection delay.

6.3 Problem definition

Table 6.1 defines notations of the high-level synthesis problem targeting at HDR-
mcd. In Table 6.1, T,,(h;) shows the clock period which is assigned to huddle h;
and is calculated as follows using a clock factor C'F'(h;):

Tclk(hj) - Tclkmm . CF(h]) (61)
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Table 6.1: Notation used in the HLS problem.

Term Meaning

G(N,E) A control data flow graph (CDFG) which is a directed graph.

N A node set. N = N,U N,.

N, An operation node set.

N, A branching control node set.
The branching control nodes are start and end nodes of conditional branches.

E An edge set. E = FE;UE..

Ey A data-flow cdge sct.

E. A control-flow edge set.

Tetkmin A minimum clock period constraint.

Smaz A control step (CS) constraint.

St A CS (1 S St S Smaw)'

F A set of functional units (FUs).

fi An FU (1 <i < |F|).

Dy(fi) The delay of f;.

Ny An operation node (1 <z < |N,|).

Bind(n;) The functional unit which executes n.

OP(f;) The set of operation nodes which are executed by f;.

H A set of Huddles.

h; A huddle (1 < j < |H| < |F|).

Hud(f;) The huddle where f; is assigned.

F(h;j) The set of FUs which are assigned to h;.

Dyeq(hy) The delay of the HLR in h,.

CF(h;) The clock factor of h;. CF(h;) = 2"
where n is an integer value greater than or equal to 0.

Teir(hy) The clock period which is assigned to h;. Details can be found in Eq. (6.1).

S¢(fi) The number of CSs required to execute f;. Details can be found in Eq. (6.2).

Start(ng) The CS when the execution of n, starts.

End(ny) The CS when the execution of n, ends. Details can be found in Eq. (6.3).

Slack(f;) The slack time of the FU f; which can be used by data transfer
for succeeding operations. Details can be found in Eq. (6.4).

D, (1) An interconnection delay whose length is [.

W(h;) The width of the huddle h;.

H(h;) The height of the huddle h;.

Dist(h;,hi;) The Manhattan distance between the huddles h; and hy.

Tr(fi, hi) The inter-huddle data transfer delay from f; to HLRs in hy.
Details can be found in Eq. (6.6).

DT(f;, hy) The number of clock cycles required to transfer data from f; to hg.
Details can be found in Eq. (6.7).

DT The data transfer table which is defined by a |F| x |H| matrix
whose (1, k)-element is expressed by DT'(f;, h).

ey A data-flow edge (1 <y < |Ey)).

Start(ey) The CS when the data transfer of e, starts.

End(ey)

The CS when the data transfer of e, ends. Details can be found in Eq. (6.8).
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S¢(fi) shows the number of control steps (CSs) required to execute f;. In the case
of f; € F(h;), Sf(fi) is calculated as follows:

Dy (fi) + Dyeg(hy)
Tar(hy)

Se(fi) = { -CF(hy). (6.2)

End(n,) is the CS when the execution of n, ends and calculated as follows:
End(n,) = Start(n,) + S¢(fi) — 1. (6.3)
Slack(f;) is defined by:
Slack(f;) = Tukmin - Sy(fi) — D(fi)- (6.4)

Slack(f;) shows the slack time of the FU f; which can be used by data transfer
for succeeding operations. The width and height of each huddle must satisfy the
following huddle size constraint:
2. Dy(W(hj) + H(hj)) < min {Slack(f;)}, (6.5)
Fi€F (hy)
where W (h;) and H(h;) are the width and height of the huddle h;, respectively.
2- D,(W(h;) + H(h;)) shows the maximum interconnection delay for the intra-
huddle communication inside the huddle /;. In the proposed algorithm, we obtain
the value of (W (h;) + H(h;)) so that it satisties the huddle size constraint and
determine W (h;) and H(h;) by using the aspect ratio predefined for each huddle.
Tr(fi, hi) shows the inter-huddle data transfer delay from f;(€ F(h;)) to HLRs
in h; which is defined by:

Tr(fi, hi) = Du(Dist(hy, i) + Dyeg(hs). (6.6)

DT(f;, hi) shows the number of clock cycles required to transfer data from f;(€
F(h;)) to hy which is defined by:

0 (Slack(f;) > Tr(fi,hr)),

DT(fi, i) = (6.7)

[(Tr(fi, hie) / Tetemin |
(Slack(f;) < Tr(fi, ht)).

We prepare two types of data transfer mode:

Mode 1: In the case of Slack(f;) > T'r(fi, h), the functional unit f; € F(h;) directly
stores its output into the registers in the huddle hj. Thus, the data transfer
requires no extra cycles.
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Figure 6.2: An HLS result for HDR-med. (a) An HDR-med configuration. (b) A
scheduled DFG.

Mode 2: In the case of Slack(f;) < Tr(fi,hi), the functional unit f; € F'(h;) first
stores its output into the registers in the huddle h;. In the subsequent cycles, we
perform the data transfer from the huddle A; to the huddle hj. The data transfer
requires [ Tr(f;, hi)/Tek | cycles.

Start(e,) is the CS when the data transfer of e, starts. If e, is one of the
outputs of n,, Start(e,) = End(n,). End(e,) is the CS when the data transfer of
e, ends. When e, is the data-flow from f; to hy, End(e,) is calculated as follows:

Start(ey) + DT(f;, hi)

End(e,) = CFy)

W CCF(hy). (6.8)

Example 6.1. Fig. 6.2 shows an example of HDR-mcd architecture when minimum
clock period constraint T gmin = 2.508 and a CS constraint Sy,q. = 6 are given.
In this example, we have huddle configurations of F(hy) = {fi1} and F(hy) =
{f2}. Clock factors are assigned to the huddles as in Fig. 6.2: CF(hy) = 1(= 2°)
and CF(hy) = 2. Therefore, Tyi(h1) = 2.5ns and T, (he) = 5.0ns are assigned to
the huddles.
Let D¢(f1) = Ds(f2) = 1.5ns and Dyey(hy) = Dyeg(ho) = 0.51ns.
D.,,(Dist(hy, hy)) = 1.0ns is the interconnection delay between hy and hy. S¢(f1)
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and S¢(f2) can be calculated by:

S¢(fi) =[(1.5ns+0.5ns)/2.5ns] -1 =1,
St(fe) = [(1.5ns 4+ 0.5ns)/5.0ns] - 2 = 2.

Slack(f1) and Slack(fz2) can be calculated by:

Slack(f;) =2.5ns-1— 1.5ns = 1.0ns,
Slack(fy) =2.5ns-2 — 1.5ns = 3.5ns.

Tr(f1,he) and Tr(fay, hy) are calculated by:
Tr(fi,ha) =Tr(f2,h1) =1.0ns+ 0.5ns = 1.5ns.

Since Slack(fs) > Tr(fs, h1), the data transfer from fo to hy is based on Mode 1
and DT (fo, hy) is calculated by:

DT(fs,h1) = 0.

We focus on the edge es. As in Fig. 6.2, the start CS of the data transfer is
Start(es) = End(ny) = 4. Based on Start(es) and DT (fs,h1), End(es) is calcu-
lated by:

End(es) = [(4+0)/1] - 1=4.

Because the data transfer es can be completed in CS 4, the succeeding node ns can
be executed from CS 5. On the other hand, since Slack(fy) < Tr(fs, hy), the data
transfer from fi to hy is based on Mode 2 and DT (f1, hy) is calculated by:

DT(f1,h) = [1.5/2.5] = 1.

We focus on the edge ey. As in Fig. 6.2, the start CS of the data transfer is
Start(es) = End(ns) = 2. Based on Start(es) and DT(fi,hs), End(es) is calcu-
lated by:

End(es) = [(241)/2] -2 =4.

Because Ty (ha) = 5.0ns is assigned to ho, the data transfer of ey cannot be com-
pleted in CS 3 but the data is stored at the clock edge of CS 4. O

Based on the above definitions, the HLS problem is defined as follows:

Definition 6.1. The HLS problem is, for a given CDFG, a minimum clock cycle
constraint, a CS constraint, and a set of functional units, to assign each operation
node to a CS and a functional unit to bind each functional unit to each huddle,
to bind clock period to each huddle, so that the given CDFG s executed correctly
considering multi-cycle interconnect communications and periodically all-in-phase
based MCD. The objective is to minimize the total energy consumption. O
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6.4 The SAMCID Algorithm

In this section, a new high-level Synthesis Algorithm considering Multiple Clock

domains and Interconnection Dela lled SAMCID is proposed.
Generally, high-level synthesis algorithms considering component placement si-

multancously arc composed of schedulings, bindings, and floorplannings and clas-

sified into the following two types:

Type 1: Schedulings, bindings, and floorplannings are executed a predetermined
number of times in a predetermined order.

