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Chapter 1

Introduction

Problems and settings

We study the following free boundary problems for nonlinear diffusion equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − dΔu = f(u), t > 0, x ∈ Ω(t),

Bu = 0, t > 0, x ∈ ∂Ω(t),

v = −μ∇u · n, t > 0, x ∈ Γ(t),

Ω(0) = Ω0, u(0, x) = u0(x), x ∈ Ω0,

(1.1)

where d, μ, h0 are positive constants, Ω0 is a bounded and radially symmetric domain
in R

N and u0 is a radially symmetric function satisfying u0 ∈ C2(Ω0), u0 > 0 in Ω0

and the same boundary condition at ∂Ω0 as that of u for t > 0. Moreover Ω(t) is also
an N -dimensional radially symmetric domain with N ≥ 1 whose moving boundary
∂Ω(t) consists of (N − 1)-dimensional sets Γ(t) = {x ∈ R

N | |x| = h(t)} and Γfix in
R

N (∂Ω(t) := Γ(t) ∪ Γfix, Γ(t) ∩ Γfix = ∅). In the third equation in (1.1), v denotes
the outward normal velocity of free boundary Γ(t) and n denotes an outward normal
vector against Γ(t). In the second condition in (1.1), B represents a boundary operator
which, together with Ω(t), is defined as follows:

(1-a) N = 1 and Ω(t) has a fixed boundary (Γfix �= ∅) We set

Δu = uxx, Ω(t) = (0, h(t)), Ω0 = (0, h0), h0 > 0.

Then we find Γ(t) = {h(t)}, Γfix = {0}, and v = −μ∇u · n (t > 0, x ∈ Γ(t)) implies

h′(t) = −μux(t, h(t)) for t > 0.

Moreover we define Bu = 0 (t > 0, x ∈ ∂Ω(t)) by one of the following conditions:

u(t, 0) = 0, u(t, h(t)) = 0 for t > 0; (1.2)

ux(t, 0) = 0, u(t, h(t)) = 0 for t > 0. (1.3)

(1-b) N = 1 and Ω(t) has no fixed boundaries (Γfix = ∅) We put

Δu = uxx, Ω(t) = (g(t), h(t)), Ω0 = (g0, h0), g0 < 0 < h0,

7



8 CHAPTER 1. INTRODUCTION

Then we see Γ(t) = {h(t), g(t)}, and v = −μ∇u · n (t > 0, x ∈ Γ(t)) becomes

h′(t) = −μux(t, h(t)) for t > 0,

g′(t) = −μux(t, g(t)) for t > 0.

We denote Bu = 0 (t > 0, x ∈ ∂Ω(t)) by

u(t, g(t)) = 0, u(t, h(t)) = 0 for t > 0.

In the case of N ≥ 2, we assume that Ω(t) is radially symmetric and denote u =
u(t, r) with r = |x| (x ∈ R

N). We consider the following two cases:

(N-a) N ≥ 2 and Ω(t) has a fixed boundary (Γfix �= ∅) We set

Δu = urr + ((N − 1)/r)ur, Ω(t) = {x ∈ R
N | R < |x| < h(t)}, R ≥ 0,

Ω0 = {x ∈ R
N | R < |x| < h0}, h0 > R.

Here x ∈ Ω(t) means r = |x| ∈ (R, h(t)) and x ∈ ∂Ω(t) does r = |x| = R, h(t). Then
we find Γ(t) = {|x| = h(t)}, Γfix = {|x| = R}, and v = −μ∇u · n (t > 0, x ∈ Γ(t))
implies

h′(t) = −μur(t, h(t)) for t > 0.

Moreover we define Bu = 0 (t > 0, x ∈ ∂Ω(t)) by one of the following conditions

u(t, R) = 0, u(t, h(t)) = 0 for t > 0;

ur(t, R) = 0, u(t, h(t)) = 0 for t > 0

if R > 0. On the other hand if R = 0, then we set Bu = 0 (t > 0, x ∈ ∂Ω(t)) by

ur(t, 0) = 0, u(t, h(t)) = 0 for t > 0.

(N-b) N ≥ 2 and Ω(t) has no fixed boundaries (Γfix = ∅) We put

Δu = urr + ((N − 1)/r)ur, Ω(t) = {x ∈ R
N | g(t) < |x| < h(t)},

Ω0 = {x ∈ R
N | g0 < |x| < h0}, 0 < g0 < h0,

Here x ∈ Ω(t) means r = |x| ∈ (g(t), h(t)) and x ∈ ∂Ω(t) does r = |x| = g(t), h(t).
Then we find Γ(t) = {|x| = h(t), |x| = g(t)}, and v = −μ∇u · n (t > 0, x ∈ Γ(t))
implies

h′(t) = −μur(t, h(t)) for t > 0,

g′(t) = −μur(t, g(t)) for t > 0.

We define Bu = 0 (t > 0, x ∈ ∂Ω(t)) by

u(t, g(t)) = 0, u(t, h(t)) = 0 for t > 0.
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Problem (1.1) is gifted with some backgrounds of both mathematics and natural
phenomenon. From a mathematical view-point, (1.1) is called a free boundary problem,
where we seek for positive solutions u(t, x) together with the moving interface Γ(t)
between Ω(t) = {x ∈ R

N | u(t, x) > 0} and {x ∈ R
N | u(t, x) = 0}. The problem

consists of four parts: a nonlinear reaction-diffusion equation, boundary conditions,
a one-phase Stefan condition and initial conditions. Until now a nonlinear reaction-
diffusion equation of the form:

ut − dΔu = f(u), t > 0, x ∈ Ω (1.4)

with a fixed domain Ω ⊂ R
N , has been studied by a lot of researchers. In (1.4), the

unknown function u is determined by the effect of diffusion dΔu with a diffusive coef-
ficient d > 0 and nonlinear interaction f(u) in fixed domain Ω. The problem has been
studied as one of the most important equations to reveal nonlinear phenomena because
it is a simple extension of heat equation ut = dΔu, and it also creates rich nonlinear
phenomena (cf. Smoller [61], Cantrell-Cosner [10] and Henry [35]). Differently from
(1.4), the equation in (1.1) is defined in a domain part of whose boundary is moving
as time passes, and its behavior is determined by so called Stefan condition

v = −μ∇u · n.

In a modeling of natural phenomena, problem (1.1) has been also studied since J.
Stefan started his work concerning (1.1) in 1889. He modeled the melting of ice to
water by (1.1) with f(u) ≡ 0, where u represents temperature of water and Γ(t) is an
interface of ice and water at t > 0. This model is now called the Stefan problem, and
the existence, uniqueness and asymptotic behaviors of solutions for the Stefan problem
have been investigated in detail (cf. Rubinstein [57], Friedman [25], Meirmanov [50],
Gupta [32] and Nogi-Yamaguchi [54]). In addition, problem (1.1) can be used to model
various phenomena. For example, we can observe a blow-up phenomenon for (1.1) in
a case where f(u) = up for p > 1. Indeed it was first observed by Fujita [27] that the
solution u of (1.4) with f(u) = up (p > 1) with initial data can blow up as t→ ∞. By
virtue of a comparison principle, we find that the solution of free boundary problem
(1.1) can also blow up as t→ ∞. Moreover all the time global solution have to decay as
t → ∞. Such interesting phenomena were shown in e.g. Aiki [1], Ghidouche-Souplet-
Tarzia [28], Souplet [63], Zhang-Lin [68] (see also the references therein). In this thesis,
we discuss (1.1) where the nonlinearity basically satisfies

f ∈ C1[0,∞), f(0) = f(1) = 0, f(u) < 0 for u > 1

which includes monostable/logistic nonlinearity (e.g. f(u) = u(1 − u)), bistable non-
linearity (e.g. u(u − c)(1 − u) for 0 < c < 1) and polystable nonlinearity (e.g.
f(u) = u(u − α1) · · · (u − αn)(1 − u) for 0 < α1 ≤ · · · ≤ αn ≤ 1). These nonlin-
earities are usually used in study of population dynamics in mathematical ecology and
they imply population growth or competition among species. As we have seen above,
problem (1.1) has many variations and it can be seen as one of the most important
and interesting problem in pure and applied mathematics.
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Mathematical models for the spread of species

The spread of species is one of the most important problem in mathematical ecology.
The species here include new or native animals or plants; non-native or disease infected
ones; and ones which have a bad influence on humans or ecosystems. There are lots
of works concerning the invasion ecology (cf. e.g. Lockwood-Hoopes-Marchetti [48]
and Shigesada-Kawasaki [59]). For example, Skellam showed in his work [60] constant
(linear) spreading speed of muskrat which had been introduced to Europe in 1905 (see
Figure 1).

Figure1. Spread of muskrat (reference to Skellam [60, p 200 (Fig.1, Fig.2)])

To model the linear spread speed, traveling wave solutions have been used so far. Con-
sider the Fisher-KPP equation (cf. Fisher [24] and Kolmogorov-Petrovsky-Piskunov
[42])

ut − duxx = u(a− bu), t > 0, x ∈ R, (1.5)

where a, b are positive constants and u represents population density. We seek for a
solution of (1.5) of the form: u(t, x) = w(x − ct), where c is a constant representing
spread speed. Then we find a unique positive solution (traveling wave solution) of
(1.5) with limx→−∞ u(t, x) = a/b, limx→+∞ u(t, x) = 0 for all t > 0, if |c| ≥ 2

√
ad (see

Figure 2). This result implies that the whole region must be occupied at a linear speed
by the wave of the population with a front x = ct as t→ ∞.

ct

t→ ∞
speed c

u = a/b

x

Figure 2. Traveling wave solutions for (1.5)

It is known that there are spreads of nonlinear speed in invasion phenomena (cf. Hast-
ings et al. [34]). For these processes, the traveling wave solutions have also greatly
helped us to understand the spatial spread of invasive species.

