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CHAPTER 1

Introduction

1.1. Background

In this doctoral thesis, we are concerned with free boundary problems of the
incompressible Navier-Stokes equations in some unbounded domains. Such prob-
lems arise from mathematical analysis of incompressible flows of viscous fluids
with a free surface, and the problems are mathematically to find the velocity field
v =v(z,t) = (v1(z,t),...,on(z, 1)L of the fluids, the pressure filed 7 = 7 (z, ),
and the free boundary T' = T'(¢) satisfying the following system:

p(Ov+ (v-V)v) =DivT — pcgen in Q(t), t > 0,
divv =0 in Q(¢), t > 0,
—[Tuor] = cokrnr onI'(t), t >0,
(1.1.1) [vl =0 onI'(¢), ¢ >0,
Ve =v-nr on I'(¢t), t >0,
V]i=0 = Vo in Qo,
I'¢=o =T,

where the stress tensor T is decomposed as T = —nl + 7 by the identity I and
some shear stress T, and besides, ey = (0,...,0,1)T. Let T};; be the (4, j)-th entry
of T and D; =9/0x; (j=1,...,N), and then

N N T N
DivT = ZDjle""’ZDjTNj y diVV:ZD]"L}j,
J=1 J=1 J=1
T

N N
(v-V)v= ZUijUl, cey ZU?’DJ'”N

Here vy and T’y denote initial data for the velocity field v and the free boundary
T', respectively. In this thesis, we consider the case where 'y is given by the graph
of some scalar function hg, that is,

FO = {(x,7$N) | xl € RN717 TN = h()(x/)}7

and then T'(¢) is the position of T’y at time ¢t. We furthermore suppose that the
unknown free boundary I'(¢) has the form:

(1.1.2) L(t)={(2',zy) |2’ € RN"L oy = h(z/,t)} (t > 0)

DMT denotes the transposed M, and N the dimension which is a positive integer greater
than or equal to 2 throughout this thesis.
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through some scalar function h(z’,t). On the other hand, Q¢ = Q0 U Q99 with
Qio = {(@,zn) | 2’ e RN (=1)(zn — ho(z)) > 0}

for i = 1, 2, where viscous fluids, fluid, and fluid,, occupy Q10 and €299, respectively.
Similarly Q(¢) = Q1 (t) U Qa(t) for Q;(¢) (¢ = 1,2) describing the regions occupied
by the fluid; at time ¢. We then denote the unit normal field on I'g, pointing from
Q10 to Q0, by ng, and also the unit normal field on I'(¢) by nr analogously.

Let p; and py be positive constants which describe the density of the fluid; and
fluidy, respectively, and then p = p1xq, ) + p2Xa. (), where xp is the indicator
function of sets D C R™. The non-negative parameters ¢, and ¢, are the gravi-
tational acceleration and the surface tension coefficient, respectively. In addition,
kr denotes the mean curvature of I'(¢t), and Vr the normal velocity of T'(¢) with
respect to nr. [f] = [f](«,t) is the jump of the quantity f, defined on Q(t), across
the free boundary T'(¢) as

171z, t) = Eliré1+ (f(x +enr,t) — f(x —enr,t)) for z eT(t).

Under the assumption (1.1.2), we can reduce (1.1.1) to

p(Ov+ (v-V)v) =DivT — pcgeny in Q(t), t > 0,
divv=0 in Q(t), t > 0,
—[Tnr] = ¢okrnp on I'(¥), t > 0,
(1.1.3) [vl=0 on I'(¢), t >0,
Oh+v -V'h—v-ey=0 onI'(t),t >0,
V]i=0 = Vo in Qo,
hli—o = ho on RV,

N—
where v/ = (v1,...,on_1)T,V' = (Dy,...,Dy_1)T, and v/ - V'h = ijll v; Djh
respectively, and besides, nr and kr are given by

1 ~V'h , ~V'h ,
np———— Ckr= -V [ — L) = AL G.(h
: \/1+|V’h|2< 1 ) 8 <\/1+|th|2> )

with A’h = YY" D?h and

IV'h|2Ah NZ D;hDyhD;Dyh

Gr(h) = —,~
NN oy W VhpR)3re

We are interested in three types related to equations (1.1.3) as follows:
One-phase flows of Newtonian fluids: Layer type Let {259 be empty, and
then note that Q5(t) is also empty for any ¢ > 0. In addition, we suppose that the
domains Q3¢ and 4 (¢) have flat bottoms, which means that

Qo= {(2",zn) |2/ e RV, —b < ay < ho(2')},
Qi (t) ={(2',zn) | 2/ € RNL —b < an < h(z',1)}

for some positive number b. Such a case is said to be layer type in this thesis.
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In Chapter 2, we consider some linearized system of (1.1.3) of the layer type
with ¢, = 0 and ¢, = 0 in the case where vo = 0. We here assume that Q¢ is
occupied by Newtonian fluids, that is, the shear stress 7 is given by

(1.1.4) T =uD(v), D(v)=Vv+(Vv)"

for a positive constant p describing the viscosity coefficient of fluid,. Then the
linearized system is given by

v —uDivD(V)+Vr=f inQ,¢t>0,
divv=f; inQ,t>0,
(1.1.5) (uD(v) —nl)ey =g on Ty, ¢ >0,
v=0 onl_, t>0,

V]i=o =0 in
where we have set p; = 1 without loss of generality. In addition,

Q={(,an) eRY |2 e RV ' —b < ay <0},
To={(2,zn) e RN |2/ e RV 2y = 0},
Iy ={(z,zy) e RN |2/ ¢ RN 2y = —b}.

Our approach to (1.1.5) is essentially based on analysis of generalized resolvent
equations, associated with (1.1.5), given by

AW —puDivD(v)+Vr=f inQ,
divv = f; in Q,

(1.1.6) (uD(v) —ml)ey =g on Iy,

v=0 onl_,,

where each term is independent of time ¢, and ) is the resolvent parameter contained
in ¥. 4,, which is defined as

Yevo ={AeC|largA| <7m—¢g, [A| >} (0<e<7/2, 70 >0).

Here generalized means that we deal with the inhomogeneous divergence equation:
divv = f4 instead of divv = 0.

Resolvent estimates concerning (1.1.6) were proved by [Abe04], [Abe05b],
[Abe06], and [Shil3], while the maximal regularity theorem of (1.1.5) was proved
by [Abe05a] in L,((0,T), L,(Q))-spaces for any T' > 0 and ¢ > 3/2.

For equations (1.1.6), we show the R-boundedness of families of solution oper-
ators defined on X, -,. Since the R-boundedness implies the uniform boundedness,
our results especially cover the above resolvent estimates due to Abe, Abels, and
Shibata. Furthermore, in L, ((0,00), L,(92))-spaces for 1 < p,q < oo, the maximal
regularity theorem of (1.1.5) will be proved as an application of the R-bounded
solution operator families with the help of [Wei01, Theorem 3.4]. These are main
objects in Chapter 2.
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We here introduce the history related to the original nonlinear problem of
(1.1.5), which is given by the following system with ¢, = 0 and ¢, = 0:

p1(Ov+ (v-V)v) =DivT — picgeny in Q(¢), ¢ >0,
divv =0 in Q,(t), t > 0,
Tnr = coxrnr, onI'(t), t >0,
(1.1.7) v=0 onI'_4, t>0,
Oh+v -V'h—v-ey=0 onT'(¢), t >0,
V]t=0 = Vo in Qyo,
hli=0 = ho on RV-1.

Beale is the pioneer who had dealt with (1.1.7) mathematically. He proved
the local well-posedness in the case where ¢, = 0 and ¢, > 0 in [Bea81], and
furthermore, the global well-posedness for sufficiently small initial data in the case
where ¢, > 0 and ¢, > 0 in [Bea84|. In addition, [BN85] showed large-time
behavior of the solution obtained in the study of [Bea84]. These results were
proved by using function spaces based on Ly in both time and space. Along with
these studies in such function spaces, there were several results due to [All87],
[TT95], [Tan96], [HKO09], [Hat11], and [Baell].

As another approach, there was the study of [Abe05a], which showed the local

well-posedness of (1.1.7) in the case where ¢, = 0 and ¢, > 0 by using function
spaces based on L, in both time and space. In such function spaces, [ DGH"11] and
[G6t12] showed the local well-posedness of more complicated systems, containing
rotational effects, of the layer type.
One-phase flows of Newtonian fluids: Half space type Let {250 be empty,
and then such a case is said to be half space type in this thesis. On the other hand,
we call a case whole space type if both Q19 and Q99 are occupied by viscous fluids,
respectively.

The aim of Chapter 3 and Chapter 4 is to show the global well-posedness of
(1.1.3) of the half space type with ¢, > 0 and ¢, > 0 for suitable initial data vo and
ho. We here assume that ;¢ is occupied by Newtonian fluids, that is, the shear
stress T is given by (1.1.4).

Priiss and Simonett showed the local well-posedness of (1.1.3) of the whole
space type with ¢, > 0 and ¢, > 0 for Newtonian fluids in [PS10a], [PS10b],
and [PS11]. We note that these settings due to Priiss and Simonett contain our
situation described above, and that they used function spaces based on L, in both
time and space to show the local well-posedness.

On the other hand, there was another approach due to Shibata and Shimizu
[SS12] by using more general function spaces. In [SS12], they considered some
resolvent problem and linearized problem associated with (1.1.3) of the half space
type with ¢, > 0 and ¢4 > 0, which is the same situation as ours. They showed the
R-boundedness of solution operator families of the resolvent problem with A € X, -,
for any 0 < ¢ < 7/2 and some large positive number vy depending on ¢, and
furthermore, the maximal regularity theorem of the linearized problem in function
spaces based on L, in time and L, in space for 1 < p,q < oo by combining the
R-bounded solution operator families and [Wei01, Theorem 3.4]. In the sequel, a
framework of such function spaces is said to be L,-L, framework.
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Although the linear theory of [SS12] is enough to show the local well-posedness
of our situation, it seems that we need to improve the linear theory to show the
global well-posedness, because decay properties of solutions to the linearized prob-
lem are not obtained in [SS12]. The works due to Priiss and Simonett also do not
contain such objects.

From viewpoint of this, in Chapter 3, we show decay properties of the Stokes
semi-groups associated with the linearized problem considered in [SS12].

In Chapter 4, the global well-posedness and large-time behavior of solutions

will be proved. Main ideas to show them are to use the decay properties obtained
in Chapter 3 and the L,-L, framework with suitable assumptions of exponents p
and q.
Two-phase flows of generalized Newtonian fluids: Whole space type In
Chapter 5, we consider (1.1.3) of the whole space type with ¢, > 0 and ¢; > 0
for suitable initial data vy and hg. We here assume that both Q19 and Q9 are
occupied by generalized Newtonian fluids, that is, the shear stress 7 is given by

(1.1.8) T=Xo,0T1+ XaaT2, Ti = p(IDE)*)D(v) (i=1,2)

for given scalar functions pq, ue defined on [0,00). The scalar functions are called
viscosity functions, and also |D(v)|? = 25\2:1 D;;(v)?, where D;;(v) denotes the
(i,7)-th entry of D(v). We note that if ;1 and us are just positive constants, then
the fluids are Newtonian fluids.

A typical example of viscosity functions p is given by
p(ID(V)?) = a+ BD(v)|4"2 for some d > 1

with @« > 0 and 8 > 0. If d < 2, then the fluid is called shear thinning fluids, while it
is called shear thickening fluids if d > 2. Fluids of the type (1.1.8) are some special
case of the so called Stokesian fluids, which were investigated mathematically for
fixed domains by [Ama94| and [Ama96].

Bothe and Priiss gave in [BP07] the local well-posedness of fixed domain prob-
lems in the case of the generalized Newtonian fluids with

(1.1.9) € CH(0,00)), u(s) >0, pu(s)+2(du/ds)(s)>0 fors>0.

Note that our assumptions, introduced in Chapter 5, of viscosity functions p are
different from (1.1.9). Concerning mathematical results for certain classes of the
generalized Newtonian fluids on fixed domains, we refer e.g. to the articles [DRO5],
[FMS03], MNRO1], and [PRO1].

There were several studies of two-phase flows of Newtonian fluids on domains
different from the whole space type. [Den94] showed the local well-posedness in the
Lo-Ly framework, and also [Tan95] the local well-posedness in the case including
thermo-capillary convection. They used Lagrangian coordinates to show the local
well-posedness.

As another approach, in [PS10a], [PS10b], and [PS11], Priiss and Simonett
used Hanzawa transform to show the local well-posedness of (1.1.3) of the whole
space type with ¢, > 0 and ¢4 > 0 for Newtonian fluids in the L,-L, framework.

Shibata and Shimizu [SS11] considered some resolvent problem and linearized
problem associated with (1.1.3) of the whole space type with ¢, > 0 and ¢, > 0 for
Newtonian fluids. In the paper, they showed resolvent estimates and the maximal
regularity theorem for such problems, respectively, in the L,-L, framework.
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In the case of the whole space type for the generalized Newtonian fluids,
[Abe07] showed the existence theorem in the context of measure-valued varifold
solutions with ¢, > 0 and ¢, = 0. His result covers in particular situations where
pi(s) = v38142/2 for d > 1 and v; > 0 (i = 1,2). Note, however, that his approach
does not give the uniqueness of solutions.

On the other hand, in the case of the generalized Newtonian fluids, we show the
unique existence theorem of strong solutions for the whole space type with ¢, > 0
and ¢, > 0 under some assumptions of viscosity functions p; and po in Chapter 5.

1.2. Notation

We here introduce notation used throughout this doctoral dissertation. Let N
be the set of all natural numbers and C the set of all complex numbers, and put
No =N U{0}. We then define a sector X, ), as

Yexo ={AeC||argA <7 —¢g, [\ > Ao}
for 0 < e < 7/2 and A\g > 0, and besides,
Ye=%.0={AeC||arg\| <m—¢e, A#£0}.

In addition, we set

RY = {(#/,zn) |2’ e RV 7L, 2y > 0},

RY = {(«/,zn) | 2/ e RN 7L, 2y < 0},

RY = {(2',zn) | 2’ € RN7L, 2y =0},

RN — RY URY.
The letter C' denotes a generic constant and C(a,b,c,...) a generic constant de-
pending on the quantities a,b,c,.... The value of C and C(a,b,¢c,...) may change
from line to line.

Let u and M be N-component vectors and N x N matrices, respectively Then

u; denotes ith component of u, u’ the tangential component of u, and M,; the
(i,7)-th entry of M, that is,

u:(ul,...,uN)T, u’:(ul,...,uN_l)T, M = (M;;).

m

Let m > 1 be an integer and o = (aq,...,q,) € Nj* a multi-index whose
length is ||, and then

glel
D?f(l') = D(lll . 'Damf(‘r) = 7]"(3717" . 7‘TTYL)'

m - qa a
oot .. 9om

If there is no confusion, then we omit the subscript x of DS.
Suppose that Q are domains of RY. Then, for N-vector functions u and scalar
functions 6 defined on (2,

Vu = (D7’ll]), VQLI:{DiD]"ILk | i,j,k:].,...,N},
VO = (D16,...,Dno)T,
and besides, for scalar functions h defined on RV,

V'h = (Dih,...,Dn_1h)T.
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Let I be an interval of R additionally, and then for N-vector functions u(x), v(z),
U(z,t), and V(z,t)

(u,v)Q:/u(x)~v(m) dr, (U V)axr= | Ule,t)-Via,t) dudt.
Q QxT1

Let X be Banach spaces and || - || x its norm. Then X™ denotes the m-product
space of X with m € N, while we use the symbol | - ||x to denote its norm for
short, that is,

[ulx =Y llusllx  for u=(ur,...,um)" € X™
j=1
In addition, let Y be another Banach space endowed with || - ||y, and then the set
of all bounded linear operators from X to Y is denoted by £(X,Y). For simplicity,
we set L(X) = L(X, X). Here the definition of the R-boundedness is introduced
as follows:

DEFINITION 1.2.1. A family of operators T C L(X,Y) is called R-bounded, if
there exist a constant C > 0 and p € [1,00) such that for every m € N, {T;}72, C
T, and {x;}7, C X, and for all sequences {r;(u)}7., of independent, symmetric,
{-1,1}- valued random variables on [0,1] the followmq inequality holds:

1/p L om 1/p
A ||Zn Taylgdut <08 1Y m g
j=1

The smallest such C is called R-bound of T, which is denoted by Ryx,yy(T) or
simply by R(T).
REMARK 1.2.2. Tt is well-known that 7 is R-bounded for any p (1 < p < 00),

provided that T is R-bounded for some p (1 < p < oo). This fact is proved by
Kahane’s inequality (cf. [KW04, Theorem 2.4]).

We see that the R-bound behaves like the norm by the following proposition.

PRrROPOSITION 1.2.3. (1) Let X and Y be Banach spaces, and let T and S be
R-bounded families on L(X,Y). Then T+S ={T+S|TeT, SeS}is
R-bounded on L(X,Y), and

Rex vy (T +S8) S Rex,y)(T) + Rex,y)(S).

(2) Let XY, and Z be Banach spaces, and let T and S be R-bounded families
in L(X,Y) and L(Y, Z), respectively. Then ST = {ST|T € T, S € S} is
R-bounded on L(X,Z), and

Rex,2)(ST) < Rex vy (T)Re(v,z)(S)-

Since it is difficult to check the definition of the R-boundedness, we often use
the following proposition, which was proved by [DHPO03, Proposition 3.3], to show
the R-boundedness of operator families

PROPOSITION 1.2.4. Let Q be domains of RN, and let A be an index set and
1 < q < oo. Consider a family T = {Tx | A € A} C L(Ly(2)) of kernel operators
given by

(T )z / Ia(@y) f)dy (@€, fe L, (Q).
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Assume that the kernels ky are dominated by a kernel ko, that is, |kx(z,y)| <
ko(z,y) (x,y € Q, A€ A), and let Ty be a kernel operator and its kernel ko. Then
T is R-bounded on L(Ly(Q)) and Re(r,)(T) < C(N, || TollzL, ) for some
positive constant C(N, q) depending only on N and g, provided that Ty € L(L4(2)).

We introduce the following symbols for 0 < £ < 7/2:

(12.1) A=1¢l, B=yA+p ¢P (€ R\, Aex.),
D(A,B) = B® + AB* + 3A%B — A%,
L(A,B) = (B — A)D(A, B) + A(c, + c, A?),
which are used to give exact formulas of solutions to linearized problems. Here

we have chosen a brunch such that Re B > 0, and also y, ¢4, and ¢, are positive
constants. In addition, we set

efBa - ean

(1.2.2) M(a) = —5—a for a > 0.
Then note that for [ = 1,2

al
dal

1
M(a) = —a / e~ (BO+A(I=0)a g
0

(1.2.3) M(a) = (=)' ((B+ A)7te B+ ATM(a)),

We here define two classes of symbols as follows: Let € € (0,7/2) and o > 0,
and let m (&', \) and £(&', \) (A = y+i7) be functions defined on (RV~1\{0})x Z. .,
which are infinitely many times differentiable with respect to £ and holomorphic
with respect to A. If there exist a real number s such that for any multi-index
o e N7 and (¢,0) € RN\ {0}) x =, .,

[Dgm(€' )] < COAY? + AP~ |Dg (ro,m(€', 1) | < CAY? + A7,
DU N < CON'2 + A A7 Dg (ro- (€, N) | < C(INY? + A) A1
for some positive constant C independent of £ and A, then m(¢’,)\) is called a
symbol of order s with type 1 and £(¢’, \) is called a symbol of order s with type 2. In
what follows, we denote the set of all symbols defined on (RY~1\{0}) x%. ,,, of order
swith typei (i = 1,2) by M - ~,. In particular, it follows that M 1 o », C M2 ¢ +,

for any s € R by the definition of M ; . ,, (i = 1,2), and also the following lemma
holds (cf. [SS12, Lemma 5.1] and [Sail5, Lemma 5.1]).

LEMMA 1.2.5. Let 0 < e < w/2, 70 > 0, and s1,$2 € R.

(1) My, ievo € My ie o (i =1,2) for any sy < so, provided that ~o > 0.
(2) Given m; € Mg, 1,64, (i = 1,2), we have mima € Mg, 455.1,5.4, -

(3) Given £; € M, ;. ~,(i =1,2), we have €14y € My, 45,2, 70 -

(4) Given n; € My, 2. ~,(i =1,2), we have ning € My, 45,.2.¢.~0-

The symbols defined as (1.2.1) satisfy the following properties (cf. [SS12,
Lemma 5.2, Lemma 5.3, Lemma 7.2] and [Sail5, Lemma 5.2]).

LEMMA 1.2.6. Let 0 < e <7/2 and A =y +iT.
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(1) Let a,ay, and as be non-negative numbers and s € R. Then, for any multi-
index o/ € NY ™1 1=0,1, and (¢',)) € (RN=1\ {0}) x ¥., we have
bew (N2 + A) < ReB < |B| < max{u~2 1}(|\['/2 + A)
with be , = (1/v/2){sin (¢/2)}*/2 min{u~='/2,1}, and furthermore,
1Dg {(70,)! A%} < CATI*L D {(70,)' B} < C(IA[V? + A)*~ 1],
D {(r9,)' D(A, B)*}| < (A2 + AP A7l
‘Déa’{(TaT)leanH < C«Af|o/\67(1/2)140,7
D¢ {(70,)"
‘D?//{(TaT)l(eanlefBag)H < CA7|a/|67(1/4)b€’u{A(a1+a2)+|)\|1/2a2}
D {(rd,) M(@)}] < Cadlle=(1/ Db,
IDE{(70:) M(@)}] < A7 /2 A1 lem (/b Ao,

where C = C(d/, s,€) is a positive constant. In particular, the constant C' is
independent of £, A\, a,a1, and as, and also

A €M;2.0 (s>0), B €M, .0, D(A,B)° € Mss o0,
e e emAmemBu e My, 0, e B €My .o.

(2) There exists a positive constant Ao = Ao(€) > 1, depending on e, such that for
any (€,)) € (RN1\ {0}) x 2., multi-indez o/ € NY~™, and 1 = 0,1,

e~ B9} < C(INY/2 + A) 1o le= (/Db (A 2+ Aa

’ -1 ’
1D {(r0,)'L(A, B) "} < € (IMINY2 + 4)% + Aley + ¢,4%)) A7
for some positive constant C = C(a', e, \p).

Let f(z) and g(¢) be functions defined on R, and then the Fourier transform
of f and inverse Fourier transform of g(¢) are defined by

RO = [ e i@ Fruw = gy [ et de

RN
In addition, we define the partial Fourier transform of f(x) and inverse partial
Fourier transform of g(£) with respect to tangential variables 2’ = (x1,...,tNn—-1)
and & = (&1,...,&n_1), respectively, as follows:

124)  Folfl€an) = F€an) = [ o) o

Flala' ) = ey [ e ol ) de'

If there is no confusion, then we will omit the subscripts z, &, 2/, and £ from the
definitions above. In order to obtain some special formulas, we use the following
lemma, which is proved by the residue theorem.

LEMMA 1.2.7. Leta € R\ {0} and £ = (&1,...,¢n) € RN, Then we have

1 [e'S) 6ia§N e—|a,‘A 1 e8] ifNeiaéN e—}a,‘A
—_— d — —_— —d = —gi
e = T 5 L e = 0
1 0  iagn e—B|a| 1 e gNeiaﬁN i

¢=Blal

% - A+|£|2 dgN: 2B B % - )\+|€|2d€N:SIgn(a)2
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1 e’} ezaSN d 1 6—|a|A e la
E%wawu+umafN‘iﬂ A BV
1 [ ifnerdn

— ——
2w[mmw@+um%5N

where sign(a) defined by the formula: sign(a) = 1 when a > 0 and sign(a) = —1
when a < 0.

—la|B

1
o —lalA _ _—la|B
2)\Slgn(a)(e e ),

The following proposition was proved by [SS01, Theorem 2.3] and [KS12,
Theorem 2.4.4]

PROPOSITION 1.2.8. Let X be a Banach space and ||-||x its norm. Suppose that
L and n be a non-negative integer and positive integer, respectively. Let 0 < o <1
and s = L+ o0 —n, and set
1 o=1,
l(o) = {

0 O<ox< 1.

Let f(€) be a function of CLTHOTL R\ {0}, X) which satisfies the following two

conditions:

(1) D{f € Li(R", X) for any multi-index v € Ng with |y| < L.

(2) For any multi-index v € Ng with |y] < L+ (o) + 1 there exists a positive
number C(vy) such that

IDZF(©)lx < C(IEl~MT (¢ e R™\ {0}).

Then there exists a positive constant C(n,s) such that for x # 0

IF @) x < Cln,s) ( C(’y)) ERGES

max
[v|<L+1(o)+1

1.3. Function spaces

Let X be Banach spaces and )2 domains of R™ for m € N. We then denote,
for 1 < p < ooand k € N, the X-valued Lebesgue and Sobolev spaces on 2 by
L,(Q, X) and W} (€, X), respectively, and set W2 (2, X) = L, (€2, X). In addition,
let W;(Q, X) be the X-valued Sobolev-Slobodeckij spaces on € for 1 < p < 0o and
s € (0,00) \ N, and also its norm

| D3 u(x) — Dyu(y)|ly /P
s = Wl + 5 ([, [ A2 Do 1)

loo|=s

where [s] = max{n € Ny | n < s}. On the other hand, for 1 < p < co and s > 0,
H;(Rm, X) denote the X-valued Bessel potential spaces of order s on R™, that is,

Hy(R™, X) ={u € Ly(R™, X) | [lu]l iy @ x) < o0},
lull s om0y = [1F¢ L+ (€122 F [l (€], (e x) -
We especially set
soR, X) ={ue Hy(R,X) |u(t) =0 for t <0},
HUHHS ®.x) = [ullmsr.x) for u € Hy (R, X),
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and also, in the case of 2, H3(2, X) are defined as

Hy(Q,X) ={u|3ve Hy(R™, X) such that u = v on Q},
||u||H;(Q,X) = inf{HUHH;(Rm,X) | NS .E[;(]R,n%)()7 U =17v on Q}
Furthermore, let C(£2, X) be the set of all X-valued continuous functions on §2, and
BUC(Q, X) the set of all X-valued uniformly continuous and bounded functions
on (2, respectively. Then, for k € N,
C*(,X) ={uecCQ,X)| DlueC(X) for |a| =1,...,k},
BUC*(Q,X) ={u e BUC(Q,X) | D2u € BUC(Q, X) for |a| = 1,...,k}.

REMARK 1.3.1. If X = R or C in the definitions above, then X is abbreviated
in this thesis. For examples, L,(£, C) = L,(©2), C(,R) = C(), and so on.

‘We here introduce the Besov spaces and the homogeneous Sobolev spaces. Sup-
pose that 1 < p,q < co and Q € {RY,RY, RN}, Let (-,-)g, be the real interpola-
tion functor for 0 < § < 1 (cf. [Tri83, Definition 2.4.1]), and then we defined the
Besov spaces as

By () = (W7 (), W5 (2))o,p,

for 0 < 81 < s3 and s = (1 — 0)s; + sy, while || - |
homogeneous Sobolev spaces are defined as

B3 () denotes its norm. The

WAQ) = {u € Lijoc(Q) | [ D] 1, () < o0 for |a] = 1}.

Moreover, in the case of RY, the dual spaces of ﬁ/\ql, (RN) are denoted by I//V\q’ LRN)

for 1/¢+ 1/¢’ = 1. To introduce Wq_ LRN), let ¢ be the extension operator given
by [AF03, Theorem 5.19]. Then we note the following properties of ¢.

LEMMA 1.3.2. Let v be as mentioned above. Then the following assertions hold.
(1) Let 1 < g < oo and f € WHRY). It then holds that

of =fmRY, of eWoRY), ID2(f)l,my) < C@IDS fllL, @)

for any multi-index o € NYY with |a| < 1 and a positive constant C(q).
(2) Let1 < q<ooand f € WHRY). It then holds that

(1= )22 D)y < C@IS ey,
for any multi-index oo € NY with || < 1 and a positive constant C(q), where
(1= 2)"2g = F A+ 1€)V2Fg(9)](=)-
By using the extension operator ¢, we define W; LRY) as
W RY) = {f € LijoeRY) | (1 - A)7V2f € L,(RY)},

1l ey = 10— A) 20 f v,

while Wq_ L(RY) are defined similarly. The following lemmas will be used to control
some nonlinear terms in Chapter 4.
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LEMMA 1.3.3. Let 1 < p,q < oo and v be the extension operator of Lemma
1.3.2. Suppose that
fe WHR, W, Y(RY)) N L,(R, W RY))
and f =0 fort < 0. Then there exists a positive constant C = C(p,q) such that
122y < C (1960 = A7 20f 1 gy + 1w ) -
PROOF. It can be proved in the same way as [Shil5, Lemma A.1]. O

LEMMA 1.34. Let 1 < p,q < oo and ¢ be the extension operator of Lemma
1.3.2. Suppose that o € NI with || < 1. Then we have

(1.3.1) 10:(1 = A)"V2(DE PP (R oLy (RY )
< C(p, Q)(||(3tf)9||Lp(R+,Lq(RJ_V)) + 10 /) D39l 1, (mes L, (RYY)

D2 POl 1k o)

with some positive constant C(p,q), provided that the right-hand side is valid. Es-
pecially, if N < q < oo, then

(1.3.2) 18:(1 = A)TV2u(DE D1, (R 1, RV

<C(p,q) <||3tf||L,,(R+,Lq(R1j))||9||LOO(R+,LOO(RLV))

10l me.Lo @y IPIN Lo (R L, (RY))

+ ||DngLOO(R+,Lq(R1f))||atg||Lp(R+,Lq(Rﬁ’)))'

PROOF. We note that
(D3 )g) = D3 ((0:f)g) — (0:f)Dg g+ (Dg f)Org.

Then, by Lemma 1.3.2 and 1.3.3, it holds that
(1.3.3)

10:(1 = A)"2u(DG N9l Ry Lo (BY))
< C(p, Q)<||(atf>g||L,,(R+,Lq(R1j)) + (1 - A)_1/2L<(315J0)D§:9)||L,[,(R+,Lq(RN))
100 = 2) 72D )eg) |1, 10 m))

with a positive constant C(p,q). Since [[(1 — A)~V2F||, wy) < C(@)|Flr, &)
by Fourier multiplier theorem of Mhiklin, it follows from (1.3.3) and Lemma 1.3.2
that (1.3.1) holds. Concerning (1.3.2), we use the following inequality:

(1= A)~2uw)l|, mvy < C@lullz, @y 10l mY),
which is obtained in the proof of [Shil5, Lemma 3.3]. By combining this inequality
with (1.3.3), we have (1.3.2). O

Next we consider some embedding properties. Here and hereafter, for Banach
spaces X and Y endowed with ||-||x and ||-||y, respectively, X < Y means that X
is continuously embedded into Y, that is, there exists a constant C' > 0 such that

lully < Cllullx for every u € X.
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Let I be intervals of R and © domains of RV, and then we set
Wiy (% ) = Wy (1, Ly() N Ly (1, W (),
W2 (Q x R) = {ue W2H(Q x R) | u(x,t) = 0 for t < 0},

Hyp/2(Qx I) = Hy/*(1, Ly()) N Ly (I, W, (Q)),
HyV(Q x R) = {u € HEYV2(Q x R) | u(a,t) = 0 for t < 0}.

q,p,0

Concerning the function spaces introduced above, we see that the following embed-
ding properties hold.

LEMMA 1.3.5. Let Q € {RY,RY, RN}, and suppose that T € (0,00) or T = .
Then the following assertions hold.

(1) W2 (Qx (0,T)) = BUC((0,T), BUC'(R)), provided that 1 < p,q < oo and
2/p+ N/g < 1.

(2) W2 Q% (0,T)) < BUC((0,T),W}()) for 2 <p<oc and 1 < q < .

(3) WA (QxR) — H;’/OZ(R, W, () for2 <p <ooand1 < q< ooc.

q.p,0

ProOF. (1) By [MS12, Proposition 3.2, Remark 3.3], we have
2,1 o 2(1—0o
(1.3.4) W2L(Q % (0,T)) = WZ((0,T), W2=)(Q))

for 1 < p,g < oo and 0 < o < 1. By taking ¢ in such a way that
1 N

(1.3.5) o>—, 2(1—0)>1+—,
p q

and using Sobolev’s embedding theorem, we obtain

W2 ((0,T), W2=2)(Q)) — BUC((0,T), W21 =7)(Q))
— BUC((0,T), BUC'(Q)),

where we note that (1.3.5) is equivalent to the assumptions: 1 < p,q < oo and
2/p+ N/q < 1. This completes the proof of (1).

(2) Let 0 = 1/2 in (1.3.4). We then obtain the required property by Sobolev’s
embedding theorem, noting 2 < p < co.

(3) It follows from [SS08, Proposition 2.8] that W21 (2 x R) — H;/Q(R7 W)
for 1 < p,q < 00, so that the required property holds clearly. O

Finally we introduce weighted spaces with respect to time ¢. To this end, let
X be Banach spaces, and besides,

Lpoco(R, X) = {u € Lyjoc(R, X) | u(t) = 0 for t < 0},
W e oR, X) = {ue W, (R, X) | u(t) =0 for t <0},
Lps(R,X)={u€ Lyioc(R, X) | e7"u e L,(R,X)}
for ] € N and 1 < p < co. We then set, for v > 0,
Lp~oR, X)={u€ Lpoco(R,X) | e "u e L,(R, X)},
W oR.X)={ue W, . o(R,X)|e0fue L,R,X) for k=0,1,....,1}.
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In addition, in order to show weighted Bessel potential spaces, we define the Laplace
transform and its inverse as follows: For A = v + ir,

L) = /R e f(t)dt = Fole " f](r),
£ o)) = — /R Ptg(r)dr = F (1),

:27'('

If there is no confusion, we denote £; and L’;l by £ and £~! for short. Let v > 0,
and then we set

(A2 f) () = L3I 2L (2, 0] ())(0)
= FNGP ) AR (@, D)) (A= +ir).
The weighted Bessel potential spaces are defined as
HY2(R.X) = {u € Ly, (R, X) | e "AV2f € Ly(R, X)),
Hyp /PR x Q) = HyZ(R, Lg(Q) 0 Ly (R, Wy (),

Hy PR x Q)= {f e HLY2(R % Q)| f(t) =0 for t <0}
for v > 0 and 1 < p,q < oo with norms:

lll 172 gy = lle™ " A ullz,m %),

el o1z myny = 1l iz g r ) + 14llL, Wi @):

REMARK 1.3.6. Let 79 > 0 and 1 < p < oco. Then, by vector-valued Fourier
multiplier theorem of [Zim89, Proposition 3], we see that there exists a positive

constant C' = C'(vo, p) such that for every u € Hl/.YQ0 (R,X)
C_lHe_%tA%QUHLp(R,X) < ||€_7°tu||H;/2(R7X) < C||€_7°tA}yé2UHLP(R,X),

if X is a UMD-space. Concerning UMD-spaces, see e.g. [KW04].
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CHAPTER 2

R-boundedness of solution operator families of
some generalized Stokes resolvent equations in an
infinite layer

2.1. Main results
Let © € RY be an infinite layer, that is,
Q={@,zny) eRY |2/ e RV 0<ay <6} (6>0),
while I's and T'g denote its boundaries:
Ts={(2,zn) e RN |2’ e RN ay =6},
Ty ={(z,zy) eRY |2/ e RN 2y =0}

This chapter is concerned with the following generalized Stokes resolvent equa-
tions in £

Au—DivS(u,d)=f, divau=f; inQ,

(2.1.1) S(u,f)ey =g on Iy,
u=20 on I'y.
Here unknowns u = u(z) = (u1(2),...,un(z))’ and 0 = 6(x) are the N-

component velocity field and the pressure field, respectively; the right members

f=1f(z)=(fix)...,fn(2)" and g = g(2) = (91(),. .., gn(2))" are given N-
component vectors, and f; = fy(z) is a given scalar function; stress tensor S(u, 6)
is defined as

S(u,0) = ~01+ yD(u), D(w) = Vu + (Vu)?,
where p is a positive constant describing viscosity coeflicients. Then Div S(u, 6)
are N-component vectors whose i-th component is given by

N
Z Dj{u(Djul + Dluy) — 5”(9} = /,L(AU,Z + D; div 11) — D;0

=1

fori=1,...,N.
We here set W, . (Q2) = {6 € W (Q) | 6|p, = 0} for 1 < g < o0, and besides,

WL (Q) = {0 € Lyioc() | VO € Ly()N, 0lr, =0,
3H6;352, € W, () such that lim IV (0; — 0)l 1,2y = O}
, Jim

REMARK 2.1.1. If we set W1 (Q) = {6 € Lg10c(Q) | VO € Lg(Q), 6|r, = 0},
then there holds ﬁV\ql,Fé (Q) = W', (Q). which was proved in [Shi13, Theorem A.3].

q.I's

17
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Let ﬁ/\qjllé (©) be the dual space of qu,’ré (Q)withl <g<ooand1/q+1/¢ =1.
In addition, in the same manner as [FS94, Section 1], we set

Wi ()N W, 1 ()

={f e W] (Q) | (f,¥)a is continuous on W, 1, (€) under ||V - )}
Thus we see that for f € W](Q)N /V[7’1 ,(Q)
11 @) =supll(f,@)al | € Wy r, (@), Vel @ =1}

Let p(xn) € C"X’( ) be a cut-cut function such that 0 < p(zy) < 1 and

1 ay<1/3,
(2.1.2) plen) = { 0y > 23
We set o(zn) = ¢(xn/0) and ps(xn) =1 — @(xn/d), and besides,
(2.1.3)  ®g(an) = ps(wn)e” NAENTEO) —(o5(2n) + 200 (wn))e A2V
for ¢ € RN~ by using (1.2.1), where d;(zx) and do(2y) are defined as
(2.1.4) di(zn) =0 —xn, do(zy)=2zN.
Then one of our main results is stated as follows:

THEOREM 2.1.2. Let 1 < ¢ < o0 and fg € W, ()N /W\q_,l'l‘,; (Q). Then, for every
J=1,....N, there exist operators K € LW ()N /V[Z;Fl5 (Q), W2(Q)) such that
u=Kfi=(Kifa,...,Knfa)"

solves the divergence equation: divu = fg in Q and satisfies
1 fall ) < €N ¢ 0) | full 2 ()
IVK fallz,) < C(NML )”deLq (Q)s
IV?K fallr, ) < C(N,q,0)IV fallz,
with some positive constant C(N, q,0). In addition, (K fq)(z',0) has the following

special formula:

5 -~
(2.1.5) (Knf2)(2',0) = % /0 Fot [égf(yN)fd@’,yN)} () dyn.

For simplicity we denote £(L4(2)™, Ly(2)™) with n,m € N by £(L4(€2)) in the
sequel. Theorem 2.1.2 enables us to show the R-boundedness of solution operator
families to the resolvent equations (2.1.1) in the following theorem.

THEOREM 2.1.3. Let 0 < e < m/2, v >0, and 1 < g < co. Suppose that
feLlI(Q)Na fdqul( )quF(S( )7 gEqu(Q)N
Then, for every A € ¥, , and j =1,...,N — 1, there exist operators

Us(\) € L(Ly ()N H2NHN22 yy2(Q)),
Uy (N) € L(Lg ()N TN 12(q)),
P(N) € L(Ly(QN VN wi(@)),
Vn(\) € LW, (Q) N W, (), W2(Q)),
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Q) € LW (Q) N W, 1, (), Wy ()

q
such that the following assertions hold.

(1) Setting u = (u1,...,un)? and 0 as
uj = UM (£,V fu, N2, Vg, K (Ma), VK2 (0), V2K a,
DN N2 f4), VVn N (D; £2), D; QN (M) + Ky fa,
uy = Un(N) (£, Ve, K(\a). VE N2 £), V2K £
+ VNN fa+ Kn fa,
6 =PV (£ VS0 A\ Ve K2, VK212, V2K f4) + QN (M)

forj=1,...,N —1, where K is the operator obtained in Theorem 2.1.2, we
see that (u,0) solves uniquely (2.1.1) for A € X, .. In addition, there exists a
positive constant M = M (N, q,&,%0, ,0), depending only on N,q,&,70, i, and
6, such that

Rer,@) (7o) AU V) [ A =7 +iT € D50 }) < M,
R, @) {(T0) (Y UIN) | A=y +iT € po}) < M
R, o) { (70 N2VUSN) [ A =7+ it € Z.,}) < M,
Rer,@){(T0) (VU N) [ A =7 +iT €Dy }) < M
Rer, ) {(70:) PN [ A=y +iT €5 5,}) < M
Re(Ly@){(T0) (VPW) [ A =7 +i1 € T o }) <
Re(Ly@)({T0) (VYN [ A=y +iT € Bepy}) < M
for £ =0,1 and J = 1,...,N. Concerning the second spatial derivatives of
Vv (A) fa, we have
D;VN(AN)(Drfa) if k# N,
DpVn(AN)(Djfa) ifj# N,
and besides, for every A € Xc 5, there exists Vn(A) € L(Ly ()N, Ly()) such
that D3 V(A fa = Vv (N (AY2f4, V 1) and

Rery @) {(T0:) VNA) | X €Zeny}) < M

for £ =0,1 and some positive constant M = M(N, q, e, i1,70,9).

(2) Let ¢ = q/(q —1). Then, for every A\ € .., there exist bounded linear
operators

Vi), Q5 (A), Q). QN (N) : Lyr () = Wh ()
such that for J =1,...,N, ¢ € WHQ)N W (Q), and ¢ € Ly (£2)

VNN, 0)a = (¥ VXI( Jo)a,
(QNY, 9)a = (¥, 2" (N¥)a,
(DN, v)a = (¥, Q5 (N)¢)e.

D;DpVn(N) fa = {
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In addition, there exists a positive constant M = M (N, q, ¢, 1,70,0) such that
fort=0,1and J=0,1...,N

Re(ry@) {0 (VWA W) | A =y +i7 € B 5, }) < M,
R, @) {(To) (VQ (W) | A =7 +iT € B }) < M,
Re(r, @) ({(70) (VQ5(N) | A =7 +iT € ey }) < M.

The original paper of this chapter is [Sail5], and also this chapter is organized
as follows: In the next section, we prove the maximal L,-L, regularity theorem of
the Stokes equations, corresponding to (2.1.1), with help of Theorem 2.1.2, Theo-
rem 2.1.3, and Weis’s operator valued Fourier multiplier theorem [Wei01, Theo-
rem 3.4]. In addition, we consider some resolvent problem, in the whole space RV,
which plays an important role in later sections. In Section 2.3, we prove Theorem
2.1.2. In Section 2.4, we give exact solution formulas for some reduced system of
the equations (2.1.1). The methods to obtain the formulas are based on solving
ordinary differential equations, with respect to x variable in the Fourier space,
which are obtained by using the partial Fourier transform with respect to z’ vari-
able. In Section 2.5, we prove some technical lemmas which are used to show the
R-boundedness of solution operator families. In Section 2.6, applying the technical
lemmas in Section 2.5 to the exact solution formulas obtained in Section 2.4, we
show the R-boundedness of solution operator families of the equations (2.1.1). In
Section 2.7, we show that solutions to the Stokes equations (2.2.1) introduced in
the Section 2.2 satisfy the uniqueness and initial conditions.

2.2. Maximal L,-L, regularity theorem

In this section, we first show the maximal L,-L, theorem for the following
Stokes equations as an application of Theorem 2.1.3:

o,U—-DivS(U,0)=F, divU=F; in Q x (0,00),
(2.2.1) S(U,0)ey =G on I's x (0, 00),
U=0 on I'y x (0, 00),

subject to the initial condition: U(z,0) = 0 in Q. Here U = U(z,t),0 =
O(z,t),F = F(x,t),G = G(z,t), and Fy = Fy(z,t) denote time-dependent func-
tions corresponding to u, 6, f, g, and fy in (2.1.1). For simplicity, we set

WESL Q% R) =W (R WL ()N Ly 0R,WEHD)).

q,p,7,0 q,T's

We then obtain the maximal L,-L, regularity theorem as follows:

THEOREM 2.2.1. Let 1 < p,q < oo and vy > 0. Then, for every

F € Lyyo(R, L)Y, Fpe Wikl (Q@xR), GeH (xRN,

q,p,70,0 q,p,70,0

equation (2.2.1) admits a unique solution (U, ©) with

U € (W} 100 0(R, Lo() N Lptoco (R W2(Q)Y, O € Lytoco(R, W2 (Q).
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In addition, the solution (U, ©) satisfies the estimate:
(2.2.2) le™°4(8,U, U, AY2VU, V2U) |1, r. Lo () + €77 O, mow @)
< C(||e_%t(F7A—1yé2Fd7VFdaA»lyézc"UVG)”LP(R,LQ(Q))

OcFa Fa)llp, r,w; 2. m)))

for some positive constant C = C(N,p, q,o, i4,0) depending only on N,p,q,7o, i+,
and 6. If F3=0 and G = 0, then the solution U satisfies

(2.2.3) v|le="*U]

Ly(R,Ly(9)) = C||677tF||L,,(R,Lq(Q))
for any v > o with some positive constant C' independent of ~y.

REMARK 2.2.2. Although trace spaces for the boundary data G does not appear
explicitly since G is always defined on €2, it is given by the so-called Triebel-Lizorkin
spaces (cf. e.g. [DHPOT7, Theorem 2.3]).

PrOOF. We only show (2.2.2) here, and note that the uniqueness and initial
condition will be discussed in Section 2.7.
By applying the Laplace transform to (2.2.1) and setting

u=L[UJ(N), 0=L[OJAN), f=LFIN), fa=LIFQ), g=LIG](N),

we see that (u, ) satisfies (2.1.1) with right members f, f;, and g. Therefore, by
Theorem 2.1.3, solutions (U, ©) of equations (2.2.1) are given by

(2.2.4)
Uj(t) = K;(Fa(t)+
L3 U0 [ (B, VFL G VG, K (0F), VK Fa, VK Fu, B, F3 B )| )] (0),
UN( ) = Kn(Fa(t) + L3, [Vn (M) LIFa) (o)) (1)
[uN (Mo)L [(F G,VG, K(9,F,), VKFy, szFd)} ()\0)] (1),
o(t) = L3, [PO0)L
+L3)[Q (/\0)>\0 [

[(F VE., G, VG, K(8,Fy), VKFd,VzKFd)} (/\0)} (t)
Fal(Mo)] ()

for j =1,...,N — 1, where \gp = v +i7 and Ky (J = 1,..., N) is the operator
obtained in Theorem 2.1.2. Here F¥ (k = 1,2,3) are defined as

Fj = L3} [DiVN () F(t),  Fi = L3, [VVn (M) LID;Fa (o)) (8),
F = £5,[D;QN0) ML [Fa) (Ao)) (D),

and also the symbol X for X € {G, F;} denotes X = E;\ol [)\(l]/QE[X]()\O)}(t). Then,
by the Fourier multiplier theorem of Zimmermann [Zim89, Proposition 3], it holds
that

(2.2.5) e 0" XHLP(RL @) < C(N,q)lle ™" AY2X |1 (R, ()
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By formulas (2.2.4), Theorem 2.1.2, Theorem 2.1.3 (1), and [Wei01, Theorem 3.4],
we obtain

(2.2.6) He_%t(atU, U, A,lyé2VU, sz) ||LP(R’LQ(Q)) + ||€_%t@||Lp(R’qu(Q))
< C(lle™ " (B, AY2Fu, V4, AP G VGl 2,0

+ [le ! (Fy, 0:F) ||, PRIV, L ()

+Z e F |, (R, L, () +Z le™ ™ Il L, m. L, (sz)))
k=1 =

for a positive constant C' = C(N, p,q, Yo, i, 9), where I, ({ =1,...,6) are given by

Li(t) = L3, VN Qo) LIFE (M) (1), T2(t) = L3 [10Vn (M) £[Ed) (M) (1),
Ty(t) = L3} [VYN Qo) LIFI(M0)](0),  Tat) = L3} V>V (Xo) L[Fa) (Mo)](1),
I5(t) = £, [Q0) M LIF M), s(t) = L3 [VQ(Ao) M LIFa] (Ao))(2).

It is clear that
(2.2.7) le™ ™ Fll, R, @) < e Isll, R,1, @)
and furthermore, by (2.2.5)

(2.2.8)
le™ ™ Fil|z, R.r, @) < Clle ™ Fallr, v 1,0 < Clle ™ A2 Fullr, .z, @)

€7 F iz, @yge < Clle ™ VEalL, oz,

in the same way as we have obtained (2.2.6). Therefore, it is sufficient to consider
estimates of Ip(t) (£ =1,...,6).

LEMMA 2.2.3. Let 1 < p,q < o0 and vo > 0, and let Fy € qu;io R x Q).

Then there exists a positive constant C = C(N,p,q, Yo, tt,0) such that

le™° (11, Is, 16) || L, (R, Ly () < CIIe‘”"tath||Lp<R,W;%5 @)
le™ Lo |, (R, 1y (2) < C||€77°th“Lp(RWrZr15 S

e (I3, 1) |, v, () < Clle™ ™ (AN Fa, VE)|

LP(R”L(I(Q)) :

PRrOOF. Here we consider only I (t), because we can show the required esti-
mates of I5(t), I5(t), and Is(t) similarly. The estimates of I3(¢) and I(t) are proved
by combining Theorem 2.1.3 (1) with [Wei01, Theorem 3.4] and using (2.2.5).

Let ¢ € C(RN*Y), and note e~ 0!I, (t) = F- AoV (o) Fle 0t Fa](Xo)](t)
for Ao = 70 + i7. Then, by Theorem 2.1.3 (2), there holds

(e_’YOtIlaQO)RXQ = (Fa, e " Fr[MoVi (M) F @) (7)) )rxce
—(Fa, 0u(e7 F- [V (M) Fy ) (7)]) R
= (€70 F, Fr[Vy (M) Fy el (T)) e,
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which, combined with Theorem 2.1.3 (2) and [Wei01, Theorem 3.4], furnishes that

|(e™7" 1, p)rxal
< /R \|e‘70t8th(t)||W;r16 @I F= VYR Qo) F Rl (DOl 0 dt
< CHe*VotathHLp(R_,W;%é (Q))H@DHLP,(R,LQ,(Q))

for 1/p+1/p’ =1and 1/¢+1/¢ = 1 with C = C(N,p,q,70,p,9). This implies
that the required inequalities hold. O

Combining Lemma 2.2.3, (2.2.7), and (2.2.8) with (2.2.6), we complete the
proof of Theorem 2.2.1. O

In the proof of Theorem 2.1.3, we deal with the following resolvent problem in
the whole space:

(2.2.9) M —pAu=f in RY,

where u = u(x) is a scalar unknown function. Concerning (2.2.9), we have the
following lemma.

LEMMA 2.2.4. Let 0 <e <7/2 and 1 < g < co. Then, for every A € 3, there
exist operators H(X) € L(Ly(RN), WARYN)) such that u = H(X)f uniquely solves

(2.2.9) for f € Ly(RY), and also there hold
(2.:2.10) Rew, ) {(T0) AHW) [ A =~ +iT € B}) < M,
Rer, @y {(70,) (VH(A) [ A =y + it € B.}) < M,
Rew, v {(T0) (NPVH) | A =7 +ir € 5.}) < M,
Re(n,mvy{(10-) (VPHN)) [ A =y + it € B:}) < M
for £ =10,1 with some positive constant M dependmg only on N,q,e, and p.

PRrROOF. For A € X, we set H(\)f = [()\ + pl€]?) 7 FIf1(€), and then
u(x) = H(N)f are solutions to (2.2.9). We can show (2.2.10) by the solution
formula above and [ES13, Theorem 3.3]. O

In the remaining of this section, for functions f defined on 2, we consider the
following resolvent problem in the whole space:

(2.2.11) Au—DivS(u,0) = Ef, divu=0 inRY,

where u = (uy(2),...,un(z))? and @ = 6(z) are unknown functions. Here Ef
denotes some extension of f from Q to RY as follows: First, let g(z) be functions
defined on 2, and set go(x) = wo(zn)g(z) and gs(x) = ps(xn)g(z) for the cut-off
functions ¢o and s defined as the next line of (2.1.2). Second, we set

(2212) g5(x) = {

gs(z) = {

O(w) {95 x/ ) TN < 67

go(@',an) N >0, go(2',zN) Ty >0,
o(x) =

T/a _xN) Ty < Oa - go(ZL'/,—ZL‘N) TN < 03

/

o(
gs(2', ) N <6,
5(%726—37]\[) xN>5a
(

99 g5(2',260 —xN) xN >0
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Third, Ef = (fi,-o fn) with fi(z) = f(z) + f5(x) (j = 1,...,N — 1) and
(@) = fio(@) + fi ().

LEMMA 2.2.5. Let 1 < g < oo and 0 < e < 7w/2. Then, for every A € X, there
exist operators So(A) € L(Ly(Q)N, W2()N) and Ty € L(Lg()N, W) such
that (u,0) = (So(\)f, Tof) uniquely solves (2.2.11) for £ € L,(Q)N. In addition,
there hold
(2:2.13) Ry ) {(70:) (ASo (V) ) <

Re(ry@)({(7) (vSo(N) [ X = v + it € %.})
Ry @) ({(70:) (N2VSo(A) [ A = 7 +ir € B.})
Re (e ({70 (VS0(N) [ A = 7 + ir € £.}) < M,
1Tollzz, @)~ Ly T IVToll e @~y <M
for £ = 0,1 with some positive constant M depending only on N,q, e, u, and §.

[A=~+ir € 3.}

IA

M,
M,
M,

IN

PROOF. The uniqueness is guaranteed by [SS12, Theorem 3.1]. We here show
properties (2.2.13) only. For any A € X, representation formulas of the solution
(u,0) to equations (2.2.11) are given by

(2214 u= Soyen) = 7 [ @),
0 = ToEf = —F;! {Zfﬁ#} (),

where P({) is an N x N matrix whose (j, k) component Pj(€) is given by Py, =
8 — &€k1€] 72 (cf. [SS12, Section 3]). The properties: [[VTo| (L, @myyv) < C and

Rer,@yy ({70 (AS(V) [ A € £.}) < C,
Re(r,@vy{(70:) (vSo(V) [ € B}) < O,
Ren,@yy ({(70:) (N2VS(V) [ A e S} < C,
R,y {(70-)(V2S(V) [A e S} < C

for some positive constant C, follow from [ES13, Theorem 3.3]. Thus, setting
So(A) = So(ME and Ty = TyE, we have (2.2.13) by Proposition 1.2.3 except for
the boundedness of Ty. From now on, we show the required estimate concerning
I Toll £ (L, @)~ L)) By the definition of Ef, we have

Far [To ](5' TN)

—iynéN + e!YNEN

:_Zzgj / oo(un)F [ = }uN)E(g’,yN)dyN

*Zl@/o s (Y ) F,

5 —1YNEN _ ptYNEN ~
—/0 wo(yn)Fe, [lSN(e e : )}(wN)fN(fﬂyN)dyN

s ; —iynén —i(20—yn)énN N
—/0 0s(yn)Fey {Z&V(e E; )} (xn) N (€ yn)dyn-

|:e—infN — e~ i(20—yn)éN

BGE } (@n) (€ yn)dyn
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Inserting the identities in Lemma 1.2.7 into the formula above, we have, by the
inverse partial Fourier transform with respect to &',

(2.2.15)
5 [ eolun) oo [i8 -

Tof = — Z / $o éUN ].“g,l |:77 (e*|$N*yN|A + e*(l’N-FyN)A) f](yN)] dyn
=1 0

4 .
(105 _ Zg] —|IL‘ _ |A _(25_1' . )A o~
Z/ ]:f’ [7 (@ N —e N )fj(yN) dyn

0

4
o [ 22052 [t s )t
0

5
+/ QO(S(;/N)]_-£—/1 [(SlgD(CCN _ yN)€*|£CN*l/N|A _ 6*(257xN*yN)A) fN(yN)] dyN
0 €

for 0 < oy < 4, where F5'[g] = Fa'[g](2’) and h(yn) = h(€,yn). By Lemma
1.2.6 and Leibniz’s rule, it holds that for s = 0,1, j = 1,...,N — 1, and 0 <

IN,YN < 6a
S CA*lOUl’ ‘D?// <<i> £N+yN)A>’ S CAf‘a/h

gl (Seten-ia)
Dg,, <<%> e—(2d—mN—yN)A>

Dg/ (Sign(ilfzv - yN)eflfoleA)’ <cA Tl

<call,

with some positive constant C' = C'(«/). Especially, C' is independent of xn,yn, &,
and 6. Thus, using the Fourier multiplier theorem of Mikhlin-Hérmander type (cf.
[Mik65, Appendix Theorem 2]|) with respect to ' and Holder’s inequality to the
formal (2.2.15), we have

(Tof) (s zn) o, my—1)
4
< C(N, Q)/O 1 ym)n,@my-1ydyn < C(N,@)8 "D £l @),

which implies that ||Tof[|z,) < C(N,q,9)||fllz,) for some positive constant

C(N,q,6). This completes the proof. |

REMARK 2.2.6. Let So(\)f = (So1 (M), ..., Sonv(M\)f)T. Then, by the definition
of Ef and (2.2.14), we have

Faur [Son (MEI(E',0)
= ifk 0 o0 z'fN (efinSN 4 eingN) N
]; 77/0 wo(yn) {/_Oo 1€\ + pl€]?) gN}fkfny) YN
N-1 i€k s 0 jen (e NEN _ emi(20-un)EN) R
Sk p ) .
+; 71'/0 @6(IUN) {/_OO |€|2()‘+ﬂ|§|2) fN}fk(f,yN) YN

A g O c—IWNEN _ oiyNEN ~
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A2 9 0 e—iyNEN 4 —i(20—yn)EN -~
+ o ; ws(yn) {/_w GECY G di}fN(i YN )AYN -

Inserting the identities in Lemma 1.2.7 into the above formula furnishes that
(2.2.16)

Far [Son (V] (€, )
N-1 2 f
X B B _
-y Z - / 0 () (e~ AW O +n(wn)) _ =Bl (©)+dwn ) Fy (yn )y
k=1 n=1 0

A g e_A(d'n(O)‘i‘dn(yN)) e_B(dn(O)""dn(yN))
+ 3% / vs(y " = 5

n=1

In(yn)dyn,

where we have used the abbreviation: g(yn) = g(¢',yn).