Type 2: Schedulings, bindings, and floorplannings are executed repeatedly as an

iterative refinement flow.

In Type 1, a required computation time to synthesize a chip can be expected
since the number of executed synthesis steps and the execution order are deter-
mined. If we know in advance how many iterations we need to perform each
high-level synthesis step as well as its best execution order, Type 1 will be the
best choice. MCAS [8], one of the RDR architecture synthesis algorithms, uses an
approach based on Type 1 above.

In Type 2, required informations such as scheduling and placement results are
fed back to each other since each synthesis step is executed repeatedly to obtain
the optimal solution. The GDR architecture synthesis algorithm [32], the HDR
architecture synthesis algorithms and SAAV proposed in previous Chaptersuse ap-
proaches based on Type 2. By iteratively executing scheduling/binding steps and
floorplanning steps, the current scheduling/binding step can consider interconnec-
tion dela lanning step. The shape and size of each
module are determined in a scheduling/binding step and a floorplanning step is
done using these module informations. Because each synthesis step affects each
other, iterative refinement flows as in Type 2 is the best choice targeting GDR,
HDR, and AVHDR.

In SAMCID, we consider the interconnection delay effects and the synchroniza-
tion between different clock domains. It is very difficult to predict the influence
of these components in algorithms based on Type 1. Therefore Type 2-based syn-
thesis flow is accepted for the proposed HDR-mecd architecture, in which global
optimization could be achieved by considering multiple clock domains.

Based on Type 2, a virtual-area-based iterative refinement flow is used in SAM-
CID. We prepare two types of area, called a real area and a virtual area. Let
A, cai(hj) be the real area of the huddle h;, and A,.q(h;) is the sum of functional
unit areas and register areas inside hj. Let A, ua be the virtual area of huddle
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h;, and Ayirua(hj) is estimated in the iteration when its huddle construction is
changed as follows:

1. In each iteration, A,.q(h;) is calculated by summing up the areas of func-
tional units, registers, a controller, and level converters inside h;.

2. If Avirtuar(Rj) = Avear(h;), Avirtuar(Rj) is not updated.

i)
3. If Amrtual(h ) < Areal( ) we set
Avirtual( ) — real(h )

The synthesis algorithm is mainly composed of three processes: initial process, it-
eration process, and adjustment process. In initial and adjustment process, huddle
placement is determined based on the real area of each huddle. In iteration process,
we perform scheduling/binding and floorplanning repeatedly based on virtual area
of each huddle. When no timing violations occur in the iteration process, we go to
the adjustment process.

SAMCID is composed of the following seven steps in each iteration:

e initial huddling,

e scheduling/binding,

e register/controller synthesis,

e unhuddling,

e floorplanning,

e floorplanning-directed huddling,
e virtual area adaptation.

In the initial huddling step, the initial huddle configuration and the place-
ment are determined by given functional units. In the scheduling/binding step,
each operation node in a CDFG is assigned to a CS and a FU and each hud-
dle is assigned a corresponding clock period considering multiple clock domains
and multi-cycle interconnect communications. In the register/controller synthe-
sis step, HLR and FSM configurations in each huddle are determined using the
scheduling /binding result. In unhuddling step, we divide huddles which violate
the huddle size constraint. In the floorplanning step, every huddle is placed. In
the floorplanning-directed huddling step, the configuration and placement of each
huddle is determined simultaneously. In the virtual area adaptation step, we reduce
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the virtual area overhead during iteration. Fig. 6.3 shows the SAMCID algorithm.
In the rest of this section, we will describe the the proposed SAMCID in details.
Note that we deal with only DFG and only one operation type for simplicity as
a motivated example but we can deal with CDFG and any other operation type
similarly.

6.4.1 Initial huddling

In initial huddling, initial huddle configuration and placement are determined ac-
cording to the given functional units. If a set of functional units F' is given as an
input, we prepare |F'| huddles. Each functional unit is assigned to each huddle
and the minimum clock cycle T pmin is assigned to each huddle. All the huddles

are overlapped with each other where we can ignore interconnection delay between
huddles here.

Example 6.2. In initial huddling, initial huddle configuration and placement are
determine by a given set of functional units F'. The input and the output are as
follows:

Input

o F'={f1, fa, f3, fu}.

Output
e huddle configuration (Fig. 6.4).

Because all the huddles are overlapped with each other, we can ignore the intercon-
nection delay between huddles in the initial process. O

6.4.2 Scheduling/binding

The scheduling/binding problem here is, for given a CDFG G(NV, F), a minimum
clock period constraint T,z,,in, & control step constraint S,,.., a set of functional
units F, and huddle configuration, to find scheduling and functional unit binding
of every node in a given CDFG and to determine clock periods T,y (h;) of each
huddle h; so as to minimize the total energy consumption while meeting the control
step constraint.

The scheduling/binding is composed of the three phases: initial phase, clock
period assignment phase, and operation scheduling/binding phase.



CHAPTER 6. SAMCID FOR HDR-MCD ARCHITECTURE

i CDFG m n Set of FUs
.ll (i) ‘ InltlalHuddllng

(i) Schedullng/
Binding
1
Register/Controller
Synthesis

(i )

{
(iv) ‘ Floorplanning Initial process
(Real area estimation)

Scheduling/
(v) Binding
1

/\ (Vi) Register/Controller

( i, Vii, viii, ix ) Synthesis

1
Unhuddling
1

Floorplanning @@
directed Huddling Information

1
Virtual area

\/ (<) adaptation

olution—No
Yes nvergea-

(vii

~—

o)
OD

( viii

~—

lteration process
(Virtual area estimation)

Register/Controller
Synthesis

(x)

1
XI)‘ Floorplanning ‘Adjustmentpmcess
I\

(Real area estimation)
R — e —

Figure 6.3: Proposed synthesis algorithm called SAMCID.
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Figure 6.4: The result of the initial huddling.

(1) Initial phase:
In the initial phase, scheduling and binding are executed according to huddle
placement and clock periods obtained by the previous iteration.

(2) Clock period assignment phase:
In the clock period assignment phase, we search the clock periods assignment
so as to minimize total energy consumption.

(3) Operation scheduling/binding phase:
In the operation scheduling/binding phase, operations are assigned to control
steps and FUs so as to minimize total energy consumption.

All these details are explained in the following paragraphs.

The basic scheduling/binding algorithm, which is used in all three phases, is
proposed. This proposed basic scheduling/binding algorithm is based on the data-
transfer-table based list scheduling algorithm [31]. The basic scheduling/binding
picks up the most critical node one by one and assigns it to a CS and an FU so that
the total number of expected CSs is minimized. Critical path length C'P(n,, f;)
refers to the longest path length from n, to any end node if n, is assigned to an
FU f;. CP(n,, f;) can be calculated by:

OP(n:w fj) = Sf(f]) + max Sim't(nka fj)’ (69)

niEsuce(ng)

where succ(n,) is a set of immediate successors of n, and Si,i(ng, f;) is the CS
when f; become available for ny execution. Sin;(ng, f;) is calculated as follows:

We can calculate C'P(n,, f;) for each node n, and each FU f; by calculating
Eq. (6.9) and Eq. (6.10) from an end node to start node. Based on the critical
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Algorithm 6.1 Basic scheduling/binding algorithm.

1: Calculate DT'(f;, hy) for each FU f; and each huddle hy.

2: Ntarget — N,.

3: Calculate CP(n,, f;) for each operation node n, and each FU f;.

4: Calculate Pg(n,) for each operation node n,.

5: CSt,«gt +«— 0.

6: while Ny ge # ¢ do

7. CSpgt < CSpgt + 1.

8:  Let Nycqqy be a set of nodes whose successors are already scheduled.
9:  while N,cuq, # ¢ do
10: Pick up the node n, € Nyeqqy Whose Pjig(n,) is the maximum.
11: Calculate L(n,, f;) for each FU f; which can execute n,.
12: Pick up the FU f; whose L(n,, f;) is the minimum.

) End(ny) + DT(fi, h;)

13: if C'Syrgr > nle;rﬁl)(cnx) { [ CF(h) —‘ . CF(hj)} then
14: Bind(n,) < f;, Start(ng) <= CSygt-
15: Ntarget — Ntarget - {nx}
16: end if
17: Nready — N’ready - {nx}

18: end while
19: end while

path length, let Py (n.) be the priority function of the list scheduling and Py;s(n,.)
is calculated as follows:

Then from a start node to an end node, we pick up a node n, whose Pj;s(n,) is the
maximum. After that, we bind n, to the FU f; so that estimated latency L(n,, f;)
is minimized. Estimated latency L(n,, f;) is calculated as:

L(n;, fj) = max

ng€pred(ng)

{ [End(nl) + DT'(fi, hy)

CF(h;) W -CF(hj)} + CP(ng, f;), (6.12)

where pred(n,) is a set of immediate predecessors of n,, f; = Bind(n;), and h; =
Hud(f;). Algorithm 6.1 shows the proposed basic scheduling/binding algorithm.

