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1 Introduction

This dissertation discusses the nonparametric inference for time series models
with infinite variance based on the frequency domain empirical likelihood method.
In particular, we focus on the symmetric a-stable linear process, which is a linear
process generated by independent and identically distributed (i.i.d.) symmetric a-
stable random variables. Furthermore, we provide its application to the discriminant
analysis and the generalized method of moments estimators for the stable process,
and show the optimal properties of the empirical likelihood method.

Heavy-tailed data have been observed in variety of fields involving electrical en-
gineering, hydrology, finance and physical systems in the last few decades, and there
are a lot of papers discussing the estimation of tail index of the data (e.g., Drees, de
Haan and Resnick [12], Mandelbrot [39], Resnick and Starica [56]). When we analyze
such time series data, the classical method of moments is not applicable since it is
not natural to assume finite moments of underlying data generating distributions.
It is also infeasible to work with the exact likelihood ratio of observations in prac-
tice, since the data usually have the dependence structure and the dimensionality of
the data is often very large. To begin with, the true model is unknown in general.
To overcome these hurdles, the empirical likelihood and frequency domain approach
were proposed by many authors.

The empirical likelihood approach proposed by Owen [50] gives a convenient com-
putational procedure of the approximation of the likelihood ratio without assuming
that the data come from a known family of stochastic models. Owen [50] showed that
the empirical likelihood ratio statistic converges in law to the chi-square distribution
in i.i.d. and finite moment case. For dependent data, Monti [42] applied the empirical
likelihood method to a stationary linear process. Subsequently, Ogata and Taniguchi
[49] extended the method to multivariate second-order stationary processes, and con-
structed the method of nonparametric inference for important quantities of time se-
ries models even if the true model is unknown. On the other hand, there are a lot
of papers discussing the large sample properties of a class of econometric estimators.
The generalized method of moments (GMM) estimator is one of them, and is used
when we focus on the estimation problem of over-identified unknown paramcters of
the model. Especially, Kakizawa [26] suggested the frequency domain over-identified
model, and showed consistency and asymptotic normality of the frequency domain
GMM estimator for second-order stationary processes.

Thus, the empirical likelihood and its extended versions are applied to various
models, but most of them considered finite variance models. Meanwhile, the stable
process is widely used to model real data more suitably than the second-order sta-



tionary processes. One of the biggest hurdle when we deal with the stable process
is that the stable distribution does not have the finite variance and the probability
density function in closed form in general. In such situation, the frequency domain
approach is still useful. A series of works for the stable processes have been done by
several authors. For example, Mikosch et al. [40] constructed the Whittle estima-
tor for the stable autoregressive moving average (ARMA) models, and showed the
consistency and limit distribution of the estimator. In addition, Kliippelberg and
Mikosch [33, 34] studied the limit behavior of so-called self-normalized periodograms
and the integrated version for the stable process. They elucidated the asymptotic
properties of the statistics. In particular, it was shown that the limit distribution
of the integrated self-normalized periodogram for the stable process is expressed as
a sum of stable random variables. The results in Kliippelberg and Mikosch [34]
are widely applicable to various problems such as classical testing and estimation
problems.

Motivated the concepts above, in this dissertation we apply the frequency domain
empirical likelihood method to the symmetric a-stable linear process, and show the
optimal properties of the empirical likelihood via two applications: the discriminant
analysis of time series models, and the frequency domain GMM.

The rest of this dissertation is organized as follows. Chapter 2 introduces fun-
damental settings and limit theorems of the empirical likelihood method for second-
order stationary processes. We also construct a classification procedure of second-
order stationary processes based on the empirical likelihood ratio statistic. It will
be shown that the empirical likelihood ratio classification statistic has advantage in
the sense of non-Gaussian robustness. In Chapter 3, we construct the nonparametric
inference based on the empirical likelihood method for the stable process. The re-
sults for second-order stationary processes are nicely extended to the stable process
in the chapter. Because of the infinite variance of the stable process, the extension
is not straightforward and contains a lot of novel aspects. Chapter 4 provides the
empirical likelihood ratio classification statistic for the stable process, and evaluates
the delicate goodness of the classification statistic as well as the second-order sta-
tionary case. Through some simulation experiments, we observe that the empirical
likelihood classification procedure has a potential for improving the goodness of the
classification in practical situations. In Chapter 5, we apply the GMM for the stable
process. GMM is one of the most famous tools in econometrics, and we extend the
results in Kakizawa [26] to the stable process by the frequency domain approach.
The limit distribution of the estimator is elucidated in the chapter, and we discuss
the asymptotic optimality of the GMM estimators. In Chapter 6, we place rigorous
proofs for theorems in this dissertation.



As for notations and symbols used in this dissertation, the set of all integers, non-
negative integers and real numbers are denoted as Z, N and R, respectively. For any
sequence of random vectors {A(t) : t € Z}, A(t) 2, A and A(t) £ A, respectively,
denote the convergence to a random (or constant) vector A in probability and law.
Especially, p-lim, ,  A(t) = A implies A(t) P, A as t — co. The transpose and con-
jugate transpose of matrix M are denoted by M" and M*, and | M ||g := /tr[M*M].
For matrix-valued function M(z) = (M(x);; : 4,7 = 1,--- ,d), OM(x)/0x denotes
(OM(2);;/0x +i,j = 1,--- ,d). I{-} denotes the indicator function of event {-}. 0;,
Ojxi and [y, denote the i-dimensional zero vector, the j X k zero matrix and the
I x I identity matrix, respectively. We denote the imaginary unit by i. 9;; denotes
the Kronecker delta.




2 Discriminant analysis of second-order station-
ary processes

2.1 Introduction

This chapter introduces the fundamental settings for the empirical likelihood
method in time series analysis and constructs a classification procedure based on the
empirical likelihood ratio statistic. Discriminant analysis is one of the most important
topics in both i.i.d. case and time series analysis. Suppose that we observe a stretch
XM = (X(1),--,X(n)") (dn-vector) from a d-dimensional time series model, and
we want to classify the observed stretch X (™ into one of two categories denoted by
II; and II; with probability density functions (p.d.f.) pi(z) and py(z), respectively.
Usual discriminant procedure is to partition the dn-dimensional Euclidean space R
into two disjoint regions R, and R, such that if X belongs to R; (i = 1 and 2),
then we assign X ™ into II;. It is known that the classification regions defined by

R; = {95 € R . llog pilz)

n = pi(x)
give the optimal classification regions in the sense that this classification proce-
dure minimizes the quantity Pr(2|1) + Pr(1|2).Here Pr(j|i) is the probability of
misclassifying the observation from II; into II;. In our time series situation, how-
ever, the dimensionality n is often very large and the log-likelihood ratio has an
intractable form. Therefore, some convenient computational procedures are impor-
tant. There are various procedures in the frequency domain approach which are
familiar with spectral analysis in stationary time series. In particular, it is known
that the Kullback-Leibler information measure (Kullback and Leibler [35]) gives op-
timal time-frequency statistics for measuring a sort of distance between two time
series models. As an example of the statistics based on the Kullback-Leibler infor-
mation measure, Zhang and Taniguchi [68] adapted the Whittle likelihood ratio-type
statistic as an approximation for the exact log-likelihood ratio. In the paper, they
considered vector non-Gaussian stationary processes and showed that the Whittle
likelihood ratio classification statistic is consistent classification criterion in the sense
that the misclassification probabilities converge to 0 as n — oo. Zhang and Taniguchi
[68] also discussed non-Gaussian robustness, which is an important concept when we
deal with non-Gaussian processes. Many discriminant procedures and statistics have
been introduced by several authors; see Kakizawa [24], Kakizawa, Shumway and
Taniguchi [27], Zhang and Taniguchi [69], etc.

On the other hand, there has been a rich body of literature on novel idea of

> 0} . (i.j) = (1,2) and (2,1)
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formulating versions of nonparametric likelihood in various settings of statistical
inference in these few decades. Omne of them is the empirical likelihood method,
which was introduced as a nonparametric method of inference based on a data-driven
likelihood ratio function (Owen [50]) in i.i.d. case. Monti [42], Ogata and Taniguchi
[49] applied the empirical likelihood method in frequency domain to second-order
stationary processes. Especially, Ogata and Taniguchi [49] considered vector-valued
linear processes, and showed that the limit distribution of the empirical likelihood
ratio statistic is expressed as a quadratic form of standard normal random vectors
under H: # = 6y, and showed that we can construct nonparametric inferences for
6y € RP an important quantity of time series models. Various important indexes
of time series models can be expressed as 6y, and we shall give an example of 6y in
Section 2.2. The advantage of this approach is that appropriate confidence regions
of 6y are able to be constructed even if we do not know the true spectral density
matrix of the process and the distribution of the innovation process.

By the motivation of the empirical likelihood approach, in this chapter we focus
on the following two aims:

1. To apply the empirical likelihood method to classification problems.

2. To make a comparison between the misclassification probabilities by the em-
pirical likelihood classification statistic and those by an existing method.

In Section 2.2, we state fundamental settings of the empirical likelihood method to
time series models and construct the empirical likelihood-based discriminant proce-
dure. Section 2.3 provides some of main results, which asserts fundamental goodness
of the empirical likelihood ratio classification statistic. We also discuss delicate good-
ness of the statistic in line with Zhang and Taniguchi [68] in Section 2.4. Finally,
the advantages of the empirical likelihood ratio classification statistic are shown in
Section 2.5 via some numerical examples.

2.2 Fundamental settings

Suppose that {X(¢) = (Xi(f),---,X4(t)) : t € Z} is a non-Gaussian vector
stationary process generated as

X(1) = Za,(j)eu — ), (2.1)

where {a(t) : t € N} is a sequence of d x d matrices with a(0) = ;x4 and {e(t) =
(e1(t), -+ ,eq(t)) : t € Z} is a d-dimensional fourth-order stationary white noise

3



process; that is, {e(t) : t € Z} satisfies E[e(t)] = 04, Ele(t)e(s)] = 6K with K, a
d X d positive definite matrix, and

K by = - =1y, /<;4uv<oo
cum{er(l). exlls), eu(ls), eo(le)} :{ i goltherwise) 4y K| < 00)

These conditions are automatically satisfied when {e(t) : ¢ € Z} is a sequence of i.i.d.
random vectors. If > 7 tr{a(j) Ka(j)'} < oo (this condition is assumed throughout
this chapter), {X(¢) : t € Z} is a second-order stationary process and has a spectral
density matrix represented by

1 . . . = . .
fw) = - AWKAW)",  Alw) = > " aly) exp(ijw).
=0
As Ogata and Taniguchi [49], we make the following assumptions.
Assumption 2.1.

(). {X(t):teZ} is strictly stationary and all its moments exist.

(ii). The joint cumulant
Qg’i[ﬁ’k (U’l? o 7“’6*1) = Cum{X@l (t’)7 Xﬁz (t + ul)v T TX‘Sk (t + ukfl)}

satisfies

z (14 |uy]) ‘Q/)ﬁi’ik (g, ,uk,l)‘ < 00

U1, Up -1 €L

fori=1,--- k—1,08,--.fe{l,---,d} and any k =2, 3, ---.

Assumption 2.2. For the sequence {Cy : k =1,2,---} defined by

Ck = sup Z ‘Qéﬂ...ﬁk (1, ,qu)‘ ’

B1ye B Uy, U1 €L

it holds that

for z in a neighborhood of 0.



Assumption 2.1 (ii) claims that the dependence between X () and X (¢ + 1) be-
comes weaker as the time lag [ becomes larger, so this assumption is quite natural.
On the other hand, we need Assumption 2.2 in order to control the stochastic order
of the residuals in the asymptotic expansion of the empirical likelihood ratio statistic
defined later.

In this Chapter, let 6y = (63, ,05) be a solution to the p-equations

% /T tr [g‘(w; 9)71]'(01)} dw - = 0,, (2.2)

where g(w;0) is a d x d matrix-valued function, called a score function. We call this
By a pivotal quantity of the process.

This setting is useful in many situations. Here we impose two concrete examples
following Ogata and Taniguchi [49]; prediction and interpolation problems.

The first example is a prediction problem. Let us consider the h-step linear
prediction of a scalar stationary process { X (¢) : t € Z}, and suppose that we use the

linear predictor
Z ¢;(0)X (L —1)

to predict X (¢). The spectral representations of X (1) and X () are

X(1) = /ﬂexp(—llw)d@( ), Z% / exp{—i(l — j)o}dCx(w),

o =T

where {(x(w) : w € [—m, 7|} is an orthogonal increment process satisfying

E [dgx(w)m] _ { é"(w)dw Ej; Z;

Now, the best linear predictor minimizes the prediction error

B “X(t) - )?(t)ﬂ _ /

hence the best h-step linear predictor is given by Z;’;h $;(60)X (L — j), where 6
minimizes (2.3). Comparing (2.3) with (2.2), if we set

i(] ) exp(ijw)

j=h

2

1-— Z ¢;(0) exp(ijw)| f(w)dw, (2.3)

7



this problem is exactly the same as that of seeking 6y in (2.2).

The second example is an interpolation problem. Suppose that we observe the
entire time series except for L = 0, and estimate missing value X (0) by {X () : £ # 0}.
If we use

X(0)=> o™ )X ()
J#0

to interpolate X (0), the interpolation error is given as
/ I

Therefore, the coeflicients of the best interpolator are given as {gbg-int) (6o) = § # 0},
where ¢ is the minimizer of (2.4). Comparing (2.4) with (2.2), if we set

2

=3¢\ (6) exp(ijw)

370

f(w)dw. (2.4)

2

b

1= ol (0) explijw)

370

this problem is exactly the same as that of seeking 6y in (2.2).

It should be noted that the score function g(w;#) does not necessarily coincide
with the true spectral density matrix f(w), so this method is applicable to various
models in time series analysis. Namely, we can consider estimation problems or
hypothesis testings without assuming the true model to be a known parametric
model.

To construct the method of nonparametric inference of 8y, we next introduce the
frequency domain empirical likelihood ratio statistic, which was originally introduced
by Monti [42] and applied to multivariate non-Gaussian processes by Ogata and
Taniguchi [49]. For an observed stretch X (1),---, X (n) from (2.1), let us define the
periodogram matrix as

I, x(w) = 2;77 {ZX exp(ijw } {ZX exp 1](.«1)} ‘

Then, the frequency domain cipirical likelihood ratio statistic is defined as

0) = sup {Hn/wt : Zwtm()\t; 0) = 0,,
t=1 t=1

n

Wy = 1, 0 § W é 1} R (25)

t=1



where

d
m(w; 0) = Zatr [g(w;0) " x (@) (2.6)
and Ay = 27t /n, t = 1,--- . n. Especially, we call this m(w; #) an estimating function.

This can be regarded as the nonparametric likelihood ratio between null hypothesis
H : § = 6y and alternative hypothesis A : § # 6,. Now, we introduce the motivation
of the empirical likelihood ratio following Monti [42]. Let Y be a d-dimensional ran-
dom variable with unknown distribution function Fy(y) and v, = (Y(1),---,Y(n))
be i.i.d. observations from Fy (y). Suppose that we are interested in estimating the
nonparametric quantity 6y defined as a solution to Ep, [¢{Y;6p}] = 0,, where ¢ is a
known function and Er denotes the expectation under distribution /. In such case,
the unknown parameter 6y is estimated by an M-estimator defined as a solution to

i p{Y(t); 0} = 0,

On the other hand, if we want to test H : 6 = 0, against A : § # 0y, it is known that
the likelihood ratio test statistic has desirable properties in many ways. However, it
is often infeasible to deal with the exact likelihood in practice. So, for given v, let
us consider the empirical likelihood function

L(Fn‘yn) = HUJh
t=1

where F,, belongs to F, the family of nonparametric distribution functions defined
as

F = {Fn(g) = Zwtﬂ{Y(L) <y}: Zwt =1, 0<u < 1} .
t=1 t=1

Namely, F,(y) is a distribution function with point mass w; on each Y (¢). Hence,
given #y and n, the profile empirical likelihood ratio is given by

sup{L(F,|yn): H :0 =10}

sup{L(Fu|yn): A:0#0}

_ Sup {I[=, we Ep [u{Y:60H =0y, 37w =1, 0<w, <1}

[[on!