2.3. Proof of Theorem 2.1.2

In this section, we shall prove Theorem 2.1.2. Let fq € W}(Q) N Wq , (©2),
and set fj(x) = f9(x) + fI5(x) by using (2.2.12). We first show the estimate:
H'f;HW—l(RN) < C|lfallg—2 (@) With a positive constant C' independent of fq and

q q,Ts

7. By the definition of f7, we have
(f3:¥)rw
= /Q(—@a(xzv)w(x',% —an) + ¢, 2n) — polan)¥ (2, —an)) fa(z) do
for any ¢ € C3°(R”Y). We thus see that
(& V)rw| < Mfall s o)

< |[V( = ealan)ve’, 26 - an) + v ax) - polen)bla’, ~ax))

L ()
< Ollfallgra oy (19,26 = o) = b(a’, —aw) )
< Cllfallg s @I V¥llz, @)

with some positive constant C' = C(q, §), since —ps(xn)(z’, 26—z n)+(z', 2n) —
wolzn)Y(z', —zN) € W;,I&(Q) and

20—x N

Ul 28— an) = 0l —an) = [ (Dww)lalss) ds
The last inequality implies that the required estimate holds.
We here set
4 [
25.1) W) =7 [EEEO| @ =18,

Then it is clear that u = (uq,. .., uN) satisfies the divergence equation: divu = fy
in Q. By [SS12, Lemma 3.2] and the inequality obtained above, we have

lesllzg@) < llusllz,my) < Clfillw; @y < Clifallm s @

for J =1,..., N and some positive constant C = C(N, ¢, 9).
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Next we show the estimates of Vu; and V2uj;. By the Fourier multiplier
theorem of Mikhlin-H6érmander type, we obtain, for j=1,...,N—1and J, K,L =
1,..., N,

(2.3.2)  [[Vusllz, ) < llwillo,@yy < Clfille, @~y < Cllifall, @)
Dk Drujlz, o) < IDxDrvjllp,myy < ClD;fill,®~) < CID;fallL, @),
IDjDrunllL, < IDjDkun|, vy < CID;fill, @~y < CllD; fal

Lq(2)

with some positive constant C' = C(N,q). On the other hand, we have the rela-
tion: DIZVUN = Dnfg — Zj\;l Dy Dju; in 2, because u satisfies the divergence
equation in Q. This relation combined with (2.3.2) furnishes that | D} un]lr, ) <
C|IVfallL,()- Concerning the representation formula (2.1.5), we have

5 o -
aN(§/7$N) = 7/ { L / N ( — w6(yN)ei(:xN+yN—26)fN
0

2 J o €

+€i(IN7yN)€N _ S00(yN)ez‘(acN+yN)€N) dgN} ﬁl(gl’ Z-/N) dyn

by (2.3.1) and the definition of f, which, combined with Lemma ?7, furnishes that

_ 10 (25 _ _ ~
un(¢',0) = —5/0 (—s@a(yzv)e ARIZUN) 4 o= AUN 1 o (yn)e A”N) fa(€,yn) dyn.

Taking the inverse partial Fourier transform, with respect to £, of the above formula
implies that (2.1.5) hold.

2.4. Solution formulas

In this section, we give exact solution formulas of the equations:

Au — DivS(u,d) =1, divu=0 inQ,
(2.4.1) S(u,0)ey =g on I's,
u = *de on FO)

where K is the same operator as in Theorem 2.1.2.

We first reduce equations (2.4.1) to the case where f = 0. To this end, we set
u = So(MNf +v and 0 = Tof + 7 for Sp(A) and Tp obtained in Lemma 2.2.5. Then
equations (2.4.1) are reduced to

Av — DivS(v,7) =0, divv=0 inQ,

Dyv; + Djvy) = a; on [y,

(2.4.2) w(Dn j J N) J s
2uDyvy — = an + Tof on I,

v=D>b on Iy

forj=1,...,N—1, where ay (J=1,...,N) and b are defined by

(24.3)  ag =gy — pu(DsSon(Nf + DnSos(Nf), b= —(Kfa+ So(Mf).
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Next we shall give solution formulas of (2.4.2). Applying the partial Fourier
transform with respect to 2’ variable to (2.4.2), we have

W(B* = DR)U; (€ an) +i&T(E  an) =0 (0<zy <),

u(B* — DY)on (¢, xn) + DA€ an) =0 (0 <y <6),
N—-1

(244) Zigj/ﬁj(glva)+DN/ﬁN(fl,l'N) =0 (0<xN <5),
4. =

M(DNﬁ](glvé) +Z£J®\N(€Ivé)) aj(glaé)v
2uD NN (€, 8) — 7(€,8) = an(€,0) + To f (€, 6),
s(€,0) =bs(€,0)

forj=1,...,N—1and J =1,..., N, where b; denotes the J-th component of b.

From now on, we solve (2.4.4) as the ordinary differential equations with respect
to zy. In (2.4.4), multiplying the first equation by —i¢; and adding the resultant
formulas to the third equation multiplied by u(B? — D%/) yield that

(2.4.5) w(B? — D3)DnoN (&, 2n) + A%7 (¢, xn) =0 (0 <y <0).

Apply Dy to the second equation of (2.4.4), and thus the resultant formula com-
bined with (2.4.5) implies that

(2.4.6) (D% — A7 2n) =0 (0<zy <0).

On the other hand, if we apply —(D% — A?) to the first and second equation of
(2.4.4), then we obtain, by using (2.4.6),

w(D% — A*) (D% — BHos(¢,2n) =0 (0 < zy <9)
for J=1,...,N. From viewpoint of this, we set

(2.4.7) OF; (fl, :L‘N) =57 (673(57;01\,) — 6714(572”\7))
+65J673(67xN) +Ck0‘](€7BwN - €7AIN) +BOJ€73$N,
R(E ) =y A0 - gem A,
where as7, 857, 0, Bor,Ys, and o denote constants, depending on A and &', which
are determined by the boundary conditions of (2.4.4). In the sequel, we write

as = (as1, ..., 05N), and also Bs, o, and By are defined similarly. Inserting (2.4.7)
into (2.4.4), for j =1,...,N — 1, we obtain the relations:

(24.8) —pu(B? — A%)as; + 1875 =0,  —p(B* — A)ao; + iy =0,
—u(B* — A%)asy + Ays =0, —u(B* — A%)aon — Ay =0,
i o5 +if - Bs5 + Basy + BBsy =0, —i&’ - afy — Aasy =0,

i& - af + i - By — Bagn — BBon =0, —i¢' - ay + Aagny =0,
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which are corresponding to the first, second, and third equations, and furthermore,
the boundary conditions yield that
(2.4.9) p{(B— A)as; + BfBs; — (Be™ B9 — Ae=*)ag; — Be Py,
+i&; (Bsn + (€750 — e )agn + e P Bon) } = 3;(€,0),
2u{(B — A)asy + BfBsn — (Be P9 — Ae= 4y — Be_B5ﬁgN}
— (35 +0e™ ) = an(€,8) + Tof (€. 9),
(e — e *)ag; + e Bs; + Bo; = b;(€,0),
(e7B% — e agy + e P Bsn + Bon = b (€,0).

We can write i€ - o, asn, i€ - ap, aon, Vs, and o by using i€’ - 85, Bsn, i€’ - B4, and
Bon- In fact, by the relations (2.4.8), we obtain the formulas:

(2.4.10)
QasN :*B_A(iﬁ/'ﬂferBﬁaN% i af = B_A(ifl'ﬁferBﬁsN),
A
aoN = BiA (i€" - By — BbBon) » i€ ay = = (1" By = Bbon)
B+ A B+ A
% = —p s € By Bsn), 0= —u—r (€ B — Bfox).

Combining (2.4.9) with (2.4.10), we achieve the following simultaneous linear equa-
tions with respect to ¢’ - 55, Bsn, i€’ - B, and Son:

(2.4.11) L[ -B5 Bsn i€ - B BON]T
= [u‘liﬁ’ - plA(ay —|—7/b7) i v ZN}Tv
where L is a 4 x 4 matrix whose (7, j)-th components L;; are given by
Ly =B+ A, Li; =A(B - A),
L1z =—(B*+ A*)M(5) — (B+ A)e™ ™,
Liy=A((B*+ AH)M(0) + (B — A)e™ ),
Loy = B — A, Ly = B(B + A),
Loz = —2ABM(5) + (B — A)e™ ™,
Loy = B (2A’M(8) — (B + A)e=*?),

Lay = BM(8) + e, Lay = ABM(6),
L3z =1, L3y =0,
Ly = —M(9), Ly = —AM(8) + e,
L;5=0, Ly =1.
The determinant detL is represented as detL = (B — A)~2/1(\,¢’) with
(2.4.12) (N €) =(B° 4+ 2A42B3 + 5A*B)(1 + e~ 249)(1 4 e72B?)

— (16A4%B% + 16A*B)e 4% B°
— (AB* + 64%B? + A%)(1 — e~ 24%)(1 — e 287),

The following lemma was proved in [Abe04, Lemma 2.2].
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LEmMA 2.4.1. If A € C\ (—00,0] and £ # 0, then £1(\, &) # 0.

In view of Lemma 2.4.1 and (2.4.10), if A € C\ (—00,0] and & # 0, then the
solutions Uy, 7 of (2.4.4) and the solutions vy, 7 of (2.4.2) are represented as

Ly, 2040 Li2t _Ba,(on)
(2.4.13) N zN) 2 z_: (d T M(de(zN)) + qotL¢ Tks
A\ o L
~/ _ _ €+1 k2£ 7Ade(mN)
T en)=p > kz:uz:l( Tetr® Tky

un(z) = Fg' o (€, an))(@),  w(x) = Fg' 7€, 2n))(),
where L, ; denote the (i, j)-cofactors of L and

(2.4.14) Lot = (=1)Lige—1 — BLpoe (k=1,...,4, £=1,2).

Here we have set, for a = (ay,...,ayx)” and b given by (2.4.3),

(2.4.15) r=ptig - @(¢,9), ry = p Tt A(an (€. 0) + Tof (€,9)),
rs =i¢" b'(¢,0), ri=bv(€,0),

and also the cofactors L; ; are given by

(2.4.16)

L1 =B(B+ A) {1+ e 2% —24e= " M(5) + 24> M(5)*},
Lig=—(B—A)(1-e22) +2B(B - A)e P M(8) — 2AB(B + A)M(5)?,
Lis=B{—(B+A)(1+e24)e

—(B? + A? + (B? — 34%)e 2 ) M(5) + 24%(B — A)e" P M(8)*},
Ly =(B—A)(1 - e ?40)e~ 4

4+ (B? + A% — (B* —4AB + A%)e 2 ) M(8) + 2AB(B — A)e 2 M(6)?,
Loy =A{—(B - A)(1 — e %)

—2A(B — A)e= Y M(8) — (B* + A?)(B + A)M(6)*},
Loo=(B+ A) {1+ e 2 + 2B M(5) + (B? + A2 )M(8)*},
Los=A{(B—A)(1—e 24~

—2(AB + (B?* — AB + A%)e *")M(8) — (B — A)(B? + A%)e Y M(8)*},
Log=— (B+ A)(1+ e 249)g=A0

_ 2(—A2 + BZe*ZA‘S) —(B- A)(BZ + A2)67A5M(6)2,
Lzy =(D1(A, B) + Dy(A, B)e 24%)e= 40

+ (BD3(A, B) + (B — 2A)Dy(A, B)e 249 M(6)

— A(B — A)Dy(A, B)e ° M(6)2,
L3o=—2(B? — A?)e=°

4+ (=Di(—A, B) + Dy(A, B)e 24 )M(8) + (B — A)Dy(A, B)e P M(6)?,
L33 =Dy(A, B) + Dy(A, B)e 24

+2AD;(—A, B)e " M(5) + A(B + A)D2(—A, B)M(6)?,
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Ly =(B+ A){2(B - A)e " + 2(B — A)%e~*° M(8) + Do(—A, B)M(5)*},
Liy =AB{-2(B* - A%)e™ ¥
—(Ds(A, B) + Dy(A, B)e **?)M(5) — (B — A)Dy(A, B)e= Y M(6)*},
Lao =(D1(A, B) + Dy(A, B)e 249)e= 40
+ (AD1(—A, B) + (2B — A)Dy(A, B)e 24 M(6)
+ B(B — A)Dy(A, B)e 4 M(5)?,
Lis =AB(B + A) {2(B — A)e 24 4+ 2(B — A)?e " M(8) + Da(—A, B)M(5)*},
Lys =Dy(A, B) + Dy (A, B)e 24
+2BDs(A, B)e * M(8) + B(B + A)Dy(—A, B)M(5)?,
where D;(A, B) (i = 1,2,3) are defined as
(2.4.17) D1(A,B) = B® +3AB? — A’B + A3,
Dy(A,B) = B* + AB? + 3A’B — A®,
D3(A,B) = B® + AB? — A’B + 343,

In the remaining part of this section, we give the representation formula of j-th
component of v for j =1,..., N — 1 in (2.4.2). For a function f defined on £, we
define an extension operator Ey as follows:

fl@) 0<ay <4,

E(’f(‘”):{ 0 an 0,0

Putting v; = —H(A)EoD;m +w; in (2.4.2) for j =1,...,N — 1, where H(}) is the
same operator as in Lemma 2.2.4, yields that

Aw;j — pAw; =0 in Q,
Dyw; = ;flaj — Djuy + DNH(A)EoDjm on Ty,
w; =b; + HA)E¢D;m on Tg,

which, applied the partial Fourier transform with respect to 2/, furnishes that
(DX = BY)w;(¢,xn) =0 (0 <ay <)),
(2.4.18) Dyiv;(€,8) = hi(€,9),
@;(€,0) = h3(¢',0),
where the right members are given by
(24.19) hj(z) = p 'a; — Djoy + DNH(A)EoDym, h3(x) =b; + H(A\)EoDj.

We thus obtain @; (¢, zy) = @} (£, xn) + @07 (¢, xn5) with

[

— lo(x dg (6
(_1)“_16 B(de(zn)+de( ))A1 ¢.5),

@jl'(g/amN) = B(1+672B6) h](

~
N I\Mm
-

e~ Bi(ow)+i(0)
1+ 6—235 hJ (€ 70)

03¢ aN) =
(=1
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by solving the ordinary differential equations (2.4.18) with respect to xx. Thus,
for the j-th component of v in (2.4.2), we have the following solution formula:

(2.4.20) wv;(z) = —H(A\)EoD;7 + wJ1 (x) + wJQ(a:), wf(m) = .7-"571[@;?(5’,:61\[)](36’)
forj=1,...,N—1land k=1,2.

2.5. Technical lemmas

In this section, we show several estimates of Fourier multipliers, which will be
used to estimate solutions obtained in Section 2.4. To this end, we set, by using
the symbols (2.1.2),

es(yn) =1,
Ei(yn) =1 ¢'(yn) i=2,
(100<yN) 1= 33

where ¢’ (yn) = (dp/dyn)(yn). The symbol defined as (2.1.4) is used below, and
then we have the following lemma.

LEMMA 25.1. Let 0 < e < 7/2, 1 < ¢ < 00, v0 > 0, and my € Mo . ~,
(k=1,2). For A € ., and X,Y € {A, B}, we define K;,E,n()\) (i=1,2,3,j=
1,...,5,4,n=1,2) by

5 _

(Ki 0 Nf(@) = | Fo' |Biyn)miat2e  Bllelen)rdnlon)) gy | (/) dyn,
L, o &L
) _

(K3 0N f)(2) = /0 Fo' _Ei(yN)mer—Wwwe—”n(ymf(yN>] (z')dyn,

5 -
[Ké,l,n(/\>f](l’> :/0 ]:5_,1 _Ei(yN)mQAQM(dz(xN))e—an(yN)fA(yN)] (fL“/)dyM

o - ~
(KN fl(2) = /O Feo! _Ei(yN)mzA/\l/2M(de(l‘N))fXd"(W)f(’yN)} (z')dyn,

s ]
(K500 (M) fl(2) = / Feot Ei(yN)mZABM(dé<l'N))e_Xd"(yN)f(yN)} («")dyn,

o ]
where f(yN) = f({“’,y;v), Then, for i = 1,2,3, 5 = 1,...,5, {,n = 1,2, and
5=0,1, the sets {(107)° K} ,,,(\) | A=~ +i1 € ¥ .} are R-bounded families, in
L(Ly(2)), whose R bounds do not exceed some positive constant C(N, q,€,%0, 4, 9).

PrOOF. In what follows, we say that the family of operator {T(\) | A € X. .}
has the required properties if {(70,)*T(A\)|A = v+ it € 4} (s = 0,1) are
R-bounded families, in £(L4(£2)), whose R-bound do not exceed some positive
constant C(N, q,&,7o, [4,0).

We first consider K{’&n()\) fori=1,2,3 and £,n =1,2. For ¢ = 1,2, 3, setting

ki (2,y) = Fo ' [Ei(yn )ma (A, € )N 2 Bleem)tdnlum] (3 — o),

we have

K a0 f(2) = /Q Ki (@ 9) f()dy.
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We prove that there exists a positive constant C'n ¢ -, such that

' CN e vonBi(yn)
2.5.1 k‘Z , < sE,Y0, M ,
( ) | 1,)\('/'1j y)| — {|x’—y’|2+(de(961v)+dn(yN))2}N/2
_ B
(2.5.2) |70,k 5 (x,y) CN eronEi(yn)

ST IRt een) + daom)

for any A = vy +it € 3., and i = 1,2,3. By the assumption of m;, Leibniz’s rule
and Lemma 1.2.6, for any multi-index o/ € NJ' ™! we have

(253)  [DE {ma(A €)AY 2 Bldslan)Hnw))y)
< Cotcmon NY2(INY2 + A)*\a,|e*(1/4)bs.,u(W1/2+A)(d/z(wN)+dn(yN)).

Using the identity:
AN
T —ixr ! ia'e!
= 3 (r) PEe
o’ =k
for any k € Ny, we see that ki ,(z,y) can be written in the form:

a5 e - T (E0) ()

o[ =N

% / ei(w’,y/)D?// {EZ (yN)ml)\l/QefB(d((xN)+dn(yN))}dgl.
RN-1

Applying (2.5.3) to (2.5.4) and using the change of variables: & = |\|'/?7/ furnish
that

(25.5) [k A(2,9)] < ONeronBi(yn)la’ — y'I’le\ll/z/ (A2 + A)~Nag'

RN-1

= Oy emowEi(yn)la’ — o/ |V / 1+ fD)-Nay.

RN-1

Moreover, by (2.5.3) with o/ = 0, we have
(2.5.6) ki a(2,9)]
< CE;(yn)IAI"? / e~ (/Db N2+ A) (e (o) +dn () gt

RN-1

-N
< BN [ {30+ o) ) | e
RN*I

< CE(yw)(delan) + du(yn)) ™ / L+ ')~ Ve

RN-1

for some positive constant C' = C(N, €,70, ). Combining (2.5.5) and (2.5.6) implies
(2.5.1). Since

Ta-,—(ml()\, é-/))\l/Qe—B(dl(xN)"rdn(fl/N)))

=(19-mi (), 6/)))\1/2673(@(acN)+dn(yN)) +ma (A, €/) 2;;71—/2 e~ Blde(@n)+dn(yn))

+ my (A, €NV 2 (70 e Bldel@n)tdnlyn))y
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we have, by Leibniz’s rule, the assumption of my, and Lemma 1.2.6,

(25.7)  [Dg{ro-(Bi(yn)ma (A, &N/ 2em Bl tdnlun)y

< CE;(yn)INY2(INY? + A)7|0‘/|67(1/4)b5,u(|)‘|1/2+A)(dé(1‘N)+dn(Z/N))
for a positive constant C = C(o,¢,70, ) Employing the same argument as in
proving (2.5.1) by (2.5.3), we have (2.5.2) by (2.5.7). Now, using Proposition 1.2.4,

we prove that Kf,e,n()‘) has the required properties. For this purpose, in view of

(2.5.1) and (2.5.2), we set ko(z) = C(N,&,70, 14)|z| ™" and define the operator K}
by the formula:

Kif)(z / Bilyn ko(@’ — o' de(an) + du(yn)) £ (9)dy.

We prove that K¢ is a bounded linear operator on L,(f), for i = 1,2,3, whose
bound does not exceed a constant C(N,q,&,70,u,0). By Young’s inequality, we
have

(2.5.8) K1 an)llL,@my-1)
5
S/O Ei(yn)llko(-s de(zn) + dn(yn ), @y 1f ¢ yn) 2, my-1ydyn

0 Hf('7yN)||L (RN-1)
<C E; 4 dyn.
< / V) 2w + dulym) Y

We shall prove in the case of ¢ = 1. For £,n = 1 in (2.5.8), using the change of
variables: yny = § — (§ — xn)t, we obtain

H[Kof mN)”Lq RN-1)
||f YNz (RN-1)
< C/ 2 d
—an) + (6 — )N

— ||f(75— (6_$N)t)||Lq(RN—1)
—c [ sl @2t il it

By the last inequality, Minkowski’s integral inequality, and the change of variables:
s =48 — (6 —xN)t, it holds that

1K Iy (RY=1 % (—00,8))

/a
<C /0 1+t/ {ws(0 —rz:zv)t)llf(-,é—(5—J/‘Jv)t)||Lq<RN*1)}q0lf"’N}1 dt
 ds1t/a
o [T sy
©
<Clflo [ g

for some positive constant C' = C(N, e, 7o, ). We thus have the inequality:

1K fllz, ) < C(N.q,e,7, I fllL, @)
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If =2 and n =1 in (2.5.8), using the change of variables: yy = § — xnt, we have
1Ko f1C2n)llz,rv-1)

’ 1f£Coyn )z, my—
SC/ 906@1\7) xN_,r((sLj(;N) )dyN

o 1£(,6 —znt)||lL,@y-1)
=C 6 — t 2 dt.
/0 905( TN ) 1r¢

By the last inequality, Minkowski’s integral inequality, and the change of variables:
s =0 — xnt, we obtain

1K £l 2, (-1 %(0,00))

o q 00 1/q
< [T o[ [ st - ant 6 — ontln, ooy Vo]
JO 1+t JO

1 g ds11/a
= i . a2
¢ [l et sy )
o 1
<C ——dt
< Hf”Lq(Q)/O AT 007

Namely we have the inequality: ||K%f||Lq(Q) < C(N, g, 8,7, )l fllL, ). In the
case of n = 2 in (2.5.8), using Holder’s inequality, we have

zg@y-)
YN

6 .
||[Kéf](-,xN)\|Lq(RN_l) < 0/5/3 0s(yn) If( yn

3 6
< (3) [ ontmll o)y
5/3

< Cllgsll, ©0allflliz, @)

which shows that [|K§flln, ) < C(N,q,,%0, 1 0)|| ]|, This completes the
proof in the case of i =1 in (2.5.8).
Next we consider the case of i = 2 in (2.5.8). By Holder’s inequality, we have

(2/3)8

H[Kgf]('aﬂfN)HLq(RN—l) < C’/ & () £ Cun)ll, my-1)

dyn
5/3 dn(yn)

3 (2/3)8 ,
<c (5> | )iy
5/3

< ¢, 051l Ly

which shows that ||KEfllL, ) < C(N,q,¢,%, 1 0)||fllL,). Concerning Kg, by
the same argument as in the case of K3, we can prove the inequality:

IKS fllL, ) < CN, g, 2,70, 1 ) fll 2y )-

We finished proving that K¢ € £(L,(Q2)) for i = 1,2,3. Thus, using Proposition
1.2.4, we obtain

RE(Lq(Q))({(TaT)SK{’Z_’n(/\) | A= Y +iT € 25,’}/0}) < C(N7qa€770a ey 6)a

so that {K},, () | X € 3., } have the required properties.
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Secondly, we consider Ké}&n()\) for i =1,2,3 and £,n = 1,2. The case where
X = B and Y = A is only considered here, since we can show similarly the other
cases. If we set

a0 ) = P [Ei(yn Jma (A €) Ae™ ) A 0! — ),

then the operator K3, (A) is given by the formula:

K 0 (V) f)() = /Q K\ (2, 9) f(4)dy.

As we proved that {Ki&n()\) | A € ¥, .,} has the required properties by using
(2.5.1) and (2.5.2), to prove that {K3 ,, (A) | X € ¥, } has the required properties,
it is sufficient to prove that for any A = v + i1 € X, 4, there hold the estimates:

C(N,e,7, W) Ei(yn)
=y |2+ (de(zn) + dn(yn))?}N/2
< C(N,e,v0, ) Ei(yn)
Al =y 2+ (dean) + dn(yn))?IN/2

(2.5.9) |k%,)\($ay)| < {2’

|T87—k‘§’)\(l’, 7/)

By the assumption of mg, Leibniz’s rule and Lemma 1.2.6, we have

(2.5.10) |D?,’{m2(/\7 ¢') Ae~Bde(an) = Adu(un)y|

<C Y DZma(N€)||DY AlDE (e Blelom) e Adelan)y)
B+ +8'=a

<C Z A—IBT A=V g=16"] o=(1/Dbe,n A(de (@) +dn (yn))
B+ +8'=a

< CAV1 | g=(1/0be u Alde(zn)+dn(yn)

for a positive constant C' = C(o’, &, 7o, it). Since

TOr (Mo (A, 5’)Ae*3d€(mN)e*Adn(yN))
= {T(?ng()\, 5/)}AeinZ(ZN)€7Ad”(yN) + ma(A, f/)A{TaT (Q*Bde(mN)e*Adn(yN))},

as discussed in (2.5.10), we also have

(2511) |Dg‘,,{7'87(m2()\, gl)Ae—Bdf(mN)e—Adn(yN)):H

S C(Oé/, €,70, M)Al_lal|6_(1/4)b€"LA(d[(zN)—l-d"(yN)) .

In view of (2.5.10) and (2.5.11), we apply Proposition 1.2.8 with n = N — 1 and
o =1 to obtain

(2512) |]€%’>\($,y)| < O(N7€v707M)Ei(yN)|x/ - y/|_N7
|7'C{)-,—k'§7)\(33,y)| < C(N,{:‘,’YQ,/_L)Ei(yN)LZ'/ - y/|_N'
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On the other hand, using (2.5.10) and (2.5.11) with o/ = 0 and the change of
variables: 471, ,(d¢(xn) + dn(yn))E’ =1n', we have

|(70)" k3 (2, y)

1 \N-1 _
< CE;(yn) (—) / Ae? 1b5~#A(dé(9”N)+dn(yN))d€/
RN—1

27
—cmm(L)" " {Sostdtam + o} [ i ar
- YN o 4 e,u\0e IN n\YN BN 1 n\e Ui
< CEi(yn)(de(xn) + dn(yn)) ™Y

for s = {0,1} with some positive constant C :‘C’(N,e,'y(),u), which, combined
with (2.5.12), furnishes (2.5.9), and therefore {K3 , () | A € ¥c 4, } has required
properties. Analogously we can show that {K® Gom(A) [ A € e oo} have the required
properties in the case of j = 3,4 (cf. [SS12, Lemma 5.4]).

Finally we consider Ké_’&n()\) fori=1,2,3 and £ = 1,2 with X = A. The case
where X = B can be shown similarly. By B = B?/B = (\/uB?) + A%/ B, we write
(K5 0. (M) f](2) to

(K3 0.0 (N f1(2)

’ A2 Tyt /
= / Fo [E,;(ymmH—BAWM(de(xN))e—Ad"@N)f@ ,yN)] (+")dyn
| T

é ~
=[5 [E () ma s AZM(dy () Adnwf(a',ym} (a)dy,

and then we see the fact that {KZ,,(\) | A € 3., } have the required properties
by the above results of K3, ., Kj ,, and A2 /(uB), A/B € My 3¢ ,- O

By using Lemma 2.5.1, we have the lemmas as follows:

LEMMA 252, Let 0 <e <m/2,1 <qg<o00,v >0, and k; € M_; ; ¢, (i
1,2). For A\ € ¥.., and X,Y € {A, B}, we define L%, ()\) (i,j = 1,2,3, {,n

7,4n
1,2) by
' s
(L3 0n( ]:/1 Eyi(yn)kie  Bldelem)dnlun)) £/, yN)} (z")dyn,
0
5
[ (A | Fot [Bluw )k Aem XN 000 Fe )] )y,
s
[Ls 0,0 ( f«l Ei(yn)k2 ABM(de(zn))e Xd"@N)f(E’,yN)} (z")dyn .
0
Then, fori=1,2,3, j = 7, 6n=1,2, s =0,1, and k,m = 1,..., N, the
sets:
{(70:)° (AL 0, (N) [ A =y +iT € B
{(70:)° (VLS 0n V) [ A=y +i7 € B 1,
{(70,)° (N2 DLy, (V) | A =y +iT € T, ),
(70-)°(

DkD Ljén( ))|)‘:’7+i7625a70}
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are R-bounded families, in L(L4(2)), whose R-bounds do not exceed some positive
constant C(N,q,e,0, it,9).

PrOOF. In what follows, we say that the set {7 (A) | A € X, } has the required
property if for s = 0,1 {(70:)°T () | A = y+iT € X, 4, } are R-bounded families, in
L(L4(€2)), whose R-bounds do not exceed some positive constant C(N, q,, 70, 1, ).

We first consider the operators Li,@,n()\) fori=1,2,3 and /,n = 1,2. We write

ALY N 1)

= /0 % |Eilyn)N PR X2 B+ D (el )| (2! Yy,
ML (V) f] (@)

= /0 6ng[ Biyn)yA™ 2k N2 P et F( )| 2!y,
AVZDNIL 00 (V) f](@)

= (- /0 £ | Biyn) B2 Bt ) fel )] 2!y,

where A\ = v + it € ¥..,. Since A2, 9A\"Y2 B € My ;. .,, by Lemma 1.2.5
A2k yA"Y2ky, Bky € Mg e, S0 that Lemma 2.5.1 furnishes that the sets:

{ALun( ) I A€ B {7L1n (V) [ X € Em} and {\'?DyLi, () | A €
Y o} have the required properties. For k,m =1,...,N — 1, we write

AVZDi[LY (N f] ()
:/0 Fa [Byn) N2 (1A kg e Bl b F(e! )] (2! )y,
Din Di[ L4, (M) f](2)
- /O ' fjl[Ei(yN)(ifm)(ika kg AemBlde(on)tdnun)) f (g ,yN)] (@")dyn,
DN DLy ¢, (M) f](2)
= (- /0 éfgl[EAyN)B(i&kA Dk A Bl o)t ) Fie! y) | (o) dyv.

Since A2, i,,, B € M 1.c.40 and i A7 € M 2. 40, by Lemma 1.2.5
A2 (i€ A7k, (i) (160 A"V, B(i€RA™ by € Mogc o,
so that Lemma 2.5.1 furnishes that for k,m =1,..., N — 1 the sets:
{NZDELY 0 (V) | X € B,
{DinDiLi g0 (N) | A € Beno ),
{DinDiLi (V) | A € Ze o}

have the required properties. Furthermore, since

DXL 4, (N) =A™ LY, (V) +ZDk Len(A

we see easily that the sets {DX L] ,,,(A) | A € Zgﬂo} have the required properties.
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Secondly, we consider the operators Lg’e’n()\) fori=1,2,3and /,n=1,2. We
show only the case that X = B and Y = A here. The other cases can be shown
similarly. For k,m =1,..., N — 1, we write

()\a’% >\1/2Dka Dkaa )\1/2DN7 DNDka DJ2V) [ één()‘)f]($)

4
= [ 7 [Blow) (M AV, )80, (<1 N2BL (1) B, B)

X oy AT BAeon) o= A 00 (el )| (2! )y
By Lemma 1.2.5, the symbols:
Mo, Yk, N2 (i€ ) ko (i€m ) (i€ Ve, (=1) ' AY2 By, (1)~ B(i&, k2, Bk
belong to M 2 ¢ ,, so that Lemma 2.5.1 furnishes that for k,m =1, ..., N the sets:
AL (V) | X € Sy}, {1 (V) | X € By},
VDL W) INE Sengl, ADmDiL (V) | A€ By}

have the required properties. .
Finally, we consider the operators Lj ,, () for i = 1,2,3 and £,n = 1,2. We
show only the case where X = A here. For k,m =1,..., N — 1, we write

(A3 X2Ds, DD ) 1L 0,0 (N ) (@) =

= [ F [ (2260, (e 50

0
X ks ABM(dy(z))e™ A% ™) F(g! yw)} (¢")dyn.

By Lemma 1.2.5, Ako, vko, Al/z(iik)kg and (&) (i€k) k2 belong to Mg 2 ¢ ~,, S0 that
Lemma 2.5.1 furnishes that the sets: {AL§, (A) | X € ..}, {vL5,,,(A\) | A €
Semots IN2DRLE ,,(N) | A € Be 5o}, and {Dy DL, (N) | A € Be s} have the
required properties for k,m =1,...,N —1 . By (1.2.3), we have

(X/2Dn, Dy D) [Lh 00N (@)
5 ~
= (—1)? /0 }‘571 [Ez(yN) ()\1/27ié‘k)kaer_Bdl’.(WN)e_Adn(yN)f(yN)} (') dyn

(- g [Buun) (W26 ) Ak ABM(doan e 0 Flgn)] (s

for k = 1,...,N — 1, where f(yN) = A(f’,yN) By Lemma 1.2.5, \Y/2Bk, and
(#€1) Bks belong to Ml 2 < +,, so that Lemma 2.5.1 furnishes that fork =1,..., N—1
the sets: {Al/zDNLgye’n()\) | A€ Xe o} and {DyDyLi,,, (A) | A € X, } have the
required properties. Concerning D%, M (dy(xn)), we have, by (1.2.3),

Dy (L 0.0 (N f)(2)

§
_ / Fo' [E,;(yN)(A+B)Bkg(/\,f’)Ae_Bd“(xN)e_Ad"(yN)f(fl,?JN)} (") dyn
0

6
- /0 Fo' [Byn) A%ka (0, €) ABM(defan) e ) Fig yw) | )y
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By Lemma 1.2.5 (A + B)Bk, and A?ky belong to Mo s ¢ 4, 0 that Lemma 2.5.1
furnishes that the sets: {D3/L5,,,(A\) |\ € Ec 5, } have the required properties. [

LEMMA 2.53. Let 0 <e <7/2,1 < q <00, v >0, and mo € Moae,,. For
A€ X, ., we define Li7€7n()\) (1=1,2,3,¢,n=1,2) by

s
(Lo f](z) = / Fat | Bulyn)moe M et Fe! yn)| (@) dy.
0
Then, fori=1,2,3,{,n=1,2,s=0,1, and j=1,...,N, the sets:
{(70:)°Li (V) | A =y +iT € Be 0 ),
{(70:)°(DjLy 0, () | A =y +iT € B2}

are R-bounded families, in L(L4(Q)), whose R-bounds do not exceed some positive
constant C(N, q, €, Y0, it,9).

Proor. We first show that {(70;)°L},,(A) | A = v+ it € X.,,} are R-
bounded families for ¢ = 1,2,3, {,n = 1,2 and s = 0,1. For this purpose, we
consider the operators L} , . (A, xn,yn) given by the formulas:

Zi,f,n()\’ xn,ynN)f| (@)

= Fo ' [Eilyn)mo (&', e~ A emtlu ) Fo, [11(€D] ().

By the definition of k3, Lemma 1.2.6, Leibniz’s rule, and [ES13, Theorem 3.3],
there hold

(2.5.13)
RLQ(RN_I)({(TaT)sEZ,E,n()\’xN?yN) [ A=7+iT € Xcpy, 0 <2y, yn < 6Y)
< C(N,q,&,70, 1)
From now on, we prove that for i =1,2,3, ¢,n=1,2 and s =0, 1,
{0 LN | A =7 7 € B}

are R-bounded families in £(L,(€2)) by checking the definition of R-boundedness.
Noting that for f € Ly(£2)

(Lo n (V) f)(2) = / (o, un) £ )y,

we have, by Minkowski’s integral inequality, Holder’s inequality, and (2.5.13),

1 m
LI @0, L )1
=1
1 m s _
= [ @ [0 T v ) o 1y
=1
5 5 1 m _
S(Sq*l/o /o /0 ||ZT.i(u)(Tar)sLZ,z,n()\j»xNvIUN)f?'”qu(RN*l)d“dedyN
=1

§ 5 1 m
<orioWegenn) [ [ [ IS ri@, g dudzydys
o Jo Jo T
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1 m
< C(N, g, 70, 1, 9) / 1S s W) A2, o du
o 4

We thus obtain the inequality:
R, ({(10:)° Lig.n(N) | X =7+ i1 € Be iy }) < C(N, g,€,70, 1,6).-

Secondly, we consider D;L} , () for i =1,2,3, £,n =1,2and j = 1,...,N.
For k=1,...,N — 1, we have

(Dr, Dn) [Li 0.0 (N f1(2)

= | Fe'Blym)(iGA™", (-) ) moAc” HEEOTRGNDFE y)] @)y,
which, combined with Lemma 2.5.1, furnishes that the sets: {D;L},,(\) | A =
Y 4T € e 4, } are R-bounded families, in £(Ly(£2)), whose R-bounds do not ex-
ceed some positive constant C(N,q, €, 70, it,6), because i&, A~ mg and (—1)*"tmyg
belong to Mg 2., by Lemma 1.2.5 and Lemma 1.2.6. This complete the proof of
the lemma. O

We use the following lemma for terms arising from the solution of the divergence
equation.

LEMMA 2.5.4. Let 0 < e <7/2,1 < g <00, v >0, and mog € Moz ,. For
A€ X.,, and X € {A, B}, we define L, ,(\) (i =1,2,3,j =5,6,7,{,n =1,2)
by

o~

. §
Lm0 = [ Fer [moe X000 4000 F(e )] () da.
6 ~
[ Z,é,n()‘)f](y) = /0 f{’ {moBM(d@(xN))e*Adn(yN)f(Sl’xN)} (y/) dey,

6 o~
[Léen(/\)f](y> _ /O Fer {mOA—le—A(dz(wN)-&-dn(yN))f(gl’:L,N)} (y/) dzy.

Then, fori=1,2,3, j =5,6,7, {,n=1,2, s =0,1, and k = 1,..., N, the sets
{(T@T)S(DkL§7e7,L(A)) | A=y +ir € X, ,,} are R-bounded families, in L(Ly(2)),
whose R-bound do not exceed some positive constant C(N, q,&,vo, 4,0).

PROOF. We consider only Lf , ,, () here, since we can show the case of Lf , ,, ()

similarly. Concerning LZ‘?,e,n(Ah use the same argumentation as in Lemma 2.5.3.
For k=1,...,N — 1, there holds

(Dys D) [Le,en(N) f](y) =

5
/0 Fer [¢O($N)m0(—i§kA_1, (—1)”_1)ABM(dz(mN))e_Ad”(yN)f(mN)} (v) dzy,

o~ ~

where f(yn) = f(£,yn), so that we have the required properties in the same
manner as in the proof of Lemma 2.5.1. O
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2.6. Proof of Theorem 2.1.3

In this section, we prove Theorem 2.1.3. To this end, we set

K'fo=(Kifa,....,Kn_1f2)", St f = (Sor(N)fs- ... Son—1 (N )T

where K and Sp(\) are in Theorem 2.1.2, Lemma 2.2.5 and Remark 2.2.6. A crucial
part of the proof of Theorem 2.1.3 is to show the following theorem.

THEOREM 2.6.1. Let 0 < e < w/2, 0 > 0, and 1 < q < oo, and let ¢ =

q/(q—1). Suppose that

feLyN, foeWHQNW, L (), geW (N

(1) Forany A€ ¥, and j =1,...,N — 1, there exist the operators

SN(A) € L(L QN HNHNLWw2(q)), L(N) € LWHRQ) N WL (), W2(Q)),

(
T(A) € L(Lg(Q)N FN+3N=1 (@), L(\) € LWHQ) N W, L (), WH(Q),
(

Si(A) € L(Ly(Q)N FNHINHL 1172(q))

such that u = (uy,...,un)’ and 6 are given by
un =Sn(N)(£,\'"?g, Vg, K'(Afa), VK' (A2 £0), V2K fa) + i (A) fa,
0 =T (N £,V s, \'2g, Vg, K'(\fa), VK (A2 f3), V2K’ f4) + I,(A) (M fa),
wj =S;(N) (£, V fa, \%g, Vg, K'(Afa), VK' (N2 f4), VEK f4,
D;Li(A) (A2 £4), VD 1i(N) fa, DiT2 () (Afa)
solves equations (2.4.1). In addition, there hold

Re(r,@){ (1) (A8 (V) | A =7 +i1 € Te . })

Rey@){(T0) (WS (N) [ A =7 +iT € B4, })
R, @) {(T0:) (N2VS,(N) | A =7 +i1 € By })
Rer,@){ (70 (V2S;(N) | A=~ +iT € 4, })
) )
) )
) )

IN N

IN

Rery@)({(T0:) T(A) [ A =7 47 € Bepy }
Rer,@){(T8) (VT (V) | A =7 +ir € B}
Re(ry0) ({(T8:) (VI(N) | A =7 +i7 € Te iy, }

for £ =0,1 and J = 1,....N with a positive constant C = C(N,q, €, t,70,9)-
Concerning the second spatial derivatives of Iy () fq, we have

D;Iy(\)(Dyfa) if k#N,
DipIi(\)(Djfa) if j#N,

IN

IN IN
QO Q0 aa aaf

IN

D;DyIi(N) fa = {
and also for any A € Xy, there exists an operator Iy (\) € L(Lg ()N L, ()
such that D31, (\) fa = Ii(A)(A\Y2 4,V f4). Moreover, there holds

Re L(Lg Q))({(Ta ) ( )|)‘:7+Z‘T€E€f‘/0})SC(Na%ghu"yOad)
for £ = 0,1 with some positive constant C(N, q, ¢, [4,70,0)-
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(2) For any A € X, and J = 1 ., N, there exist the operators I (X), I3(N),

and I5;(N\), from Ly (Q) to (Q), such that
(LN, p)a = (¥, T (N)p)a,
LMY, 0)a = (¥, I (A)p)a,
(DyLMNY, p)a = (¥, 15;(N¢)a

for any ¢ € W ()N Wq () and ¢ € Ly (). In addition, there hold
R, @) {(70-) (VX* (V) | A=y +iT € B 1, }) < C(N,q,, 1,70, 6)
for£ =0,1, J=1,...,N, and X € {[1,I5,I31,...,Isn} with some positive
constant C'(N, q, &, i1, 70, 9).
If Theorem 2.6.1 holds, then we have Theorem 2.1.3 easily. In fact, solutions
of equations (2.1.1) are given by
wj =K, fa+ S;(N(F, Vi, \V2G, VG, K' (M i), VK (A2 £4), V2K’ f,,
D;L (NN £2), VIL(A)(D; fa), DiI2(N)(Afa))
un =Ky fi+ SN (F, NG, VG, K' (M), VK AN2 1), V2K f2) + L (\) fa,
0 =T (\)(F, Vi, \'2G, VG, K' (M), VK (N2 £4), V2K’ f4) + Ly(\) (A fa)
with F = f—K(Afq)+2uDivD(K f4) and G = g—2uD(K fy)en forj=1,..., N—1.
Therefore, setting
Ui\ (£, V fa, V22, Vg, K(Mfa), VE(AY2 f4), V2K fa,
DL (NN £4), VI (A)(D; £4), D Ia(N) (A fa))
= S;(NF, VI, N2G, VG, K'(Mfa), VK (N2 f4), V2K fa,
DL (N2 f4), VI(A)(D; fa), DiT2(N) (A fa)),
Un(N)(E A%, Ve, K(\fa), VK(N/2 f4), V2K f4)
= SNN(F NG, VG, K'(AMa), VE' (N2 fa), V2K fa),
PO,V fa, Mg, Ve, K(Mfa), VKX fa), V2K f4)
= TN(F, Vs, \V2G, VG, K'(Afa), VK' (A2 f1), V2K f4),
VNN = L), Yn() =00, V() =T (0,
QW) =1(A), QN =L0), Q) =13;()
forj=1,...,N—1and J=1,..., N, we have the required operators in Theorem

2.1.3, noting Lemma 1.2.3.
From now on, we prove Theorem 2.6.1. Let ¢ € Cg°(RY~1) be a function which

satisfies 0 < ¢ <1 and
1<

0 [¢]>

() =

INONJUN R

)
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and also we define the cut-off functions ¢y (&', A), ..., 4(&', A) by

2o N =¢(£) aen={1-¢(£) )¢ ()
e o)) el
e ={1-¢(S) < (i) Hi-<(3) )

where 01, 0o and o3 are some positive constants, depending only on &, vy, x4 and
6, which will be given in Appendix A. In the present section, we often use the
relations:

N-1 ,. N-1
(2 6 2) B — B_2 — i o (ij)z 1 o B2 _ >\ o (257)2
- B uB B B2 B2 4« B2’
j=1 j=1
N-1,. N—-1
A:A—Z: (lgj)Q 1_A_2__ (Z€J)2
A A’ A2 A2

We first construct the operators Sy (), I1 (), I;(A), and I7()\). For the pur-
pose, we consider the normal velocity vy (z) defined as (2.4.13). By the cut-off

functions (&', A), we have vy (z) = Z?,k:l 25:1 ij’z(ac), where

j _ Ly 20 Lioe _

2.6. 7 — ,1 5 Bd;(znN) 7 )
(263) Vi, (@)= % [@(& \ ( 52 (o)) + T | @)
Here 7y, Ekﬂ, Ly, 20, and det L are give in Section 2.4. In order to use the lemmas
obtained in Section 2.5, we write (2.6.3) by integrals. For X € {4, B}, there hold
the identities:

)
N d s
(264) €0 = / I s umw)e XTI yw))dyw
=/0 Ohlyn)e X BN F(e yn)dyy
)
/% “XLWN F(¢ yn)dyn
0
5
+/ os(yn)e XBWN D yn)dyn,
0
)
d
0) — —Xun d
9(¢, /0 e [o(yn)e 9(&,yn)]dyn
)
/ wolyn)e X 2UNG(E yn)dyn
0
)
+/ polyn)Xe XRWNGE yy)dyn
0

)
+/ vo(yn)e X=@) Dyg(e! yn)dyn,
0
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where ¢ (yn) = (dpa/dyn)(yn) for a € {0,0}. Applying (2.6.4) with X = A to
Vi /() and using (2.4.15), (2.6.2) yield that

&g EL%

—Ai(yn)
Y5 155 dot LABM(CZ@(%N))@

>
o>

71 5 r
1 B 1L _
Fa 2 | F |G g ABM i) Aﬂywkak(ym] (') dyx
K= Jo L
15 [ i€ Lie
_ —1 1,2 —Al(yN)/\ ,
T P /o 7e C” P5 4B det L A BMde(zn))e DNak(yW] (') dyn
N-1 F) .
1 —1 ’ ka L1,2£ —Bde(zn) ,—A1(yn)
T past /o Te st0*%4132 der 1 €

M a(yn) — i€’ - ﬂum)] (') dyy

X
2/\
>
?—‘\
=<
[\V]

1 b L e
+ /0 ! |:CJ %d1tzﬁA€_Bd‘€(”)€_Al(y”)Dkak(yN)} () dyn
k=1
N-1 S
1 L —
+7 /O Fo! { ZikdthﬁA ~Bdelen) g Al(yN)DNak(yN):| (=) dyn,
k=1
j 1 0 1 LQ 20 —Ad
‘/2.]1(1') = ; Jo ,/—"5, C-J I5B3 d tLABM(df(xN)) 1(yN)
)\1/2 — P
X (7/\1/2aN(yN) —i& - V’aN(yN)>] (x') dyn
N-1 5
1 i€, L —
T oo dszfABMwe(xN))eAd“w)DkaN(yN)] («") d
k=10
1 ° 1 L2 20 —Ad (2 )/\ /
o [T | Gorgy 2 ABM(i(an e 0 Dan(yn) | () dyn
0
L L Lot 4 —Bdiyn),~Adi (uw)
+;/0./—"§/ |:<] 5B2dtLA€ (&

12
N 2an (yw) — i’ v'aN<yN>>] (') dyn

X
Z
>~

Ll o
=

)

_ i€ Lo2e
‘Fﬁ' |:<j 55 22
0

A detL

AeBdl(a’?N)eAdl(yN)m(yN)} (a:’) dyn

x>

=1

4
L
/ ]:51 [ngpéthQ[e/A —Bdy(zn) _Adl('UN)DNaN(yN):| (I/)dij
0

4
Tl= ==



46 2. GENERALIZED STOKES RESOLVENT EQUATIONS IN AN INFINITE LAYER

1 4
+—/ Fo!
BJo

Nz/fg,

1 L2 20

gﬁd

ABM(dg(zn))e A (yN)T/?)?(ﬁ',yN)] (') dyn

L AT !
Gy 5;5; dQtZZ!;ABM(dE(xN))e—Adl(yN)DkTOf(yN)l (') dyn

tl’—‘
i

9

1 - 1 Lo —Adi(yn) o /
- AB . 1(N) DT F (4 -

o Fe Q%Bd 7 ABM(de(zn))e NTof(yn)| (2") dyn

§

+l/ ‘/—_-71 C 5L2 QZA —Bdg(yN)efAdl(yN)m(fl yN) ($/) dyN
I € Al det L ’
1= ik Lo 20
2 2,2 —Bdy(zN) g~ Adi(yn) AT ’
e [ 7t [n S g B ()| ) dow
1 2,2¢ on) . Ady (yn) BT

+ ;/0 [Cy%d tLA ~Bde(en) g Ad (yN)DNTof(yN)} (') dyn,

, i€ Lo _
Vi () Z/ o |Gl LCWYEE dthLABM(df(ﬂfN))e Ada(un)

(= Moi(u) = Mbi(uw) )| (@) dyn
N-1 r

e3[Rt oo Bt g et
—~ Jo ¢ B3 det L
x (™ Nbk(yn) — Z’\bk(yN))} (2) dyn
N-1 i

> "t [ oot Tt gt )
—~ Jo ¢ YTV AB3 det L

M_IA1/2‘Fw’ [Al/QDka](g, yN) - Zf/ : fw’ [V/Dka] (5/7 yN))} ($/) dyN
4

‘Zx

|
™
S~

_ , 06k Lz — z _
e CJ vy A

u_lj\\bk(yN) - A/bk(yN))} (') dyn

‘Zx

§ .
—1 ka L372£ _Bds(x Ad
/0 ‘FE’ {CjwoﬁdetLAe t(zN) o 2(yn)

_|_
’SM

= Noi(yn) = Abi(yn) )| @) dyn

2 X

-1

5 .
. i€k L32¢  _Bdy(ay).—Ads(yn)
; . A (TN 2(YN
/0 e {C’%AB2 det L°° ‘

+
ngh

x (mw/% N2DNb)(E  yw) — i€ - Fo [V Dnbil(€'un) ) | @) dy

for j =1,2,3,4 and £ = 1,2, where we have used the abbreviations:

~ ~

(26.6) GG =¢GE N, ws=ws(yn), wo=wolyn), [flyn)=f(& yn),
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N-1
ig VI an) =Y i&D;f(€ an), Z D3g(x)

j=1
for scalar functions f(z) and g(z). We will discuss VM(a:) later. The following
lemma will be proved in Appendix A.

LEMMA 2.6.2. Let 0 < e < w/2 and v > 0. Then we have the properties:

i
GO EN 2 € Mo

det L
Li e Lo L; 20
C](Aﬂg)d tL? Cj( €)d tL? CJ( 5) *1,2,8,703
n L1,20 n L2,26
i - ; - M_
CJ ()‘7€ )detLv Cj (Aaf )detL € 2,2,e,7v0

forj=1,....4andl=1,2.

From viewpoint of (2.6.5) and Lemma 2.5.2 , we define solution operators as
follows:

(2.6.7) S7,(N(A2al, va') = VY, (x)
S5 (NN 2an, Vay) + 55, (N (Tof, VTof) = V3 ,(x)
S5, (MDA Vb)) = Vi (x)

for A € 3. ,,. Since there hold, for k=1,...,N —1,

)
)

(2.6.8) %, %, %!2 € Mo,2.,405
we have, by Lemma 1.2.5, Lemma 1.2.6, Lemma 2.5.2, and Lemma 2.6.2,
(2.6.9) Rew, ) {(70r )’”()\Si () [A=y+ireX. }) <C,
R, @) {T0)™ (18] (W) | A =7 + i1 € Be o }) <
R {(r0; )’”(/\UQVSi () [A=7+ir e }) <
Ry ({(10:)™(V2S] (V) [ A =7 +ir € 8o ,}) < C
Ry @) {(70:)"(AS] j(\) | A = 7 + i1 € T 5 }) < C,
R (L) {0 ™ (185 4(N) [ A =7 +iT € Ty }) £ C,
Re(r, @) {0 (NP8, () | A =7 +iT € £, }) < C,
Re(r, @) ({(70-)"(V255,(N) | A =7 +ir € ey }) < C

forj=1,...,4, k=1,2,3,/ = 1,2, and m = 0,1 with some positive constant
C:C(N7Qa€7/”’77075)- ) )

Next we consider the term V} (). By (2.1.5) and (2.2.16), we have V/,(z) =
Ifﬁe()\)fd + Si,z(/\)f such that for j=1,...,4,£=1,2,and m=1,2,3

1 L4 20

I (N fa= —%/0 o SBatL M(dé($N))@(€/ayN)fd(yN)] () dyn

1 /0 L R
_5/0 ]-'5_, |:<]d4t2£ —Bde(an) p (f/7yN)fd(yN):| (x/)dyN,
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_ 5}:1 ¢ i€peAdn ) T, ABM(de(zx))e 24 Fr(yn) | () d
o € |PTTOAB T Adet L (zN k(Y YN
8 [ e —Bd,(0) T
-1 Lgk(/ L472e N B (yx) R p
| T[S Rqer A PMdelz))e Felyn) | (@) dyn
g r £ e—Adn(0) [, ~
— 1CkE B - _ )
=), Te [omen . A depAe e Ad"(yN)fk(yN)} () dyn
0 L
g r ‘¢ —Bd,(0)
ot e La2e —Bde(zn) ,—Adn(yn) 7, "N d
+ ; .7:5/ _Cm‘ﬂé oA )\detLAe e fk(yN) (:L,) YN
_i/‘;]__J -C e A0 Ly ABM(de(zw ))e= 240 Fa (yn) | (@) d
o P TOB Adet L e\IN))e NYN YN
29 [ “Bd.(0) T
Ae L N
o 4,2¢ — Adu(yn) /
+,;/0 For [omP 5B Ndet LABM(dE(xN))e fN(yN)] (2) dyn
2 g0 r —Ad.(0) T,
o = 420 po—Bde(an) = Adn(yn) 7, /
- / m ——A 74 d
;/0 7 _C T et L ¢ fN(yN)] (2) dyn
290 r — Bd,, (0)
Ae L N
—1 4,20 —de((zL‘N) _Adn(l}N) ’ d
+nz_‘:/o Te _4’”% 5B adetL° € fN(yN)} (") dyn,
SiiWf =
? 1| Gapl Lyae — Ada () , ) )
‘/ Fo' | 258 o g ABM(de(n))e” 2200 Fo [N Son (V)€ yw) | (27) dyw
0

¥ |
+/ .7:5/
0

N-1 ) . T
. 1€, Laoe —Ada(yn)
- : AB d 2(yn
+ 3 [ 7 [npp g AP M)

A?2B det L

a0 Lzt s p pg(dy ) )e A% Fou A Son (V) (€ yN>] (') dyn

X Fur [DrDnSon (MEI(E yn) | (=) dyn

6

1L Y Adee

- [t [ouehogn gt A B 000 (A Soy OVEE )| )
0

5

1 L

+/ Fo! {Qﬂpoﬁd;zéfleBdZ(mN)eAd2(ym}}/[A/SON(A)f](il,?JN)] (') dyn
0

N-1 F) ka‘ L y
1 . 4,2 —Bd¢(zN) ,—Ad2(yN)
F — Ae P °
' ; /0 ¢ [Qwo ABdet L€ c

x Fur [DrDnSon (ME](E yn) | (2) dyn,



2.6. PROOF OF THEOREM 2.1.3 49

where we have used (2.6.6) and (2.6.4) with X = A for S} ,(\). Note that by
(2.4.14) and (1.2.3) there hold

Dk[f,e()\)fd
1)
-3 [ % [@(A ) j‘*tzzABM(de(wN))M',ymfd(f',ym] (o) dyx

2

) L N
/0 T {cm o)Ly, Bdf“w@(s’,ymfd(s’,ym} (') dyw.

1
2
DNIig()‘)fd

1y ~
_ 21) /0 }‘5—/1 [QO\’6/)%(?;2;143/\/1(@(931\])) (38 yN)f (€, yN)] (@) dyn

2 det L
for j =1, 4, k=1,...,N—1,and £ = 1,2, and also by (1.2.3) and (2.6.2)

5 1 .
b3 | T G gt e B (e ) Tl )| @)

(2.6.10) DDyI{ (A\) fa = DyI{ j(\)(Dxfa),
DI (N(fa) = I (N2 fa, V fa)

for J=1,...,N, where

n <A><A1/2fd,wd> =

N—-1

1
2 & e
1 _

1 2 —
(A—Wfd ¢ yn) — ie’ - fod@’,yzv))] (') dyn

G fg 54 2L ABM(dy(wn)®er(yn) Deful€', ?JN)] () dyn

1 L4 20 —Bd(znN)
CJ B2 det LA@ (I)f,(yN)

1 A2 Lo _ z N1/2 7. (¢ ’
2u Fo |G g G A B g () N )| @)

eNl

ik La o _Bdy(x BT et /
/ % {Q i AiftLl Bde@N) @ (yn) Di fa(€ ,yN)} (') dyn-

We then have the following lemma which will be proved in Appendix A.