Initial phase
In the initial phase, scheduling and binding are executed according to huddle
placement and clock periods obtained by the previous iteration. If the scheduling
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Algorithm 6.2 Initial phase.

1: Execute basic scheduling/binding (Algorithm 6.1).
2: if the result satisfy S,,., then

3: End.

4: end if

5: Calculate P;(h;) for each huddle h;.

6: while do

7. for h; in the increasing-order of Ps(h;) do

8: if CF(h;) =1 then

9: Go to next step 7.
10: end if
11: CF(hj) <= CF(h;)/2 and execute basic scheduling/binding.
12: if the result satisfy S,,,, then
13: End.
14: end if
15:  end for
16:  if CF(h;) =1 for all h; then
17: End.
18:  end if

19: end while

result based on the previous iteration does not satisfy the control step constraint,
clock periods are decreased. In order to decrease the clock periods, we design a
priority Ps(h;) for a huddle h;. Ps(h;) is calculated by:

Pi(h;)= Y_ [OP(f;)l. (6.13)

fi€F(hj)

We pick up the huddle whose priority Ps(h;) is the smallest first and try to de-
crease its C'F'(h;). We repeat this process unless a scheduled CDFG satisfy the
CS constraint Sy,q,. In (ii) scheduling/binding of initial process, only (1) initial
phase is done and interconnection delays are ignored since we assume that all the
huddles are overlapped with each other. Algorithm 6.2 shows the initial process.

Clock period assignment phase

In Clock period assignment phase, we search the clock periods assignment. So
as to minimize total energy consumption, we design a cost function Cost,. Cost,
is the sum of the energy consumption of registers and is calculated as:

Costs = Z‘R(h])‘ . {Rdsresult/CF(hj> + RlSresultTclkmm}v (614>

Vh;
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where R(h;) is the set of registers in h;, R, is a dynamic energy consumption
of a register, R; is a leak power of a register, and S,.s; is the end CS of the
scheduling result (Syesut < Smaz). R(h;) of each huddle is estimated by left-
edge based register binding algorithm. In scheduling/binding, we cannot calculate
total energy consumption accurately since huddle placements are not determined.
In this step, we can calculate the energy consumption of registers and the energy
consumption of them finally occupies most of the circuit total energy consumption.
The energy consumption of the clock trees also occupies most of it. The accurate
energy of clock trees is calculated from the number of registers and the placement of
registers. In scheduling/binding, the placement of them remains unknown but the
number of them can be calculated. Therefore, the energy consumption of registers
is a reasonable cost in this step.

A nexus huddle set H,., and a maverick huddle h,,,, are proposed. First, H,.,
is a set of the all huddles which are assigned to a target clock factor C'Fy,4. We
tried to change clock factors of all huddles in H,, from CF} 4 to 2 - CF,4 and
basic scheduling/binding is done. If the result violates the CS constraint S,,.., we
pick up a maverick huddle h,,,, in H,., using the following priority P.q,(h;). In
order to pick up a huddle which is arranged at a position farthest from the H,,.,,
we design a priority P, (h;) for a huddle h;. P, (h;) is calculated by:

Pmav(hi) = W(Hnex - {hz}) + H(Hnex - {hz})> (615)

where W(H) and H(H) mean the width and height of the smallest bounding
rectangle of a set of huddle H. We calculate P,,,,(h;) for each huddle h; € H,.,.
We pick up a huddle h; whose Py,q,(h;) is the minimum and h; is removed from
H,.. as a maverick huddle. Then, we tried to change the clock factors of H,,., and
hmaw separately. We repeat this process unless a scheduled CDFG satisty the CS
constraint Sy,q,. If the scheduling result satisfy Sy,q., we let CF, 4 = 2-CF,, 4 and
repeat the processes. Finally, we get the clock period assignment solution whose
Cost, is the minimum. Algorithm 6.3 shows the clock period assignment phase.

Operation scheduling/binding phase

In the operation scheduling/binding phase, operations are assigned to control
steps and FUs so as to minimize total energy consumption. We use the same cost
function Cost, as the clock period assignment phase. Algorithm 6.4 shows the
operation scheduling/binding phase.

Example 6.3. This example shows that the step (v) just after the initial process.
In scheduling/binding, operation scheduling and functional unit binding are ex-
ecuted. The inputs and the outputs are as follows:
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Algorithm 6.3 Clock period assignment phase.

1: Calculate Cost,

2: MinCost, < Cost,.

3: CFyg < 1

4: while CF,, 4 < Sp0, do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

Let Hpep = {h;|CF(h;) = CFygi}.
hmaw = ¢, FLAG + false.
CF(hj) < 2-CFyy for all H,,,.
Execute basic scheduling/binding (Algorithm 6.1).
if the result violate the CS constraint .S,,,, then
CF(h;) « CF,yq for all Hy.,.
else
FLAG < true.
Calculate Costs.
if MinCost, > Cost, then
MinCost, + Costy.
end if
end if
if A0 # ¢ then
CF(hmay) < 2- CFygt
Execute basic scheduling/binding (Algorithm 6.1).
if the result violates the CS constraint S,,,, then
CF(hmay) = CFiygt.
else
Calculate Costs.
if MinCost, > Cost, then
MinCostg + Costy.
end if
end if
end if
if FLAG then
Cﬂrgt +— 2 CFtrgt
Go to step 5.
end if
Calculate P4, (h;) for each huddle h; € H,.,.
Pick up h; whose P4, (h;) is the minimum, Ayuq, <= hj.
Hyew < Hper — {h'j}
Go to step 7.

38: end while
39: Return the clock period assignment of Mincost;.
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Algorithm 6.4 Operation scheduling/binding phase.

Require: Bind(n,) of the clock period assignment phase.

1: Calculate Cost,, Mincost, < Cost,.

2: Calculate Pg(n,) for each operation node n,.

3: for n, in the increasing-order of P4 (n,) do

4 MinCostFU + Bind(n,)

5. for Vf; which can execute n, do

7 Execute basic scheduling/binding (Algorithm 6.1) without changing
Bind(n,) of all operation nodes.

8: Calculate Cost,.

9: if The result satisfies the CS constraint S,,,, and MinCost, > Cost,
then

10: MinCost, <+ Costg.

11: MinCostFU <+ f;

12: end if

13:  end for

14:  Bind(n,) < MinCostFU

15: end for

16: Return scheduling/binding result of MinCost.

Inputs :
e DFG G(N,E) (Fig. 6.5(a)),
o Dy(fr) = Dy(f2) = Dy(f3) = Dy(fs) = 1.5ms,
e Register information (Table 6.2),
o Totpmin = 2.5115,
e Sz =06, and
o huddle configuration (Fig. 6.5(b)).

o scheduled DFG (Fig. 6.11(a)) and
o clock assignment (Fig. 6.11(b)).

First, we assume interconnection delay between huddles. According to the ex-
ample showing in Fig 6.5(b), the interconnection delay can be assumed as follows:

Dw<D’i8t<h1, hg)) = Dw(D’iSt(hl, h3>)
= Dy (Dist(hg, hy)) = Dy (Dist(hs, hy)) = 1.0ns,

Dw<D’i8t<h1, h4>) = Dw(D’iSt(hQ, h3>) = 2.0mns.
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Figure 6.5: The inputs of scheduling/binding,.

Table 6.2: The register information.
| Dreg Rd Rl
REG | 0.5ns 200f] 1.5uW

We go through initial process.

Initial phase: First, basic scheduling/binding (Algorithm 6.1) is executed. We
can calculate S¢(f1) as follows:

Sr(f1)

[(Dy(f1) + Dyeg(h1))/Tex ] - CF(hy)
[(1.5ns + 0.5ns)/2.5ns] - 1
1

(= Sp(f2) = Si(fs) = Sy(fa))-

The critical path length CP(n,, f;) for each n, and each f; is calculated from end
nodes. In this example ny, ng, and ni; are the end nodes. First, we calculate

CP(nz, f1), CP(ng, f1), and CP(ny, f1) as follows:

CP(ng, f1) = S¢(f1) =1
= CP(ng,f1> = CP(nH,fl).
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Next, we calculate the critical path length of the predecessors of the end nodes.
CP(ns, f1) is calculated as follows:

CP(ns, f1) = S¢(f1) + max  Sipi(ng, f1)

n€suce(ns)

=1 —+ max Sz’nit(”'?? f1>

n7E€suce(ns)

Then, Sinit(nz, f1) can calculated as follows:

Sinit(n7, f1) = ?;}lleig{DT(fl, Hud(f1)) + CP(ns, fi)}

= min{ DT(f1,h1) + CP(ns, f1),
DT(fa, h1) + CP(ns, f2),
DT (f3, hn) + CP(ns, f3),
DT(fs,h1) + CP(ns, f3)}
=min{O+1,1+1,1+1,1+1}
=1.