We consider another model for the spread of species, using a free boundary with
a Stefan condition. In population dynamics, a free boundary problem with a kind of
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Stefan conditions was studied by Mimura-Yamada-Yotsutani [51, 52, 53] and Lin [45]
for two-species models. Also for a single species case, a new model was proposed by
Du-Lin [18] in 2010. The model is described as a free boundary problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − duxx = u(a− bu), t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.6)

where d, μ, a, b and h0 are positive constants, u0 is a smooth function. In (1.6),
u = u(t, x) means a population density in time t and location x, and moving boundary
x = h(t) denotes a spreading front of one-dimensional habitat (0, h(t)). A characteristic
point of solutions for (1.6), compared with (1.5), is that the spreading front is precisely
described as a free boundary (see Figure 3).

habitat

ux(t, h(t))

h(t)

u(t, x) : density

x

Figure 3. The solution (u(t, x), h(t)) of free boundary problem (1.6)

Moreover the behavior of the free boundary is determined by Stefan condition h′(t) =
−μux(t, h(t)), which ecologically means that the speed of the propagation front is pro-
portional to the population pressure at the spreading front. To consider the validness
of the introduction of the Stefan condition to this ecological problem, it may be better
to go back to Skellam’s investigation. It has been proved in [18] that, for any solution
of (1.6), the free boundary have to satisfy limt→∞ h(t)/t = k0 for some constant k0 > 0.
This result is suited to the situation observed by Skellam that the propagation front
spreads at a constant speed. We can refer to Bunting-Du-Krakowski [6] and Lin [45]
for more numerical and theoretical information. We can also find the development of
spreading speed analysis in Chapter 4. In [18], they also showed the existence and
uniqueness of solutions for (1.6) and proved a remarkable result on the asymptotic
behaviors of solutions as t → ∞. We still have other approaches to model the spread
of species, for which we can refer to e.g. [48].

Spreading and vanishing

It is characteristic of free boundary model (1.1) that the asymptotic behaviors of so-
lutions as t → ∞ are divided into two cases called spreading (propagation) and
vanishing (extinction). This phenomenon was first observed in (1.6) by Du-Lin
[18]. They proved that any solution (u(t, x), h(t)) of (1.6) satisfies one of the following
properties as t→ ∞:
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(i) Spreading: limt→∞ h(t) = ∞, limt→∞ u(t, x) = a/b locally uniformly in [0,∞);

(ii) Vanishing: limt→∞ h(t) ≤ (π/2)
√
d/a, limt→∞ ‖u(t, ·)‖C(0,h(t)) = 0,

where spreading means the species succeed to spread to the whole region and get a
constant spatial distribution there, while vanishing implies the habitat of the species
must stay in a bounded interval and the population density converges uniformly to 0
in large time. They call this phenomenon spreading-vanishing dichotomy. Since
the work of Du-Lin [18], such dichotomy results have been studied by many researchers
from various aspects. It has turned out that such a dichotomy phenomenon still holds
true in any dimension, for various boundary conditions at fixed boundary and various
nonlinearities. However the behaviors of solutions as t → ∞ are quite different from
each factor. The dichotomy result obtained by [18] was extended to a multi-dimensional
radially symmetric problem for a monostable equation in Du-Guo [14], and Kaneko-
Yamada [39] have first discussed the problem with different boundary condition and
more general nonlinearity including monostable and bistable ones. We now have un-
derstood more detailed results focusing on various nonlinear terms by Du-Lou [20],
Kaneko-Oeda-Yamada [38] and Liu-Lou [46, 47]; a sharp estimate of spreading speed
and an asymptotic profile of solutions by Du-Matsuzawa-Zhou [22, 23]; a spreading
speed analysis by Du-Liang [17]; multi-dimensional radially symmetric problems with
various nonlinearities and boundary conditions by Kaneko [36]; a multi-dimensional
problem in a general domain by Du-Guo [15] and Du-Matano-Wang [21].

In this thesis we will further prove a general dichotomy theorem which allows,
as in (1.1), more general polystable nonlinearity, various boundary conditions and any
spatial dimension. The theorem shows, for any solution of (1.1) where the nonlinear
function satisfies

f ∈ C1[0,∞), f(0) = f(1) = 0, f(u) < 0 for u > 1, f ′(0) �= 0, (1.7)

either (i) or (ii) holds true as t→ ∞:

(i) Spreading: limt→∞ Ω(t) = R
N \BR, lim inft→∞ ‖u(t, ·)‖C(Ω(t)) > 0;

(ii) Vanishing: limt→∞Ω(t) is a bounded set in R
N \BR, limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0.

Moreover ‖u(t, ·)‖C(Ω(t)) = O(e−βt) for some β > 0 as t→ ∞,

where R is a non-negative constant defined in (1.1), constant β depends on f ′(0), BR

is a multi-dimensional ball centered in R
N with radius R and limt→∞ Ω(t) = R

N \ BR

means limt→∞ Ω(t) ⊃ M for any subset M in R
N \ BR. Although spreading leaves a

possibility of classifying the behavior of u in more detail, it is easily understood from
this dichotomy theorem whether the species can spread and survive or not. For the
proof, we need to reveal an underlying principle to determine spreading and vanishing.

Criteria for spreading and vanishing

It is very important to give criteria for spreading and vanishing; that is, for any given
initial data (u0, h0) and arbitrary given coefficients in the problem, we need to consider



13

weather the species will actually spread or vanish in large time. It also corresponds to
giving sufficient conditions of solutions for spreading or vanishing as t→ ∞. Generally
speaking, we can show that, as t→ ∞, spreading occurs if initial data u0 and the radius
of Ω0 are sufficiently large, while vanishing occurs if both u0 and the radius of Ω0 are
small enough. One of important ways to give a criterion for spreading or vanishing is
to introduce a new parameter σ > 0 and a sample function φ which belongs to the
same class of functions as u0. Then we consider the solution of (1.1) where f satisfies
(1.7), and vary the parameter to determine a threshold number σ∗ > 0 depending on
φ and the radius of Ω0 such that

• if u0 > σ∗φ in Ω0, then spreading occurs;

• if u0 < σ∗φ in Ω0, then vanishing occurs;

• if u0 = σ∗φ in Ω0, then vanishing occurs for f ′(0) > 0, while spreading occurs for
f ′(0) < 0.

A similar criterion has been discussed by [20] in one dimension. Moreover, besides this
criterion, we can give another criterion and observe different behaviors of solutions from
each sign of f ′(0). If f is of (1.7) with f ′(0) > 0, then we can vary the speed parameter
μ in the Stefan condition. We find that there exists a threshold radius |x| = R∗

N ,
depending on d, R and f ′(0), which separates spreading and vanishing. In other words,
when vanishing occurs, outer free boundary h(t) must satisfy limt→∞ h(t) ≤ R∗

N , and
spreading always occur if h0 ≥ R∗

N . Hence it is suggested that, even if h0 < R∗
N , the

free boundary can go across the radius for sufficiently large μ, and thus the species
necessarily spread to the whole region as t → ∞. In fact there exists a threshold
number μ∗ <∞ depending on u0 and the radius of Ω0 such that

• if μ > μ∗, then spreading occurs;

• if μ ≤ μ∗, then vanishing occurs.

This result is not true to the case where f satisfies (1.7) with f ′(0) < 0 because of an
Allee effect. However we may find a threshold (transition) phenomenon if u0 = σ∗φ
in Ω0. In fact this phenomenon has been observed in several papers for N = 1 and
bistable nonlinearity (see Remark 2.6).

Main purpose

The main purpose of this paper is to show the following:

• the existence and uniqueness of solutions for (1.1) (well-posedness of the model)

• spreading and vanishing for the asymptotic behaviors of solutions as t → ∞
(eventual habitat and spatial distribution)
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The existence and uniqueness of global solutions and the continuous dependence on
parameters are essential to study ecological models. We will reveal an underlying prin-
ciple to determine spreading or vanishing, and then we can prove the general dichotomy
theorem, give criteria for spreading or vanishing, and show a decay rate of solutions
when vanishing occurs as t→ ∞.

Our main methods of analysis are (strong) maximum principles for parabolic and
elliptic equations, comparison principles, monotone methods, construction of upper and
lower solutions, an energy method, a zero number argument, and some ODE methods
including Sturm’s comparison theorem.

Related free boundary models

We will here briefly introduce papers about related free boundary problems; a model in
time-periodic environment by Du-Guo-Peng [16] and one in heterogeneous environment
by Zhou-Xiao [70]; a free boundary problem for advection-diffusion equations by Gu-
Lin-Lou [29, 30] and Kaneko-Matsuzawa [37]; a free boundary problem with another
Stefan-like condition by Cai [7] and Cai-Lou-Zhou [8]; a free boundary model for a
prey-predator system by Wang [66] and Zhao-Wang [69], and one for a competition
system by Guo-Wu [31], Du-Lin [19] and Wang-Zhang [67]; a free boundary model for
seasonal succession by Peng-Zhao [55]. There are interesting applications for a SIR
model by Kim-Lin-Zhang [40] and Kim-Lin-Zhu [41], and also for information diffusion
by Lei-Lin-Wang [44]. Although we could not cover all papers and preprints concerning
these models in the thesis, we may find them from the above papers and references
therein.

The rest of the thesis is organized as follows; in Chapter 2 we study free boundary
problems (1.1) in the case of (1-a); in Chapter 3 we discuss the multi-dimensional
problems for (N-a) and (N-b); in Chapter 4 we consider the spreading speed of the
propagation front for the problem with (1-b).



Chapter 2

A free boundary problem in one
dimension

2.1 Problem

In this chapter we study the following free boundary problem:

(FBP)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − duxx = f(u), t > 0, 0 < x < h(t),

u(t, 0) = 0 (resp. ux(t, 0) = 0), t > 0,

u(t, h(t)) = 0, t > 0,

h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

where μ, d and h0 are positive constants, and initial function u0 satisfies

u0 ∈ C2[0, h0], u0 > 0 in (0, h0), u0(0) = u0(h0) = 0 (resp. u′0(0) = u0(h0) = 0). (2.1)

Throughout sections 2.2 - 2.4, we discuss problem (FBP) for nonlinear reaction-diffusion
equations with a nonlinear function f = f(u) belonging to the following space:

Sf := {f : [0,∞) → R| f is locally Lipschitz continuous, f(0) = 0, f(u) < 0 for u > 1},

where f is called locally Lipschitz continuous if and only if, for any bounded set
K ⊂ [0,∞), there exists a positive constant L such that

|f(x)− f(y)| ≤ L|x− y| for x, y ∈ K. (2.2)

We again recall that u = u(t, x) represents the population density of a species whose
habitat is an interval (0, h(t)) (see Figure 4). At the fixed boundary x = 0, u(t, 0) = 0
is called the Dirichlet boundary condition which implies that a region (−∞, 0]
is a hostile environment for the species, while ux(t, 0) = 0 is called the Neumann
boundary condition which means that the species cannot enter the region.