= sup {Hnwt : Z¢{Y(t);90} = 0,, Zwt =1, 0<w < 1} .
t=1 t=1 t=1

9



In time series analysis, the Whittle estimator is defined by the maximizer of

Z tr [g(Ae; 6) M x(Ne)] duw,
so the corresponding estimating function is

Vi {Lux(M\); 0} = %tr[ A 0) 'Lx(N)], t=1,-,n

Moreover, it is shown that {tr[g(A\; ) 1, x(N)] : ¢ = 1,--- ,n} are asymptotically
independent (e.g., Brillinger [3, 4]). Thus, the Whittle estimator has the inter-
pretation of an M-estimator from approximately independent observations and we
naturally set the estimating function m(X; ) as (2.6).

To evaluate the limit distribution of r,, (), we put some regularity conditions on
the score function g(w;®).

Assumption 2.3.

(). All components of g(w;0) are continuously twice differentiable with respect to
f € O, where © is a compact subset of RP.

(ii). g(w;8) belongs to the parametric spectral family whose element is expressed as
g(w;8) = B(w; 0)Q2B(w; 0)",
where

Zb ) exp(ijw),

{b;(0) : j € N} is a sequence of d x d matrices with by(0) = Iqxq and  is d x d
positive definite which does not depend on 6.

(iii). 0 # 0 implies g(w; 0) # g(w; 5) on a set of positive Lebesgue measure.

Then, Ogata and Taniguchi [49] showed the limit distribution of the empirical
likelihood ratio statistic as follows.

Lemma 2.1 (Ogata and Taniguchi [49]). Suppose that {X (1) : t € Z} is generated as
(2.1) and satisfies Assumptions 2.1 and 2.2. Furthermore, suppose that Assumption
2.3 holds. Then, under H : 0 = 8,

—2log 7, (0y) 5 N'SN

10



as n — oo with N, a p-dimensional standard normal random vector and > =
Wo(80)2W1(80) " Wa(60)'/2. Here W1(8) and W5(8) are px p matrices whose (i, j)th
elements are expressed as

WOy = 5 [ o {{Wg—j)m} {%;f)_lﬂw)ﬂ do

Wy =+ [ ({20 o 2Dy

d
1
Fm Y OO (28)
! k,lu,o=1
Li@) (i=1,--- ,pand k,l =1,--- ,d) is the (k,1)th element of d x d matriz I';(0)
which is defined as

Iy(0) = % /_ ' A(w)*(mg—;ig)—A(w)dw (2.9)

and 0° denotes the ith element of 0.

By this result, we can construct nonparametric inference for 6.

From here, we apply the empirical likelihood method to the discriminant anal-
ysis of time series models. Suppose that we observe X = (X(1) --- X(n)")
from (2.1). In the framework of the discriminant analysis of time series models, we
only know that the observed stretch is generated from either one of two categories
described by hypotheses

I« f1(w) Iy : fo(w)

where fi(w) and fo(w) are the spectral density matrices associated with each cate-
gory; that is, we assume that {X(¢) : ¢t € Z} has the spectral density matrices fi(w)
and fo(w) under 1I; and IIy, respectively. As we mentioned in Introduction of this
chapter, we can construct the optimal classification procedure if the log-likelihood
function is determined. However, it is usually impossible to deal with the exact
likelihood based on X™ when {X(¢) : t € Z} has dependence structure. So in this
chapter we adopt

Tn<91)

Tn<92)

P
ELR(0;,05) = = log
T

11



as a classification statistic to investigate approximation of the log-likelihood ratio
between categories described by two hypotheses

H1:<90:91 H2:90:92.

Here 7,,(8) is the frequency domain empirical likelihood ratio statistic defined as (2.5)
and §; is the pivotal quantity of the process under II;; that is, §; is the solution to

a (7 1 / B
5o sl as) <o,

for i = 1 and 2. In other words, we suppose that { X (1) : [ € Z} has pivotal quantities
0, and 6, under II; and Il, respectively, and if ELR(6;,6) > 0, we assign X ™ into
category Iy, otherwise we choose Is.

2.3 Main results

In this section, we evaluate the misclassification probabilities by the empirical
likelihood ratio classification statistic. Hereafter, if misclassification probabilities by
a classification statistic converge to zero asymptotically, we say that the classification
statistic has consistency, or the statistic is consistent. To guarantee the consistency
of our classification statistic ELR(#1, 6,), we make the following assumption.

Assumption 2.4. A p x p matrix

(f {2 e} {2 s} |

I R PR R Ry

is positive definite for all § € ©.

Now, let pr®) (7]4) be the misclassification probability under II; when we use
ELR(6,, f2); namely,

Pr®(2[1) = Pr[ELR(6;.6,) < Ounder T1,],
Pr® (1|2) = Pr[ELR(6;,6;) > Olunder TI,].

Then, the following theorem shows that ELR(6;, 62) has fundamental goodness as a
classification criterion.

12



Theorem 2.1. Suppose that Assumptions 2.1-2.4 hold. Then,
lim Pr®(2|1) = lim Pr®(1]2) =0
n—oo n—oo

However, we can not evaluate the degree of goodness of ELR(6;,65) under the
situation where #; # 5. So consider the situation where 65 is contiguous to #;. Now
we set the pivotal quantities associated with categories as

Hl . 190 == 01 H2 . 00 == Hln (210)

where 61, = 6, +n"?h and h = (hy,--- ,h,) (hi #0forall i =1,--- p). We can
see the more delicate goodness of the classification statistic by evaluating Pr(F) (7]7)
under the contiguous condition (2.10). We place the following assumptions.

Assumption 2.5. All components of g(w;8) are continuously three times differen-
tiable with respect to 6 € ©.

Assumption 2.6. A px 1 vector Wo(6,)2W,(0,) " F(6,)h is not zero, where W, (0)
and Wy (0) are defined as (2.7) and (2.8), respectively, and F(8) is a p X p matriz
whose (i, 7)th element is expressed as

1 ”tP%M%*

Then, the misclassification probabilities under (2.10) are evaluated as follows.

Theorem 2.2. Suppose that Assumptions 2.1-2.6 hold. Then, under the contiguous
condition (2.10),

1 WEOOW () F(0,)h
2 [|Wa(00)2W1(00) L F(00)h]|e )

n—o0

hmﬂm@mthH®OM:®[
n—oo
where ®(-) is the cumulative density function of the standard normal distribution.

2.4 Non-Gaussian robustness of classification statistics

This section discusses non-Gaussian robustness of classification statistics under
contiguous conditions, and compares the goodness of our classification statistic with
an existing one. Zhang and Taniguchi [68] proposed the Whittle likelihood ratio type
classification statistic

1) = = [ [tog St sl ()t = ()

13



for the classification problem described by two hypotheses:

I : fi(w) Iy : fo(w)

where f1(w) and fy(w) are d x d spectral density matrices associated with categories
II; and 1I,, respectively; namely, for k = 1 and 2, fi(w) is of the form

Ji(w) = !

(W) KpAp(w),

where Ay (w) = Y272, ar(j) exp(ijw), {ax(j) : j € N} is a sequence of d x d matrices
satisfying

Ztr{ak KkCLk< ) } < 00

and K} is a d x d symmetric positive definite matrix. The statistic /(f1, f2) can be
regarded as the Whittle likelihood ratio between TT; and . Hereafter, Pr*")(;]i) de-
notes the misclassification probability of I(f1, f2). Zhang and Taniguchi [68] showed
that /(f1, f2) is a consistent classification statistic. They also evaluated more delicate
goodness of the statistic when Il is contiguous to II; as follows. Let the spectral
density matrices associated with Iy and Il be

M fi(w) = flwln) ot folw) = f(wn+n2%). (2.12)

Here f(w|n) is a parametric spectral density matrix of the form

A 1
flwln) = %/\(wln)l\’(n)A(wln)*,
where

(o)
Alwln) =" a(jln) exp(ijew)
7=0

which depends on a ¢-dimensional parameter 7 € R? and § = (&1,---,&,) (& # 0 for
alli =1,---,q). Wesay that 7 is an innovation-free parameter if K (1) is independent
of 1, since the matrices K (7) is not affected by the coefficients {a(j|n) : j € Z} but
the variance of the innovation process {e(t) : t € Z}. In order to evaluate asymptotic
misclassification probabilities, assume that all components of f(w|n) are three times
continuously differentiable with respect to . Then Lemma 2.2 below describes the
misclassification probabilities of I(fi, f2) under the contiguous situation and gives
sufficient condition for non-Gaussian robustness of the classification procedure.
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Lemma 2.2 (Zhang and Taniguchi [68]). Suppose that {X (L) : t € Z} is the linear
process with spectral density matrices fi(w) and fo(w) under 11y and 11y, respectively,
and satisfies Assumptions 2.1 and 2.2. Furthermore, assume that the minimum
eigenvalue of f(w|n) is bounded away from zero for all w € [—m, 7.

(i). Under the contiguous condition (2.12),

1 7
lim Pr)(2[1) = lim PrV(1]2) = & [“ = ] ,

n—00 n—00 2 HrZT(n)

where

) = 1 [ ¢ [Za{ o }f(w!n)‘lrdw,

d
1
War(n) = Ior(0) + 155 D Fha () Bu(n),
k,u,0=1

Api(n) is the (k,1)th element of d x d matriz A(n) which is defined as

2T§jh [ Aty | et {222 | Atelnas

and n' denotes the ith element of 1.

(ii). If n is innovation-free, then I(f1, f2) is asymptotically independent of k* =
{Kte - K Lu,v=1,--- d}.

(ii) of Lemma 2.2 says that I(f1, f2) is not affected by the fourth-order cumulant
of the process asymptotically if 7 is innovation-free. That is, the second assertion
gives a sufficient condition that I(fi, fo) has non-Gaussian robustness.

Next, we apply ELR to the classification problem (2.12). Let us define 6y,, by

b o

a0 ) " [9(w; 0) 7' f (w]n+n~'7%¢)] dw =0,

0=01n

and the misclassification probabilities are derived by evaluating the limit behavior of
ELR(#,61,,). However, it is troublesome to deal with 6y,, directly, so we approximate
01, in terms of 8y, f(w|n) and g(w;#). We impose the following assumption.

15



Assumption 2.7. A p X p matrix

" [Polwi0) -
(/ﬂtr {Wﬂﬂn) dw:i,j=1,-- ,p)

The Taylor expansion yields 6y, = 67, + O (n™!), where

s nonsingular.

1
b1, =61 — —=F(61]n) " H(0
m == (61]n)~ " H(01]n)¢,
F(0|n) is a p x p matrix defined by replacing f(w) in (2.11) with f(w|n), and H(0|n)
is a p X g matrix which is defined in Theorem 2.3 below. The next lemma shows the
disparity between ELR(6,, 61,,) and ELR(6,,05,,).

Lemma 2.3. Suppose that all assumptions in Lemma 2.2, Assumptions 2.3-2.5 and

2.7 hold. Then,
1
ELR<917 Hln) - ELR((gl, an) = 0Op (—) .
n
As Assumption 2.6, we put the following assumption so that the limit distribution

of ELR(#,6,) does not degenerate.

Assumption 2.8. A p x 1 vector Wa(01|n) 2W1(61|n) " H(61|n)¢ is not zero, where
Wi(8|n) and Wa(8|n) are px p matrices; W1(8|n) is defined by replacing f(w) in (2.7)
with f(wln), and W(0|n) is defined as

ey R R R e

T ) .
1 d
t iz D Ehi DOl (010w
k,lu,v=1

where (0| (i =1.--- ,p, kI =1,---.,d) is the (k,1)th element of d X d matriz
Li(0|n) which is defined by replacing A(w) in (2.9) with A(w|n). H(0|n) is a p X q
matriz whose (i, 7)th element is expressed as

L [9g(w;0) " Of(w]n)
Oy = 57 tr{ 200 o

dw.
27

o —T

Then, Theorem 2.2 and Lemma 2.3 lead the following theorem, which describes
more delicate goodness of ELR(61,01,) in terms of misclassification probabilities.

16



Theorem 2.3. Suppose that all assumptions in Lemma 2.2, Assumptions 2.3, 2.5,
2.7 and 2.8 hold. Furthermore, suppose that Assumption 2.4 holds for f(w) = f(w|n).

(i). Under the contiguous condition (2.12),

' ~ 1 &H(6:n)Wi(61]n) " H(6:]n)¢
lim Pr®(2]1) = lim Pr®(1]2) = —— - :
n—o00 ( | ) n—00 ( | ) 9 HI’V2<91|77)1/2m/1<91|77)71H<91|77)£HE

(ii). If B(w;61) = A(w|n), then ELR(61,01,) is asymptotically independent of x*.

(iii). If {X(t):t € Z} is a scalar process, then ELR(61,61,) is asymptotically inde-
pendent of k.

Remark 2.1. We observe an essential difference between the statistics ELR(6y, 65)
and I(f1, f2) from the statements (ii) and (iii) of Theorem 2.3. First, ELR is robust
with respect to a change of the innovation variance. Second, let us consider a scalar
process { X (t) : t € Z} with innovation variance o > 0 and fourth-order innovation
cumulant k* > 0. Let us set f(w|n) as

2

3 N = (ni/fao_)/ = (77 T 7,r]¢I*170-)/_

o0
o2
flwln) =5 E a(j|me) exp(ijw)
Jj=0

Then, A(n) in Lemma 2.2 becomes

[Zfz /_ﬂ {WB:IH)} (wln)d s /_’; {aféo;|77)} f(cim)d”] |

(2.13)

and it is not difficult to see that the integrations in the first summation of (2.13) are
all 0 (see Brockwell and Davis (1991)). On the other hand, the second term of (2.13)
becomes 4m&,0 3 which does not vanish. So in this case, the misclassification prob-
abilities by I(f1, f2) always depend on non-Gaussianity of the process. Meanwhile,
Ws(01|n) is evaluated as

" 0g(w; 9 “1Log(w;6) 1

N 1 /7T Ag(w; 0)~1
47 | 27 |, 00
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J (w)*dw

0=01

A(wln)A (w\n)dw}

0=01



-7

1/” dg(w; )" dg(w; 8)~!
T Rl

w
i‘4 T -0 -1
7t
drot | J 00 =6,

" Og(w;f) !
X{[ﬁ 06

Recalling the definittion of the protal quantity, we can see that the second term in
(2.14) wvanishes. That is, the misclassification probabilities by ELR(6,,61,) do not
depend on the fourth-order cumulant of the process for any ni and o asymptotically.

1 (7 dg(w;8)7! -
X {%/ BT T A(w|n) A(w|n)dw

0=01

f(w)?dw

0=01

fwmm}

f(w|77)dw} . (2.14)

=01

2.5 Numerical examples

This section carries out numerical studies for Theorem 2.3. The misclassification
probabilities both empirical and Whittle likelihood ratio classification statistics are
compared. Consequently, the advantage of the empirical likelihood ratio classification
statistic is elucidated.