Therefore, CP(ns, f1) is finally calculated as follows:
CP(ns, fi) =1+1=2.

Similarly, CP(ny, f;) for each n, and each f; is calculated and Table 6.3 shows
the CP(ny, f;). At CSygt = 1, Nyeagy = {n1,n2,n8, 110} and we pick up ny. We
calculate L(ny, f;) for each f; as follows:

L(ny, f1) = CP(ny, f1) =1
= L(ny, f2) = L(na, f3) = L(na, fa).

Therefore, Bind(ny) = f1, Start(ny) = 1. Similarly, we schedule and bind each
node and Fig. 6.6(a) shows the result of basic scheduling/binding. Since the result
satisfy the CS constraint Sp,.., we finish the initial phase.

Clock period assignment phase: First, we calculate Costs. Based on the
result of the initial phase, |R(h1)| =2, |R(h2)| =2, |R(h3)| =1, and |R(h4)| = 1.
Therefore, Costs is calculated as follows:
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Table 6.3: C'P(n,, f;) for each n, and each f;.

fr o fs i
n |4 4 4 4
ng | 4 4 4 4
ng |3 3 3 3
ng |3 3 3 3
ns |2 2 2 2
ng | 2 2 2 2
n, |1 1 1 1
ng | 2 2 2 2
ne |1 1 1 1
10 2 2 2 2
i1 1 1 1 1

COSts - Z ‘R<h3>‘ : {RdSresult/CF<hj> + RlSresultTclkmin}

Vh;
—2.(200£]-5/1+ 1.5 W -5 - 2.5ns)
+2-(200£)-5/1 + 1.5 uW - 5-2.5ns)
+1-(200£J-5/14+1.5uW -5-2.5ns)
+1-(200£3 - 5/1+ 1.5 W - 5 - 2.5ns)
= 6112.51J.

We let Hpew = {hi1,ho, hs, ha} and assign To(h;) = 2.5ns -2 = 5.0ns to
each huddle h; € H,e,. Based on this clock assignment, we try to execute basic
scheduling/binding. Fig. 6.7 shows the results of the basic scheduling/binding and
associated data transfer table. Since the results violate the CS constraint, Tpy,(h;) =
2.51s is reassigned to each huddle h; € Hye,.

Then we calculate Prq(h;) for each huddle h; € Hye,. In this ezample, we
assume Py (h1) = Praw(h2) = Praw(hs) > Praw(ha). We remove hy from H,e,
and let hpay = ha. We assign To(h;) = 2.5ns -2 = 5.0ns to each huddle h; €
H,e. and execute basic scheduling/binding. However, the scheduling result requires
8 CSs and wviolate CS constraint Syay. Tar(h;) = 2.5ns is reassigned to each
huddle h; € Hyep and Ty (himay) = 5.0ns is assigned to Ruyqo(= ha). The basic
scheduling/binding is executed and Fig. 6.8 shows the results. Since the results
satisfy the CS constraint, we calculate Costs. Based on Fig. 6.8(a), |R(hi)| = 2,
|R(hse)| =2, |[R(h3)| = 2, and |R(hy)| = 0. Therefore, Costs = 6112.51].

These processes are repeated and the final resull of clock period assignment



106 CHAPTER 6. SAMCID FOR HDR-MCD ARCHITECTURE
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Figure 6.6: The results of initial phase. (a) The scheduled and binded DFG. (b)
The data transfer table.

phase are as shown in Fig. 6.9. In this case, |R(h1)| = 2, |R(h2)| =2, |R(h3)| =1,
|R(hy)| =1, and Cost, is calculated as follows:

Cost, =2 (200£] - 5/1 + 1.5 4W - 5 - 2.51s)
+2-(200£)-5/1+1.5W -5-2.5ns)
+1-(200£J-5/24 1.5 uW -5 -2.5ns)
+1-(200£3 - 5/2 + 1.5 W - 5 - 2.5 ns)

=4912.51J.

Operation scheduling/binding phase: Flirst, P,y (n,) is calculated for each
operation node n,. ny; whose Pig(ny1) is the minimum is picked up. Bind(nqy) is
changed from fy to fi and basic scheduling/binding is executed. Fig. 6.10 shows the
scheduling result. In this case, |R(h1)| =3, |R(h2)| =2, |R(hs3)| =1, |R(h4)| = 0,
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Figure 6.7: The results of clock period assignment phase (in progress 1, CS con-
straint violation).
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Figure 6.8: The results of clock period assignment phase (in progress 2).

and Costg is calculated as follows:

Costy, =3 -
+2-
+1-
+0 -

2001 - 6/1+1.5uW -6-2.5ns)
200£J - 6/1+1.5uW -6 - 2.5ns)
200£J - 6/2 +1.5uW -6 - 2.5ns)
2001 - 6/2+ 1.5uW -6-2.5ns)
=67351J

> MinCost(= 4912.51J]).

A~~~ —~ —~

Similarly, Bind(ni1) is changed to fo and we calculate Costy = 6735. Bind(nyy) is
changed to fs and we calculate Costs = 6135. Finally, the Cost when Bind(ny;) =
f1 1s the minimum and the binding about nyy is not changed.

These processes are repeatedly executed to each node and Fig. 6.11 shows the
results of operation scheduling/binding phase. Fig. 6.11(a) and (b) are also the
outputs of scheduling/binding. U
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Figure 6.9: The final results of clock period assignment phase.
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Figure 6.10: The result of operation scheduling/binding phase in progress.

Table 6.4: C'P(n,, f;) for each operation node n, and each FU f;.

fr o fs i
ng |3 3 5 5
n |3 3 5 D
ng | 2 2 4 4
n, |1 1 2 2
ng |2 2 4 4
ne |1 1 2 2
10 2 2 4 4
i1 1 1 2 2
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Figure 6.11: The result of operation scheduling/binding phase and the output of
the scheduling/binding step.
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Figure 6.12: The result of register/controller synthesis.

6.4.3 Register/controller synthesis

In the register/controller synthesis step, register and controller configuration in
each huddle is determined according to the result of a scheduling/binding step.
The same algorithm as HDR architectures proposed in Chapter 3 is applied to
register and controller configurations in each huddle.

Example 6.4. In register/controller synthesis, the register and controller config-
uration in each huddle is determined according to the result of scheduling/binding
step. The input and the output are as follows:

Input :

e scheduled CDFG (Fig. 6.11(a))
Output

e huddle configuration (Fig. 6.12).

In the iteration process, we estimate each huddle area based on wvirtual area.
In Fig. 6.12, the areas of huddle hs and hy in this phase are smaller than those
in the initial process. The virtual areas of huddle hy and hy are calculated as in
Section 6.4. Therefore, the virtual areas of huddle hs and hy do not decrease in
Fig. 6.12. O

6.4.4 Unhuddling

In unhuddling, we divide huddles which violate the huddle size constraint. In the
iteration process, virtual area of each huddle is used. Therefore there are some
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Algorithm 6.5 Unhuddling
1: for all h; do

2:  if h; violate the huddle size constraint then
3: for f; € F(h;) do

4: if there are any functional units inside h; other than f; then
5: huddle A,qeqnt-

6: for all hy do

7: if hy is empty then

8: hoacant < hi, goto step 11.

9: end if

10: end for

11: fi is assigned to hygeant-

12: Avirtual<hvacant> — Areal<hvacant>-

13: else

14: Avirtual(hj) — Areal(h'j)~

15: end if

16: end for

17:  end if

18: end for

huddles to which no huddles are bound. We call the huddles empty huddles. If
huddle h; violate the huddle size constraint, it contains too many functional units.
We pick up a functional unit f; inside h; and assign it to a empty huddle hyeeqnt-
Virtual area of hyecan: 18 assumed to be the real area of hyqeant. We repeat the
process until only one functional unit is assigned to h;. Finally, we recalculate the
virtual area of h; based on the real area of h;. Algorithm 6.5 shows the algorithm
of unhuddling step. In (viii) floorplanning-directed huddling step, the useless space
and overlapping of huddles will be resolved.

Example 6.5. The input and the output are as follows:
Input :
e huddle configuration (Fig. 6.13(a))
Output :
o huddle configuration (Fig. 6.13(b)).
As shown in Fig. 6.13(a), huddle hs contains two FUs fs and fy. We assume
that hy violates the huddle size constraint. First, we pick up huddle hy, which is an
empty huddle, and let hygeans = ha. We transfer fs, associated registers (HLRs),

and controllers (FSM) from hs to hy. The virtual area of hy is calculated. Finally,
we calculated the virtual area of hs and unhuddling step is finished. O
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Figure 6.13: The result of unhuddling. (a) The input huddle configuration. (b)
The output huddle configuration.