LEMMA 2.6.3. Let 0 < e < /2 and vo > 0. Then we have the properties:

A71L4 20—1 L4 20

GO T € Mizeny, GOV T2 G062

0,2,e,70>

n Laoe L4 20
Cm(Aaf ))\detL € M—I,Q,E,’yo) C’m()\ 5 ) et L

€M_22.c.+

fori=1,...,4,4=1,2, and m=1,2,3.
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In the same manner as in the proof of (2.6.9), we obtain, by Lemma 1.2.5, 1.2.6,
2.5.2, and 2.6.3,

(2611)  Reqryon{(F9)"(ASL, V) [ A=y +ir € T }) < €,
Re(ratan{T0) ™ (185, (N) [ A =7 +ir € 5.,}) < C,
Ren, ) ({(F)" N2V ST (V) [ A =7 +i7 € Te o }) < €,

Rer, (70" (V2S1,(W) [ A=y +ir € T, }) < C
Rewyn({(r0)™(VE (V) | A =y +ir € 5.,,}) < C,

Rewaian (o)™ ,N) | A = v +ir € 5.,}) < C

for j =1,2,3,4, £ =1,2, m =0, 1, and a positive constant C = C(N, q,¢, tt,70,9),
where we also have used Lemma 2.2.5, 1.2.3, and A.3 (2).
We here consider the operator I{,()):

15 (Nel ()

5 )
-5 | % [@(A,g’% 2 M(dolen )€ ) P ] (5',a:N>] (o) dex

§
~5 [ Fe |G )T (e ) F (€ )| ) dan

for p € Ly (Q) with 1/q +1/¢" = 1. Then, for any ¢ € W,/ (Q,) N /WQ_%O(QU) and
@ € Ly(€Qy), where subscript « and y denote their variables, there hold

(2.6.12) (W, 00, = @, T (Ne)a,,  T(N@llyy=s =0,
since ®(¢’,§) = 0. Moreover, we have, by Lemma 2.5.4 and Lemma 2.6.3,
(2.6.13) Rﬁ(Lq(Q))({(T@T)m(VyIf:}(/\)) [A=v+ir€Xe}) <C

forj=1,...,4,£=1,2,and m = 0,1 with a positive constant C' = (N, q,&, Yo, 1, 9).
Summing up the above argumentation, we set

Sy (/\)(Al/Qa Va, \b’, \1/2Vb’, V2b') =

4
) (Si (N, V) + 8, (N (M aw, Vax) + S, (N, ATVH, V2b) )
=1 4=
7 1 2 4 2
S :ZZ( 2.0(M)(Tof, VT0)+544(/\))7 ZZ A fa,
j=1+¢=1 j=1£=1

and then vy (z (2.4.13) is given by

) in
(2.6.14)  un(z) = S1(A\)(A/2a, Va, Ab’, A2V’ V2b') + S; (MF + 1 (A) fa.
3,

)
)
By Lemma 1.2. (2 6.9), (2.6.11), and (2.6.13), we have
) (
N

(2.6.15) £(Ly@){(T0) AX1 (V) | A =7 +i1 € 85 }) < C,
Rm @) {(T0) (YX1 (V) [ A =7 +iT €55, }) < C,
R, @) {(T0) NAVX (V) | A =7 +ir € 20 }) < C,
Ry @) {(70) (V2X1(N) | A =7 +iT € £ 5, }) < C,
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Rery@){(T0) (VLN)) | A =7 +i1 € Be 00 }) < C,
Rﬁ(L @) {0 (L) [ A=y +iT €Ty }) < C,
Rer,@){(T0) (VIE(N) [ A =7 +ir € 8o }) < C

for ¢ =12 and X € {9, §}, with some positive constant C' = C(N, g, e, i, Y0, 9),
where I1(A\) and I (\) are defined as

4 2
LV [0,V fa) =YD H NW2fa,V fa),

j=1/4=1

4 2
Ne =YY I (Ng forp € Ly(9),

j=14=1
and also by (2.6.10) and (2.6.12) there hold

(2.6.16) DyDyIi(N) fa = DyIi(A)(Dx fa),
DY LN fa = LNAY2£4, Y fa)
(LAY, 9o, = @, IT(Ne)e,,  HEN@)lyy=s =0

forle,...,N,kzl,...,N—landany@Z)Equ(Q )ﬂW

q,T's (Qy), ¢ € Ly (Q2a).
Thus, setting

un = Son (A f 4+ S1(A)(A2a, Va, Ab’, A\1/2Vb’, V2b') + 81 (A)F + I (N) fa,

we see that un is the N-th component of the velocity u to equations (2.4.1), and
also the operator Sy (A) in Theorem 2.6.1 is given by

SN(N(E, N 2g, Ve, K'(Mfa), VK' (N2 f4), V2K f2)

= Son(VEf 4+ S1(A\)(A\2a, Va, Ab’, \1/2Vb’, V2b') + S (\)F

= Son(Nf + S1(N) (Al/Qa, Va, —ASH(VE, A2V S, (M, —v253(A)f)
+ SI(A) (O, 07 _K/()‘fd)v _VK/<>‘1/2fd)7 _VQK/fd) + §1 ()‘)f

Sn(N), I1(N), I;(X), and I7(\) satisfy the required properties in Theorem 2.6.1 by
(2.6.15), (2.6.16), Lemma 2.2.5 and Lemma 1.2.3.

Next we construct the operators 7 (A), I2(A), I5(A), and I3, (A) for J =1,..., N.
For the purpose, we consider the pressure 7(z) in (2.4.13) in the same manner
as vy (x). By the cut-off functions (£, A) defined as (2.6.1), we have 7(z) =

Z?Jszl 25:1 (—1)“11_[7;’@(&0) with

B+ALk2€ o—Ads
detL tL

Hi,e(m) = uFt [G(AE) @)y | ().
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It follows from (2.6.4) with X = A and (2.6.2) that

Hji,e(ﬂﬁ)
N-1 F)
= Z/ Fal ¢ (B 4) Ll 2t —A(de(zn)+di(un))
— o T AB? det L°

=1
)\1/2/\ Ll S /
y (Twak(ym el Vfamymﬂ (') dy
1

N— 5
L /

+ / l@%(BJFA)dthz A(d(f($N)+d1(yN))Dkak(yN)‘| (z) dyn
k=170
N-1 K}

i&(B+A) L _ o) bdy (un) T

+ Z/O Fe! [CJ s A )delt2£ Aoty ))DNak(yN)] (2') dyn

k=1
ng(i’?)

B+ AL, 20— A(de(wn)+di (yn))
G TR qa

)\1/2/\ —
y <7A1/2aN<yN> gl wmmﬂ (a') dyn

N-1 K} 7
_ €(B+A) Looy _ N —
_ Z/O ]:-5/1 [Cj@& gk( = )d;2£6 A(de( N)+d1(l/N))DkaN(yN)‘| (:l‘/) dyn
k=1

L
Gps(B+ A) g2 _A(d"(’””d“yN”DNaN(ym} (&) dy

L
CJ¢6(3+A)d2t2€ —A(dl(lN)+d1(yN))Tof( )] (:Jc’)dyN

.5 . T
3 _ B+A) Lyst _ ptay(a 5T '
3 / ]__5/1 lgj%sz( ) 2,26 —A(d( N)+d1(yN))DkT0f(yN)‘| (z") dyn
0

A det L
° 1
+ / fgl
0

H:yu(ib") =

L
Giips (B + A) 22 e Al o)+ i) DT ()

/
Tt L (2") dyn,

N-1 Fy
_ ka (B + A) L3 20 —A do(xn)+d
_Mz/o 7! CJ gy DL L) D0 - At st

B2 det L

[ B+ AL
b Y [ et |G S 22 aten o)
X (ﬂ_lj\\bk(yN) - Z'\bk(yN))} (37/) dyn

N-1 Fy
_ &L (B+ A L _
+/J’Z/ ‘Fﬁ’l [QJ ©o €k ( ) 32@ A(de(zn)+d2(yn))
k=170

AB?  det L€
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$ (HIN2EL N2 Db (€ ) — i€ FulV' Dbl (€ yw) )| (@) dy,

for j =1,...,4 and £ = 1,2, where we have used the abbreviations (2.6.6). From
viewpoint of the above formulas and Lemma 2.5.3, we define solution operators as
follows:

T, (N2, va') =1, (x),
T3 (NN ay, Vay) + T3 ((A)(Tof, VTof) = ITj (),
T3 ,(\)(AD A2V, VD) =11, (x).

Then, by Lemma 1.2.5, Lemma 1.2.6, Lemma 2.5.3, and Lemma 2.6.2, we obtain

(2.6.17) Re(Ly@){ T T (A | A=~ +iT €5, }) < C,
Re(ry) (0™ (VTL ,(\) | A =7+ i € 51, }) < C,

Re(ry @) {(70-)"Ts (A | A=y + i1 € 8c 1, }) < C,
Re(ry0){(70)" (VT3 ,(\) [ A=y +ir € %, }) < C

forj=1,...,4, k=1,2,3,/ =1,2, and m = 0,1 with some positive constant
C =C(N,q,¢, 11,7, 9), noting that (B+ A)/B € Mgz, and (2.6.8). Concerning
the term IT} ,(z), by (2.6.2), the special formulas (2.1.5), and (2.2.16), we have

T (@) = I3 (N (Mfa) + I3 (M (V fa) + T ,(V)F with

B, fa)
_ 1 ’ 1 (B +A) E4,2@ —Ady(zN) ’ — ,
=3 | T |6 T e e B(E )M alo) | ()
I3 (A)(V fa)
pie [° i€ (B+ A) Luo
= = —1 . 4,20 Ady(zn) , — =
2 k_1/0 7e l@} AB?  detL” (€ ’yN)Dkfd(yN)] (@) dyn
N-1 2
Ty (NE = Zu)"{
k=1 n=1

A Adet L

& B+A 6—B(],,(O)L B ) - 1 N
Cm‘ﬂé gk( ) ) )\detL4 % Ady (s N) Bdy, (JN)fk(yN) (.T/) dyN}

H
2
° ka (B + A) e (0)L4 2/ Ald d
_/ Fo;l Cm s —A(de(zN)+ ,L(UN))fk( ) ($/)dy1v
0

Adet L

s —Bd,(0) T
AB+ A L ~
+/ Fo lc’"% (B+A)e 42@e_Adz(zN)e—Bdn(yN)fN(yN)] @) dyN},
0

8 e—Adn(0) T
_/ Fa Cm@&(B—FA)iW —A(de(zN)+dn (UN))fN( ) (1‘/) dyn
0

B Adet L
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710 = nf

yic

B+AL42€ o= Alde(x d y
Gt O ER A3 detL (el )bdalun) ]:ﬁ’[A/SON(A)f](f JYN) (UU/) dyn

é
b+4 L4 2t —A(de(zn)+d2(un)) / !
+ [t |G e Fol & Sox VRN ) | (@)
= B+A L
N /f_/1 oo Osz( +A) Laoe —Ady(an)+da(un))
— § A3 detL

T DL DSy VI )] (&) |
for j=1,...,4,£=1,2, and m = 1,2,3, where we have used (2.6.4) with X = A
for Tj! y(A).

Here we set the operators 1'27*(()\) and Ig?}_’e(k) as

[137,(\)el(v)
5 A
[ @TBQ Liot - aon) <5',yN>af[w](s',xN>] () do.
135, (N e)(y)

S
ot [ Fe [ RAEL Faa e-Ad“”)@(é,yma/[so](s',xm] () de,
0

AB? det L

for ¢ € Ly(Q) with 1/¢+1/¢' = 1, where X; = i§; if J =1,...,N —1 and
Xy = (=1)**'A. Then there hold

(2.6.18) (I3 (N, @)a, = (0,1 (Ne)a,, [N ellyn=s =0,
(DI (N, ), = (U, 155 ,(Ne)a,, 15, (N)@]lyn=s =0

for any ¢ € W, (€,) N Wq 1, (Q,) and ¢ € Ly(),). By Lemma 1.2.5, 1.2.6, 2.5.3,
2.5.4, and 2.6.3, we have

(2.6.19) R,y {0 T, (A) | A=y +ir € Sep}) <
Re(Ly@)({(T0:) " (VT (V) | A =7 +i7 € Te 5 }) <
Re(Ly@){ (T ,(A) | A =7 +i1 € D50 }) <

) ) <

) ) <

Re(ny @) {(T0)™(VI ,(N) | A =7 +iT € Bepp }
R, @) {(T0)™(VE(N) | A =7 +ir € Bepp }
Rer @) {(r0)™ (VI35 ,(N) [ A =7 +ir € Te iy }) <

forj=1,...,4,4=1,2, m=0,1,and J =1,..., N with some positive constant
C =C(N,q,e¢, 14,70, 0), where we also have used Lemma 2.2.5, 1.2.3, and A.3 (2).
Summing up the above argumentation, we set

QQQQQQ

T1(A)(\Y2a, Va, Ab/, A2V V2b') = ) “(—1)“H

j=1¢=1
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x (Tj (A)(Awaxw) + T3 (N (A ?an, Vay) + Tg’e(/\)(kb’,)\1/2Vb’7v2b’)) :

2

TNV =35 D (T4, (Tof VTf) + T, (VE + 1, (N (V1))
j=1¢=1
N (M) :ZZ e+1IJ N (M fa),
j=14=1

and then 7(z) in (2.4.13) is given by
(2.6.20) m(z) = T1(\)(A\2a, Va, A\b/, \'/2Vb’, Vb)) + Ty (M) (£, V f2)+ (A (A fa).
Moreover, by Lemma 1.2.3, (2.6.17), and (2.6.19), we have

(2.6.21) Re(r,@){(T0-) X1(N) | A=~ +iT € B4, }) < C,
Rer, ) {(70:) ' VXI(A) [ A =7 +ir € 5.,}) < C,
Rewa@){(T0:) V(A | A=~y +it € T 5, }) < C,
Rer,){(To VI A) [ A=q+it€X.,}) < C

for ¢ = 0,1, J =1,...,N, and X € {T,T} with some positive constant C =
C(qua€7/’677076) where

IS

2

QD _ Z €+1I7* 0,

j=12
4 2
LN =Y D (1) (Mg for ¢ € Ly (),
Jj=1¢=1
and also by (2.6.18) there hold, for any ¢ € W, (,) N ﬁ/\q}lé (Qy) and ¢ € Ly (),
(2.6.22) (LMY, 0)a, = (@, L(Ne)a,,  I2(AN)e¢llyv=s =0,

(Dyla(NY, )a, = (U, I5;(Ne)a,.  [I35(N)@]lyy=s = 0.
Therefore. setting
0 = Tof + Ti(\)(\/2%a, Va, \b’, A/2Vb/, V2b') + Ti (A (£, V fa) + LA (A fa),
we see that 6 is the pressure of the equation (2.4.1), and the operator 7 (\) in
Theorem 2.6.1 is given by
TA)(E, Vs, A ?g, Ve, K'(Afa), VK' (A2 £2), V2K f4)
= Tof + T1(A)(A\Y?a, Va, Ab’, \Y/2Vb’, V2b') + T1 (\)(F, V f2)
— Tof + T (M) (Al/ 2a, Va, ~ASL(VE, —AY2V S, (VE, —VQSg(A)f)

+ () (0,0,~K'(Ma), ~VE (N2 f2), =V2K' fa) + T\ (£, V fa).

T(A), I2(X), I3 (N), and I, () satisfy the required properties in Theorem 2.6.1 by
(2.6.21), (2.6.22), Lemma 2.2.5, and Lemma 1.2.3.

Finally we construct the operator S;(A). For the purpose, we consider the
horizontal velocities v; (j =1,...,N — 1) defined as (2.4.20). Set

/ py B / o~ B (0)
pe(§ N = (1" ——p5. @€ N = T o255
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Then we have the following lemma.
LEMMA 2.6.4. Let 0 < e < w/2 and o > 0. Then, for £ = 1,2, we have
pf(gla )‘)7 CI@(§,> )\) € MOJ,E&/D-
PROOF. Since it holds that for any multi-index o € N)Y=! and m = 0,1
D {(r0r)" (1 + 7271} < O e 0, ) N2 + A4) 7

with some positive constant C(a/, €, it,70,9), we see that (1 + e~28%)~! belongs

to Mo 1,6,,- By this fact, Lemma 1.2.5, and Lemma 1.2.6, p(§', \) and qe(&', A)
belong to Mo 1 ¢, for £ =1,2. O

By (2.6.2) and (2.6.4) with X = B, wj and w? (j = 1,...,N — 1), defined as
(2.4.20), are given by

2 5 —1/2 /
- )\ / ’>\ B N ; —
1 7) = Z/O f}{%%e B(d@(./]\])-'rdl(JN)))\I/Qh;(yN)](x/)dyN

2 5 1/2 ’ P

- A be f’)\ - (TN 1(YN /

+§ :/0 -7'—/1[905 ufgz )e B(de(zn)+da(y ))Al/zhjl-(yN)](w)dyN
)

2 . ,
_ 7 JA) " =
S [ Fates fkpgg ) o~ Blde(an)+di (v DDk (yn)) (') dyn

Pt PN Blasen) i) T T e /
+ /]—', (ps PR ¢ Bllslam) + ) D RI(E!, )| (o) dy,
0

2 5
)\ . 5
w?(x) = _Z/O Ft [@o (5 ) —B(de( N)+d2(yN))Ah?(yN)](x/)dyN
2 5
)\ _ " —
JrZ/O Fo [906%(22 ) B(de( N)+d2(yN))A/h?(yN)](x/)dyN
+Z/ ]_—-/ qu )\) B(d@(xN)+d2(yN)))Th\?(yN)](x/)dyN

’>\ _ " —
_Z/ ]_——/1[900(16 EB )e B(de( N)+d2(yN))A/h?(yN)](x/) dyn

2 5 1/2 ’
_ A WA T "
_§ /]:6’1[900 qe(€ )e B(dz(~N)+d2(JN))]:x,[Al/ZDNh?](gl,yN)](m’)dyN
0

2
=1 nB
N-1 2 £} . /
7 JA) "
+ ZZ i }*—,1[%%6 B(de( N)+d2(yN))fT,[DkDNh?](gl’yN)](:E/)dyN
k=1 ¢=1

for j=1,...,N —1, where we have used (2.6.6). We define the solution operators
as follows:

So(A)(AY2hE, Vh) = wi(z), S3(A)(AR3,AY2VRZ, V2R2) = wi(z).
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Since there hold, by Lemma 1.2.5, Lemma 1.2.6, and Lemma 2.6.4,
Ail/zpl (51’ /\) )‘1/2p€ (517 )‘) ngpe (517 )‘) De (§,7 >\)

B ’ B2 ’ B2 ’ B
@€, N @@ N AN N gk, N)
Bz B B2 ’ B2
belong to M_1 1 ¢ ~,, We obtain, by Lemma 2.5.2,

(2.6.23) Re(ry@){T0) ASm(N) [ A =7 +ir € B 5, }) < C,
Reo@){(70:) (vSm(N) | A =y +iT € B 5 }) < C,
Rery@)({(70:) (AN2VS(A) [ A= +ir € B0 }) < C,
RL(L{,(Q))({(TaT)e(vzsm()‘)) [ A=7y+iT €Xcp}) <C

for £ = 0,1 and m = 1,2 with some positive constant C = C(N, g, €, i, Y0,9). Then
v;(x) is given by
—H(\)EoDjm + So(\)(AY2R}, V) + S3(\)(ARZ, \M/2Vh2, V2h2).
Therefore, setting
u; = So; (N — H(N) Eo Dy + S2(A)(A/2hY, VhY) + S3(A\)(AR3, \/2VR2, V2h),

we see that, for j = 1,..., N — 1, u; is the j-th component of the velocity u to
the equation (2.4.1), and the operator S;(\) in Theorem 2.6.1 is given by the right
hand side in the above setting through the relations: (2.4.19), (2.6.14), and (2.6.20).
Note that S; () satisfies the required properties in Theorem 2.6.1 by Lemma 2.2.4,
Lemma 2.2.5, Lemma 1.2.3, (2.6.15), (2.6.21), and (2.6.23). This completes the
proof of Theorem 2.6.1.

2.7. Initial condition and uniqueness

Let (U, ©) be a solution satisfying the estimates (2.2.2) and (2.2.3) to equations
(2.2.1). In this section, we prove that the solution (U, ©) vanishes for ¢t < 0if F, Fy,
and G vanish for ¢ < 0, and also we show the uniqueness of solutions to equations
(2.2.1). We first have the following lemma.

LEMMA 2.7.1. Let 1 < g < oo and ¢’ be its dual exponent. Let u € qu(Q)N
veWZ(QN, 0 e Wl(Q), and m € W,,(Q). Then, for the unit outer normal v to
I's ULy, we have the formula:

(u,DivS(v, 7))o = (DivS(u,§),v)q
+ (u,S(v, m)v)rsur, — (S(u,0)v, v)r,ur, + (diva, m)q — (0, divv)gq.

2.7.1. Initial condition. We first consider the case where F;; = 0and G =0
n (2.2.1). In this case, by (2.2.3) there holds

YUz, ((—00,0).L42)) < YNe™UllL, (—00,0),2,2) < Ve UllL, @ L, @)
< Clle™"Fllp, ®.L,) = Clle” " FllL, (0,00).L,(2)
< Clle™ ™ F|l 1, ((0,00),Lq(2)

with a positive constant C' = C(N, p, q,70, 4,0), so that
1O L, ((—00,0),2q(2) <7 Clle ™ Fl L, (0,00),L4(2))
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holds for any v > 7o. In the last inequality, taking the limit: v — oo, we obtain
U =0 (¢t < 0), which furnishes that Ul;—o = 0. In addition, VO(t) = 0 (¢ < 0)
by the first equation of (2.2.1), so that ©(¢) depends only on time variable ¢ when
t < 0. But now, O(¢)|r, =0 (¢ < 0) by the boundary condition on I's, which means
that ©(t) = 0 for ¢ < 0. This completes the proof of the case where F; = 0 and
G =0in (2.2.1).

Next we consider the case where F; # 0 or G # 0 in (2.2.1). Let ® € C5°(£2 x
(—00,0))" and set ¥ (x,t) = ®(z,—t). Since ¥ € L,y . o(R, Ly (2))V, as was seen
in the case where Fy = 0 and G = 0, there exists a solution (V,II), which satisfies
Ve (Lp/ﬁo,o(R, Wq%(Q)) ﬂWI},NO_’O(R, Lq/(Q)))N and I € Lp/,WO,Q(R, W(}/(Q)) with
1/p=1/p’ =1and 1/qg+ 1/¢ =1, to the equations:

oV —-DivS(V,II) =P, divV =0 in QxR,
S(V,IMey =0 on TI's xR,

V=0 on Iy xR.
Setting W (x,t) = V(xz, —t) and P(x,t) = II(z, —t), we see that (W, P) satisfies
W +DivS(W,P) = -® divW =0 in QxR,
(2.7.1) S(W,Pley =0 on I's xR,
W =0 on I'p xR,

and the conditions: W(t) = 0 and P(t) = 0 for t > 0. By (2.7.1), integration by
parts and Lemma 2.7.1,

(Uv‘I))QX(—oo,O) = _(UvatW)QX(—oo,O) - (UvDiVS(Wap))QX(—oo,O)
= (U, W)ax(=00,0) — (DivS(U,0), W)y (—s0,0) = (F, W)ax (—00,0) = 0

because F(t) = 0 when ¢ < 0, which furnishes that U(t) = 0 (¢ < 0). We also have
O(t) =0 (t < 0) in the same manner as in the case where Fy =0 and G = 0.

2.7.2. Uniqueness. We prove the uniqueness of solutions to equations (2.2.1).
Suppose that

U € (W) 10e.0(R: Lg() N Ly toco R WZ Q)Y O € Lytoco(R, W, ()

p
satisfy the following homogeneous equations:
U —-DivS(U,0)=0, divU=0 inQ xR,
(2.7.2) S(U,0)ey =0 onT's x R,
U=0 on Ty x R.
Let ® be any function in C§°(§2 x R)", and let T, and T} be positive constants
satisfying the condition: supp ® C Q x (=T, T1). Setting @7, (z,t) = ®(x, Ty —t),

we see that supp ®7, C Q x (0,Tp + T1). Since ®1, € Ly ~o.0(R, Ly ()Y, there
exist V € (WI}”YO,O(R’ Lq/(Q))mLp/,,ym()(R, W(IQ/(Q)))N and IT € Lpfﬁo’()(R, W(}/(Q)),
where 1/p+1/p’ =1 and 1/q + 1/¢' = 1, satisfying the equations:
oV —DivS(V,II) =&y, divV =0 in QxR,
S(V,H)eN =0 on I's x 1:{7

V=0 on 'y x R.
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Set W(z,t) = V(z,T; —t) and P(z,t) = II(z, Ty — t). Then (W, P) satisfies
{0:W + DivS(W, P)}(z,t) = —{0;W — DivS(W, P)}(x,T1 — t)
=—®7 (z, 71 —t) = —P(z,1),
and W(t) = 0 and P(t) = 0 for ¢ > T;. Thus, using integration by parts and
Lemma 2.7.1, we obtain
0= (0, U — DivS(U,0),W)axr = —(U,0,W + DivS(W, P))gxr = (U, ®)axRr,
which furnishes that that U = 0. Employing the same argumentation as in the

proof of the initial condition, we also have © = 0. This completes the proof of
Theorem 2.2.1.
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CHAPTER 3

L,-L, estimates of Stokes semigroups with surface
tension and gravity in RY

3.1. Main results

In this chapter, we show L,-L, estimates of the Stokes semigroups associated
with the following Stokes equations in RY (N > 2):

du—DivS(u,0) =0 inRY, t >0,

divu=0 inRY,t>0,

Oh—u-n=0 onR(I)V,t>O,

S(w,0)n + (¢, — c,AYim=0 on R, t>0,
ufy—o =f ian,

hli—o =g on RN7!,

(3.1.1)

where ¢, > 0 denotes the gravitational acceleration, ¢, > 0 the surface tension
coefficient, and n = (0,...,0,—1)7 the unit outer normal field on R}’. In addition,
the stress tensor S(u, 6) is given by

S(u,0) = =T+ D(u), D(u) = Vu+ (Vu)’.

We first define a suitable solenoidal space Jq(Rf ) to construct the Stokes
semigroup. To this end, we set, for 1 < ¢ < 00,
WooRY)={0eW,;(RY)|0=0 onR)'},
Wi oRY) ={0eW]RY)|6=0 onR{'}.
il

As was seen in [Shil3, Theorem A.3], W ,(RY) is dense in W} (RY) with the

q
gradient norm ||V - || L,(rY)- The solenoidal space Jy(RY) is then defined as

Jq(Rf) = {u € Lq(Rf)N | (u, V‘p)RI =0 for any ¢ € W;,,O(Rf)} ,
where 1/g+ 1/¢' = 1, and also we set
(3.1.2) X, = J,(RY) x W29 RN,
X2 = Ly(RY) x LRV,
Xi=LyRY) x WimYyRNTY) (i =1,2).
Now we have the following theorem.
THEOREM 3.1.1. Let 1 < q < oo. Then, for every t > 0, there exist operators
S(t) € L(X2,W2RY)N), T(t) € L(X2,WERY)), T(t) € L(X2, W2 H1RNY))

63
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such that for F = (f,g) € X,
S()F € C'((0,00), ( 1)) N C((0,00), WERE)Y),
II(-F € C°((0,00), WA(RY)),
()F € C'((0,00), W= I(RNT1)) N CO((0,00), W HARNTY)),
Jh) = (SOF,II(¢)F, T(t)F) solves uniquely (3.1.1) with
lim [[(a(t),h(8))  (£.9)]], = 0.
REMARK 3.1.2. If we consider the operator
St): X, >5F — (S(t)F,T(t)F) € X,,
then {S(¢)}:>0 is the required Stokes semigroups (see Section 3.3 for the detail).
Here we extend T'(t)F to £(T'(t)F), defined on RY, by
(3.13) E(T(F) = Fi e ¥ T(OF(E))('), €: W YaRN ) - WHRY),

which is the so-called harmonic extension. The L,-L, estimates of the operators
S(t), II(t), T(t), and ET(t) then are showed in the following theorem.

and (u,

THEOREM 3.1.3. Let 1 < p < oo and F = (f,g) € X2. Moreover, let S(t),11(t),
and T'(t) be given by Theorem 3.1.1. Then they are decomposed as follows:

(3.1.4) S)F = So(t)F + Soo (t)F + R(6)f,
I(t)F = o(t)F + I (t)F + P(t)f,
T(t)F =Ty(t)F + T (t)F,

and also the right members satisfy the following estimates.

(1) Let 1 <r<2<qg<o0, k=1,2, and 1 =0,1,2, and set

g = N1 (L Ly L1
W=y roq 2\2 gq/)’

0= (i) 3 G-3) 2 (-3))

In addition, let F € X°. Then there exists a positive constant C = C(N,q,r)
such that fort > 1

1(0:So()F, VI () F) | 1, my t+1)"
1(So(O)F, & (To()F)) |, my) < CE+ 1)~
IV So(O)F |, mivy < C(t+1)7

IVE0rE(To (t)F)ll, my) < CE+1)7
(t+1)~

)

m(q>r)7l

m q1)||F||X? ((Q7T) 7& (27 2))7
n(w)‘gllFHX?’

t+1

) <¢
Ct+1

C
C

m(gr)—%—%

IV ET(OF) ||, my) < CE+1
[ To(t)F ||, vy < C(t+1 —T‘<-">||F||Xo (r #2).

On the other hand, let 0 < t < 1, and then
1(0:So(H)F, VIIo(O)F)|| 1, my) + [[(VSo(t)F, VOL(To(t)F))lw r)

+ IVE(To(H)F)[lwzmy) < Ct ||| xo,
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1(So(O)F, 0:E(To(O)F))l| L, ry) < Ct[[Fllxo  ((g,7) # (2,2)),
ITo)F| L, @my-1) < Ct|Flixo  (r#2)

for any a > 0 with a positive constant C = C(N,q,r, ).
(2) Let o > 0. Then there exist positive constants § and C = C(N,p,«) such that
foranyt >0

1 (OF s ey + 1€ Toe OF) ey + [196E (T (OF) I, )
< Ct~%e™||F||xz,
1(0:S o ()F, VOE (Tos ()F)) | 1, miv) < Ot/ 2e ™ |[F|x3,
1(V2Soo (8)F, VILo ()F, V2E(Too (t)F), V0, (T ()F)) |, (m2Y)
< Ct e || F|xz.
It especially holds that
1T (O)F ||, mv-1) < Ct e *||F|lx2 (£ >0)

with some positive constant C = C(N, p, a).
(3) There exists a positive constant C = C(N,p) such that for every t > 0 and
1=0,1,2
1@ ROE, VPO, vy < CE ], @y,
||VZR(t)f||Lp(Rf) < Ctil/QHfHLP(Rf)'

The original paper of this chapter is [SS15], and also this chapter is organized as
follows: In the next section, we consider some resolvent problem arising from (3.1.1)
with ¢y = ¢, = 0, and then we show resolvent estimates and special representation
formulas of the solution. In Section 3.3, we show Theorem 3.1.1 by using the
standard theory of analytic semigroups. In Section 3.4, we give the decompositions
(3.1.4) of S(t)F, II(¢t)F, and T(¢t)F. In Section 3.5, we prove pointwise estimates
with respect to time ¢ for the low frequency parts of S(t)F, II(¢t)F, T(¢)F, and
E(T(t)F), that is, we prove Theorem 3.1.3 (1). Finally, Section 3.6 shows Theorem
3.1.3 (2).

3.2. Preliminaries
In this section, we consider the resolvent problem:
(32.1) { Aw — DivS(w,p) =f, divw=0 inRY,
S(w,p)n=0 on RY

in order to obtain the following lemma.

LEMMA 3.2.1. Let 0 < e < w/2 and 1 < g < co. Then, for every X\ € ¥ and
f € Ly(RY)N, equations (3.2.1) admits a unique solution (w,p) € W2Z(RY)N x
W;(Rf), and also the solution (w,p) satisfies

(322)  [Ow. 29w, V2w, Vp) |1 ) < O£, )llfl 1, ey
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with a positive constant C(N,e,q). In addition, the N-th component Wy (£',0,\)
of w(&',0, ) is given by

~ e Py i€(B—A) [* _ yN T, (¢!
(3.2.3) wN(g,O,)\):; m/o e B (€ yn) dyn

A(B+A) < yN F. ’
W/o e B fN(gvyN)dyN

2 2
- Z ng B +A / M(yn) (€ yn) dyn

2 2
M/ M(yn)Fn (€ yn) dyn

N-1 . o R
(3.2.4) =y % /0 e N (€ yn) dyn
k=1 ’ )

A(B+ A 00 R
i ﬂ/o e AN (¢ yn) dyn

A
[2;525/ M(yn) Fe(€,yn) dyn

_ m /O M(yn) (€ yw) dyx,

where A, B, D(A, B), and M(yn) are defined as (1.2.1) with p =1 and (1.2.2).

PrOOF. The lemma was proved by [SS03, Theorem 4.1] except for (3.2.3) and
(3.2.4) essentially, but we here prove the estimate (3.2.2) again by another approach
for the sake of Chapter 4. Let j =1,...,N —1and J=1,..., N below.

For given functions g(z) defined on RY, we set their even CXt(,l’lbIOIlb 9¢(z) and
odd extensions g°(x) as follows:

{g(xlva) in Rf? {g(xlva) in Rj-i\-za

325) g¢°(z) = 9°(x) =

g(z',—zy) inRY, —g(@,—zy) in RY.

In addition, for the right member f = (f1,..., fn)? of (3.2.1), we set
(3.2.6) Bf = (ff,- s fRo 17

and let (w',p') be the solution to the resolvent equations in RY:
(3.2.7) Aw! — DivS(w!,pt) = Ef, divw! =0 in R".

Let (Ef); be the J-th component of Ff, and then we have the following solution

formulas (cf. [SS12, Section 3]):
N
[ €06 (B 1 (©)
D=2 e [ €200+ 1€1) ] .

(Ef)

3.2.8 Y, \) = Fot
( ) wl(xa ) ¢ )\+|€|2
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By Fourier multiplier theorem of Hérmander-Mikhlin type, we obtain
(32.9) [|OW A2Vw!, V2w, Vp!) |, me)
< [|OW A2Vw!, V2w, Vp!) |, vy < CIEE| L,y < ClIElL, ®Y)

with some positive constant C = C'(N, q,e). As was seen in [SS03, Section 4], we
have the fact that by the definition of the extension Ef

(3.2.10) Dywi(2',0,A) =0, p'(2',0,)) =0
In addition, since there hold

FIE) = / (e7mvey _ Gune (el y) dy,
FILIE©) = / (e 4 GNeN) By (¢ ) dyn,

applying the partial Fourier transform and Lemma 1.2.7 to (3.2.8) yields that

N-1 i6, [
TR (EL0N) =D =8 [ (e e Buny £ (e yn) dy
N ]; )\ /0 k N N

© o—By~n __ ,
+/ 5 In(€ yn) dyn
0

+ %/W(AG’A” — Be P f (€ yn) dyn
Dywl(€,0,)) Z 5]&C/ A — B (€ yw) dyy

+/O e PN F(¢/ yn) dyn
& [ . —Bun\ T
+ 52 [ (e = Be P Fu (€ ) dyy.
0

We thus see that by A = B? — A% and e BY~ — e~ = (B — A)M(yn)

A o0 -~
~1 (! 7B:cN /
(3.2.11) Wi (€,0,)) = B(B +A) / In(€ yn) dyn

i
+

MZ

/°° (yn) Fx (€ yn) dyn

k=1

B+A/ (yn) In (€ yn) dyn,

Dyw!(€,0,)) = / ‘B”Nf(§ yn) dyy

/ e~ BN (€, yn) dyn

B
p 5

S/ " M) Fi(€ ) dyx
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68
1§ A /OO ~
- dyn.
B+Al, M(yn)fn (€ yn) dyn
Next we consider the following equations:
Aw? — Div S(w?, p?) = 0, divw? =0 in R{X,
(3.2.12) Djw + Dijz = —g; on RY,

—p? +2Dyw% =0 on R(])V

with g; = Djwk + Dijl., which are obtained as follows: First we set w = w! +w?

and p = p' + p? in (3.2.1). Second we use (3.2.10) for the third line.
We then obtain the formulas (cf. [SS12, Section 4]):

(3213) w}(x,X) =Fg (B3¢ an M), P2 N) = Fo ' DHE 2n, V](@),

@ﬁ&mwmz(%%%%g?aRW— Zel Z:%Wk§OA
e PG €03,

(& an,N) = (;(A;’g)e_m” + %M(IN)) Jiiﬁkﬁk(ﬁ/ﬁ’)\)-

N-1
21 _ 2BBHA) _aan N" e (o
p (g ’xNv)‘) = D(A,B) € ; nggk(g 30,)‘)'

It holds that by (3.2.11)

Gr(€,0,)) = i&@Y (€',0,A) + Dyw}(€,0, )

N-1 N A
B 15%’?114/0 M(yn) i€ yn) dyn

oA [ ~
a ézile/O M(yN)fN(flny)dyN

. B—A o] ) —~ ° “ N
_%/o e_BnyN(ﬁlayN)dyN‘F/o e PN fi(€ yw) dyn,

which, inserted into (3.2.13), furnishes that

(3.2.14)

B Z /OOO ]:5_/1 {A(B igjlg)]}iA,B)ABM(IN)M(?JN)fk(f"yN)} (z') dyn

= i¢; B R

_/0 e [%A?}M@N)M(ywﬁv(ﬂ.UN)} (') dyn
N-1 oo s A

i — /0 e {%AQM@N)G‘B”MEGW)} (z') dyn
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> —1 2Z£J(B A) —BynN 7. (¢! Z
—/ .7:5, [mAzM(IN)e B fN(gayN):l( )dyN

_Z/ { géfiiBmf)B)AzeBg”NM(ymﬁ(g',yN)} (') dyn

/ f€ [ 2§j+ jB( A) )A26BwNM(yN)fN(£I,yN):| ($,) dyn

— Z / .7:7 {%ACB(JCNerN)ﬁ(fl,yN)} (&) dyn

1 | %5 3B-A)(B-A —B(zn+yn) 7 (¢ /
+/0 Fo! [532((B+A))((A,B))Ae Blan+ )fN(E,yN)] («") dyn

+ Z/ Fo'! {ﬁ%A26_B’”NM(yN)ﬁ@(€/79N):| (2") dyn

_/ Fa' _#%A%BWM(ZJN)?N(&ZJN)} (z') dyn

08B =A) o Blantuw) Ty (¢! ] !
/ g\ —A) NTYN , d
/ Fe! AB2B+ A) ¢ € )
'1 -~ ’ /

]:6_'1 e Blontun) f(¢ 4/1\/)} (o) dyn,

0 B
wi; (z, A)
= Jg/ooo Fe! [%ASM(M)M(@/N)M&W)] (') dyn
+ /OOO Fe! [%ABM@MM@M%(&CM)} (') dyn
+1:¥ |7 |t M e P R )| @) du
+/Ooo Fe! [%AQM@N)GBZ/N?N@/,QN)} (2') dyn

N-1 % T 2 (B-A . . /
#X [ | A B MU ) | (@) g

>~ 2A(B - A) 2 By ~ ,
+/O Fet [mfl e ? M(yN)fN(ﬁ,yN)} (z") dyn

+ Z/ Fo' [ZZEDBA ;))A ‘B‘”N*”)ﬁ(ﬁ’,yw)} () dyn

— A(B—A) —B(zN+yN) £ (¢! :| /
+/0 Fo' [B(B+A)D(A,B)A€ TN N (E L yn) | (2) dyn,

69
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P’ (z, A)

=~ Z /Ow P | B A MR ) | @)

oo A - —~
—/0 Fo' [%A%‘AWM(ZJN)J”N@/»ZJN)] (") dyn

N-1 roo &L B(B+ A ” UN B[l /
- Z:/O Tt [%Ae_“”e_m’vfk(ﬁ »Z/N)} (') dyn

D(A, B)
Since it holds that by Lemma 1.2.5 and 1.2.6
1 ( 28;6, B 4i&;B 286 B 2i;(B — A) £€,(3B — A)
D(A,B)\A(B+A)’B+A" A2 ' B+A ' B(B+A) ’
2i¢;A(3B — A) &;6,(3B — A) i§;A(3B — A)(B — A) 4i&,B  4AB
B(B+A) ’ AB ’ B2(B+ A) "B+A'B+ A’
2i¢,B 2A(B — A) 2i&,(B — A) 2A(B — A) i&(B — A) A(B — A)?
A’ B+A ' B+A ' B+4+A '’ A ’B(B+A)>
belong to M_3 2.0 for 5,k =1,..., N — 1, and besides,
313 2i¢; i&(B-4) L
A’B(B+ A) AB(B+ A)’ AB*(B + A) et B
4ig B 4AB  2igB(B+A) 24(B-4)
D(A,B)’ D(A,B)’  AD(A,B) ' D(A,B) “hZenor
we obtain, by applying Corollary B.3 (2) to the formulas (3.2.14),
(3.2.15) 1AW A2Vw?, V2w?, Vp?) |, may) < C(V. 4, €)lIE |, o)

for any A € ¥.. with a positive constant C'(N, ¢, ). Combining (3.2.9) with (3.2.15)
furnishes the estimate (3.2.2).
On the other hand, setting xx = 0 in (3.2.14), we have

=i (B —4) [ -
DX (€,0,0) =) %/{) e~ P fi (¢ yn) dyn
k=1 ’

_ /OO Fo' [MAeAxNGBnyN(flvyN)} (2") dyn.
0

€M_q 1.0,

AQ(B_A)Q - yN F. (¢!
T BB+ ADA, B)/ e PN fn (€ yn) dyn
N-1 2
> Ry [ MumAE ) oy
3
#/ M(yn)Fn(€ yn) dyn,

which, combined with (3.2.11), furnishes (3.2.3) since wy (&',0,\) = @k (¢/,0,\) +
% (€/,0,\). We finally obtain (3.2.4) by using the relation: e~ B¥~ = e‘AyN +
(B —A)M(yn) in (3.2.3). This completes the proof of the lemma. O

We devote the last part of this section to introduce the following fundamental
lemmas.
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LEMMA 3.2.2. Let s; > 0 (i = 1,2,3,4). Then there exists a positive constant
C = C(s1,82,83,84) such that for everya >0, 7 >0, and Z >0
6751Z2rzs26753Z<54)a < 0(7_52/2 + a52/34)71'

LEMMA 3.2.3. Let 1 < q,r <00, a>0, by >0, and by > 0.

(1) Set g(zn,7) = {7% + (xzn)"}7 for xx > 0 and 7 > 0. Then there exists a
positive constant C(q,a,by) such that for every T > 0

Hg(T)”Lq(O,oo) < C(q, a, bl)T_u(l_bl_‘l)7

provided that byq > 1.
(2) Let f € L,.(0,00), and also we set, for xx >0 and 7 > 0,

Y flyn)
glon,7) = /0 T4+ (zn)b + (yn)P2 an-

Then there exists a positive constant C = C(q,r,a,b1,bs) such that for every
T>0

1

—a L1
9t z000) < O UTRTEER) | £ 0.0,
provided that for v’ =r/(r — 1)

1
b1q>1, b2<1——)7'l>1.
big

3.3. Generation of the Stokes semigroup

In this section, we prove Theorem 3.1.1 by the theory of analytic semigroups.
We start with the resolvent problem:

Au—DivS(u,0) =f in RY,
divu=0 inRY,

M—u-n=g onRéV,

S(u,0)n + (¢, — c,A'Yhn =0 on R}.

(3.3.1)

The following lemma was proved by [SS09, Theorem 1.1].

LEMMA 3.3.1. Let 0 < e < 7/2 and 1 < q < 0o. Then there exists a positive
number Ao = Ao(g) > 1 such that equations (3.3.1) admits a unique solution

(,0,h) € WARNN x WHRY) x W—VaRN-1)

for every X € B, £ € LyRY)N, and g € W2 YYRN-YY. In addition, the
solution (u,0,h) satisfies

||()\ll, Al/Qvua Vzua va)HLq(Rf) + H()‘ha V/h) ||W§*1/q(RN—1)

< C(N.g,200) (1], ) + I9lya-170 o)
for any X € ¢ x, with some positive constant C(N, g, e, \o).

The following proposition is used to eliminate the pressure 6 from (3.3.1).
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PROPOSITION 3.3.2. Let 1 < g < oo and ¢ = q/(q —1). Then, for every f €
LRIV, there ewists a unique 6 € W, o (RY) satisfying the variational equation:

(3.3.2) (VO,Vo)ry = (£, Vo)ry for any ¢ € Wy o(RY),

and furthermore, there holds the estimate: ||V9||LQ(R1J§) < C||f||Lq(R1+V) with some
positive constant C' independent of f,0 and .

PROOF. Since Cg°(RY) is dense in L, (RY ), it suffices to show the existence of
asolution § € W (RY) to (3.3.2) with f € C°(RY)N. Let g°(z) and g°(z) be the
odd and even extensions defined as (3.2.5), and put F = (f¢, ..., f& 1, f&)T. Then,

setting 0(z) = ]-'gl[|£|_2}'[div F](9)](z), we easily see that by divF = (divf)? and
Lemma 1.2.7

Af=divf inRY, 6lgy =0,
and besides, Fourier multiplier theorem of Hérmander-Mikhlin type yields that
VO]

LyRY) = IVOllL, &~y < ClIF|L,my) < C||f||Lq(Rf)

with some positive constant C = C(N,q). These facts implies that 6 € W;O(Rf ),
and that 0 satisfies (3.3.2). Finally, the uniqueness follows from the the existence
of a solution to the dual problem of (3.3.2), which completes the proof of the
proposition. [l

By Proposition 3.3.2 we see that for f € L,(RY)" and g € Wy VRN
there exists a unique solution 6 € W(}’O(Rf ) to the variational equation:

(3.3.3) (VO, V)ry = (f = VG, Vi)py for any ¢ € Wy o(RY),

where g is an extension of g satisfying ||§||W;(R$) < C||g||qu_1/q(RN,1) with some
positive constant C independent of g and g. Furthermore, the solution 0 satisfies
190112, %) < CON. )1l ) + [Vl ) for a positive constant C(N,g).
Thus, setting ¢» = 6 + ¢ in (3.3.3) furnishes that

(V, Vo)my = (f, Ve)my for any ¢ € Wy o(RY), ¢lry =g,

and ||Q/}||Lq(Rf) < C(N’ Q) (HfHLq(Rf) + ”gHqu*l/‘l(RN—l))'
As mentioned above, for u € W2(RY)N and h € I/Vg*l/q(RN’l)7 we define
K(u) and K(h) as the solutions to

K(u)lgy =2Dnun|ry, K(h)|gy = (cg — caA')h

for any ¢ € W(},’O(Rf ), respectively. Here K (u) and K (h) also satisfy
VK|, &y < Cllullwz gy, va(h)”Lq(Rf) < Cllhllyya-1/e g1y

with some positive constant C' = C(N, q).
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Now we consider the equations:
Au—DivS(u, K(u) + K(h)) =f in RY,
(3.3.4) M —u-n=g onR,
S(u, K (u) + K(h))n+ (¢, — coA')hn =0 on RY
in the function space X, defined as (3.1.2). The following proposition then holds.

PROPOSITION 3.3.3. Let 0 < ¢ < w/2 and 1 < ¢ < oo. Then there exists
a positive number Ao = Xo(e) > 1 such that (3.3.1) is equivalent to (3.3.4) for
every A € Y. 5, and (f,9) € Xy, which means that the following assertion holds:

(w,0,h) = (u, K(u)+K(h), h) is a unique solution of (3.3.1) if (u, h) € WZRY)N x

Wg_l/q(RNfl) s a unique solution of (3.3.4), and conversely (u,h) is a unique
solution of (3.3.4) provided that

(u,0,h) € W, (RN x WHRY) x W= /9RN)
is a unique solution of (3.3.1).
ProOF. We first assume that (u, ) € W2(RY )N x Wo—4RN-1) is a unique
solution of (3.3.4). We shall check the divergence free condition. Let ¢ € W;,’O(Rf )

with ¢ = q[(q — 1), and then by the first equation of (3.3.4) and the definitions of
K(u) and K(h)

0= (fa V@Rf = (Aua V(p)Rf = _()‘ div u, (p)Rf,

, we easily see

which furnishes that divu = 0 in RY. Setting 0 = K(u) + K(h)
(3.3.1) holds for

that (u,8,h) solves (3.3.1). By Lemma 3.3.1 the uniqueness of
A € ¢ 2, Where )\ is the same number as in the lemma.

Next we show the opposite direction. Let (u,8,h) € W2Z(RY)N x /W;(Rf) X
WoY9RN-1) be a unique solution of (3.3.1). By the definitions of K (u) and

K(h)
0= (£, Vo)ry = (V(0 — K(u) = K(h)), Ve)ry, 0= (0 - K(u) - K(h))|ry
for any ¢ € qu,ﬂo(Rf), so that 8 = K (u) + K (h) by Proposition 3.3.2. Therefore

(u, h) is a solution of (3.3.4), and furthermore, the uniqueness of (3.3.4) for A € . 5,
follows from the uniqueness of (3.3.1). This completes the proof. (]

In view of (3.3.4), we here set the operator A, as
A,U = (DivS(u, K(u) + K(h)),—u-n) for U= (u,h) € D(A,)
with domain D(A,) defined by
D(Ag) = {(u, h) € (W7 RN N Jy(RE)) x Wi HRN) |
D(u)n — (n-D(u)n)n =0 on R}'}.
The equations (3.3.4) then is written by AU — A,U =F for F = (f, g).

LEMMA 3.34. Let 0 < e < /2 and 1 < g < co. Then there exist a positive
number Ao = Ao(e) > 1 such that

(3.3.5) N = A) ) £C (A€ Sen,)
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with some positive constant C = C(N,q,e, Xo). In addition, A, is a densely defined
closed operator on X,.

PRrROOF. By Lemma 3.3.1 and Proposition 3.3.3, we have (3.3.5), so that our
main task is to prove that 4, is a densely defined closed operator on X,.
First of all, we note that the range of A, is contained in X,. In fact, for

U = (u,h) € D(A,) and ¢ € W}, o(RY) with ¢’ = ¢/(¢ — 1)
(DivS(u, K (u) + K (), Ve)py = (~Au+ VE(w), Vo)ry =0,
which implies that Div S(u, K (u) + K (h)) € Jy(RY). On the other hand, it is clear
that A,U € L (RY)N x W2~Y9(RN-1). The range of A, thus is contained in X,.
Next we show that D(A,) is dense in X,. Let F = (f,g) € X,. By Lemma

3.3.1 and Proposition 3.3.3, there exists a positive integer mg > 1 such that for any
m € N with m > myg there exists (u™, h™) € D(A,) satisfying the equations:

m : m m 17 (1M : N
mu”™ — DivS(u™, K(u™)+ K(h™)) =f in RY,
(3.3.6) mh™ —u™-n=g onRY,
S(u™, K(u™) + K(h™)) + (¢g — cocAYA™ =0 on RY
and the estimates:

(337) || (mum, m1/2vum7 v2um) ||Lq (Rf) + || (mhm7 V/hm) ||W(12*1/‘1(RN— )

+[VE@™) + K(0™)l|L, @y < C(N,g,mo)|[Fllx, -

In particular, (3.3.7) implies that for j,k=1,..., N
(3.3.8) u”™ =0 in W;(Rf)N as m — 00,

D;Du™V 0 weakly in L,RBRNY asl— oo,
where {m(l)}2, is a subsequence of {m}x_, . We set v = mu™, n™ = mh™,
and 0™ = K(u™) + K (h™). Then by (3.3.7) there exist functions f € L,RIN,
g e W YIRN-1), and subsequences {v™"(}2 | {nm(D}  such that
(3.3.9) v 5 f  weakly in L,BNN  asl— oo,

™ 5§ weakly in qufl/q(RNfl) as | — oo,
and especially f € J,(RY) by (3.3.6), (3.3.9), and the definitions of K and K. In

addition, there exist a function 6 € qu’O(Rf ) and subsequence {6} such
that

(3.3.10) VoD VO weakly in Ly(RY)N asl— oo,

because qu’O(Rf ) is a reflexive Banach space (cf. [Galll, Exercise I1.6.2]). Passing
a subsequence of {m}°_  “in (3.3.6) if necessary, we have, by (3.3.8), (3.3.9), and
(3.3.10),

(f+ V0, 0)ry = (£,¢)ry for any p € C°(RY)",
(G, ¥)rr-1 = (g,%)rv—1 for any ¢ € C°(RN ).

This implies that f = f and g = § since Ly(RBRYN = J,RY) & G,(RY) with
G,RY)={Voe L,RY)N |0¢e W;O(Rf)}. We thus can replace (f,g) by (£, g)
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in (3.3.9), which, combined with Mazur’s theorem, furnishes that for any € > 0 there
exists a positive number ny and non-negative numbers ¢; and d; (I = 1,...,n9) such
that >0 ¢ =1, Y /2, d; =1, and

<eg,

no no
f— Z ev™® g— Z dyp™®
=1 Lq(RII) =1

Since (312, W, 3700 di™ W) € D(A,), we see that D(A,) is dense in X,,.

We finally show that A, is a closed operator on X,. To this end, it is sufficient to
prove that U = (u,h) € D(A,) and V = A, U for any sequences {U;}52, C D(A,)
with

< E.

Wq?*(l/Q)(RN_U

U;—-U inX, AU;,—=-V inX, asj— oo

Setting F; = AU, — A U, where \g is the same constant as in Lemma 3.3.1,
we have F; — AU — V in X, as j — 0o, and therefore by Proposition 3.3.3 and
Lemma 3.3.1 with A = A\g

||UJ - Uk”Wf(Ri’)xW?*l/q(RN*l)
< C(N,g,8,20)|[F; —Fillx, =0 asjk— oo
This shows that there exists a function U € W2(RY)N x w -/ Y(RN-1) such that

U; »Uin W2RY)N x Wo9RN-1) as j — 0o. Since U = U, it is clear that
U € D(A,), and also that

IV - AUllx, < V- AUjllx, + [114,U; — AU||x,
< HV - A(IUJ'HXq + ”UJ - U||W3(R$)XW571/LZ(RN_1) —0
as j, k — oo, which completes the proof of the lemma. O

By Lemma 3.3.4, we obtain the following proposition.

PROPOSITION 3.3.5. Let 1 < ¢ < oco. Then A, generates an analytic semi-
group {S(t)}i>0 on X,. In addition, there exist a positive constants vo and C =
C(N,q,70) such that for any t > 0

ISMF|x, < Ce'|F]x,,
10:S)F | x, < Ct™'e!|[F|x,,
10:S(O)F || x, < Ce™[[F[lpca,)-

Let P, and P» be projections from X, to J;(RY) and to W2HVaIRN-1),
respectively. If we set for F € X,

(3.3.11) S(t)F = P, S(t)F,
T(t)F = P,S(t)F,
II(t)F = K(P,S(t)F) + K (P,S(t)F),
then the standard theory of analytic semigroups tells us that
(u,0,h) = (S)F,II(H)F, T (t)F)

solves (3.1.1) uniquely and satisfies the required properties in Theorem 3.1.1.
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3.4. Decompositions of S(t),I1(¢), and T(¢)

In this section, we give decompositions of S(t),T1(t), and T'(t) obtained in
Theorem 3.1.1. To this end, we first calculate exact formulas of solutions to (3.3.1).
Let (w!,p!) and (w?, p?) be solutions, given by (3.2.8) and (3.2.13), to the equations
(3.2.7) and (3.2.12), respectively, and then note that (w,p) = (w! + w2 p + p?)
solves (3.2.1) uniquely. In addition, let (v, 7, ) be solutions to

Av — Av + Vr =0, ian
divv=0 in RY,
(3.4.1) .
AM—v-n=w-n+g onRy,
S(v,m)n+ (¢g — c,A')hn =0 on RY.

Then (u,0,h) = (v + w, 7 + p,h) is the solution to the equations (3.3.1). Let
j,k=1,...,N—land J =1,..., N in the present section. Representation formulas
of (v, 7, h) are given by
(342) vz, \) = FS [0 an, M@, 7@, A) = Fg 7 (€ an, N](@),
_ D(A, B) N ~
/ _ 1 ) _ ! ! /

W' N = P | e (€00 + 3] @)

(cf. [SS12, Section 7)), where

@j(glvx]\/'a >‘)

_ (_Me-m +MM(1*N)) (¢ + ca A2R(E ),

D(A, B) D(A, B)
2 2
B (e N, \) = (%e’m _ %M(mM) (cg + co A2VR(ET,N),
%(5/7 IN, >\) = (B +;()151BB;— A )GiAwN (CQ + CUAZ)/E(glv >\)7

for A, B,D(A, B), L(A, B), and M(xy) defined as (1.2.1) with g = 1 and (1.2.2).
Inserting (3.2.3) into h(z’, \), we have the following decompositions:

6](5/,.’[3]\],)\): Z ﬂ(&laxl\h)\)a %(flaxl\ﬁ)‘): Z %d(£/7mNa>‘)7
de{f,g} de{f.g}

where the right-hand sides are given by
(3.4.3)

N
VBB C +CUA2 e’} B(a . R
oL (¢ e, A E A %) )/O e~ Blentun) i (¢ yn) dyn
=1

N /)\ UAZ D et
+Z VR A(’é)‘“' )/O e PN M(yn) fx (€, yn) dyn

=1

N
VA (cq +coA2) [ s 5
# 30 PR [ e F € )

=1




JK
* Z LA D)
(¢ aw, ) =

if\?\](f/, TN, )‘) =

VMM

3.4. DECOMPOSITIONS OF S(t),TI(t), AND T(t) 77

(cg + CaAz)

ij(cy + co A?)
(B+ A)L(A, B)
Alcyg + e A?)
(B+ A)L(A, B)

(—(B—A)e

Bax 4 (B? + A2 M(z

(B+A)e P"~ —(B? + A%)M(ay

/O°° M(xn)M(yx) Fxc (€ yn) dyn

~)) (&),
) g(&),

N
) PAAE N (cq + e A%) [ _ ~ .,
Aoy ) = S0 TS L()( ; ) / e AN P (¢ yn) dyn
0

%\g(glv TN, )‘) =

PAM(E N (cy + o A?)

+Z’“

A, B)
K=1

and furthermore,

(3.4.4)

VEB(EN) =~

VEE(E N = -

M) =

VRAE N =

Vi e\ =

N2 (€)=
VIM(E L) = -
VM(E ) = -

PLAE N = -
PME ) =

In addition, we see that, by inserting (3.2.4) into ﬁ(ﬁ/,
h9(E,\) with

(3.4.5)

i€ A(B? + A2)

/0 e A" M(yn) fx (€. yn) dyn,

i§;AB — A)

D(A,B)
A%2(B + A)
D(A,B)
i&;A(B — A)(B? + A?)

A B
2 2 2
e 12()/563; o) ),
£i€r(B— A)? /
el VRR(EN) = -
£56u(B — A><B2 + 42) L

D(A,B)
§i€k(B — A)(B” + A?)

(B+A)D(A,B)
i€, A(B — A)(B? + A?)

(B+ A)D(A,B)
fjfk(BZ+A2)2
(B+ A)D(A,B)’
&L A(B? + A?)?
(B+ A)D(A,B)’
&, (B — A)(B? + A?)

pam 0 TNEN=-
¢, AB(B? + A?
T R -

(B - A

— (B+A)L

VRNI(E D) =
VRPE N = -

W (€)=
VIF(E N =

VJJV\A]\'I/M(SI)‘) - -

(B+A)D(A,B)

A2(B? 4 A?)

D(A,B)

i¢;A(B? + A?)
D(A,B)

A2(B? + A?)

D(A,B)

i&;A(B? + A?)?

(B+ A)D(A, B)’

A2(B2+A2)2
(B+ A)D(A,B)’
A(B + A)(B? + A?)