15
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habitat

ux(t, h(t))

h(t)

u(t, x) : density

x

Figure 4. The solution of (FBP) with the Dirichlet boundary condition at x = 0.

The main purpose of this chapter is to show

• the existence and uniqueness of solutions for (FBP) (well-posedness of the model)

• the large time behaviors of solutions

• give a criterion for spreading or vanishing

Moreover we will find that the asymptotic behaviors of solutions for (FBP) as t → ∞
are closely related to an elliptic boundary-value problem in the bounded domai⎧⎪⎨⎪⎩

dqxx + f(q) = 0, 0 < x < l,

q(x) > 0, 0 < x < l,

q(0) = q(l) = 0 (resp. qx(0) = q(l) = 0)

(2.3)

and an elliptic problem in a half interval:⎧⎪⎨⎪⎩
dvxx + f(v) = 0, x > 0,

v(x) > 0, x > 0,

v(0) = 0 (resp. vx(0) = 0).

(2.4)

We denote Ω(t) = (0, h(t)) and D(t) =
⋃

0<s≤t{s} × Ω(s) (see figure 1). The main
results and their proofs in this chapter are based on works [39] and [38].

x

t

0

x = h(t)

h0

u(t, 0) = 0 u(t, h(t)) = 0

u0(x)

ut − duxx = f(u)

h′(t) = −μux(t, h(t))

(ux(t, 0) = 0)

Figure 5. the domain of (FBP)
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2.2 Existence and uniqueness of solutions

In this section we prove there exists a unique global solution for (FBP) and the solution
depends continuously on initial data and coefficients in the equation. For this purpose
we show the local existence and uniqueness of solutions and a priori estimates for u(t, x)
and h′(t) that is essential to extend the local solution globally in time.

The main theorems are given as follows.

Theorem 2.1. Let (u0, h0) satisfy (2.1) and let f ∈ Sf . For any given constant α ∈
(0, 1), there exists a positive number T such that (FBP) has a unique solution

(u, h) ∈ {C (1+α)
2

,1+α(D(T )) ∩ C1+α
2
,2+α(D(T ))} × C1+α

2 [0, T ],

where T is depending on h0, α and ‖u0‖C2[0,h0].

Theorem 2.2. Problem (FBP) has a unique classical solution (u, h) and there exist
positive constants C1, C2 depending on ‖u0‖C(0,∞) and ‖u0‖C1(0,∞) respectively such that

0 < u(t, x) ≤ C1 for (t, x) ∈
⋃
t≥0

({t} × Ω(t)), 0 < h′(t) ≤ μC2 for t ≥ 0.

Theorem 2.3. The solution of (FBP) depends continuously on initial data (u0, h0),
coefficients d, μ and nonlinearity f in the equation.

We prove Theorems 2.1 –2.3 in the following.

Proof of Theorem 2.1. We prove this theorem in the same way as [11], [18] and [45]
and especially follow the argument in [18]. The difference is that we deal with general
nonlinearity f(u) in the equation. We divide the proof into three steps.
Step1. Change the variable from free boundary to fixed boundary.

Let ζ(y) be a C∞[0,∞)-function satisfying

|ζ ′(y)| < 6

h0
, ζ(y) =

⎧⎪⎨⎪⎩
1, |y − h0| < h0

4
,

0, |y − h0| > h0
2
.

Using this function, we change the variable by

(t, x) −→ (t, y); x = ϕ(y) := y + ζ(y)(h(t)− h0).

The transformation means, if |y−h0| > h0/2, then x = y, while if |y−h0| < h0/4, then
x = y + h(t) − h0, and it especially changes the free boundary x = h(t) to the fixed
line y = h0. Moreover x = ϕ(y) is monotone increasing with respect to y ∈ [0,∞) as
long as

|h(t)− h0| ≤ h0
8

(2.5)
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because ϕ′(y) = 1 + ζ ′(y)(h(t) − h0) > 1/4. Hence the above transformation is a
diffeomorphism from [0,∞) onto [0,∞). We calculate

∂y

∂x
=

1

1 + ζ ′(y)(h(t)− h0)
=:

√
A(t, y),

∂2y

∂x2
= − ζ ′′(y)(h(t)− h0)

[1 + ζ ′(y)(h(t)− h0)]3
=: B(t, y),

− 1

h′(t)
∂y

∂t
=

ζ(y)

1 + ζ ′(y)(h(t)− h0)
=: C(t, y).

Then, setting w(t, y) = u(t, y + ζ(y)(h(t)− h0)), we get

ut = wt − h′(t)C(t, y)wy, ux =
√
A(t, y)wy,

uxx = A(t, y)wyy +B(t, y)wy.

Therefore (FBP) is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − dA(t, y)wyy − (dB(t, y) + h′(t)C(t, y))wy = f(w), t > 0, 0 < y < h0,

w(t, 0) = 0 (resp. wy(t, 0) = 0), t > 0,

w(t, h0) = 0, t > 0,

w(0, y) = u0(y), 0 ≤ y ≤ h0

(2.6)

and

h′(t) = −μwy(t, h0) for t > 0, h(0) = h0, (2.7)

where A(t, y), B(t, y) and C(t, y) are smooth functions for (t, y) ∈ [0,∞)× [0, h0]. For
0 < T < h0/(8(1 +H0)), we define

D1T = {w ∈ C(QT ) | w(0, y) = u0(y), ‖w − u0‖C(QT ) ≤ 1},
D2T = {h ∈ C1[0, T ] | h(0) = h0, h

′(0) = H0, ‖h′ −H0‖C[0,T ] ≤ 1},

where QT = [0, T ]× [0, h0] and H0 := −μu′0(h0). Then D = D1T ×D2T is metric space
with the metric

d((w1, h1), (w2, h2)) = ‖w1 − w2‖C(QT ) + ‖h′1 − h′2‖C[0,T ].

Also, by ‖h1 − h2‖C[0,T ] ≤ T‖h′1 − h′2‖C[0,T ] for all h1, h2 ∈ D2T , we have

|h(t)− h0| ≤ T |h′(t)|
≤ T (1 +H0)

≤ h0/8,

and hence the transformation (t, x) → (t, y) is valid by (2.5).

Step 2. Define a mapping F : D → C(QT )× C1[0, T ].
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To construct the solution for the problem (2.6), we will use the contraction mapping
theorem. For any (w, h) ∈ D, consider the following linear partial differential equation
with time dependent coefficients:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt − dA(t, y)wyy − (dB(t, y) + h′(t)C(t, y))wy = f(w), 0 < t < T, 0 < y < h0,

w(t, 0) = 0 (resp. wy(t, 0) = 0), 0 < t < T,

w(t, h0) = 0, 0 < t < T,

w(0, y) = u0(y), 0 ≤ y ≤ h0,

where d, h0, A(t, y), B(t, y) and C(t, y) are the same as those in (2.6). It is well known
that, by the Lp-estimate for parabolic equations, the problem admits a unique solution
w ∈ W 1,2

p (QT ) for any p > 1 with

‖w‖W 1,2
p (QT ) ≤ C0(‖u0‖W 2

p [0,h0] + ‖f(w)‖Lp(QT )). (2.8)

for some constant C0 > 0 (cf. [43]). In addition we can easily choose C1 = C1(h0) > 0
to satisfy

‖u0‖W 2
p [0,h0] ≤ C1‖u0‖C2[0,h0]. (2.9)

For large p, Sobolev’s embedding theorem (cf. [43]) shows w ∈ C
1+α
2

,1+α(QT ) and there
exists C2 = C2(α) > 0 such that

‖w‖
C

1+α
2 ,1+α(QT )

≤ C2‖w‖W 1,2
p (QT ). (2.10)

Therefore it follows from (2.8) – (2.10) that

‖w‖
C

1+α
2 ,1+α(QT )

≤ C, (2.11)

where C > 0 is a constant depending on h0, α and ‖u0‖C2[0,h0].

We next define

h(t) = h0 − μ

∫ t

0

wy(s, h0) ds.

Then it follows that

h
′
(t) = −μwy(t, h0), h(0) = h0, h

′
(0) = H0. (2.12)

Hence h ∈ C1[0, T ] and it holds from (2.11) and (2.12) that

‖h′‖
C

α
2 [0,T ]

≤ μC.

We now define the mapping F : D → C(QT )×C1[0, T ] by F (w, h) = (w, h). Then,
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F maps D into itself. Indeed

‖w − u0‖C(QT ) = max
t∈[0,T ], y∈[0,h0]

|w(t, y)− w(0, y)|

≤ max
t∈[0,T ], y∈[0,h0]

{ |w(t, y)− w(0, y)|
t
1+α
2

t
1+α
2

}
≤ max

t,s∈[0,T ], y∈[0,h0], t 	=s

{ |w(t, y)− w(s, y)|
|t− s| 1+α

2

}
T

1+α
2

= ‖w‖
C

(1+α)
2 ,0(QT )

T
1+α
2

≤ CT
1+α
2 .

Moreover,

‖h′ −H0‖C[0,T ] = max
t∈[0,T ]

|h′(t)− h
′
(0)|

≤ max
t,s∈[0,T ], t 	=s

{ |h′(t)− h
′
(s)|

|t− s|α2
}
T

α
2

= ‖h′‖
C

α
2 [0,T ]

T
α
2

≤ μCT
α
2 .

Setting T ≤ min{C−2/(1+α), (μC)−2/α}, we see

‖w − u0‖C(QT ) ≤ 1, ‖h′ − h0‖C[0,T ] ≤ 1.

Hence, recalling (2.12) and w(0, y) = u0(y), we find F (w, h) = (w, h) ∈ D.

Step 3. F is a contraction mapping and there exists a unique solution for (FBP).