6.4.5 Floorplanning and floorplanning-directed huddling

In floorplaning-directed huddling, huddle placement as well as its height and width

is optimized by using a simulated annealing (SA) strategy based on a sequence-pair
representation [28]. In this step, we consider the four moves as follows:

Move 1:
Move 2:
Move 3:

Move 4:

Select two elements and exchange them in I',.
Select two elements and exchange them in I'y and I'_.
Select one element and change its aspect ratio.

Select functional unit f; and transfer it from the huddle h; to the
huddle hy(# h;).

In floorplanning, we only consider Move 1, Move 2, and Move 3. In SA optimiza-

tion, its cost function cost is expressed by

cost = «

V. Smam v EPlaceDep

+

Tclkmm EPlaceIndep

(6.16)
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where Tjpmin is the minimum clock period constraint, V' is the sum of violations,
Smaz 18 the control step constraint, Epjscepep is the placement dependent energy
consumption which includes wire dynamic energy consumption and clock tree en-
ergy consumption, and Epjgcerndep 1 the placement independent energy consump-
tion which includes energy consumption of functional units, registers, and con-
trollers. a and [ are parameters.

The initial solution of loorplanning and floorplanning-directed huddling at each
iteration is the solution represented by its sequence-pair of the previous result so
that the entire iteration in Fig. 6.3 can converge gradually. Initial temperature
T; in floorplanning and floorplanning-directed huddling at the i-th iteration of the
synthesis flow is computed by

T, = KT; (6.17)
where K is also a parameter and set to be K < 1.1

Example 6.6. In floorplanning directed huddling, huddle placement and huddle
configuration are optimized simultaneously. The input and the output are as fol-
lows:

Input

e huddle configuration (Fig. 6.12).
Output

e huddle configuration (Fig. 6.14).

In the example, functional unit fy transfers into huddle hs. O

6.4.6 Virtual area adaptation

Virtual area may increase interconnection delay between huddles as the iterations
proceed. To solve this problem, we should gradually decrease the difference between
virtual area and real area.

We execute virtual area adaptation after floorplanning-directed huddling. Be-
cause this step is just before scheduling/binding at the next iteration, we can use
virtual area closer to real area at the next iteration.

Virtual area adjustment is executed as follows:

1. Let Auir(h;) = Avirtuar(hj) — Ayear(h;) be the difference between real area
A, eai(hj) and virtual area A, rpuq(h;) of the huddle h;.

'In the experiments, o = 100, 3 = 1, and K = 0.9 were set.
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Figure 6.14: The result of floorplanning directed huddling.

2. We set Ayirtuar(h;) = Avear(hj) + ¢ - Adgir(hy),

where ¢ is an adaptive parameter. In order to decrease ¢ as the iterations proceed,
we set ¢ = max{l — 0.054,0} at the i-th iteration. Finally of the virtual area
adjustment, the useless space is eliminated.

Example 6.7. In virtual area adaptation, we decrease the virtual area. The input
and the output are as follows:

Input :

e huddle configuration (Fig. 6.15(a)).
Output :

o huddle configuration (Fig. 6.15(b)).

In the example, the virtual area of huddle hs and hy is decreased. O
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Figure 6.15: The result of virtual area adaptation. (a) The input huddle configu-
ration. (b) The output huddle configuration.



116

CHAPTER 6. SAMCID FOR HDR-MCD ARCHITECTURE

Table 6.5: Components information.

Area | Delay | Dynamic | Leak
[pm?] | [ns] | energy | power
[£]] (W]
Adder 386 1.22 64.0 3.20
Multiplier 2161 | 2.70 788.0 16.50
Subtractor 417 1.27 67.4 3.50
Devider 6066 | 10.21 | 1601.1 | 69.80
Shifter 294 0.89 52.1 2.10
Comparator 116 0.83 11.8 0.67
16bit AND 68 0.66 3.6 0.66
Memory access - 2.70 - -
16bit MUX 36 0.21 6.3 0.56
16bit Register | 309 | 0.45 194.0 1.35

6.5 Experimental Results

The proposed algorithm has been implemented in C++ on UNIX 2.5 GHz x2
with 16 GB memory. The algorithm has been applied to DCT (a discrete cosine
transform algorithm for 8 x 8 pixels, 48 nodes), EWF3 (three elliptic wave filters
are serially connected, 102 nodes), FIR filter (a seventh order finite impulse re-
sponse filter, 75 nodes), JACOBI (Jacobi method to solve linear equations with
four unknown variables, 48 nodes), PARKER [29] (22 nodes, including conditional
branches), and COPY (provided by a company, 378 nodes, including conditional
branches). Table 6.5 shows the components specifications. Memories were assumed
to be prepared outside. Therefore the memory access was assumed to be a spe-
cial type of functional unit as shown in Table 6.5. All the functional units were
assumed to have a bit width of 16, and their specifications were obtained by syn-
thesizing them beforehand based on the CMOS 90 nm technology. The minimum
clock period constraint was given to be 2.5ns in all experiments. Controllers were
synthesized by Synopsys Design Compiler in each iteration. The interconnection
delays were assumed to be a proportion to square of the wiring length and an
interconnection delay is set to be 1ns when wiring length is 250um. A clock tree
was considered for all the huddles with the same clock frequencies and its energy
is obtained by using the equations in [43].

Table 6.6, Table 6.7, and Table 6.8 summarize the experimental results. The
proposed algorithm (HDR-mcd in Table 6.6 and Table 6.7) has been compared to
MCAS for RDR architectures [8] (RDR in Table 6.6 and Table 6.7), MH* for HDR
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Table 6.6: Experimental results other than energy consumption

App. FUs Method Steps | #h Area CPU
(Smaz) [um?] | time [s]
DCT ADDx4 RDR [8] 12 9 129600 198.5
(12) MULx4 MH* (Single) 12 6 59527 879.1
CGHDR [1] 11 5 62468 577.4

HDR-mecd 12 7 55233 545.3

EWF3 ADDx4 RDR [§] 59 9 176400 207.0
(61) MULx4 MH* (Single) 60 5 47196 749.5
CGHDR [1] | 89* | 3 | 68850 | 410.5

HDR-med 60 6 49486 457.0

FIR ADDx4 RDR [§] 29 6 86400 125.6
(31) MUL x4 MH?* (Single) | 31 | 4 | 31395 | 567.0
CGHDR [1] | 31 | 4 | 44688 | 533.7

HDR-mecd 30 5 50525 511.1

JACOBI ADDx2 RDR [8] 31 | 4 | 57600 | 76.3
(31) SUBx1 MH* (Single) | 31 | 6 | 33200 | 376.5
MUL %2 CGHDR [1] | 31 | 5 | 31191 | 5208

DIVx2 HDR-mcd 31 6 33920 433.7

COPY ADDx3, SUBx1 RDR [8] 181* | 16 | 2250000 751.6
(172) | Compx1, Rshiftx2 | MH?* (Single) | 171 | 9 | 283544 | 2106.1
ANDx1, MULx5 CGHDR [1] 179* | 11 541233 4174.1

HDR-mcd 172 12 325360 6691.9

PARKER ADDx2 RDR [§] 7 4 57600 97.0
(7) SUBx2 MH* (Single) | 7 | 2 | 11661 | 290.9
Compx 1 CGHDR [1] 7 1 | 10000 | 197.1

HDR-mcd 6 ) 11110 339.6

* In which the S, constraint is violated.

architecture synthesis algorithm with single supply voltage (MH* (Single) in Table
6.6 and Table 6.7), and an HDR architecture synthesis algorithm with clock gaiting
[1] (CGHDR in Table 6.6 and Table 6.7). All the three conventional methods
consider floorplannning during the synthesis, but they only consider single clock
domain. In Table 6.6 and Table 6.7, “S,,..” shows the CS constraint S,,q,. “CPU
time” shows CPU time to synthesize each circuit. “Dynamic”, “Leak”, “Wire”, and
“Clock Tree” represent dynamic energy consumption, leakage energy consumption,
wire dynamic energy consumption, and clock tree energy consumption. “All” shows
the sum of “Dynamic”, “Leak”, “Wire”, and “Clock tree”. “#h” in Table 6.6 shows
the number of islands or huddles of RDR, HDR, CGHDR, and HDR~mcd.

The experimental results show that all energy consumption of HDR-mcd is
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gy comparison of experimental results.