D(A, B) ’
243(B? + A?)
D(A, B)

N), h(€N) = BE(EN) +

) L [ e R ) duy
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(A )!/1 e AU F (€, yn) dyn

N—

QkaAB
+ 2 W/ M(yn) Fe(€ yn) dyn
243 S
FETIEE ) MOmBE ) oy,

NI _ D(A, B) N
h?(&', N) *mg(g )-

Next we shall construct cut-off functions. Let ¢ € C5°(RN~!) be a function
such that 0 < (&) <1, (&) =1 for |¢'| <1/3, and p(&') =0 for |¢'| > 2/3. Let
Ap € (0,1) be a sufficiently small number, which is determined in Section 3.5. We
then define g and ¢, as

(3.4.6) @o(&') = (€' /A0), Poo(€) =1 —p(&'/Ao),
and besides, we set, for ¢t > 0,

1

(3.4.7)  Si(t; A)F = 5— N pa(€)VUE 2, () d,
211 I'(e)
1
Mgt Ao)F = o— | e Fg pa(€)F(E 2y, N](2') d,
271 I'(e)
1 ~
T (t; A))F = -— N Fe pa(€RAE V() d,
271'2 I'(e)
1 1
Ef = — At
Ry(t) 57 F(E)e wl(z,\)d\, Ry(t)f = 2 F(E)e tw? (2, \) d\
1 1
P\ (t)Ef = — erMp(x, N dX\, Py(t)f = eMp?(x, \) dX
21 JT(e) 271'2 JT(e)

with a € {0,00} and d € {f, g}, where F is the extension operator defined as (3.2.6).
Here we have taken the integral path T'(¢) = I'"(¢) UT ™~ (¢) as follows:

(3.4.8) THE) ={A e C| X = Xo(e) +ue™™ 9y e (0,00)}
for some e € (0,7/2) with Ao(g) = 2Xo(¢)/sine, where Ao() is the same number

as in Lemma 3.3.1 (cf. Figure 3.4.1 below). By (3.4.7), the operators in Theorem
3.1.3 are defined as

(3.4.9) Sat)F = Y Slt;A)F, ILHF= > IIi(t; Ag)F
de{f,g} def{f,g}
T.F = Y Tt AoF,
de{f,g}

R()f = Ri()Ef + Ry(t)f,  P(t) = Py()Ef + Py(1)f

for a € {0, c0}.
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\ Im
I't(e)
2)\0(5)
/\1](5) _
€ /\n(i)
(0] Re
T (e)

FIGURE 3.4.1. T'(e) =TT (e) UT~ (¢)

REMARK 3.4.1. (1) Let 1 < p < oo. Then, by Proposition 3.3.3 and (3.3.11),
we see that for F € X,,, defined as (3.1.2),

HF = Y Su(t)F + R(Hf,

a€{0,00}

= Y IL@GF+POf,
ac{0,00}

> T.t)F
a€{0,00}

Since the right-hand sides are valid for F € Xg by Lemma 3.3.1, we extend
S(t),1I(t), and T(t) to the operators defined on X7 by the relations above. For
simplicity, such extended operators are denoted by S(¢), II(¢), and T'(t) again.
(2) Let 1 < p < o0 and f € L,(RY)N. Then, by (3.2.9) and (3.2.15), we see that

fori=1,2,1=0,1,2, and t > 0

||VlRi(t>f||L,,(R§) < C(N,p)t_l/QHfHLp(Ry),

10 Ri()F, VP (OF) ||, myy < CON.0)E L, mv)
with some positive constant C'(N,p), which furnishes that Theorem 3.1.3 (3)

holds.
(3) The extension £(T(t)F), defined as (3.1.3), is decomposed into

(3.4.10) = > ) &Tt; Ag)F)

a€{0,00} de{f,g}
= > 2 an [ e e it ] @
a€{0,00} de{f,g}

We devote the last part of this section to the proof of the following lemma.
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LEMMA 3.4.2. Let & € RN\ {0} and )\ € {z € C| Rez > 0}. Then it holds
that L(A, B) # 0.

PROOF. Applying the partial Fourier transform with respect to tangential vari-
able ' € RV~! to the equations (3.3.1) with f = 0 and g = 0 yields that

(3.4.11)

N () — Ni i85 (1€5uk (zn) + 16,5 (TN )

- —Dn(Dyi;(zn) + i&0n (zn)) + i€;0(xn) = 0,

Ny (zn) — Nz_:lifk(DNﬂk(évN) + it (o)) — 2D} TN (2n) + DB(zn) =0,
= N-1

; i€k (zn) + Dyun(zn) =0,

M+ Ty (0) = 0,
Dn;(0) 4 i&;an (0) = 0, —0(0) + 2DNTN(0) + (¢ + coA)h =0
for zy > 0, where
y(n) =0y 2n), Oan) =0 zn), h=h(g).

Here we set
ﬁ(fL‘N> = (ﬂl(;vN),...,ﬂN(xN))T, ||f||2 :/ f(Q?N)-f(xN) de
0

for m-vector functions f, where m € N, and show that L(A, B) # 0 by contradiction
from now. Suppose that L(A, B) = 0, and then we know that (3.4.11) admits a

~

solution (u(xn),0(xn),h) # 0 which decays exponentially as zxy — oo (see e.g.
[SS12, Section 4]). On the other hand, we obtain

N-1 N-1
0= A&|1* + 2 Dnan | + > liged; 1> + 1 &0,
j,k=1 j=1
N-1 R
+ Y DNy + i&an|* + Neg + co A)[A)?
j=1

through the following two steps: First multiply the first equation by %;(xx) and
the second equation by @y (xy) in (3.4.11), and integrate the resultant formulas
with respect to xxy € (0,00). Second use integration by parts with the third to
sixth equations of (3.4.11). Taking real parts in the obtained identity above yields
that
DNaN(J}N) =0, DNﬁj(xN) + ifjaN =0 for ReA>0.

In particular, @iy is a constant, but %y = 0 since lim,. , o0 Uy = 0. We thus obtain
Dyt = 0, which furnishes that @; = 0 by lim, \ o #; = 0. Combining 4; = 0 and
the first equation of (3.4.11) yields that i§j§ = 0. This implies that 6 = 0 because
¢ # 0. In addition, by the sixth equation of (3.4.11), we have (¢, + co A2)h = 0.

~

Therefore, since ¢, + c,A? # 0, we see that h = 0. Summing up the argument
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above, it holds that ©w = 0, = 0, and h = 0, which contradicts to L(A4, B) = 0.
This completes the proof of the lemma. O

3.5. Analysis of low frequency parts

In this section, we show Theorem 3.1.3 (1). If we consider the Lopatinskii
determinant L(A, B), defined as (1.2.1) with u = 1, as a polynomial with respect
to B, then it has the following four roots:

+ +i(25—1)(w/4) ,1/4 5,1/4
(3.5.1) Bi =D/l 41

7/4 9/4
- AV - o A% +O(AY™%) as A—0
2eEi(2i-1)(x/4) L/t oti(2-1)(3w/4) 3/

for j =1,2. Set Ay = (B)? — A2, and then

2¢o
(3.5.2) At = kicl/2AY? —2A% ¥ %/ZA“’/‘* +O0(AMY) as A —0.
1Cqy

REMARK 3.5.1. Let 0 < ¢ < 7/2 and ¢ € RV~ \ {0}. Then, for A € %,
we choose a brunch such that ReB = Rev A+ A2 > 0. Note that Ay € X, and
Re(A+ + A2) < 0.

We set g9 = tan~1{(A?/8)/A%} = tan~1(1/8), and
Ig ={AeC A=A+ (c}/?/1)A 2" w10 2},
If={\eC|A=—A%+ (A*/4)e*™, u:0— 7/2},
TF ={AeC| A= —(A%(1—u) +vou) £i((A%/4)(1 — u) + Fou), u: 0 — 1},
If={AeC| A= —(y £i0) +uet ™) 4 :0— oo}
(cf. Figure 3.5.1 below), where 79 = Ao(ep) given by Lemma 3.3.1 and

(1 +2v65)70

)AO(EO) =T

(35.3) A= % (/\o(so) + Xo(fo)) = é (1 + = :

Im#t ~
Iy X Yo

__________ c_(l/ 2 71/2

- ------- A2/4 )\0(50) “ Xo(fo)

- —24%2-4% O Re

FIGURE 3.5.1. T'} (0 =0,1,2,3)
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then decompose S§(t; Ao)F, Id(t; Ag)F, Ti(t; Ag)F, and E(Tg(t; Ag)F), defined as
(3.4.7) and (3.4.10), into

3 3
(3.5.4)  S§(t: Ag)F = > S57(t; Ag)F, I3 (t; Ao)F = Y 115 (t; Ao)F,
o=0

o=0

T (t; Ag)F = f: T (t; Ag)F,  E(TE(t; Ag)F) = f: E(T (t; Ag)F)

o=0 o=0
for d € {f, g}, where
(3.5.5) S7 (t; Ao)F = F! 2%” - eMoo(€)VHE  an, ) d/\} ('),
1§ (; Ao)F = Fe,' Qim - M po(§)FUE  an, N) dx} (),
T A0F = | o (@ i @),
ey Aa0F) = 5 |on [ e R ) i @)

with @o(¢’) defined as (3.4.6). In order to estimate each term in (3.5.5), we here
introduce the operators K= (t; Ag) and LI+ (t; Ag) defined by

(35.6)  [KE7(t; Ao)fl(z)
[ , € (€ Nt ) g )] @)
(L7 (1; Ao)gl(2)
=gt | [, (€ Aan) 3| @)

o

with some multipliers &, (¢, A) and 1,,(¢’, \), where

e~ Al@n+yn) (n=1),
AN M(yn)  (n=2), 4
TN — 1 ,
Xn(l’N, yN) = eiB(zNijN) (n - 3)7 yn(xN) = :_B]JN EZ = 233
eE Mlyy)  (n=4), Meow) (3
M(zy)e™ P (n=5),
M(zn)M(yn) (n=6),

REMARK 3.5.2. Estimates of 0;£(Ty (t; Ao)F) will be showed in the last part
of this section.

3.5.1. Analysis on F(ﬂf. Our aim here is to show the following theorem for
the operators defined as (3.5.5) with o = 0.

THEOREM 3.5.3. Let 1 <r <2< g < oo and F = (f,g9) € X!. Then there
exists an Ag € (0,1) such that the following assertions hold.
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(1) Let k=0,1,1=0,1,2, and &’ € Név_l. Then there exists a positive constant
C =C(N,q,r, &) such that for any t >0

168 D D SEO (15 Ao)F |,y < C(t+ 1)~ G255 =51, gy,
10 Dy Dy S5 (65 A0)F ||, )
— 71 JE S —_= e ____
(t+ 1) T DR DA g vy (1=0),

(t+ 1) T AR S g vy (1=1,2).
(2) There exists a positive constant C = C(N,q,r) such that for any t > 0

1

_N(1_ 1) _ 1
VI (8 Ao)F ||, my) < C(t+ 1) FEDF ]l gy,

_N—1(1_1)_1(1_1)_1

IVIIE® (t A0)F ||,y < Clt+ 1)~ 7 G030 g, ).

(3) Let a € NYY. Then there exists a positive constant C = C(N, q,7,a) such that
foranyt >0

| D VE(TE (t: Ad)F) |1, my) < O+ 1) FG-D)—4-%

Jox
2 ||f||LT(R$)a

Q=

| DEOLE(TE (t: Ao)F) |1, mavy < Ot + 1) FED =],
||D3V5(Tog’o(t§AO)F)HL (RY)

gl .

(4) There exists a positive constant C = C(N,q,r) such that for any t > 0

<oi+1) 7 G-i)-3G-7)
175 °(t: o), rv—y < C(t+ 1)~ 7 G 3C=Df| Ly (£ 2),
_N-1(1_1
T8 (6 Ao)F | vy < Clt+ )7 8 |lg]| v
We start with the following lemma in order to show Theorem 3.5.3.

LEMMA 3.5.4. Let1<r<2<q<oo, andlet f € L.(RY) andg € L,(RV71).
We use the symbols defined as (3.5.6) with

) = A g = DA

(1) Let s > 0 and suppose that there exist positive constants A1 € (0,1) and C =
C(s) such that for any A € (0, Az)

k(€ A0)| € CATTS, ra(€,Ap)| < CATTS, |ra(€/,Mp)| < CATTS,
ka(€ )| < CATTS, |rs(€,A0)| < CATTS, |re(€/,Ae)| < CATTS.

Then there exist positive constants Ao € (0, A1) and C = C(N,q,r,s) such that
foranyt>0

K0t Ao) £l . LmY) SC+1

%*%)*%nfnL @y (=126,

RN)7

) (t+
||K9,i’0(t§A0)f||Lq(RN) <CO(t+1
”Kfﬁ(t;AO)fHL (RY) = C(t+

K0t A0) fllz,myy < Clt+ 1)~ (T F)G—0)=20-3) 2||f||L
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(2) Let s > 0 and suppose that there exist positive constants Ay € (0,1) and C =
C(s) such that for any A € (0, A1)

Imi (€, Ae)| < CAYTS, Jmg(€, )] < CAM™S | |mg(€/,As)| < CATHS,

Then there exist positive constants Ag € (0, A1) and C = C(N,q,r,s) such that
foranyt>0andn=1,3

SDHED g, ey,

_N-1
IOt Ao)gll .y mayy < Clt+1) 77 G

N-—1 s
IZE(t Ao)gll .y mayy < Clt+1) 77 G780 73|, o).

(3) Suppose that there exist positive constants Ay € (0,1) and C such that for any
Ac(0,4))

k(€ A0)| < CA, |ra(€',Aa)| < CAT, |11(€,Aa)] < CAT.

Then there exists a positive constants Ag € (0,A41) and C = C(N,q,r) such
that for anyt >0 andn =1,2

_N—1(1_ 1
Pl

_il(i_1
)G ey (0 #£2),
N—-1/(1 1

IEE(t: Ao)glen=oll Ly mnv—1y < ClE+ 1) 7 G |lg|| . 1)

I (8 Ao) fllen=ollz, (rv-1) < C(t+1)

o~ o~

Proor. We use the abbreviations: | -|l2 = || - [[L,&~-1), flyn) = f(&,un),

and £ =t + 1 for ¢t > 0 in this proof, and consider only estimates on FaL since the
case of 'y can be proved similarly.
(1) We first show the inequality for K;"%(¢; Ag). Noting that

(85.7) B2~ (Bf)? = A— Ay, L(A,B) = (B~ Bf)(B- By )(B- Bf)(B- By),
we have, by the residue theorem,

(3.5.8)

[0t Ao) f]()

I s o€k (€ N)(B + Bf JeAlntuw) /
ac U B BB - BB <yN>] (@) dux

= [T —1 | At wo(fl)“{l(g,v)‘+)Bi‘_€7A(xN+yN) I ’
= 47rl/0 Fe {e (BF —B)(BF —BI) (BT = B;)f(yN)] (2') dyn-

In view of (3.5.1) and (3.5.2), we can choose Ay € (0, A;) in such a way that

(3.5.9) Mt < Ce T |Bf — By| > CA%, |Bff — BE| > C A+
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for any A € (0,A4p) and ¢t > 0 with some positive constant C. Thus, by L,-L,
estimates of the (N — 1)-dimensional heat kernel and Parseval’s theorem, we have

(3.5.10)  [I[E Ot A) FIC 2n) |, vy

<Ot_T(%_%)_§/ "67(‘42/2)?1467 (QCNHJN yN H dyN
0

_ A2 T
< cff”;l(%f%)*%/oo e ey dyn
0 tV2 fan +yn

‘/’ 1/ yn)
0 t1/2+xN+yN

where we have used Lemma 3.2.2 with s; = 1/4, s; = 1 (i = 2,3,4), 7 = t,
a=xN +yn, and Z = A to calculate from the second line to third line. If ¢ > 2,
then applying Lemma 3.2.3 (2) with a = 1/2, by = by = 1, and 7 = ¢ to (3.5.10)
implies that the required inequality holds. In the case of (¢,7) = (2,2), by (3.5.10)

IOt Aa) ) < O3 |7 [ Aot fy)|
0
and then it follows from Corollary B.3 (1) that
‘|K1+’O(t§A0)f||L2(R§) <C(t+ 1)_%||f||L2(R$)-

On the other hand, in the case of 1 < r < 2 and ¢ = 2, by the second lien of
(3.5.10), Lemma 3.2.2, and Holder’s inequality

20 [ [ ],
) 2

<oty [T eeey
o T (y)1 P2

|
—~
Sl
Q=
\_/
NIJ:

dyn,
2

et

ToN(L_1)_=
<ci3(-3) 2||f||LT(Rf)7
which complete the proof for the case of Kf ’O(t:,Ao). We here summarize the
argumentation above to the following lemma.

LEMMA 3.55. Let 1 <r <2<g<oo,7>0,ands; >0 (i =12). For
zy >0 and f € L. (RY), we set

r , — H 751A27—A —s2A(zN+YN) 7 /, H d )
(@)= [ e F&om), s o

Then there exists a positive constant C = C(N,q,r) such that for any 7 > 0
N1 1 1) _1(1_ 1
IE ()L, ((0,00)) < CT7 72 (2-3)-3(+-3)

Iz ey
Secondly we show the inequality for K(J)f 3 (t; Ag). We here set

&
Bf — A

In view of (3.5.1) and (3.5.2), we can choose Ag € (0, A;) in such a way that for
any A € (0, Ap) and a > 0

e—Blia _ ,—Aa

My (a) = for a > 0.

—Bf:a _ e—Aa|

B — 4

le

(3.5.11) IMzx(a)| = < CA™VAe—Aa



86 3. Ly-L, ESTIMATES OF STOKES SEMIGROUPS
with some positive constant C. Thus, by the same calculations as in (3.5.8) and
(3.5.10), we obtain
+,0
IS (% Ao) F1( )l (mv-1)

N-—-1

o0 ~
< AR U [ [ |
0 2

which, combined with Lemma 3.5.5, furnishes that the required inequality holds.
Thirdly we show the inequality for K3 °(t; Ag). In view of (3.5.1) and (3.5.2),
we can choose Ay € (0,1) such that
(3.5.12) |e_B1+(mN+yN)| < eeAMantun)  for any A € (0, Ao)
with some positive constant ¢, so that we easily see that by Lemma 3.2.2
IR (85 Ao) 1( a8 | 2y v -1)
T /OO H6*(1“2/2)?/16*“”4(”””)f(yzv)H dyn
0 2

<Ct 2
Nol(1o1)_s /OO 1fCyn)ll, ma-1)
o V24 (zn)*+ (yn)t
This yields the required inequality together with Lemma 3.2.3 for ¢ = 1/2 and
by = by = 4.
Finally we show the inequalities for K°(¢; Ag) (n = 4,5,6). Using similar
argumentations to the above cases, we have for n = 4,5
No(1o1)_g /°° ||~f('7yN)||LT(RN—1) p
o tYV2+(zn)t+un
~xovaoays [ ISCun)l @y
KOt A0) f](-, <ot (G-h) a/ A -
IS (5 Ao) F1(, ), mv-1) < 0 TUZ 4oyt (o)
which, combined with Lemma 3.2.3 (2), completes the proof for the cases of n = 4, 5.
In addition, for n = 6, we have
It Ao) £, 28|y v

<o (-9)-3 /oo Hef(AQ/z)?Aech(waN)f(yN)H dyn,
0 2

<Ct~

IS0 Ao) £ an) |z, (mv-1) < CE

)

)

which furnishes the required inequality of K g' ’O(t; Ap) by Lemma 3.5.5.
(2) Noting (3.5.7), we have, by the residue theorem,

6>\+t900(€/)mn(§/ A)Bi_
I A I(an(€)] @)
(B = By )(Bf — By )(B{ —By)
Thus, by (3.5.9), (3.5.11), (3.5.12), Lemma 3.2.2, L,-L, estimates of the (N — 1)-
dimensional heat kernel, and Parseval’s theorem, we have

(3.5.13) L0t Ao)gl (- )l o,y r¥-1)
<o~ G-1)-3 |e= (A2 /DT AL/ 20— AN G|,

(L0t Aog)gl(z) = 471'2']-'&_,1 {

_N—-1(1_1\_=s ~
< T T D)3 g vy [TV (an) V),
I[LE°(t Ao)g)(- ) oy vy
~ N—-1(1 1)_ s ~.
< T T G0 8 |lgll L, vy /(T + (2n)?).
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For L;“O(t; Ap), it follows from Lemma 3.2.3 (1) that the required inequality holds.
We consider L0(t; Ag) (n = 1,3) below. If ¢ > 2, then by Lemma 3.2.3 (1)
we obtain the required inequality. In the case of ¢ = 2, we see that by the first
inequality of (3.5.13)

||L:’O(t§ AO)Q”LQ(Rf) <(Ct 3 —(A? /2)tA( ¢)

Ly (mN-1)

< Of- <%7%>*5||g||Lr(Rm

with some positive constant C, which completes the proof.
(3) As mentioned above, we have for n = 1,2

IIE0(8 Ao) fllan=oll £, mN-1)

<CT ) [ e miazean Fy)| dy.
0

~_ N-1(1_1 & -
< i3 / 1 G ) v/ (EY4 4 (un) ) dy

<ot TG |em (A I2T5(E) 5 < Ct*_(l“)llqllL ®N-1),

which, combined with Holder’s inequality, furnishes the required inequalities. [

COROLLARY 3.56. Let 1 < r < 2 < q < o0, and let f € Lr(Rf)N and
g € L.(RN71). We use the symbols defined in (3.5.6) with o =0 and

“n(fla )‘)

kn(gla/\) = L(A B) ) n(g 7>‘) L(A )

(1) Let a € N}Y and suppose that there exist positive constants A; € (0,1) and C
such that for any A € (0, Ay)

k(€M) < CA,  |ra(€,A2)| < CAT,  |my(€,As)| < CAT.

Then there exist positive constants Ao € (0, A1) and C = C(N,q,r,«) such
that for anyt >0 andn =1,2

1

IDIVIEO(t; Ao) | ey < Ot + 1)~ FG-2)-4-5
(2-1)-

ID2VLEC(t; Ad)gll,my) < Clt+1) 77 G

AL

MIZ

25

Q=

|1 D2OK;E0 (8 Ao) fI ., (RY) SC(E+1)7

|| +)7

_l)_l l_l)_l_
q 2\27 ¢ 4

S

2 gl my—1y-

et k=0,1,1=0,1,2, and o’ € . e suppose that there exist positive
2) Let k=0,1,1=0,1,2, and o/ € NY~1. W, hat th ‘ iti
constants Ay € (0,1) and C such that for any A € (0, Ay)

ka(€, Ae)| < CAT,  |ry(€,M2)] < CAT,  |ks(€/,A\2)| < CAT,
k(€' Ae)| < CAT, |ma(€' A1) < CA,  |ms(€/,As)] < CAT.



88 3. Lq-L, ESTIMATES OF STOKES SEMIGROUPS

Then there exist positive constants Ay € (0, A1) and C = C(N,q,r, ') such
that for anyt >0 and n = 3,4,5,6

o _N(L_1)y_k_lel L
|6 DS Dy (8 Ao) |,y < Ct+D™FED =575 £, my)s

3
Z 10F D3 Dl Ly ° (¢; Ao) g Ly(RY)
n=2

. t+ 1) T GG T gl mvey, (=0),
<

(t+ ) TGN A g @y (1=1,2).

ProoOF. We consider the cases of K?’O(t;Ao),Kéc’o(t;Ao), and LT°(t; Ay).
The other inequalities can be proved by Lemma 3.5.4 directly. Let n = 5,6 and
t > 0 below.

By using (3.5.6), we have

AF D [KEO(t; Ao) f](x)

—1
‘FE/

0 : L(A, B)

/Fi Ao (i) ElEN o ) A F(E yN)] (),
OF DY Ly " (t; Ag)g)(w)
=7 [ [ ente i) T Moy 3@')] @)

0

for k= 0,1 and any multi-index o/ € Név ~!. Since it holds that
(i) E(ENY k5 (€, Ay )| < CATHEHI],
((A)F (€)™ ka(€, Ax)| < CATFHEHT,
|(A2)* (i) ma (¢, Ax)| < CATFTEH
for any A € (0, Ag) by choosing some Ay € (0, A;), we have, by Lemma 3.5.4,
||3fD$f/Kf70(t;Ao)f”Lq(Rf) <Ct+ 1)*%(%*5)*§*% ||f||L,(R$)7

’ _N—1/1_1\_1(1_1 7_,7\a,|
10 D L0 (8 A)g ey < O+ )77 G205 g v
for k = 0,1 and any multi-index o’ € Név ~! with some positive constant C.
On the other hand, we have, by (1.2.3) and (3.5.6),

O DY DK (1) () =

o et (BHA) ks N
_1)! -1 At k(:e\a ( B(zn+yn) 1)\ N d
[ V pork(igy LAt Flow) | () dux

T

0

O DY/ D [K5° (t: Ao) f)(x) =

o [T [ [ ety EEAL S e ) i f(ym] (@) dyy

’ Alli5
L(A, B)

/i EAt(po)\k(ifl)a
r

0

M(zy)e™ P dA f(yzv)] (') dyn,

: L(A, B)
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l —~
/Fi Moo (ig') A g M(zn)M(yn) dA f(yN)] (') dyn,

+(—1)l/0 Fat 0 L(AB)

9k D2 DNL (t; Ao)g) ()

-1 /
— (_l)l 5—[1 [/Fi eAt(po/\k(ifl)al (B +12)(A Tg;(f ’)\)e*BﬂﬂN d/\ﬁ(fl)] ((E’)

+(D'F! [ [ ooty S o) dm@')] @)

0

for k=0,1,l = 1,2, and any multi-index o’ € Névfl, where we have set

~ o~

po=o({), kn=rn(€,N) (n=5,6), f(yn)=F(E yn).

Since it holds that
|(Ax)* (i) (B +A)l lffvs ',/\i
|(Ax)*(i€)™ Alkis
(M) (i) (Bi+A)l 1%6

(€ < CATHEH T — CASHEH +1
ks (S
(€

(M) ¥ (i) Alko (€, Aa
(€
€

< cATtEtle
< CATHEH T — g AT+EH T
< CATHEFIHL
|(Ax)* (i) (B + A)"'mg < CATHEH I — pptHE a1+
|(As)* (i)™ Almg

for any A € (0, Ap) with some positive constant Ay € (0, A1), we have, by using
Lemma 3.5.4,

p CA%-&-%-Ha’l-H

' _(N=1_ 1N\(1_1\_k_lo'l_1
|0k D2 DA K (1) |,y < Ot + 1)~ G G055 )y
x ((t+1)* LIS (t+1) (1*—)4)

SN

’ _N—-1(1_ 1\_Ek_
10F D% DA KE (@) |l vy < Cle 4+ 1)~ T God) =52 gy o

+

x ((t+1)*%(%*%)*%*g n (H_l)f%(%—%)fl)

SN

108 D2 DYy L (£ Ao)gll 1, rv) < CE+1)7
((t +1) 898 4 4 1)—%(%_%)_1)

gC(t+1)_¥(%_%)_%(2_%)_§_u 5lgllz, @y

for k=0,1, 1 = 1,2, and any multi-index o’ € Né\Ll with some positive constant
C'. This completes the proof of the corollary. ([

Noting that for some Ag € (0,1) and C' > 0 there holds |D(A4, BE)| > CA3/4
for any A € (0, A3), we see that there exist positive constants Ay € (0, A2) and C



90 3. Lq-L, ESTIMATES OF STOKES SEMIGROUPS

such that for any A € (0,4) and j,k=1,...,N
VEP(E )| < CAT, VME ML) < CAT, [VP(E )| < CAT,
VM M) < CAT, [PAE ML) S CA, [PAM(E,As)| < CAR.
Therefore, recalling the formulas (3.4.3), (3.4.4), (3.4.5), (3.5.5) with ¢ = 0, we

obtain the required estimates of Theorem 3.5.3 (1), (2), and (3) by Corollary 3.5.6.
In addition, Theorem 3.5.3 (4) follows from Lemma 3.5.4 (3) directly.

3.5.2. Analysis on I‘li. Our aim here is to show the following theorem for
the operators defined as (3.5.5) with o = 1.

THEOREM 3.5.7. Let 1 <r <2< g < oo and F = (f,g9) € X?. Then there
exists an Ao € (0,1) such that the following assertions hold.
(1) Let k=0,1,1=0,1,2, and ' € Névfl. Then there exists a positive constant
C =C(N,q,r,a) such that for any t > 0

2kl |41

i o f, N (L_1)_2k+lal|Hl
10 D& DA S (15 Ao)F |, vy < C(t+ 1)~ F G0 5577 ey,
|0} D/ DY 5§ (#: A0)F | 1, rery

3_ 2k+]a’|+1

<C(t+ 1)—N§1(%_%)_%(%_%)—Z ——

L.(RN-1)-

(2) There exists a positive constant C = C(N,q,r) such that for any t >0
£ _N(1_1)_
VTG (1 A0)F | 1,y < C(t+ 1)~ F G gy,

1 1

_N—-1(1 1)\ _1(1_1)_1
IV (5 A0)F 1, may) < C(t+ 1)~ % G0 =233~ F|jg), uoay.

(3) Let a € NYY. Then there exists a positive constant C = C(N, q,7,«) such that
foranyt>0

[

N1y _q_ el
IDSVETS ! (t AF) | my) < Ct+1)"F D)5 Yf Ly,

3_ |

|
IDSOE(TS (8 AVF) 1, myy < Clt+ 1)~ F GTD) 375 )1 gy,
| DEVETS™ (8 Ao)F) | 1, my)

1 7_ lel

N-1(1_1\_1(1_1\_7_Jlel
<Ot+1)7 T GG T g, mvoy.

(4) There exists a positive constant C' such that for any t >0
TG00,y
~(RY

_N-1(1
Pl

_1\_
P57 g]

15 (£ Ao)F ||, mv-1) < C(t+ 1)~
T (t; Ao)F |, (rv-1) < C(t+1)

L. (RN-1).
We start with the following lemmas in order to show Theorem 3.5.7.

LEMMA 3.5.8. Let f(z) = 23 +222 + 122 — 8. Then f(2) #0 for z € {w € C |
Rew >0} \ (0,1).

ProoF. We note that f(z) has only one real root o because f(0) = —8, f(1) =
7and f'(z) = 3224+42+12 > 0 for z € R, and it is clear that « is in (0,1). Let 8 and
3 be the other roots of f(z). Then since a+3+3 = —2, we have 2Ref8 = —2—a < 0.
This completes the proof. O
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LEMMA 3.5.9. Let A € I'T and ¢ € RN=1. Then

% <ReB < |B| < g, |D(A, B)| > CA?

for some positive constant C independent of & and X. In addition, there ewist
positive constants Ay € (0,1) and C such that |L(A, B)| > CA for any A € (0, Ay).

ProOOF. We first show the inequalities for B and D(A, B). Note that

B = VAT A = D)

since A = —A2 + (A2/4)eE™ for u € [0,7/2] on T, Therefore, it is clear that
the required inequalities of B hold. For D(A, B) inserting the above identity into
D(A, B) furnishes that
AS . i . .
D(A,B) = = ((e:tl(lL/Q)).S 2(eFiw/DY2 | 1g(eFilu/2)y 8) ’
which, combined with Lemma 3.5.8, implies that | D(A, B)| > C A3 for some positive
constant C' independent of £ and .
Finally we show the last inequality. By (3.5.2)

e:tiu

B? — (BY)? = Ficl/2AY? 1 A? (1 + > +O(AY™%) as A0,

so that there exist positive constants A; € (0,1) and C such that
|B? — (Bf)?| > CAY? for any A € (0, A,).

On the other hand, we have |B + BE| < CAY* on I'f when A is sufficiently small,
which, combined with the inequality above, yields that

2 _ £)\2
w > CAY* for any A € (0, A;).
|B + BT |
Since |B — Bif| < |B — Bi| follows from ReB > 0 and (3.5.1), we obtain
|L(A, B)| = |(B = By )(B — By )(B— B} )(B -~ By )| > CA

forany A € (0,A41), A € F%, and a positive constant C' independent of £ and \. O

B - BY| =

Next we show some multiplier theorem on I'T.

LEMMA 3.5.10. Let 1 < r < 2 < q < oo, and let f € Lr(Rf) and g €
L, (RN=1). We use the symbols defined as (3.5.6) with o = 1.

(1) Let s > 0 and suppose that there exist positive constants A; € (0,1) and C =
C(s) such that for any A € I and A € (0, A;)

kn(&,0)] < CATH (n=1,3),
|kn(E,0)] < CA° (n=2,4,5),
ke (&, N)] < CAMTS.

Then there exist positive constants Ag € (0, A1) and C = C(N,q,r,s) such that
foranyt>0andn=1,...,6

_N(1_ 1) _s
I (8 Ao) fll,my < Ct+ 1) F D75 £, ).
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(2) Let s > 0 and suppose that there exist positive constants Ay € (0,1) and C =
C(s) such that for any A € Iy and A € (0, Ay)

1L (E, 0] <CAS (n=1,2), |l3(¢ )] <CA™S,
Then there exist positive constants Ag € (0, A1) and C = C(N,a,r,s) such that
foranyt>0andn=1,2,3

N-—1

|LEA(E Ad)gll,mayy < O+ 1)~ G780 735 jg), pas)

(3) Suppose that there exist positive constants Ay € (0,1) and C such that for any
AeTT and A€ (0,4))
|k1(£/7)‘)| < 07 |k2(£/7)\)| < CA7 |ll(£lv /\)| <C.
Then there exist positive constants Ag € (0, A1) and C = C(N,q,r) such that
foranyt >0 andn=1,2

N—-1

I[EGE (t: Ao) fllen=olln,ma-1) < C(E+1)" 2

_N—1(1_ 1)_
IEE (£ Ao)glon=oll b, (1) < Clt+ 1)~ (F=7) =Yg

1_1)y_1(1_1)\_3
(r-1)-3(3-%) Al ).

L (RN=1)-

o~ o~

ProoF. We use the abbreviations: || -|l2 = || - ||, ®m~-1), f(yn) = f(&yn),

and t = ¢t + 1 for ¢ > 0 in this proof, and consider only estimates on I'} since
estimates on I'] can be shown similarly.
(1) Since A = —A2% + (A?/4)e™ with u € [0,7/2] on I'], we have

101 A, ) = > 1 %e(—A2+(A2/4)ei“)t o€
KH (1 Ao) f(x) / 7 [/ 2ol€)

0
2

b (€ N o) (e ) duflom) | @) o

Noting that |e(7A2+(A2/4)em)t| < Ce=B/94°T for some positive constant C in-
dependent of &' u, and ¢, we see that by Lemma 3.2.2, L,-L, estimates of the
(N — 1)-dimensional heat kernel, and Parseval’s theorem

Ko (8 Ao) £, an) oy (mv-1y

67(A2/2)5A1+367A(m1v+y1\7)f(yN) H2 dudyN

N-—1

<Ct 2

b0 [ g e i

0 2

with some positive constant C, and besides, forn =2,...,6
H[K;,r’l(t;Ao)f](',JfN)HLq(Ry)

oo
< Cf%(%f%)f%/
0

similarly, where we have used Lemma 3.5.9 and the fact that for a > 0 and A € TS

e—(A2/4)t~Ae—C(zN+yN)f(

yN)szyN

1
(35.14)  |M(a)| <a / e~ (BO+AG=0)ux | 4 < ge=(A/Ma < g =1 o~(A/8)a,
0

We thus obtain the required inequalities concerning K;1(¢; Ag) (n = 1,...,6) by
using Lemma 3.5.5.
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(2) Since A = —A2% + (A?/4)e™ for u € [0,7/2] on ', we have

[L:’l(t;A())g](:L‘) _ ]_-5_/1 [/07 e(_A2+(A2/4)eiu)t</90(fl)

2

A? _
Xll(gla)\)yn(x]\/) (i?ezu> dug(f’)} (ILI)
By calculations similar to (1) and Lemma 3.2.2, we have

LT (55 Ao)g) (- 2n)

LR

7(14 /Q)tA AxNg(f )

2

with some positive constant C', and also for n = 2,3 we have, by Lemma 3.5.9 and
(3.5.14),

~_N_-1(1_ 1) _1_ s
ILE (8 A0)g)Co )y myy < CF 7 G733 g 1 vy /(Y2 + ).

We thus obtain the required inequalities for L;}1(t; Ag) (n = 1,2,3) by using
Lemma 3.2.3 (1).
(3) As stated above, for n = 1,2, we have, by (3.5.14),

I (8 Ao) fllen=oll L, 1)

SC;—%(%—%)/ e/t aze=camm Fiyn)|| dyn
0
gc’f-¥(%—-)/ I C ol s )

0 i+ (yn)?

LT (5 Ao)g]lan=oll L, (A1)
< 7T (7)WL, < CFT

1_1)\_
(T ‘1) 1||gHLT(RN*1)

with some positive constant C', which, combined with Holder’s inequality, furnishes
that the required inequalities hold. O

By Lemma 3.5.9 we see that there exist positive constants A; € (0,1) and C
such that for any A € I'f, A € (0,4,), and j,k=1,...,N

VS (€ N/L(A,B)| < CA™Y, [VEM(ELN)/L(A, B)| < C,
IVRE(E M)/ LA, B)| < C, IVMM(ﬁ’,/\)/L(A,B)I < CA,
[P N /LA, B)| < C, P;(&, \)/L(A, B)| < CA.

Therefore, recalling the formulas: (3.4.3), (3.4.4), (3.4.5), (3.5.5) with ¢ = 1 and
using (1.2.3), we obtain the required inequalities of Theorem 3.5.7 by Lemma 3.5.9
and Lemma 3.5.10.

3.5.3. Analysis on in. Our aim here is to show th following theorem for the
operators defined as (3.5.5) with o = 2.

THEOREM 3.5.11. Let 1 <r <2< qg<oo and F = (f,g) € X°. Then there
exists an Ag € (0,1) such that the following assertions hold.
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(1) Let k=0,1,1=0,1,2, and &’ € Név_l. Then there exists a positive constant
C =C(N,q,r, &) such that for any t >0

o £,2/,. _N(1_1)_ _lef |+
108 D2/ Dl S5 (t A0)F 1, my) < C(t+ 1)~ F G52 8], ),
168 DS DYy S8 (8 Ao)F 1, my)

P () () kg

_N =17
<Ct+1) 7 > |lglle, my-1y,
provided that k + 1+ || # 0. In addition, if (q,7) # (2,2), then
1582t APl mry < Ot +1)~FG-)

N—I(L 1

Ly S O+ 1) T (4

£, ).

_1(1_1
1522 (t; Ao)F| F=) 33D g|l L, mvry.

(2) There exists a positive constant C = C(N,q,r) such that for any t > 0
£, _N(1_1\_1
IVIIE2 (8 Al ey < C(t+ 1)~ FG-2) g

L,.(R_(]\_])a
_N—-1(1_ 1\_1(1_1)_
IVII2(t; A)F |1, mayy < C(t+ 1) 7 G~ 3E=0) " gl ey,

(3) Let o € NYY. Then there exists a positive constant C = C(N, q,r,a) such that
foranyt >0

_N(1_1)_1_ 1ol
IDSVETS > (OF)| L, my) < O+ 1)~ FED T, gy,

:
_N(1_1)_lof .
ID2OE(T > ()| gy < Ct+ 1) F Gty iflal #0,

51(%—%)—%(%—%)—1—%||g||LT(RN_1)_

2

IDSVE(TS*(O)F) ||, my) < Ot +1)7
In addition, if (q,r) # (2,2), then
_N(1_1
|0E(TE2(t; AP ey < Ot + 1D F G £l mery-
(4) There exists a positive constant C = C(N,q,r) such that for any t >0

N1 1y _1(1_1
”T(fa(t;Ao)fHLq(RNq)SC(t—‘,—l) (5 q) 5(+ 2)||f||LT(Ri’) (r #2),

N—-1(1 1
q

178 (8 A)gll ., rv—y < O+ 1) D g, mnry (2.
We start with the following lemma in order to show Theorem 3.5.11.

LEMMA 3.5.12. There exist positive constants Ay € (0,1), bp > 1, and C such
that for any A € TE and A € (0, A)

by L (AVI —u+ Vu+ A) < ReB < |B| < bo(AV1 —u+Vau + A),
ID(A, B)| > C(AVT —u + Vu+ A)?,
|L(A, B)| > C(AVI —u+ u + AY*),
PROOF. We first show the inequalities for B. Set 0 = A + A% and § = argo.
Noting that
A= —(A%(1 —u) + you) £i((A%/4)(1 — u) + Fou)
for u € [0,1] on I's, we have

A? ~
lo| + A%(1 — u) 4+ you — A% < 2(A%(1 — u) + you + A?) + T(l —u) + Jou
< 3max{70, 50 }(A*(1 — u) + u+ A?) < 3max{y0, 70} (AV1 —u + Vu+ A)?,
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which is used to obtain
0 _ ]2 o2 — (Reo)?\ 2
12 e 12 _ L (lo]” = (heo)”
ReB = |o|*/* cos 5 W5 (14 cosb) 7 o]~ Reo
(A%/4)(1 — u) +you + (A?/8) — (A%/8)(1 — u) — (A?/8)u
V2(|lo| + A2(1 — u) + you — A2)1/2

(A%/8)(1 — u) + you + (A?/8) — (A}/8)u
VBmax{yy"?, 7y HAVT = u + Vi + A)

(1/8){A2%(1 — u) + you + A%} N AVI—u+u+ A
~ VEmax{y)2, 7y HAVI —u+Vu+ A)  24vBmax{~,"*, 3/}

for any A € (0, A;), provided that A% < 7~,. It is clear that the other inequalities
concerning B hold.

Next we consider D(A, B). Noting that A € I's C ¥, and using Lemma 1.2.6
(1), we obtain

[D(4, B)| > Cle0)(AI* +4)° > Cle)(AVI =+ Vau + A)"
Finally we show the inequality for L(A4, B). By (3.5.2)
B? - (B})?

1

>

2
= —(A%(1 — u) + you) £ i (AI(I —u) + You — c;/2A1/2> + 242 + O(AY/%)

as A — 0, and also we have

2
(1—u)+Fou — C§/QA1/2)

2
4
= (A%(1 —u) + )2+<A—2(1— ) + 7 )2
= u You 1 u You

—(A%(1 —u) +you) £ i (A

2

A _
+cgA — 2ck/2AM? ( (=) + ’You>

v

~ 2 2 2
")/0 1 1 A ~
(AZ(l—’U,)"‘r?U) +HCQA—1—O <T(1—U)+70U>

z%Wﬁu—m+awf+%%Azcm%ﬂ—u+vﬂ+m“ﬁ

We thus see that, by the inequality for B obtained above, there exist positive
constants A; € (0,1) and C such that for any A € (0,4;) and X € TS

|B* - (B}")?|
|B + Bf|
C(AVI—u+ Ju+ 141/4)2
T bo(AVT =+ Vu+ A) 4 ¢ P AL/A

Since |B — Bf| < | B — B| follows from ReB > 0 and (3.5.1), we have the required
inequality of L(A, B), which completes the proof of the lemma. |

ERE

> C(AVT —u+ Vu + AY4).

LEMMA 3.5.13. Let 1 < r < 2 < ¢q < o0, and let f € LT(Rf) and g €
L, (RN=1). We use the symbols defined as (3.5.6) with o = 2.
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(1) Let s > 0 and suppose that there exist positive constants A; € (0,1) and C =

C(s) such that for any A € Ty and A € (0, A1)
k(€M) < CAVI —u+Vu+ A)T?ABI (n=1,3),
k26 N)| < CAVI —u+ Vu+ A)72A%|BJ,
kn(€ 0] < CAVT —u+ Vu+ AT AB]®  (n=4,5),
ke (¢, \)| < CAIB".

Then there exist positive constants Ao € (0, A1) and C = C(N,q,r,s) such that
foranyt>0andn=1,...,6

IKE2(t: Ao fll,my) < Ct+ D) F G075 £, m
provided that s > 0. In the case of s =0,

IKE2(t A0) fllymyy < CE+ D) FED |l myy if (0.7) # (2,2).

(2) Let s > 0 and suppose that there exist positive constants Ay € (0,1) and C =

C(s) such that for any A € Ty and A € (0, A;)
1 (€M) < CAVT —u+Vu+ AV AIBI (n=1,2),
(€', 0] < COAVT i+ Vi + AV 4| BJ.

Then there exist positive constants Ag € (0, A1) and C = C(N,q,r,s) such that
foranyt>0andn=1,3

L5 2 (8 Ao)gll ., miv)
§C(t+1)7¥(%7%)7%(%7%)7%||g||Lr(RN*1) (S>0),
L3 2 (t; Ao)gl L, my)

SC(t—i—l)i 2—1(%7%)7%(%75)7%73 i} _ (520)

Forn =1,3, in the case of s =0,

ILE2(t Ao)gll o,y < Clt+1)7 7 (F73)3(373)

S(RN-1),

provided that (q,7) # (2,2).

(3) Suppose that there exist positive constants Ay € (0,1) and C such that for any

AeTls and Ac (0,4))

k1 (€, 0)] < C(AVT —u+ Vau + AYY) 14,
k2(&, M) < C(AVT —u+ Vu+ AV 442,
11 (€, N)] < C(A\/l—u+\/ﬂ+A1/4)_2

Then there exist positive constants Ay € (0, A1) and C = C(N,q,r) such that
foranyt>0,n=1,2, and r # 2

N1 1) _1(1_1
128 Ao) fllan=oll .y rv-1y < Ct+ )77 GO FE8)|£1L ey,

1325 Ao)gllan=oll oy mr—1) < CE+1) T G=3)|lgll L qmv1)-
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~

PrOOF. We often use the abbreviations: |- |l2 = [l - [[L,m~-1), flyn) =

f(f',yN), 0o = @o(&), and t =t + 1 for t > 0 in this proof, and consider only
estimates on T'J since estimates on I'; can be shown similarly.
(1) We first show the inequality for K} (t; Ag). Recalling that on T’

(3.5.15) A= —(A%(1 —u) +you) +i((A%/4)(1 — u) +Fou) for u € [0,1],
we have by (3.5.6)

1
[Kf’z(t;Ao)f](x) — /C><j Fl {/ 6{—(Az(1—u)+wu)+i((Az/4)(1—u)+%u)}t<po
Jo Jo
/ —A(zNn+yn) 2 s~ A? N ’

k1 (€, A)em NI O —(y0 = AT) i (o — - ) ¢ du flyn)| (@) dyn.
Since it follows from Lemma 3.5.12 that
(3.5.16) |e{*(AQ(1*U)+WOU)ii((A2/4)(1*U)+%U)}t|

< ef%AZtefi(AZ(lfu)+~mu)t < 067%A2?670|B|2t~

with some positive constant C, independent of &', \, and ¢, for any A € (0, Ag) by

choosing a suitable Ay € (0, 4;), we have, by Lemma 3.5.12, L,-L, estimates of
the (N — 1)-dimensional heat kernel, and Parseval’s theorem,

(3.5.17)

IS (85 Ao) £ 2n) o vy
1 o—(A%/2)t,—C|BI’t 4| B|se—Al@n+un) N
e e e
/ B - $0 du flyn)
0 (AVI—u+Vu+ A)
1 —C|B|2‘tV|B|s—5 o =N
€ Y0 — AT 4 —Alzn+yn)
due” 2 "Ae Y
/o (Va)z=? Flum)

for a sufficiently small § > 0. If s > 0, then by Lemma 3.5.12 we have

1 7C|B|2?|B|376 o uls 1 o= Cut ~
¢ %o - e .
3.5.18 / du < Ct™ 2 / —5—du < Ct 2
(3:5:15) o (Vw3 o (Vu)r?

for a positive constant C. We thus obtain
K2 (85 A0) f1( 28 | Ly v -1

gc?*¥(é*%)f%/°°H67<A2/2>’5A6—A<m+w>f(yN)H dyn,
0 2

dyn
2

< Cg%(ﬁ)/ dyn
0

2

IN

which, combined with Lemma 3.5.5, furnishes the required inequality. In the case
of s =0, by Lemma 3.2.2 and (3.5.17)

I (t; Ao) f1Cs 2z )l L, 1)
_ 00 1 —Cut _ N
< Ct*%(%*é)/o /0 (\e/ﬂﬁ du e—(A2/2)tA1—56—A(xN+yN)f(,yN)

t M(%_%)_% /OO ||f(’>yN)||LT(RN71)
0 t0=9/2 4 (z3)170 4 (yy

dyn
2

i dyn,
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which furnishes that the required inequality holds by Lemma 3.2.3 (2) and choosing
a sufficiently small § > 0 when (g, 7) # (2,2). Concerning K;*(t; Ay), we can show
the estimate in a similar way to the case of K (t; Ao), noting that by (1.2.3) and
Lemma 3.5.12

1
(3.5.19) \M(a)| < a/ ef{(ReB)9+A(179)}a do < aebe_lAa < 2b0A7167(551/2)Aa
0

for a > 0 and any A € (0, Ap) by choosing a suitable Ay € (0, A7).
Next we show the inequalities for K;2(t; Ag) with n = 3,4,5. Since |A| >
C|B|? on T} with some positive constant C' by Lemma 3.5.12, we have

|€—B(L o e—Aa| oA |B 4 A| e—CA(L e—CAa
5.2 = @ < <
(30200 Ml =" = =T A

with @ > 0 and some positive constant C' for any A € (0, Ag) by choosing a suitable
Ap € (0,A7). Thus, by (3.5.16) and Lemma 3.5.12,

2@ 1 2n) L, @mv-1
/1 67(A2/2)t~efc|B|2t~A|B|sech(mN+yN)QDO du.]?(yN)
0 (AV1 —u+Vu+ A)u

dyN ;
2

which furnishes that the required inequalities of K;2(t; Ag) (n = 3,4,5) hold in
the same manner as we have obtained the estimate of K;"?(¢; Ao) from (3.5.17).
Finally, we consider K¢ (t; Ag)f. By (3.5.18) and (3.5.20), we have, for s > 0,

g (8 A) £ 2n) |, vy

~ N-1 > ! 27 t fl
< i FG-Y) / / e~ lemCIB Mo ABI M(zn ) M(yn) du flyn)|| dyn
Jo 0 2
~ N-1(1_1 > ! A2T _C|BI?T ] CA(zN+ 7
SCt*T(rz)/ / e Tl CIBI oy A|B|*~2e~CAENFIN) gy Flyn) || dyn
0 0 2
—xoaay [ eI B, 25 q
< ci— "= (3-3%) / / O due= Tt Ae~CAG@N+YN) flyn)|| dyn
o /o (Vu)2=2 2

< o= (5-3)-3 / He—ATZZAe—CA(wN-&-yN) du f(yN)Hz dyn
0

for a positive constant C' by choosing a sufficiently small § > 0. We thus obtain the
required inequality of K7 ?(t; Ag) by Lemma 3.5.5 if s > 0. In the case of s = 0,
since it follows that by (1.2.3) and Lemma 3.5.12

1 1
IM(a)] < (1,/ e~ {(ReBY+A(1-0)}a gy < a/ o~ {05 (it 4)0+A(1-0)}a g
0 0

1
< ae~bo A“/ e b VI gg (>0, A€ )
0
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for any A € (0, Ap) by choosing an Ag € (0, A1), we obtain easily, by Lemma 3.2.2,
”[Kf_ihz(t;AO)f]('7*TN)||LQ(RN*1)

so | 1 . 7
SC?‘NT(E—E)/ ‘/ e” WDl AM(zn)M(yn) du f(yn)
0 0
< i (3-1) / ZNYN H e (/2 gem Al ) ﬂyN)H
; 2

X /// e_cuze_cﬁwNe_cﬁ"/’yN dudpdipdyn
[0,1]3

- C;,¥(%,é)/°° eNyn [l FC yn)lle, @my-1 // dpdipdyn
- 0 tY2 + N +yn 0,12 t+ (prN)? + (Yyn)?

with some positive constant C. The change of variable: Yyy = {t + (pzn)?}/2
yields that

/1 _ dy < 1 /oo 1 {’thr (wa)Q}l/Q dl
0 t+(pxn)?+ Wyn)? i+ (pzn)? Jo 1+ YN

«__¢
T yn (2 + pan)
for a positive constant C, so that
ISt A F1C s 2 | Ly v
FoNi(11) /°° mN[f(' YN, @y 1) /1 _dy
0 t12 + oy +yn o tY2+pry
FoNoi(1o1) /°° o llFCoyn)llz, @y /1 _ dpdyn _
o (tV24+any+yn)t0 Jo (V2 +an+yn)i(tH 24 o)
for any 0 < § < 1. We then see that by the change of variable: pzy =t /21

dyn
2

dyn

/1 d(p < /1 d(p
o T2 4an+yn)’ (T2 +oxn) ~ Jo (V24 @an)d(EV2 + pan)

! dip C 1t C
<C | = < = —dl < ——
0 t(+0)/2 4 (prp)Hs T t(+0)/2 Jo 14110 zy xNt9/2
with a positive constant C', which furnishes that
IS (5 A0) (- 2n) |, v -1

<ot G-i)-3 /OONHf(wyN)HlL,((sRNll)é
o t(=9/2 4 2170 +yy

dyn

Together with Lemma 3.2.3 (2), we obtain the required inequality by choosing a
sufficiently § > 0 if (¢, r) # (2,2).
(2) We first show the inequality for LT "(t; Ay). By (3.5.6) and (3.5.15), we have

1
[LT,Z(t’AO)g](Z‘) _ -Fgl |:/ e{—(A2(1—1L)+701L)+i((A2/4)(l—u)-‘,-ﬁou)}tsoo
0
/ —A(zN+yn) 2 N A? ~ ¢! /
XU (&, e TS = (0 = AT) £ { Fo — = | 1 9(€) | ()
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In a similar way to the case of K;(t; Ag), we have by (3.5.18) and Lemma 3.2.2
(3.5.21)

LTt A0)g) (-, o) |, (rv-—1)

B 1 —(A%/2)T,—C|B|*T, 1/2| R|s ,— Az
<o (-3 / ¢ ¢ ] dug(¢')
0 (AVT —u+ u + AL/4)2 )
1 ,—C|B|*%, 56 _
< C%v_%(%_l / e~ CIBl @;l?| du 67(A2/2)tA1/2 e—Arn "g\(é-l)
0 (Vu)

2
1

~ N1/l _1)_s T1/4— -
< T T G5 gl vy JE A 4 () /204

for a sufficiently small § > 0 with some positive constant C, provided that s > 0.
We thus obtain the required inequality by Lemma 3.2.3 (1) when s > 0 and ¢ > 2.
In the case of s > 0 and ¢ = 2, by (3.5.18) and (3.5.21), we have

:
0 (Vu)?2=?

< (3-2)-8 )

HLT’Q(tQAO)QHLQ(Rf) <C

2

L,.(RN_I)'

If s = 0, then we have, by Lemma 3.2.2, Lemma 3.5.12, and (3.5.21),

(35.22)  [I[LT(5 A0)gl(-, 2n) |, (1)

SR | e S
o (AVI—u+u+ Al/4)2 )
o N—-1(1_1 1 6—01[{ 2 T
<ot (1) /  due A/ AL/20/4 e Aen g ¢!
o WP 1,
~ N-1(1 1)_3¢ T1/4— -
< T T G gl vy (A8 4 () 200

which, combined with Lemma 3.2.2, furnishes that the required inequality holds for
q > 2 by choosing a sufficiently small § > 0. In the case of s = 0 and ¢ = 2, by
(3.5.22) and Young’s inequality with 1 +1/2=1/p+1/r for 1 <r < 2, we have

- A2 INT —~
(3.5.23) ||Lf’2(t§A0)g||L2(Rf) <Ot 5/2”6 (A /2)tA /4 g(é./)“z
< CT22||Ft e~ MDA M|, v 9]

L.(RN-1)-

On the other hand, by Proposition 1.2.8 withn = N—1, L = N—2,and 0 = 1—4/4,
we have

|]-'g,1[e*(AQ/Q)’{A*‘S/‘*](x’N < C|x/|7(N7176/4)
for a positive constant C, and furthermore, by direct calculations
|]_'£—,1[ef(AQ/Q)?Af(S/ﬁl](‘,E/)' < CF~(/2)(N-1-56/4)
We thus obtain

—17,—(A2%/2)T 4 —6/41/ 1 ¢
|.7:$, [e A J(2")] < T(/2)(N=1-6/4) | |g/|N—=1-8/4
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for a positive constant C. Therefore, by choosing a sufficiently small § > 0, we see
that

(35.24) | Fo e WATATY ) < CF 0T (00)8 — o S (F-3)+4
noting that p > 1 because 1 < r < 2, which, combined with (3.5.23), furnishes that
the required inequality holds. Summing up the case of s = 0, we have obtained

1

~_N_-1(1_1y_1(1_ 1
ILE2 (Al myy < CF 7 G036 D|ig) )

for some positive constant C and 1 <r <2 < ¢ < o0 if (q,7) # (2,2).
Concerning L3?(t; Ag), we see that by Lemma 3.2.2

I1L3 2t Ao)g) (-, o)l L,y -1
1 ~ ~
< or-Yt (3-1)-4 / e_(A2/2)te—C\B‘2t<pO e~ (ReB)on gy, 5(¢')
0 2

(NP3

) . ~
<o (1)~ / e~ Cule=CVuan gy o=(A*/2)i5¢1)

0

2

—(A22) T~
<ol IO, psnpep)-s Lol
t+ (zn)? t+ (zn)?

(M

which, combined with Lemma 3.2.3 (1), furnishes that the required inequality holds
for L2 (t; Ag).
Finally, we show the inequality for L;z(t; Ag). We have easily, by (3.5.20),

L5 %t A0)g) (- 2n) | Ly v
/1 67(A2/2)5670|B|2?¢0A1/2|B|sechxN
0 (AV1T —u+Vu+ AV u

dug(¢’)

2

for a positive constant C'. We thus obtain the required inequality in the same
manner as we have obtained the estimate of L1"(t; Ag) from (3.5.21).
(3) As mentioned above, for n = 1,2, we have, by (3.5.19),

K2t Ao) Mllan=olln,my-1)
/1 6_(,42/2)’{6—0\B|2}TQDOA1/2€—CAyN .
0

(AM—Q— \/ﬁ_|_ A1/4)2 du f(UN)

dyn,
2

LTt Ao)gllan=oll L, mV-1)

/1 ef(AZ/z)?emeFI@O .
o (AVI—u+Ju+ Al/4)? g

(€

2
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with some positive constant C. Concerning K, 2(¢; Ag) (n = 1,2), by Lemma 3.2.2
and Holder’s inequality, we see that for a sufficiently small § > 0

IEGE2 (5 Ao) flan=0ll L, N -1)

1 —Cut
€ (A2 /9T _ _ -~
/O (\/ﬂ)g_(g due (A /2)tA1/2 5/46 CAny(yN)

~_N—1(%_%>_% /oo ”f('vyN)”LT(RN*l)
o t(/2)(1/2=5/4) L (y5)1/2-0/4

dyn
2

dyn

<Ct Nz"l(%*%)*%(%*%)*%5||f||LT(R$)

for 1 < r < 2 with some positive constant C. On the other hand, by using (3.5.23)
and (3.5.24)

||[L—1‘r,2(t§A0)9]|:I:N:0||L,I(RN*1)
b Cut (A2)2)T 4—6/4
————due” A~ it

| v 7
~ N-—1 ~ e

< CF T ) F e Al ()] o

2

<ot T G|l mvy

for 1 < r < 2 with some positive constant C, which completes the proof of the
lemma. ([l

COROLLARY 3.5.14. Let 1 < r <2 < q < oo, and let f € LT(R_]X)N and
g € L.(RN71). We use the symbols defined as (3.5.6) with o = 2.