For any (wi, hi) ∈ D (i = 1, 2), we set (wi, hi) = F (wi, hi) (i = 1, 2) and U =
w1 − w2. Then U = U(t, y) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ut − dA′

2(t, y)Uyy − (dB2(t, y) + h′2(t)C2(t, y))Uy = g(t, y), 0 < t < T, 0 < y < h0,

U(t, 0) = 0 (resp. Uy(t, 0) = 0), 0 < t < T,

U(t, h0) = 0, 0 < t < T ,

U(0, y) = 0, 0 ≤ y ≤ h0,

whereAi(t, y), Bi(t, y), Ci(t, y) (i = 1, 2) is generated by hi(t), and g(t, y) = d(A1(t, y)−
A2(t, y))(w1)yy + d(B1(t, y) − B2(t, y))(w1)y + (h′1(t)C1(t, y) − h′2(t)C2(t, y))(w1)y +
f(w1)− f(w2). Using the Lp-estimate for parabolic equations, we find that

‖w1 − w2‖W 1,2
p (QT ) = ‖U‖W 2,1

p (QT ) ≤ C0‖g‖Lp(QT ). (2.13)

Moreover, by the direct calculations, the right hand side of (2.13) is estimated as
follows:

‖d(A1 − A2)(w1)yy‖Lp(QT ) ≤ D1‖h1 − h2‖C[0,T ],

‖d(B1 −B2)(w1)y‖Lp(QT ) ≤ D2‖h1 − h2‖C[0,T ],

‖(h′1C1 − h′2C2)(w1)y‖Lp(QT ) ≤ D3‖h1 − h2‖C[0,T ] +D4‖h′1 − h′2‖C[0,T ],

‖f(w1)− f(w2)‖Lp(QT ) ≤ D5‖w1 − w2‖C(QT ),
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where D1, D2, D3, D4 and D5 are positive constants depending on h0. Thus, there
exists D6 = D6(h0) such that

‖g‖Lp(QT ) ≤ D6(‖w1 − w2‖C(QT ) + ‖h1 − h2‖C1[0,T ]). (2.14)

It follows from (2.13) and (2.14) that

‖w1 − w2‖W 1,2
p (QT ) ≤ C0D6(‖w1 − w2‖C(QT ) + ‖h1 − h2‖C1[0,T ]).

Hence, for large p, Sobolev’s embedding theorem shows

‖w1 − w2‖
C

1+α
2 ,1+α(QT )

≤ D(‖w1 − w2‖C(QT ) + ‖h1 − h2‖C1[0,T ]), (2.15)

where the constant D depends on h0 and α. On the other hand

‖h′1 − h
′
2‖C α

2 [0,T ]
≤ μ‖w1,y − w2,y‖C α

2 ,0(QT )

≤ μ‖w1 − w2‖
C

1+α
2 ,1+α(QT )

.
(2.16)

In addition, referring to the estimate in Step 2, we get

‖w1 − w2‖C(QT ) ≤ ‖w1 − w2‖
C

1+α
2 ,1+α(QT )

T
1+α
2 ,

‖h′1 − h
′
2‖C[0,T ] ≤ ‖h′1 − h

′
2‖C α

2 [0,T ]
T

α
2 .

(2.17)

By using (2.17) and T
1+α
2 ≤ T

α
2 for small T , we obtain

‖F (w1, h1)− F (w2, h2)‖ = d((w1, h1), (w2, h2))

= ‖w1 − w2‖C(QT ) + ‖h′1 − h
′
2‖C[0,T ]

≤ T
α
2 (‖w1 − w2‖

C
1+α
2 ,1+α(QT )

+ ‖h′1 − h
′
2‖C α

2 [0,T ]
.

It follows from (2.15) and (2.16) that

‖F (w1, h1)− F (w2, h2)‖ ≤ T
α
2D(μ+ 1)(‖w1 − w2‖C(QT ) + ‖h1 − h2‖C1[0,T ])

≤ T
α
2D(μ+ 1)(‖w1 − w2‖C(QT ) + (1 + T )‖h′1 − h′2‖C[0,T ])

≤ 2T
α
2D(μ+ 1)(‖w1 − w2‖C(QT ) + ‖h′1 − h′2‖C[0,T ]).

Finally we will choose

T ≤ T ∗ = min
{
1,

( 1

4D(μ+ 1)

) 2
α
, (μC)−

2
α , C− 2

1+α ,
h0

8(1 +H0)

}
,

and then

‖F (w1, h1)− F (w2, h2)‖ ≤ 1

2
(‖w1 − w2‖C(QT ) + ‖h1 − h2‖C1[0,T ]).
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Therefore, the contraction mapping theorem shows that a fixed point (w∗, h∗) uniquely
exists and (w∗, h∗) is the unique solution of (2.6) and (2.7) which belongs to

w∗ ∈ C
1+α
2

,1+α(QT ), h∗ ∈ C1+α
2 [0, T ].

Due to f(w∗) ∈ C
α
2
,α(QT ), the Schauder estimate shows

w∗ ∈ C1+α
2
,2+α((0, T ]× [0, h0]).

Since (FBP) is equivalent to problem (2.6) and (2.7), we find that there is a unique
classical solution of (FBP) for 0 < t ≤ T . �

Proof of Theorem 2.2. We first show a priori estimates of u and h in D(T ) for any
given T > 0. By the strong maximum principle (cf. Protter and Weinberger [56],
Smoller [61]) we find

u(t, x) > 0 for (t, x) ∈ D(T ) and ux(t, h(t)) < 0 for t ∈ (0, T ]. (2.18)

Define C1 := max{‖u0‖C(Ω0)
, 1} and let u = u(t) be the solution of an initial value

problem: ⎧⎨⎩
du

dt
= f(u), t > 0,

u(0) = C1.

We can easily find u(t) ≤ C1 for t ≥ 0 and we get from the comparison theorem (cf.
Protter and Weinberger [56], Smoller [61]) that u(t, x) ≤ u(t) in D(T ). Hence we have

0 < u(t, x) ≤ C1 for (t, x) ∈ D(T ).

By (2.18) we can see h′(t) = −μux(t, h(t)) > 0 for 0 < t ≤ T . and it remains to show
the boundedness of h′(t). We set

w(t, x) = −C1M
2(x− h(t))(x− h(t) + 2/M),

DM = {(t, x) ∈ R
2 | h(t)− 1/M < x < h(t) for 0 ≤ t ≤ T}

to compare w with u in DM , where

M = max{
√
N/(2dC1), ‖u′0‖C(Ω0)

/C1}, N = max
0≤u≤C1

f(u). (2.19)

Direct calculations show

wt = 2C1Mh′(t){1−M(h(t)− x)} ≥ 0,

wxx = −2C1M
2

for (t, x) ∈ DM , and hence

wt − dwxx ≥ 2dC1M
2 in DM .
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Setting U = w − u and , we see from (2.19) that

Ut − dUxx ≥ 2dC1M
2 − f(u)

≥ u(2dC1M
2 −N)

≥ 0

for (t, x) ∈ DM . Moreover U(t, h(t)) = w(t, h(t))− u(t, h(t)) = 0 and

U(t, h(t)−M−1) = w(t, h(t)−M−1)− u(t, h(t)−M−1)

= C1 − u(t, h(t)−M−1)

≥ 0.

Finally we compare the initial function. Note that in [h0 − 1/M, h0]

w(0, x) = C1M
2(h0 − x)(x− h0 + 2/M) ≥ C1M(h0 − x)

u0(x) =

∫ x

h0

u′0(y)dy ≤ ‖u′0‖C(Ω0)
(h0 − x).

Hence we find from (2.19) that

w(0, x) ≥ C1M(h0 − x) ≥ ‖u′0‖C(Ω0)
(h0 − x) ≥ u0(x)

for h0 − 1/M ≤ x ≤ h0. Thus, using the maximum principle, we can show

w(t, x)− u(t, x) = U(t, x) ≥ 0 in DM .

Noting that w(t, h(t)) = u(t, h(t)) = 0 that ux(t, h(t)) ≥ wx(t, h(t)) = −2C1M , we get

h′(t) = −μux(t, h(t)) ≤ −μwx(t, h(t)) ≤ μ(2C1M) =: μC2

for 0 ≤ t ≤ T .
By Theorem 2.1, there is a unique solution for 0 < t ≤ T for some T < ∞. We

next prove the unique solution is extended globally in time (cf. [18]). Let [0, Tmax) be
the maximal existence time in which the unique solution exists. To prove Tmax = ∞,
we assume Tmax <∞. By the above a priori estimates we find

0 ≤ u(t, x) ≤ C1, h0 ≤ h(t) ≤ h0 + μC2Tmax

for 0 ≤ t ≤ Tmax, 0 ≤ x ≤ h(t), where C1 and C2 are independent of Tmax. For
any δ0 ∈ (0, Tmax) and any M > Tmax, using the parabolic estimates and Sobolev’s
embedding theorem, we have

‖u(t, ·)‖C2(Ω(t)) ≤ C3 for all t ∈ [δ0, Tmax),

where C3 only depends on δ0, M , C1 and C2. Hence we can get a time interval τ > 0
which is independent of t ∈ [δ0, Tmax). Then, applying Theorem 2.1, we can extend
the solution with initial data at t = Tmax − τ/2 uniquely to t = Tmax − τ/2 + τ =
Tmax + τ/2 > Tmax. However this result contradicts the definition of Tmax, and thus
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Tmax = ∞. The proof is complete. �

Proof of Theorem 2.3. Let (uε, hε) be the solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(uε)t − dε(uε)xx = fε(uε), t > 0, 0 < x < hε(t),

uε(t, 0) = 0 (resp. (uε)x(t, 0) = 0), t > 0,

uε(t, hε(t)) = 0, t > 0,

h′ε(t) = −με(uε)x(t, h(t)), t > 0,

hε(0) = (h0)ε, uε(0, x) = (u0)ε(x), 0 ≤ x ≤ (h0)ε,

where dε, με, (h0)ε are positive constants, fε ∈ Sf and (u0)ε satisfies (2.1) with h0
replaced by (h0)ε, at least one of which is different from d, μ, h0, f and u0. Moreover
assume that as ε→ 0

dε → d, με → μ, (h0)ε → h0, fε(u) → f(u) for all u ≥ 0,

(u0)ε

((h0)εx
h0

)
→ u0(x) in C2(Ω0).