2.5.1 Example 1: AR(1) model

First, let the spectral density functions associated with IT; and II, be

Iy : fi(w) = f(w|n) I : folw) = f (W ‘77 + ”—1/25) (2.15)
where )
g ; -2 /
J(whn) = o1 = bexp(w)| %, 1= (b,0)

and £ = (1,1). As seen in the previous section, If we use
g(w;0) = |1 — fexp(iw)| 2

as a score function, the contiguous hypothesis (2.15) is understood as

1 1

in our framework. We calculate the theoretical misclassification probabilities by both
I(fi. f2) and ELR(6,,62) in the following cases:

18



(i) {e(?) : t € Z} are i.i.d. random variables with p.d.f.

24v/3
on{(z/0)?+3}*
(ii) {e(t) : t € Z} are i.i.d. random variables with p.d.f.

o) = FZ(;—QZ) (r + §>U2/4—16Xp (—% - ";) (2> —0%/2)

0 (otherwise)

p(x) =

Case (i) can be regarded as t(5)-distributed random variables with scale o (namely,
(1) ~q \/3/50Y with Y ~ ¢(5)), while case (ii) is shifted gamma distribution with
shape and scale parameters ¢2/4 and 2, respectively. The gamma distribution is one
of generalization of the exponential distribution, and the exponential distribution
is often used to model lifetime distributions. So it is natural to consider case (ii)
even if the distribution is asymmetric. Figures 2.1 and 2.2 show the theoretical limit
misclassification probability Pr()(2]1) for 0 < b < 1 and ¢ = 0.5,1 in cases (i) and
(ii).
Figures 2.1 and 2.2 are about here.

Since 7 is not innovation-free, the misclassification probabilities by (f1, f2) depend
on the fourth-order cumulant x (60 in case (i), and 240 in case (ii)) of the process.
On the other hand, by (iii) of Theorem 2.3, the asymptotics of ELR(6;,6y) are
independent of non-Gaussianity of the process. Furthermore, ELR improves the
delicate goodness of the classification in these cases.

2.5.2 Example 2: ARMA(1,1) model

We also check misclassification probabilities when a family of score functions does
not contain the true spectral density function. We consider the ARMA type spectral
density function defined as

0% |1+ aexp(iw 2
floly) = - |FEOPE)
1 —bexp(iw)

=5 n=(a,b,0)

and ¢ = (1,1,1). For |a|,|b| < 1, Figures 2.3 and 2.4 show the regions where
the theoretical limit misclassification probability by the empirical likelihood ratio
statistic is smaller than that by the Whittle type statistic for ¢ = 0.5,1. Namely,
we plot the region where the empirical likelihood classification statistic shows better
performance than classical one.
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Figures 2.3 and 2.4 are about here.

It is seen that the smaller a becomes, the better performance ELR(6;, ;) shows, and
that the empirical likelihood statistic is uniformly better than the classical one when
g(w; 01) = f(w). As a becomes large, the difference between g(w; 6;) and f(w|n) tends
to large. However, ELR improves the goodness of classification when the family of
score function does not coincide with the true model.
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Figure 2.1: Theoretical misclassification probabilities Pr®)(2|1) (¢ = 0.5)
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Figure 2.2: Theoretical misclassification probabilities Pr()(2]1) (o = 1)
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Figure 2.3: The region where ELR gives smaller misclassification probabilities than
[ (0 =0.5)
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Figure 2.4: The region where ELR gives smaller misclassification probabilities than
[ (c=1)
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3 Empirical likelihood method for symmetric a-
stale processes

3.1 Introduction

This chapter extends the empirical likelihood approach to the infinite variance
model. As mentioned in the previous chapter, there are ample results on the empir-
ical likelihood approach for time series models with finite variance. However, in the
last few decades, heavy-tailed data have been observed in a variety of fields. Nolan
[47], Samorodnitsky and Taqqu [58] laid the foundation of the stable distributions,
which has infinite variance. Furthermore, Mandelbrot [39] gave economic and finan-
cial examples which show that such data are poorly grasped by Gaussian models.
Here we provide a concrete example of real data. Let us focus on the stock prices
Pu(1),-- -, Pu(627) of Hewlett Packard company from January 1, 2012 to June 30,
2014. Figure 3.1 (a) shows daily log-stock returns X (¢) = log{Pu(t + 1)/Pu(t)}
(t = 1,---,626) of Hewlett Packard company. For the data, the value of Qi is
shown in Figure 3.1 (b) in solid line, which is called Hill-plot (we shall provide the
rigorous definition of Hill’s estimator apy in Section 3.4). On the other hand, the
dashed lines are also Hill-plot for i.i.d. a-stable random variables with various tail
index a.

Figure 3.1 is about here.

It is known that Hill’s estimator is a consistent estimator for the tail index a of
the data. These figures imply that it is more suitable to suppose that this data is
generated from a process with stable innovations rather than to assume that this
data has finite variances (f l-plot, see Dress, de Haan and Resnick
[12], Hall [17], Hsing [23], Resnick and Starika [56]).

To model such heavy-tailed data suitably, Section 3.2 introduces the linear pro-
cess generated by stable innovations, called a symmetric a-stable linear process, and
proposes natural extension of the frequency domain empirical likelihood ratio statis-
tic to the stable process. Moreover, it is known that important statistics for stable
processes behave very much like those for second-order stationary processes in a
sense. Many authors studied the limit behavior of quadratic forms of an observed
stretch from the stable processes (e.g., Davis and Resnick [11]) and its Fourier trans-
forms (e.g., Kliippelberg and Mikosch [32, 34]). Especially, Kliippelberg and Mikosch
[34] elucidated the limit distribution of the integrated self-normalized periodograms,
which is one of fundamental tools for stable processes. We shall introduce notable
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results in Section 3.3. The limit distribution of the empirical likelihood ratio statis-
tic itself is elucidated in Section 3.4. Moreover, we make some numerical examples,
which compare the goodness of the empirical likelihood method with the classical
sample autocorrelation method proposed by Davis and Resnick [11]. Section 3.5 give
the results of the simulations.

3.2 Fundamental settings

Henceforth, we consider the symmetric a-stable linear process {X(¢) : t € Z}
generated as

X(0) =Y vt - i), (3.1)

where {Z(t); t € Z} is a sequence of i.i.d. symmetric a-stable random variables with
scale parameter o > 0, and the characteristic function of Z(1) is given as

E lexp{iuZ(1)}] = exp{—0o|ul*}, ueR.
To guarantee the a.s. absolute convergence of the process, we make an assumption.

Assumption 3.1. For some § satisfying 0 < § < min(1, a),

o0

D il < oo

j=0

Under Assumption 3.1, the series (3.1) converges almost surely. This is an easy
consequence of the three-series theorem (c.f. Petrov [51]), and the process (3.1) has
the normalized power transfer function

_ISruestie)|
D SO

This transformation gives a representation of the stable process in frequency domain.
Introducing the spectral restriction

9" fw)
0 ./7r g(w; H)d

26
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we define the pivotal quantity of the stable process. Here g(w;0) is a scalar-valued
score function. Bear in mind that the score function does not necessarily coincide
with the true normalized power transfer function f(w), and we can choose various
important quantities #y by choosing appropriate g(w;#) as well as the second-order
stationary case. Using the method of self-normalizing, we introduce the frequency

domain empirical likelihood ratio statistic for the stable process as
n n n
Tn(6) = sup {H nwy : Zwtﬁz()\t;ﬁ) = 0, Zwt =1, 0<uy < 1} ,
t=1 t=1 t=1

where m(As; ) is the estimating function for the stable process which is defined as

0 Lix(w)
00 g(w;6)’

m(w; 8)

and Zl x(w) is the self-normalized periodogram defined as

P IS X0 explit)
) = N

This is natural extension of the empirical likelihood ratio statistic in Ogata and
Taniguchi [49] to the infinite variance case. The empirical likelihood approach is still
useful when we deal with the stable process. For example, set

g(w; 0) = |1 — fexp(ilw)| .
Solving (3.2) for 8,, we have

Do Vit
220 ¥

On the other hand, a sample autocorrelation function

0o = pX(l) =

L X ()X (¢ +1)

D, [ = [
prxll) = =5 Xy <f

for the stable process (3.1) is consistent to the autocorrelation function of the process;
namely, for fixed [, p-lim,_,  pn.x (1) = px (1) (e.g., Davis and Resnick [11]).
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3.3 Asymptotic theory for fundamental quantities

Current section gives limit theorems of fundamental quantities for both i.i.d. and
dependent stable random variables. For any sequence of random variables {A(t) :
t € Z}, let us define 72 4 and v, 4(h) as

1 n
2 _E : 2
l/n,A - n2lo /\<t) )
t=1
n—|h|

nalh) = ¢ LN A@mAG+ h)

nlogn)l/e 4

The following lemma is essentially due to Davis and Resnick [11].

Lemma 3.1 (Davis and Resnick [11]). For fized h € N,

( /73,Z7 7n,Z<1)7 e afyn,Z(h)) E') (S<O) S<1)a U a‘S((h)) )

where {S(k) : k € N} are independent stable random variables; S(0) is a positive
a/2-stable random variable and S(1),5(2),--- are identically distributed symmetric
a-stable random variables.

It is shown that limit distributions of many important quantities are expressed
by {S(k) : k¥ € N}. Note that Davis and Resnick [11] did not mention the scale
parameter of S(k)’s, so when we construct confidence intervals, we estimate the
quantile of S(k)’s by Monte-Carlo simulation.

We next introduce another normalizing sequence

1/
n
f]jn:< ) , n:273’...
logn

in order to control the rate of convergence of the integrated self-normalized peri-
odogram. It is well known that the self-normalized periodogram for stable processes
behaves very much like the usual periodogram for second-order stationary processes
(e.g., Kliippelberg and Mikosch [33, 34]). First, we give a representative example
of an estimation problem in frequency domain; Whittle’s approach for parametric
stable process. Mikosch et al. [40] studied estimation of the following causal ARMA
process:

XU+ Xt 4+, X(t—q)=Z)+aZ(t-1)+ - +a,Z(t —q),
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where {Z(t) : t € Z} is a sequence of i.i.d. random variables in the domain of normal
attraction of a symmetric a-stable random variable; that is, there exists a symmetric
w-stable random variable / such that

1
nl/e

SNz 5z
t=1

as n — oo. This is a generalization of the stable distribution, so of course, the stable
ARMA model is included in their model. They considered to estimate the parameters
of the process. Let f3(w) be the parametric power transfer function defined as

q1 2

ajexp(ijw)

=0
Ja(w) = | =5 — |,
g 2o bjexp(ijw)
with ap = by = 1, and consider the estimation problem of 8 = (a1, -+ ,ag,, b1, ,bg,)
€ B, where

B={BeR"® :q, b, #0 and a(z)b(z) # 0 for |z] < 1}

with a(2) = 321 a;27 and b(2) = 3292 b;27. They defined the Whittle estimator of
B by

~ L
Bn = arg min x(W)

duw.
s | faw)

Then Mikosch et al. [40] showed that B, is a consistent estimator of the true parame-
ter, and the limit distribution of In(;@\n — /3) is represented as a sum of stable random
variables. Thus Whittle’s and frequency domain method has appropriate properties
when we deal with the stable process as well as the second-order stationary case.

We next introduce fundamental lemmas for the self-normalized periodogram.
Lemma 3.2 below is one of them, and is a multivariate extension of Proposition
3.5 of Klippelberg and Mikosch [34].

Lemma 3.2. Suppose that {X(t) : t € Z} is generated as (3.1) satisfying Assump-
tion 3.1, and ¢$1(w), -, ¢p(w) be defined on [—m, 7| such that for all i =1,--- | p,
¢i(w) f(w) is continuous and it holds that

Z /Tr CZ)i<°~’),}fv(<fv‘)COS(kw)du) < 00
k=1 |" 77 =1
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for some p € (0, min(1, «)). Furthermore, ¢;(w) satisfies

| o) fwias =0

-7

foralli=1,--- p. Then,

(In /1 di(w) {Tn,X<w) - Un}v(W)} dwri=1,-- ’p>
&@i%%ﬂ@mmmwmmwzhwﬁ
for o € (0,2). Here

27 Jow f(n)

and {S(k) : k € N} is the same sequence of random variables as Lemma 3.1.

du (3.3)

Lemma 3.2 is easily shown by their proposition and Cramér-Wold device, so we
omit the proof here.

3.4 Main results

Now, we give the limit distribution of the frequency domain empirical likelihood
ratio statistic and construct a nonparanictric confidence region for the pivotal quan-
tity of the stable process. The following assumption is considered to hold for Lemma
3.2.

Assumption 3.2. There exists i € (0, min(1, «)) such that

Fw) cos(kw)dw
0=0,

< Q.

Roughly speaking, we show the limit distribution as follows; the Lagrangian
argument gives

—21og T (o) =2 log {1+ 71i(As; 60)} (3.4)

t=1
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where 7,, € RP is the Lagrange multiplier which is defined as the solution to p-
restrictions

m(Ae; 0o)
_Z = 0p-
n L+ 7/ m(A; 0)

The residual term in the Taylor expansion of (3.4) contains the maximum of the
self-normalized periodogram, whose behavior is differ from that of second-order sta-
tionary case. So using the results of Mikosch, Resnick, and Samorodnitsky [41] we
control the residual term, and obtain the asymptotic expansion

222 .
— T" log 7, (6p)

Sty T;ﬁz(w;@o)dw}/ (] :ffl(w;@o)ﬁl(w;@o)/dw}—l {5 [ ittt

10, { (logn)*~t/ } (3.5)

nl/a
under H : ¢ = 6. Applying Lemma 3.2 to (3.5), we derive the limit distribution of

the statistic as follows.

Theorem 3.1. Suppose that {X (1) : L € Z} is generated as (3.1) with « € [1,2),
and Assumptions 2.3, 3.1 and 3.2 hold. Then, under Il : 6 = 0,

27‘2

_Tlogrn(eo) V(00)' W (80) 7'V (6o) (3.6)

asn — oo. Here V() and H/( ) are p X 1 random vector and p X p constant matriz,
respectively, whose ith and (i, 7)th elements are expressed as

%Z % {/7T %’Q?Vﬂw) cos(lw)dw} , (3.7)

— 1 (™ 0g(w;0) 1 Og(w;6) 7!

o6 96 (@) de

and {S(k) : k € N} is the same sequence of random variables as Lemma 3.1.

Remark 3.1. Generally, we can define the stable process for a € (0,2]. Howewver,
we assume that « € [1,2) to guarantee probability convergence of residual terms
appearing in proofs of the theorem. This restriction is not quite strict, since the
process (3.1) with o € [1,2) still does not have the finite second moment.
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Remark 3.2. The limit distribution (3.6) depends on the characteristic exponent «

and unknown normalized power transfer function f(w). We can construct appropriate
consistent estimators of them. As mentioned in the previous section, Hill’s estimator

1
X
amin —{ E log | ’(t) }

* Xl
is a consistent estimator of «, where ]X\(l) > - > | X|m) is the order statistics
of IX(1)|, --+, | X(n)] and k = k(n) is an integer satisfying some conditions (e.g.