App. Method Dynamic | Leak Wire | Clock Tree All
(Smaz) [pJ] [pJ] [pJ] [pJ] [pJ]
DCT RDR [8] 98.4 19.4 38.4 149.3 305.7
(12) HDR 98.3 16.7 34.3 108.3 257.5
CGHDR [1] 73.4 15.4 35.5 69.9 194.2
HDR-mcd 73.7 15.2 26.2 55.5 170.7
EWEF3 RDR [8] 280.6 102.2 103.9 600.6 1087.3
(61) HDR 277.2 76.6 85.6 300.2 739.5
CGHDR [1] 326.6 166.7 111.3 477.5 1082.1
HDR-mcd 217.7 76.9 77.6 235.6 607.8
FIR RDR [§] 128.6 28.3 53.0 203.4 413.3
(31) HDR 118.0 25.7 41.0 136.0 320.7
CGHDR [1] 108.5 38.3 48.9 119.1 314.9
HDR-mcd 84.7 33.9 46.9 65.0 230.5
JACOBI RDR [§] 78.9 118.8 21.2 136.2 355.2
(31) HDR 101.4 122.7 18.7 103.6 346.4
CGHDR [1] 62.1 118.2 17.8 63.3 261.4
HDR-mcd 82.2 122.0 12.6 83.5 300.3
COPY RDR [8] 5334.8 1655.0 | 1421.6 17175.3 25586.7
(172) HDR 3763.9 1215.1 | 564.1 6754.6 12297.7
CGHDR [1] 4134.2 1749.1 | 664.7 6899.7 13447.7
HDR-mcd 1599.1 1298.1 | 615.6 2476.4 5989.2
PARKER RDR [8] 17.3 1.6 19.7 35.3 74.0
(7) HDR 14.5 1.7 20.8 17.8 54.8
CGHDR [1] 9.9 1.0 20.5 13.2 44.6
HDR-mcd 14.8 1.0 8.4 14.1 38.2
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Table 6.8: The results of clock assignment about HDR-mcd.

App. CF
1(=2.5ns) 2| 4|8
DCT 3 4
EWF3 2 4
FIR 5
JACOBI 4 111
COPY 1 6|32
PARKER 4 1

reduced by a maximum of 76.6% and an average of 32.5% compared with the
other algorithms. The dynamic energy consumption of functional units, registers,
and controllers is also reduced by a maximum of 70.0% and an average of 19.2%
compared with the other algorithms. Most of the dynamic energy is the energy
consumption of registers. HDR-mcd can reduce the dynamic energy because mul-
tiple clock domains can reduce the switching energy of registers. The clock tree
energy of HDR-mecd is reduced by a maximum of 85.6% and an average of 41.3%
compared with the other algorithms. Because a clock tree is required for each
of clock, multiple clock domains may increase the clock tree energy consumption.
However the HDR-mcd can reduce the energy consumption more than the energy
overhead by increasing of the number of clock trees. The wire dynamic energy of
HDR-mcd is reduced by maximum of 59.7% and an average of 26.8% compared
with the other algorithms. This is because the cost function of the floorplanning
algorithm (Eqn. (6.16)) consider the energy depending on placement such as wire
energy, but the other algorithms do not consider. The leakage energy of HDR-mcd
is reduced by an average of 10.9% compared with the other algorithms. To achieve
further reduction of the leakage energy is the future work.

6.6 The Combination of MSV and MCD

For further comparison, MSV and MCD are also applied simultaneously. First, I
describe the target architecture which is an extended HDR-mcd and AVHDR in
Chapter 5. Next, the HLS algorithm for the architecture is described. Finally, the
experimental results are described.

HDR-mcv architecture

I propose HDR-mcv architecture which is the combination of HDR-med architec-
ture proposed in this Chapter and AVHDR architecture proposed in Chapter 5.
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In HDR-mcv, MSV and MCD are considered but PG and/or DMSV are not con-
sidered. The combination of the all low-energy LSI design techniques is the future
work. In each HDR-mcv huddle, two types of power supply rails are prepared
for applying MSV like AVHDR architecture. One is for functional logic (FL) and
the other is for synchronized logic (SL). Clock period is assigned to each hud-
dle.respectively like HDR-mcd architecture. An HDR-mcv example is shown in
Fig. 6.16, in which a huddle, h, consists of FL. and SL:

Functional Logic (FL)
FL is composed of several HFUs, and the voltage is assigned to each HFU
respectively.

Huddled Functional Unit (HFU): A dedicated functional unit and I/O
level converters in h. Each pair of a functional unit and I/O level converters
is connected to its dedicated power supply rail. In HDR-mcd, Its supply
voltages are not changed in runtime and PG cannot be applied.

Synchronized Logic (SL)
SL is composed of HLRs, FSM, and HLCs, and only one constant voltage is
assigned to FVL.

Huddled Local Registers (HLRs): Dedicated local registers in h and
input multiplexers. HFUs can only access the HLRs in h. We ignore the
interconnection dela ly close to

the HLRs.

Finite State Machine (FSM): A dedicated controller in h. FSM controls
the AVFUs and the HLRs in h.

Huddled Level Converters (HLCs): Dedicated level converters in h.
HLCs are used during inter-huddle data transfer from lower voltage huddles.

The HLS Algorithm for HDR-mcv architecture

A new HLS algorithm for HDR-mcv architecture is proposed. A virtual-area-
based iterative refinement flow proposed in Chapter 4 is used in the algorithm.
The proposed algorithm is composed of the following eight steps in each iteration:

e initial huddling,
e scheduling/binding,

e register/controller synthesis,
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Figure 6.16: An HDR-mcv architecture.

e huddle voltage adaptation,

e unhuddling,

floorplanning,
e floorplanning-directed huddling,
e virtual area adaptation.

Initial huddling, register/controller synthesis, unhuddling, floorplanning, floorplanning-
directed huddling, and virtual area adaptation are proposed in previous Sections.
Huddle voltage adaptation is proposed in Section 5.4.4. For further details about
the steps, refer to the respective Sections. In the rest of this section, I will describe
the proposed scheduling/binding in details. Fig. 6.17 shows the algorithm.

Scheduling/binding

The scheduling/binding problem here is, for given a CDFG G(N, E), a minimum
clock period constraint T,z,,in, & control step constraint S,,.., a set of functional
units F', and huddle configuration, to find scheduling and functional unit binding
of every node in a given CDFG, to determine clock periods Ty (h;) of each huddle
h;, and to determine supply voltages assigned (v;, v,,, and vj,) to given FL and
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Figure 6.17: Proposed HLS algorithm for HDR-mcv architecture.
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SL, so as to minimize the total energy consumption while meeting the control step
constraint.

The scheduling /binding is composed of the five phases: initial phase, SL voltage
assignment phase, FL voltage assignment phase, clock period assignment phase,
operation scheduling/binding phase.

(1) Initial phase:
In the initial phase, scheduling and binding are executed according to huddle
placement and clock periods obtained by the previous iteration.

(2) SL voltage assignment phase:
In the SL voltage assignment phase, we search the voltage assignment so as
to minimize total energy consumption. The SL voltage assignment phase is
the same algorithm as the FVL voltage decreasing phase proposed in Section
5.4.2.

(3) FL voltage assignment phase:
In the FL voltage assignment phase, we search the voltage assignment so as
to minimize total energy consumption. The FL voltage assignment phase is
the same algorithm as the AVL voltage decreasing phase proposed in Section
5.4.2.

(4) Clock period assignment phase:
In the clock period assignment phase, we search the clock periods assignment
so as to minimize total energy consumption. The clock period assignment
phase is the same algorithm as the clock period assignment phase proposed
in Section 6.4.2.

(5) Operation scheduling/binding phase:
In the operation scheduling/binding phase, operations are assigned to control
steps and FUs so as to minimize total energy consumption. The operation
scheduling /binding phase is the same algorithm as the operation schedul-
ing /binding phase proposed in Section 6.4.2.

For further details, refer to the respective Sections.

Fig. 6.18 shows the scheduling/binding algorithm. The order of the phases is
determined according to the ratio of energy consumption. When the leak energy
is bigger than the clock energy in previous iteration, we first assign voltage to each
SL. Next, we assign voltage to each FL. Finally, we assign clock period to each
huddle. If low voltages are assigned to the SLs and FLs, we can reduce not only the
dynamic energy consumption but also the leak energy consumption. If long clock
periods are assigned to huddles, the leak energy cannot be reduced. On the other
hand, when the clock energy is bigger than the leak energy in previous iteration,
we first assign voltage to each SL. Next, we assign clock period to each huddle.
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Figure 6.18: The scheduling/binding algorithm.

Finally, we assign voltage to each FL. If low voltages are assigned to the SLs and
long clock periods are assigned huddles, we can reduce not only the dynamic energy
consumption but also the clock energy consumption. If low voltages are assigned
to FLs, the clock energy cannot be reduced. In order to reduce the energy which
accounts for a large percentage, we assign voltages and clock period in the order.