By Theorem 2.2, we find for any α ∈ (0, 1)

uε ∈ C1+α,2+α(Dε), hε ∈ C1+α(0,∞),

where Dε = ∪0<s<∞{s}×(0, hε(s)). Using the Ascoli-Arzela’s theorem, we can choose a
sub-sequence {ε′} and some function u∗ ∈ C1,2(D) (where D = ∪0<s<∞{s}× (0, h(s)))
and some function h∗ ∈ C1(0,∞) such that along the sub-sequence

lim
ε′→0

‖uε′ − u∗‖C1,2(Dε) = 0, lim
ε′→0

‖hε′ − h∗‖C1(0,∞) = 0.

Noting the uniqueness of solutions (u, h) of (FBP), we get u∗ ≡ u and h∗ ≡ h, and
thus along any sequence

lim
ε→0

‖uε − u‖C1,2(Dε) = 0, lim
ε→0

‖hε − h‖C1(0,∞) = 0.

The proof is complete. �

2.3 Energy identity and comparison principle

To discuss the asymptotic behaviors of solutions for (FBP) we prepare, in this section,
an energy identity and a comparison principle.

Lemma 2.1. Let (u, h) be any solution of (FBP) and define F (u) =
∫ u

0
f(s) ds. Then

the following identity holds true:

d

2
‖ux(t, ·)‖2L2(Ω(t)) +

∫ t

0

‖ut(s, ·)‖2L2(Ω(s)) ds+
d

2μ2

∫ t

0

h′(s)3 ds

=
d

2
‖u′0‖2L2(Ω0)

+

∫
Ω(t)

F (u(t, x)) dx−
∫
Ω0

F (u0(x)) dx.
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Lemma 2.2. For any given T > 0, let h ∈ C1[0, T ] and u ∈ C(D1(T )) ∩ C1,2(D1(T ))
satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − duxx ≥ f(u), (t, x) ∈ D1(T ),

u(t, 0) ≥ 0 (resp. ux(t, 0) ≤ 0), t ∈ (0, T ],

u(t, h(t)) = 0, t ∈ (0, T ],

h
′
(t) ≥ −μux(t, h(t)), t ∈ (0, T ],

where d and μ are positive constants and D1(T ) =
⋃

0≤s≤T ({s} × (0, h(s))). Moreover

let (u, h) be the solution of (FBP) with initial data (u0(x), h0). If h0 ≤ h(0) and u0(x) ≤
u(0, x) in [0, h0], then it holds that

h(t) ≤ h(t) in [0, T ] and u(t, x) ≤ u(t, x) in
⋃

0≤s≤T ({s} × (0, h(s))).

Lemma 2.3. For any given T > 0, let h ∈ C1[0, T ] and u ∈ C(D2(T )) ∩ C1,2(D2(T ))
satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − duxx ≤ f(u), (t, x) ∈ D2(T ),

u(t, 0) ≤ 0 (resp. ux(t, 0) ≥ 0), t ∈ (0, T ],

u(t, h(t)) = 0, t ∈ (0, T ],

h′(t) ≤ −μux(t, h(t)), t ∈ (0, T ],

where d and μ are positive constants and D2(T ) =
⋃

0≤s≤T ({s}×(0, h(s))). Moreover let
(u, h) be the solution of (FBP) with initial data (u0(x), h0). If h(0) ≤ h0 and u(0, x) ≤
u0(x) in [0, h(0)], then it holds that

h(t) ≤ h(t) in [0, T ] and u(t, x) ≤ u(t, r) in
⋃

0≤s≤T ({s} × (0, h(s))).

Definition 2.1. The couple of functions (u, h) in Lemma 2.2 is called an upper
(super-) solution of (FBP) for 0 ≤ t ≤ T . In a similar way we can denote a lower
(sub-) solution of (FBP) for 0 ≤ t ≤ T by (u, h) as in Lemma 2.3.

Lemma 2.4. For any given T > 0, let (uμi
, hμi

) (i = 1, 2) satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
(uμi

)t − d(uμi
)xx = f(uμi

), 0 < t ≤ T, 0 < x < hμi
(t),

uμi
(t, 0) = 0 (resp. (uμi

)x(t, 0) = 0), 0 < t ≤ T,

uμi
(t, hμi

(t)) = 0, 0 < t ≤ T,

h′μi
(t) = −μi(uμi

)x(t, hμi
(t)), 0 < t ≤ T,

where d is positive constant. If μ1 ≤ μ2, hμ1(0) ≤ hμ2(0), and uμ1(0, x) ≤ uμ2(0, x) in
[0, hμ1(0)], then

hμ1(t) ≤ hμ2(t) in [0, T ] and uμ1(t, x) ≤ uμ2(t, x) in
⋃

0≤s≤T ({s} × (0, hμ1(s))).
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Proof of Lemma 2.1. Consider the following identity.

d

dt

{d
2
‖ux(t, ·)‖2L2(Ω(t))

}
=
d

2
ux(t, h(t))

2h′(t) + d

∫
Ω(t)

ux(t, x)uxt(t, x) dx. (2.20)

Using the Stefan condition we find in (2.20)

d

2
ux(t, h(t))

2h′(t) =
d

2μ2
h′(t)3.

We differentiate u(t, h(t)) = 0 with respect to t to get

ux(t, h(t))h
′(t) + ut(t, h(t)) = 0.

Then, for the second term in the right-hand side of (2.20), integration by parts and
the above identity lead to

d

∫
Ω(t)

ux(t, x)uxt(t, x) dx = d
[
ux(t, x)ut(t, x)

]x=h(t)

x=0
− d

∫
Ω(t)

uxx(t, x)ut(t, x) dx

= dux(t, h(t))ut(t, h(t)) +

∫
Ω(t)

ut(t, x)(−duxx(t, x)) dx

= −dux(t, h(t))2h′(t) +
∫
Ω(t)

ut(t, x)(f(u(t, x))− ut(t, x)) dx

= − d

μ2
h′(t)3 +

∫
Ω(t)

ut(t, x)(f(u(t, x))− ut(t, x)) dx.

where we have used ut(t, 0) = 0 (or ux(t, 0) = 0 for the Neumann problem). It follows
that

d

dt

{d
2
‖u(t, ·)‖2L2(Ω(t))

}
= − d

2μ2
h′(t)3 − ‖ut(t, ·)‖2L2(Ω(t)) +

∫
Ω(t)

∂

∂t
F (u(t, x)) dx

= − d

2μ2
h′(t)3 − ‖ut(t, ·)‖2L2(Ω(t)) +

d

dt

∫
Ω(t)

F (u(t, x)) dx.

Hence integrating this identity over [0, t], we get the conclusion. �

Proof of Lemma 2.2. We basically follow the argument of [18] to prove this lemma.
Let (uε, hε) be any solution of⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(uε)t − d(uε)xx = f(uε), 0 < t ≤ T, 0 < x < hε(t),

uε(t, 0) = 0 (resp. (uε)x(t, 0) = 0), 0 < t ≤ T,

uε(t, hε(t)) = 0, 0 < t ≤ T,

h′ε(t) = −μ(1− ε)(uε)x(t, hε(t)), 0 < t ≤ T,

hε(0) = (1− ε)h0, uε(0, x) = u0(h0x/hε(0)), 0 ≤ x ≤ hε(0),

where ε is so small that uε(0, x) ≤ u(0, x) for 0 ≤ x ≤ hε(0). We can apply the strong
maximum principle to show

uε(t, x) > 0 in Dε(T ), (uε)x(t, hε(t)) < 0 for 0 ≤ t ≤ T, (2.21)
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where Dε(T ) :=
⋃

0≤s≤T ({s}× (0, hε(s))). Moreover, by the continuous dependence on
parameters, we see that

lim
ε→0

hε(t) = h(t) in C1[0, T ], lim
ε→0

‖uε(t, ·)− u(t, ·)‖C(Dε(T )) = 0.

We will prove

hε(t) ≤ h(t) in [0, T ] and uε(t, x) ≤ u(t, x) in Dε(T ) (2.22)

because, by taking ε→ 0 in (2.22), we obtain

h(t) ≤ h(t) in [0, T ] and u(t, x) ≤ u(t, x) in D(T ).

Since hε(0) < h(0), we have hε(t) < h(t) for small t > 0, and we may assume

hε(t) < h(t) in [0, t∗), hε(t
∗) = h(t∗) and h′ε(t

∗) ≥ h
′
(t∗) (2.23)

for some t∗ ∈ (0, T ). Let w(t, x) = ekt(u(t, x) − uε(t, x)). Then, by (2.2), direct calcu-
lations show that

wt − dwxx ≥ kw + ekt(f(u)− f(uε))

≥ kw − sgn(u− uε)e
kt(u− uε)L

≥ (k − Lekt)w in Dε(T ),

where sgn(u) = 1 if u > 0, sgn(u) = 0 if u = 0 and sgn(u) = −1 if u < 0. Taking
suitably large k, we see that wt − dwxx ≥ 0 in Dε(T ). Note that w(t, 0) ≥ 0 (resp.
wx(t, 0) ≥ 0), w(t, hε(t)) ≥ 0 for 0 < t ≤ t∗ and w(0, x) = u(0, x) − uε(0, x) ≥ 0 in
[0, hε(0)]. Therefore, by the maximum principle, we find that w(t, x) ≥ 0 in Dε(T ).
Since hε(t

∗) = h(t∗) and w(t∗, hε(t∗)) = e−kt∗(u(t∗, h(t∗)) − uε(t
∗, hε(t∗))) = 0, we find

wx(t
∗, hε(t∗)) ≤ 0. Hence, taking account of (2.21), we see that

h
′
(t∗)− h′ε(t

∗) ≥ −μe−kt∗wx(t
∗, hε(t∗))− εμ(uε)x(t

∗, hε(t∗)) > 0

This contradicts (2.23), and consequently hε(t) ≤ h(t) in [0, T ]. Finally we use the
maximum principle again in Dε(T ) to get uε(t, x) ≤ u(t, x) and (2.22). This completes
the proof. �

We omit the proof of Lemma 2.3 because it is almost same as that of Lemma 2.2.