Resnick and Starica [56]). Next, it is known that the smoothed self-normalized peri-
odogram by an appropriate weighting function wy,(-) is consistent to the normalized
power transfer function. That is,

T x(w) = Z w (k) x (w0 + M) 2 f(w)

|k|<m

for any w € [—m, 7| (Klippelberg and Mikosch [33], Theorem 4.1), where the integer
m = m(n) satisfies m — oo and m/n — 0 as n — oo. One possible choice of the
weighting function wy(-) and m =m(n) are w,(k) = (2m + 1)~ and m = [\/n] (|7]
denotes the integer part of x). Then, by Slutsky’s lemma and continuous mapping
theorem, we obtain consistent estimator 1/1\(0) of W(H) So if we choose a proper

threshold value ~y,, which is the p-percentile corresponding to V(@g) W(@O)V(«%) then
C), defined as

v 2.’1’721 ~
C,=30€c0:——"logr,(0) <, (3.8)
n

becomes an approximate p/100 level confidence region of 6.

3.5 Numerical examples

In this section, we carry out some simulation studies for Theorems 3.1. We focus
on the autocorrelation of the stable process,

px(h) = p-lim tZIZ;i(fl()Eg; h (3.9)

n—oo

If we set the score function as g(w; @) = |1 — #exp(ihw)| 2, we obtain

Z] 0 ¢J¢J+h

0y = px(h) = S V
7=0
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On the other hand, from Davis and Resnick [11], the right-hand side limit of (3.9)
exists, and is equal to this ). So it is natural that we define the estimating function
m(w; @) by this ¢g(w;0) to estimate px(h).

The autocorrelation can be estimated by the sample autocorrelation (SAC) method
as well. From Davis and Resnick [11], for fixed 1 € N,

o 1/a
2 Pux(l) — px(D} 5 % {Z lpx(I+7) +px(—j) — 2PX(j)ﬂX(l)\a} :

where S(0) and S(1) are the same random as in Lemma 3.1. Under this setting,
we construct confidence intervals of 6y = px (1) and px(2) by calculating 7,(6) at
numerous point over (—1,1), and compare confidence intervals constructed by the
empirical likelihood method with the SAC method.

3.5.1 Example 3: Stable ARMA(1,1) model

Suppose that the observations X (1), -, X(n) are generated from the following
scalar-valued stable ARMA(1,1) model
X(t)=bX(t—1)+Z(t)+aZ(t 1), (3.10)

where {Z(t); t € Z} is a sequence of i.i.d. symmetric a-stable random variables
with scale parameter o = 1, and coefficients a and b satisfy |a|, |b] < 1. By simple
calculation, the normalized power transfer function of the process (3.10) is given as

Fw) (1+a?) +2acos(w) 1 -0
w) = .
(14 02) — 2bcos(w) 1+ a2 + 2ab

First, we generate 512 samples from (3.10) with & = 1.5. Note that in this case, the
characteristic exponent o = 1.5 and the normalized power transfer f(w) is known.
Even though we now neither o nor f(w), we can calculate the consistent estimator
Jn.x(w) of f(w) and obtain a consistent estimator of W (#) as mentioned in Remark
3.2. We also use the Monte-Carlo simulation to calculate 9o which is the 90 percentile
of V(00)W (6y) *V (). From the reproductive property of stable distribution, the
limit distribution reduces to
a) 2
"
W)

2 o]

{ S(1) } z

S(0) —

so we generate S(1)/5(0) for 10° times, and construct an approximate 90% confidence
interval of Ay as (3.8) (also, see Figure 3.2 below).

% /_7; %j)lﬂw) cos(hw)dw
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Figure 3.2 is about here.

In the tables below, we show values of lower and upper endpoints of confidence
intervals and their length by the empirical likelihood (E.L.) and SAC for various a
and b.

Table 3.1 is about here.

From Table 3.1, it is seen that the empirical likelihood ratio confidence intervals work
as well as the classical one. In particular, almost all widths of confidence intervals
for px(2) are shorter than those of classical one; that is, the empirical likelihood
method gives better inference.

We also focus on the two-sided coverage errors to evaluate the performances of the
intervals. Let #% and 6Y be the lower and upper endpoints of a confidence interval,
respectively. The two-sided coverage error is given by

Pr {6 < 0"} U{0” <6} —0.1].

In this time, we calculate the empirical coverage errors of the confidence intervals
constructed by both methods by 1000 times of Monte Carlo simulations. Namely,
we made 1000 confidence intervals (6%, 6Y), I = 1,---,1000, independently, and
calculate the quantity

1000

= L{6 #(6F.6] )}

—-0.1
1000

for given «, a and b. Empirical coverage errors are shown in Table 3.2.
Table 3.2 is about here.

From this table, the empirical likelihood method gives more accurate approximation
of theoretical confidence intervals than the existing method in many cases. We also
observe that for small «, the empirical likelihood ratio confidence intervals uniformly
improve the goodness of inference. When « is near 2, the empirical likelihood method
also betters the confidence intervals in some cases. Therefore, it is worth considering
the empirical likelihood method, not only the sample autocorrelation method.

3.5.2 Example 4: Stable MA(100) model
Next, we consider the following stable MA(100) model

100

X(t) = ijZ(t — 1),
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where coefficients {¢;; j € N} are defined as

1 (=0
Y =14 bi/j (1<j<100) . (3.11)
0 (otherwise)

Since this process can not be expressed as parametric AR or ARMA models with
small dimension, it is suitable to apply the empirical likelihood approach to estimate
pivotal unknown quantities. Table 3.3 shows the values of 6y and confidence intervals
by the empirical likelihood method and the SAC method for b = 0.1,0.5, 0.9.

Table 3.3 is about here.

By this simulation, it is shown that the lengths of intervals by the empirical likelihood
method are shorter than those by the SAC method in many cases.

Next, we fix b = 0.5, and construct confidence intervals in the cases where a = 1.0
(Cauchy), 1.5 and 1.9 (near Gaussian).

Table 3.4 is about here.

It is seen that the lengths of confidence intervals depend on the characteristic ex-
ponent «v. In particular, the empirical likelihood method provides better inferences
than the SAC method when « is nearly 1.

Moreover, we investigate the length of intervals when b = 0.5 and o = 1.5 for
small samples. Table 3.5 shows the result for n = 64 and 128.

Table 3.5 is about here.

Even though sample size is small, the empirical likelihood method also works well.
The empirical coverage errors are also calculated as well as Example 3. Tables 3.6
and 3.7 show the results for n = 512,128,64, o = 1.0,1.5,1.9.

Tables 3.6 and 3.7 are about here.

As the overall tendency, the coverage errors decrease as the sample size increases, and
the empirical likelihood method often gives smaller coverage errors for heavy-tailed
data.
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Figure 3.1: The log-stock return process of Hewlett Packard company (from Jan. 1,
2012 to Jun. 30, 2014) and its hill-plot
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Figure 3.2: The value of the empirical likelihood ratio statistic and threshold value
790 for ARMA(1,1) process with n = 512, (a,b) = (0.1,0.5)
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Table 3.1: Lower and upper endpoints of 90% confidence intervals (and length) for
px (1) and px(2) of the stable ARMA(1,1) process (n = 512 and o = 1.5)

(a,b) px(1) E.L. SAC

0.19612 0.11567 0.22948 (0.11381 0.11418 0.23339
0.56757 0.50321 0.61447 (0.11126 0.51950 0.62920
0.91597 0.86102 0.94252 (0.08150 0.88139 0.95046 (0.06907

0.11921
0.10970

0.46667 0.39893 0.48799 (0.08905 0.39509 0.49486 (0.09977

0.94419 0.91659 0.95666 (0.04007 0.91939 0.96619 (0.04680

0.54774 0.52937 0.61254 (0.08317 0.52807 0.61874 (0.09067
0.74908 0.72851 0.79695 (0.06844 0.73010 0.80329 (0.07320

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
(0.5,0.5) 0.71429 | 0.65515 0.73834 (0.08318) | 0.66082 0.74184 (0.08102)
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) 0.94985 | 0.90036 0.95909 (0.05873) | 0.92307 0.96530 (0.04224)

(a,b) px(2) E.L. SAC

0.01961 0.00175 0.10645 (0.10470) | —0.01163 0.12079
0.28378 0.22514 0.36719 (0.14205 0.21626 0.38543
0.82437 0.70627 0.83112 (0.12485 0.71932 0.86186 (0.14254

0.13241
0.16917

0.04667 | —0.02411 0.11606 (0.14017) | —0.03346 0.12968 (0.16314

0.84977 0.80698 0.90784 (0.10086 0.81277 0.93776 (0.12499

0.05477 0.04592 0.20407 (0.15815 0.04074 0.21413 (0.17339
0.37454 0.22142 0.39407 (0.17265 0.22705 0.40219 (0.17515
0.85487 0.78321 0.91030 (0.12709 0.81162 0.93298 (0.12135

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
(0.5,0.5) 0.35714 | 0.22549 0.38510 (0.15961) | 0.22468 0.39921 (0.17453)
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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Table 3.2: Ewpirical coverage errors of confidence intervals for px (1) and px(2) of
the stable ARMA(1,1) process (n = 512)

a=1.0 a=15 a=1.9
(a,b) px(1) EL. SAC | EL. SAC | EL. SAC
( ) 0.19612 || 0.000 0.034 | 0.024 0.019 | 0.005 0.029
( ) 0.56757 || 0.004 0.053 | 0.030 0.043 | 0.035 0.015
( ) 0.91597 || 0.025 0.087 | 0.023 0.063 | 0.035 0.000
( ) 0.46667 || 0.019 0.051 | 0.025 0.040 | 0.027 0.022
(0.5,0.5) 0.71429 || 0.016 0.061 | 0.022 0.040 | 0.037 0.033
( )
( )
( )
( )

0.94419 || 0.035 0.083 | 0.025 0.042 | 0.030 0.023
0.54774 || 0.000 0.057 | 0.026 0.037 | 0.006 0.015
0.74908 || 0.028 0.068 | 0.034 0.033 | 0.043 0.016
0.94985 || 0.033 0.082 | 0.030 0.063 | 0.043 0.020

a=1.0 a=1.5 a=19
(a,b) px(2) E.L. SAC | EL. SAC | EL. SAC
( ) 0.01961 || 0.015 0.038 | 0.011 0.008 | 0.020 0.022
( ) 0.28378 || 0.015 0.057 | 0.007 0.040 | 0.041 0.032
( ) 0.82437 || 0.033 0.087 | 0.042 0.059 | 0.018 0.025
( ) 0.04667 || 0.015 0.054 | 0.029 0.025 | 0.009 0.030
(0.5,0.5) 0.35714 | 0.014 0.068 | 0.045 0.044 | 0.024 0.001
( )
( )
( )
( )

0.84977 || 0.025 0.081 | 0.034 0.058 | 0.040 0.027
0.05477 || 0.016 0.050 | 0.021 0.016 | 0.014 0.025
0.37454 || 0.008 0.063 | 0.011 0.045 | 0.048 0.023
0.85487 || 0.037 0.088 | 0.027 0.058 | 0.047 0.027
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Table 3.3: Lower and upper endpoints of 90% confidence intervals (and length) for
px (1) and px(2) of the stable MA(100) process (n = 512 and «a = 1.5)

b px(D) EL SAC

0.1 0.09950 || 0.03043 0.13768 (0.10725) | 0.03981 0.15934 (0.11953)
0.5 0.44845 || 0.42595 0.53784 (0.11189) | 0.39401 0.50302 (0.10901)
0.9 0.69180 || 0.65973 0.75848 (0.09875) | 0.64246 0.74126 (0.09880)

b px(2) EL SAC

0.1 0.00498 || —0.03507 0.08471 (0.12069) | —0.05681 0.06692 (0.12372)
0.5 0.11683 || 0.04761 0.17770 (0.13009) | 0.03682 0.19702 (0.16021)
0.0 0.36034 || 0.26524 0.46044 (0.19520) | 0.26110 0.45982 (0.19872)

Table 3.4: Lower and upper endpoints of 90% confidence intervals (and length) for
px (1) and px(2) of the stable MA(100) process (n = 512 and b = 0.5)

px(1) = 0.44815
o E.L. SAC
1.0 || 0.40860 0.49536 (0.08676) | 0.40110 0.49506 (0.09396)
1.5 | 0.43015 0.53169 (0.10154) | 0.39401 0.50302 (0.10901)
1.9 ] 0.35614 0.46635 (0.11021) | 0.39368 0.50314 (0.10947)

px(2) = 0.11683
a E.L. SAC
1.0 [ 0.04222 0.18020 (0.13799) | 0.04100 0.19146 (0.15046)
1.5 | 0.00671 0.15346 (0.14675) | 0.03682 0.19702 (0.16021)
1.9 [ 0.07135 0.22026 (0.14891) | 0.03895 0.19460 (0.15565)
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Table 3.5: Lower and upper endpoints of 90% counfidence intervals (and length) for
px (1) and px(2) of the stable MA(100) process (b = 0.5, a = 1.5)

px (1) = 0.44845

n E.L. SAC
64 0.34256 0.69135 (0.34878) 0.28226 0.61503 (0.33277)
128 0.31261 0.51944 (0.20683) 0.33242 0.56474 (0.23232)
px(2) = 0.11683
n E.L. SAC
64 || —0.10756 0.24402 (0.35159) | —0.12741 0.36163 (0.48904)
128 || —0.18279 0.11484 (0.29763) | —0.05368 0.28774 (0.34142)
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Table 3.6: Empirical coverage errors of confidence intervals for px(1) of the stable

MA(100) process

(n =512)

px(1)

a=1.0
E.L. SAC

a=15
E.L. SAC

a=19
E.L. SAC

0.1
0.5
0.9

0.09950
0.44845
0.69180

0.024 0.018
0.012 0.038
0.053 0.068

0.001 0.017
0.008 0.012
0.015 0.056

0.016 0.030
0.034 0.034
0.030 0.030

(n = 128)

px(1)

a=1.0
E.L. SAC

a=15
E.L. SAC

a=19
E.L. SAC

0.1
0.5
0.9

0.09950
0.44845
0.69180

0.036 0.046
0.061 0.070
0.080 0.090

0.008 0.002
0.011 0.025
0.003 0.040

0.086 0.062
0.068 0.050
0.070 0.074

(n =64)

px(1)

a=1.0
E.L. SAC

a=15
E.L. SAC

a=19
E.L. SAC

0.1
0.5
0.9

0.09950
0.44845
0.69180

0.039 0.072
0.078 0.072
0.080 0.085

0.005 0.009
0.005 0.044
0.001 0.048

0.091 0.082
0.096 0.107
0.137 0.072
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Table 3.7: Empirical coverage errors of confidence intervals for px(2) of the stable

MA(100) process

(n =512)

rx(2)

a=1.0
E.L. SAC

a=15
E.L. SAC

a=19
E.L. SAC

0.1
0.5
0.9

0.00498
0.11683
0.36034

0.014 0.018
0.025 0.048
0.057 0.070

0.002 0.024
0.009 0.026
0.016 0.036

0.042 0.026
0.024 0.019
0.013 0.020

(n = 128)

rx(2)

a=1.0
E.L. SAC

a=15
E.L. SAC

a=19
E.L. SAC

0.1
0.5
0.9

0.00498
0.11683
0.36034

0.032 0.046
0.052 0.062
0.080 0.078

0.018 0.000
0.005 0.035
0.028 0.031

0.079 0.030
0.091 0.064
0.086 0.055

(n =64)

rx(2)

a=1.0
E.L. SAC

a=15
E.L. SAC

a=19
E.L. SAC

0.1
0.5
0.9

0.00498
0.11683
0.36034

0.059 0.050
0.070 0.078
0.087 0.095

0.005 0.006
0.008 0.030
0.004 0.045

0.089 0.091
0.122  0.087
0.140 0.093
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4 Discriminant analysis of symmetric a-stale pro-
cesses

4.1 Introduction

We so far showed that the empirical likelihood method is applicable to the dis-
criminant analysis (Chapter 2), and the method works well in the case of the stable
process (Chapter 3) without assuming the structure of the true model to be known.
In this chapter, we integrate the results in Chapter 3 with 2; that is, we construct
the empirical likelihood-based classification procedure for the class of the symmetric
a-stable processes. As seen in Chapter 3, there are a lot of heavy-tailed data in
practice, so it is to be desired that the results in Chapter 2 are extended to the case
of the symmetric a-stable process. In the stable case, Nishikawa and Taniguchi [46]
considered the Whittle likelihood ratio type statistic for classification problems, and
obtained satisfactory results. Thus, the likelihood ratio (or its approximation) seems
to allow us to construct appropriate classification procedures even if observations
have heavy tail.