We design a cost function C'ost,,.,. C0st,,, is the sum of the energy consump-
tion of functional units and registers and is calculated as:

COSts = Z E(B'lnd(nx)) + Z B(fi)smamTclkmin+
Vng Vi

Z‘R(h]>‘ . {Rdsresult/CF(hj) + RlSresultTclkmin} (618)

where P(f;) is the leak power of functional unit f;, R(h;) is the set of registers
in hj, Ry is a dynamic energy consumption of a register, It; is a leak power of a
register, and S, is the end CS of the scheduling result (Syesur < Smaz). R(h;)
of each huddle is estimated by left-edge based register binding algorithm. In all
phases, we select the voltage assignment and the clock assignment which have the
minimum value of C'ost,,c,.
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Experimental results

The proposed algorithm has been implemented in C++ on UNIX 2.5 GHz x2 with
16 GB memory. The algorithm has been applied to DCT (a discrete cosine trans-
form algorithm for 8 x 8 pixcls, 48 nodes), EWFE3 (three elliptic wave filters arce seri-
ally connected, 102 nodes), FIR filter (a seventh order finite impulse response filter,
75 nodes), JACOBI (Jacobi method to solve linear equations with four unknown
variables, 48 nodes), PARKER [29] (22 nodes, including conditional branches),
and COPY (provided by a company, 378 nodes, including conditional branches).
Table 6.9 shows the components specification. Table 6.10 shows the level convert-
ers specification. Memories were assumed to be prepared outside. Therefore the
memory access was assumed to be a special type of functional unit as shown in
Table 6.9. All the functional units were assumed to have a bit width of 16, and
their specifications were obtained by synthesizing them beforehand based on the
CMOS 90nm technology. Selectable voltages were assumed to be as v; = 0.8V,
U = 1.0V, and v, = 1.2 V. The minimum clock period constraint was given to be
1.51ns in all experiments. Controllers were synthesized by Synopsys Design Com-
piler in each iteration. The interconnection delays were assumed to be a proportion
to square of the wiring length and an interconnection delay is set to be 1 ns when
wiring length is 250;m. A clock tree was considered for all the huddles with the
same clock frequencies and its energy is obtained by using the equations in [43].

Table 6.11, Table 6.12, and Table 6.13 summarize the experimental results. The
proposed algorithm (HDR-mcv in Table 6.11 and Table 6.12) has been compared
to a traditional shared-register architecture synthesis algorithm (SR in Table 6.11
and Table 6.12), MCAS for RDR architectures [8] (RDR in Table 6.11 and Table
6.12), MH* for HDR architecture synthesis algorithm with single supply voltage
(MH* (Single) in Table 6.11 and Table 6.12), SAMCID for HDR-mcd architecture
synthesis algorithm with MCD (HDR-mcd in Table 6.11 and Table 6.12), MH* for
HDR architecture synthesis algorithm with MSV (MH" in Table 6.11 and Table
6.12), and HDR~mcv architecture synthesis algorithm with only MSV (HDR-mcv
(MSV) in Table 6.11 and Table 6.12). In JACOBI, the proposed algorithm has
been further compared to SAAV for AVHDR, architecture synthesis algorithm with
DMSV (SAAV in Table 6.11 and Table 6.12). In Table 6.6 and Table 6.7, “S,,q.”
shows the CS constraint S,,... “#h.” shows shows the number of huddles of
MH* (Single), HDR-mcd, MH*, HDR-mcv (MSV) and HDR-mcv.. “Tech.” shows
applied energy-efficient LSI design techniques. “CPU time” shows CPU time to
synthesize each circuit. “Dynamic”, “Leak”, “Wire”, and “Clock Tree” represent
dynamic energy consumption, leakage energy consumption, wire dynamic energy
consumption, and clock tree energy consumption. “All” shows the sum of “Dy-
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Table 6.9: Informations of components.

Area : 386 um?
Adder T2V [ 1.0V | 08V
Delay]ns] 075 | Lo2 | 271
Dynamic energy[f]] | 103.97 64 33.22
Leak power[uW] 5.97 3.2 1.74
Area : 417 pm?
Subtractor T2V | 10V | 0.8V
Delay|ns] 0.78 1.27 2.82
Dynamic energy[fJ] | 109.49 67.4 34.99
Leak power[pW] 6.53 3.5 1.9
- Area : 2161 m?
Multiplier T2V T L0V | 08V
Delay|ns] 1.65 2.7 6
Dynamic energy[fJ] | 1324.38 | 788 | 495.13
Leak power[p¥] 29.7 16.5 8.25
Comparator Area : 116 purn”
1.2V 1.0V 0.8V
Delay|ns] 0.51 0.83 1.84
Dynamic energy[f]] | 19.17 11.8 6.13
Leak power[uW] 1.25 0.67 0.36
; 2
i e |
Delay|ns] 0.29 0.47 1.05
Dynamic energy[fJ] | 305.22 | 187.88 | 97.53
Leak power[pW] 2.75 1.47 0.8
. Area : 576 m?
16bit MUX T2V T 1OV | 08V
Delay]ns] 013 | 021 | 047
Dynamic energy[fJ] | 162.72 | 100.16 52
Leak power[uW] 16.65 8.93 4.86

Table 6.10: Informations of level converters.
Vo v Area Delay Dynamic Leak
in~ Yout

[pm?]  [ns] L] W]
LOV-12V | 113 0.042 192 247
0.8V-1.2V | 113  0.074 326  2.12
0.8V-1.0V | 113  0.059  2.22  3.55
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namic”, “Leak”, “Wire”, and “Clock tree”. “#CT” shows the number of clock
trees.

The experimental results show that all energy consumption of HDR-mcv is
reduced by a maximum of 85.4% and an average of 57.0% compared with the
other algorithms. The dynamic energy consumption of functional units, registers,
and controllers is also reduced by a maximum of 87.5% and an average of 55.4%
compared with the other algorithms. Most of the dynamic energy is the energy
consumption of registers. HDR-mcv can reduce the dynamic energy because MSV
and MCD can reduce the switching energy of registers. The clock tree energy of
HDR-mcv is reduced by a maximum of 89.0% and an average of 65.2% compared
with the other algorithms. The wire dynamic energy of HDR-mcv is reduced by
maximum of 89.1% and an average of 48.5% compared with the other algorithms.
The leakage energy of HDR-mcv is reduced by an average of 30.3% compared with
the other algorithms. However, SAAV reduces the leakage energy more than HDR-
mcv because SAAV can cut off the leakage energy through PG and/or DMSV. To
achieve further reduction of the leakage energy utilizing with PG and/or DMSV is
the future work.

The effects of MSV and MCD are compared. Table 6.14 shows the energy
comparison. The proposed HLS considering MCD achieves 26.1% energy-saving.
The proposed HLS considering MSV achieves 52.9% energy-saving. In the archi-
tecture and HLS, MSV can reduce energy more than MCD. On the other hand, the
proposed HLS considering MCD and MSV simultaneously achieves 65.8% energy-
saving. The energy reduction effects of MCD and MSV are orthogonal as follows:

0.739 x 0.471 = 0.348069 ~ 0.342.

Therefore, in the proposed HDR-mcv, MCD and MSV can reduce energy consump-
tion almost independently.

6.7 Conclusion

In this chapter, I propose an HDR-mcd architecture, which integrates periodically
all-in-phase based multiple clock domains and multi-cycle interconnect communica-
tion into HLS. Next, I propose a high-level synthesis algorithm for HDR-mcd. Ex-
perimental results show that the proposed algorithm achieves 32.5% energy-saving
compared with conventional algorithms. Furthermore, the proposed method which
can apply MCD and MSV simultaneously achieves 57.0% energy-saving compared
with the conventional methods.
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Table 6.11: Experimental results other than energy consumption.