Proof of Lemma 2.4. Since h′μ2
(t) = −μ2(uμ2)x(t, hμ2(t)) ≥ −μ1(uμ2)x(t, hμ2(t)), the

solution (uμ2 , hμ2) is an upper solution of (FBP) with μ = μ1. Hence, using Lemma
2.2, we get the conclusion. �
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2.4 Properties of spreading and vanishing

In this section we show the underlying principle to determine the asymptotic behaviors
of solutions as t→ ∞. Let (u, h) be any solution of (FBP). Since the free boundary is
strictly increasing by Theorem 2.2, there exists a limit which satisfies

lim
t→∞

h(t) = ∞ or lim
t→∞

h(t) <∞.

In each case, the behavior of u as t → ∞ is different which is called spreading or
vanishing.

The following theorem gives a property of vanishing.

Theorem 2.4. If limt→∞ h(t) <∞, then limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0.

On the other hand, a property of spreading is given by the following theorem.

Theorem 2.5. Let (u, h) be the solution of (FBP) with initial data (q, l), where l > 0
and q(x) satisfies the differential inequity:⎧⎪⎨⎪⎩

dqxx + f(q) ≥ 0, 0 < x < l,

q > 0, 0 < x < l,

q(0) = 0 (resp. qx(0) = 0), q(l) = 0.

Then the following (i) – (iii) hold true:

(i) limt→∞ h(t) = ∞; that is limt→∞ Ω(t) = (0,∞),

(ii) u(t, x) is non-decreasing with respect to t > 0 in Ω(t),

(iii) limt→∞ u(t, x) = v∗(x) uniformly in any compact subset of [0,∞), where v∗ is a
minimal positive solution of{

dvxx + f(v) = 0, 0 < x <∞,

v(0) = 0 (resp. vx(0) = 0)

satisfying v∗(x) ≥ q(x) in [0, l].

Remark 2.1. In Theorem 2.5 the boundary condition of the initial function, q(0) =
0 (resp. qx(0) = 0), q(l) = 0, may be replaced by q(0) ≤ 0 (resp. qx(0) ≥ 0), q(l) ≤ 0.
In other words q(r) is regarded as a lower solution for (2.3).

We have the following property on spreading from Theorem 2.5.

Corollary 2.1. Suppose that functions q(x) and v∗(x) and positive number l are defined
as in Theorem 2.5. If h0 ≥ l and u0(x) ≥ q(x) in [0, l], then

lim
t→∞

Ω(t) = (0,∞) and lim inf
t→∞

u(t, x) ≥ v∗(x) for 0 < x <∞.
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Proof. Let (w(t, x), y(t)) be a solution of (FBP) with initial data (q, l). Then it follows
from Lemma 2.2 that

h(t) ≥ y(t) for t > 0 and u(t, x) ≥ w(t, x) for t > 0, 0 < x < y(t).

Taking t → ∞ in the above inequality, we get the conclusion because Theorem 2.5
shows limt→∞ y(t) = ∞ and limt→∞w(t, x) = v∗(x). �

Before giving the proof of Theorem 2.4, we prepare two important lemmas.

Lemma 2.5. Assume limt→∞ h(t) < ∞. If v(t, y) is defined by v(t, y) = u(t, h(t)y),
then {v(t, y)| t ≥ 1} is relatively compact in C1[0, 1].

Proof. We use the energy estimate. Note that

sup
t≥0, 0<x<h(t)

F (u(t, x)) ≤ max
0≤u≤C1

F (u) =: C3 <∞.

Since h∞ := limt→∞ h(t) <∞, it follows from Lemma 2.1 that for every t ≥ 0

d

2
‖ux(t, ·)‖2L2(Ω(t)) +

∫ t

0

‖ut(s, ·)‖2L2(Ω(s)) ds

+
d

2μ2

∫ t

0

h′(s)3 ds ≤ C0 + C3h∞,
(2.24)

where C0 = (d/2)‖u′0‖2L2(Ω0)
− ∫ h0

0
F (u0(x)) dx. The inequality gives

sup
t≥0

‖ux(t, ·)‖L2(Ω(t)) <∞. (2.25)

By the definition of v = v(t, y), we calculate

ux =
vy
h(t)

, uxx =
vyy
h(t)2

, ut = vt + vy

(
− h′(t)y

h(t)

)
,

and v satisfies the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt = a(t)vyy + b(t, y)vy + f(v), t > 0, 0 < y < 1,

v(t, 0) = 0 (resp. vy(t, 0) = 0), t > 0,

v(t, 1) = 0, t > 0,

v(0, y) = v0(y) := u0(h0y), 0 ≤ y ≤ 1,

(2.26)

where a(t) = d/h(t)2 and b(t, y) = h′(t)y/h(t). We treat (2.26) as an evolution equation
in L2(0, 1). Let A be a closed linear operator in L2(0, 1) with domainD(A) = H2(0, 1)∩
H1

0 (0, 1) (resp. D(A) = H2(0, 1)) and

Av = −vyy for v ∈ D(A).
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For each t ∈ [0,∞), define A(t) by

A(t)v = a(t)Av for v ∈ D(A).

By Theorem 2.2, we find 0 < h′(t) ≤ μC2 for all t ≥ 0, and hence

‖(A(t)− A(s))A(0)−1‖ = |(a(t)− a(s))a(0)−1| ≤ 2μC2h∞
h20

|t− s|.

It is well known that −A(t) is a sectorial operator generating an analytic semi-group
in L2(0, 1). Hence, making use of general theory of evolution equations (see Friedman
[25], Henry [35] or Tanabe [65]), we can construct evolution operators {U(t, s)}0≤s≤t

satisfying
‖AαU(t, s)‖ =M(α)(t− s)−α, 0 ≤ s < t <∞

for each 0 < α < 2, where ‖ · ‖ is the operator norm in L2(0, 1) and M(α) is a positive
number depending only on α (see also Mimura, Yamada and Yotsutani [51, Lemma
4.2]). Using the evolution operators, we can represent the solution v(t) of (2.26) as

v(t) = U(t, τ)v(τ) +

∫ t

τ

U(t, s)g(s) ds, (2.27)

where g(t, y) = b(t, y)vy(t, y)+f(v(t, y)) and b(t, y) = h′(t)y/h(t) is uniformly bounded
in [0,∞)× [0, 1]. Moreover, by the a priori estimate and (2.25),

m1 : = sup
t≥0

‖g(t, ·)‖L2(0,1)

≤ μC2

h0
sup
t≥0

‖vy(t)‖L2(0,1) + max
0≤v≤C1

|f(v)|

≤ μC2h∞
h0

sup
t≥0

‖vx(t)‖L2(0,1) + max
0≤v≤C1

|f(v)| <∞.

We operate v in (2.27) by Aα for α ∈ (0, 1) to get

Aαv(t) = AαU(t, τ)v(τ) +

∫ t

τ

AαU(t, s)g(s) ds.

Then we can show from the above estimate and supt≥0 ‖v(t)‖L2(0,1) ≤ C1 (where C1 is
defined in Theorem 2.2)

‖Aαv(t)‖L2(0,1) ≤ ‖AαU(t, τ)‖ · ‖v(τ)‖L2(0,1) +

∫ t

τ

‖AαU(t, s)‖ · ‖g(s)‖L2(0,1) ds

≤M(α)(t− τ)−αC1 +M(α)

∫ t

τ

(t− s)−αm1 ds

≤M(α)
{
C1(t− τ)−α +

m1

1− α
(t− τ)1−α

}
for t ≥ τ ≥ 0. For any t ≥ 1, taking τ ≥ 0 such that t− τ = 1, we have

‖Aαv(t)‖L2(0,1) ≤M(α)
{
C1 +

m1

1− α

}
.
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This estimate implies that {v(t)| t ≥ 1} is uniformly bounded in D(Aα). Then we
employ the following embedding result; the inclusion

D(Aα) ⊂ C1[0, 1]

is continuous and compact for 3/4 < α < 1 (see Henry [35, Theorems 1.4.8 and 1.6.1]).
Hence the proof is complete. �

Lemma 2.6. Assume limt→∞ h(t) < ∞. Then both h′(t) and ‖ut(t)‖L2(Ω(t)) are uni-
formly continuous with respect to t ∈ [1,∞).

Proof. Define v(t, y) = u(t, h(t)y). Since h∞ = limt→∞ h(t) < 0, we can use the same
argument in Lemma 2.5 to find that the inclusion D(Aα) ⊂ C1[0, 1] is continuous for
3/4 < α < 1. Following the arguments used in the proof of [51, Theorem 4.3], we can
derive

‖Aα(v(t)− v(τ))‖L2(0,1) ≤M1(θ, α)(t− τ)θ, t ≥ τ ≥ 1

for any 0 ≤ α < 1 and any θ ∈ (0, 1−α), whereM1(θ, α) is a positive number depending
on θ and α. Hence

t �−→ vy(t, y) is uniformly Hölder continuous in C[0, 1]-norm. (2.28)

This fact, in particular, implies that

t �−→ h′(t) = − μ

h(t)
vy(t, 1) is uniformly Hölder continuous. (2.29)

We next prove the uniform continuity of t �−→ ‖ut(t)‖L2(Ω(t)), using the theory
of evolution equations (see Tanabe [65]). Recall that v is expressed as (2.27) and
that t �−→ g(t, y) = (h′(t)y/h(t))vy(t, y) + f(v(t, y)) is uniformly Hölder continuous
in C[0, 1]-norm by (2.28) and (2.29). Hence we can use fundamental estimates for
{U(t, s)} to derive

t �−→ vt(t, ·) is uniformly continuous in L2(0, 1). (2.30)

Noting from the transformation that

‖ut(t)‖L2(Ω(t)) = h(t)1/2‖vt(t)− b(t, ·)vy(t)‖L2(0,1)

where b(t, y) = h′(t)y/h(t), we get the conclusion due to (2.28) – (2.30). �

Proof of Theorem 2.4. We make use of the energy identity to show the convergence
as t → ∞. Employing (2.24) in the proof of Lemma 2.1 (this is possible because
h∞ := limt→∞ h(t) <∞), we have∫ ∞