We provide the empirical likelihood classification statistic for the stable process in
Section 4.2. In Section 4.3, we show that our method still has fundamental goodness
as a classification procedure. We also elucidate delicate goodness of our statistic in
terms of misclassification probabilities under the contiguous condition. It is notewor-
thy that, in the stable case, the misclassification probabilities under the contiguous
condition have different behavior from the second-order stationary case. Section 4.4
gives numerical examples under the situation where we know neither true normalized
power transfer functions nor pivotal quantities of categories. This setting resembles
the practical situation, and we observe that the empirical likelihood classification
statistic works better than the existing one.

4.2 Fundamental settings

Let {X (%) : t € Z} be the symmetric a-stable linear process (3.1). As the second-
order stationary case, we consider the problem of classifying an observed stretch
XM =1X(1),---,X(n)} into one of categories described by two hypotheses:

H1:00:91 Hgi@():eg.
Namely, the symmetric a-stable linear process (3.1) has p-dimensional pivotal quan-

tities #; and 8y under II; and Il5, respectively. In other words, the normalized power
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transfer function f(w) of (3.1) satisfies

o (" flw)
o0 /W g(w; H)dw

= Op
0=0;

under TI;, ¢ = 1 and 2.

Remark 4.1. As seen in Figure 3.1, we can estimate that Hewlett Packard company’s
log-stock return has heavy-tailed distribution. Analogously, when we apply the same
method as the case of Hewlett Packard to the stock prices of IBM (Py) and Ford
(Pr), it seems that IBM and Ford’s log-stock return processes are also heavy-tailed
data (Figures 4.1 and 4.2).

Figures 4.1 and 4.2 are about here.

If we use g(w;0) = |1 — Gexp(ilw)| ™2 as a score function, the pivotal quantity of the
process (3.1) is given as
> im0 Vit

Yo ¥y

and pp x (1) is a consistent estimator of 0. Table 4.1 below shows the values of p,, x (1)
and pn.x(2) for the log-stock return processes of Hewlett Packard, IBM and Ford.

by =

Table 4.1 is about here.

It seems that there is disparities between two of the pivotal quantities of the log-stock
return processes of the companies. In our framework, we utilize such difference of
the categories for the discriminant analysis. In particular, the classification problem
of a-stable processes has a big potential which is applicable to various fields involving
electrical engineering, hydrology, finance, physical systems, and so on.

We need to investigate the log-likelihood ratio (or its approximation) between IT;
and Il to carry out the discriminant analysis, so we adopt

?n(el)
?n(GQ)

—_ 2
ELR(Gl, 92) = — log
n

as a classification statistic.
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4.3 Main results

This section gives asymptotics of misclassification probabilities by the empirical
likelihood ratio classification statistic for the stable process. The following assump-
tion is needed to null the misclassification probabilities asymptotically.

Assumption 4.1. A p x p matrix

T Og(w;0) 7t Ag(w; H) 7 ~
/ (ae ) (09/) ' (w)de

18 positive definite for all 8 € .
We obtain the consistency of the classification from the following theorem.

Theorem 4.1. Suppose that Assumptions 2.3, 3.1, 3.2 and 4.1 hold. Then, for
0<a<?2,
lim Pr®(1]2) = lim Pr®(2]1) = 0.
n—oo n—oo
Thus the empirical likelihood ratio classification procedure also has fundamental
goodness even if the process has the infinite variance. Next, we evaluate the limit
behavior of misclassification probabilitics under the coutiguous condition

My :0p=0, Tly:6 =0 (4.1)
where 5171 =0) + a2, h and h € RP.

Remark 4.2. The reason why we use such 51n is that the rate of convergence of
the integrated self-normalized periodograms is different from that of the second-order
stationary case (see Lemma 3.2). Suppose that we choose b, (— 0 as n — o) such
that a, /b, — 0, a, = ', and consider the contiguous condition

n ’

H1 . 90 == 091 Hg . 090 == 091 + bnh (42)

instead of (4.1). Then, it is shown that Pr'®™(2|1) and Pr™ (1]2) converge to 0 under
(4.2). On the other hand, if we choose ¢, (— 0 as n — o0) such that a,/c, — o0,
both Pr®) (21) and Pr®™ (1|2) converge to 1/2. Therefore, we can not compare the
goodness of the classification by the empirical likelihood approach with the existing
method, which is introduced in the next section, in terms of the misclassification
probabilities if we choose different rate from x,,.

To elucidate the more delicate goodness of our classification procedure, we assume
the following.
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Assumption 4.2. A px 1 vector W (0,) "V F(6)h is not zero, where W () is the same
p X p matriz as Theorem 3.1 and

~ 1 [T &g(w;0)" =
F(g)_%/w—aea@ f(w)dw.

Consequently, the delicate goodness of our statistic for the stable process is eval-
uated as follows.

Theorem 4.2. Suppose that all assumptions in Theorem 4.1, Assumptions 2.5 and
4.2 hold. Then, under the contiguous condition (4.1),

lim Pr®(2[1) = hm Pr®)(1)2)

n—o0

—Pr |20’ F(O)W(6,) 'V (6,) < —h'F(6,)W (6;) "F(61)h

for 1 < a <2, where 17(0) is the same p x 1 random vector as Theorem 3.1.

When we deal with the stable processes, the delicate misclassification probzﬂdl/\li/ties
show different behavior from the second-order stationary case. We also apply ELR to
the situation of Nishikawa and Taniguchi [46]. As well as the second-order stationary
case, the Whittle likelihood ratio classification statistic is defined as

e [ W) 1 1)~
I 1,J2) = lo e~ - = [and d(.d,
(. Jo) /[ gfl(w)+{f2(w) f1<w>} X >]

where f;(w) is the normalized power transfer function which describes the ith cate-

gory. Furthermore, the delicate goodness of 7(]?1 fé) is evaluated as follows; let the
normalized power transfer functions associated with categories be

M filw) = fwln) Tt folw) = f (wn+x,%) (4.3)

where f(w|n) is a parametric normalized power transfer function and n, £ € RY. Here-
after, f(w|n) is assumed to be continuously three times differentiable with respect to

n and f(w|n) > 0 for all w. Then, the misclassification probabilities by the Whittle
likelihood ratio classification statistics are given as follows.

Lemma 4.1 (Nishikawa and Taniguchi [46]). Suppose that Assumption 3.1 holds,
and for some 6 € (0, min(1, «)), the followings hold:

a dlog f(w
ZZ / gf n)

k=1 Il=1 |7 ~7

cos(lw)dw| < oo,
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§

q q e °]
fwin) | +
Z /_ﬂ{ 87]’“37} }f(w\n) cos(lw)dw| < 0.
k=1 =1 I=1
Then, under the contiguous condition (4.3),
Z(1
lim PrW)(2[1) = lim PrV)(1]2) = Pr é) < - SFme W] .
nee nee A{Ca 320 1E(n)'€]" )
Here

| dlogj(w!f/)dlogj(w\r/)
Fn) = /7T on on' Wi

et = [ D8I ) — e (k) e,

on
(1—a)o
Co={ 2(20)cos(na/2) (a#1)
. (a=1)

m

and Y is an «/2-stable random variable which is independent of {Z(l) : L € Z} and
has Laplace transform

E [exp(—rY)] = exp (—JKar“/Q) :
where K, = E[|N|*/?] for an N(0,2)-random variable.

Next, we consider Pr®™(j|i) under (4.3). The following assumption is needed for
the evaluation.

Assumption 4.3. A p x 1 vector W (0,|n) " I1(61|n) is not zero, where W (6]n) is
defined by replacing f(w) of W(8) in Theorem 3.1 with f(w|n) and

dg(w; 0)~ df(uf|77)
<9|77) 27T/ 0o on'

Theorem 4.3. Suppose that Assumptions 2.5, 4.5 and all assumptions in Theorem
4.1 for [(w) = f(w|n) hold. Furthermore, Assumption 2.7 holds for f(w|n) = f(w|n).
Then, under the contiguous condition (4.3),

lim Pr®(2[1) = lim Pr®(12)

n—oo n—oo
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—=Pr |26 H (O W (611) "V (Oal) < &' T (01]n)' W (B ]) (61 ])¢]

Jor 1 < a <2, where \7(0]7/) is defined by replacing f(w) of \7(9) in Theorem 3.1
with f(wln).

Remark 4.3. We can write

26" H (63 n)' W (61]n) "V (81 n)

= ZLi‘N/(Qllﬁ)i
= S ) dg (w; 0

=1

Flw) cos(lw)dw} :

0=01

and this random variable bas the same distribution as

ay 1/a
{ Z[/ Og(wi6) dez } SU) (4.4)

where L; is the ith element of of 2¢'H (61|n)W (61|n) 1. (4.4) implies that the random
variable 26 H(01|n)'W (61|n) "V (61]n) is symmetric around 0. Moreover, the quantity
—& H(81|n)' W (61]n) L H (61|n)€ is negative. So the misclassification probability by the
empirical likelihood ratio classification statistic is smaller than 1/2.

[ (w) cos(lw)dw
=6

4.4 Numerical examples

In this section, we carry out simulation studies under practical situations; that is,
we assume that the true normalized power transfer functions and pivotal quantities
associated with categories are unknown. In such case, we estimate the normalized
power transfer function using the average sample normalized power transfer function
for each category, and calculate empirical detection probabilities of plug-in statistics.
As the parametric normalized power transfer function, we consider ARMA(1,1) and
MA(100) type ones in succession.

4.4.1 Example 5: Stable ARMA(1,1) model

We consider the classification problem of ARMA(1.1) process, and let the nor-
malized power transfer functions associated with II; and 11y be

I filw) = fwln) I folw) = f (w|n+x,%)
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where the parametric normalized power transfer function is defined as

~ (14 a®) +2acos(w) 1—b?

e N n —= "b/
J@I) = G ahcos) 11 a2 2 " (@)

and & = (1,1). In practice, however, it is not natural to suppose that we know
the true normalized power transfer functions. So suppose that we have 10 training
samples with length n = 512 from each category in advance, and estimate the group
normalized power transfer function using the average sample normalized power trans-
fer function for each group. First, we calculate the smoothed self-normalized power
transfer function f}l) (w) with w, (k) = (2m —1)~! and m = [y/n] (see Remark 3.2)
from Xi(l)(l), . Xi(l) (n) (the Ith observed stretch in category II;). Then, the group
normalized power transfer function

10

> Pw), i=1and?2,

=1

~ 1
filw) = 10

is a consistent estimator of E(w) for each w € [—7, 7. So for another observed stretch
X(1),---, X (n), we use the plug-in version I(f1, f2) as the classification statistic. On
the other hand, the pivotal quantity ¢y coincides with px(h) when we use g(w;6) =
|1 — exp(ihw)| 2 as a score function. To estimate the pivotal quantities under each
category, we can use

~ 1 NN
ei:EZei , i=1and 2,

where

n— ! l
a0 _ i X 0xP e+
Z S X

which is the sample autocorrelation for the [th realization in category Il;. Then, we
can classify another observed stretch X (1),---, X (n) into one of II; and TIy by the
plug-in version Eil/%(gh 05).

When we use the empirical likelihood ratio classification statistic, we can flexibly
choose pivotal quantities or score functions to focus on. In this section, we use the
following three score functions:

(D). 9(w;0) = |1 = Oexp(iw)|

20



(ii). g(w;0) = |1 — O exp(2iw)| >
-1
(iii). g(w;0) = (‘1 — 6 exp(iw)‘2 +1-6° exp(2iw)‘2)
and the corresponding pivotal quantities are given as

(). 6o = px(1)
(i). 60 = px(2)
(iii). b0 = (px (1), px(2))".
Under the setting above, we use the Monte Carlo simulation to calculate detection

probabilities by both classification statistics for n = 512. First, using the training
sets

{Xi(l)(t) : Xi(l)(f) is generated from II;, t =1, -- ,n} ,l=1,---.10, i=1 and 2,

we calculate fl(w), fg(w), 0, and 0, for fixed a, b and a. Second, we generate
a test set {X(t):t=1,---,n} from II;, and calculate I(fi.fs) and Eiﬁ(ﬁl,@).
Iterating this procedure for 1000 times, we obtain the frequencies of 7(]‘:, /‘Ag) >0
and Eiﬁ(él, 52) > 0. Tables 4.2-4.4 show the empirical detection probabilities of I
and ELR for various a, b and a.

Tables 4.2-4.4 are about here.

The tables above imply that the empirical likelihood ratio classification statistic
works better than the Whittle likelihood ratio type. Furthermore, except for a few
cases, the empirical likelihood classification statistics give higher detection probabil-
ities for small o (Table 4.2), and when the process has a near unit root, it is better
to consider our approach (see the case when b = 0.9 in Tables 4.2-4.4).

4.4.2 Example 6: Stable MA(100) model

Next, let the parametric normalized power transfer function be
2

100 g
Foln) 2 j=0 ¥5(b) exp(ijw)
win) = 100
ijo ’(L’J (b)2

and the coeflicients {1;(b) : j € N} is defined as (3.11) (and we do not omit argument
1 = b to emphasize that b is the contiguous parameter). In this case, the normalized
power transfer function associated with the contiguous hypothesis Ily is f(w|n+x, 1),
and we carry out the same procedure as Example 5.

, n=>b
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Tables 4.5-4.7 are about here.