(1) Let o € NY and we assume that there exist positive constants A; € (0,1) and
C such that for any A € T and A € (0, A;)

|k1(&N)] < C(Aﬂ+ \/E+A1/4)*4A7
|k2(§/a/\)| S C(Am+ \/E+A1/4)74A2,
|l1(§/a)\)| < C(A\/ 1—u+ \/E+A1/4)_4|B|2.

Then there exist positive constants Ag € (0, A1) and C = C(N,q,r,«) such
that for anyt >0 andn =1,2

vz

1_1)_1_yp_lof

(F=i)— k=3 ”f”LT(Rf)v
1_1)_lof .
=Dl myy il #0,

—1 lo]
IDSVLE? (8 Ao)gll,my) < Ct+ 17 G365 g, mvesy.

|DEVEE2 (1 Ao) 1, my) < Clt+1)

vz

1D 0 K2 (t; AO)fHLq(Rﬁ) <Ct+1)"

2

In addition, if (q,r) # (2,2), then we have, for anyt >0 and n=1,2,

_N(1_ 1
182t Ao)f 1wy < Ct+ 1) FGD £l )

+
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(2) Let k=0,1,1=0,1,2, and o/ € NY~1. We suppose that there exist positive
constants Ay € (0,1) and C such that for any A € T and A € (0, A;)

ks (€', M)] < CAVI = u + v + A) 724,
n(€' V] < CAVT=u+ i+ A)AIB| (n=4.5)
Iko(€',\)| < C(AVT —u + v + A)“2A|BJ?,
(€', 0)] < C(AVT —u + v + AV4)=14,

)< C(

Is(A, B AVT —u+ Vu+ AY*)~*A|B).

Then there exist positive constants Ao € (0, A1) and C = C(N,q,r,a') such
that for any t > 0

|oF 3',D§va’2(t'A0)f||L (RY)

<O+ 1) FE DT L e (n=3,4,5,6),
10F D3y Dy Ly (8 A0)g 1, (r

<Ot 4+ 1) TGN (n=2,3),

provided that k + 1+ |&/| # 0. In addition, if (q,r) # (2,2), then there hold

IEGE2(t: Ao) fll, ) < Ct+ "D fl my), (0 =3,4,5,6),
1_1)_1(1

ILE2(t: Ao)gllz, my) < Ct+ )T T G HED g vy (0=2,3)

for any t > 0 with some positive constant C = C(N, q,r).

PROOF. We consider only the cases of K= (t; Ag), K& % (t; Ao) and L2 (t; Ay).
The other inequalities can be proves by Lemma 3.5.13 directly. By (3.5.6)

OF D2 [KE2(t; Ao) f](x)

= Fit
| =

OF D2/ [L3 7 (t: Ao)g) ()

_ —1
7 [ [

2

/F:l: Mo (€N () Eon (€', N) X (v, yw) AN F(E, yN)l ('),

2

Mo (N (i) (€, N M () dX §(§’)1 (')

forn =15,6, k =0,1, and any multi-index o/ € Névfl. Since by Lemma 3.5.12
(A 1= u+ \/E+A)_2A|B|1+2k+|a/| ( 5)
C«A|B|2k+|a’\ ( _ 6)
INF(E) 1€ M) < (AVT = u+ v+ AV TS AIBPFH]

INEGE ) ke (€M) < c{



104 3. Lq-L, ESTIMATES OF STOKES SEMIGROUPS

for A € TF and A € (0,A4) by choosing some Ay € (0, A;), we obtain, by using
Lemma 3.5.13,

(3.5.25)
o N(1_1)_p_ 1ol
108 D K2 (8 A0) Ly < Ct+ 1) FETD 5 £, my (n=5,6),

+

/ N1l 1)\ _1(1_1)_ ,‘*_
108 D LE (5 Ao)gll L,y < Clt+ 1)~ 7 )73 G0 =5 g)| vy

for any ¢t > 0 with some positive constant C, provided that k + |a’| # 0. In the
case of k + |o/| = 0, we have, by Lemma 3.5.13,

(3526) K2 (t Ao)fllymy) < CE+ 1) 2C D £l my, (n=5.0),
ILE2 (5 AoglL,my) < Clt+ 17T G300 || qver)
if (¢,7) # (2,2). On the other hand, by (1.2.3)

0F DY Dy K2 () f()

o[
+(—1)l/000fg,1
OF D Dl (K (t; Ao) f)(z) =
1\l R

v [ 7 [ / Qi
+(1)l/000]-'5,1
0F D% Dy L3 (t; Ao)g](x)

= (-1)'Ft Vri

2

+(-D'FS! Vri

2

e (po)\k(zg) (B—i—A)] Tgse Blrntun) gy f(yN)] (2') dyn

2

/ L oo (i) Alks M(w)e PN d f(ym] («) dyn,
r

2

Moo (ig)* (B + A)'hse PN My ) dA f(yN)] (2') dyn

/ri Mo (i€') Alke M (2 n) M (yn) dA J?(yN)] (') dyn,

2

Mo (i) (B + A)' (¢, Ne P d E(S')] ()

Mo (i€)* A'la (€', ) M) dA E(E’)] (z')

forl=1,2,k=0,1, and o € Névfl, where we have set

o~ ~

@0:@0(5/)7 kn:kn(fly)\) (7125,6), f(yN): (é-layN)~
Since by Lemma 3.5.12
C(AVT —u+ Vu + A)2A| Bkt 1+

INE(ig")™ (B + A)' 1k )| <
| < C(AVI —u+ Vau + A) LA BPEFIe I+
|
| <

(¢
INE(ig)™ Alks (€7, A
INEGE)™ (B + A) ke (€A
(i)™ Alkg (€, N

C(A /1 “u4+ \/ﬂ_‘_14)7114|B|21€+|O/H*l7
CA|B|2k+|o/\+l

IN

)
)
)
)
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for any A € T and A € (0, Ag) by choosing a suitable Ay € (0, A1), we have, by
using Lemma 3.5.13,

o CN(L_1)_p_lal]+
(3.5.27) [|0f D3 Dy K22 (8 Ao) f | L ry) < CE+1) F(3-7) k=15 £z, ey

forany t > 0, k = 0,1, = 1,2, o € N(]Jv_l, and n = 5,6 with some positive
constant C. In addition,

NN (B + A) (V)] < CAVT = ut Vu + AV 1A BRI,

N (ig) ™ Alls (€', 0)] < CAVT = u + v+ AY4) 73 A|BPEFIIH
for any A\ € TF and A € (0, Ap), and therefore by Lemma 3.5.13

k "l T2,
107 Dg» Dy Ly (tyAO)QHLq(Rf)
1(1 _p_lellte

<O+1) "7 Gmi)-3(E-3) -k g)

L,.(RN-1)

forany t > 0,k=0,1,1=1,2,and o’ € N()N*1 with a positive constant C, which,
combined with (3.5.25), (3.5.26), and (3.5.27), furnishes the required estimates for
KZ2(t; Ag), KF2(t; Ag), and LE2(t; Ag). This completes the proof. O

We see that by Lemma 3.5.12 there exist positive constants A; € (0,1) and C
such that for j,k=1,...,N, A € F; and A € (0,44)

VRZE N | _ cA VIMEN| . capl

LAB) |~ (AVI—u++Vu+A?2 | LAB) |~ (AVI—u++A)?2’
VIRPE N | _ CA|B| ViMeE | CA|BJ?
L(A,B) |~ (AVI—u+u+A4)2 | LAB) |~ (AVI—u+Ju+A)?
PRAE N _ CA PIME N _ CA2

L(A,B) |7 (AVT=uyu+AD)* | LA B) |7 (AVT—u+ Ju+ A1)+

and furthermore,
‘L(iB) < OAVT —u+ Vu+ AV 4,
A(B? + A2
D(A,B _
Fai)| S AT Vi AT

Therefore, remembering the formulas: (3.4.3), (3.4.4), (3.4.5), (3.5.5) with ¢ = 2
and using Corollary 3.5.14, we have Theorem 3.5.11 (1)-(3). Theorem 3.5.11 (4)
follows from Lemma 3.5.13 (3) directly.

3.5.4. Analysis on FBi. Our aim here is to show the following theorem for
the operators defined as (3.5.5) with o = 3.

THEOREM 3.5.15. Let 1 < r < 2 < ¢ < o0, (a/,a) € NY™' x NY, and
F = (f,g) € X°. Then there exist positive constants &y, Ao € (0,1), and C =
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C(N,q,r,o, @) such that for any t >0
10955 (£ Ao)F, VIIG™ (8 Ao)F)| 1, mvy + 1 D% S5 (8 Ao)F w2 my)
+DEVETE (1 A0)E) |, oy, + [ DSOETE (1 A g )
TSt A, vy < O log ] + D™ €], ),
100658 (t; Ao)F, VIS (8 Ao)F) |1, rey) + 1D S5 (8 Ao)F w2 ey
+ | DI VE(TY (8 Ao)F)| 1, re)
+ |52 (8 A)F o, vy < C(|logt] + e |lg|| 1, mr-1)-

In order to show Theorem 3.5.15, we start with the following lemma.

LEMMA 3.5.16. Let 1 < r < 2 < ¢ < oo, and let f € L,(RY) and g €
L, (RN=1). We use the operators defined as (3.5.6) with o = 3 and

kn (8, A) = (&, N)/L(A, B),  1n(§,A) = ma (', A)/L(A, B).

(1) Let s > 0 and suppose that there exist positive constants A1 € (0,1) and C =
C(s) such that for any A € T's and A € (0, A)

(€, 0)] < COAV? + A)? A (n=1,2,4,5,6),
ks (€, N)| < C(INY? + A)2 45

Then there exist positive constants do, Ao € (0,A1), C = C(N,q,r,s) such that
foranyt>0andn=1,...,6

|EE3(t A0)fll ey < C(llogt] + De™ ], ar)

(2) Let s > 0 and suppose that there exist positive constants A; € (0,1) and C such
that for any X € T and A € (0, A;)

[ma (€ N)] < COAM2 + AP AT,
Ima2(&',A)] < C(IAM2 + A)? A%,
ma (€', \)] < CIA2(AV2 + A)2ATT.

Then there exist positive constants o, Ao € (0, A1), and C = C(N,q,r) such
that for anyt >0 andn =1,2,3

IL52 (85 Ao)gll, my) < C(|logt] + L)e=*|g]

L.(RN-1).

(3) Suppose that there exist positive constants A1 € (0,1) and C' such that for any
AeTT and A e (0,4))

(€ V] < COAYZ + 474 (n=1,2),
ma (€', )] < CUAV2 + A)%.

Then there exist positive constants dg, Ao € (0,1), and C such that for any
t>0andn=1,2

IE (8 Ao) fllan=oll L, my-1) < C(|logt| + 1)6_50t||f||LT(Rf)a
||[Lit’3(t;A0>g]|$N:0||Lq(RN*1) < C(|logt| + 1)6_5°t||9||LT(RN71)~
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o~ o~

PrROOF. We use the abbreviations: [ - |2 = || - [|,&~-1), f(yn) = f(§,yn),
o = ¢o(€'), and t =t + 1 for t > 0 in this proof, and consider only estimates on
I'4 since estimates on 'y can be shown similarly.
(1) First we show the inequality for K, 3(t; Ag). Noting that A = —vo + 30 +
ue’™=20) for u € [0,00) on T'5, we have, by (3.5.6),

(K2 (8 Ao) f(w) = / Fe'! V el Fotuct™ e

0 0

k1(€',N) —A(zn+yn) i(T—€0) 7, F| ’
“TAD)" e duf(yn)| (z') dyn-.

Since e~(0/2teA’t < Ce=A%T for any A € (0, Ag) by choosing a suitable Ao €

(0, A1), we obtain, by Lemma 1.2.6 (2), L,-L, estimates of the (N — 1)-dimensional
heat kernel, and Parseval’s theorem,

K52 (8 A F1C an) |y (rev—1)

© Alts N
/ poe te’(70+“°0550)t—|>\| e~ AENTYN) gy f(yn)|| dyn
0

2

_ _ 0o ,—u(coseg)t 00 ~ ~
< OT- 25 (3-3) -t / S |A|° du / | e T aem At flyn)|| dys,
0 0 2

which, combined with Lemma 3.5.5, furnishes that

—u(cos gg)t

(oo}
B e
(35.28)  |K(t Ao) fll, miy) < Ce (70/4)t||f||Lr<R$>/0 Ty

for some positive constant C. We here calculate the integral on the right-hand side.
It holds that

oo ,—u(coseg)t oo —u(cosep)t 1 0 —£
/ S T / c du = / <
0 [\l o "o +ucoseg coseg Jo Yot+ ¢

o ,—L
< 1 / e .
cosegg Jo t+4L

which, combined with

oo —/ 0
/ c dfz—logt—l—/ e~‘log (t + £) ¢
0 0
:flogtftlogtflJr/ e t(t+0)log (t+ 0) de,
0

furnishes that [, e~“/(t + £)dl = O(logt) as t — 0. Thus the required inequality
follows from (3.5.28). Analogously, we can show the cases of n = 2,4,5,6 by using
the fact that by Lemma 1.2.6 (1)

e < CemO, |M(a)| < CIAIT M2 < GO

for any a > 0 and A € T with some positive constant C.
We finally consider the inequality for K3 *(t; Ap). By Lemma 1.2.6 (1), Holder’s
inequality, and calculations similar to the case of Kf’ ’3(t; Ap), we easily see, for



108 3. Ly-L BSTIMATES OF STOKES SEMIGROUPS
" =r/(r—1), that
34
B (8 Ao) £ o)l Ly (mev 1)

. o0 00 ,—u(coseo)t ot 27~
< Ce~ (vo/4)t e CRIEENtuN) gy e AT fyn)|| dyn
0 0 |>\| 2
1 1
0o ,—u(coseg)t,,—C|A\|2zN o0 , 1 o
< Ce*(vo/s)t/ ¢ ¢ / e~ CF N gy dull ||z, &)
0 Al Jo o

1
—u cosso)te—c‘/\|§:bN

—(y0/8)t e
< Ce 1A llz, my) ) AT/ du,

which furnishes that
00 efu(cos go)t
(RY) /0 IN[I+1/Ca+1/() du

—u(coseg)t

_ )¢t © e
< Cem(0/8) ||f||LT(Rf)/O Tdu

with some positive constant C. This inequality implies that the required inequality
for K53(t; Ao) as mentioned above.
(2), (3) We can prove in a similar way to (1), so that we may omit the proof. O

+,: B
I3 5(t;A0)f||Lq(Rg) < Qe (0/8)

We see that by Lemma 1.2.6 there exist positive constants A; € (0,1) and C
such that for any A € I'f and A € (0, A;)
ViBE N <o iME NI <CA, [VIBE N < CA
VIME N < CA, [P N < CA, |7’AM(§ Ml <CA
for j,k =1,...,N. Therefore, remembering the formulas: (3.4.3), (3.4.4), (3.4.5),

(3.5.5) with 0 = 3 and using (1.2.3), we have Theorem 3.5.15 by Lemma 3.5.16.
Finally we consider 0;E(Ty (t; Ag)F') given by

L/ C)\t 900(5 )/\D( )d/\ —AznN (5 )‘| (l‘/)
(e0)

QE(TG (t Ao)F) = Fe' | 5 — (B+ A)L(A, B)

_ 1 t TN ¢! ’
= F! [g /w M dAgo()e™ N g(¢) | (2)

- 1 At @0(5,)14(09 +co A ) —Azy ’
o ‘7:5’1 [T?TZ /1"(50) € L(A,B) die (g) (x ))

where we have used the relations: D(A, B) = (B — A)"Y{L(A, B) — A(cy + ¢, A%)}
and B%Z — A% = \. Note that the first term vanishes by Cauchy’s integral theorem,
so that it suffices to consider the second term only. Set for 0 =0,1,2,3

271.”/ eAt@O(gl)zl((IZg:;‘)CdA )d/\ —Azn g ):| ().

A = 75|

Since by Lemma 3.5.12 there exist positive constants A; € (0,1) and C such that
for any A € TS and A € (0, 4,)

lpo(€) Ay + o A?)/L(A, B)| < C(AVI —u+ u+ A)*A,
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we have, by Lemma 3.5.13 and for any ¢ > 0, « € N}Y with |a| # 0, and 1 <7 <
2 < q < o0,

o ON—1(1 1) _1(1_ 1) o
IDSIE (t Aol my) < C(t+ 1)~ 7 G360 g)|, vy

with some Ay € (0, A4;) and a positive constant C. In addition, if (¢,7) # (2,2),
then we have

N—l(l

— _1y_1(1_ 1
155 (8 Ao) |y myy < Ct+ 1)~ 7 G0 207D g s,

On the other hand, in the other cases, it follows from Lemma 3.5.4, 3.5.10, and

3.5.16 that
IDg Ly (8 Ao) o, my) < Ct+ 1)~

xrTn

IDg 15 (t: Ao) | 1, my) < C(|log ] + 1)e=*"||g|

1

Q=
~—
|
W=
—
Nf=
|

N

_ el
)= gl @mv-ry (n=0,1),

L,,v (RN_ 1)

for any t > 0, a € N(J)V, and 1 < r <2 < ¢ < oo with some positive constant C.
Summing up the argumentation above, for any ¢t > 0, o € N, and 1 < r <
2 < g < oo, we have obtained

D5 0:€ (T3 (& Ao)F) 1, (1)

_N—1(1_1)_1(1_1\_lol
< C(logt|+1)(t+1)" = G260 gL mvy (Ja| #0),
[10:£(T5 (t; Ao)F) | ., mo)

CN—1(1_ 1) _1(1_1
< C(llogt| + 1)t +1) 77 F=DHED gl vy (@7) # (2,2)
with some positive constant C, which, combined with Theorem 3.5.3, 3.5.7, 3.5.11,
3.5.15, and the formulas: (3.4.9), (3.5.4), completes the proof of Theorem 3.1.3 (1).
3.6. Analysis of high frequency parts

In this section, we show Theorem 3.1.3 (2). If we consider the Lopatinskii
determinant L(A, B), defined as (1.2.1) with u = 1, as a polynomial with respect
to B, it then has the following four roots:

Co (1+3a%)c2 1 1

(3.6.1) B; =a;A+ + / ~-— 40— ] asA— o,
T 4l-a;j—da}) 320 —a;—a})* A A?

where a; (j =1,...,4) are the solutions to 2* + 222 — 4z + 1 = 0. More precisely,

we have the following information about a;: a; and ag are real numbers such that

a; =1 and 0 < az < 1/2, while a3, a4 are complex numbers satisfying Rea; < 0
for j = 3,4. We define \; by \; = B} — A* for j = 1,2, and then

c 3 1
6.2 — LA 22 o=
@62 n=-Ta-laiol
(1 23 42 a2Cq
Ao=—(1—a3)A +2(1—a2—a§)A+O(1) as A — oo.

Let Lo ={A € C| L(A,B) =0, ReB > 0, A € supp¢w}, where ¢, is defined
as (3.4.6), and then the expansions (3.5.2), (3.6.2) and Lemma 3.4.2 implies that
there exist positive numbers 0 < eo, < m/2 and Ao > 0 such that Lo C X, N{z €
C | Rez < —Awo}. Let 0 < 4o < min{Ay,471 x (40/6)?} for Ag, which is the
same number as in (3.4.6), and also we set, for d € {f, g} and (3.4.7),

(863)  SL0)=SL(5A), ML) =T (5 A), T(t) = T (1 Ao)
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for short. In order to estimate each term above, we use the following integral paths
TT={Ae€C|A= v xiu, u:0—73},
Ff,,t ={AeC| A= Yoo o + et me) 0 — oo},

where oo = (taneq)(Xo(Eoo) + Yoo) and Xo(E0s) = 2X0(€00)/sinEs is the same
number as in (3.4.8) with ¢ = e,. Furthermore, for d € {f, g}, setting

Vo (2, A) =( 51 (@A), vy (@, M) T,

(&N (E N, V(@) (G =1,...,N),
E)FHE zn, M),

(€)e VR (g, M)](a)

with (3.4.3) and (3.4.5), we have, by Cauchy’s integral theorem, the following de-

compositions:
(3 6.4)

(z,A) = Fo'' o
o (x,A) = g[oo
(x,)) = Fo ' oo

d
heo (z,

sta HF, T2 (¢ ZHd" HF, E(TL(t ZST‘“

o=4

where the rlght—hand sides are given by

(3.6.5)
1 1
dyo _ At yd do _ Y
S (t)F 270 Jr e eMvi (z, ) dA, TIE7 (H)F 5 - er' s (x, A) dA,
1
Td,o’ F) = At d .
e = o [ @)
To progress our argumentation, by using the relation 1 = B?/B? = (\ +
A%)/ B2, we write vi_, 7f_, and hf_ as follows: for j =1,..., N
(3.6.6)
vgoj(mv)‘)
N oo BB (¢1 2
-1 Qooovjk (5 7)‘)(09 JFCUA ) —B(zn+yn) T, /
— E - A TN+YN
o Ly\sBM¢r 2
1 9000)‘2ij (€ N(eg+eaA®) 1 Bz n /
, ANz N
+3 [ % W NEe B M) fulyn) | (&) dy

N 0o ooVBM /7/\ g+ GAQ - -~
> 7| =% B(fL(jf;) : )A%—B*NM(yN)fk(yN)] () dyn

o0 [ OOA%VMB ") (cg + coA?) =

+Z/0 Fo! i JZB(QSL(A)(;) : )AAEM(wN)e_Bnyk(yN)] (2') dyn
k=1 L ’

Y [ VP (E N (e + A 7
w30 [ | B(fL(j(;) - )AW(wN)eBnyk(ym] (&) dyx
k=1 L '

N I OOVMM " g + A2 -~

k=1 L ’
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N oo I OOVMM A g+ UAZ N
> 0 | ]kAz(;zL(ifCB) : )ASM(mN)M(yN)fk(yN)] () dyn,
k=1 L ’
oo (2, A)
N oo r AA(Er )\ A2 R
= Z/O Fot oo P j(fL’(fi(Cé)Jrc )Ae_A(””N+yN)fk(yN)] (2") dyn
k=1 . ’
5 MM A2 R
+ Z i ]_-g,l |:90007)k; A(lei(/)l(cé)—’_ Co )AQe—AzNM(yN)fk(yN)} (m/) dyN,
k=1 )
B (xz,\)
N-1 .o oibn(B— A ) R
/0 7e' { A(B fkfg)L(A J)B)AG_A('LNW)JC ’“(yN)] ) dyn
k=1 ’
_/O Fo! [ (A )A —Alewtun) fN(yN):| (') dyn
N-1
+ 3 [ aEro sy Mo o) | @)

*/0 2 [ty e M o |y

~

with (3.4.4), where we have set poo = oo (€') and flyn) = f(€',yn). In addition,
using the relations:

(3.6.7)

e P g(0) =/ Be BN tuNIg(yy) dyy —/ e Bt Dyg(yn) dyn,
0 0

M()g(0) = [ (7P b AM(oy + ) Gluw) duw
0

+/ M(zn +yn)Dngyn) dyx
0

and the identity: 1 = A%/A? = —Z,ivz_ll(igk)Q/AQ, we write v9, 79, and hY, as
follows: for j=1,...,N —1
(3.6.8)
Ugoj(xa >‘)
< 0065 (Cq + CoA%) Blm )
= _/0 ]:5’1 [‘P jJQ(LgA B) )Ae B(”N+JN)AIQ(Z/N):| (T/) dyn

‘Poogjfk(B A) ((‘g + (‘UAQ)

+Z/ 7e [ A3(B+ A)L(A, B)

_/ ]_-—1|: Pooi&j (B2 + A%)(cy + cp A?)
o ¥ A3(B+ A)L(4, B)

Ae7P (”N“’N)Dﬁg(yzv)] (') dyn

A2 Mz 1 w)@(ym] (') dyn
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N—-1
< @oofjgk(BQ + A2)<Cg + COAQ)
; kzzl /0 o [ AY(B+ A)L(A, B)

x A2M(zn + yn)Dr Dng(yn)| () dyn,

lUioN('% )‘)

— OOB_A Cg CUA2 —B(zN+YN) AT, /
:_/0 7e [‘P /g(BH)ng(Z,B) Lgempions )Ag(yzv)] (2) dyn

N-1 ,.x . 2
_1 [$ooibi(cg +c0A%) | _p TN+UN) 7Y
+ 3 [ F (B A DD | )

* [ 0se(B24 A (cg + ¢ A?) Ala !
o[ [ N ) )| )

2 |, To | TR AL B)
x AM(zn + yn)DrDng(yn)| (/) dyw,
7o (2, A)

o __ (B2 + A%)(cyg + o A%) | alon —
:_/0 Fﬁ’l[gp : A2L(?4( B L g eo) Kig(yn) | (o) dy

‘Pooifk(B2 + A2)(cg + CUAQ)

Nel .o
—1
+kz_1/() e [ AL(A, B)

er*A(xNerN)DfD\NQ(yN)} («") dyn,

hg

A, B _ ,
/ T [AZ B +/(1) (fi, gy A (yN)} (=) dyw

@oolka(A B) —A(zN+yn) ST /
+ Z / Fert [A5 B+A)L(A,B)AC DDng(yn)| (2") dyn-

REMARK 3.6.1. We extend g € Wg_l/p(RN_l) to a function g, which is defined
on RY and satisfies HgHWS(R% < C’||g||W271/p(RN,1) for some positive constant C
independent of g and g. For simplicity, such g is denoted by g again in the present
section.

3.6.1. Analysis on ij. We first show the following lemma concerning esti-
mates of the symbols defined as (1.2.1) with p = 1.

LEMMA 3.6.2. Let Ao be a positive number defined as in (3.4.6).
(1) There exists a positive constant Ase > 1 such that for any A > As and X € Fff
27'A<ReB < |B| <24, |D(A,B)| > A%, |L(A, B)| > (¢, /16)(8 " A)°.
(2) There exist positive constants C1,Ca, and C such that for any A € [Ag/6,2A]
and A € TF
CiA <ReB < |B| < (24, |D(A,B)| > CA®, |L(A, B)| > CA®,
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where Ay, is the same constant as in (1).
(3) Let o/ € NY7', s € R, and a > 0. Then there exist positive constants ¢ and
C, independent of a, such that for any A € Fff and A > Ay /6

1D B*| < CA*TIl L |Dg D(A, B)*| < €A%,

Doz,/efBa < CA7|a/|€cha’ Da,/L A,B 1 < CAigi}allv
£ 3

|Dg M(a)| < ATl lgmeda,

PROOF. (1) We first consider the estimates of B. For A € I'T, set 0 = A+ A2 =
—Yoo + A% £ iu (u € [0,75]) and @ = argo. Then we have

1

10 o|? 1 1 1
ReB = |o|2 cos = = 1+cosh)? = —(lo| + A% — 2,
o1t con g = (14 cos ) = —(lo] + 4% )
so that . "
1
ReB > — (242 — 27,0 — 7o) ® > —=
_\/5( Yoo = Foo) > 75

for any A > A, provided that A, satisfies A% > 274, +Joo. On the other hand,
it clearly holds that |B| < 2A.
Next we show the inequality for D(A, B). Since
D(A,B) = B(B% 4+ 3A4%) + A(B? — A%) = B(A + 442%) + \A
=4A%B + (B + A)(—7s0 £ i),
we see that by the inequality for B obtained above
D(A, B)| > 442|B| - |B + A|| — 700 + it
> 4A%(ReB) — (|B| + A) (Yoo + Foo)
2 2A3 - 3(700 + ioo)A > AS
for any A > A, provided that A, satisfies A% > 3(Yoo + Yoo )-
Finally we show the inequality for L(A, B). Since
3 1
B2-B2=_So4 22 (o 4 ) as A
1 2 16CU ( Voo lu) + O(A) as — 00,

there exist positive constants A, and C such that for any A > A, and A € Fff we
have |B? — B?| > (¢, /4)A, which, combined with the inequality for B and (3.6.1),
furnishes that

2 _ 2
B2~ B2 _ (cn/VA _ ¢
|Bi1+B| — 44 T 16

1By — B| > (A>As, A€TY).

In addition, we have
B - B?*=—(1-a2)A> + O(A) as A — oo,

so that there exists a positive number A, such that for any A > A, and \ € Fff
we have |BZ — B%| > (A?/2), from which it follows that

B3 B _ (A%2) _ A
B, +B| = 44 8
Since |B — By| < |B — By| (j = 3,4), we thus obtain

|L(4,B)| = (c5/16)(8 1 A)° (A= A, A€TT).

|Bs — B| =
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(2) It sufficient to show the existence of positive constants C7,Cs, and C such that
for any A € [Ao/6,2A.] and A € T'F

Ci <ReB<|[B|<Cy, [|D(A,B)[>C, |L(A B)|=>C.

It is obvious that the inequalities for B holds, so that we here consider D(A, B)
and L(A, B) only.
First we show the inequality for D(A, B). Set
~ A - ~ _
A= 3 A= Yoo +3A% +iu for u € [0,7),

and then note that B = (A + A2)1/2. In addition, we see that
{B/AcC|AeTi and A € [A/6,24]} C {z € C| 1< Rez}.
In fact, setting 0 = 1 — (Yoo /A?) &+ i(u/A?) and § = arg o, we have

B 0 1 ;0\ /2
Re= = 2/o]"/?cos 5 = 2/o]"/? (#) = V2(jo| + Reo)'/?

1/2 471 % (A9/6)2\ '/
> f 1/2 — — ’Y;OC > — —O = .
> 2(Re0) /2 =2 (1= 25) " =2 <1 Ao V3
Together with Lemma 3.5.8 and the formula:
D(A,B) = B® + 2AB? + 12A°B — 8A®

(B3 (3) )

there exists a positive constant C' such that |D(A, B)| > C for any A € [4y/6,2A )]
and A € T'E. The inequality for L(A, B) follows from the definition of the integral
path T'F.

(3) We see that by (1) and (2) there exist positive constants C7,Cs, and C such
that for any A € Ff and A > Ay/6

(3.6.9) C1A <ReB < |B| < CA, |D(A,B)| > CA?, |L(A,B)| > CA®.

We thus obtain the required inequalities by using Leibniz’s rule and Bell’s formula
(cf. e.g. [SS12, Lemma 5.2, Lemma 5.3, Lemma 7.2]), because by (3.6.9)

|Dg D(A, B)| = |Dg/ (B® + AB® + 3A?B — A%)| < CA®,

’ ’ )\ .
|Dg/ L(A, B)| = ‘Dg‘, (B——&—AD<A7 B) + A(cy + CUA2)> ’ < CA?
for any o/ € NY71 A eD'T, and A > Ay/6 . O

Now we have a multiplier theorem on T'F.

LEMMA 3.6.3. Let 1 < p < oo and f € Lp(Rf). We use the symbols defined
as (B.1) with kn,(£',A) = 0o (§)kn(€,A) (n=1,...,10), and suppose that for any
o € NY~1 there exists a positive constant C (/) such that

D k(€ 0)] < Cla) AT (n=1,...,10)
for any N € TE and A > Ay /6, where Ay is defined as in (3.4.6). Then there exists
a positive constant C(N,p) such that for any X € I‘ff

1K) f @) < COL DI my) (=1, 10).
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PROOF. Since [A2 < CA for A € T'f and A > Ay/6 with some positive
constant C, we can deal with K5(\), K7(\), and Ki0()\) in the same manner as
K4 (N), Kg(N), and Ko(\), respectively.

As mentioned above, it is sufficient to consider K;(A) for ¢ = 1,2,3,4,6,8,9.
We can show such cases by Lemma 3.6.2 and calculations similar to the proof of
Lemma B.1, so that we may omit the detailed proof. O

COROLLARY 3.6.4. Let 1 < p < oo and let f € L,(RY). We use the symbols
defined as (B.1) with k, (&', A) = 0oo(§)En(€',A) (n=1,...,10).

(1) Suppose that for any o/ € NN=1 there exists a positive constant C(’) such
that for any X € T and A > Ay /6

IDg kn(€,N)] < Cla)A™IT (1 =1,2,3, n=1,2).
Then there exists a positive constant C(N,p) such that for any A € Ff
[AKD(A)f, Kn(N) Pllwiwyy < CN, D)1, w2y

withl =1,2,3 andn =1,2.
(2) Suppose that for any o/ € NN=1 there exists a positive constant C(o/) such
that for any X\ € T and A > Ao /6

(3.6.10) 1D ki (€, N)] < Cla)A™ZIT (0 =3,...,10).

Then there exists a positive constant C(N,p) such that for any A € Fff and
n=3,...,10

A (M fll,myy + 1B M) fllwzwyy < CN, D), m2Y)-
Thanks to Corollary 3.6.4, the following lemma holds.

LEMMA 3.6.5. Let 1 < p < oo,f € L,(RY)N, and g € W2(RY). In addition,
let vd = (v ..., 0% )T, 7L, and h, be given by (3.6.6) and (3.6.8) for d €
{f,g}. Then there exist a positive constant C = C(N,p) such that for any A € T'E

||(/\V§o>V7ch>o>HL,,(R$) + ||(Vf>o>>\h§o)||wg(Rf) + [|AS [lws < ClIEll L, ry),
IAVE, VI L,y + 1(vE AR lwzmayy + 1M llwz < Cligllwz gy

PrOOF. By (3.4.4), Lemma 3.6.2, and Leibniz’s rule, we see that for j, k =
1,....N—land JK=1,...,N

(3.6.11)

VEE(E N (g + coA?)  ASVPM(E N (cg + ceA?)  VEM(E N (cq + s A2)
AL(A, B) ’ AB?L(A, B) ’ B2L(A,B) ’

AVHE(E N (cg + oA VIP(E, N (cg +crA?) VIME N (g + coA?)
AB?L(A,B) ’ B2L(A, B) ’ AB2L(A, B) ’

VL%(M (€', A\)(cq + CUAQ) i&i(cy + CUA2) §i€k(B — A)(cg + CUAQ)
AB2L(A, B) ’ A2L(A,B) A3(B+ A)L(A,B)

ZEJ'(BQ + A2)(cg + CGA2) g,ifk(Bz + Az) (B — A)(cg + CUAQ)

A3(B+ A)L(A,B) =~ A%B+ A)L(A,B)’ A(B+ A)L(A,B) ’

i&k(cg +coA?) (B2 + A?)(cy + ¢, A?)  i&(B? + A?%)(cy + ¢, A?)
APL(AB) '  A(BIALAB) ~  AB+ALAB)
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satisfy the condition (3.6.10) forA € I'f and A > A,/6, so that Corollary 3.6.4 (2)
yields that

INWEN 2, @) + IVillwa ) < CN)IEI|L, g2y,
W,y + V& Iwzwy) < CN,p)llgllwz @y

for any A\ € ij with some positive constant C(N,p). The other assertions follow
from Corollary 3.6.4 (1) analogously. O

Applying Lemma 3.6.5 to the formulas (3.6.5), we have

(3.6.12)
1055 ()F, VII () F) ||, ) + 1S5 ) F w2y

FIOETE OB sy, + IETE OB lwsms) < CeE], ).
(O0S2AE)F, VI O 1, ) + IS4 F s
+HIETL OF) lwsmy) < Ce™"gllwz @)
for any ¢t > 0 with some positive constant C' = C'(N, p).

REMARK 3.6.6. We will show estimates concerning 0;£(T% (¢t)F) in the last
part of this section.

3.6.2. Analysis on F5i. We start with the following lemma.

LEMMA 3.6.7. Let 1 < p < 0o and f € L,(RY). We use the symbols defined
as (B.1) with k, (&', A) = poo(&)kn(E,N) (n=1,...,10).
(1) Let o/ € NY 71, and suppose that there exists a positive constant C(a/) such
that for any X\ € TE, A > Ay/6, andn = 1,2
C() (A + AP A
IN(IAY2 4+ A)2 + Aey + ¢, A2)

|DE ra(€ M) <

Then there exists a positive constant C(N,p) such that for any A € I‘Si
VKM flln,my) < CN. Iz, my)  (n=1,2).

(2) Let o € N(])V ~1 and suppose that there exists a positive constant C(a’) such
that for any A\ € T, A > Ay/6, and n = 1,2
C(o/) A~
A2+ A)2 + A(cg + ¢, A2)

|D?',’in(f/a DYl
Then there exists a positive constant C = C(N,p) such that for every A € I‘?
andn=1,2

| KL (N £ X2V K (N £ AV K ) £, VKL ), ) < Ol -

(3) Let o/ € N(])V_l, and suppose that there exists a positive constant C(o') such
that for any X\ e TZ, A> Ay/6, andn = 1,2
C(a)(INV2 + A)2A~1
AZ{A(AY2 + A)2 + A(eg + ¢, A?)}

1D k(€ 0)] <
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Then there exists a positive constant C(N,p) such that for every A € th and
n=12

MK (A fllwzwyy + KN fllwewy) < CWN Pz, wy)-

4) Let o' € NY L and suppose that there exists a positive constant C(a') such
0
that for any \ € T, A > Ay/6, and n = 3,...,10

Ca)(JA]/2 + A)A~l
AAAIZ + A)? + Aley + ¢, A%)

(3.6.13) 1 Dg k(€M) <

Then there exists a positive constant C(N,p) such that for any A € Fsi and
n=3,...,10

[ K (N FAVE L (A £, V2K (N )L, ey < COVDIF L

ProOOF. Noting that F5i C Yo ao(ew) (see the beginning of this section con-
cerning e, and A\g(e4)), we have the required properties by Corollary B.3 (1). O

Now we have the following lemma.

LEMMA 3.6.8. Let 1 < p < oo, f € L,(RY)N, and g € WE(Rf) In addition,
let v, = (viq,...,vL )T, 7L, and hd be given by (3.6.6) and (3.6.8) for d €

ool * s oo

. - +
{f,9}. Then there exists a positive constant C(N,p) such that for any A € I';

||()\3/2V£o, AVV£O7V2V£O7V7T£C)||LP(R$) = C(N’p)||f||LP(R$),
1B, AYEVRE AV R, VPR, ry) < CIN.D)IIE| 1, )
and besides,
||(>\3/2Vgo? )\vacﬁ VQVgC7 Vﬂ'gc)HLp(Rf) S C(va)”g”WIf(Rf)’
M lwzmy) + 1B lws ) < COV,P)gllwamy):

PROOF. Since F? C e Ao(en) and the symbols (3.6.11) satisfy the condition
(3.6.13) by Lemma 1.2.6 and Leibniz’s rule, we have, by Lemma 3.6.7 (4),

IO 2V AVVE, VAVE) I, ) < COND)IE] L, )

IO 2vE, AVVE, VAV L, my) < CON, p)llgllwzmay)
with some positive constant C'(N,p). Concerning the other estimates, we similarly
have the following observation: First Lemma 3.6.7 (1) yields the estimates of V&,

for d € {f,g}. Second Lemma 3.6.7 (2) yields the estimates of hf . Finally Lemma
3.6.7 (3) yields the estimates of hZ,. O

As was seen in the proof of Lemma 3.5.16, it holds that for A\ € T'F

00 ,(ReM)t log t| + 1)e™Yeo? =0),
/e gc{(|°g| Je (s =0)
0

——du
|A[1== t e et (s >0).
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Then, applying Lemma 3.6.8 to the formulas (3.6.5), we have
(3.6.14)  [(V2SL(O)F, VI (O)F, V20,E(T5 (OF), VE(TLS () F)) 1, my)
< Ctte = If]| L, mayy,
19S5 ()F, VOE(TL (OF)) 1, my) < Ct V2"l my):
1SS @OF lwy ) + IETE OF) lwawary + 10T (OF) 1, )
< C(|logt| + e ™"||f] , mx),

and furthermore,
(3.6.15)
[(V2S%3(0)F, VI (OF, VAL (OF) s, m) < €' gllwzny)

||3t5g<’>5(’5)FHL,,(R$) < Ct71/2677°°t||9||wg(R§),
||S§<’>5(t)F||W;(R$) + ||5(T§<§5(t)F)||Wg(R$) < C(|logt| + 1)6_7"°t|\9|\wg(Rf)

for any ¢ > 0 with some positive constant C' = C(N, p).
Finally we consider 0,£(T% (¢t)F). By (3.6.7) and the same manner as in the
last part of Section 3.5, we have

0 (T, (H)F)
= At * o1 [PoolCy + o A%) —A(eN+yn) ATy /
= S —"A ZNTYN) A/
271 Jogen) {/0 7e [ AL(A,B) ¢ g(yw)}(x)dyN

= e Ooolibr(cg + o A?) J—
+ Z / ]:5_’1[ ooAQL(gA Bz; AefA(acNerN)DkDNg(yN)} (x/) dyN} d\.
k=170 ’

Thanks to the analysis on I‘f and FQ)‘L, we obtain
(3.6.16) 10:E (T (O)F) | mayy < Clllogt] + 1)e™ ™" [lgllw2ma),
HVZ@J(T&@)F)HLP(Rf) < thleﬂmtﬂgﬂwg(ﬁf)

for every ¢t > 0 and a positive constant C' = C(N, p).
Summing up (3.6.12), (3.6.14), (3.6.15), and (3.6.16), we have obtained the
following theorem, noting the relations (3.4.7), (3.4.9), (3.6.3), and (3.6.5).

THEOREM 3.6.9. Let 1 < p < 0o and F € X} defined as (3.1.2). Then there
exist positive constants 6 and C' = C(N,p) such that for every t >0

1(V2Soc (t)F, VLo ()F, V2E(Too (t)F), VZ0,E (T ()F)) ||, (m2Y)
< Ct™'e ||| xz,

1(0eSoc ()F. VOE(Too ()F))l| ) < Ot 2e™ " |F | xz,

150 (OF lws rary + 1€(Toc O)F) w2 mayy + [10:E(Too (OF)| L, m2)
< C(|logt| + 1) |[F| xz-

In particular, Theorem 3.6.9 completes the proof of Theorem 3.1.3 (2).



CHAPTER 4

Global well-posedness of a free boundary problem
for the incompressible Navier-Stokes equations in
some unbounded domain

4.1. Main results

In this chapter, we show the global well-posedess and large-time behavior of
solutions for the following incompressible Navier-Stokes equations:

p(Ov + (v-V)v) =DivS(v,p) — pcgez in Q(t), t >0,
dvy =0 in Q(0), ¢ >0,
(4.1 S(v.p)nr = cyirnr on T{1), 1 0
Ve =v-nr on I'(t), t > 0,
V=0 = Vo in Qo,
[|i—o =To.

Here v = v(z,t) = (vi(x,t),v2(z,t),v3(2,t))T and p = p(z,t) denote the
velocity field of a fluid occupying Q(t) and the pressure field at = € Q(¢) for ¢ >
0, respectively. In addition, p, ¢4, and ¢, are positive constants which describe
the density of the fluid, gravitational acceleration, and surface tension coefficient,
respectively. The stress tensor S(v,p) is given by

S(v,p) = —pI+ uD(v), D(v)=Vv+ (Vv)’,

where p > 0 is the viscosity coefficient of the fluid.
We suppose that the unknown free surface I'(¢) and domain (¢) are given by
a scalar function h = h(a’,t) as follows:

() = {(«/,23) | 2’ € R?, x3 = h(z', 1)},
Q(t) = {(z',23) | 2’ € R?, 25 < h(2',1)}.
In addition, we denote the outer unit normal filed on T'(¢) by nr, while the evolution

velocity of T'(¢) with respect to nr by Vi and the mean curvature of T'(t) by «r,
respectively. It then holds that

_ 1 <—V’h(az’,t)>’ oY)

V14 V(2 t)]2 1 V1+ VR )2

K= V' - Vh@,t) = A'h(z',t) — Goo(h),
T+ [Vh(a, D)2

119
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where for 9; = 9/0x; (j =1,2,3)

[V'h(z', t)|2A'h(x’ t)
(1++/1+|V'h(2/,t \/1+|V’h(x’ )2

Oih(z', t)Oph(x,t)0;0kh(a’, t)
P G+IVhE P2

Gi(h) =

J,k=1

The initial data are given by vg = vg(x) for the velocity field and hg = ho(z’)
for the free surface, which means that

o= {(z/,23) | 2’ € R?, 23 = ho(z')},
QO = {(.1”,511’3) | z’ S R2, r3 < h()(.fl?,)},

and besides, the outer unit normal filed on I'y is denoted by ng. Noting es = V3
and setting m = p + pcyx3, we reduce (4.1.1) to

p(Oyv+ (v-V)v) =pAv —Vr  in Q(t), t >0,

divv=0 in Q(¢t), t >0,

S(v,m)nr + (pcygh — co A'h)nr = —coGy(h)nr  on I'(t), t > 0,

(4.1.2) Oh+v -V'h—v-e3=0 on T'(t), t >0,
V|i—o = vo in Qg,
hli=o = ho on R2.

To solve the equations (4.1.2), we consider the following auxiliary problem:
AH =0 inR?,t>0,
H=h onRg,tZO.

We shall solve (4.1.2) with (4.1.3) instead of the equations (4.1.1) in this chap-
ter, that is, we find (v, w, h, H) satisfying (4.1.2) and (4.1.3). Then our main result
is stated as follows:

(4.1.3)

THEOREM 4.1.1. Let p,p,cq, and c, be positive constants, and suppose that
exponents p,q satisfy

16 2
(4.1.4) 2<p<oo, 3<qg<—, —-+-<1.
5 p q

Then there exists a positive number €y such that for every initial data
vo € (BXI1P)(Qg) n qu VP (0))?,
ho € B3, VP=Y4(R2) n By P2 (R?) N Lyys(R?)
satisfying the smallness condition:
HVOHBEFI{*I/P)(90)035512;1/1’)(QO) + Hh()||Bg;1/Pf1/q(RQ)mBg;l/Pf1/2(Rz)qu/Q(Rg) < €p
and the compatibility conditions:
divvg =0 in Qp, D(vg)ng— (no-D(vg)ng)ny =0 on Ty,

the equations (4.1.2) and (4.1.3) admit a unique solution (v, 7, h, H) in a function
space defined as (4.1.5).



4.1. MAIN RESULTS 121

REMARK 4.1.2. (1) In Theorem 4.1.1, the uniqueness holds in
(4.15) (v, by H) | (©°v, 0, b, ) € X},

where ©* is a transform defined as (4.2.1) and (4.2.3), and also X5, is given by
Theorem 4.5.1.
(2) Since it holds, by Theorem 4.5.1 and Remark 4.5.2, that
(4.1.6) HeCR,,CHR)NCHR,,CHR?)),
VH € BUC(R,, BUCYR?))
and also that )
IVH Lo ry L)) < 55
we see that © given by (4.2.1) is a C'!-diffeomorphism. In fact, it holds that
ox: 8 1
0€3 85 2
which furnishes that © is a bijection. On the other hand, by (4.1.6) and the
inverse function theorem, the inverse © ! of O is a C'-function.
(3) The solution H of (4.1.3) is given by

(4.1.7) H(z,t) = Fo ' lel 1 h(¢’ )] (2)).

Let 1 < ¢ < oo and 1) be an extension of h, which is defined on R? and satisfies

nlrg = h and ||n(t)||Wq1(Rs) < C’||h(t)||W171/q(R2) with some positive constant
- q

C independent of h, 7, and ¢. Since it holds that

elé'\fﬂsﬁ(g’,t) — e'5l‘$3ﬁ(§’,0,t)
0
:/ d (e|§|(m3+y3) (f Y3, )) dys

—00 dy3
0 ! O ’ _
= / ¢/ el 1wt u) (e s, 1) dys +/ el€1@stus) (€', ys, t) dys,

we have
0
H(z,1) = / Fat [lglel 1 tie gy, 1)) (a') dys
0
+ / Fo [elé |($3+y3)3377(5',y3=t)] (") dys.
By €2 =-Y7_ 1(i£k)2 we obtain, for j = 1,2,

0;H (x,t) / Fol ﬁg%me'ﬁ'<“°3+y3)8/k77(§’,y37t)} () dys
k=1""

— l§ r3+ys /
+[WF5’1 |:|£/j||£| €'l (zaty )8377(5 Ys, ):| (J))dyg,

2 40
_ Z/ ]_,5_/1 |:|7€f¢||€| €1 Ces+u3) 5, (¢ s, )} (2") dys
k=1Y7"°

0
b [ F [ B )] @) dys,
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which, combined with Corollary B.3 (1), furnishes that
IVH@lz,®s) < C@IVIO)llL,@s) < C@OIROy1-1/0 g2
with some positive constant C. Analogously, we see that
IVH ) 1, r2 ) < C@OIV Al yy1-1/0 g2y
IV H®)lIz,®2) < C@OIV)RO)ly1-1/0 g2y
IVOH ), s ) < C@) IO ys-170 g
IV?O0,H ()|, 2 ) < C(@)|[V'O:h(t)

lwy=10ma):
(4) Let m(s,r) and n(s,r) be

- (=23 (4. wen-3(-)

For r € {q, 2} satisfying (4.1.4), we see, by Theorem 4.5.1, that

V)|, ey = O™ E7), [VV(E)l|, ) = O E77%),
1Bz, @ =0 E), VAL, @) = O " ED7H),
18:h(8)|1, 2y = O™ (7))

as t — 0o, since it follows from the trace theorem that
IV'R@O)IL,®2) = [V H®)| L, @z < CONV'H@)lwrre )

with some positive constant C(r) independent of h, H, and t.

This chapter is organized as follows: In the next section, we reduce the equa-
tions (4.1.2) to some problem on a fixed domain by using the so-called Hanzawa
transform. In Section 4.3, we consider some linear problems and show estimates of
solutions to the linear problems. Section 4.4 completes estimates of solutions to the
linearized equations of the fixed-domain problem. In Section 4.5, we first show the
unique global existence of solutions for the fixed-domain problem. Next the global
well-posedness of the equations (4.1.2) will be proved.

4.2. Reduction to a fixed domain problem

In this section, we reduce (4.1.2) to a fixed domain problem. Let (v, 7, h, H)
be solutions to (4.1.2) and (4.1.3). We here introduce the following transformation:

(4.2.1) 0:R? x (0,00) 3 (£,0) = (x,t) €[] Qs) x {s},
s€(0,00)
@(E,t> = (fla 53 + H(§7t)7 t)
In the sequel, we note that 9; = 9/0x; and D; = 9/9¢; (j = 1,2,3). The inverse
of Jacobian matrix Jg of © is given by

1 0

0
A€t 0 1 0
(4.2.2) Jg! = 8(5 ) =| —DiH —D.H 1 —9,H
) D
0

1+DsH 1+DsH 1+
0 0
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Let Q and Q* be

Q= |J Q@) x{s}, @ =R x(0,00),

s€(0,00)

and furthermore,

(4'2'3) (”)*f(l',t) = f(@(gat))a @*g(g,t) = g(eil(xat))

for functions f defined on ) and g defined on Q*. We then have the following
properties concerning the transformation (4.2.1).

LeEMMA 4.2.1. Let f = f(x,t) be sufficiently regular functions defined on S,
and let f(&,t) = ©* f(x,t). Then the following properties hold.

(1) For the first derivatives of f, we have

o o H 7

o0s= (0 (p) ) -

o= (p. - (P _ P
00, = (D= (15 ) D) T =123

(2) For the second spatial derivatives of f, we have
070,01 = (D;Dr — Fi(H)) f (j,k =1,2,3),

where

Fy(H) = 55 { (D, DLH) (1 4+ DaH)? — (DH)(D; D3 H)(1 -+ Dy )

(14 DsH
— (D;H)(D3DyH)(1+ DsH) + (D;H)(DyH)(D3H) } D3

DuH D,H (D;H)(Dy.H)
kTN popy+ (22 ) p,p, - PP fyr
+<1+D3H) j 3+<1+D3H> 3P T A DeH)?

PRrROOF. (1) By (4.2.2) it is clear that

(©70.f)(2,t) = (0:.f)(O(&, 1) = (0:f)(z,t) = O (f(O(&,1))

B ~ ~ B o,H B

= 0i(f(&,t) = Ouf + (0:3) D3 f = Orf — ml)gf,
00, = D, + (0,66)Daf = Dy~ 5 Duf (= 1.2),
O*0sf = (03&3)Dsf = % = Dsf — %D‘;J‘T

(2) Calculate

o0 f— (D — (PH_ _(_DeH F
o= (5 (285) ) (- () )
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To progress our argumentation, we define matrices M;(H) (i = 1,2,3) as

DsH 0 0
(4.2.4) Ml(H):( 0  DyH 0),

-DiH —-D;H 0

0 0 —D1H 0 0
My(H)= [0 0 —D.H|, MsH)=[0 0
0 0

0 0 0

oD

1H
oH | .
s H

LEMMA 4.2.2. Let u(z,t) = (ui(z,t),uz(z,t), us(z, )" be sufficiently regular
functions defined on 2, and let u(¢,t) = ©*u(x,t). Then

Then D(v) and divv are transformed by (4.2.1) as follows:

©°D,(u) = D¢(a) ﬁ {(VeH ® Dsit) + (VeH @ D)}
VeH - Dya _ dive{(I+ M, (H))a}

1+ DsH 14+ DsH ’

Ch (diVm u) = dng u—

where subscripts x and & denote the derivatives of their coordinates.

ProoF. We only show the second identity of ©*(div, u). Let ¢ = 1(x,t) €
C§°(92) and ¥(¢,t) = ©*Y(z,t), and then by Lemma 4.2.1

— (0" (div, u),¥)q = (0% u, V,¢)q

= [ ateo (venen - PAETEED) (14 Darie ) dea

= /Q (6, ) - (T+ M, (H)T)(Ved) (€, 1) dédt = — (dive{(T+ My (H))a}, 9),,.
= — (1 + Dy H) " dive {(T+ My (H))a}, ¢),,

This furnishes that the required property holds. (I

Let v(£,t) = ©*v(x,t) and 7T(,t) = ©*xw(x,t). Then, by Lemma 4.2.2,
(4.2.5) ©*S(v,m) = — 7 + uD¢ (V)
- ﬁ {(VeH @ Dsv) + (VeH ® Dsv) T},
and also we note that (I + My (H))™! =1 — My (H) and that
(4.2.6) (1+ |VeH|?) " Y2(1+ My (H))es = nr for £ € R}

by (4.1.7). In addition, applying ©* to the third equation of (4.1.2), we have, by
Lemma 4.2.1,

4.2.7 O*(S(v,m)nr) + (pcyh — co Ah)nr = —c,G.(h)np for £ € Rg’.
g 13
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Thus multiplying (4.2.7) by (1+|ViH|[?)'"/2(I+My(H)) =" from the left-hand side,
we see, by (4.2.5) and (4.2.6), that

(42.8)  —coGr(h)es — (pcg — coAy)hes

= (14 |VeH )2 (T + My(H)) ~'0*(S(v, m)nr)

— s+ u(1 + [VeH[?)Y2(I — M, (H))De(v)ny
p(1+ |V H|?)'2(I - My (H))

1+ DsH

= S¢(V,7)es + pDe (V) (1 + [VeH*)*nr — es)

— M (H)Dg(¥)(1 + |V¢H|*)*np

(- My ()

1+ DsH

for ¢ € R3. Finally, applying ©* to the first equation of (4.1.2) and multiplying
the resultant formula by I+ Ms(H) from the left-hand side, we have achieved, by
Lemma 4.2.1, Lemma 4.2.2, and (4.2.8), the following equations:

v —AV+Vr=F(¥,H) inR> t>0,
divv =divF(v,H) = F4;(v,H) inR?,t>0,
S(v,m)es + (cg — coA')hez = G(V,H) on R}, ¢t >0,

{(VeH @ D3v) + (VeH ® D3v)" } oy

{(VEH by DSV) + (VgH ® D3{1)T} (1 4 |véH‘2)1/2np

(4.2.9) _ - 3
Oth—v-es=Gp(v,H) onRg, t>0,

‘_’|t:0 = Vo in R"i,

hl¢=o = ho on R?,

where we have set p = p = 1 without loss of generality, vo(§) = Ofvo(x) =
vo(00(€)) with ©¢ (&) = & + Ho(¢) for ¢ € R® and

(42.10) Ho(€) = Fy [ ho(y))(€) (& <0),

and also the right members are given by

P(v. H) = Fi(v. H) + Fo(v, 1), Fy(v 1) = (1+ My(H) (20— (v ¥)v)

(v-VH)Dsv
Fy(v, H) = (=093 + Av3)VH + (I + M3(H (wa v Tpiﬂg)

G(V H) UG,.@( )83+D( )(DlH,DQH,O)
— M, (H)D(v)(D1H, Do H,-1)"

I-— M2 ) —\T T
m { VH ® D3V) (VH ® DgV) } (DlH, D2H7 *1) s

o . VH-Dyv
Fu(v,H) = -Mi(H)v, Fulv,H) = Yok
Here we have used the identities: V'h = V'H and G,,(h) = G.(H) on R} by (4.1.7)
in order to derive G(v, H) and G, (v, H).

Gn(v,H)=—-v'-V'H.

REMARK 4.2.3. (1) Oy is a C2-diffeomorphism if ho € Ba,"/?~/1(R2) is suf-
ficiently small and the assumption (4.1.4) holds. In fact, we have the following
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observation: First, setting Q; = R2? x (=L,0) for L > 0, we have, by the
Fourier multiplier theorem of Hérmander-Mikhlin type,
0 1/q
421 Iole,en <@ ([ dea) Iholl,me < Cla Dol me
with some positive constant C(g, L). Secondly, in the same manner as in Re-
mark 4.1.2 (3), it holds, by (4.2.11), that
(4.2.12) | Hollwz(,) < Cilhollyz-1/agey [ Hollwage < Cillhollys-1/a gy,
IVHollwms) < Callhollyz-1/agays [V Hollwzms) < Callhollyyz-1/a g2

with some positive constant C; = C4(q, L) and C2 = C3(q). Thirdly, we obtain,
by (4.2.12) and the real interpolation theorem,

||H0||W3 Uriay) S Ci(p,q,L )||ho||B2;1/p71/q(R2) for every L > 0,
19 Ho lysrm s < Colo @)l gs-srm 170 g
which, combined with Sobolev’s embedding theorem, furnishes that
Hy € C*(R?), VH, € BUCY(R?),
and besides,

(4.2.13) IVHollpucims ) < M(p, @)l holl ga-1/n-1/a(g2)

with some positive constant M (p, q). Thus O is a C2-diffeomorphism from R?
to Qo similarly to Remark 4.1.2 (2), provided that hq satisfies the smallness
condition: M (p, )Hh0||B3 1r-1/a(ga) < 1/2.