0

{
‖ut(t, ·)‖2L2(Ω(t)) + h′(t)3

}
dt ≤ C5,
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where C5 is some positive constant. Since both ‖ut(t)‖L2(Ω(t)) and h
′(t) are uniformly

continuous for t ≥ 1 (Lemma 2.6), the inequality enables us to prove

lim
t→∞

‖ut(t, ·)‖L2(Ω(t)) = 0 and lim
t→∞

h′(t) = 0. (2.31)

We introduce a new function v(t, y) by v(t, y) = u(t, h(t)y). As in Lemma 2.5, the
function satisfies (2.26), for convenience, which is denoted by⎧⎪⎪⎪⎨⎪⎪⎪⎩

vt = a(t)vyy + b(t, y)vy + f(v), t > 0, 0 < y < 1,

v(t, 0) = 0 (resp. vy(t, 0) = 0), t > 0,

v(t, 1) = 0, t > 0,

v(0, y) = v0(y) := u0(h0y), 0 ≤ y ≤ 1,

where a(t) = d/h(t)2 and b(t, y) = h′(t)y/h(t). Also, since {v(t, y)| t ≥ 1} is relatively
compact in C1[0, 1] (Lemma 2.5), we are able to choose a sequence of {tn} ↗ ∞ and
a nonnegative function v̂(y) to satisfy

lim
n→∞

v(tn, y) = v̂(y) in C1[0, 1] (2.32)

Observing

ut(t, x) = vt(t, y)− h′(t)y
h(t)

vy(t, y) = vt(t, y)− b(t, y)vy(t, y)

and (2.31), we find ‖vt(tn)‖L2(0,1) → 0 and g(tn, y) → 0 as n→ ∞. Hence v̂ satisfies

d

h2∞
v̂yy + f(v̂) = 0 for 0 < y < 1 (2.33)

in the L2(0, 1)-sense with v̂(0) = 0 (resp. v̂y(0) = 0) and v̂(1) = 0, and it also holds in
the classical sense by the elliptic regularity. Note that

h′(tn) = −μux(tn, h(tn)) = − μ

h(tn)
vy(tn, 1).

Letting n → ∞ in the above relation, we get 0 = −μv̂y(1)/h∞ by (2.31) and (2.32).
Hence v̂y(1) = 0. It can be seen that v̂ satisfies a second-order differential equation
(2.33) with v̂(1) = v̂y(1) = 0, and thus v̂ ≡ 0 from the uniqueness of solutions. Hence

lim
t→∞

‖u(t, ·)‖C(Ω(t)) = lim
t→∞

‖v(t, ·)‖C[0,1] = 0.

The proof is complete. �

Proof of Theorem 2.5. We will prove (ii) by the comparison principle (Lemmas 2.2
and 2.3) and the uniqueness of solutions. To clarify the dependence of solution (u, h) for
(FBP) on initial data (q, l) we write, in this paragraph, u(t, x; q, l) and h(t; q, l) instead
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of u(t, x) and h(t), respectively. Since (u(t, x), h(t)) ≡ (q(x), l) is a lower solution of
(FBP), Lemma 2.3 shows that for any τ ≥ 0

h(τ ; q, l) ≥ l and u(τ, x; q, l) ≥ q(x) in [0, l] (2.34)

We now compare the solution with initial data (u(τ, x; q, l), h(τ ; q, l)) to the solution
with (q(x), l). Then, by virtue of (2.34), the comparison principle gives, for every t ≥ 0,

h(t; u(τ ; q, l), h(τ ; q, l)) ≥ h(t; q, l)

and
u(t, x; u(τ ; q, l), h(τ ; q, l)) ≥ u(t, x; q, l) in [0, h(t; q, l)]. (2.35)

By the uniqueness of solutions for (FBP), we find

u(t, x; u(τ ; q, l), h(τ ; q, l)) = u(t+ τ, x; q, l)

for any t, τ ≥ 0. Hence (2.35) becomes

u(t+ τ, x; q, l) ≥ u(t, x; q, l) in [0, h(t; q, l)]

for any t, τ ≥ 0. Thus ut(t, x; q, l) ≥ 0 for 0 ≤ x ≤ h(t; q, l), t ≥ 0.
We can easily show (i) using the property of vanishing and (ii). If we assume

limt→∞ h(t) < ∞, then Theorem 2.4 implies limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0. By part (ii),
however, the function u(t, x) is non-decreasing in t ≥ 0 for 0 < x < h(t), which allows
us to get

lim inf
t→∞

u(t, x) ≥ q(x) > 0 in (0, l).

This is a contradiction, and hence the free boundary h(t) must satisfy limt→∞ h(t) = ∞,
that is limt→∞ Ω(t) = (0,∞).

Finally we prove the result (iii) on the convergence of solutions as t → ∞. Noting
that u(t, x) is non-decreasing with respect to t for each x ∈ (0, h(t)) and uniformly
bounded, we find a nonnegative function v̂(x) which satisfies

lim
t→∞

u(t, x) = v̂(x) for every x ≥ 0 (2.36)

and moreover v̂(x) = limt→∞ u(t, x) ≥ q(x) in [0, l]. We will show that v̂(x) is a solution
of the stationary problem. We multiply the equation by any function φ ∈ C∞

0 (0,∞)
and integrate it in (t, t+ δ)× (0,∞) with any δ > 0 to have∫ t+δ

t

∫ ∞

0

ut(s, x)φ(x) dxds = d

∫ t+δ

t

∫ ∞

0

u(s, x)φxx(x) dxds

+

∫ t+δ

t

∫ ∞

0

f(u(s, x))φ(x) dxds

(Here the integral makes sense because φ has a compact support in (0,∞)). By
Lebesgue’s dominated convergence theorem and the monotone convergence result (2.36),
it holds that

lim
t→∞

∫ t+δ

t

∫ ∞

0

ut(s, x)φ(x) dxds = lim
t→∞

{∫ ∞

0

u(t+ δ, x)φ(x) dx−
∫ ∞

0

u(t, x)φ(x) dx
}

= 0.
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Similarly we find

lim
t→∞

∫ t+δ

t

∫ ∞

0

u(s, x)φxx(x) dxds = δ

∫ ∞

0

v̂(x)φxx(x) dx,

lim
t→∞

∫ t+δ

t

∫ ∞

0

f(u(s, x))φ(x) dxds = δ

∫ ∞

0

f(v̂(x))φ(x) dx.

Hence v̂ satisfies

dv̂xx(x) + f(v̂(x)) = 0 for 0 < x <∞, v̂(0) = 0 (resp. v̂x(0) = 0)

in the weak sense, and hence it holds true in the classical sense by the elliptic regularity.
Here it should be noted that v̂ satisfies v̂ ≥ q in [0, l]. We can also show that v̂ ≡ v∗;
v̂ is actually a minimal positive solution satisfying v̂ ≥ q in [0, l]. Indeed let v is any
positive solution of (2.4) satisfying v(x) ≥ q(x) for 0 ≤ x ≤ l. Then by the comparison
principle we get u(t, x) ≤ v(x) for t > 0, 0 < x < h(t). Letting t → ∞ in this
inequality, we deduce

v̂(x) = lim
t→∞

u(t, x) ≤ v(x) for 0 < x <∞.

Since v is an arbitrary function satisfying v(x) ≥ q(x) for 0 ≤ x ≤ l, we obtain v̂ ≡ v∗.
Noting that v∗ is smooth (in particular, continuous) in [0,∞) and u is monotone in t,
we find from Dini’s theorem that

lim
t→∞

u(t, x) = v∗(x) uniformly in any compact subset of [0,∞).

Hence we complete the proof. �

2.5 General dichotomy theorem

Using the properties of spreading and vanishing constructed in the preceding section,
we can get the dichotomy theorem for a certain class of nonlinear functions.

Theorem 2.6. Let (u, h) be any solution of (FBP). Suppose that f satisfies

f ∈ C1[0,∞), f(0) = f(1) = 0, f(u) < 0 for u > 1 , f ′(0) �= 0. (2.37)

Then either (i) or (ii) holds true as t→ ∞ :

(i) Spreading: limt→∞Ω(t) = (0,∞), lim inft→∞ ‖u(t, ·)‖C(Ω(t)) > 0;

(ii) Vanishing: limt→∞ Ω(t) is a bounded set in (0,∞), limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0.

Remark 2.2. A general dichotomy theorem in multi-dimensions is shown in Theorem
3.6. In section 3.5, we can also get criteria for spreading and vanishing if f satisfies
(2.37).
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To prove Theorem 2.6, we need two propositions.

Proposition 2.1. Let (u, h) be any solution of (FBP). Suppose that f satisfies (2.37)
and f ′(0) > 0. If limt→∞ h(t) = ∞, then lim inft→∞ ‖u(t, ·)‖C(Ω(t)) > 0.

Proof. Let q(x) be an eigenfunction for the first eigenvalue λ1(l) of the problem{
dqxx + λ1q = 0, 0 < x < l,

q(0) = q(l) = 0 (resp. qx(0) = q(l) = 0),

where l > h0 is a large positive number so that f ′(0) > λ1(l). It is actually possible
for any given f ′(0) > 0 because λ1(l) is continuous and monotone decreasing with
respect to l, λ1(l) > 0 for all l > 0 and liml→+∞ λ1(l) = 0. By the assumption there
is some T > 0 such that h(T ) = l, and moreover we can choose small ε > 0 to satisfy
εq(x) ≤ u(T, x) in (0, l). Since f ′(0) > λ1(l), choosing ε sufficiently small if necessary,
we find that φ := εq satisfy{

dφxx + f(φ) ≥ 0, 0 < x < l,

φ(0) = φ(l) = 0 (resp. φx(0) = φ(l) = 0).

Consider the solution (w(t, x), s(t)) with initial data (φ, l). Then by Lemma 2.3 we
deduce

s(t) ≤ h(t+ T ) for t > 0 and w(t, x) ≤ u(t+ T, x) for t > 0, 0 < x < s(t).