The empirical likelihood method performs uniformly better than the existing method
in this case. Moreover, it seems to be not always appropriate to use much information
on the process. We sometimes obtain higher detection probabilities when we use
either px(1) or px(2) than both px(1) and px(2). Thus, it is significant to focus
on various important quantities of the process when we carry out the discriminant
analysis.
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Figure 4.1: The log-stock return process of IBM (from Jan. 1, 2012 to Jun. 30, 2014)
and its hill-plot
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Figure 4.2: The log-stock return process of Ford (from Jan. 1, 2012 to Jun. 30, 2014)
and its hill-plot
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Table 4.1: p,, x(1) and p,, x(2) of Hewlett Packard, IBM and Ford’s log-stock return
processes

Hewlett Packard IBM Ford
Pnx(1) —0.0305907 0.0462158 0.1227030
Pn.x(2) 0.0393583 —0.0060251 —0.0573039

Table 4.2: Empirical detection probabilities by Iﬁ(@l 52) and f[v(]?l, ]?2) for stable
ARMA(1,1) processes (a = 1.0)

ELR T
(a,b) (i) () (i)

( ) 70,949 0.866 0.947 0.973
( ) | 0.966 0.946 0.970 0.949
( )| 0987 0.943 0.999 0.977
( ) [0.924 0.736 0.959 0.826
(0.5,0.5) | 0.912 0.891 0.919 0.841
( )

( )

( )

( )

0.947 0.972 0.897 0.829
0.922 0.863 0.943 0.620
0.688 0.912 0.963 0.973
0.990 0.985 0.993 0.174
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Table 4.3: Empirical detection probabilities by Eif{(ﬁl §2) and f(]?l, ]?2) for stable
ARMA(1,1) processes (o = 1.5)

ELR i
@h) | G ) (i)

( ) 0.807 0511 0.916 0.892
( ) [ 0.916 0.681 0973 0.878
( ) [ 0.971 0939 0.981 0.936
( ) 0.877 0.782 0.896 0.907
(0.5,0.5) | 0.688 0.625 0.798 0.808
( )
( )
( )
( )

0.379 0.232 0.992 0.638
0.641 0.666 0.556 0.790
0.644 0.626 0.647 0.208
0.304 0.203 0.958 0.302

Table 4.4: Empirical detection probabilities by Iﬁ(@l 1/9\2) and 7(]?1, ]?2) for stable
ARMA(1,1) processes (o = 1.9)

ELR i
(a,b) (i) () (i)

( ) 70.780 0.487 0.815 0.832
( ) | 0.886 0.701 0.906 0.894
( ) | 0.709 0.420 0.999 0.893
( ) [[0.676 0.645 0.662 0.734
(0.5,0.5) || 0.637 0.560 0.760 0.679
( )
( )

( )

( )

0.597 0.387 0.998 0.881
0.534 0.518 0.587 0.72
0.484 0.490 0.497 0.222
0.592 0.444 0.996 0.805
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Table 4.5: Empirical detection probabilities by Iﬁ(@l 79\2) and f(]?l, ]?2) for stable

MA(100) processes (a = 1.0)

ELR

(1)

(i)

[
(iii)

0.1
0.5
0.9

0.916
0.854
0.594

0.661
0.720
0.416

0.913 0.872
0.890 0.835
0.572 0.479

Table 4.6: Empirical detection probabilities by I?]iﬁ(al (?2) and T(fAl, /‘Ag) for stable

MA(100) processes (a = 1.5)

ELR
(i) (i)

[
(iii)

0.1
0.5
0.9

0.678 0.593
0.790 0.510
0.670 0.563

0.679 0.667
0.841 0.831
0.674 0.667

Table 4.7: Empirical detection probabilities by Eﬁf{(@l, 0/9\2) and 7| (fl fg) for stable

MA(100) processes (o = 1.9)

ELR
i) (i)

(iii)

0.1
0.5
0.9

0.770 0.511
0.670 0.558
0.554 0.486

0.798 0.761
0.647 0.664
0.446 0.538
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5 Generalized method of moments for symmetric
a-stale processes

5.1 Introduction

The GMM is one of the most popular tools in econometrics, and the method
has been applied in variety of fields. In i.i.d. case, Newey and McFadden [44] gave
a unified view for the estimation problems based on the class of extremum estima-
tors which contains the GMM estimators and the maximum likelihood estimators
as special cases. For dependent data, Hansen [17] introduced the GMM estimator
for time series models with the finite second moment, and consider the estimation
problem of parameters of over-identified moment restriction models in time domain.
Subsequently, Kakizawa [26] extended Hansen’s approach to frequency domain. Kak-
izawa [26] worked with the over-identified spectral restriction model and proposed
the frequency domain GMM estimator. In the paper, the consistency and asymp-
totic normality of the estimator were shown. Furthermore, Kakizawa [26] gave the
optimal weighting matrix of the GMM estimator, and showed that we can construct
an asymptotic optimal estimator without assuming that the true model is known.

One of the advantages of considering the spectral restriction is that we can natu-
rally extend results for second-order stationary processes toward stable processes, as
seen in the previous chapters. In Section 5.2, we define the frequency domain GMM
estimator for the stable process as Kakizawa [26] did for second-order stationary pro-
cesses. We show the consistency and asymptotic distribution of the GMM estimator
in Section 5.3. It is shown that the limit distribution is expressed as a sum of stable
random variables, and depends on a weighting matrix, which defines the objective
function of the estimator. The optimality of the GMM estimator is also discussed
based on a sort of covariance matrix. Section 5.4 gives numerical studies, and we
obscrve the effect of the weighting matrices.

5.2 Fundamental settings

Current chapter considers the following over-identified spectral restriction model

1 ™ ~
3 | Gl iy = o, (5.1)

where G(w; 0) = (G1(w; 0), -+, Gp(w; 0)) is an m x 1 vector-valued function, called
a score function hereafter. In particular, §y in (5.1) is called an over-identified pivotal
quantity of the process, because the number of restriction m can be greater than the
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dimension p of 0. Given the over-identified spectral restriction (5.1) and an observed
stretch X (1),---, X(n) from the stable process (3.1), the frequency domain GMM
estimator is defined as

Oovm = arg max qn(0),
where
4 (0) = — R, ()W, B, (6),

Ra0) = o= [ Glit) (o)

27 J_,

and ﬁ\n is an m Xm nonnegative definite matrix, called a weighting matrix. Note that
W, can be a sequence of random matrices, and we assume the following condition
on the weighting matrix.

Assumption 5.1. W, — W, where W 1is an m X m positive definite matriz.

Remark 5.1. In the proof for Theorem 3.1, we make use of the following asymptotic
expansion of the empirical likelihood ratio statistic:

2 ~ ~ P
~ log 7 (00) = — Rn(00) Sn(60) ' Ri(60) + 0,(1),

and it 1s shown that

- -1
§n(90)—1 LR {%/ G(w; 00) G(w; 0) f(w)?dw| = Wgr (say).

—T

From this expansion, we can regard Wgr, as the weighting matrix for the mazximum
empirical likelihood estimator as GMDM.

5.3 Main results

Now let us see the limit behavior of the frequency domain GMM estimator to the
stable process. To simplify notation, define an m x p matrix

1 /7r 0G(w; 0) ~

QO =5 [ —5— [(w)dw.

o =T

In addition, the conditions summarized in the next assumption are required.

99



Assumption 5.2.

(i). There is a unique solution 6y € Int(©) to (5.1), where © is a compact subset
of RP,

i). G(—w;0) = G(w;0) for all 0 € O.

)
(iii). G(w;0) is continuously differentiable with respect to 8 € © for all w € [—m, 7).
). Q(6o) has full-column rank.

)

. For each1=1,2 and j =1,--- ,m, there exist ¢ < 0o and 8 > 0 such that

sup sup Y <,
we[-7.7] g 0co, Hg — QH
840 E

where hg-l)(w;ﬁ) = Gj(w;0) and h§-2)(w; ) = 0G,;(w; 8)/00.

(vi). There exists p € (0, ) such that

m

< 00.

ZGZ (w; 90 w) cos(kw)dw
T =1

(i) and (iv) of Assumption 5.2 are needed so that the limit distribution of the
GMM estimator has an appropriate property. We shall give a counter example of
Theorem 5.1 below when ¢, belongs to the boundary of ©. FEspecially, the latter
condition is required to guarantee that the limit distribution does not degenerate.
Conditions (ii) and (vi) are imposed to use Lemma 3.2. Moreover, we put condition
(v) to ensure the consistency of the estimator. Then, we can show the limit distri-
bution of the frequency domain GMM estimator for the stable process as follows.

Theorem 5.1. Suppose that {X(t) : t € Z} is generated as (3.1) with « € (0,2),
and Assumptions 3.1, 5.1 and 5.2 hold.

(1) é\GMM 2) 90 as n — 0.

(il). zy, (‘%MM —6’0) L LOW)V(6y) as n — co. Here L(W) is a p x m matriz
Q(

defined as L(W) = {Q(8)WQ(8)} ' Q(8,)W and V(8) is an m x 1 random
vector defined by replacing dg(w; 0) /060" in (3.7) with G;(w; ).
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Remark 5.2. The condition (i) of Assumption 5.1 is essential to guarantee that the
limit distribution of the GMM estimator becomes symmetric. We impose a repre-
sentative counter example here. Suppose that {X (L) : L € Z} is generated by stable
MA(1) model X(t) = Z(t) + aZ(t — 1) with a € R'. Then, the autocorrelations are
given as px(1) = a/(1 + a®) and px(h) = 0 for any h > 2. Therefore, one can
estimate 6y = px (1) by the GMM estimator based on the score function

G(w;0) = (6 — cos(w), cos(lw))’
with 1 > 2 and the identity weighting matriz Ioxo. If we set © = [0, 1] and a = 0, then

6o = 0 & Int(O©). A simple calculation yields that the GMM estimator is evaluated
as Bevm = max{p, x(1),0}, and the limit of the distribution function is given as

R 0 (y <0)
lim Pr {l’n (QGMM — 90) < y} =< 1/2 (y=0)
e Pr{-S5(1)/5(0) <y} (y>0)

Thus, the limit distribution of ln(@;MM — 6y) has a spike at the origin, and the
conclusion (i) in Theorem 5.1 fails. The general theory for the boundary case is
quite complicated, and we omit to state the details here.

We next focus on the asymptotic optimality of %MM based on a sort of covariance
matrix. Set Q(W) = L(W)ZL(W)', where

== u(hu(ly.

o(l) = = | / " (w3 00) () cos () dov. (5.2)

T J-n

The matrix fNZ(U) has the following interpretation; let {U; : i = 1,2,---} be the
sequence of i.i.d. random variables with zero mean and E[U?] = 1, and U be an
m x 1 random vector defined as U = >",°, v(1)U;. Then, the covariance matrix of

LOW)U coincides with (W) defined above. Comparing U/ with V (), this matrix
can be regarded as a sort of the covariance matrix of L(W)V(6p). The lower bound
of Q(1) is then given by the following theorem.
Theorem 5.2. Suppose that all assumptions in Theorem 5.1 hold. Then,

(i). 71 = Wge.

(ii). For any W, Q(W) — Q(Wgr) is nonnegative definite.

Recalling Remark 5.1, Theorem 5.2 describes the asymptotic optimality of the
empirical likelihood method in the class of GMM estimators.
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5.4 Numerical examples

This section provides numerical studies, and make a comparison between some
GMM estimators. We follow the examples introduced by Kakizawa [26]: the over-
identified AR(1) and MA(1) models.

5.4.1 Example 7: Stable AR(1) model

Let {X(L) : L € Z} be a stable AR(1) process with normalized power transfer

function
~ 11—

) = o)

b < 1.

The autocorrelation of the process at lag [ is given by px(l) = &', and this model
satisfies the over-identified restriction (5.1) with the score function

G(w;0) = (0 — cos(w), -+, 0™ — cos(mw))". (5.3)

In this case, we estimate 6y = px (1) based on the over-identified score function (5.3).
As we discuss in the previous section, the optimal weighting matrix is given as

WeL = P /7T G(w; 60) G (w; 90)/,]7(00)261@} ; :

TJ_x

In practice, however, we know neither true f(w) and 6y, so we should estimate them
from observations. The consistent estimator of Wgy, is given as

-1
= 2 =
Wor = [5ZG(At;é‘&&mmt;é&m)vn,xw)?] ,
t=1

where JNn x(w) is the smoothed self-normalized periodogram with the same wighting

function as Example 5 and 6. 5((;11341\4 is the GMM estimator with the identity weighting

matrix. That is, we can construct the 2-step GMM estimator, which is asymptotically
equivalent to the GMM estimator with the theoretical optimal weighting matrix Wgy,.
Hereafter, use the following three weighting matrices:

(). Wi = Luxm
(ifi). W3 = Wy
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and the GMM estimator based on W; is denoted by @g%\m (i =1,2,3). In particular,
we adopt the notations 01, = 5((;213/[1\4 and aﬁ = ﬁg’gm

With the settings above, we generate 1000 samples from the stable AR(1) model
of size n for various b, « and n, and estimate 6y = px(1) by the GMM estimators.

Then, we obtain the empirical bias

| oo
EBO = —$ " gl¥
1000 Z J
j=1
and the root mean square error
| oo "
RMSE®) = — |B? |
1000 ; J

fori = 1,2, 3, where B]@ is equal to the quantity é\g%\/IM—QO for the jth sample. Adding
to the three estimators, we also calculate the empirical bias and root mean square
error for the sample autocorrelation p,, x(1). Tables 5.1-5.3 show EB® and RMSE®
of the four estimators for n = 128 and 512. Tables 5.1, 5.2 and 5.3 correspond to
the case where m = 2,5 and 8, respectively.

Tables 5.1-5.3 are about here.

5.4.2 Example 8: Stable MA(1) model

Next, we consider to estimate 0y = px(1) of a stable MA(1) process with normal-
ized power transfer function

B 11+ aexp(iw)|’

Since the autocorrelation at lag h of the MA(1) process is zero for any h > 2, the
model satisfies the over-identified restriction (5.1) with the score function

G(w; ) = (6 — cos(w),cos(2w), - - -, cos(mw))".

By the same procedure as Example 7, we calculate the empirical biases and root
mean square errors of the GMM estimators. Note that é\((}lMM coincides with the
sample autocorrelation at lag 1 in this case. In fact, it is easily seen that

— ﬁn,Xu)
pn,X(2)

Pn.x(m)
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so the objective function based on I,,y,, is given as

o~

4n(0) = = Ru(0) s Fin(6)

= —{0 - Pax(1)}? - Zﬁn,X(?)Q- (5.4)

=

o~

Since the second term of (5.4) is independent of 6, the maximizer is 9(;12/11\4 = px(1).
We omit the results for p, x(1) in the following tables.

Tables 5.4-5.6 are about here.

From Tables 5.1-5.3, it is seen that the sample autocorrelation method has advantage
in the sense of the root mean square errors when we work with AR(1) model and o
is large. However, these results do not imply that the GMM estimator is worth than
Pn.x (1), since the class of GMM estimators contains p, x(1) as a special case; the
GMM estimator with G(w,0) = 6 — cos(w) (and m = p = 1). On the other hand,
If we focus on the empirical bias, the inference by the GMM estimator with optimal
weighting matrix (or its estimator) is better than those by the sample autocorrelation
method when we deal with AR(1) model. In the case of MA(1) model, none of the
estimators give the smallest empirical bias uniformly. However, the GMM estimator
based on the empirical likelihood weight gives smaller root mean square errors than
Pn.x (1) uniformly (Tables 5.4-5.6).

In both cases, the root mean square errors decrease as the index « decrease. These
phenomena are quite natural, since the larger o becomes, the slower the divergence
of x,, becomes.

Lastly, we consider the results in view of the number of restrictions m. We observe
that the root mean square errors of g, and 05, tend to decrease as m increases, while
the increment of m does not seem to affect the goodness of g, x(1) and 5813/11\4 Thus,
from the numerical examples, we can see that the GMM estimator with optimal
weighting matrix has appropriate properties.
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6 Proofs

6.1 Proofs of Chapter 2
Set

n

P.(8) = - Zm()\t; 6),
t=1

1 n
S E m(A; 8)m(Ag; )
n
=1

and we denote the ith element of I, (¢) and the (7, j)th element of S5,(0) as I,(0);
and S, (#);;, respectively.

Lemma 6.1. Suppose that all assumptions in Theorem 2.1 hold. Then, for (i,j) =
(1,2) and (2,1),

N under 11;
Bal0:) = { D(8;) wunder1l;

and

Sn(6) B Wi (6)
for all @ € ©, where D(0) is a p x 1 vector whose ith element is

1 ﬂt [Qg(w;ﬁ)l

D(9); = o r Tf(w)} dw.