(2) Let exponents p, g satlsfy (4 1.4) and r € {q,q/2}. Then there exists a positive
number ¢¢ such that for any Hy satisfying ||V Ho || gycr(rs ) < <o,

(42.14)  Ceo) ™ MIVoll gzia-1/m ) < Vol g2a-1m1 g y < Cle0)lIVoll 217w
with some positive constant C(eg). Especially, by (4.2.13), if ||ho||B3f1/p71/q(R2)
is sufficiently small, then (4.2.14) holds. 7

In the last part of this section, we introduce notation and several function
spaces, which will be used in the following sections. Let 1 < p, ¢ < 0o, and then the
natural norm associated with the maximal regularity theorem of (4.2.9) and (4.1.3)
(cf. [SS12, Theorem 1.4]) is defined as

IMIq’p(Ll7 0, h, 8th/, H) :H (atu, u, Vu, V2u, V6)||LP(R+,L¢Z(R37))
FIRIL, . wevamey) H IO @, we-eme))
+IVH L, r, w2wz)) + IVOH L, &, wi w2 ))-

In addition, let X be a Banach space and its norm || - ||x. Then, for s > 0 and
1 <p< oo, we set

Ly(R., X) = {ue LR, X) |
sry,x) = [t +2)ullL, @y x),

W By ) = € WAL )| el e,y < o
HUHWI}*S(R+7X) = ||at((t+2)SU)||LP(R+,X)-

Ly(Ry X) < oo},




4.2. REDUCTION TO A FIXED DOMAIN PROBLEM 127

Key ideas, in the proof of Theorem 4.1.1, are as follows: First, for the highest
order derivatives, we use weighted L,-norms given by
Wy p(u, H;61,02)

= 1O, VW) 52 e, ey + | (V20LH VP H)

Ly(R2) ”LZQ(R%Lq(Ri))

with positive numbers 01, §2. Secondly, for the lower order terms, we use weighted
Lo,-norms given by
Wi oo (W, 1,00, H) = |0l parom g, 1o me y) + VUl pnarzncvs g, 1w )
+ 1Al 201/ + [|0:h]

+|VH|

L/ (R L, (R2))
+ |IVO.H|

(R, Lr(R?))

L;2<4/2"")+1/4(R+,W7} (R2)) Lg(fi/Zﬂ'Hl/?(R%LT(Ri))7

where m(q/2,r) and n(q/2,r) are defined as in Remark 4.1.2 (4).
Let exponents p, ¢ satisfy (4.1.4), and then we set

m L R+7 R3 ) Gh - m W2 ! - X R+)7
re{q,2} re{q,2}
Fa= () WyRy, LR, Fu= (] LR,W(RY)),
r€{q.2} re{q,2}
ﬂ W R+7W (R3 )) LP(R+W1”1(R3—))3>

re{q,2}
and besides, for § > 0 and € > 0

Fi(0,e) = Ly(Ry, Ly(R%))* N L (R, Lyj2(RY)
Fy(d,e) = Ly(Ry, Ly(R%))* N L; (Ry, Lygja(R2))
Gn(d,6) = Ly(Ry, W2(R2)) N L5 (Ry, W25 (RE)),
Fai(6,2) = Wy (Ry, Ly(R2))? N W= (Ry, Lyjn(R2))?,
Faz(0,€) = LY (R, W, (R2)) N L5 (R, W, 5 (R2)),

G(6,2) = W Ry, W, H(R?))® N LY (R, W, (R?))?

3

NS (Ry, W, L (R2))? N L5 (Ry, W, 5 (RE))?.

)%,
3

)

Moreover, we define additional function spaces as
Ay = LD (R, Ly(RL) N LD Ry, Ly(RL)),
Ay = LZIPOTR(Ry, Ly(RE)) N L22T2(R,, Ly(RY)),
Ay = LOPONP R, WHRD) 0 LE2DH(R W (RY)),
Ag = Ly @/2O 2R WHRE)) N L@/ 2(R, Wy (RY)).
For the initial data, we set

I = 33271/1)) (R?’) n 32% pl/p) (RB)

I, = B3 Vr=19R?) n By VP TVA(RY) N Ly o (R?).
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4.3. Linear theory I
In this section, we consider the following linear system:
du+u—Au+Ve=0 inRi7t>O7
divu=0 inR}, ¢t>0,
(4.3.1) 3
S(u,fln=g on Ry, t >0,
ul;=0 =0 in R3+

for n = (0,0,—1)7, and furthermore,

du—Au+Vo=1f+£f iR}, t>0,
divu=0 inR3,t>0,
(43.2) S(u,0)n + (¢cy — c,A')hn =0 on R} t >0,
o Oth —u-n =g, 0nR8,t>07
ul;—p=0 in R'j_,
hli=o =0 in R3

with the auxiliary problem:

AH=0 inR3,t>0,
(4.3.3)

H=h onRg,tZO.

REMARK 4.3.1. Although we consider (4.3.1)-(4.3.3) in R to use some results
obtained in [SS08], [SS12], and Chapter 3, the case of R? can be treated by using
a suitable transformation. In addition, we use the symbols: A, B, D(A, B), L(A, B),
and M(a) (a > 0) defined as (1.2.1) with y =1 and (1.2.2) in this section.

4.3.1. Analysis of Equations (4.3.1). We start with the following theorem

to analyze the equations (4.3.1).

THEOREM 4.3.2. Let 1 < p,q < o0 and g € Hl’l/Q(Ri x R)2. Then the

¢,p,0
equations (4.3.1) admits a unique solution (u, ) with

ue W2 (Ry xR)?, 0¢€ L,o(R,WRY)),
and also the solution satisfies the estimate:

(434) ||(8tuv u, Vu, VQU-’ V&) ||LP(R+,L4(R3_)) < C(pa Q)

”gHH;_”;V/OZ(R_;_XR)

with a positive constant C(p,q). In addition, the solution u is represented as

u(x,t):/()/[B(t—s)g(-,o,s)](x)ds (t>0)

by an operator B(t) € L(Ly(R?)*, W}(R3)?) satisfying
+

141

B E SIS B
IV'B(r)allL,ms:) < Clo) 7~ > 2ie T all, @2 (7>0, 1=0,1)

for any a € Ly(R?)? and a positive constant C(q) independent of T and a.
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The unique existence of solutions and (4.3.4) were proved by [SS08, Theorem

5.1] and [SS12, Theorem 1.2]. Our aim here is to show the remainders. Let f (&', A)
be the Fourier-Laplace transform of f(z’,t) defined on R? x R, that is,

(4.3.5) f(&,N) = Fu L] f](E,N) = / e~ RN pf By da'dt (N =y +iT),
R2xR
and then we obtain the following lemma.

LEMMA 4.3.3. Let 1 < ¢ < 00, 0 < & < 7/2, and f(2',t) € C(R? x Ry).
Suppose that m(£',\) € M_12. 0 and set, for A\ =~y + it (v >0),

Ia.t) = £ Fg" [m( Ve PR e 0] @) (as > 0),
Ja,t) = £ Fg " [m(€ NAM(a) FE V] @ 1) (@2 > 0).

Then, for every t > 0, there exist operators I(t), J(t) € L(Lq(R?), W] (RY)) such
that for any g € L,(R?) and 1 =0,1

[(VZ(0)9, V' T ()t < C@) gl mey (¢ > 0)
with a positive constant C(q) independent of t and g, and besides,
Iwt) = [t =)5Co)a)ds, Iat)= [ (T 9fC.9)@)ds ¢ 0)
0 0
ProoF. For g € L,(R?), setting
[Z(t)g)(x) = Fot [£3F [m(& Ne P2 ] (1) g(€N)] (),
1
T (t)g)(x) = / Fot [£31 [mle Nas e BH+AC=02] (1) 5(e")] (o) do,

we see, by (1.2.3) and Proposition C.1 with s = —1 and v = 0, that

I(z.1) = / Tt — ) 9)(@)ds, T(a.t) = / (= )£(-8)) () ds.

We first show the required estimates of Z(t)g by applying Proposition 1.2.8
with X =R, L=0,n=1,and 0 =1/2. Let A =it for 7 € R\ {0}, and then

(4.3.6) Dg L3 (€ Ve P (t) = FHDE (m(€im)e P (#)

for any o/ € N§. Since, by Lemma 1.2.6, m € M_; 20, and Leibniz’s rule,

(4.3.7) |(Tar)lD?/,(m(§/, iT)eB3)|
<o@)(|r]M? + A)~teelll
< Ca/) AT |r 712

1/2 /|

+A)23A—[a

for I = 0,1 with positive constants C'(«/) and ¢, which, combined with Proposition
1.2.8, furnishes that for ¢ € R\ {0}

\FHDE (m(¢ir)e Boa))(t)] < Ol ~Y/2A71L,
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On the other hand, by using (4.3.6) and (4.3.7) with | = 0, we have
| D (m(€im)e P)](0)] < Cla) A / [7|71/2e b e g
R

< Cla)A gt
which, combined with the inequality above, furnishes that

, Clo) o
—1r o . —Buz [e}
|]:T [Df’ (m(&"”m’)e 3)](t)|§mA | |
Thus, applying Fourier multiplier theorem of Hélmander-Mikhlin type to (4.3.6),
we have
Clq)

IZ()gl(-, 23)l 2, (r2) < |t|1/2—||9||L (R2);

and therefore \|I(t)g||Lq(Ri) < C(g)t~ 1/(2‘1)||g||Lq(Rz) for t > 0 with a positive
constant C(q). Analogously, we have
C(q
VO8I0, ) < ool mey (€ R {OD)

which furnishes that the required estimate of VZ(t)g holds.
We next show the estimate of J(t)g. Let A =it for 7 € R\ {0}, and then by
Young’s inequality

IT @I, z3)ll L, r2)
/ H]—" [Pt [m(€ ir)zsaeBoraa=ma] ()] ¢)
We thus obtain, by setting X = L,((0, 00), L1(R?)),
(4.3.8) [T (t)gllL,me)
< [[]7" (7 [mte v aezoacm=) ) | aolo

To continue the proof, we apply Proposition 1.2.8 with X = L,((0,00), L1 (R?)),
L=0,n=1,and 0 =1/2 —1/(2q) to the right-hand side of the aforementioned
inequality. For o/ € N3, [ = 0,1, and 0 < ¢ < 1, we have, by Lemma 1.2.6,
m € M_; 2.0, and Leibniz’s rule,

do .
ey B2,

Lq(Rg)'

(4.3.9) ‘Dg/ {(TaT)l (IBAm(gl’iT)ef(BOJrA(lft‘))mg))}’
A 1/2 A
< O(a/\—2342 _ —c(r["/?0+A)zs g—|a’|
(Oé ) |T|1/2 T Ae

< C(O/) x§|7|—1/26—c|7‘1/29m3 ($3A)1—ae—cAm3A5—|a']
< (o) a2l 003 ~(e/2 A e

for some positive constants C(«’) and ¢, which, combined with Proposition 1.2.8
with X = R, L =2, n =2, and 0 = ¢, furnishes that

Fat [(700)! (zsdmlg’ i) EO+AG=0Z0) ] (57)

< C$§|T|_1/26_C|T|1/29m3 |$/|—(2+€)'
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On the other hand, we use (4.3.9) again with o/ = 0, and then
‘]—‘71 [(T@T)l (achm(f’7iT)e_(Be+A(1_9)m3))} (x")

< Cl,§|7_|—1/2e—c|r|1/201'3/ Aee—(c/Z)Amg d&-/
R?2

< Cm§|T|—1/26—C|f|1/2am3 ($3)—(2+e)
for [ = 0,1 with a positive constant C'. We thus obtain
Caglr| /2=l 20ms

|x/|2+s + (x3)2+s ’

Fat [0 (wsdm(¢,im)e BHHAG0m) | (o) <

which furnishes that

H(Tc%)l]:g/l {:chm(g’, A)e—(BﬂA(l,@))mg}

1 1 1
| <coirE
X

for I = 0,1 with a positive constant C'. Then Proposition 1.2.8 and (4.3.8) implies,
for any ¢ > 0, that

1
_1 14 1 1,1
10l m) < C [ 07 d0t 4 H gl o) < O F F gl o
0

with some positive constant C' independent of ¢ and g. The estimate of V7 (t)g
can be proved analogously, so that we may omit the proof. O

We next consider the equations:
Ov—Av+Vr=0 inR3, >0,
divv=0 inR3,t>0,
S(v,rim=h onR}, ¢t >0,

V|t=o =0 in Ri_.

Let he H ;,’;,/12,0(1{1 x R) for 1 < p,q < 00, and then the equations above admits

a unique solution (v, ) with

veWw! (RY xR)®, 7€ L, oR,WIR2))

q,p,1,0

by [SS12, Theorem 1.2]. Furthermore, in [SS12, Section 4], the exact formula of
v is given by

2
sl == Y6517 | S D A 00| @'
k=1 ’

2i¢;(B? — 3AB + A?)
AD(A, B)

+ £;1f71 |: AM (I?))E?) (6/7 07 /\):| (I/, t)
BD(A, B)

2i§;(B — A)
DA, B)

2
D LT {7&&(&9 e BRe o, Aﬂ («',1)
k=1
- LyF [ e PRy (€0, A)} (/1)

1 ~
- Lyt F! [Ee—%hj(gxo, /\)} («',1),
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ZL gt | s AMGTn(€ 0.0 (1)

B? + A?

—1r—1
+ Ly Fe [D(A,B)

AM(a3)is(€', 0, A)} @ 1)

2 .
1ot (BB A) prg o ,
_kz::lﬁ)\l]:g,l [%e Basp, (& ,O,)\)} (2',t)

— LT [%ﬂ%(sxw] («',1)

for j = 1,2, where we have used the relation: e=472 = ¢~ 5% — (B — A)M(x3).
Since the symbols:

§&B  2i6(B*—3AB+ A% £&.(B-A) 2ig(B-A) 1
AD(A, B)’ AD(A, B) " BD(A,B) ' D(A,B) ' B
2i¢, B B?+ A% i&(B—A) A(B+A)

D(A,B) D(A,B)’ D(A,B) ' D(A B)

(j,k=1,2)
belong to My 5.0 for any 0 < ¢ < 7/2 by Lemma 1.2.5 and Lemma 1.2.6, it
follows from Lemma 4.3.3 that there exists an operator

C(r) € L(Ly(R*)*, WS (RE)®) (7> 0)

such that the solution v is represented as

v(x,t)z/o (C(t — )h(-,0,8)|(z)ds (¢ > 0).

In addition, for any a € L,(R?)3, we have

141
2

(4.3.10) IV'C(TallL,ms) < Cla) 7™ T |[allL,me) (7> 0)

for I = 0,1 with some positive constant C(q).
Proof of Theorem 4.3.2. Let (u, 6) be the solution to (4.3.1). Then multiplying
the equations (4.3.1) by e’ yields that

O¢(e'a) — A(e'u) + V(e'0) = inR3, ¢ >0,
div(e'u) = inR3, ¢ >0,
(eueG)n—eg on R3, t >0,

¢ 3
euly—o =0 in R}.

Since e'g € H;;/120(R3 x R), we obtain, by using C(7) introduced above,

ulet) = [ 10t = (e B.0.5)](@) ds
and therefore
u(z,t) :/ e~ =I[C(t — s)g(-,0,9)](x) ds.

Setting B(7) = e~ "C(7) and (4.3.10) completes the proof of Theorem 4.3.2.
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THEOREM 4.3.4. Let exponents p,q satisfy (4.1.4), and let 1 < r < q. Suppose

that g € H:;{)Q(Ri x R). Then the equations (4.3.1) admits a unique solution

(u,8) with
ue W2 ,H(RY xR)’, 0 Lyo(R, W) (RY)),
and also the solution satisfies

1@, 0, Vu, V2, VO) I, .z, m2)) < Cligl e s cry

for a positive constant C = C(p,r). If we additionally assume that

g LR, W RY), (142 Vg e Hy'(RY x R)?

7,p,0

for non-negative numbers a(r) and B(r), then the following assertions hold.

(1) There exists a positive constant C = C(p,r) such that for any t > 0
)z ety < CC+ 27 el oo,
(2) There exists a positive constant C = C(p,r) such that
2
||(8tu, u, Vu,V u, V(g) ”Lg(r)(RJr,LT(Ri))
B(r

=0 (||g||L;<r>(R+,W;(Rs+)) I+ 2% )g”H;;;/g(RixR)) ’

provided that p(1 + a(r) — B(r)) > 1.

ProOOF. The assertions except for the last two inequalities were already given
in Theorem 4.3.2, so that we here show the inequalities only.

We first consider the estimates of ||Vlu(t)||Lr(R3+) for | = 0,1 and t > 0 by
using Theorem 4.3.2. We then have

/2 t
u(e, ) = ( / n / /2> B(t — $)g(-.0, 9)](2) ds =: wy(z, 1) + ug(z, ).

Concerning uy (z,t), it follows from the trace theorem that for p’ = p/(p — 1)

t)2
IV i ()]z, ms) < C/ e~ (=) (p — )~ tar
0

g(S)HLT(Rg) ds

141 t/2 o
_ e LI
<Ce t/Qt 7 T35 (/ dS) ||g||Lp(R+7WT1(R:i))
0

—t/4
<Ce /||g\|Lp(R+,Wg(R3+))

with some positive constant C = C(p,r), because by (4.1.4)

1 141 1 >1 1 1 1
P 2 2r — p/ 2q P 2q

2
(4.3.11) > 14— =g E
q
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On the other hand, we have, by the trace theorem and (4.3.11),
¢

(t—s EEETIEY
19" 0s(0) 2, ) < © //2e (1 — ) ()l ey s
t

t
<t +2) ) [ e e s (54 270 (o) s
t/2

<C(t+2)7°M

' ( ) 1/p
—p'(t=s) (4 — )P (5%
><< /t/2e (t— )7 (553 ds) I Eyp——

<C(t+ 2)*a(r) Hg||L§<T>(R+.,W,?(Ri))

with a positive constant C = C(p,r), which, combined with the estimates of
u; (z,t), completes the required inequality in (1).

Next, we shall prove the inequality of (2). Since (u,6) satisfies the equations
(4.3.1), we see, by setting U = (¢ + 2)#(u and © = (t + 2)#("4, that

HU+U—-AU+VO = -3(r)(t+2)"Pu in R, t>0,

divU=0 in R, ¢ >0,
S(U,0)n = (t +2)°"g on R3 t >0,
Ult=0 =0 in Ri.
It then follows from p(1+ a(r) — B(r)) > 1 and the estimate of (1) that
(4.3.12) [I(t+ 2)_1+ﬂ(r)u”Lp(R+,Lr(Ri))
<Ot +2) O EO| L g ||g||Lg(r>(R+,W}(R§_))
< Cllell g @, wyms )

so that by Theorem 4.3.2
(4313) || (atU, U, VU, V2U, V@) ||LP(R+,LT(R3_))

< O (Jlelsgorm, wamsyy + 16+ 27l )
with some positive constant C' = C(p,r). Noting that
(t +2)Mou = 9,U — B(r)(t +2) Py,
we obtain, by (4.3.12) and (4.3.13),
It + Q)B(r)atu”L,,(R+,LT(R1))

B(r
S C (||g||LZ(T)(R+,W}(Ri)) + ||(t + 2) ( )gHH:);/OQ(RiXR)) s
which, combined with (4.3.13), completes the proof of the theorem. O

4.3.2. Analysis of Equations (4.3.2) and (4.3.3). We first remind the fol-
lowing proposition, which was proved by [SS12, Theorem 1.4] essentially.

ProOPOSITION 4.3.5. Let 1 < p,q < oo. Then there exists a number vy > 1
such that for every

fe Lp,'yo,O(Ry Lq(Ri))gv gh € Lp,’yo,O(Ra WqQ(RE))!—))7
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the equations (4.3.2) and (4 3.3) admit a unique solution (u, 0, h, H) with
(4.3.14) ue W2 (RExR)®, 0€ Ly 0R, WHRY)),

he W o(RWZVI(R)) 1 Ly o R, WE/9(R2)),

H € W, o(RW2(921)) 1 Loy o (R, WEQL)),
where Qr, = R? x (0,L) for L > 0, and besides,

VH € Ly o(R,WHRY))?, VOH € Ly, o R, W, (R3)).
The solution (u,0,h, H) satisfies the estimate:
(4.3.15) e~ (9,1, u, Vu, VZu, Vo) ||Lp(R+>Lq(R:i))
+ et o,nll SRy W2V R2)) T ||6770th||L R, W 1(R2))

+ e VH| L, m, weme)) + leT VO H L, m, wire))

< C(p,4,7) (He ot f||L (Ri.Ly(R3)) T [e= /thL,,(RJr,Wq?(Ri)))
for a positive constant C(p, q,7o) depending only on p,q, and vo. If we assume that
H;/fo o(R,WH(R3)) additionally, then for every L > 0
3/2 1/2
(4.3.16) He H/2 (RWHQL)), VOHe HY2 (R.L(RY))>,
and furthermore,

(4.3.17) ||6_%tA'1yé2vatHHLp(R,Lq(R3 » < C:q,7%) (||6_70tf||L,,(R+,Lq(Ri))

e gnlle,m, w2ms) + lle” FyOtAl/zgh”Lp(RW L(RY )))
with some positive constant C(p,q,Y0).

REMARK 4.3.6. (1) Let 1 < p,q < oo, and suppose that f € L, o(R, L,(R%))?

and g € Wj;o(Ri x R). Then, by Lemma 1.3.5 (3) and Remark 1.3.6, we
see that

e~ 'YOtAl/Q ||e—’Yot

gh”L (R,WIH(RY)) < C( ) gh”Hl/2 (R,W}(R2))

< C( 7Q)H€ ’YOtthWiv;’O(Rijer) < C(p7Qa70)||gh”WqQ; R3 xRy )’
which, combined with (4.3.17), furnishes that
(4318) ||6770tA»1yé2vatH”Lp(R7Lq (RS ))

< C0,0,%) (I8, e oty + 190wz ms ry)) -

(2) Let 2 < p < 0o and 1 < ¢ < o0, and suppose that f € L, o(R, L,(R%))® and
gn € WH! (R x R). It then follows from Lemma 1.3.5 (2) and (4.3.15) that

q,p,0
for every T' > 0

|, VE) [ o o.mwy sy < CH VE) w2 ms < 07)
< 0 (| @, VO, 00,0
e (w, VD, o). wz met )

<C (HfHLp(R+,Lq(Ri)) + ||gh||Lp(R+,Wq2(Ri))>
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with some positive constant C = C(p,q,70,T). Additionally, we obtain, by
Lemma 1.3.5 (3), Remark 1.3.6, and (4.3.18),

IVOH| prco,1),1,R2)) < 670T||€_70tvatH”BUC((O,T),LQ(Ri))

< Clle™™" VorH | g2 < Clle"VoH| /2

0.7).Ly(RE)) = (R.Ly(R2))

< Clle™ ™ AL PVOH|| L, L, rY))
<C (||f||L,,(R+,Lq(R1)) + ||9IL||W;;,}(R1xR+))

with some positive constant C = C(p, ¢,70,T).
(3) Since it follows from Sobolev embedding theorem and [MS12, Proposition 3.2
with s =0,7=2,a=1, and § =1 that forevery L >0 and 0 < o < 1

Wy o(R,WZ(Q2L) N Ly o(R, W ()
= W7, (R,W;77(Q)) = BUCR4, W7 (Qr))
— BUC(R,,BUC?*(Qyp)),

provided that ¢ > 1/p and 3 — o > 2+ 3/¢. By [MS12, Proposition 2.10, 3.2,
we similarly see, for every L > 0, that

HYG(RWEHQL) N LR WE(QL))
< HY? (R, H227(Q1)) < BUCH (R, BUCH(y)),

if (3/2)0 >1+1/p and 3 —20 > 1+ 3/q. We thus obtain, by using (4.3.14)
and (4.3.16),

e "'H € BUC(R,, BUC?*(Q1)) N BUCY (R, BUC (1))
for every L > 0 under the assumption (4.1.4). The last property implies that
H e C(Ry, C*(RY)) N C' Ry, C'(RY)).

We use the function spaces given at the end of Section 4.2 below, and then the
following theorem holds.

THEOREM 4.3.7. Let exponents p,q satisfy (4.1.4). Suppose that 1 > 1 and
€9,e3 > 1, and that 0 < 01,82 < 1 satisfy

1
(4.3.19) p(min{ey, e2,e3} — 01) > 1, D (m (%,q) + i 61> > 1,
p(min{ey, e9,e3} — d2) > 1, p(m (%,2) +1752) > 1.

In addition, we set §o = max{01,d2}, and let the right members £y, f5, and g of
the equations (4.3.2) satisfy the conditions as follows:

(1) Let f; € Fy Ny (8o, 1);
(2) Let f5 € Fo NFa(do, £2);
(3) Let gn € Gn N Gh((SQ,Eg) NA; NA,.
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Then the solution (u, 0, h, H) obtained in Proposition 4.3.5 to the equations (4.3.2)
and (4.3.3) possesses the estimate:

Z(Wm@mmﬂnmwwm@mm+mwmmﬁg
re{q,2}
< C0,0) (I, 1y 3000y + 1B sy + 190 i gy )
with some positive constant C(p,q).

PrROOF. In the proof, we shall show the following inequality:

(4.3.20) z:(ngmhmJU+MMAmmhﬁJﬂ)+W@Amﬂﬁh@)
re{q,2}
S C(p’ q) (Hle]Flﬁﬁl((;g,el) + ||f2||F2ﬂF2(50762) + ||gh||G;LI’\I@;L(50783)0A10&2)

with some positive constant C(p,q). If we obtain (4.3.20), then the required esti-
mate of 6 and 9:h follows from the fact that 6 and h satisfy the equations (4.3.2).
In fact, it holds, by the trace theorem, that

VO, ®y.z.r3)) < (O, Au, f1,B2)[ 2, (r. 2, RE))
||6thHLp(R+7WT2*1/T(R2)) < Cll(u, gh)”LP(RJr,Wf(R?’+ )s
10l tarzm 1, ey = ClOG g marzn ey s et

for r € {q,2}, which, combined with (4.3.20), furnishes the required estimate of
Theorem 4.3.7.

To show the required decay properties and weighted estimates, we first give the
exact formulas of the solution to the equations (4.3.2). Let (w, ) be the solution
to the following resolvent equations:

AW — Aw + Vp = LIf](A) in R}
A . 3
divw =0 in Ry,
S(w,p)n=0 on R},
where we have set f = f; + f,, and (v, 7, h) the solution to the following resolvent
equations:

AW —AV+ V7 =0 in RY,
divv =0 in RY,
S(¥,m)n+ (¢c; — c,A)hn =0 on R},

Oh—v-n=CL[g)(\)+W-n onRg,
We then see that
u=L'FAw(), =L [p+RE), h=Ly R0,
H = Fg'le ¥ Fu B¢, D)) (s> 0)

solve the equations (4.3.2) and (4.3.3) uniquely. Here w = w' 4+ w?, where w’
(i =1,2) are given by (3.2.8) and (3.2.13), respectively, and also (¥, h) is the same
function as (v, h) of (3.4.2). By (3.4.6), setting, for a € {0, 00},

(4.3.21) Vo = Va(@,t) = L3 Fe [0a(§) For [VI(E 23, M) (2, ),
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ha = ha('r/’t) = ‘Cxlfg_fl[@a(gl)fr’ [ﬁ](g/’ )\)](:l'/,t),
H, = Hy(w,t) = F5 ' [0a(€)e™ €17 Fu [h](€, 1)) (),
w = w(z, 1) = £5 [wlz, V](0),

we see that
U=vg+ve +W, h="ho+he, H=Hy+ Hy
In addition, it follows from Proposition C.2, (3.4.7), and (3.4.9) that

(4.3.22) Vg /S (t —s)F(s)ds, /Rtfs
ha(t):/o T (t — 5)F(s) ds, Ha(t):/o E(T,(t — 5)F(s)) ds

for a € {0,00}, F = (f,9n) = (f1 + f2, g1 ), and the extension operator £ defined as
(3.1.3). By Proposition C.2 again, we also have, for a € {0, 00},

(4.3.23) Dpvo(t) = / ' 9,50(t — $)F(s) ds,

/at Lt — $)F(s)) ds + For ' [pa(€)e € 172G (¢, 0, )] ().

REMARK 4.3.8. Let a € {0,00}, and then H,(t) = H}(t) + H2(t) with
H,(x,1)

[ (O]
—1 g1 [ $a(€)A
- e

2 oo (¢1)2i¢,AB - /
+Z / £ R %emwyg)n@,y&»} (@' 8) dys

e~ A1) Ty (¢, A)} () dy

Hf(x,t)

it [ al€)D(AB)
- L [m 450, (1),
where f is defined as (4.3.5). Since A = B2 — A2 and
AD(A,B) _ (B-A)DAB) _ | Aley+crA?)
(B+A)L(A,B) L(A,B) - L(AB)

we obtain
(4.3.24) O HZ(x,t) = L3 Fe! [%9_‘4“ (£,0 )\)} (a,t)

’ 2
_ —ﬁ;lfg,l |:90a(€ )‘[fjl((jg‘;_)CUA )ﬁh({f',O,)\)} (Z'/,t)

+ Fg! [pa(€)e M Gn(€,0,)] ().
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Note that the last term of (4.3.24) did not appear when we considered the initial
value problem (3.1.1), because g was independent of time ¢ in the case of (3.1.1)
(see the end of Section 3.5 and 3.6). We thus obtain the second identity of (4.3.23)
by Proposition C.2 and (4.3.24).

We here summarize properties of the operators used in (4.3.22) and (4.3.23).

PROPOSITION 4.3.9. Let exponents p,q satisfy (4.1.4), and 2 <r < q. We set
F = (f,g), and suppose that

feL(RY’NL(RE)E, ge W2 V(R NL(R?) (s=q/2).

Then the following assertions hold.
(1) Let k =1,2 and I = 0,1,2. Then there exists a positive constant C = C(q,r)
such that for any t > 1

10:So()F |1, (r2) < C(t+2 D[, (R2)%x L. (R?)>

)
[S0(O)F |1, 2y < C(t+2 DR g, (R2)%x L, (R2);
)

(
(

IV*So(t)F |1, ®r:) <C(E+2)7" (s:1)=% IFllz.r2)2xL.(R2)>
C( 3 )3x Lo (R2)»
(
(

)"

)

)"
VL 0,E(To()F)|| t42)"mem) s
[VIHE(Ty(H)F )||L ®r1) <C(t+2)” m(gr)___é||F||L,Q(Ri)3><LS(R2)a
(t )y~ (3=3)]

On the other hand, let 0 < t < 1, and then

1To(t)F|| L, r2y < C(t+2

x L(R2)-

10eSo(O)F |, r2 ) + I(So()F, 0:E(To (1) F), VE(To(H)F)) [ wz(rs )
1 To@)F| 2, r2) < Clo,q,r) tF L, (r3 )2xL.(R2)

for any a > 0 with some positive constant C(a, q,T).
(2) There exist positive constants oo and C = C(q,r) such that for any t > 1

[(Soc ()F, 0,8 (Too (1)F), VE(Too () F))l w1 (r2)
+ [T (t)F

_00t||F||LT(R3 )3><W2 1/T(R2).

(3) If g e W?il/S(RQ) (s = q/2) additionally, then there exist positive constants
oo and C = C(q,r) such that for anyt >0

1S (1) F, 0:E (T (1) F), VE(Too (1) F)) lwrp (m2
_s(1_1)y_1 _,
+ | T (OF || (rey < Ct3(33) 3¢ 1P, g ys w17 (me:
(4) There exists a positive constant C = C(q,r) such that for any t >0
VRSl mey < Ct 20038l my) (k=0.1).

PrOOF. Noting the assumption (4.1.4), we obtain the estimates of (1) and (2)
by Theorem 3.1.3 directly.
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We show the inequality of (3). By Theorem 3.1.3 (2), there exist a positive
constants dp and C(q) such that for any ¢ > 0

(4.3.25) [(Soe (1) F, 1€ (Too (H)F), VE(Too (F))[lw1(r32)

< C@ 2 Bl s i1y

I(V28ec (t)F, V2E(Too (1)F), V20 E (T ()F)) | 1, (2 )

—1_—6ot
<Cg)t e ™ ||F||LS(Ri)3xW§‘1/S(R2)'

In addition, we see, by the trace theorem, that
(4.3.26) 1T (OF lw2r2) = [T (OF | L. r2) + [ V'E(Too(O)F)|| Ls(r)
< C(g) (IToe (OF Iz, w2y + [ VETo (OF) w2 a2 )

-1 6ot
<C(gtze ™ HFHLS(Ri)SXW;/*QI/S(RQ)'

Combining (4.3.25) and (4.3.26) with Sobolev’s embedding theorem:
1)y 2 2)
vl

1—2(1_1 o(i_1
Iollz. e < Clamllolls s P Ivel e,

1-3(1

(13.27) lullz, ) < Cla. Pl on
we obtain, for any ¢ > 0,

[(Soc ()F, 0:E (Tos (1) F, VE(Toa (1) F)) [ . m2 )

—1 50t
< Ot 2e ™ Fll, ms yo w21/ me2)

—3(2_1)_1 _(5,/2
SCt 2(q 7) 2e ( /)t||F||LS(R1)3><W5271/3(R2)7
[(VSeo(D)F, VOE(Too (1) F, V2E(Too () F)) 1, (2 )

_3(1_1 _ljfé t
<Ct 3(3-3) -3¢ ||F||LS(R1)3XW3*”S(R2)’

_3(i_1)y_1 _
I T (OF Iz, ey < O FE=H) T2 CoPMBY s yaive ey

with some positive constant C' = C(q,r). The inequality of (4) is also proved by
(4.3.27) and Theorem 3.1.3 (3), which completes the proof of the proposition. [

We suppose that r € {q,2} below, and also set €9 = min{ey,e2,25}.

Step 1 We here consider the estimates of w. It follows from [SS12, Theorem 1.2]
that for some v9 > 0

(4.3.28) le™ " (Orw, w, Vw, VW) 2, Ry L (R2))

< Clle™™ (f1. £2)ll o, m. L2 y) < Cll(Er £2) [[r xr,
with a positive constant C' = C(p, ¢,70), and also that

(4.3.29) H(atwaVZW)\|LP(R+,LT(R3+)) < Clfllp,®y L ri) < Cl(E, ) F, xr,
with a positive constant C' = C(p, q). By using (4.3.22), we set

t/2 t
w(t) = (/O +/t/2> R(t — s)f(s)ds = L,(1) + Io(t) (t > 0).
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Then, for [ = 0,1 and ¢ > 0, we see, by Proposition 4.3.9 (4), that
! t/2 Ca(zo1)-4
IVl <€ [ =9 HED )L, ms ds
_3(2_1)_1L t/2 -
Sct 2(q T) 2 {!/0 ($+2) €1 dSHfl”Lié(RJr,Lq/Q(Ri))

t/2 , 1/,
+/ (s+2) 7 ds) "

0

’

||f2||Lf,2(R+,Lq/2(R3_))}
,3 2,1 _ L
< Ct 2 4 T : (|f1||]F1(50 €1) + ||f2||F2 do 52))
VL) qmy < O+ 2 [ (6= ) HEH
t/2
(s + 27 Iy air) + (5 + 22 185, o)) ds

t

_e _3(2_1)_1

S C(t+2) 0 {//Q(ts) 2(q ’yv) 2 d8||f1||L;J,(R+,Lq/2(Ri))
t

‘ 1/p'
_ 0P {3(2-1)+4i} )
+(/f/2(t S) 2\q 2 dS) ||f2||Lp2(R+,Lq/2(R3jr))

ept1—B(2_1)_L
S C(t+2) o+1 2(q 7‘) 2 (”fl”Fl((;o,Eﬂ —|— ||f2||F2(50,€2))
_3(2_ 1) 1L
< C(t+2 HE D7 (Il 5, - + 1Rl G5
with some positive constant C' = C(p, q), where by (4.1.4)
372 1 l 3 1
4.3.30 === = - =+ = 1
( ) p{2<q r>+2}<p<2q+2)<
for 1/p+1/p’ = 1. We thus obtain for ¢ > 1 and [ =0, 1
l —n(g,r)—1
(43.31) VW)L my) < C+2E0E (il 5, o)+ I8l5, 6, 0y )
On the other hand, by Lemma 1.3.5 (2) and (4.3.28),
sup_[[w(t)llwyms) < Cliwllwzms x(0.2)) < Cl(E E2) e s
0<t<2

which, combined with (4.3.31), furnishes that

(4.3.32) > Wine(w,0,0,00< Y > [[Viw]

re{q,2} Te{q 2} 1=0,1

S O (”fl”]Flﬁﬁl(ég,El) + ||f2||F2ﬂF2(50,€2)) :

Finally, by (4.3.32) and the assumption (4.1.4),

7L(‘1/2 r)+1/2 R L, (R ))

Hle”LP(RJr,LT(Ri)) < It + 2)_n(q/2’r)_l/2||Lp(R+)||Vlw||L’go(q/z,r)+l/2(R+,Lr(Ri))

< C (I, o, 500 + 12y )
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for [ = 0,1, we obtain

(4.3.33) > My (w,0,0,0,0) < C (I s o, 50 + 1Bl s0.c0))
re{q,2}

where we have used the inequality (4.3.29).

Step 2 We here consider the estimates of v, hoo, and Hy,. By (B.7), we have
the maximal regularity property:

(4334) || (atvoo, Voo, VVOC, Vzvoo) ||Lp(R+,Lr(Ri))

10 Hoo) |2, m e w2ms)) + [ Hooll L, (ry w22 ))

<C (HfHLP(R+ L.(R3)) T lgnll, SRy W2 1/T(R3)))

with f = f; + f5, so that we show the other estimates below. By (4.3.22), we set

(/ //) (t— )F(s)ds = L,(t) + To(t) (t>0),
(/ //2> (t— $)F(s)ds = J1(8) + Jot) (£ > 0).

By Proposition 4.3.9 (3), (4.3.30), and the trace theorem, we have, for ¢ > 0,
L@ lwzws) + IVEG1 @) lwrwre) + (O], r2)
t/2
< Ce(00/2)t {/ (t — s)*”(
0

t/2 ! 4,41 _ple 1/p
+ (/O (t—s) ' (n(%, )+2)(5+2) p st) ||f2||LE2(R+, Lya(R

[V

-1 -
TE(s42)7 ds|Ifillpes my n, 2 ))

2))

t/2 ’ q 1 ’ 1/1’7/
+([] (t—s)7P (n(g,r)sz)(s—‘rQ)*P 93) ||gh||Lf,3(R§r,qu/2(Ri))}

< Ce I (a5, 50 + 18217 (30 + 9810 50.20) )
IT2(8)llw ez + IVECR() lwa ey + [J2(0)

L.(R2)

t
<C(t+2)7% {/ (t =) " ED e ds 1 s s, a(m)
42 q +

' - T —p o s 1/17,
+ (/t/z(t_s) P (n(3r)+3) gmploo(t- )de) 12llzs2 Ry L, 2R3 )

¢ —p (n(L,r)+1) —p'og(t—s 1/p’
+( (=9 VG000 ds) T gal oo, w2 r z»}
< C(t+2)7% (I, 5y c0) + Il g50.20) + 1901, (5024
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for some positive constant C' = C(p, q), which furnishes that
(4.3.35)  [[(Voo, VHoo )l 220 wi(me ) + ol Lzom 2, (r2))

< C (IB1l1z, (50.20) + 111y 50.20) + 19815, 5000 ) -

We next consider the estimates of VO;H,. As mentioned above, we easily see
that for every t > 0

(4.3.36) H / OE (T (t — )F(s)) ds

L-(R%)
<C(t+2)7 (llflllmo,sl> 125, 50,00y + 19015, 50,00 )
On the other hand, by the relation: A% = — Zi:l(zfj)z, we have
Fei'leal€)e 472G (€',0,1)](2')

2 i€,
—= 3 [Tt [eute) e B, € 0] () e
j=1

= [ e [eulee B €', )] @)

0
for a € {0,000}, so that by Corollary B.3 (1)

(4.3.37) ||Vf71[<ﬂa(§/>e_AxS§h(€/a07t)]('r/)||LT(Rf) < IV, gy (¢>0)
with some positive constant C. By (4.3.36) and (4.3.37), we have
(4338) ||VatHoo‘|L;no(q/Q,r)+1/2(R+7Lr(Ri))

< C (I llvser) + Il 5y ) + 198115, (50,2010, )

with some positive constant C, since 0 < m(q/2,7) + 1/2 < 1 for r € {q,2}.
Summing up (4.3.34), (4.3.35), and (4.3.38), we have obtained

(4.3.39) > (Wroo(Vaos oo, 0, Hoo) + My (Ve 0, g, 0, H))
re{q,2}

< C (11l 50.00) T 1y . 190 0 50,0008 ) -

Step 3 We consider the estimates of vg, hg, and Hy. To show the estimates, we
here introduce the following lemma.

LEMMA 4.3.10. Let exponents p,q satisfy (4.1.4), and 2 < r < q. Lete; > 1
and eo,e3 > 1. Suppose that

fi € L (R, Ly o (R2)?), £ € L2(Ry, Ly o (R3)?),
gn € LRy, W25 (RY)).

In addition, let X = Lg/5(R3)? x qu/2

S(t) € L(X, L (R})?),  T(1) € LIX, L,(R)) (t>0)

(R3) and
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be operators satisfying
ISH)GIlL, re) < CE+2)"IGlx, ITH)GIlL, &) < Ct+2)""[Gx

fort > 1 and some 0 < a,b < 1 with a positive constant C' independent of time t
and G, while

ISGIlL, @) < Ct?lIGlx, [THGL,®s < Ct 7Gx

for 0 <t <1 and some a, B > 0, which satisfy p'a < 1 and p'S < 1 with p’ =
p/(p—1). Then, setting

= [l L2 (m, 2 G50 ) If2llre2 w,, LR T ||gh||Lf,3(R+,qu/2(R§r))7

we see that the following assertions hold.

(1) Let F = (f, gn) with £ = f; + f5. Then there exists a positive constant C(p,r)
such that for any t > 2

/Ot S(t — 5)F(s) ds
/OtT(t—s)F s)ds

(2) Let F = (f,gp,) with £ = £ +£5. If pa > 1 and pb > 1, then there exists a
positive constant C(p,r) such that

/t S(t — s)F(s) ds
0
/Ot T(t—s)F(s)ds

PROOF. We here prove the case of S(t) only. Let ¢ > 2, and set

fsvamon (o[ [ Jov-om

1(t) + I2(t) + I3(1)

< Clp,r)(t+2)7°G,
Lr(Ri)

< Clp.r)(t+2)7'G.
L. (R2)

<C(p,r)9,

L,((2,00),L, (R2))

< C(p,7)G.

Lp((2,00),Lr(R?))

Setting 9 = min{ey, 2,3}, we have €9 > 1, and then

t/2
L@, @) <CE+2)7° {/O (s +2)7" ds|fill i (my n, nm2))

/

t/2 ! 1/p
+ (/O (S+2) p'ea dS) ||f2||L;2(R+,Lq/2(Ri))

¢/2 pIE 1/p/
- 3
+( / (s+2)7=ds) " llgnllig w2 )
<C(t+2)7g,
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t—1
M)l 1, ry) < CE+2)7%° {/W (t+2=s5)"dslfill Lz (ry L,,m2))

t—1 ; l/pl
([, w297 a) il

t—1 5 } 7p/ad) 1/111
(2= ds) ol me

< C(t+2) ot eg < C(t+2)7°G,

t
T2l ey < Ot +2) 7% { / ()T s 101 i)
t_

t 7p/a 1/]3/
+( /t IR R Y P

t 7p'a 1/p/
+ ( /t71(t ) ds) ||gh||LZ3(R+,W3/2(R3_))}
< C(t+2)%G.

We thus obtain the required estimates of S(¢) in (1), since a < 1 < gg. Then, taking
L,-norm with respect to time ¢ for the inequality obtained above implies that the
inequality of S(t) in (2) holds. O

By the formulas (4.3.22), (4.3.23), Proposition 4.3.9 (1), and Lemma 4.3.10

(43.40)  sup (¢ 42" E vo(t)ll .y + (¢ + 2" EDHEIVVo(0)lL, rs)
1>2 rR rRS

4,41 2_1
+ (t+ 2" E TV HO)lwp s + (¢ 4+2) D o0, )

<C (HleE((;D,el) + 121l (5, ) T+ ||9h||<§h(50,53))
with some positive constant C, and besides,
(4.3.41) (0¢vo, Vo, Vvo, V2Vo)||Lp((2,oo),L,,,(R1)) + [V Holl L, (200 w2 (R2))
+ 1ol ((2,00), L, (R2))
<C (||f1||ﬁl(50,sl) + ||f2||ﬁﬁ2(50,52) + ”gh||@n(60,53)) .

On the other hand, noting vo = u — (Ve + W) and hg = h — hy, we have, by
Remark 4.3.6 (2), (4.3.15), (4.3.32), and (4.3.39),

(4.3.42) sup (||V0(t)\|wg(R3+) +IVHo(t)[lwz + ||h0(t)||LT(R2))
0<t<3

< C (It lle, oy 50.00) + Iy s ) + 190 o)
(8¢ vo, vo, Vvo, v2v0)||Lp((0,3),LT(Ri)) + [IVHoll 1, ((0.3),wz®2))
+1hollz,((0,3), L. (rR2))
<C (||f1||[p1mfl(5o,el) T 1E2llp, A%, (50,00) T ||9h||<£;m@h(60,es)m&2)

with some positive constant C.
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Here we consider V9, Hy. By Proposition 4.3.9 (1) and Lemma 4.3.10, we have,
for any t > 2,

(4.3.43) ||V / COE(To(t - 5)F(s)) ds

L.(R})

(4oL
<O+ ™ EDE (Ifillg, gy ey + Bl gy ey + 190115, 60 ) )

t
v / DE (T (t — 5)F(s)) ds
0 Ly((2,00),WEHRA))

< C (I8l (50 1) + 1EslIzy 520y + 19015, 5y c0))
which, combined with (4.3.37), furnishes that for ¢ > 2
(4.3.44) [[VO.Ho(t)l| L, (r2

)
(2 )L
< C(t + 2) (3:m)—3 (”fl“Fl(lsO,El) + ||f2||ﬁ2(50,51) + ||gh||@h(50,53)ﬂ;§2)’

IVOHoll 1, ((2,00), W (R2))

< Ol sp.e0) + 18y scr) + 19015, 50,0018 )
On the other hand, by Hy = H — H,, Remark 4.3.6 (2), (4.3.15), and (4.3.39),
(4.3.45) sup IIVatHo(t)lleri)
0<t<3

< C (I, oy 50.00) F Iy inen) + 19,08, .o )

VO Hol| 1, (0,3), w2 (2 )

S C(”fl”]lflﬁfl(émel) + ||f2||]FgﬁF2(50781) + ||gh||Ghm@h(60553)m&2)

with some positive constant C.
Summing up (4.3.40)-(4.3.42), (4.3.44), and (4.3.45), we have obtained

(4346) Z (W,,47OO(V0, ho, 0, Ho) + MTW(V(), 0, ho, 0, Ho))
re{q,2}

< C(||f1llylmﬁ1(5(,,€1) + ||f2||]Fsz2(50751) + ||gh||Ghﬁ@h(60)s3)ﬂ;&2>'

Step 4 We here show the estimate of W, ,(u, H;d1,d2). By setting
w = (t+2)%, 0°=(t+2)°, 2°=(t+2)°h, and Z° = (t+2)°H
for § > 0 and ¢t > 0 in the equations (4.3.2) and (4.3.3), we see that
O’ — A’ + Ve’ =£° inR3,¢>0,
divu® =0 inR3, ¢ >0,

S(u’,0°)n + (cg — c,A)2’n=0 onRJ, t >0,

(4.3.47) S

‘n=g, onR3 t>0,
w|i—o=0 inR},

z5|t:o =0 onR?

atZ(S —u
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where we have set
£ = (t+2)°f + (t 4+ 2)°f, — 6(t 4+ 2) ' Hu,
gh=(t+2)°gn — 8(t +2)""h,
and furthermore,
AZ°=0 onR3,t>0,
{ 70 =20 onRgﬂfz().

Let F4 = (f°,¢9) below. In the same manner as in (4.3.22) and (4.3.23), we
decompose u’ and Z? as follows:

wW=vi+v +w, Z2°=2Z+7°
with
t t
V(1) = / Su(t— s)F%(s)ds, wo(t) = / R(t — 5)F%(s) ds,
0 0
t
75 — / E(Ta(t — $)F(s))ds  (a € {0,00)),
0
and also

ovE(t) = / C0uSu(t — $)F () ds,
0
0,258) = [ OET(t - F()) ds + Fo! [pal€)e 250 (,0,8)] ().

We first show the required estimates of vJ_, w?, and Z2.. In Step 1-Step 3, by
combining (4.3.32), (4.3.33), (4.3.39), and (4.3.46), we have obtained

(4348 Y (Wmo(u, h,o,H)+MT,p(u,o,h,07H))
re{q,2}
< C,a) (1E1llg, 7, (50.00) + 1€l 0.) + 190 s 0 (50,2002

with some positive constant C(p, q). Especially, (4.3.48) yields that

S
||f50 “LP(R+,LQ(R3_)) + ||gh,0 ||L1,(R+,W571/Q(Rg))
S C(p7 q> (Hfl”FlﬂFl((So,El) + ||f2||]F1ﬁF2(60¢82) + ||gh||Gh,ﬂ@h(60,83)ﬁA2)

with some positive constant C(p, q), since it follows from the assumption (4.1.4),
0 < §p <1, and the trace theorem that

(4.3.49)
[t + 2)_1+5°u\|LP(R+,Lq(R1))
< ||+ 2) HHoomm@2D| Ly ”u||L£<q/2*q>(R+,Lq(Ri))

< Cllullppazom, @)
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1 +27 2 g e acmey)
<C (It +2)7 R 1 s ey +NE+2)TIOVH L o v
<ot +2) 70V IR g, me)
+[|(t 4 2) 7 om0 g HVH”LQ(Q/Q'Q)+1/4(R+,W;(Ri)))

< O (Il agagm, pyqmryy + IV tornarciss e, wms )

with some positive constant C' = C(p, q). We thus obtain, by (4.3.29) and (4.3.34)
with f = f% and g), = gfL for 6 € {01,062},

(4.3.50)  [[(2v3, 0w, VAV VAW |L, R, L, (RE))
S S
< C (I 1m0y + 1901, r, wit/omsy)

<C (”fl”]ymﬂﬁl((so,el) + ||f2||urlmﬁ2(5o,g2) + ||gh||¢;,hm@h(5g,53)m&) ’
H(VQE)tZggvVSZgE)HL,,(R+,Lq(Ri))

< C (I8 0, me ety + 190, it/ gm)
<C (”fl”FmFl(aO,el) T 1E2llp, A7, (50,c0) T ||gh||Ghn@h(50,€3)ng2) :
Secondly, we consider the estimates of 8tv81. To this end, we set
Fo = (t+2)%(f1 +f2,1), Fo=—0(t+2) "+ h) (6>0,t>0).

Let ¢ > 2, and then we have

t/2 t—1 t
8thl (t) = (/O —|—/t/2 +/t_1> atS()(t — 8) (F(lsl (S) =+ Fgl (5)) dS
= 11(t) + Lo(t) + I3(¢) + Ja(t) + J2(t) + I3(t).

By Proposition 4.3.9 (1), we see that

t/2
IOl < O+ E0 5 [T 2 @t any

LERy,Ly/2(RY))

t/2 /v
—(e2—61)p’ R \
+ (/0 (s +2)~(c2=%0p dS) Ifallzz2 (R L, 02 )

t/2 _(5 _s ) ’ l/pl
+(/O (54 2)~(Ea=00p ds) ||9h||L;3(R+,W3/2(R1))}
S C(t —+ 2)_7"(%7(1)_%{<t + 2)1_(81_51)||f1||L;(R+,Lq/2(Ri))
t+2)i ||
+(t+2) 20222 (R4 L, 2 (R2))
+ (4277 gl
InllLi? (R, W2, (R2))

—m 2’ _1l.5 _ _ _
< Ct+2) 7 EO 0 (I o+ 1Bl e + 19015, 50 )
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t—1

||I2(t)||Lq(Ri) <C(t+ 2)—€o+61 {/

(2=
" (t+2—5) "9 4d<‘>’||fl||Lig(R+71:(1/2(1{0;))

t—1 ’ 1/17,
+ (/ (t +2— S)—P (m(%,q)-‘ri)ds) ||f2||L;2(R+,Lq/2(Ri))
t/2

o 1/p
g —P'(m(i’q)_t,_l) .
+ (/t/Q (t + 2 :5) 2 4 dS) ||gh||Lp3 (R+-,W‘12/2(Ri))}
1

< C(t + 2)—50+51+1—m(§=‘l)—4 (||f1||ﬁ1(507€1) + ||f2||F2(50,52) + ||gh||@h(50)53)>
Cm(&.g)— L
< C+2) " EDI0 (I o+ 1Bl 6y e + 9015, 50 )

L)L, @) < Ot +2)~ <||f1||ﬁl(50,gl) + If2llg, (50,c0) T ||9h||<(§h(50,53)) ),

since g9 = min{ey, e92,e3} > 1, so that we have, by the assumption (4.3.19),
(4.3.51)
3

Z HIiHLP((Q’OO)’Lq(Ri)) <C (||f1||ﬁ1(50,€1) + ||f2||ﬂ52(50-,62) + ||gh||@h(5o.,€3)) )
i=1
Concerning J;(t) (i = 1,2, 3), by Proposition 4.3.9 (1) and (4.3.48),

t/2
HJl(t)”Lq(Rﬁr) < O(t—|—2)7m(2’q)7%/ (8+2)71+617m(‘1/2,2) ds
0

X (”uHLQ(Q/2’2)(R+,L2(R§_)) + ||h||Lg(q/2’2)(R+7L2(R2)))

< C(t + 2)*m(2,q)*4+517m(%,2) (HuHLgm/z‘”(R%LQ(Ri)) + ”h”Lg(q”‘”(R+,L2(R2)))
=C

(&)1
(t + 2) ($.9)—5+01 (HuHLg(Q/Q’z)(R+,L2(Ri)) + ||h||L;*g<‘1/2=2)(R+,L2(R2))) )
t—1

132(8)l| 1, sy < Ot +2)"H0mm(E2) / (t+2—5) 075 ds
t/2
x (IIUHng/z»m(mhm» + ”h”wq/?*”<R+.,L2<R2)>)
< Ot +2) 30740 ()
|\J3(t)||Lq(Ri)
< C(t+2)7 03D (||

Lg(q/2,2)(R+’L2(Ri)) + ||h| L;’é(q/z’Q)(R+,L2(R2))> 5

LLZ(Q/Q’Q)(R+,L2(R1)) + ||h| L;'Q)("/Q’z)(R_*_,LQ(RZ))) .

Since it holds, by the assumptions (4.1.4) and (4.3.19), that
1
D <m (%,q) T2 61) > 1, p(l — 01 +m(%,2)) > pm (%,2) >1,
we have, by (4.3.48),

193l (21009, 20 82 < C (Uil 8, (500 + Iy 50.00) + 190605 (500000 )
for i = 1,2,3, which, combined with (4.3.50) and (4.3.51), furnishes that

10:((t + 2)° WL, ((2,00),L,(R2))

=C (HleFIQFI((SOyEI) + ||f2||F2ﬁF2(50782) + ”gh”Ghﬂ@h(%ﬁa)ﬁ&‘Z) ’
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Noting that
(t+2)%10,u = 9,((t +2)%u) — 6, (¢t +2) " +ou,
we have, by the last inequality, (4.3.48), and (4.3.49),

I(t+ 2)613tu||Lp((2,oo),Lq(Ri))

S C (‘|f1‘|F10F1(60,81) + ||f2||]F2ﬂF2(60,82) + ||gh| Ghﬂ@h(%,s:;)ﬁ&z) )

which completes the required weighted estimates of d;u. Analogously, we can show
the weighted estimates of V2u.
We next show the weighted estimate of V3H. Let ¢ > 2, and then

V3Z(t) = (/t/Q Jr/t_l +/t ) E{To(t — 5)(F32(s) + FY(s))} ds
0 t/2 t—1
=:I1(t) + Lo(t) + Is(t) + J1(t) + J2(t) + J3(2t).
In the same manner as in the case of 9, vJ, we have
)|z, re) < O+ 2)m(a/2.0)=5/4+9>
< (1815, 20y + Dol 5 ) T 19805, 5 ) -
L), ®m2) + L)L, ®mz) < O+ 2)~(c0=%)

X (Hfl”ﬁl((;oﬁl) + ||f2||F2(60752) + ||gh||@h(5o,€3)) ’
”Jl(t)HLq(Ri) < C(t + 2)7m(Q/2,Q)*5/4+62

x ||u||L$(q/2’2)(R+,L2(R3_)) + ||h||LQ(Q/Q’Q)(R+,L2(R2))) ’

12D, me ) + 1301, me ) < O +2)7 o2/

% (”“”LZ;W“)(R+,L2<Ri)> +[IA] ngw/z,m(m,h(m))) ‘
Noting the assumption (4.3.19):
p(1_52+m(Q/272)) > ]-7 p<50_52) > 17

we thus obtain the required weighted estimate of V3H by (4.3.48) and (4.3.50).
Finally, we show the weighted estimate of V29, Hy. Now, by (4.3.37), we have

V27" [wo()e =g (¢’ 0,1)|

<C|(t+ 2)62v29h||Lp(R+,Lq(Ri)) < Cllgnllg, o,e5):

Lp(Ry,Ly(RY))

while

HV2 /Ot D E{To(t — ) (F32(s) + F32(s))} ds

Ly((2,00),L4(RY))
< C (If1llg, (50 1) + I1EalIEy (50.20) + 190z, 50 c0)

+H“”L;z<q/2'2>(R+,L2<Ri>> * ”h”Lz;(q/z'”(R+,L2<R2>))

with some positive constant C' = C(p, q) similarly to the case of V3H. We thus
obtain the weighted estimate of V29, H, by the last two inequalities together with
(4.3.48) and (4.3.50), which completes the proof of the theorem. O
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4.4. Linear theory II

In this section, we consider the full linear system:
du—Au+Vo=f+f, inR> t>0,
divu=f;=divf; inR>,¢>0,
(4.4.1) S(u,0)es + (¢, — c,A')hes =g on R3 t >0,
Oth—u-e3 =g, onRg,t>07

uli—o=up inR® hl;g=ho onR?

with the auxiliary problem:
AH=0 inR?, t>0,

(4.4.2) 5

H=h onRg t>0.