App. FUs Method Tech. Steps | #h Area CPU
(Smaz) [um?] | time [s]
DCT ADDx4 SR - 14 - 51529 25.7
(15) MUL x4 RDR - 13 | — | 96800 | 191.4

MH?* (Single) - 12 | 8 | 56896 | 1003.2
HDR-mcd MCD 12 8 56595 812.1
MH* MSV 15 8 68944 826.1
HDR-mcv (MSV) MSV 15 8 68523 820.7
HDR-mcv MSV + MCD 14 7 58860 760.6
EWEF3 ADDx4 SR — 89* — 61009 29.0
(65) MULx4 RDR - 72* - 156800 159.1
MH* (Single) - 64 8 48970 568.7
HDR-mcd MCD 59 6 62510 923.5
MH* MSV 62 8 103788 501.6
HDR-mev (MSV) | MSV 63 | 5 | 53352 | 443.0
HDR-mcv MSV + MCD 64 7 65856 475.1
FIR ADDx4 SR — 41 — 65025 26.8
(50) MUL x4 RDR - 43 | — | 99225 | 228.0
MH* (Single) - 45 8 25066 613.3
HDR-mcd MCD 45 8 38080 642.7
MH* MSV 48 9 57568 665.0
HDR-mecv (MSV) | MSV 48 | 8 | 54936 | 850.4
HDR-mcv MSV + MCD 45 5 40803 554.8
JACOBI ADDx2 SR - 35 - 36864 25.9
(35) SUBx1 RDR - 34 | - | 60000 52.9
MULx2 | MH?* (Single) - 31 | 6 | 33565 | 579.1
DIVx2 HDR-mcd MCD 34 7 44600 428.8
MH* MSV 35 7 53862 433.7
HDR-mcv (MSV) MSV 35 6 42570 596.4
SAAV DMSV 35 5 32292 632.3
HDR-mcv MSV + MCD 31 5 34352 552.6
COPY ADDx3 SR - 272* - 331776 50.8
(250) SUBx1 RDR - 266* - 1000000 657.6
Compx1 MH* (Single) - 236 14 | 402560 | 3617.9
Rshift x2 HDR-mcd MCD 248 14 488250 | 12608.9
ANDx 1 MH* MSV 224 | 14 | 441030 | 3903.4
MULx5 | HDR-mcv (MSV) MSV 231 14 389270 2642.0
HDR-mcv MSV + MCD 248 14 458414 | 19094.0
PARKER | ADDx2 SR - 7 10201 25.0
(10) SUBx2 RDR - 7 ~ | 20000 | 119.1
Compx1 MH* (Single) - 9 5 12190 951.8
HDR-mcd MCD 7 5 10168 796.5
MH* MSV 10 5 23856 296.1
HDR-mev (MSV) | MSV 10 | 3 | 10192 | 2353
HDR-mcv MSV + MCD 6 3 11644 304.5

* In which the S,,,,, constraint is violated.
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Table 6.12: Energy comparison of experimental results.
App. Method Dynamic | Leak | Wire | Clock Tree All %
(Smaz) [pJ] pJ] | [pJ] [pJ] [pJ]
DCT SR 109.5 16.3 92.9 98.9 317.6 100.0
(15) RDR 171.7 21.2 60.0 183.0 435.9 137.3
MH* (Single) 149.1 16.8 41.0 115.1 322.0 101.4
HDR-mcd 146.1 18.4 39.7 107.6 311.8 98.2
MH* 127.1 18.5 34.0 126.4 306.1 96.4
HDR-mcv (MSV) 69.0 9.5 20.0 67.1 165.6 52.1
HDR-mcv 54.5 9.0 18.1 33.3 114.9 36.2
EWF3 SR 392.0 142.3 258.7 513.7 1306.7 | 100.0
(65) RDR 493.3 122.0 158.6 788.7 1562.6 | 119.6
MH* (Single) 449.9 90.0 116.2 473.0 1129.1 86.4
HDR-mcd 336.5 85.8 107.5 335.8 865.7 66.3
MH* 410.9 85.2 111.3 441.6 1049.0 80.3
HDR-mcv (MSV) 159.0 37.5 53.1 187.3 436.9 33.4
HDR-mcv 141.8 44.2 49.7 135.7 371.4 28.4
FIR SR 313.9 85.9 151.3 353.7 904.8 100.0
(50) RDR 260.4 32.3 76.9 382.0 751.6 83.1
MH* (Single) 258.3 301 | 45.1 242.8 576.3 | 63.7
HDR-mcd 184.2 43.2 40.4 145.2 413.0 45.6
MH* 156.4 22.5 28.0 217.3 424.1 46.9
HDR-mcv (MSV) 125.3 20.4 21.7 153.6 321.0 35.5
HDR-mcv 103.3 27.3 16.5 69.0 216.1 23.9
JACOBI SR 134.6 110.5 54.5 134.0 433.7 100.0
(35) RDR 173.1 134.1 19.6 247.0 573.7 132.3
MH* (Single) 169.5 133.8 22.3 163.1 488.7 112.7
HDR-mcd 140.6 148.9 19.2 124.1 432.8 99.8
MH* 158.8 151.5 18.3 160.4 489.0 112.7
HDR-mcv (MSV) 87.1 139.6 10.7 81.3 318.6 73.5
SAAV 90.1 44.2 8.3 64.0 206.6 47.6
HDR-mcv 81.6 123.3 8.2 64.2 277.3 63.9
COPY SR 7441.3 2074.8 | 2054.7 11465.6 23036.4 | 100.0
(250) RDR 9936.0 761.9 | 1192.2 17548.0 29438.1 | 127.8
MH* (Single) 9885.3 2165.5 | 681.3 13581.8 26313.8 | 114.2
HDR-mcd 3278.2 2275.7 | 907.4 4150.4 10611.7 | 46.1
MH* 3837.0 637.1 354.9 6105.0 10933.9 | 47.5
HDR-mcv (MSV) 3822.6 617.2 | 356.6 5994.6 10791.0 | 46.8
HDR-mcv 1238.4 763.6 | 381.0 1922.9 4305.9 18.7
PARKER SR 20.6 1.2 29.5 194 70.7 100.0
(10) RDR 30.2 1.5 4.8 37.2 73.6 104.1
MH* (Single) 40.9 2.1 15.4 37.0 954 | 135.0
HDR-mcd 26.6 1.2 11.3 22.8 62.0 87.7
MH* 28.1 1.6 8.0 28.3 65.9 93.2
HDR-mcv (MSV) 11.5 0.7 5.0 12.1 29.2 41.3
HDR-mcv 9.3 0.6 5.9 8.3 24.2 34.2
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Table 6.13: The results of clock and supply voltage assignment and the number of
clock tr%eg;r
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Table 6.14: Average energy consumption normalized based on SR.

Tech. Method Energy ratio[%)]
- SR 100.0
- RDR 117.4
— MH* (Single) 102.2
MCD HDR-mcd 73.9
MSV HDR-mcv (MSV) 47.1
MSV+MCD HDR-mcv 34.2
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Chapter 7

Conclusion

In this dissertation, I propose new floorplan-driven SoC architectures to which
energy-efficient LSI design techniques, such as multiple supply voltages technique
(MSV), dynamic multiple supply voltages technique (DMSV), and multiple clock
domains technique (MCD), are easily applicable. Furthermore, HLS algorithms
are proposed for energy reduction based on the proposed architectures. The pro-
posed algorithms can reflect floorplanning information in HLS by using itcrative
synthesis flow. By using a floorplanning result, interconnection delay and energy
consumption can be estimated, and then optimized supply voltages and/or clock
periods can be assigned for energy reduction.

The proposed HDR architecture divides chip area into several partitions called
huddles. Huddles enable us to estimate interconnection delay effects easily and
apply supply voltages effectively. The proposed iteration based HLS algorithm can
consider interconnection dela lly apply MSV. The basic
algorithm is shown in Chapter 3. Experimental results show that the proposed
method achieves 22.4% energy-saving compared with the conventional methods.

The basic HLS algorithm for HDR architecture in Chapter 3, however, has
two problems, so the proposed MH* for HDR architecture is newly developed
and enables us to quickly obtain solutions. The proposed virtual area estimation,
virtual area adaptation, and foorplanning-directed huddling resolve the problems of
the algorithm in Chapter 3. Experimental results show that the proposed algorithm
achieves 29.1% run-time-saving compared with the algorithm proposed in Chapter
3, and successfully obtains a solution which cannot be obtained by the algorithm
proposed in Chapter 3.

The proposed AVHDR architecture is introduced for applying DMSV. The
proposed SAAV can assign low supply voltages to non-critical operations and can
cut off leakage power through PG. Experimental results show that the proposed
method achieves 43.9% energy-saving compared with the conventional methods.
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The proposed HDR-mcd architecture can apply periodically all-in-phase based
MCD. The SAMCID can consider the inter-domain synchronization which re-
quire interconnection delay and also realize efficient clock frequency selection and
clock domain division by assigning an appropriate clock period. Experimental re-
sults show that the proposed method which only considers MCD achieves 32.5%
energy-saving compared with the conventional methods. Furthermore, the pro-
posed method which can apply MCD and MSV simultaneously achieves 57.0%
energy-saving compared with the conventional methods.

In the future work, DMSV and MCD should be applied simultaneously. When
huge leakage power of a functional unit is cut off through PG, we should not assign
long clock period to the functional unit and associated registers with MCD. On the
other hand, when low clock frequency is assigned to a huddle, the switch transistor
control faster than clock frequency is impossible. Therefore, we should compare
the cffects of PG and MCD and judge which is better between the two methods
for energy reduction.

Clock period selection and allocation problem are also the future work. For
example, multiplexers can be decreased by adding extra functional units and/or
registers. Since multiplexers consume huge area and energy consumption in recent
LST design, a high-performance allocation algorithm may realize further energy
reduction. Process variation and soft-error problems are becoming major problems
as device feature size decreases. Realizing an HLS algorithm for robust SoC is also
the future work.
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