—T

Proof. We prove only for (¢,j) = (1,2). Under IIy, the kth element of P,(6;) is

evaluated as
1
d&d + Op (ﬁ)

f(w)] dw (e.g., Brillinger [4])

1
_— [n,X ((.u‘)
2m 0=0

dg(w; 0)~
o0k

p 1 / [89@9
%_
27

Ok
/0 under IT;
| D(61)r under Il °

and in Section 5 of Ogata and Taniguchi [49], the assertion on S, (#) was shown. [

0=01
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Lemma 6.2. Suppose that all assumptions in Theorem 2.1 hold. Then,

D(02)'W1(62) D(0-) under TI;

P
ELR(#1,6,) — { —D(6)Wy(0,)D(61) wunder Iy °

Proof. From Section 5 of Ogata and Taniguchi [49], we can see that ELR(6y,0s)
admits, as n — 0o, the asymptotic representation
I -1 / -1 logn
ELR(61,02) = —F,(61)'Sn(61) " Po(61) 4+ Po(02) Sn(02) " Po(62) + O, el
(6.1)
Using this representation and Lemma 6.1, we obtain the desired result. O

Proof of Theorem 2.1. Lemma 6.2 implies that the empirical likelihood classification
statistic converges to a positive and negative constant under 1I; and Iy, respectively,
and this implies the result. O

Proof of Theorem 2.2. We modify P, (0) as

VnP,(0) = C,(0) + D,(0) + O, <—) , (6.2)
where

e [g(wi 6) {Tx (@) — ()] dw,

27 J_, 08
0
D,(0) = g %tr [9(w; 0) 7' [ (w)] duw.

First, we consider the asymptotic behavior of C,(#,) and C,(6,) under II;. From
Brillinger [4],

Cal01) 5 N(0p, Wa(0h)) (6.3)

under TI;, and by the Taylor expansion, we have

Cru (B1) = Cr (1) + O, < (6.4)

1
i)
F lling that under 1y,

Y R (®)
20 r|g(w; w)|dw

oJ =T

= Op’
0=01
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we have

D, (0,) =0, and D, (6h,)=F (0)h+0O (%) . (6.5)

From (6.1)-(6.5),
gELR (01, 01,

/ 7 — 1 / ; _ logn
=W F(61)W1(61) 'Cr(bh) + S FO)Wi(6) YF(6,)h+ O, (%)

1
5 WE0)W1(6:) " Wa(6:) V2N + §h’F(91)m~'1(91)*1F(el)m (6.6)

where N is a p-dimensional standard normal random vector. Obviously, the first
term of (6.6) is a normal random variable with mean 0 and variance

, _ 2
[Wa(61) P W1 (61) ' F(01)h|, -
Therefore, the misclassification probability is

Pr(E)(2|1) = Pr[ELR(6,, 61,,) < 0| under 11I;]

1 WEO)W(0,) tF(6))h
2[[Wa(6:)172W1(6,) T F (81|
_ {_1 W F(6:)Wi(61) " F (6:)h } |

— Pr {[N (0, 1)-random variable] < —

2 1’1/2(91)1/2“/1(01)—1F(Gl)hHE
O
Proof of Lemma 2.3. First of all, we prove the following asymptotics:
JELR (6,6
9ELR(6,, 6) P, 0, (6.7)
a0 =07

under II; as n — oco. As in the proof of Theorem 2.2, we can easily see that

Pa(01,)i = Pa(01)i + Op <L>

1 Vi
:Op(%)
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OP,(0);
067

[n7x<w)

1
- = el du + 0, [ —=
o 2n )| 00060 o p(\/ﬁ)

o, (1)

and the same procedure as Section 5 of Ogata and Taniguchi [49], we have

0=01

T 2 . —1
1 o [8 g(w; 0)

S(071,)i; = Sn(01)i; + Op <%>

:Op(l)
and
D5,(0); B D5n(0); 1
e N N AN
:Op(l)

for all 4,7,k € {1,--- ,p}. Therefore,

OELR(01,0) _ OP(0)'Sn(0) ' Pu(0)
a0 o—07 B ol 0=0;
!/
IP,(0) »
2 <—891 oo ) Sn(eln) n(eln)

05, (0)
061

- PT“L(eTn)/Sn(eTn)il (

so we can see the convergence (6.7). By this result and the relationship 6y, — 07, =
O(n™1), we can also see that

n {ELR(61, 61,) — ELR(8:,61,)} = 0,(1).

O

Proof of Theorem 2.3.
(i) Lemma 2.3 implies that we can work with nELR(6, 65,,) instead of nELR (6, 64,,)
in results of type (6.6). Therefore, regarding —F(61|n) " H(61|n)¢ as h and using
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Theorem 2.2, we obtain the desired result.

(ii) If B(w;01) = A(w|n), it follows that

g(w; 8
[ Ay 2240
=0,
OB(w: )1
::/ Aty { <%) }QIBWﬁDIMMm
=0,

-1
+A(w|n)” B(w; 91)*—19‘1 { —aB(géiH)

/W
J—7

A(wln) | dw
0=0,

0B(w;0)" }wao*ml

0=01

+Q ' B(w; 0;) 7 0B(w;6) B(uw; 61) " A(wln) | duw
a0,y
o =T 892 9:(91

T 0B(w; 0
+Q‘1/ B(w;@l)‘l{%

o =T

} dw (6.9)

= Od><d7
since the integrands in (6.8) and (6.9) are, respectively, expressed as linear combina-
tions of {exp(—ijw):j =1,2,---} and {exp(ijw) : j = 1,2,---}. This implies that

[;(#1|n) vanishes for all i = 1,--- | p and the asymptotic misclassification probabili-
ties are then independent of the fourth-order cumulant of the process.

(iii) See Remark 2.1 (also refer Remark 3.2 of Hosoya and Taniguchi [22]). O

6.2 Proofs of Chapter 3

As well as the previous section, we set
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1 n
— Z m(Ag; 0)m(Ag; )’
n—

and the ith and the (i, j)th components of P,(0) and S,(0) are denoted by P, (0);
and S, ();;, respectively. We start with some auxiliary results. For any sequence of
random variables {A(¢) : ¢t = 1,--- ,n}, define

7 A(t)
At) =
T TR
and
Thalw) =2 Z Pn.a(h) cos(hw).

h=1

Lemma 6.3.

BTzl =0, Elfaef] {5 20 Bt

as n — 0o uniformly in o € (0,2] and o > 0.

Proof. By symmetry and boundedness of Z(t)’s, E[Z(1)] exists and is equal to 0.
Furthermore, from the definition of Z(f)’s, we can see that Y | Z(t)? = 1 almost
surely, so E[Z(1)?] = 1/n. Using Chebyshev’s inequality, we can see

Pr{‘g(l)‘ < 6—1/27’),—1/2} >1—c¢

for any ¢ > 0. This inequality means v/nZ(1)2 is O,(n/2), hence y/nZ(1)? converges
to 0 in distribution uniformly in a € (0,2]. Therefore, by Lévy’s continuity theorem
and Taylor’s theorem, there exists a constant ¢ such that

Eexp {if\/ﬁZ(l)Q} =1- f_QnE [ (1) } I ¢’ Sig(ﬁc)ns/gE [2(1)6]
(o o 707}

—1

uniformly in £ € R, where Im(z) denotes the imaginary part of a complex number
. So we can conclude that nE[Z(1)%] converges to 0 as n tends to co. We also find
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that n(n — 1)E[Z(1)2Z(2)?] converges to 1 by taking expectations on both sides of
following identical equation:

1= }n: ZWO+ Y Z(1)*Z(s)*. (6.10)

t#s

Remembering the facts above, let us evaluate the expectations. First, from symmetry
of Z(t)’s, it is easy to see that E [T}, z(w)] is exactly equal to 0. Next, we expand
Ty.z(w)? and obtain that

n—1 n—1
E [T, z(w)’] =E [2(1)22(2)2} {n(n —1)+2n Z cos(2hw) — 2 Z hcos(Qhw)}
R (6.11)
The first term of (6.11) converges to 1 as n — oo. Suppose that w =0 mod 7, then

E [2(1)22(2)2} {anzlcos@hw) - 2nzlh cos(2hw)} — n(n—1)E [2(1)22(2)2] S

Next, for w Z 0 mod 7, the following two identical equations hold;

n—1 ~cos{2(n — 1w} + cos(2w) — cos(2nw)
Z cos(2hw) = 2{1 — cos(2w)} ’

nl _ ncos{2(n — w} — (n — 1) cos(2nw) — 1
; hocos(2hw) = 2{1 — cos(2w)} .

Using these equations, we obtain that

n—1
2nE [2(1) ] Zcos 2hw) — 2E [ } Z h cos(2hw) — 0.
Hence we get the desired result. O

Lemma 6.4. Under Assumption 2.3,

> Cov {E,z@k)?, E,Z(AZ)Q} = O(n),

k£l

where T, z(w) is the self-normalized periodogram for Z(1),--- , Z(n).
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Proof. From Brillinger [4],

COV{ nZ()\k) 7[nZ ) }: Zchm{ In.z( )\k):kjEVj},

vip=1 j=1

where Eivn zw) =37, Z(t) exp(itw) and the summation is taken over all indecom-
posable partitions v =1, U--- Uy, p=1,---,8, of a table

(k, k. —k, —Fk)
{ (la la _Za _l) (612)
(see Brillinger [4]). Note that

cum {EH,Z(A,@I), - ,EH,Z(Akm)} — 0

for odd m. Let us consider following five partitions;

p=1, {(kk, =k <k 11 ~-l,-1},

p=2, {(k, —k 1, —1), (]{‘ ]y,l -0},
{(k, —A)7(k’ -k l, =1, =0}, (6.13)
(00, bk, k0 1)),

p=3. {(k —k).(l. - )’(k’ —k. 1, =0}

First, we show that with different k& and [ in v,
3 Z chm{ w7 (M) s € v b = O(n). (6.14)
k#£l v'p=1 j=1

for indecomposable decompositions / = v\ (6.13). However, the proof for (6.14)
contains lengthy and complex algebra, so we confine to giving a representative ex-
ample here. Let us consider partitions for p = 4. We can evaluate the second-order
cumulant as

cum {Jn,z(Ak), Jn,z(xl)} —E [2@)2] iexp {it(\y — )}
_ —Zexp{ 27 ( A—l)}

1 (k=1=0 modn)
10 (k—=1#0 modn) ’
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therefore

cum {(Fivnvz()\kl), (Fivnvz()\kQ)} - cum {gn,Z<Ak7)7 Jn,Z<)‘k8)}

- 1 (k‘l—kg,"'./k7—]{?8EO modn)
|1 0 (otherwise)

So when p = 4, we obtain
p —~
ZHCUH’I {dn,Z()\kj) : k’j S l/j} = O(TL)
kAl j=1

for any indecomposable partition of (6.12). Similarly, we can check (6.14) for p = 2
and 3. Note that we can neglect the terms in p-decompositions with p > 5, since such
term always contains the odd-order cumulants of d,, z(w)’s. Next, we need to check
the cumulants on partitions (6.13). For simplicity, we introduce generic residual
terms Rg)(k‘, 0, -, Rgf)(k, [) such that

S RO (k, 1 = O(n)

kAl
for j =1,2and i =1,2,3,4. A simple example of Rgf)(k’, l) is given as

3 _
@) [ “(constant) (k—1=0 mod n)
it (k’l)_{() (k—1#0 modn) ’

and these will appear when we expand the cumulants concerned. The fourth-order
joint cumulant on (Ag, —Ag, A, —X;) is represented as

e {dy, 7 (), o,z (= Ae), 7 (V). (N0 §

= nE [Z(1)'] + n(n — VE [Z(0)2Z(2)°] - 1+ RO (k,1). (6.15)
From (6.10), (6.15) becomes

et {70, (= M), Az (00, (=N | = RO(K, 1),

By the same argument as above, and using identical equations

ii(tﬁ =1,
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> Z(ty? {Zz }{Z 2(15)22(5)2}
—2 Z Z(0)' Z(s)* + > Z(t)*Z(5)*Z(u)*.

t,s,u

Y Z)t = {Z Z(t)?} {Z 2‘@)4} =3 2@ Z(s)P+ > Z(1)

t=1

and

n

1:22(t)8—|—4i§(t)6 +3Zz ()

t=1

P63 B0 E R+ S Z0P RGP Z W) 70y,

t,s,u t,s,u,v

we obtain that

cum{ nZ()\k) dnz( k), gn,Z(Al)aJn,Z(Al)agn,Z(_Al)7£lvn,Z(_>\l)}
Dk 1),
Cum{ 2(Ak)s - s dnz(— )\z)} (the eighth-order joint cumulant)
= 2B [Z(1)'Z(2 )} 6n°E | 2(1)' Z(2)2(3)’]

'E [2(1)22(2)22(3)22(4)2} - {n2E [2(1)22(2)2} }2 +ROK, D), (6.17)

where Z; o is a summation taken over all ¢y, - - - , t,,, are different from each other.
According to the same argument as Lemma 6.1, the first and second terms in (6.17)

converge to 0 as n — 0o, and the fourth term converges to 1.

Finally, from (6.16), the third term converges to 1. Hence the eighth-order joint

cumulant becomes
cum {dp, 7 (W), do 7 (= N) | = Rk, D)

Finally, we have

8

p
Z chm {Jn,z()\kj) ke uj} = O(n).
k#l v:p=1 j=1
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Lemma 6.5. Under Assumptions 2.3 and 3.1,
Su(00) 2> W (8y)

as n — oo. Here W(0) is defined in Theorem 3.1.

Proof. We first make use of the decomposition of the periodogram in Kliippelberg
and Mikosch [33] as follows;

Lix(@)? = [(w)* L z(w)* + 0,(1) (6.18)

{1—&—22%3 cos hw)} +0,(1)

= [ (wW)? {1+ 2T, 7(w) + T 2(w)*} + 0,(1)

Then from Lemma 6.3, we obtain that

B[ S.(00)] = %i 99 0) ' dg(Ai;0) "

00 o0 0=0
- =fo
1 T 89(@];@)*1 ag(w; 9)71 2 e
won | | A =)

Moreover, from Lemma 6.4, Assumption 2.3 and (6.18), if we define

Ag(w;0) P Ag(w;0) t| &
7 o0 D01 oy,
then
Cov { S (00)U S 490 kl} 2 Z Z hl] >\t hkl COV{ ()\t)27 E72<A3)2}
n t=1 s=1

= th M)t () Var [ln,Z(At)Q]

+ 3 by O (M) Cov { Tz ()2, Tuz(A)2 ) +0(1)
ts
—0

for any 4,7, k,l € {1,--- ,p}. These facts imply the convergence of gn(ﬁo) in proba-
bility. O
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Proof of Theorem 3.1. By Lagrange’s multiplier method, w;.--- ,w, which maxi-
mize the objective function in 7,(6y) are given as

1 1

~ - CoL=1,.m,
n 1+ 7 m(A;60o) ' &

wp =

where 7,, € RP is the Lagrange multiplier which is defined as the solution to p-

restrictions

I m(\;0
L LG —— (6.19)
n = 147 m(A;0o)

Note that every w; is nonnegative, so the quantity 1+ 7,m(\; 8p) should be nonneg-
ative as well for £ = 1,--- ,n. First of all, let us derive the stochastic order of 7,.