Here we set
[glian = 8 — (g - €3)es,

and then the main theorem concerning the equations (4.4.1) and (4.4.2) is stated

as follows:

THEOREM 4.4.1. Let exponents p,q satisfy (4.1.4). Let e1 > 1 and 9,63 >
1, and also 0 < 61,02 < 1 satisfy the assumption (4.3.19). Then we set 6y =
max{d1,d2}, and also suppose that the right members of the equations (4.4.1) satisfy
the following conditions:

1) Let f1 € F1 N Fl (50,51);
) Let f5 € Fo N Fg(éo,&z);
) Let gn, € G, N Gp(do,e3) N AL N Ag;
) Let £4 € Far NFa1(do, €2) NFa1(do, €3) N Ay
5) Let fq € ngngg((So,é‘gl N ng(éo,é‘g) N Ay N Ag;
) Letge GN G(éo,é‘g) N G((507E3) N As;
) Let fq and g satisfy additionally
(fo8) € LRy, Wy (RE) 0 Ly @/?) (R, W, 5(R2))*
for positive numbers a(q) and a(q/2) satisfying
(4.4.3) p(1+ alq) —do) > 1, p(l+ a(q/2) — max{es,e3}) > 1;
(8) Let (ug, hg) €Iy x Iy and satisfy the compatibility conditions:
fd't:() = le Ug in Ri; [g]tan|t:0 = [D(uo)eB]tan on RS
Then there exists a unique solution (u,8,h, H) to the equations (4.4.1) and (4.4.2),
and also the solution satisfies the following estimate:
(44.4) 3" (Wooo(u,hy 0o, H) + Moy (u,0,h, 0, H) ) + W (u, H; 01, 0)
re{q,2}

< C(H(Uo,ho)llmz F 1l o, (50,00) T 112Nl i, (60.00)
+ thHGhﬂ@h(5o,83)ﬁA1ﬂl&2 + HfdHF},,FWFM(50762)ﬁﬁd1(50¢83)ﬁf*1

+ Hfd||Fd20Fd2(50,52)ﬂﬁd2(60,83)ﬁA20A3 + Hg”@ﬁ@(%,Ez)ﬁ@(%ﬁs)ﬂAg

+ H(fda g) HLg(Q) (R+,Wg (Ri))ﬁLg(q/m (R+,W;/2(Ri))) .
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In addition,
(4.4.5) HeC'R,,CHR?))NCRy,C*RY)).
PROOF. In this proof, we suppose that r € {q,2}.

Step 1 We first construct initial flows. Let (V,II,Y,Z) be the solution to the
following equations:

OV —AV +VII=0 inR?, ¢t >0,
divv =0 inR?, ¢t >0,
S(V,I)es + (cg — coA')Ye3 =0 on R3, t >0,
oY —V.-es=0 on R}, t >0,
V|ieo=0 inR3, Y|—o=ho onR2?

and besides,
{AZO inR3,t>0,

Z=Y onRj t>0.
On the other hand, let W be the solution to
HW+W-AW =0 inR? >0,
(4.4.6) - ,
W|t:0 = Up in R ,
where U, is an extension such that ug|gs = uo and
(4.4.7) 10|l p2a-1/) (gay < C0; DlWoll p2a-1/ gy for s € {g,4/2}
(cf. [Tri83, Theorem 2.9.2]) with a positive constant C(p, q).

REMARK 4.4.2. Let exponents p, ¢ satisfy (4.1.4), and ¢/2 < s < ¢g. Then, by
(4.4.7) and [Tri83, Theorem 2.4.7] with

1
80:81:2(1——>’ pozg7 P1=4q, o =q1 =D, @:2_2’
D 2 s
we obtain
i ~ I1-©6 ~ 1I©
o]l pzia-1/m) < CHuO”Bjjlz;””)(m)”uO”Bﬁfg—l/m(m)
1-6 ©
S C||uo| B;;;;I/P)(Ri)||uo||B§le)_1/p)(R:i) i O”uO”I[l

with some positive constant C' = C(p, q).

Secondly, we consider locally-in-time estimates of (V,I1,Y, Z). For every T > 0,
in the same manner as [SS08, Theorem 3.9], we have, by Proposition 3.3.5,

(44.8) [Vllwzzms oy T 101, 0.y w227 me)
+ ||Y||L,,((O,T),W,:.Fl/"(RQ)) < CllhOHBf{;l/P*l/"(Rz) < CHhOH]IQ
with some positive constant C' = C(p, ¢, T). In addition, by Remark 4.1.2 (2),

(4.4.9)  [IVOZ|L, (0 wrwz) T IVZlL,0.m).w2m2))

<C(p,q,7T) (”atY”L,,((O,T)A,Wf_l/T(RZ)) + ”Y”LP((O,T),WTB_I/T(RQ)))
< C(p7Q7T)||hOHH2
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Concerning W, the following lemma holds by (4.4.7) and Remark 4.4.2.

LEMMA 4.4.3. Let exponents p,q satisfy (4.1.4), and q/2 < s < q. Let W be
the solution obtained above to the equations (4.4.6). Then, for any o > 0, there
exists a positive constant C = C(p, q, s,«) such that

(0:W, W, VW, v2VV)||L;;(m,,LS(Ri)) < Clluolly, s
(W, VW) za r,.L.&?)) < Clluollr,-
By Proposition 4.3.9, (4.4.8), (4.4.9), and Lemma 4.4.3, we obtain

(4.4.10) 3 (W,.W(V +W,Y,0,2) +M,,(V +W,0,Y,0, Z))
re{q,2}
+ WQ,P(V + W7 Z- 517 52) i C(p7 q)“(uO, ho) ||H1 ><]I2

with some positive constant C(p, q).

Step 2 We here consider the divergence equations:
(4.4.11) divug = f4 — divW =div(f; — W) inR?, ¢ > 0.

Noting (f4 — div W)|t=o = 0 in R3 by the compatibility condition, we obtain, by
[SS12, Lemma 4.1 (2)], ugls=0 = 0 in R? and

)l ey < Ca) (IEa®lz.me) + WOl L) )

IV ua(8)l .m0 y: < Cl@) (Ifa®) 2.2y + ITW @Il m2) )

IV2ua®)llz, s ) < C@) (IVFa®) sy + IV WOl ms))
(

nwey £ C@ (10£a0) .y + 10W Dl ms ) )

for any ¢t > 0 and ¢/2 < s < ¢ with some positive C(gq). By using Lemma 4.4.3, we
thus obtain the following lemma.

[0puq(t)]

LEMMA 4.4.4. Let exponents p, q satisfy the assumption (4.1.4), and ¢/2 < s <
q. Let ug is the solution obtained above to the equations (4.4.11). Then, for any
a > 0, there exists a positive constant C = C(p,q, s, a) such that

[ (Orug, ua, Vug, vzud)||Lg(R+,Ls(Ri))

< C((9fa, fa, fa, V)l Lary Lore ) + [aolln),
lwall e ry.2.r2 ) < Cllfallee vy z.m2)) + wolln),
Vuall o v z.m2y) < Clfallze re L.w2)) + [[volln)-

It then follows from Lemma 4.4.4 that
(4.4.12)

> (Wroo(1a,0.0,0) + My (14, 0,0,0,0)) + | Frtta. V) | 21 s rs)
re{q,2}

= C(p, Q) (HdeFdlﬁqu (60,20) + ||fd||Fd20Fd2(60s50) + ||110||I[|)
with a positive constant C = C(p, q).
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Step 3 By using (V,I1,Y, Z), W, and uy obtained in Step 1 and 2, we set
Uu=t+u+V+W, 0=0+11, h=k+Y, H=K+Z
in the equations (4.4.1) and (4.4.2), and then we have

dU—AU+VO=f,+F  inR* t>0,
diva=0 inR?*,t>0,
S(W,0)es + (¢ — coA)res = G on Ry, t >0,
Ok —u-e3 =Gy, 0nR87t>0,

Ult=o =0 in R3, Klt=o =0 on R?,

where we have set
F = f2 + W — 8tud + Aud
Gh=gn+(W+uy) - -e3, G=g—D(W +uy)es,

and besides,
{AKzO inR3,¢t>0,

K=k onR} t>0.
Let (v, 7) and (w, p, &, K) be the solutions to
OvV+v—Av+Vr=0 inR*, t>0,
divv=0 inR3 ¢t>0,
S(v,m)es=G on R}, t>0,
V|j—o =0 in R?,
Ow—Aw+Vp=f+F+v inR* >0,
divw =0 inR3.,¢t>0,
S(w,ples + (cg — coA')ke3 =0 on R3, t >0,

(4.4.13)

Ok —w-e3=G+v-e3 onRy, t>0,

Wlt=0 =0 in R?i, Klt=o =0 on R2,

and then 1 = v +w and ™ = 7 + p. Consequently, the solution (u,6, h, H) of the
equations of (4.4.1) and (4.4.2) have been decomposed into

u=v+w+us+V+W,
0=m+p+I1I,
h=rk+Y, H=K+ Z.

Step 4 We here estimate the solution v to the equations (4.4.13).

LEMMA 4.4.5. Let exponents p,q satisfy the condition (4.1.4), and r € {q,2}.
Then the solution v obtained above to the equations (4.4.13) satisfies the following
properties.

(1) There exists a positive constant C such that

IVl agormis e, wages gy < € (@ fa)llas + luoll, ),

1Vl em, < € (M Fa)llag + luoll, )
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IVlie, + Ivlie, < C(lgll + IEallzn + I falleas + ol )-
(2) Let a(q) and a(q/2) be positive numbers satisfying
p(1+alg) —d) > 1, p(l+alg/2) — max{es,e3}) > 1.

Then there exists a positive constant C' such that

¥l 502y < C(NE: £) Loy et o™ e ety + 10l
18l ey + 1074, (50.0) + Ml Eyps0.00) )

¥l .e0) < C (1 L) g0 e, s s yoag o ey sy + ol

1l 50) *+ 16l 5y ) + 1Ml ey )-
PROOF. (1) By Theorem 4.3.4, Lemma 4.4.3, and Lemma 4.4.4, we have
) < CIG]

||V||Lg,o(q/Q,T)+l/8(R+’W3(R37 L;(q/?,r)+l/8(R+’W7:‘l(R37))

< C(IEs fa)ll yyioraressom, wa gy + I0olls,)
< C(ll(g, fa)llaa + o]l ),

||V||F2 + ||V||Gh, < QHVHGh < C”G”H;;/OZ(RE XR)QH;}IQ/’E’O(R?L xR)

< C(llglle + Ifalleas + Il fallras + l1wolr, )

for r € {q, 2} with some positive constant C, where we have also used Lemma 1.3.3.
These inequalities furnish the required inequalities.
(2) In the same manner as (1), we see that the required inequalities hold. O

Step 5 We here consider the estimates of w, x, and K. By using Lemma 4.3.7,
we have

Z (W,,,po(w, k,0,K) + M, ,(w,0,,0, K)) + Wy p(w, K;61,02)
ref{q,2}

S C<||f1||F1ﬂF1(§o,€1) + ||F + v||F20F2(60,82) + ||Gh tv- e3||Ghm@h(50,€3)ﬁAlﬂ&2>

with some positive constant C' = C(p, q). We then see, by Lemma 4.4.4 and Lemma
4.4.5, that

IE +vile, < C (I8 llz, + Ifalles, + | fallzse + ligllc + ol )

1Gn +v-eslic, < C(llgnlle, + Malles + | fallrss + liglle + uoll, )

with some positive constant C. In addition,
||F + VH%Q(SO,EQ) S C(” (g7 fd) IlL,‘f(q)(R+,W; (Ri))ﬁL?,(q/Q)(R+,W;/2(Ri)) + HUOth
sy .en) + NEallEyy (s0.00) + Ml sp.em) )
||Gh +v- 83”@’1(50_’63) S O(”(g7 'fd)||LS(Q)(R+,qu(Ri))ﬁLg(q/m(R+,W(11/2(R3jr))

o o, + Nl sy ey + MEally 50.20) + Ml )
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and furthermore,

1Gr+v - eall iz, < C(llgnlly, oz, + Mallay + 1allas + 11 (& fa)llas + Iolls, ).

since [|uallz, < Cllfalla,- Thus we obtain the required estimate (4.4.4) with § =0
and 9;:h = 0 by (4.4.10), (4.4.12), and Lemma 4.4.5. For the estimates of # and
O¢h, use the first and fourth equations of (4.4.1).
Finally, we show (4.4.5). Since the initial flow is given by an analytic semi-group
(cf. Theorem 3.1.1), Z € C* (R4, W2 (2L))NC(Ry, W2 (Qy)) for Qp = R*x(—L,0)
(L > 0). We then see, by Sobolev’s embedding theorem, that
Z € C'(R4+,C'(RL)) NC(R4,C*(RY)),

which, combined with Remark 4.3.6 (3), furnishes (4.4.5). This completes the proof
of the theorem. O

4.5. Nonlinear problem

In this section, we solve the nonlinear problem (4.2.9) with (4.1.3) by using the
contraction mapping theorem. We here write again the system:

du— Au+ V0 =F(u, H) in R, t>0,
divu = Fy(u, H) = divF4(u, H) in R®,t>0,
(45.1) S(u,0)es + (¢; — coA'Yhes = G(u, H) on R3, t >0,
Oth —u-e3 =G (u, H) on R3 t >0,
uf;—o = ug in R?
hlt=o = ho on RZ,

and besides,
AH=0 inR> t>0,
(4.5.2) 5
H=h onRy t>0,
where the nonlinear terms on the right-hand sides of (4.5.1) are given in Section 4.2.
In order to use the contraction mapping theorem, for R > 0, we set the following
function space:

(45.3) Xp={z2=0.hH)|z]x = > (Wroclu h, b H)
7‘6{{1’2}

+ M (u,0, b, 0h, H) ) + W (u, H;1/2,3/4) < R,
Then, reminding [u]s., = u — (u - e3)es, we obtain the following theorem.

THEOREM 4.5.1. Let exponents p, q satisfy (4.1.4), and cg4, ¢, > 0. Suppose that
(uo, ho) € I; xIy and Hy is given by (4.2.10). Then there exist positive constants £q
and oo, depending only on p,q, ¢y, and c,, such that the equations (4.5.1) and (4.5.2)
admits a unique solution (u, 0, h, H) in Xs, if the initial data (o, ho) satisfies the
smallness condition: ||(uo, ho)||1, x1, < €0 and the compatibility conditions:

(454) div Uy = Fd(uo, H()) in Ri, [D(uo)e?,]tan = [G(llo, HO)}tan on Rg

REMARK 4.5.2. It holds that H € C! (R4, Cl(Ri)) NC(R4, CZ(R?L)) by The-
orem 4.4.1.



4.5. NONLINEAR PROBLEM 157

PrOOF. We prove the theorem by using the contraction mapping theorem and
Theorem 4.4.1 with

1 2 3

(4.5.5) Elzm(g,q)+n(g7q)+§25+§7 e2=e3=1,
| 3 o 1
51—57 52—1» OZ(Q)—O7O¢(§)—Z~

Then we note as follows: First, the assumption 3 < ¢ < 16/5 implies that e; > 1.
Secondly, we see, by (4.1.4), that

(4.5.6) p> 32, p<1+a(q)—%>:p(1+a(g)—1)=§>1.

Thirdly, by Lemma 1.3.5 (1), (2), and the assumption (4.1.4), we have

(45.) 00, VH gy v s ) < Ml x.
[(w, VA)|lL,r, w)®r2)) < Mlzlx,
[(w, VE) |z, r, wime)) < Mz x
for some positive constant M, depending only on p and ¢, and z = (u, 0, h, H) € X5,
with dg > 0.

From now on, to use Theorem 4.4.1 under the condition (4.5.5), we show that
there exists a positive number §y such that for z = (u,0, h, H) € X5,

H) € F1 NF(3/4,2/q+3/8), Fy(u, H) € FyNFy(3/4,1),
Gh(u, H) € G, NGy (3/4,1) NA; N Ay,

Fa(u, H) € Fgy NFa1(3/4,1) N Ay,

Fy(u,H) € Fys NFya(3/4,1) N Ay N Ag,

G(u,H) € GNG(3/4,1) N As,

(Fa(u, H), G(u, H)) € Ly(Ry, W, (RL) N L/ Ry, W, 5 (R))*!

(4.5.8)  Fi(u,

with the inequality:

(4.5.9) 1E v (s H) g, o, (3/4.2/q+3/8) T IF200 H) g0, (3/4.1)
+ HGh(uvH)||Gm@h(3/4,1)nmm&2 + ”Fd(u’H)||deﬁd1(3/4,1)mm
+ ||Fd(u, H)||Fd2mid2(3/4,1)mAzmA3 + HG(U" H>||Gﬂ@(3/4~,1)ﬁA3
+ [[(Fa(u, H), G(u, H))

< C(p, @)l=ll%

”Lp<R+,W;<Ri>>4nLé“<R+,W;/2<Rz>>

for a positive constant C(p, q).
Case Fi(u, H) By (4.5.7), it is clear that for r € {q, 2}

(4.5.10) [(w-Vullz, m,.c,®2) < ulie @y comeplVallo, . o.®2))
< C(p,9)ll=l%
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with some positive constant C(p, ¢), and besides, by Sobolev’s embedding theorem
and Holder’s inequality

[(u(®) - VIu)llz,®s) < la@®llz. @) [Va@®ll,we)
< C@a@®llwr ) [Va®)llz,m®e)
< O(g)(t +2)~ 939 %,
[(u(®) - V)u@)llz, @) < u@llz,@)[Va®),®we)
< (t+2)" 9|z %

for every ¢t > 0. Then, noting that p(2/q¢+3/8 —3/4) > p/4 > 1 by the assumption:
3 < ¢<16/5 and (4.5.6), we have

”( )uHL3/4 Ry,L,(R3)) < C( )HZH,ZXv
||( )uHLQ/’H'Ws (Ri,Ly/s(R3)) = C(pa Q)HZH?X

for a positive constant C(p, q), which, combined with (4.5.10), furnishes that

(4.5.11) (- V)ulle, o, 3/4.2/q 18/8) < C @02l
Concerning 9; H Dsu, we use Sobolev’s inequality (cf. [AF03, Theorem 4.31)):
1fllLeme) < ClUVFllL,me)

with a positive constant C'. By Sobolev’s inequality, Hélder’s inequality, and
Sobolev’s embedding theorem, we have, for any ¢ > 0,

(4.5.12) |0:H (t) D3u(t)]| 1, (r3 )
< OH® | yme IVl ey (1/6+1/r=1/0)
< CIVOH (t)| 1, e IVu(®) w2
10:H (t) Dsu(t)]| 1, ms2 )
<|[0:H ()| g2y IVU() || Ly (2 )
< CIVOH®) | me ) IV s [Va(O]} s
|0:H (t) Dsu(t)|| L, . (r2 )
<N0:H ()| Lowre)IVa®)lL,mz) (1/64+1/s=2/q)
< CIVOH®) Lyme ) Va®)|] L) IVult )||L (R? )
where we note that 0 < a, 8 < 1 and
(4.5.13) 3(%—%):%<1, 1:%Jrl—a, 1=§+ﬁ.
y (4.5.7) and (4.5.12), we obtain
(4.5.14) HatHD3u||LP(R+,L,,(R§))

K

< CIVOH| Loy m. L2 ) VUl ®, wp @) < Clzlk
|0:HD3ul|;, (r, L,(R2))

< CIVOH ||, ®, L2(rR ))||Vu||LOO(R+,L2 R )||V‘1||LOO(R+ Lo(R32))

< Clzl%
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with some positive constant C = C(p, ¢). In addition, it follows from (4.5.12) that
for any ¢t > 0

10 (1) Dyua(t) |, sy < Ol +2) " 0/22 12 g
x ((t+2) @D gl (4 2) 72 { (1 4+ 2) 2 VP 1y re )} ),
10 () Dyu(t) 1, sy < Ol +2) 7" 0/22712 g

B 1-8
(#2722 8 g x ) (4 2) @207 g )
= C(t+2)~ Vg%,
because m(q/2,2) +1/2 = 2/q and by (4.5.13)
q ¢ \_38(2 1\ 31-8)
(3o ()2 (2-2) 250
_3 (L 1 2y_3 3 6-q¢ g-2
2q 2 \2 ¢ q)
Then, noting that by (4.5.6)
q 1 q 1 3 7 5 7 5 p
(39 d (b 1 2) (55 n (5 =2
p(m(z T 99Ty 4) Plzg78) " P\875)71~
q 1 1 3 2 1 2
19 4 _2_Z_ -3z
m(z’)+2+2 4 ¢ 471
since ¢ < 16/5 < 4, we see that
||8tHD311HL137/4(

Ry ,Ly(R?))
< Ol (¢ +2) RGOS,
+ (¢ 4 2) " (@EDHEREZD| L g [V
< C(p.a)lzll%,
|0 HDsull 2050/, 1 me ) < C0: )zl
which, combined with (4.5.14), furnishes that
(4.5.15) 10:HD3ullg, 7, (3/4.2/q+3/8) < C(P: a)llzl%-

Summing up (4.5.7), (4.5.11), and (4.5.15), we have
[F1(u, H)

;/2<R+,Lq(Ri>>)

||Flmﬂﬁl(3/4,2/q+3/8)

10:HD3ullg, g, (3/4,2/q+3/8)

L= [IVH[,_(ry.Loo(r?))

<C(p,q) ( +|(a- v)u||IFmF1(3/4,2/q+3/8)>

1
<Cp.q) (m + 1> 21 -

Here and hereafter, we suppose that dy satisfies the condition: §oM < 1/2, and then
we complete the required estimate of Fy(u, H) in (4.5.9) by the last inequality.

Case Fy(u, H) By (4.5.7), it is clear that for r € {¢,2} and j = 1,2,3
(45.16)  [|(OvusVH, AusV H, Fy; (H)u, (u- VH)Dsw)lly, w1 ms y) < Cllallk
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with some positive constant C' = C(p, ¢), where F,;(H) are given in Lemma 4.2.1.
In addition, it follows from Holder’s inequality and Sobolev’s embedding theorem

that for any t >0 and j=1,2,3

(4.5.17)
[0eus () VH )| L, r2 ) < [0l L, re)IVH ()L r2 )

< C(@N0a@)] L, wme) IVH®) lw) w2 )
< C(q)(t+2)" 2D g {(t +2) 2| 0u(t) |, r2 ) }
[Aus(O)VH )| L, ®z)
< C(q)(t+2)" ™20 g {(t +2) 2| V*u(t)|| 1, re) }
[ F55 (H () at)] L, r2 )

< (@) IV e rs IV H O, s ) + 1V, 1) [ VH Ol )
q)(nw Vwg s ) IV2H @Ol s ) + 192000 1) [VH Gl s )
Cq)(t +2) 7@ 2D g x (¢ + 2) 2O g

(t+2)72{ (¢ +2) 2 V2|, o) }),

+
[(u(t) - VH(#))Dsu(®)l|r,®e ) < 0@ ro@we) IVHO) 2 me)[IVa@)z,@ws )
<

C@lu®llwiws) IVH®) [lwi ws)[[Va@)lz,m®e)
Clg)(t+2)" m(q/2,9)—m(q/2,9)—1/4—n(q/2,q) 1/8||z||2.

We then obtain, for j =1,2,3,

(4518) 05V H 35 e, 1. )
< I+ 272 el 10l
< C(p,q)llzl%,

|1AusVH zr1g, 1m0 )
< O+ 22D 2l IVl Ly, o sy
< C(p,9llzl%,

1F55 (HDll /s, 1oy

< C’(p, Q)HZHX (H(f + 2)—(m(q/z,q)+1/4+n(q/2,q)+1/8—3/4) ||LP(R+) ||Z||X

1 +2) 72D [Vl g, g )

< C(p.9)llzl%,

I V) Daull /s m, 1w )
< Cp, )| (t + 2)—(m(q/Z-,q)+m(q/27q)+1/4+n(q/2,q)+1/8—3/4)||L R )||z||§(
- ’ p

< C(p,q)=ll%,
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because by (4.5.6) and the assumption: 3 < ¢ < 16/5

m(g )+m<g >+l+n(g )+1—§
p 54 54 1 504 g 1

q) 1 (q) 1 3\ 2 1 P
> = - = ——Z)=p(=—=)>Z>1
p(m(z’q it tyT1) TP G T’) 7
Analogously it holds that for j =1,2,3

(45.19) [(rusAH, AusVH, Fj;(F)u, (w- VH)Dsw)| 1 (r, 1, a2 ) < Clzllk

q/2(

with a positive constant C' = C(p, ¢) by using the inequalities, which are obtained
in a similar way to (4.5.17), as follows: For every t > 0 and j =1,2,3

||atu3<t>VH< Nz, . me)
C(p, q)(t +2) @203 1) x {(t + 2)2||Opa(t) | 1, Rz )}
||Au3< WWH)|L, »m2)
C(p, q)(t+2)~™ V20734 x {(t + 2)"/?||V>u(t)]
||fjj<H<t)>u<t>||Lq/2<Ra; )
< C(p.)(t+ 2)—m(q/zvq>—l/4||z||x(<t +2)7 BT g x
+(t+2)7 2+ 2) 2Vt w2 ) )

[(u(®) - VH(#))Dzu(t)| L, ,r2)
<C(p,q)(t+ 2)—m(q/27q)—m(q/27q)—1/4—n(q/2,q)—1/8||z||§(.

Lqﬂki)}a

Here we note that m(q/2,q) +3/4—1=1/(2¢q) > 0 and by (4.5.6)
4 ) (2 ) 1 (2 ) 1
p(m(2,q tm{ze)t7+nlze) tg—1
q 1 (q) 1 2 3 p
, 2 - E ——1)=p(2-2)>Lt>1
>p<m(2,q)+4+n 2,q +8 p 7 3 >4>

since 3 < ¢ < 16/5. By combining (4.5.7) with (4.5.16), (4.5.18), and (4.5.19), we
obtain the required inequality of Fy(u, H) in (4.5.9).

Case Gj(u, H) By (4.5.7), it is clear that for r € {q,2}
(45.20) I - V' Hlys s emy < Ol )2l

with some positive constant C(p,q). On the other hand, it follows from Hoélder’s
inequality and Sobolev’s embedding theorem that for any ¢ > 0

' (t) - V' H(t)[lwzrs ) < C(Q)(Hu(t)HLq(Ri)”VH(t)”LOQ(PE’_)
+ IVu@®)llr,®e) IVHO L m2 ) + Va2, @) IVH®) 22
+ ||V2u(t)||Lq(R3_)||VH(t)||Loo(R3_) + ||u(t)||Loo(Ri)||V3H(t)HLq(R3_)>
< C(Q)(Hu(t)Hqu(Ri)||VH(f)||Wq1(Ri) +llu)llw we) IVH®)| L, m2 )

+ V2Ol ey IVH @)l re) )
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< C(q) ((t + 9)~m(@/20=m(a/2.0)=1/4 4|2,
+ (8 +2) 2D 7] (¢ + 22 V)| L, ey
(= 2) RO g (4 20 VEH () 2 })
and furthermore, it similarly holds that for any ¢ > 0
[’ (t) - V/H(t)Hqu/Q(R:i) < C(q)((t + 2)fm(q/z,q)fm(q/z,q)71/4HzH%(
+ (8 +2) ™23 g { (E+ 2) V() | 1, w2 ) }
(8 +2) 2O g 3 { (¢4 20 VEH(D) 1, ms) })-

Then, noting that by (4.5.6) and the assumption: 3 < g < 16/5

z) (g) 1_3\_p_ 2
p(m(2’q T\ TITI) T 16

we have

||u/ . V/H‘|L2/4(R+,W{;2(Ri))

< C(p,q) (Il(t +2)7(m@2OTAROTA g |zl %

—m(q/2, 2
1t +2)7 92D L m IV ull e, 1w )
—m(q/2, 3
1t +2) 72D IV g g y)
< C(p,q)l=l%

with some positive constant C(p, q), and also it similarly holds that
[u’- V/H||L;(R+,W3/2(Ri)) < C(p,q)zl%

since m(q/2,q) +3/4—1=1/(2¢) > 0 and

L) +m (%) EREE Y N
p(m<2’q i) Ty P\g71) 716~

by (4.5.6) and the assumption: 3 < ¢ < 16/5. By combining the inequalities above
with (4.5.20), we obtain the required estimate of G (u, H) in (4.5.9).

Case Fy(u, H) By (4.5.7), it is clear that for r € {q, 2}

(45.21)  [[My(H)ullwyr, .®2)) < IVH| L ®y @2 llulle, @, c.w2))
+ 10 VH| L,y L. w2l ey Lo ®2))
+IVH| L (re L2 IOl L, vy L2 )

< C(p, q)llzl%

with some positive constant C(p,q), where M;(H) is defined as (4.2.4). On the
other hand, it follows from Hoélder’s inequality and Sobolev’s embedding theorem
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that for any ¢t > 0
[(O:Mi(H(t))ull,me) < 10:VHE)| L, @)l me)
CIoVH (@) 1, re)la@)llwre )
< Clg)(t+2) /201220 3
My (H (t)0pa(t)]| L, r2 ) < [VH®)| L r2) 0], r2 )
CIVH®)lware)ll0ma()|| L, wre )
Clq)(t +2)7 @203 g | { (¢ +2)"/? || Opu(t)]
and furthermore,

(M1 (H(1))u()l L, ,,m2) < 10VH@)| L, &) lu@®)]|L, @)
< (t+ 2)—m(q/2-,q)—1/2—m(q/2,q) ||z||§(7

My (H(t)0ra@)lz, w2 ) < IVHE) | L,we)[[0a()] L, @s )
< (t+2)7 2O g {1+ 2)' 2 [0a(®) | (2 ) }-
Then, noting that by (4.5.6)

(q )+1+ (q) Y (L) oy
p(m(50)+5+m(50)-7) =rl5+7 ,

([ (0: M (H))u||L§/4(R+,Lq(Ri))
Cp, q)||(t +2)~ (m@/20H/Zm@/20-8/9)

Lo(R?)

we have

&) llzllk

< C(p. a)l=ll%,

IM (DO s gy e
< Cp, It +2)7 2D s Izl 0l e, 1 ey
< C(p,q)llzl%

with some positive constant C(p, q), and besides, it similarly holds that

|@MLED Ly w1, 0w ) < Clr )2l
My (H)Orul| 11 (r, 1., 82 )) < C0,9)|2]%
since m(q/2,q) +3/4—1=1/(2¢q) > 0 and

4 ) 1 (2 ) )PPy
p(m(2,q —|—2+m 54 q>16>
by (4.5.6) and the assumption: 3 < ¢ < 16/5. We thus obtain, by Holder’s inequal-

ity and (4.5.7),
(45.22) ML)l o, g ey = 10+ 27 ML (D) 1 s )

< C0.0) (IVH | e (s oot Lz (22 )
@M ()l g,y sy + I DO )
< C(p,q)|zll%
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”Ml(H>uHWZ}’1(R+,Lq/2(RE)) = [[0u((t + 2)Mi(H)w)llz, Ry L, 0(R2))
< C(p,q) (||VHHLOO(R+,LQ(R3_))||u||Lp(R+¢Lq(R3_))

+ @M )l r, 1, ame ) + ML) R, ar2 )

< C(p.q)zl%

with some positive constant C(p,q). In addition, it is clear that by (4.5.7) and
Holder’s inequality

IMy(H(@)u(b) 2, w2 ) < IVHE@) 2, w2 [0l L. r2)
< Clp,q)(t+2)"™ 207 g%
for r € {g,2} and any t > 0, which furnishes that [|[M;(H)ulls, < C(p,q)|z|%-
By combining the inequality with (4.5.21) and (4.5.22), we obtain the required
inequality of Fg(u, H) in (4.5.9).
Case Fy(u,H) By (4.5.7), it is clear that for r € {q,2}
(4.5.23) 1Fa(w, B) o, m. wime y) < Cp,0)2ll%
with some positive constant C(p, ¢). On the other hand, it holds that for any ¢ > 0
IVH(t) - Dsu(t) lwyrz ) < C@IVHOllwire)[IValt)lwre )
< C(g)(t+2) ™20z x
(42720 gl (4272 (422 V()] 1y )

since qu(R?i ) is a Banach algebra, and also that by Holder’s inequality
IVH(t) - Dya(t)llw; ,®s) < C@IVH®)lwy@s)[[Va@)llw; @s )

< C(q)(t +2)7™ @207 g
x (8 +2) 7@ 2O gl 4 (¢4 2) 72t 4 2) 2 VP, ms) }).
Then, noting that m(q/2,q) +3/4 —1=1/(2q) > 0 and
RO o B
by (4.5.6) and the assumption: 3 < ¢ < 16/5, we have
(4.5.24)  |[VH - Dsullpym, wyme ) + IVH - Daullpym, wi,®e))
< Olp. gl (I +2) (20 stz D)

e+ 2)@ROBADY g IVl )

< C(p,q)l=l%
with some positive constant C(p, ¢). In addition, since for r € {q,2} and any ¢ > 0

IVH(t) - Dsu(t)||,, g2 ) < IVH@) Lo @) IVa®)lL, o2
< C@IVHEDwyre) IVu®)lL, o2 )
< Clg)(t+ 2)—m(q/lq)—1/4—n(q/2-,r)—1/8||z||‘§(
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by Hélder’s inequality and Sobolev’s embedding theorem, which furnishes that
where we have used
1 1 1
m(za)+1n(Gr)+5om(Gr)+g
Concerning As-norm, we shall calculate as follows: First, by Holder’s inequality
IVH(t) - Dsu(t)llwyrz ) < IVH ()| L@z IVl L,we )
+IVPH Ol o) VOl Loz ) + IVH®) | Lo m2) IV Ly w2
< C@) (IVH® lwae ) V) lwy gy + IV2HE) ws g | V) ,me))
C(q) ((t + 2)—7n(q/2,q)—1/4—n(q/2,2)—1/8||Z||2X
+ (t+2)7 2O 7] x [ VPu(t) | pyrs )
+ (8 +2) 2R g { (8 + 2)3/4||VH(t)IILq(Ri)})
with some positive constant C(q), which furnishes that
(4.5.26)
HVH DSUHLW(Q/2 2)+1/2(R Wl(Rs ))

< Cp, )|t +2)" M@/ROR ARSI ADY )

+ (¢ 4 2)" a2 AmmERDTUD g 2l x IVl L,y e )

¢+ 2) @RS 2D, o el VB g, )

< C(p,q)|zll%
since by the assumption: ¢ < 3 < 16/5 and (4.5.6)

m(gz)Jr——m( 2)7 - <12>>0,

1
2

3 q 1

e

4+n(2 3 q+ >
)+ in(32) v 5-m(52) -3
1z - 19 - _ 29} _ =

p<m(2’q Tyt tyTmiet) T3

> m(q )+1+n(q2)+1—n(qz)fl (L 4i) s
p 2°9) "% 2’ 8 2’ 2) P 373 '

Secondly, noting that 1 — m(q/2,q) —1/2=1/4—1/(2q) > 0 by ¢ > 3, we have

(4.5.27) IVH - D3ulla, = ||[VH - D3u||Ly/(q/zq)H/Q(R%qu(Ri))

+ ||VH . D3u||Lgb(q/2’2>+l/2(R+,W;(Ri))
< ||+ 2)t @202 g )IIVH - Dsullpy ., wirs))
+ ||VH . D3u||L;n(q/2,2)+l/2

< C(p.q)zll%
by using (4.5.24) and (4.5.26).

(R4, W3 (R2))
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Summing up, (4.5.7), (4.5.23), (4.5.24), (4.5.25), and (4.5.27), we have

||Fd(u’ H) ||]Fd2ﬂfb;d2 (3/4,1)ﬂA2ﬂA3

<Cp,q) IVH - Dsu(t)

WL (R?)

1
1 + D3H ||ngﬁng(3/4,1)ﬁA20A3

< C(p,q)llzl%.,
which completes the required estimates of Fj;(u, H) in (4.5.9).

Case G(u, H) In the sequel, we suppose that f € {u1,us,us, D1H, D2H, DsH },
and let g be any of the following terms:

|V'H|? D;HD;H
1+ I+ [VHP)/I+[VH? (1+[VH})32

for i,j = 1,2,3. Then we have the lemma as follows.

D;H, D;HD;H

LEMMA 4.5.3. Let f and g be as mentioned above, and exponents p,q satisfy
(4.1.4). Then there exists a positive number 0 < 19 < 1 such that for any z =
(u,0,h,H) € X, the following assertions hold.

(1) There exists a C(p,q) > 0, depending only on p and q, such that
91l (ry WL w2 )) < Cp,a)llz x,
||g||L$(Q/2'Q)+1/4(R+,W; (R'i_)) S C(p7Q)||Z||X7
||Vf||L2.§"/‘"=q>“/S(RJr,Lq(RB_)) <C(p.q)|zl x-

ere exists a C(p,q) > 0, depending only on p and q, such that

2) Th ) C 0, d di l d h th

It +2) 20 fllL, . L,m2)) < C.0)2llx,

I+ 2)1/23t9||Lp(R+,Lq(R3)) <C(p, 9zl x-
It especially holds that

119 ((t + 2)1/2f)||Lp(R+,Lq(R§)) < C(p,q)lzllx,
1[0 ((t + 2)1/29)||LP(R+,Lq(R3)) < C(p,q)llzllx,
10:((t+2) 49l 1 (R 1, m2 ) < Clp, )|z x-

(3) There exists a C(p,q) > 0, depending only on p and q, such that
(VA9 s, wime y < Clo,q)llzl%,
||(Vf)g\|L;,(R+,qu/2(R§)) < C(p, )zl
H(vf)gHL;"(q/2,2>+1/2(R+,W21(Ri)) <C(p, Q)”Z”%(

PROOF. (1) We use the following expansions:

1 T
=1—-=40(2?) as|z|—0,
—— -~ 13 +0) aslo
1 1 T
— = — — — 4+ 0(2? as|z|—0,
1++vV14+=x 2 16 (27) ]
1

3 2
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Combining the expansions above with (4.5.7), we see that there exist positive con-
stants C and 0 < r; < 1 such that

(4.5.28) H; <C,

2
VITIVHPL e wime )

<G,
Loo (R, Wi, (R2))

1+ |V'H|?

1

- <C
H(1+|V/H|2)3/2 Loo (R4, WL (R2))

if H(x,t) satisfies [VH|,_w, w2y (rs)) < r1. We then take a positive number
0 < ro <1 in such a way that for z = (u,0,h, H) € X,,

IVH| L. r. wi(re)) < Mllz|x < Mrg <71,

where we have used (4.5.7). We thus obtain, by using (4.5.7) again,

|V'H|?
1+ 1+ |VHP) 1+ [V H]?|,

oo (R, WL (R2))

1

VIt VR

11 VP

Loo(Rp,WL(R3)) Lo (R4, WL (R2))

< |IVHIL . wime))
< C(M|z|x)* < C(p, )|z x

for any z = (u,0,h,H) € X,, with some positive constant C(p,q), and also it
similarly holds that for 7,5 =1,2,3

H( D;HD;H

1+ |V H[2)3/2 < C(p, 9|zl x,

D;H, DiHDjH>
Loo (R WL (R2))

which completes the first required inequality of (1).
Next we show the second required inequality. By using (4.5.7) and (4.5.28), we
have, for any ¢ > 0 and z = (u,0,h, H) € X,

\V'H ()I2
(1+ 1+ [VH)?)\/1+ |V H )2

WL(R?)

_

LeRewa e | VI VAP
* IVH| 2oy wr e ) IVH®)lwr s )

< C(M|lz]| x)(t +2) ™ 2DV (¢ 4 2)™W2OHY G H (1) s s ) }

< C(p, q)(t+2)"™/20= 14 g

2
1+ |V'H| Loo(Ry, WL (R?))
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with some positive constant C(p, ¢), which furnishes that

Analogously we have

D;HD;H
1 + |V’H| )5/2’

|V'H|?

< C(p, .
(1+/1+[V'H2)\/1+|VH < C(p,q)lzllx

Lg(q/qu)+1/4(R+,Wq1 (R3))

< C(p,q)|lzllx

D:H, D,»HDjH>
L£<Q/2“I)+l/4(R+,W(} (Ri))

for i,j = 1,2,3 and z = (u,0,h, H) € X,,, which completes the second required
inequality of (1). We obtain the last required inequality by the definition of X-
norm, noting that n(q/2,q) + 1/8 < m(q/2, q) + 1/4 under the assumption (4.1.4).
(2) By direct calculations, we can show the required estimates, so that we may omit
the proof here.

(3) Since Wl( R3) is a Banach algebra, we obtain, by using the inequalities which
are obtained in (1),

[(VFE)g@Ollwirre ) < C@OIVF®)lwr we)llg@)llwre )
< C(q)(t +2)~ma/20 =14 g|

L7'L(‘1/27‘1>+1/4<R+,W{} (R‘i))

« ( (t +2)~"(a/20)~ 1/8||Vf|| /20 H1/8 (R, L (R? )

+(E+2)2{(E+ VO, })
< C(q)(t+2) @201 g (1 -+ 2) (/2018 g
(L4 212+ 2) 2V Ol e} )
for any t > 0, and also it similarly holds that by Hoélder’s inequality
IV FE)g®llw: @)
< C(g)(t+2)7m @207 g (14 2) 7020715 g
+ (2 2{(E+ DYV O, me) }):
We thus obtain
IV Hgllymy wi @ nnLywe.wl w2y < O, 9llzl%-
In addition, we see that by Hélder’s inequality
V)9 lwzws ) < VIO oms) 19O, ).
H IV Ol o) 19O o mz ) + IVFOllo @) Vg o2 )
< C(q) (¢ +2) (@271 ma/20 14| )3
+ (t4+2) 2O Y g V2 £ ()] 1y m )
(f 4 2)"(@/20-1/8-m(a/22)~1/4| 2
+(+

L4 2) VA2 ) (04 2) 292 ()] ro ) }),
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which furnishes that
|| (vf)gHLgL<q/2‘2)+1/2(R+,W21(Ri)) S C(p7 q) ||Z||§(
This completes the proof of the lemma. O
By using (1.3.1), Lemma 1.3.2, (4.5.7), and Lemma 4.5.3, we have

(4.5.29)

||(Dif)g||W;(R+7W;1(R§)) = Z oy (1 — A)_1/2L((Dif)g)||L,,(R+,LT(R3;))
k=0,1

< O, @) (11D f 1y r 9l 2
+ 10l Ly o NN Lo Ry Lo (R Y)
+ 10l L, res o2 NI Lo (R Lo (REY)
+ HDif||Loo(R+.,Loo(Ri))Hatg||Lp(R+,L,.(R3_))>

< C(p,q)llzl%

for r € {q,2} and i = 1,2,3 with a positive constant C(p,q), where we have used
(1 —A)Y2F|p, ®e) < C(q)||F||1,(re) to obtain the second line. On the other
hand, it follows from Lemma 4.5.3 that

(VA9 L, Ry Wi R )AL, (R W2 (R? )
<CDIVlL,®, wiw: par,®, wi@ ) l9le @, wi®e))
<Cp,9)=l%,

which, combined with (4.5.29), furnishes that ||G(u, H)|¢ < C(p,q)|z|%-
Next we consider the estimate of G(3/4,1) and As-norm. By (1.3.2), we have

I(DiNllwrorsm, w1 me )
= [10:(1 = A) T2 (¢ +2)2(Dif) - (E+2) g}, mo oz, R )
< C. @) (19 + 22Dy o )19 s, 1 grr
+ [0 ((t + 2>1/2f)||Lp(R+,Lq(R3_))||Di9||L;c/>4(R+,Lq(R3))
1D, gm0 +2) 20, )
< C(p.9)llzl%,

1D P)glhwz e, 7 2me
= 10:(1 = D)2 (¢ + 2)V2Dif) - (+2) 2 1, Ry (R
< @) (19t + 22Dy o 9] 2, o me
+ 10 ((t + 2)1/2f)||Lp(R+,Lq(Ri))||Dig||L<1x/)2(R+)Lq(R3_))
IS 2 g,y o ) 19+ 22y, ) )

< C(p,q)|zll%
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for i = 1,2, 3 with some positive constant C(p, ¢). Furthermore, in the same manner
as we obtain (4.5.24) and (4.5.27), it follows from Lemma 4.5.3 that

IVl Ly wr @ nLy®e W), @ )naa < C(p,q)llzll%,
which, combined with the above two estimates, yields that |G (u, H)llg 3,4 1yna, <
C(p, q)||z||%. This completes the required inequality of G(u, H) in (4.5.9).

Here we set
N(u,0,h,H) = (F(u,H),Gp(u,H),Fy(u,H), Fy(u, H),G(u, H)),
and then, as mentioned above, there exists a sufficiently small §; > 0 such that
N: X5, = F x Gy, x F}, x F2 x G. It is possible to consider the following map ®:
®(z) = L' (N(z),uq, hy) for z € X;,,

where L is the linear operator of the left hand side on the equations (4.5.1) and
(4.5.2). From now on, we show that ® has a fixed point in X, by taking a smaller
0o > 0 if necessary.

By Theorem 4.4.1 and (4.5.9), there exists a positive constant M (p,q), de-
pending only on p and ¢, such that

(4.5.30) l@(@)llx < M, @) (1l (o, o)l 1, + 21k )
< Mi(p, q)(0 + 63) < &

by choosing the positive constants dg and ¢ in such a way that
1 do
Mi(p,a)o < 5. Mi(p,g)eo < -
Analogously, we have, for z;, 22 € X5,

1
12(z1) — 2(22)llx < Ma(p, @)dollz1 — z2]|x < Fllz1 — 22 x

by choosing Ma(p, ¢)do < 1/2 if necessary, which, combined with (4.5.30), furnishes
that @ is a contraction mapping on Xs,. By Banach’s fixed point theorem, we have
a unique fixed point z* € X, of ®. The z* is a solution to the equations (4.5.1)
and (4.5.2). O

Proof of Theorem 4.1.1. Note that the compatibility conditions of Theorem
4.1.1 are satisfied if and only if (4.5.4). The mapping ©g given by

B0(¢,én) = (€, &n + Ho(¢')) for (¢/,én) € RE

defines, for ho € BS,"/?7Y/9(R?), a C2-diffeomorphism from RY onto Q (cf. Sec-
tion 4.2 and Remark 4.2.3 (1)). In addition, by the inequality (4.2.14), the smallness
condition in Theorem 4.1.1 implies the smallness condition in Theorem 4.5.1. The-
orem 4.5.1 then yields a unique solution (u, 8, h, H) € X5, of the equations (4.5.1)
and (4.5.2). Finally, setting

(v,m) = (0,1,0,0) = (uo® ' o0,

where O, is defined as (4.2.3), we obtain a unique solution (v, 7, h, H) of the original
problem (4.1.2) and the auxiliary problem (4.1.3). The proof is complete.
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CHAPTER 5

Strong solutions for two-phase free boundary
problems for a class of non-Newtonian fluids

5.1. Main results

As was seen in Chapter 1, the motion of the two immiscible, incompressible,
and viscous fluids is governed by the set of equations

p(Ov+ (v-V)v) =DivT — pcgen, in Q(t), t >0,
divv=0 in Q(¢), t >0,
—[Tor] = c,krnr onI'(t),t>0,
(5.1.1) [vl=0 on I'(t), t > 0,
Oth+v' -V'h—v-ex=0 on I'(t), t > 0,
V]i—0 = Vo in Qo,
hli=o = ho on RV-1.

We first remind the notation being in (5.1.1). Let vo = vo(x) and hg = ho(z')
be given N-component vector and scalar functions for € Qy and 2/ € RN~1,
respectively, and also Qg = Q19 U Qg with

Qio ={(',zy) e RN |2/ e RV, (=1)¥(zny — ho(a')) > 0}

for i = 1,2. Here, some viscous fluids, fluid; and fluidy, occupy 210 and g,
respectively. Then Q;(t) denote the regions fulfilled with fluid; at time ¢, and
besides, Q(t) = Q4 () UQy(¢) and

I(t)={(z",zy) e RN |2 e RN"L, ay = h(t,2))} (t>0).

The normal field on T'(t), pointing from Q4 (¢) into Q2(t), is denoted by nr, and
also kr is the mean curvature of I'(¢) with respect to nr. Analogously, ng is the
unit normal field on T'y = RV \ Q.

The parameters ¢, > 0 and ¢, > 0 denote the gravitational acceleration and
the surface tension coeflicient, respectively. Let p; > 0 be the densities of fluid; for
i=1,2, and then p = p1xq, ) + P2Xa.x)- In addition, the quantity [f] = [f](z,?)
is the jump of the quantity f, defined on Q(¢), across the free boundary I'(¢) as

[z, t) = 51_1>H01+ {f(x +enp,t) — f(xr —enp,t)} for x € T'(¢).

We here note that the stress tensor T is given by T = —7I + 7 for some shear
stress 7 in general. In this chapter, we consider generalized Newtonian fluids, as a
class of non-Newtonian fluids, such that the shear stress 7 is given by

T =TiXo) + T2Xu():  Ti = 2p:(|D(v)[*)D(v)
for D(v) = (Vv + (Vv)T)/2 and scalar functions j1, s : [0,00) — R.

173
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The problem then is to find the velocity field v = (vi(z,t),...,vy(z,t))7 of the
fluids, the pressure field 7 = 7(x,t), and the height function h = h(x’,t) satisfying
equations (5.1.1).

In our main result, we show that system (5.1.1) admits a unique strong solution
on (0,7T) for arbitrary T > 0, provided that the viscosity functions pq, o satisfy
suitable conditions and the initial data are sufficiently small in their natural norms.
More precisely, we have the following result.

THEOREM 5.1.1. Let N+2 < p < oo and J = (0,T) for some T > 0. Suppose
that p1 > 0,p2 > 0,c4 > 0,¢, > 0, and

pi € C3([0,00)),  pi(0) >0 (i=1,2).
Then there exists g = eo(p, T) > 0 such that for every
(Vo,ho) S W3_2/1’)(Qo)N X WS_Q/I)(RN_I)
satisfying the smallness condition:
||V0HW5*2/P(QO) + ||h0||W£72/p(RN*1) <&o
as well as the compatibility conditions:
[1(ID(vo) 2)D (vo)mo — (1 j(|D(v0)>)D(vo)ng) me] =0 on T,
divvg =0 inQy, [vo]=0 on Ty,
the system (5.1.1) admits a unique solution (v, 7, h) within the regularity classes:
v € Hy(J,Ly(Q()) N Ly (J, Hy ()Y,
™ € Ly(J, W, (2(-))),
he Wy R (T L, RN ") n Hy(J, Wy /P (RN)
NW/2=Y@ (g H2RN 1) 0 L, (J, W YP(RN ).
REMARK 5.1.2. (1) Some remarks on notation are in order at this point. By
v € HY(J, Ly,(Q(:))) N Ly (J, H2((+)))™, we mean that
©*v=vo® € H)(J,L,R")) N L,(J, H:(RV))",

where © and ©* are defined in the following section by (5.2.2) and (5.2.3),
respectively. The regularity statement for 7 is understood in the same way.

(2) The assumption p > N + 2 implies that
h € BUC(J,BUC?*(RN7Y)), 8,h € BUC(J,BUCYHRN-1)),

which means that the condition on the free boundary can be understood in the
classical sense.
(3) Typical examples of viscosity functions p satisfying our conditions are given by

u(s) = s T with d = 2,4,6, or d > 8,

u(s) =v(l+ 9%) with d = 2,4,6, or d > 8,

u(s) = v(l+s)7
for v > 0. For more information and details, we refer e.g. to the works of
[DRO5], [MNRO1], and [PRO1]. Obviously, if d = 2, then all viscosity func-
tions above corresponds to the Newtonian situation.

with 1 < d < 00
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Let us remark at this point that the original paper of this chapter is [HS15], and
that our proof of Theorem 5.1.1 is inspired by the work due to Priiss and Simonett
in [PS10b] and [PS11]. Its strategy may be described as follows: In Section 5.2
we transform (5.1.1) to a problem on a fixed domain. In Section 5.3, maximal
regularity properties of the linearized problem will be investigated, hereby making
use of the results [PS10b], [PS11] due to Priiss and Simonett. In Section 5.4,
we introduce some function space Fg(a) which plays an important role to control
nonlinear terms arising from the boundary condition. Finally, in Section 5.5, we
give a proof of our main theorem.

2. Reduction to a fixed domain problem

We start this section by calculating the shear stress 7, that is, by calculating
explicitly Div{uq(|D(u)[*)D(u)} for d = 1,2. We then obtain

the -th component of Div{pq(|D(u)[*)D(u)}

[

N
> Z {2/1a(ID () |*) Di;(w) Dy (w) + pa(|D(w)[*) 80} (95 Our + 9;0yun),

[\

where 8j = 90/0z; and $(s) = (9¢/0s)(s) for scalar functions (s) defined on
[0,0), and besides, 3(s), @(s), ... are defined similarly. In view of this calculation,
for vector functions u and v, setting Ag(u)v = (Ag1(u)v,..., Agn(u)v)? such
that

Adz Z Ajkl (0 OV —0—8 8wk)
k=1

AR (D) = %(2ud<|D<u>|2>Dij<u>Dm<u> + al[D(w) )61
withd =1,2 and 4,5, k, Il =1,..., N, we see that
Au(w)u = — Div{(ID))D(W)},  Ad(0)u = —pa(0)(Au + Vdivu).
In addition, we set
A(u)v = xq,nA1(W)V + Xa,nA2(0)V, T =T+ pcyn.

Thus the equations (5.1.1) may be rewritten as

p(Oyv +v-Vv) — u(0)Av + V7 = —(A(v) — A(0))v in Q(t), t >0,
divv =0 in Q(t), t >0,
—[[’Tnp]] = okrnr + [p]egh onT'(t),t>0
(5.2.1) [v] =0 onT(¢),t>0,
h+v - V'h—v-ey=0 on I'(t), t > 0,
V]i—o = Vo in Qo,
hli=o0 = ho on RNV,

where T = —7I+ 7 and u(0) = X (1) 11 (0) + X (1) 12(0). '
We next transform the problem (5.2.1) to a problem on the fixed domain RY.
To this end, we define the transformation ® on RN x J for J = (0,7) with T' > 0
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as follows:

(5.2.2) ©:RY x T3 (& én,7) > (2 an,t) € [ Qs) x {s}
seJ
with o' =¢, oy =& +h(EL L), t=T.

Note that det Jo = 1, where Jo denotes the Jacobian matrix of ©. Set

(5.2.3) u(€,7) = 0"v(,1) i= v(O(E, 7)),
0(&,7)=0"n(x,t):=m

as well as

(5.2.4) O, f(&,7):= f(©Yx,t)) for f defined on RN x J,

where ©71 is given by ©~!(z,t) = (2, zn — h(2',t),t). This change of coordinates

implies the relations:

(56.2.5) 0y = 0. — (0:h)Dyn, 0; = D; — (D;h)Dn, 0;0r = DDy, — Fji(h),

Fjr(h) := (D;Dxh)Dy + (D;h) Dy Dy + (Dxh)D; Dy — (D;h)(Dyh) D,

for j,k=1,...,N, 9, = 9/07, and D; = 9/9¢;, because Dyh = 0. In a similar
way to (5.2.5), we have

(5.2.6) D, (v) = E¢(u, h) := D¢(u) — E¢(u, h),
A T !
Ec(u,h) = (Dyu) [Vgh] 4 {Vgh} (DywT,

where subscripts « and £ denote their coordinates. Following [PS10b, Section 2]
we see that

N-1
Lh(t, )
ke =Y D; : = Ay — Gi(h),
=1 \/1 + |V h(t, &)
Vi h|2ALh = (D;h)(Dph)(D;Dih)
(1+\/1+|V/,h|2) \/1+|V’,h|2 = (1+|Vg,h|2)5/2

Hence the equations (5.2.1) are reduced to the following problem in RVN:

G.(h) =

poru — (1(0)Au+ VO =F(u,6,h) in RN, t >0,
divu = Fy(u, h) in RV, ¢t >0,
~[1(0)(Dnu; + Djun)] = G;(u, [0].h) on RY', t >0,

2 | 11— 2BODNuN] ~ (pley +o8)h=Cxtuh)  on Y, 1>0,

[u] =0 onR(])V,t>0,
d-h —u-ey = Gp(u,h) on RY, t>0,
'I.1|7-:() = Ug on RN,

h|7—:o = ho on R,N_1
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for j =1,...,N —1and F = (Fy,...,Fy)T. Here, for j = 1,...,N — 1 and

i =1,..., N, the right members of (5.2.7) are given by
F;(u,0,h) =p{(0- h)DNui —(u-V)u; + (0 - V'h)Dnu;}
Zf” + (D;h)DnO + Ai(u, h),

)= (h)D h—{([plcg + eA")h}D;h + [0]Djh + Bj(u, h),
GN(u,h) =— ch,{(h) + Bn(u, h),
Fd(u, h,) :(DNLI/) . V/h, = DN(LI/ . V’h),
w, )

where A;(u, h), Bj(u, h) and By (u, h) are defined as

N
As(u ) = > (AFM(B(, b)) — A (0)) (D; D + D; Diun)

=1

N
= > (AP R) = APMO) (Fir(h)u + Fiulhyur)
Bj(u,h) = [[M(|E( h)[>)Dyun]D;h

+ [[{M(IE(H h)[?) = u(0)}(Du; + Djun)]

- Zﬂ“ [E(u, h)|?)(Djui, + Dyu;)] Dih

+ Z [4(|E(a, h)[2)(Dxu; Dih + Dyup D;h)| Dih,
Bu(u,h) zzﬂ{qu(u W)I2) — u(0)} Dyvun] + (B, b)) Dy un|V'h
- Z [u(|E(u, 1)|2)(Dyug + Diuy )] Dih

with
ATM(E(u, ) = xpy ALT(E(a, b)) + xry A7 (B(u, b))
In particular, we note that
p(E(w, h)[*) = xgo i (B(u, ) ?) + xgy p2([E(u, 7)),
p=Xryp1+xry P2, H(0) = X p1(0) + xray p2(0).
Finally, in order to simplify our notation, we set
G(u,[0],h) = (G1(u,[0],h),...,Gn_1(u,[0], 1), Gxn(u, h))T
A(u,h) = (A (u,h), ..., Ax(u,h)T,
B(u,h) = (Bi(u,h),...,By(a,h)T.
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5.3. Linearized problem

The set of equations (5.2.7) leads to the following linear problem whose optimal
regularity properties will be of central importance below.

pdu —vAu+Ve=Ff inRN,

divu=f; in RN’

~[v(Dnuj + Djun)] =g; on R,

(5.3.1) [6] - 2[uDnun] = ([pleg + coA)h = gn on Ry,
[ul=0 onRY,
Oh—u-ey =g, onRy,
uf;—o =uo in RY,

h|t:0 = ho on l{N_1

forj=1,...,N—1, and set g = (g1,...,g9n)". Here,
p = P1IXRN + P2XRY, V= VIXRN + V2XRY

with p; >0 and v; > 0 fori =1, 2.