Set Y; = 7/,m(A; 6p) and from (6.19),

1 =~ m(\; 6
Op:_zm( ts 0)

n 1+Y;
—_1 n - : (At; 00)
= Y, + m

n £ Y; 70

Hence,

= Su(00) " Palt0) + G (say). (6.20)

Now, we introduce M,, = maxj<r<, ||M(Ag;00)||z. Noting Assumption 2.3, there
exists ¢; < oo such that the stochastic order of M, is given by

dg(\;:;0)71
M, = max g(N; 9) I x (M)
1<t<n 06 =0 ’ 5
Ag(w; 6)~1 ~
< max 9(w; ) max [nx(w)|
wWE[—7,7] 00 0=0, wE[—m,7]




ag(w; 9)71 ~ maxXye[-m,n [n,X (UJ)‘
welzml 00 omgy|| pwetom maxX,e(—nq | /(W) ‘
Halw: 6 -1 - ’[“n )
< max G max | f(w) XA )
we[—m,7] 00 =00 | & wE[—m,m] we[—m,7] f(w)
_ I, x(w)
we[—m,7] f(w)

It is not difficult to check that Assumption 3.1 is sufficient condition for Corollary
3.3 of Mikosch, Resnick, and Samorodnitsky [41], so we have M,, = O,(5%), where

[ (logn)tY (1 <a<?2)
Pn= loglogn (a=1)

Henceforth, we confine o within 1 < o < 2. When o = 1, the same argument as
follows will succeed.

We next show the rate of convergence of ¢, in (6.20). There exists a unit vector
v in R? such that 7,, = ||7,||gv and we can see that

— 1 < _ _
Il Sa(60)0 = 10 {— > %)'} v

n

1 777/()\,5'90)777/()\,5'90)'
= Il { = ’ ’ 1+Y) v
Irlls {5 D2 P4 )
E]\jn)}v

(1+ ||TnHEMn)} T

)1 " (A 00) (g 0o)

‘ 1+Y;

_ 1 " (A Oo)m(; 6g)'
n 1+ Y,

A
2
5

<

(14 [|72]

I Y
:U’{—Z ! m()\t;ﬁo)(l—kHTnHE]\Jn)}

+Y;

_ {% 3 {1 - th} (A 00) (1 + ||Tn||EA/[n)} (6.21)

Recalling (6.19), (6.21) finally becomes

—_

7l {v'Sa(0)0 — v/ Mo Pra(B0) b < v/ Pa(05). (6.22)
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Lemma P5.1 of Brillinger [4] allows us to write 2, P, (6,) as
Hg((.u 9) = = Tn
WBatt) = 52 [ 2D k) - U)o+ 0, (2).

0=0,
where U, is defined as (3.3). Then, by Lemma 3.2 we have

20 P(60) S V (60) (6.23)

for o € [1,2) as n — oo, where V() is defined in Theorem 3.1. So from (6.22) we
obtain

Ol (0601 =0, (o2} O,(5,%] < 0,521 (620
Noting that (logn)? %%z, — 0 as n — 0o, (6.24) implies that

Op(ImallE) < Opla?) (6.25)
asymptotically. On the other hand,

1 e _ 1 e _ ~
- > (A )|, = - > (A 00) [l s 1A o) 1%
t=1 t=1

1 N .
< - Z Mmi(Ag; 00) m(Ag; 6p)

= Mir 3,00
= 0, {(logn)* >~} . (6:20)

It is easily shown that ¢, in (6.20) satisfies
I~ -
I6allz = > Ml o) Bl 11+ Yl
t=1

Thus, from (6.25) and (6.26) we have

ognp ¥ 5
Oullntalle) = 0, { FEL—1 B

Now let us show the convergence of the empirical likelihood ratio statistic. Under
H : 8 = 6, the empirical likelihood ratio statistic is expanded as

22
logr = —2—Zlognwt
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.’172 -
=2— log(1 + Y,
+S e 0

.’172 - Z1,72 - Z1,72 -
=2 Y, — 2 Y2425 0, (V3

t=1
where

T N Th N~

22N Y, = 2= 7 m( A fo)
n t=1 n t=1
T,,% -~ -1 jang . / - ~
= 27 {Sn(eo) Pn(go) + Cn} Zm()\t;eo)
' t=1

= 222 {ﬁn<90)’§n(<9o)*1 + Cn’} P, (6)

_9 {xnﬁn(eo)}'é“n(eo)-l {00 } + 20006 L Put00)}

22 2 2 & N )
TN V= TN (A 6}
T i—1 T 1
= 227" 5, (00) T
= 22 { Pa(00)' S (00) " + '} Su(00) { Sul0) " Pal0) + o

~ ! ~
- {a:nPn(Ho)} S (00) 7 {;rnPn(Qo)}
(0 B(60) (nGa) + 2 (2aG) {nFal60)
and there exists finite ¢y such that

> 0,77

2
n
t=1

7"2 n
< ey VP
n
t=1

2 n

T ~

—?;Z(‘gHTnH%E M (Ae; 00) 1%
=1

_o, { Uognl)?‘”“}
nl/e
2o

IA
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as n — oo. As a consequence of Lemma 6.5 and (6.23),

212

—="log 7, (6) = {xnﬁn(%)}lgn(eo)’l {wnﬁn(ﬁo)} +0p(1)
5 V(680)' W (66) 'V (6)

as n — oo for « € [1,2).

5

6.3 Proofs of Chapter 4

Proof of Theorem 4.1. Under the assumptions of Theorem 4.1, we have

B.(0) B Do) % | / ' —a‘]<°;;99)1f(w)dw.

—T

Recalling the expansion (6.27), we can also see that

ﬁﬁ(@l,%) i 9(92) %(92)9(92) >0 under I
—D(6)W(0,)D(6,) <0 under I,

(6.27)

(6.28)

as n — oo. (6.28) implies that El\f{((h,@g) converges to a positive and negative
constant in probability under 1I; and Iy, respectively. Then, the misclassification

probabilities by ﬁﬁ(@l, 0,) converge to zero as n — oo.

Proof of Theorem 4.2. From (6.27),

I~

+2ELR(6y,01,) = — {xnﬁn(el)} S(6r)! {rnﬁn(ﬁl)}
+ {xn,ﬁn(ém)}@@m)*l {20 Pa(B1n) } +0,(1).

Now, write

Then, we decompose Jznﬁn(ﬁ) as

—~ ITL

T Pa(0) = /_ ’ 8g(w; )1, x (w)dw + Ry(a)

™
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Cn(0)+ D,(8) + Ry(a), (say)

where
5,1(9):;—”/% (w-a){f ¥(0) ~ U f(w) y doo,
—l / Dg(w; 0) f (w)dw
and

Tn
Rn<0‘): (27T/ ag‘-") 0) nX( w—_;ag )‘ta nX()\t)) _OP (F)
Noting that under Iy,

~ r Uy [T Og(w;0)7!
Dnl61) = 2 / 00

almost surely, we have

(6.29) = — Cu(61)'S(61) ' C(61) (6.30)
+ Co(010) S (01) 2 Cla(01) (6.31)
+ 2Dy (810) S (B10) " Cin(B1) (6.32)
+ Dy(01)' S (01) ™ Dy (01,) (6.33)

+0,(1)
for 1 < a < 2. From Lemma 3.2,
Cu(B) 5V (6),

where f’(@) is the same random vector as Theorem 3.1. Using Taylor’s theorem, we
have

0g(w; O1n) = Dg(w; 1) + 2,0 g(w; 01)h + O(x,%).

Hence,

Coa(B1) — Cia(61) = % / " 2g(w: )k {Tn,x@j) - ﬂw)Un} dw + 0, (z;1)
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On the other hand, it is seen that

p-lim S, (61) = p-lim S, (61,,) = W (6).

n—oo n—oo

Therefore, by Slutsky’s lemma and the continuous mapping theorem, (6.30)+(6.31) L
0. Next, we evaluate D, (61,). Note that p-lim U, =1 (e.g., Kliippelberg and
Mikosch [34]), then, under 11y,

n—oo

5n(§1n) = 1+2—(;1—’(1)1n/— 8g(w; aln)f(w)dw
_1 +;:(1) {7n " g(w; 01) f(w)dw + T 92g(w; 0) [ (w)dw + O (97;1)}
1+0,(1 & ~
- —;—;“ /_7T 82!}(w; O )hf(w)dw + O, (;1:;1) _

= {1+ 0,(1)}F(01)h + Oy (") .
The facts above lead
(6.32) 5 20/ F(6,)W (6,) 'V (1),
(6.33) D WF(6,)W (61) ' F(6,)h.

So the asymptotic misclassification probability under the contiguous condition (4.1)
is evaluated as

lim Pr®(2]1)

n—oo
— lim Pr [E}]ﬁ(al,em) < ol under Hl}
n—oo

— Pr [zh/ﬁ(el)iﬁ(el)-lv(el) R E0)W(0,) T F(0:)h < o] .

Thus, we obtain the desired result. O

Proof of Theorem 4.3. Using the same procedure as in the proof of Theorem 2.3, it
is shown that

OELR(61,0)
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under TI; as n — oo, where 8%, is defined as 6, = 6, — 2, F(61|n) L H(6,|n)é. On
the other hand, by Taylor’s theorem we can also see that there exists ¢ € (0,1) such
that

22ELR(6,, 61,,)

JOELR(6y,9)

= T2ELR(0:,07,) + (0 — 07,) ——

6:§Tn+c(gl”ﬂ7§{n)
Therefore, from the relationship [|61, — 6%, ||z = O (z2), we have

22 {Eﬁ(el, f1,) — ELR(0), é‘;n)} = 0,(1).

This implies that we can work with z2ELR(6;, 8, ) instead of 22ELR(6;, 61) asymp-
totically in results of type Theorem 4.2. Therefore, using Theorem 4.2, the assertion
is proved. O

6.4 Proofs of Chapter 5

First, we introduce a condition, which is Assumption 3A in Newey [43].

Assumption 6.1 (Newey [43]). © is a metric space with a metric d(-,-) and there
exists By, and h : [0,00) — [0,00) such that B, = O,(1), h(0) = 0, h is continuous
at zero and for all 9,0 € @, n=1,2,---,

H}?n(e) - én(é)HE < Buh {d (9,5)}_

We first show that {R,(#) : n = 1,2,---} satisfies Assumption 6.1. From As-
sumption 5.2, there exists ¢ and § such that

~|8
< 9—9”
E

for § and 0 € ©. So Assumption 6.1 is satisfied with B, = 1, h(z) = cz” and

d(0,0) = ||6—6]|z. On the other hand, we can see the pointwise convergence R, (6) —
R(8) = 0,(1) for each 6, where
1 i

R(8) = o | G(w; ) f(w)dw

and then the limit behavior of sup,.g || R, (6) — R(0)| 5 is given by Lemma 6.6 below,
which is Corollary 2.2 of Newey [43].
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Lemma 6.6 (Newey [43]). Suppose that all assumptions in Theorem 5.1 and As-
sumption 6.1 hold. Then,

sup Hﬁzn(e) - R(H)H = 0,(1).

6co E

Proof of Theorem 5.1. We follow the similar arguments as Theorem 2.1 and 2.6 of
Newey and McFadden [44].

(1) Define qo(#) = —R(6)'W R(¢). By the triangle and Cauchy-Schwartz inequality,

+ lR(@)’ (W + 1) { Ruto) - R(@)}l
+ ‘R(@)’ (W — W) ko)

~ 2 ([~
< ool |7
E

+2[|R(O) ||| Ba(8) = RO) ||,

E
IR | W= W

; (6.34)

From Lemma 6.6, the right hand side of (6.34) converges to zero as n — oo uniformly
in # € O. Therefore the following inequalities hold with probability approaching one
(w.p.a.1) for any ¢ > 0;

~ ~ €
qo(fcnm) > gn(favm) — 3 (6.35)
~ €
an(Bannm) > ¢n(6o) — 3 (6.36)
¢
qn(00) > qo(fo) — - (6.37)

3

Here (6.35) and (6.37) follow from the relation supjcg |g.(8) — q0(8)| = 0,(1), while
(6.36) follows from the definition of the GMM estimator. Therefore, w.p.a.1,

QO(/@\GMM) > qo(bo) — €. (6.38)

Let ©¢ be any open subset of © containing y. Since © \ O is compact, there exists
0 € O\ O such that

@0(0) = sup ¢o(0) < supgo(0) = go().
9e0\0y 9o
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Therefore, substituting ¢ = g(fy) — go(0) into (6.38), we can see that

@o(Bcvn) > sup  go(6)
9e0\0,

w.p.a.l. That is, Pr{@GMM € 00} — 1 as n — oo, and this is equivalent to GAGMM 2,
Bo.

(ii) §GMM satisfies p equations

Dqn(9)
of

o~ —

= Qn(Bcrnig) Wo Ry (Baamn) = 0, (6.39)

N =

f=0cMmMm

where @,(0) is an m X p random matrix which is defined as

~ 1 [MoG(w;0) -

Expanding ]A{n(g(;MM) in (6.39) around 6y, we have
0y = Qu(Barn) Wo { R(60) + Qu@n) (B —60) } (6.40)

where 0, is a mean value vector 60y + (1—0)8y with some g € (0,1). Let 1* be the

indicator function for the event that @\n(GAGMM)’ Wn@n(gn) is a nonsingular matrix.
Then, (6.40) implies that

T (é\GMM - 90) = 1" H, ' Qu(Bcnin) W {xn§n<90)} +(1 -1z, <§GMM - 90) :

where H, = @n(é\GMM) ﬁ\n@n (6,). (6 40) also asserts that rn(HGMM 00) is bounded,
because it will be shown that ann(HGMM) W R(@g) is O,(1) and H converges to

non-zero constant matrix. Since F)GMM 2, 6y, we have 6, LN fy. On the other ]{Emd,
we have supjcg |Qn(0) — Q(9)| = 0,(1) by the same argument as we did for R(6).
Therefore,

o~

Qn(acMM) — Q(Ho)‘ < ‘@n(é\GMM) — Q(é\GMM)‘ + ‘Q(é\GMM) —Q(6o)

< sup | Qu(6) ~ Q(6)| + 0,(1)
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Thus, @n(gn) and @n(HAGMM) converge to () in probability. Recalling that 1/1\,1 2,
W, with W being positive definite, and that Q(6p) has full-column rank, we have
1* 2 1. Tt is seen that

11, Qu @) W {20 F(00) b 5 H1Q00) W (80)

by Lemma 3.2 and symmetry of S(I)’s. Moreover, (1 — 1*)wn(§GMM — 6y) 20 by
1* 2 1 and boundedness of xn(QGMM —tp). Therefore, we obtain that

2o (B — 00) = {Q(60)WQ(60)} ' Q(60) WV (6)
as n — 00. [

Proof of Theorem 5.2. N
(i) Under Assumption 5.2, ¢;(w) = Gi(w;600) f(w) (i = 1,--- ,m) has the following
series representation:

oo
E v; (k) cos(kw),

k=1
where v;(k) is the ith element of the vector v(k) defined as (5.2). Then, the (i, j)th
element of Wy is evaluated as

wi ! /W Gio( 00) Gy (03 00) J () 2

/ﬂasz )5

— Z v;(k / cos(kw) cos(lw)dw
k=1 1=1 o

=1
(6.41) is the (i, 7)th element of 3, hence the proof is completed. N
(i) Writing Q = Q(f), we can modify Q(W) — QW) as Q(W) — Q(Wg) =
D'S71D, where
- - -1
D= {z -Q(QE7Q) Q’} QQWQ)™

and this implies that Q(W) — Q(Wgy) is nonnegative definite.
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