The following result due to Priiss and Simonett characterizes the set of data
on the right-hand sides of (5.3.1) to obtain solutions of (5.3.1) in the maximal
regularity space (cf. [PS10b, Theorem 5.1], [PS11, Theorem 3.1]).

PROPOSITION 5.3.1. Let 1 <p < oo, p#3/2,3, anda >0, and set J = (0,a).
Suppose that fori=1,2

pi >0, v; >0, ¢g >0 and ¢, > 0.
Then the equations (5.3.1) admits a unique solution (u,0,h) with the reqularity
u e (H,(J, Ly(RY)) N Ly (J, Hy (RV))) ",
6 € Ly(J W (RY)),
[61 € W, 27V @R (1, Ly (RN1) N Ly (1, W, - VPRV,
he W2 (1 L, RN nHY(J, W2 Y@ (RN N L, (J, W /PRNY)

if and only if the data (£, f4,8, gn, uo, ho) satisfy the following regularity and com-
patibility conditions:

fe Ly(J LyRM)Y,

fa € Hy(, W, (RN)) N Ly (J, Hy (RY)),

g e (W2 P, L, RN 1) N Ly (J, Wy /PR )N,
gn € Wy =P (1 L, RN 1) 0 Ly (J, W, /PRNTY),

up € W22/P(RN)N, ho € WET2/PRNTY),

divug = £4(0) in RY, [ue] =0 on R¥"1if p > 3/2,

— [v(Dnuoj + Djuon)] = g;(0) on RN "1if p >3

forallj=1,...,N=1. Moreover, the solution map [(£f, f4, &, gn, U0, ho) — (1,0, h)]
is continuous between the corresponding spaces.
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5.4. Properties of function spaces involved

In order to derive estimates for the nonlinear mappings occurring on the right-
hand sides of (5.2.7), we first study embedding properties of the functions spaces
involved. For a > 0, let J = (0, a) and set

E,(a) ={u € (H}(J,L,(RY)) N L,(J, H2(RN)))N | [u] = 0},
Ly(J,WHRN)),

Eg(a)
Eg(a) W1/2 1/(2p)(J L. (RN 1)) p(J,Wz}il/p(RNil))’
(a)

Ey(a) =W2 Y (1, L, RN"1)) n Hy(J, W2 /P(RN )
NW/2=YE (g H2RN ) N Ly (J, Wy~ /P (RN )
as well as
Fi(a) = Lp(J, Ly(RY)Y,
Fa(a) = Hy (J, W, {(RY)) N L, (J, HE(RY)),
F3(a) = (W, /2~ O (J, L, RN 1) N L, (J, Wy /PR )N,
Fi(a) = W, CP (] L,(RN"1) N L (J, W /P (RN ).

We then have the following result (cf. [PS10b, Lemma 6.1] and [MS12, Proposi-
tion 3.2]).

LEMMA 5.4.1. Let N+2<p<oo,a>0, and J=(0,a). Then the following
properties hold.
(1) Es(a) and Fy(a) are multiplication algebras.
(2) Ey(a) — (BUC(J,BUCY(RN))n BUC(J, BUCRM))Y, and also Ei(a) —
;" (J, Hy (RN)N
(3) Ez(a) — BUC(J,BUC(RN-1)).
(4) E4(a) — BUC'(J, BUCY(RN=1))n BUC(J, BUC?(RN-1)).
(5) Wy (I, L, RN=0) 0 H (WP RNT) 0 Ly (W TP RNTY) <
E4(CL).
A crucial point of our proof is the treatment of viscosity functions p. To this
end, we introduce, for a > 0, the function space F3(a) as

Fs(a) = {g € BUC(J,BUC(RN"Y)) |
1917, 0) = 9l BuC(sBUCERN-1)) + |9]Fata) < 00},

where |g|r,(a) = 9|5 (a),1 + |9]Fs(a),2 With

lg(t) || . 1/
|91Fs ()1 = // |t | Le RN ) dtds) : and
—s

lg(@',t) — gy, )P /v
|91Fs(a).2 = //RN 1/RN e y|N - dx’dy'dt) .

We then obtain the following result.

LEMMA 5.4.2. Let N+2<p<oo,a>0, and J=(0,a). Then the following
properties hold true.
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(1) Fs(a) and Fs(a) are multiplication algebras. In addition,
Fs(a) < BUC(J,BUC(RN")NN, F4(a) — BUC(J, BUC(RN)).
(2) If ¢ € BUCY(R) and g € F3(a), then
17, < llellBucmw) + 2l BUc®)|9lFs (@)
(3) There exists a positive constant C' such that for f € Fs(a) and g € Fs(a)
[1£9llEs @) < CllS s (a) 9115, a)

PROOF. (1) The properties for F5(a) is essentially given in Lemma 5.4.1 (1) and
(3). The embedding F3(a) — BUC(J, BUC(RN™1)) follows from the definition of

Fs(a). We here only show that Fs(a) is a multiplication algebra. For f, g € Fs(a),
it follows that

If9llsucs.Bucm~-1y) < IfllBucu,suc@my-—)llgllBucr,Buomy—1y)
< 111y 9o

Considering | - |r,(q),1, We see that

1
lg(t) — g(s >||LP<RN 5 v
|f9lFs(a)1 < fllBucr,Bucmy-1y) // dtds

jt —s[2 7%

1
1F®) = SO vy \
+ ll9llsucr,Bucmy-1) PR dtds

= ||f||F3(a)|g|JF3(a)71 + ||g||F3(a)|f|]Fa(a)71~
Similarly, [fgly(a).2 < 1 f I, ay191Fs(a)2 + 1915, ()| s (a),2- These yield
||f9||ﬁ3(a) < O”f”ﬁg(a)”gnﬁs(a)

for some positive constant C', which implies that Fg(d) is a multiplication algebra.
(2) By the mean value theorem,

1/
lieto(®) — eloGDIy, v v
e = |t—s| 142
ela(@', 1) = el DI 0\
dx'dy'dt
(/ANILN1 |x_y|N 24p T ay
/p
llg(t) — g(S)IE mens 1
<l¢llBucm) (// LR
|t—5|
lg(z',t) — gy, )P ., ., 1/p
<//RN 1/RNJ |x’—y|N Tp dx'dy'dt

<@l Buem)lglFs(a)

which furnishes that the required inequality holds.
(3) It obviously holds that

I fallz,ro,®v-1yy < |flle, L, ®v-)l9llBucs,Buc@my-1y)
< 1f1Ira @195, (a)-
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On the other hand, we see, by calculations similar to (1), that there exists a
constant C' > 0 such that for i = 1,2

|fg|]F3(a),z‘ < ||f||BUC(.LBUC(RN71))|g|]F3(a)’i + ”g”BUC(.LBUC(RN—l))|f|F3(a),i
< Cllfllrsa) 19115, (a)»

which, combined with the inequality above, completes the proof. O

We next recall basic properties of functions which are Fréchet differentiable.
Let X and Y be Banach spaces and U C X be open. We then denote the Fréchet
derivative of a differentiable mapping ® : U — Y by D® : U — L(X,Y), and its
evaluation of v € U and v € X by [D®(u)]v € Y. Moreover, a mapping & : U — Y
is called continuously Fréchet differentiable if and only if ® is Fréchet differentiable
on U and its Fréchet derivative D® is continuous on U. The set of such continuously
Fréchet differentiable mappings from U to Y is denoted by C*(U,Y).

In the sequel, we will make use of the chain and product rule for Fréchet
differentiable functions. Let Z be a further Banach space and suppose that the
mappings f : U — Y and g : Y — Z are continuously Fréchet differentiable. Then
the composition F'=go f: U — Z is also continuously Fréchet differentiable, and
its evaluation of x € U and T € X is given by

[DF (z)]z = [Dg(f(x))][Df(z)]z.
For the product rule, suppose that there exists a constant M > 0 such that for
everyy€Y and z € Z
lyzlly < Mllylly =l z,
and also that f : U — Y and g : U — Z are continuously Fréchet differentiable.
Set F(z) = f(x)g(x) for x € U. Then F : U — Y is also continuously Fréchet
differentiable and its evaluation of x € U and ¥ € X is given by
[DF(z)]z = g(x)[Df(2)|z + f(2)[Dg(x)z.
We now define the solution space E(a) and the data space F(a) for a > 0 by
E(a) = {(u,0,7,h) € E1(a) x Ez(a) x Ez(a) x E4(a) | [0] = 7},
F(a) = Fi(a) x Fa(a) x Fz(a) x F4(a).
The spaces E(a) and F(a) are endowed with their natural norms, that is,
1(a, 8,7, h)llea) = [allg, (@) + 10llE2(a) + 17l|E (@) + [12llEL(a)s
I(£, fa, & gn)llF(@) = IEllEs (@) + [ fallra(a) + 18lFaia) + 98 lIF(a)-
Finally, we consider for (u,f,7,h) € E(a) the nonlinear mapping N which is
defined as
(5.4.1) N(u,0,7,h) = (F(u,0,h), Fa(u,h), G(u,7,h),Gr(u, h)),
where the terms on the right-hand side are defined as in Section 5.2. For functions
u=(u,...,uy)” defined on RV, we set
(5.4.2) =, ud), ol = gy,
u? = (ui,...,uy), uf=
Recalling the definition of E(u,h) and £(u, h) in (5.2.6), we give, in the follow-

ing lemma and its corollary, assertions on the Fréchet dfferentiability of certain
functions occurring in the nonlinear mapping N.
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LEMMA 5.4.3. Let N+2<p<oo,a>0, and J = (0,a). Then the following
assertions hold.

(1) For p € BUCY(R), the mapping
¢ : BUC(J,BUC(RY)) — BUC(J, BUC(RM))

s continuously Fréchet differentiable.
(2) For € BUC?*(R), the mapping

¥ : Fs(a) = Fs(a)

1s continuously Fréchet differentiable.
(3) Let o € BUCY(R) and set, by using (5.4.2),

o4(u,h) = (B, h)[2) ford=1,2.

Then ®* : Ei(a) x E4(a) — BUC(J, BUC(RN)) is continuously Fréchet dif-
ferentiable.
(4) Let ¢ € BUC3(R) and set, by using (5.4.2),

U(u,h) = Y(IE@’A)?) ford=1,2,

where v denotes the trace to RY . Then U : By (a) x E4(a) — Fs(a) is contin-
uwously Fréchet differentiable.

PROOF. (1) We first show that the mapping ¢ is Fréchet differentiable. To this
end, let f, f € Z = BUC(J, BUC(R")). Then
1
P+ 1) = 0F) = o(NF = [ ((F +00) - o(P) dOF,
0

which implies

le(f +F) = o(f) —o(HFlz/fllz < /O lo(f +0F) — @(f)llz db.

Since ¢ € BUC(R), the term on the right-hand side above tends to 0 as || f| z — 0.
Thus, [De(f)]f = ¢(f)/.

Next, we shall show the continuity of the Fréchet derivative at fy € Z. For
h € Z, we have

[De(fo +h) — Dp(follczy = Hfsuug1 [[De(fo+ M)]f — [De(fo)lfllz
= H;‘Hugl lo(fo +h)f —@(fo)fllz

IN

[&(fo + h) = &(fo)llz,
which tends to 0 as ||h||z — 0, since ¢ € BUC(R).
(2) For f, f € F3(a), we obtain

(4 )=o) =) f = /01(19)¢(f+9f)ffd9-
By Lemma 5.4.2 (1) and (2),
15(f +0)f Iz, @) <CUBUCE + 1lBUCER|f + 0flpa(a I FIZ, )
<O+ [ £llgy y + 01T, @) IFIZ,
which implies that [Dy(f)]f = ¥ (f)f.



5.4. PROPERTIES OF FUNCTION SPACES INVOLVED 183

~ Next, let h € F3(a) to show the continuity of the Fréchet derivative at fo €
F5(a). Then

1D (fo + B) = DY)l penay = sup ID%(fo + W)F — [D(Fo)) g, )

||f ‘1?3(@):1

<C|ld(fo+h) = ¥ (fo)llf, a)

by Lemma 5.4.2 (1). On the other hand, Taylor’s formula and Lemma 5.4.2 (1)
yield that

1
19(fo + ) = P (fo)llg, (@) < O/O 19 (fo + 0h) I, (o) 4Ol 2lI5, (0

which tends to 0 as ||hHF3(a) — 0. This completes the proof.

(3) By Lemma 5.4.1 (2) and (4), the mappings

(5.4.3) (w,h) — E(u?,h) : Ey(a) x Ey(a) — 2NN
as well as x> |z]2 1 ZV*N

where Z = BUC(J, BUC(RN)), are continuously Fréchet differentiable for d = 1, 2.

The chain rule thus yields that for d = 1,2

Ei(a) X Ey(a) = Z : (u,h) — |E(ud,h)|2

is also continuously Fréchet differentiable. Applying the assertion (1) of this lemma
and the chain rule again implies that 7 : E(a) xE4(a) — Z is continuously Fréchet
differentiable for d = 1, 2.

(4) Note that, for (u,h) € E1(a) x E4(a) and 4,5 = 1,..., N, we have

— 7,

(5.4.4) ||(oDiu§, Dih, DiDjh) g, ) + | (oDiu?, Vh, DiVh)|ky(a)
< C(a'ap)”(u? h’)HEl(a)XE4(G)

for d = 1,2 with some positive constant C(a,p). In fact, Lemma 5.4.1 (2) and
[MS12, Theorem 4.5] for s =1/2, m =1, and pu = 1 yield that

IroDitsf I, 0y + o Divllza(a) < 0Dt | Bucspucmy-1) + oD g, @
< C(a’p)(||Diu?||BUc(JﬁBUC(Rf)) + ”Diuﬂl”Hé/Z(JaLP(Rf))ﬂLP(J’H;(Rf)))
< C(a,p)|ullz, (),

which furnishes the required properties of u in (5.4.4). Concerning h, the desired
properties follow from the definition of E4(a) and Lemma 5.4.1 (4). By (5.4.4) and
Lemma 5.4.2 (1), the mappings

(u, h) — vE@? h) : E1(a) x E4(a) = Fs(a)V*V,
z = |z : Fs(a)N N = Fs(a)
are continuously Fréchet differentiable. Thus, by the chain rule,
(u,h) = [E@?, h)|? : Ey(a) x Eq(a) — Fs(a)

is also continuously Fréchet differentiable. Together with the assertion (2) of this
lemma, the chain rule yields the required property. O

COROLLARY 5.4.4. Let N+ 2 < p < 00, a >0, and J = (0,a). Then the
following assertions hold.
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(1) Let ¢ € BUCY(R), i,j,k,l,m,q,r =1,...,N, and d = 1,2. By using (5.2.5)
and (5.4.2), we set

©kimgr (0, h) = @([E(u’, h)[*) Eyj(u’, h) Eya(u?, h) Dy Dgus,
Afkipgr (0, h) = (IE(u?, h)?) Eij (u?, h) Epa (0, h) Fng (h)us!,
O (u, h) = ((|E(u?, h)|?) = ¢(0)) D Djug,
Afje(u,h) = (o([E(u?, h)?) = o(0)) Fij (h)uj!

Then the mappings
(b;'ljklmqrv A;ljklmqrv @?jkvA;‘ljk 1 Ei(a) x Eq(a) — Ly(J, Lp(RN))
are continuously Fréchet differentiable. Moreover, their values and their Fréchet
derivatives at (u, h) = (0,0) vanish.
(2) Let € BUC?R), i,5,k=1,...,N, and d = 1,2. By using (5.4.2), we set
Wi (u,h) = {¥(hoE(u’, h)*) — $(0)}r0 Diu?,
0f;(u, h) = ¥ (loE(u’, h)*) (yo Diu®) D;h,
Edk(a, k) = ¥(oE?, h)[*) (o Dsu?) D;hDyh.
Then the mappings
e 08 2L, Ei(a) x E4(a) — Fs(a)

350
are continuously Frécht differentiable. In addition, their values and Fréchet
derivatives at (u, h) = (0,0) vanish.

PROOF. (1) We only prove the case of @fj kimgr €re. The other cases may then

be proved similarly. By (5.4.3), Lemma 5.4.3 (3), and the product rule,
(u, k) = @(|E(u?, h)]*)Eij(u?, h)Ey(u?, h) : By (a) x E4(a) — BUC(J, BUC(RY))
is continuously Fréchet differentiable. Moreover,

u+ D, Dyul : Ei(a) — L,(J, L,(RY))

is continuously Fréchet differentiable, which, combined with the above assertion
and the product rule with X = E;(a) x E4(a), Y = L,(J,L,(RY)), and Z =

BUC(J, BUC(RY)), furnishes that q),fljklmq,,, : Ei(a) x By(a) — Ly(J, Ly(RN)) is
continuously Fréchet differentiable. In addition, it is clear that (I)gjklm (0,0) =0
and D&Y, (0,0) = 0.

(2) We only consider the case of ¥¢ here. Since

(5.4.5) u — yoD;u? : Ey(a) — Fs(a) or Fs(a)

is continuously Fréchet differentiable, it follows from (5.4.4) that
u > P(0)yoDiu? : Ey(a) — Fs(a)

is also continuously Fréchet differentiable. On the other hand, by Lemma 5.4.3
(4), (5.4.5), and the product rule applied to X = Eq(a) x E4(a), Y = Fs(a), and

7Z = F3(a), the mapping
(0, h) = %(|yE(?, h)[*)roDin? : Ei(a) x Ba(a) — F3(a)
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is continuously Fréchet differentiable. Finally, it clearly holds that ¥¢(0,0) = 0,
and also that, thanks to the product rule,

DU (u, h)
= 7D [D(([vE(?, h)[*) — 9(0))] + (¥(17E(u’, h)|*) — $(0))[D(voDiu?)],

which furnishes that D¥¢(0,0) = 0. The proof is complete. O

5.5. Nonlinear problem

We start this section by examining properties of the nonlinear mapping N
defined as (5.4.1).

LEMMA 5.5.1. Let N+2 < p < o0, a >0, and r > 0. Suppose that ug €

C3([0,00)) for d = 1,2, and also that py > 0, p2 > 0, ¢, > 0, and ¢, > 0. Then
there hold

N € C'(Bg()(r),F(a)), N(0) =0, and DN(0) =

PROOF. We here treat in detail the terms .A(u, h) and B(u, h), which are de-
fined as in Section 5.2. The remaining terms were investigated in [PS10b, Propo-
sition 6.2] and [PS11, Proposition 4.1].
Case A(u,h) Let (u,0,7,h) € Bg)(r) and recall, fori = 1,..., N, that A;(u, h)
is given by

N . .
Ai(u,h) = > (APM(E(u, b)) — A7H(0))(D; D + D; Dyug)

N
+ > (APMUE(u, h)) — APMN0)) (For(h)u + Fi(h)w),

where Fji(h) are defined as in (5.2.5), and also Ag’k’l(E(u, h)) as in Section 5.2 by

ATEUB(u, b)) = xpy ATV (B(u, b)) + xry ALY (B(u, b)),

AT, ) = 5 (2a(BCa, 1)) B 0, ) B (1, ) + aa( B, 1) )00

with d = 1,2. Using the notation introduced in (5.4.2), we see that A?"(E(u, h))
may be represented as

AP (E(u, )

= 53 (2B 1)) Eog(u, ) B, ) + pa( B, )66,
d=1

l\DI»—



186 5. TWO-PHASE FLOWS OF NON-NEWTONIAN FLUIDS

and thus

2 N
Ai(a,h) = Z fa(|E(u?, h)[*) Eyj (u, h) B (a?, ) (D; Dy + DjDyug)
d=1

2 N
1
+§Z > (na(lB(u?, h)[?) = 12a(0))d:051(D; Dyuft + Dy Dyugt)

d=1j,ki=1
2 N
+3 0> | W) Ei;(u?, h) Ep(a?, ) (Fir(h)ui + Fj(h)ui)
d=1j,k,l=1
1 2 N
+ 52 > (a(E?, b)) = 1a(0))8ix 85 (Fyk (h)uif + Fiu(h)ui)
d=1j,k,l=1

fori=1,...,N. By Corollary 5.4.4 (1),
A € C"(Bg(y(r),Fi(a)), A(0,0) =0, and D.A(0,0) = 0.

Case B(u,h) Let (u,0,7,h) € Bg(q)(r). By Lemma 5.4.1 (2) and (4), each term
being in B(u, h) is continuous with respect to the space variable . In particular,
this furnishes that

vfa(E(u?, 1)?) = fa(loE?, h)[?)), v{(Dxug)(@ih)} = (yoDnuly) (0 D;h).
Thus, B(u, h) = (B1(u,h),...,By(u,h))T may be rewritten as

Bi(u,h) == (~1)ua(lnoE(u?, h)|*)(vo Dyufy) Djh

+

1 B0

(=1 (ma(|voE?, h) ) — pa(0)) (voDyud + voDjuf)

9
—

V|
=2

- (=) pa(loBE?, B)*) (voDjugi + o Drus) dh

Q.
Il
-
Z x>
Il
_

+
N

(—1)dud(|’yoE(ud, h)|2) (thfyoDNu? + Djh’yoDNui) Dyh,

Y
Il
-
£
Il
-

By (u, h)

I

[\
M”
A

—1)? (pa(|vE@?, h)[*) = 14(0)) o Dnugs

2
Il
—

2

(—1)?pa(|r0E(u?, h)[*)(Drh)*yo Dy ufy

_|_
U
HMM
i

w1l
2
Lo

- (—1)?pa(|voE(u?, h)[?) (voDnuf + voDyul ) Dih.
d=1

bS]
Il
—

These representation and Corollary 5.4.4 (2) combined yield that
B € C'(Bg(q)(r),Fs(a)), B(0,0) =0, and DB(0,0) =0,

which completes the proof of the lemma. O
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Finally, we return to the nonlinear problem (5.2.7). We define the function
space I of initial data by

I= W§72/p(RN)N % Wzi?fQ/p(RNfl),
and also define, for z € E(a) and (ug, ho) € I, the mapping @ by
®(z) = L™ (N(2), uo, ho).

Here the linear operator L is given by the left-hand side of the linear problem (5.3.1)
with » = p(0). Observe that the invertiblility of L is guaranteed by Proposition
5.3.1, because p;(0) > 0 for ¢ = 1,2 and N(z) € F(a) for z € E(a) by Lemma 5.5.1.
The following result shows that the problem (5.2.7) on the fixed domain RN admits
a unique strong solution, provided that the initial data ug, hg are sufficiently small
in their corresponding norms.

PROPOSITION 5.5.2. Let N +2 < p < o0 and a > 0. Suppose that p1 > 0, py >
0,cq >0, and ¢, > 0, and also that

1:(0) >0, p; € C3([0,00)) (i=1,2).

Then there exist positive constants g and dg, which depend on a and p, such that
the equations (5.2.7) admits a unique solution (u,0,h) in Bg)(do), provided that
the initial data (ug, ho) € 1 satisfies the compatibility conditions:

(5.5.1)
[(|E (a0, ho)[*)E(ug, ho)ng — {ng - u(|E(uo, ho)|*)E(ug, ho)ne}ng] =0 on R,
[60] = [no - u(|E(uo, ho)[*)E (1o, ho)no] + ([plcy + oA )ho — coG(ho) on Ry,

divug = Fy(ug, ho) in RY, [up] =0 on Rév
as well as the smallness condition: ||(ug, ho)|lI < €o-
REMARK 5.5.3. The compatibility conditions (5.5.1) are equivalent to
~[1(0)(dnu; + djun)] = Gj(uo, [f], ho) on RY,
[60] — 2[1(0)dnuon] = ([p]va + oA Yho = G (o, ho)  on Ry,
diVLlo = Fd(uo, ho) in RN, [[UQ]] =0 on R(])V,
where j=1,...,N —1and G = (G4,...,Gn)T defined as in Section 5.2.

PROOF. Observe that DN is continuous and DN(0) = 0 by Lemma 5.5.1.
Thus we may choose dg > 0 small enough such that

1

Y £(a)xLE@)

sup  [|[DN(2)||2(Bgo (1) F () < _
7€ Bg(a) (260) (Bg(a) (r),F(a)) 2L

where r > 0 is a sufficiently large number.
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For z € Bg(4)(d0), the mean value theorem implies that
|2(2) |5 (a)

<L 2@ @) 18y (IN(2)[[E@) + 11(10, ko)1)

= | L7 cr(a) x1.EG)) (IN(2) = N(0) |50 + [[(w0, ko)1)

<L £F(a) xLE(@)) { <€BSUP(5 : ||DN(Z)||£(BE(a)(r),F(a))) 2] () +€o}
z E(a) (00

19 _
< 30 + ol L7 £(F(a) xLE(a)) -

Choosing ¢ in such a way that 0 < gy < 50/(2”[1_1||L<F(G)XH7E(LL))), we obtain
|®(2)|lg() < do. Hence, ® is a mapping from Bg(,)(do) into itself.

Let z1,25 € Bg(q)(d). Noting that ®(z1) — ®(z2) = L' (N(z1) — N(z2),0,0),
we obtain, by the mean value theorem,

[®(21) — (22)lE(a)

<L £F(ay x1E@)) IN(21) — N(2z2)|[r(a)

IN

1L | £R(a) x1,E(a)) ( sup ||DN(Z)||L(BE(Q)(T),F((:,)))> 21 — z2[lE ()
ZE Bg(a)(260)

IN

1
§HZ1 — Z2||E(a)>
which furnishes that ® is a contraction mapping on Bg,)(do). By the contraction

principle, we obtain a unique solution of the equations (5.2.7) in Bgq)(do) O

Proof of Theorem 5.1.1. Note that the compatibility conditions of Theorem
5.1.1 are satisfied if and only if (5.5.1) holds. For ho € Wi~ 2/?(RN=1), the mapping
Oy, given by

Ono(¢',6n) = (€', &v + ho(€)) for (¢',6n) € RY
defines a C*-diffeomorphism, from R™ onto €, with the inverse ©;(z/,2y) =
(z',zn — ho(x’)). Thus there exists a positive constant C'(hg) such that
C(h0)71||VOHW5—2/p(QO) < ”uO”Wg—?/P(RN) < C(h0)||V0||Wp2—2/P(QU)'

Hence the smallness condition in Theorem 5.1.1 implies the smallness condition
in Proposition 5.5.2. Proposition 5.5.2 then yields a unique solution (u,8,h) €
Brg(a)(d0) of the equations (5.2.7). Finally, setting

(v,7) = (0.1,0.0) = (uc® ',0007"),

where ©, is defined as (5.2.4), we obtain a unique solution (v,m,h) of the orig-
inal problem (5.1.1) with the regularities stated in Theorem 5.1.1. The proof is
complete.



Appendix

A

Our aim here is to show Lemma 2.6.2 and Lemma 2.6.3. By using (2.4.16), we
see that Ly o0 (k =1,2,3,4,¢ =1,2), defined as (2.4.14), are given by

(A1) Lio =2B{~(A+ Be™24%) — (B = 24B — A%)e™ 4" M(3)
+A(B? = AHM(6)*},
L4 =2B{—(B+ Ae %)= _ (B? 4 A2 4 2A(B — A)e %) M(5)
4,14(13 4714)2€‘w45/»4(6)2},
Loy =— (B2 + A?) — (B? + 2AB — A%)e 24
—2(B*(B+ A) — A%2(B — A))e~ " M(6)
— (B? — A*)(B? + A>)M(6)?,
Loa =(B*+2AB — A% + (B® + A?)e 24%)e 49
+ 2(—2BA? 4 (B — A)(B% 4+ A?)e 249 M(6)
+ (B — A)*(B? + A%)e” P M(5)%,
Lsy =(Dy(—A, B) — Dy(A, B)e 24%)e=49
— 2(2AB(B? + A%) + (B — A)Dy(A, B)e 24 M(3)
— (B — A)2Dy(A, B)e A M(6)?,
L34 =Do(A, B) — Dy(—A, B)e 24
—2(B* —2AB® + 2A2B? + 24°B + AY)e= M(6)
— (B® — A%)Dy(— A, BYM(5)?,
Luo =B{—(Ds(A, B) + Dy(A, B)e~249)
+2(242(B% + A2) — (B — A)Dy(A, B)e 249 M(5)
— (B — A)2Dy(A, B)e=*° M(6)?},
Ly4 =B{—Dy(A, B) — D3(A, B)e 2% — 2(B* + 44°B — A*)e=*° M(9)
— (B — A%)Dy(—A, B)M(5)?}.

6—A6

Concerning (2.4.16) and (A.1), we have the following lemma by Lemma 1.2.5,
Lemma 1.2.6, and the fact that AM(J) and BM(0) belong to Mo 2 < ~,-

LEMMA A.l. Let 0 < e < w/2 and 7o > 0. Then it holds that
Lio, L1, Lag, Loy € My e,

189
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L3, L3, z1,2, z1,4, Z2,2, z2,4 € M2
Las, Laa, Lyo, Lya € M e,
54727 z/474 € My2 e -
To estimate detL from below, we introduce the following functions:
lo(€',0) =(1 4+ 2D + 5D (1 + e 24%)(1 + ¢ 28%) — (16D? 4 16D*)e A2~ B?
— (D +6D3 + D%)(1 — e 24%) (1 — e72B9),
(58, 0) =(1+5D" ' +6D 2 +2D 3 + D~* + D7) A2 M(6)?
+2(1— D71 +3D72 4 D73)e e B0
—(1-3D"'— D2 — D3)(1 4 e 240,283,

where we have set D = AB~1. Then we have the relation:

detL = (B — A)201(¢',A) = (B — A)*Ba(¢, ) = A%4(¢', M),

where £1 (&', \) is defined as (2.4.12). The following lemma was proved in [Abe04,
Section 3].

LEMMA A.2. Let 0 <e <7/2 and (¢,)) e RN"1 x %_.

(1) Let a > 0 and |A| > «. Then there exist positive constants o1 = o1(g, i, 0, ax)
and 01 = 61(g, i, 6, ) such that there holds the estimate:

|€1(€", M) = 61 (IA]Y? + A)°

provided that |&'| < o1, where o1 is sufficiently small.
(2) Let 8> 0 and |§'| > B. Then there exist positive constants oo = o2(e, i, 9, B)
and 02 = da(g, ) such that there holds the estimate:

[2(E, N)| > 02

provided that (€', \) satisfies the condition: |¢'|? < o3|\|. In particular, o is
sufficiently small.
(3) Lety > 0 and |€'|? > v|\|. Then there exist positive constants o3 = o3(e, i1, 6,7)
and 03 = d3(e, ) such that there holds the estimate:

[€s(&', A)] = 03
provided that |&'| > o3, where o3 is sufficiently large.

Corresponding to Lemma A.2, we constitute the cut-off functions (; (&', \) (j =
1,2,3,4) showed in (2.6.1) as follows: Let 79 > 0. First, in Lemma A.2 (1), we take

a = 79, then a positive number o1 = o1(e, t,0,70) exists. Next, in Lemma A.2

(2), we take § = o01/4, then a positive number oo = 02(g, i, 0, 01) exists. Finally,
in Lemma A.2 (3), we take v = 02/2, then a positive number o3 = o3(e, 4, 0, 02)

exists. By such positive numbers o1, 02, and o3, we define the cut-off functions
GEN) (1=1,2,3,4) as (2.6.1).

LEMMA A.3. Let 0 <e < 7/2 and vo > 0. Then the following assertions hold.
(1) Let¢; (€, N) (j =1,2,3,4) be given by (2.6.1). Then (;(§', N) belong to Mo 2 < ~, -
(2) Let £=0,1, ' € Névfl, and s > 0. Then we have, on supp (4,

IDE{(70,) A~} < C(NV2 + A) > a7 | Dg{(r0,) D} < A
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with some pOSiti’U@ constant C' = C(a/,f,ﬂﬁo,fs) MOTGOU@T; C4(€/7)\)A_
M_, 2., for any 0 <r <s.
(3) It holds that

GENE(E N €M s ac
(€, M) E2(E, ) € Mo,z v
Cal€ s N(EN) T € Mo -
REMARK A.4. We note that supp (3 is compact in R¥~! x C, and also that

|detL| > 0 on supp (3 by Lemma 2.4.1. By this fact, we see that, in Lemma 2.6.2
and Lemma 2.6.3, the terms multiplied by (3(¢’, A) satisfy the required properties.

£
3

PrOOF. (1) We first consider ¢;(£’, A). Noting that
supp (1 € {€ € RM [ [¢']/o1 <3/4}, (€' N) = ((€' /o)

we have, for any multi-index o’ € Név -t

pgae ] <or w50 (5]
/ |a/\
§C§> {S@ w@m>@K|M<C<MT“
1 E/GRN—l

with some positive constant C'(a’). We therefore obtain |D§,/{(T(‘9¢)€C1 &, N} <

()€1' for £ = 0,1. In particular, ¢; (€, \) belongs to Mo 2.« ~,-
Next we show that (2(&',A) € Mo 2. ,. By Leibniz’s rule, we have, for any
multi-index o/ € Ny =1,

(A.2)
DEGle N = g [(1 - () bol )]

01

- {1 o C(gl )}(Dg' C)<(02§;1/2) ((UQi)1/2>a |
- Z < ) (5_1)( D" O((azi)lﬂ)(gil)Bl((@;)uz)la HB'-

B’ <o
1810

Since it holds that

/ , 3 3
S“p“((g )C{“RN”%%}’

A1/
we have \Dg,’gz(g’ N)| < C(a)]¢']71'] for any multi-index o/ € NY ™! with some

positive constant C(a’) by (A.2). We also have |Dg, {r0:C( MY < C(a)e| 1]
similarly, noting that

o)} = S 0 () (o)
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Summing up the last two inequalities, we see that (2(&’', A) belongs to My 2 ¢ -
Analogously it holds that {5(£', A) and (4(&', A) belong to Mo 2. ~,-
(2) We first note that

(A.3) IAY2/A < (2/02)'2, A>05 onsupp (s

By Leibniz’s rule and (A.3), we have, on supp (4

(A.4) 1Dg {(70,) A=} < CA™>1T < O(IA1Y2  A) = A1

for £ = 0,1, any multi-index o/ € N, and any s > 0 with some positive constant
C =C(d/, s,02), which implies that the first required inequality holds.

Secondly, since D=! = A7'B = (\/(uAB)) + (A/B), we have the second
required inequality by (A.4) and Leibniz’s rule. The last property: (4(§',A\)A~*° €
M_,2c4, (0 <1 <s) follows from (A.3) and (A.4).

(3) We first prove ¢1(&/,A\)¢1(€,A) " € M_52.~,. By Lemma 1.2.5, Lemma 1.2.6,
and D € My ,, it holds that £3(',A) € Myg2.e,. Thus, since ¢1(¢',\) =
B®l5(¢', \), we have

(A5) 4 (fla )‘) € M5727€770

by using Lemma 1.2.5. The property (A.5), combined with Leibniz’s rule, Bell’s
formula, Lemma A.2 (1), and A.3 (1), yields that

(A.6) 1DE{((r0-) ¢ (€, )€, N} < CAY2 + )~ A1

for £ = 0,1, s > 0, and any multi-index o’ € N(])V ~1 with some positive constant
C=0C(d,s8,¢,7,1,0). In addition, since

TG, NE N
= {70:CL (€, N HA(E N = GUE L N(E, N 270448 N),

we obtain, by (A.5), (A.6), and Leibniz’s rule,
D {70, (G (€ N (E X)) < CINYZ + 4)72A71,
which, combined with (A.6) for £ = 0 and s = 1, furnishes that
|IDE{(r0:)™ (G, NAE N T < CUAM? + A) 7> AT

for m = 0,1. This estimate implies that ¢;(&', A\)¢1(&,\) ™! belongs to M_52 -,
Analogously we have

CQ (6/’ )‘)£2 (5/7 /\)_1 S M07276,"/07 C4(£/7 )‘)g2 (6/7 /\)_1 € MO,Q,E,’YO?

where we use Lemma A.3 (2) to show the second property. O

We here see that

(A7) GE Nt L) € Mogoen, (G =1,2,4)
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by combining Lemma 1.2.5, Lemma 1.2.6, and Lemma A.3 (2) and (3) with the
formulas:

G A GEN(B = A)?
detL AR
GEN) _ GE (B - AP
detL Boly(E, )

<4(§,?)‘) _ Cl(gla)‘)
detL — A343(¢',\)°
Thus, using Lemma A.1 and Lemma 1.2.5, we have Lemma 2.6.2.

Finally we show Lemma 2.6.3. By Lemma 1.2.5, Lemma A.1, and (A.7), we see
that Cj (f/, )\)E4’24/detL S MLQ’&-’/\/O and Cj (g/, )\)L4,25/d€tL S MO,Q,SWO forj =1,2,4
and ¢ = 1,2, and also that (;(&',\)A™ Ly 2¢—1/detL € M -, by using (2.4.16).
Since it holds that

GEAN _ GENB-A)  GENB-A)

Met L — u(B+ A (€,))  u(B+ A)B3y(€,\)’

we have, by Lemma A.3 (3), {;(\,&')/(Adet L) € M_5 5 ¢, for j = 1,2. This fact,
combined with Lemma A.1, completes the proof of Lemma 2.6.3.

B

We here introduce some lemmas, used in Chapter 3 and Chapter 4, to show
resolvent estimates and maximal regularity properties. To this end, we set

o0

B1) [KoWfl@) = | Fo [ko(€ e P fE )] (o) duw,
E) = [ Fe [ll€ A e )] @)
Ko@) = [ Fa" kol M)A Mlym ) F(E u) | (&) d,
KaW @) = [ Fo" [kl N AP0 F(e )] (o) d
KW fi) = [ Fo" k(e NA% P M) T uw)] () d

8

=
>
S~—
=
—
IS
S~—
|

Fa' [ks(€ VAN 2P Myn) Fig yw) | () dyw,

KW A@) = [ Fa* [kole. NA>Man)e 5 Fie' uw)] (&) du
KeOV @) = [

Ksfl) = [ Fo' [ks(€ VA2 Man + o) FIE um)] (@) dy,
Ko@) = [ F5" [ko(€' A M) M) € un)] (o) dyv,

8

~

Fa' ko€, NAMM@n) M) F(E yn)| () dyn

=
o
>~
S~—
=
—~
8
S~—
I

— e S S S S — 3

|
|
|
|
Fo' [kel€ AN M@)e 0 Fg' )] () dyw.
|
|
|
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with multipliers k; (£, \) (i = 0,1,...,10), where the symbols: A, B, M(a) (a > 0),
and f(¢&,yn) are defined as (1.2.1) with x4 =1, (1.2.2), and (1.2.4). Then we have
the following lemma.

LEMMA B.1. Let 0 < e < /2, 1 < ¢ < o0, and 9 > 0. We here use the
operators K;(A) (i =0,1,...,10), defined as (B.1), for A € 3¢ ,. Suppose that
Fo(€'.0) = N2ho(€'. ), ko(¢.A) € Mo,v.c.q
k(€' N) EMpaeq (i=1,...,10).
Then, forl=0,1 andi=0,1,...,10, the sets:
{(T0:)' Ki(A) | A=y +iT € B }

are R-bounded families, in L(Lqy(RY)), whose R-bounds do not exceed some positive
constant C(N,q,&,70).

PRrROOF. The case of K;(\) for ¢ = 0,1,3,8 was already proved by [SS12,
Lemma 5.4], so that we only show the required property for Kig(A) here in a
similar way to the proof of [SS12, Lemma 5.4].

Setting k1o (2, zN, yn) = ]-'5_,1[/610({', A AIM (zn) M (yn)](z"), we see that

[K10(A) f](z) = o kioa(z" =y an, yn) f(y) dy.
+
From now on, we prove that there exists a positive constant M = M (N, e,70)
such that for A € % ., 2’ € RVN=1\ {0}, and 2, yn > 0

M
N +yn)2 /27
E o
{l2']2 + (N + yn)2HV/

By the assumption of k19(¢’, \), Leibniz’s rule, and Lemma 1.2.6, we have

(B.3) 1DE {k1o(€, N AMM (z3)M(yn)}| < C A1 | gmeAlan+un)

B.2 / =
( ) |k107>\($ >$NayN)| = {|x/|2 _|_(

|7—87k10,)\(x/7 TN, yN)

for any multi-index o/ € NY~! with positive constants ¢ = ¢(¢), C' = C(e, 70, ).
In addition, since

7O {ANk10 (&', VM (zn) M(yn)}
= A(iT)k10(&, M (@n) M(yn) + AN(T0-k1o (8, ) M(2n) M(yn)
+ A)‘kl()(flv /\) (TQTM(:EN))M(Z/N) + AMkio (5,? A)M(IN)(TGTM(;UN)),
we have, in the same manner as (B.3),
(B.4) | D 70, {ko(€, ) AIM (zn)M(yn)}| < CAI I emeAln+un),

From viewpoint of (B.3) and (B.4), we apply Proposition 1.2.8 with n = N — 1,
L=N—-1,and o =1 to obtain

(B5) |k10,)\(x/7xN7yN)| § C|x/|_N7 |Tark10,A($/7$N7yN)| S C‘x/|_N

with some positive constant C' = C(N, e,vy) independent of zxn, yn, and .
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On the other hand, using (B.3) and (B.4) with o/ = 0, we have, by direct
calculations,

N

|k10,k($/7$N7yN)| SC/N 1 |€/|6—C\€’|($N+yN) dg/ C($N+yN)_ ,
RN-

IN

|7'8¢]f10,/\($la1’N»yN)| S C(:EN + yN)iN

for zn,yn > 0 with some positive constant C' = C(N, e, 7o), which, combined with
(B.5), furnishes that (B.2) holds.
Here we set

Lafl@) = [ ol = an i) )

M
{l2']2 + (zn +yn)? /2
where M is the same constant as in (B.2). We then see that Lo € £(L,(RY)) by
the following steps: First, by Young’s inequality, we have

H[L()f](a :L'N)HLq(RN—l)

S/ Ho(s 2y yn) o, -y 1f G yn) o, rv-1) dyn

<C/ 1£Cyn)llz,my- Y dyw
TN T YN

with some positive constant C' = C(N,¢e,70). Second, taking L,-norm after the
the change of variable: yy = xns in the last inequality, we see that for g(t) =

£, my-1y

1Zof L, <C/00Md
PR 1+s

lo(2',zn,yn) =

o ds
<C o =% _<c
< Clali,om | s < Ol

with a positive constant C = C(N, g, e, 7o), which furnishes that Lo € £(Lg(RY)).
Thus, by using Proposition 1.2.4, we obtain

Rewy@)({(70:) Kio(N) [ A =7 +i7 € 5 5, }) < C(N, q,2,7)
for I = 0,1 with some positive constant C(N, q,&,7o)- O

As was seen in [SS12, Lemma 5.6], we have the following lemma by using
Lemma B.1.

LEMMA B.2. Let 0 < e < /2, 1 < ¢ < o0, and vo > 0. We here use the
operators K;(\) (1 =0,1,...,10), defined as (B.1), for A € X. ,,. Suppose that

ko(§',0) e M1 1cq9, Ki(§N) EM_g5.,, (i=1,...,10).
Then, forl=0,1,7=0,1,...,10, and j,k=1,..., N, the sets:
{(70:) ONKi(N) | A= +i7 € Ze )
{(70:) (YE:(N) [ A =7 +i7 € De o},
{(r0,)'(AY2D; Ki(N) | A = v +i7 € X240},
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{(70-)(D;DiK;(N) | A= +iT € .}

are R-bounded families, in L(Ly(RY)), whose R-bound do not exceed some positive
constant C'(N, q,&,70).

COROLLARY B.3. Let 0 < e < w/2, 1 < q < o0, and vo > 0. We here use the
operators K;(A) (i =0,1,...,10), defined as (B.1), for A € X -,.

(1) Suppose that for every multi-index o/ € N(]JV ~1 there exists a positive constant
C = C(d',70) such that for any (¢',\) € RN\ {0}) x =,

IDg k(€' N < CATIT (i =1,...,10).

Then there exists a positive constant C' = C(a’,~0) such that for any A € X -,
and f € Ly(RY)

KM flle,rey <Clfle,mey (E=1,...,10).

(2) Suppose that for every multi-index o/ € Név ~L there exists a positive constant
C = C(d',70) such that for any (¢',\) € RN\ {0}) x =,

|DE ko(€/, )] < C(INY2 4+ 4)~1 1],
D ki€, V] < CON2 + ) 247 (i =1,...,10).

Then there exists a positive constant C = C(N,q,e,v0) such that for any A €
Yoo 1=0,1...,10, and f € Ly(RY)

IAK: (N £, N2V E (N £, VKN Dl my) < Cl L, my)-

PRroOF. It follows from Lemma B.1, B.2, and the definition of R-boundedness
(see Definition 1.2.1). O

From now on, we shall show maximal regularity properties of the high frequency
parts Voo, Hoo defined as (4.3.21). To this end, for j = 1,...,N — 1 and J =
1,...,N, we here introduce the operators Sy(A), SF(A),S%(A), TH(A), and T?(\)
given by

SiNF

N -

o ooVBB /’)\ e+ CO—A2 b N

= Z/O Fot | ‘]K,(f[,(;i(é]) Lpe? Nﬂ/N)fK(yN)] dyn

K=1° L )

N [e'e] i 133sBM ¢ 2

1 | Poo A2V &N (cyg +cA 1 Bay -

3w e L ) Axbe B M) i) |

K=1 )

/OO -‘POOV(IIBI/(M (&, N)(cqg + ceA?)
0

ot | Bt e ) e () o) d

/oo -wmA%V%B(€/>A)(Cg +CUA2)
0

% _ByNA
AB?L(A, B) AN M(zn)e fK<yN>] dys

N 00 r MB (¢t 2
1 [pec ViR (E5 M) (g + o A?) o —Byn 7
+ § :/0 fé’ I B2L(A7§) A M(zn)e” 7N fr(yn) | dyn
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i Z/ 7e' [%OV A1(3€2/L(,)4(,C]£113;— = )A)‘M(IN)M(yN)J?K(yN)] dyn

n Z/ ]__5_/ |:<pOOV (5/ )(cg + C”AQ)A?’M(:EN)M(ZJN)J/E\K(QN)} dyn,

AB2L(A, B)
SJZ(/\)V2
7 e [ pectlileg + co A?) —B(zn+yn) Al
- /0 Fe [ A2L(A, B) Ae A’g(yn)| dyn

N-1
= —1 (Poofjfk(B—A)(Cg—i—CgAZ) —B(zn+yn) 7. o
+ Z/ Fe [ B BT ALAB) ¢ DyDng(yn)| dyn

[ [0 (B2t A% (e + 0 A?) <
/0 ‘Fé’ [ A3(B+A)L(A,B) AM(JEN-HJN)AQ(ZJN) dyn

N-1
_ © 1 [0ecli&r(B? + A%)(cy + ¢, A?%) .

; /o Te { BT ALAE) A ManTun)DeDvgyx) | dyn,
S2.(\V?g

_ < Spoo(B_A)(cg+ch2) —B(zn+yn) A7,
= /O Fe [ AB T ALAD) Ae ANg(yn)| dyn

—~

+ /Ooo Fe! [@mggﬂfﬁl Z)AQ)AZM(@’N +yn) @(QN):| (a") dys
S [ ) B
TN

S [ 7 [ ey e o]
_/0 Fe! [L(A B) e AN f(y )} dyn
+ Nz; { Bwfiszi B) AQeA’”NM(yN)ﬁ;(yN)} dy
+ /OOO Fa'! [%A%_M’VM@N)J?N@N)} dyn,

T2(\)V3g
OOO Fe! [Az B+/({)4 il) B)AeA(wNWN)K\’g(yN)] dyn

N-1

h Pociée DA B) ) atestun) o
" 1/0 2 | me e DiDglun) | dun

o
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where we have set o, = poo ('), defined as (3.4.6), and
Flyn) = F(€yn), Fo'lg) = Fo'lal(@).
Then, setting
STNE = (ST, ..., S VET, S2(\V3g = (SE(N)V3g,...,SE(VV3)T,

we see that

Voo = L3 STNLIEIN]() + L3 ST NLIVgr]l (V) (@),

Hoo = L3 THNLEINI@) + L3 TN LIV gn] (V] (2)-
Now we have the following lemma.

LEMMA B.4. Let o/ € Név_l andl = 0,1. Then there exists a positive constant
C(a') such that for any &' € RN=1\ {0} and A\ =it for 7 € R\ {0}

|(70-)' DE {poe(€') L(A, B) 1}
< C@){IM(AM? + A)? + Al + e, A2} A1,
where oo (&) is given by (3.4.6).
PROOF. Let ¢ € C§°(R), 0 < <1, and
1
1 < =z
(I < 3).

¥(r) =
0 (7> 2).

We only consider the case of [ = 0 here. By Lemma 1.2.6 (2) and Lemma 3.6.2
(3), there exists a positive number 7., such that by setting
Yo(7T) = (T/To0),  Yoo(T) =1 = 1h(7/7o0),
we see that
(B.6) |Dg {9oo (€)0(7) L(A, B) 1| < C(a')A7571,
|DE {000 (€)oo (1) L(A, B) 1}
< C(){IN(AM? + A)? + Aley + e, A%)}
for any multi-index o/ € NJ'~! with some positive constant C(a’). Moreover, since
N2 + 4)2 D {poo (€ )0 (T) L(A, B) 1}
< A D {0 ()00 () LA, B) ™'} < C(a)) AT,
it holds that
|Dg {0 (€ o (1) L(A, B) 1}
< C@ NN + 4)° + Ale + e, A7)},

which, combined with the second inequality of (B.6), completes the proof of the
lemma. O

By using Lemma 1.2.6, Lemma B.1, and Lemma B.4, we see that the following
lemma holds.
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LEMMA B.5. Let 1 < ¢ < oo. Then there exists a positive constant M =
M(N,q) such that for 1 =0,1 andi=1,2

RE(Lq(Rf)Ni,Lq(Rf)N)({(TaT)l()‘Si(A)) |A=ir, 7€ R\ {0}}) < M,
RL(LQ(R;V)W'_,Wg(RIJg)N)({(Tar)ZSi(A) | A=ir, T€e R\ {0}}) < M,
RL(LQ(Rf)N"',W;(Rf))({(Taf)l()‘Ti(A)) |A=ir, 7€ R\ {0}}) < M,
RL(LQ(RQ)NZ',wg(Rg))({(Tar)lTi()\) | A=ir, 7€ R\ {0}}) < M.

Let 1 < p,q < oo. Then, by combining Lemma B.5 with Weis’ operator valued
Fourier multiplier theorem, we obtain

(B7) H(atVOCHVOOa vVO<>7V2VOO)||Lp(RJr,Lq(R:i))

F10eHoo )l 2,y ((0,00),W2(R2 ) T [ Hooll L, (R w2 (RE )
< C.a) (Il sy + 19l w2-v/s msy))

for some positive constant C(p, q).

C

We here introduce some properties of the Fourier-Laplace transform. To this
end, we first define a class of multipliers. For some 9 > 0, set

Ciny = {A€ C\ {0} | ReA > 70}

Let m (€', A) be functions defined on (RV=1\{0}) xC ,,, and suppose that m(&’, \)
is C*° and holomorphic with respect to & and A, respectively. In addition, there
exist s € R and a positive constant C(s,7o) such that for any (¢',\) € (RN=1\

{O}) X C+,'yo
m(€', )] < Cls,750) (N2 + 4)°.

We then denote the set of all such functions defined on (R¥=1\ {0}) x C, ,, by
Ls.~,. Now, we have the following proposition.

ProPOSITION C.1. Let f(z',t) € C§° (RN =1 xR, ), and suppose that m(&',\) €
Ls., for some s > —max{N — 1,2} and o > 0. We here use the symbols defined
as in (1.2.1), (1.2.3), (1.2.4), and (4.3.5). In addition, for xy >0 and A = v + it
(v > ), we set

Ia,t) = £ Fg' [m(e Ve P F(e V)] @ 0),
J(w,t) = L5 F5! [m(g',A)M(xN)f(g’, /\)] (@, 1).

It then holds that for t >0 and A =~y + i1 (v > )

~

I(x,1) :/0 Fa L3 mig e Bt - 9)f(€ )| () ds,
J(x,t)

~

t 1
=—aN /0 /0 Fea [C;l[m(&',)\)e*(B(”A(l*g))xN}(t—s)f(&',s)] (2') dods.
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ProoF. Noting that there exists a positive constant C, independent of v and
7, such that

CTH Y2+ Ir]2) < Y2 < O + ]2,

we have, by Lemma 1.2.6,
(C.l) |m(£',)\)6waN| < C(’yl/2 + |T|1/2 +A)8670(71/2HT|1/2+A)$N

for any s,7 € R, ¢ € RV and 2y > 0 with some positive constant C' in-
dependent of v, 7, ¢, and xy. If s > 0, then it is clear that m(¢, \)e B*N €
Ly (Ré\f_1 x R;) by (C.1), where subscripts £ and 7 denote their variables. In the
case of —max{(N —1),2} < s < 0, we have, by (C.1) and v > 79 > 0,

Clr| /26 =COM 41l + e (N Z 9y,

m(&,\ e Brn| <
Im(&', ) | < CAilSl670(’Y1/2+|T|1/2+A)w1\r (N >3)

with some positive constant C' independent of v, 7, &', and x, so that it holds that

m(&', N)e Bon ¢ Ll(RQf—l x R;). The integrability of m(&’, \)e” B~ and Fubini’s
theorem implies that

Iw,t) = Fg' [(£37 [m(¢ e BT+ fle', ) ()] (@),
On the other hand, since f(2/,t) = 0 for t < 0 and £3" [m(¢', \)e B*~] () = 0
for t < 0 by Cauchy’s integral theorem,

(&5 me' e8]« 7€) 0 = [ 257 [m(€ Me™ 5] (¢ = 7€' ) ds.

We thus obtain the required formula of I(x,t). Concerning J(x,t), we have

1
Hat) = —ay [ LT [m(e e B A0 i )] @' 0)do

by using (1.2.3), which furnishes the required formal of J(x,¢) in the same manner
as in I(z,t). O

We next show another convolution formula of Fourier-Laplace transform in the
following proposition.

PROPOSITION C.2. Let 0 < ¢ < @/2, 79 > 0, and s < 0. Suppose that
m(&',\) € M 2..,. We here use the symbols defined as in (1.2.1), (1.2.3), (1.2.4),
and (4.3.5). Then the following assertions hold.

(1) Let f(z,t) be a function in C°(RY x Ry), and suppose that for xx > 0 and

A=y+ir (v > )

o) = [T L3 [ Ve A T i, )] (0 d
Kole,t) = [ L5 g [m(€ e My F€. o, )] (00) d,
Ks(x,t) = Ooo,cglfg,l [m(f',/\)e Blawtn) £ yn, )] (@’,t) dyn,
Kilot) = [ L7 [l N M) F€ o V)] ) do,
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(o) = [ L3 [l VM B FE )] (0 du

(@) = [ LT F (€ NM ) MO )FE v V] (1) di
Then there exists do > 7o such that for any e <& < 7/2 and
[(60,¢) ={A€ C|A=0d0+seF ™) 5:0- o0},

we have, fort >0,

T o
K1<x,t>=/ (/ 72| / A Im (g, Ne AN N 4
0 0 I'(80,¢’)
x F(¢' yn. )] (@) dyn ) ds,

Kae) = [ (TR [ A ImE e M)
% F(& yn. )] @) dyx ) ds,

t o]
K= ([ F[ [ Im@ e a
0o “Jo T(60,¢")

~

X f(gla YN, 5):| (T/) d’I/N)dS,

< (€', 9)| @) dyw ) ds,

Ko(w.t) = | K / TR / o I N Mae P
x f(&yn, 8)} () dyzv)ds,

K1) =/O t ( / TR ['/F oy T M) M) X
% F(& yn.9)] (@) dyn ) ds.

(2) Let g(z',t) be a function in C°(RN~! x Ry), and suppose that for xn > 0
and A =5+t (v = 70)

Lu(x,t) = L' Fo 't [m(€, e 4" g(¢', )] (2, 1),
Lo(w,t) = L} 1}}/ [m(&, e PoNg e, V)] (@, 1),
L3<$U,t):£ [ (f ) ( N)Q(&,)\)](ZE, )

Then there exists §g > 7o such that for any e <& <m/2 and
['(60,e")={AeC|A=b+ seXi ™) 5.0 oo},

we have, fort >0,

t
Liwt) = [ 7 [ [ A Img e iagle ) @) ds
0 F((So,E’)
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t
Lawt) = [ Fg [ Ome e P iag(e' )] (@) ds
0 T'(60,e")

Ly(a,t) = /0 72| /F (6076/)eA(t_S)m(£’7/\)M(xN)d)\ﬁ(g’,s)} (af) ds.

PrROOF. We here consider Ki(x,t) only, since the others can be proved analo-
gously. It holds that for A =~ +i7 (v > )
(C.2)

Kitot) = [ 7t (630 [l Ve Ao ]« g, ) 0] @)y,

where we see £ [m(¢', \)e A@NFUN)] (#) as the distribution, and the symbol *
denotes the standard convolution. Noting m(¢’,v +i7) € L,(R.), where the sub-
script T denotes its variable, for a sufficiently large p > 1 since m(&’,A) € My 2. -,
(s < 0), we have, by [KS07, Proposition 3.40],

1 Y+ Ri
ﬁ;l[m(é‘/7 )\)e—A(mN-‘ryN)](t) = lim — / 6)\tm(€/7 )\)e—A(acN+yN) d\.
R—oo 27 ~—Ri
In addition, we have, by Cauchy’s integral theorem and choosing dy = (29)/ sine,

1 Y+iR

- e)\tm(fl A)e—A(xN-i,-yN) d)\

2m y—iR ’

1

= — eMm(g', \)eA@ENTYN) dX (R > 0)

27 Jr(50.¢%:R)
with T'(60,e"; R) = {A € C| XA = + e (") 5:0 5 R} (e <& < n/2). By
the last two identities combined, we obtain

(C?)) E;l [m(gl’ )\)e—A(zN-‘ryN)] (t) — i e/\tm(£/7 )\)e—A(mN-‘ryN) d.
2T 1_‘(50,8’)

~

Since f(&',yn,t) =0 for t <0 and
1
27 Jr(50.e")
by Cauchy’s integral theorem, it follows from (C.2) and (C.3) that the required
formula holds. U

Mm(e, N)eAEN TN N =0 (t < 0)
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