Moreover, using Theorem 2.5, we find limt→∞ s(t) = ∞ and limt→∞w(t, x) = v(x)
uniformly in any compact set of [0,∞), where v is a unique solution of (2.4), and
consequently it follows that

lim inf
t→∞

u(t, x) ≥ lim
t→∞

w(t, x) = v(x) > 0 in (0,∞).

In particular lim inft→∞ ‖u(t, ·)‖C(Ω(t)) ≥ lim inft→∞ u(t, x) > 0. �

Proposition 2.2. Let (u, h) be any solution of (FBP). Suppose that f satisfies (2.37)
and f ′(0) < 0. If lim inft→∞ ‖u(t, ·)‖C(Ω(t)) = 0, then limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0 and
limt→∞ h(t) <∞.

Proof. By the assumption of f there is some σ ∈ (0, 1] such that f(u) < 0 for
u ∈ (0, σ). Moreover, since f(0) = 0, we can set f(u) = ug(u) and g satisfies

g(u) < 0 u ∈ [0, σ).

We will construct an upper solution (v(t, x), s(t)) for (FBP). Define

v(t, x) = σe−αt cos
( πx

2s(t)

)
and s(t) = s0(1 + δ(1− e−αt))
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for positive constants α, δ and s0. Then we find s′(t) = αs0δe
−αt > 0. By direct

calculations we have

vx = σe−αt
(
− π

2s(t)

)
sin

( πx

2s(t)

)
,

vxx = σe−αt
(
− π2

4s(t)2

)
cos

( πx

2s(t)

)
,

vt = −ασe−αt cos
( πx

2s(t)

)
+ σe−αt

(s′(t)πx
2s(t)2

)
sin

( πx

2s(t)

)
≥ −ασe−αt cos

( πx

2s(t)

)
for t > 0 and 0 ≤ x ≤ s(t). Hence it follows that

vt − dvxx − f(v) ≥ σe−αt cos
( πx

2s(t)

){
− α +

dπ2

4s(t)2
− g(v)

}
.

Since 0 ≤ v ≤ σ, we see that −g(v) ≥ min{−g(v); 0 ≤ v ≤ σ} =: m1 > 0. Then,
taking α ≤ m1, we deduce

−α +
dπ2

4s(t)2
− f(v) ≥ −α +

dπ2

4s20(1 + δ)2
+m1 > 0,

and consequently it holds that

vt − dvxx − f(v) ≥ 0 for t > 0, 0 ≤ x ≤ s(t). (2.38)

Moreover we can easily find

v(t, 0) > 0 and v(t, s(t)) = 0 for t ≥ 0. (2.39)

Next, choosing δ ≥ πμσ/(2αs20), we obtain

s′(t)− (−μvx(t, s(t))) = αs0δe
−αt − πμσ

2s(t)
e−αt

≥ αs0

(
δ − πμσ

2αs20

)
e−αt

≥ 0

(2.40)

for t > 0. Finally we will check the initial condition. By the assumption that
lim inft→∞ ‖u(t, ·)‖C(Ω(t)) = 0, there is some T ∗ > 0 such that u(T ∗, x) ≤ σ/2 for
0 ≤ x ≤ h(T ∗). Choosing large s0 satisfying s0 ≥ 3h(T ∗)/2 (≥ h0), we get

u(T ∗, x) ≤ σ

2
= σ cos

π

3
≤ σ cos

(πh(T ∗)
2s0

)
for 0 ≤ x ≤ h(T ∗).

Hence

u(T ∗, x) ≤ σ cos
(πh(T ∗)

2s0

)
≤ σ cos

( πx
2s0

)
= v(0, x) for 0 ≤ x ≤ h(T ∗). (2.41)
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It follows from (2.38) – (2.41) and the comparison principle (Lemma 2.2) that

u(t+ T ∗, x) ≤ v(t, x) and h(t+ T ∗) ≤ s(t) for t ≥ 0, 0 ≤ x ≤ h(t).

Thus

lim
t→∞

h(t) ≤ lim
t→∞

s(t) = s0(1 + δ), lim
t→∞

‖u(t, ·)‖C(Ω(t)) ≤ lim
t→∞

‖v(t, ·)‖C(Ω(t)) = 0,

and we complete the proof. �

Proof of Theorem 2.6. Since h(t) is strictly increasing, we find that Ω(t) = (0, h(t))
becomes a bounded set in (0,∞) or (0,∞) as t → ∞. In the former case Theorem
2.4 implies limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0. In the latter case we discuss the problem for
each case of f ′(0) > 0 and f ′(0) < 0, and we obtain lim inft→∞ ‖u(t, ·)‖C(Ω(t)) > 0 by
Propositions 2.1 and 2.2. �

2.6 Spreading and vanishing for logistic equations

We have already shown the general dichotomy result of spreading and vanishing in
Theorem 2.6. In this section, putting a more restrictive condition on f , we will show
more detailed asymptotic behaviors of solutions. To be more precise we assume that

f ∈ C1[0,∞), f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, f(u) > 0 (0 < u < 1),

f(u) < 0 (u > 1), f(u)/u is decreasing with respect to u ∈ [0, 1].

We call Case (A) (or a monostable/logistic case) when the nonlinear function
satisfies the above condition. In section 3.6 we will consider more general polystable
nonlinearity satisfying (2.37) and f ′(0) > 0, and generalize main theorems of this
section.

2.6.1 Main theorems

The following theorem is a dichotomy result for Case (A).

Theorem 2.7. Let (u, h) be any solution of (FBP). Then, either spreading (i) or
vanishing (ii) holds true:

(i) limt→∞ Ω(t) = (0,∞) and limt→∞ u(t, x) = v∗(x) uniformly in any compact subset
of [0,∞), where v∗ is a unique positive solution of (2.4);

(ii) limt→∞ Ω(t) ⊂ (0, R∗
1) and limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0, where R∗

1 = π
√
d/f ′(0)

(resp. (π/2)
√
d/f ′(0)). Moreover ‖u(t, ·)‖C(Ω(t)) = O(e−βt) for some β > 0 as

t→ ∞.
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Remark 2.3. The number R∗
1 in Theorem 2.7 is determined by f ′(0) = λ1(R

∗
1), where

λ1(l) is the least eigenvalue of⎧⎪⎨⎪⎩
−dφxx = λ1φ, 0 < x < l,

φ > 0, 0 < x < l,

φ(0) = φ(l) = 0 (resp. φr(0) = φ(l) = 0)

for l > 0. Indeed it is well known that λ1(l) is continuous and decreasing with respect
to l and that it satisfies liml→0 λ1(l) = +∞ and liml→+∞ λ1(l) = 0. Thus, there exists
a unique positive number R∗

1 such that f ′(0) = λ1(R
∗
1) and f

′(0) > λ1(l) for l > R∗
1.

Remark 2.4. When we put the Neumann boundary condition at x = 0 (ux(t, 0) = 0)
in (FBP), we find v∗(x) ≡ 1. Putting the Dirichlet boundary condition, we see that
v∗x(x) > 0 in [0,∞) and limx→∞ v∗(x) = 1.

In the following theorems we use the number R∗
1 given in Theorem 2.7.

Theorem 2.8. Let (u, h) be any solution of (FBP) and the following results hold true:

(i) Suppose h0 ≥ R∗
1. Then spreading occurs.

(ii) Suppose h0 < R∗
1.

(a) If initial function u0 is small enough to satisfy u0(x) ≤ w(x) in Ω0 for a
positive function w defined in Ω0, then vanishing occurs.

(b) If initial data satisfies∫ h0

0

xu0(x) dx >
d

2μ
((R∗

1)
2 − h20), h0 >

R∗
1√

μ/d+ 1(
resp.

∫ h0

0

u0(x) dx >
d

μ
(R∗

1 − h0), h0 >
R∗

1

μ/d+ 1

)
,

then spreading occurs.

We find from Theorem 2.8 that spreading always occurs when initial habitat is large
(Ω0 = (0, h0) ⊃ (0, R∗

1]). On the other hand if the habitat is small enough to satisfy
Ω0 ⊂ (0, R∗

1), then there still exist two possibilities. In that case initial population
density u0 or the Stefan coefficient μ determines the asymptotic behaviors of solutions.

Theorem 2.9. Suppose h0 < R∗
1. Let φ ∈ C2(Ω0) ∩ C(Ω0) be any function which

satisfies φ(0) = φ(h0) = 0 (resp. φx(0) = φ(h0) = 0). Then there exists a number
σ∗ = σ∗(φ, h0) ∈ (0,∞] such that spreading occurs if u0 > σ∗φ in Ω0 and vanishing
occurs if u0 ≤ σ∗φ in Ω0.

Theorem 2.10. Suppose h0 < R∗
1. Then there exists some number μ∗ = μ∗(u0, h0) ∈

[0,∞) such that spreading occurs for μ > μ∗, while vanishing occurs for μ ≤ μ∗.
Moreover, if f(u) ≤ f ′(0)u for u ≥ 0, then μ∗ ∈ (0,∞).
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2.6.2 Preliminaries

In this subsection we prepare some results on the fixed boundary problems and some
key propositions to prove the main theorems. We first consider the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut = duxx + f(u) t > 0, 0 < x < l,

u(t, 0) = 0 (resp. ux(t, 0) = 0), t > 0,

u(t, l) = 0, t > 0,

u(0, x) = ϕ(x), 0 ≤ x ≤ l,

(2.42)

where l is a positive number and ϕ is a nonnegative continuous function and ϕ �≡ 0.
It is well known that any solution u(t, x) of (2.42) converges to a positive solution
of the corresponding stationary problem as t → ∞ (see e.g. Brunovsky-Chow [5],
Hale-Massatt [33] or Matano [49]):⎧⎪⎨⎪⎩

dqxx + f(q) = 0, 0 < x < l,

q(0) = 0 (resp. qx(0) = 0),

q(l) = 0.

(2.43)

To be more precise, we have the following result.

Proposition 2.3. Let u = u(t, x) be any solution of (2.42) and R∗
1 = π

√
d/f ′(0) (resp.

(π/2)
√
d/f ′(0)).

(i) If l ≤ R∗
1, then q ≡ 0 is a unique solution of (2.43) and limt→∞ u(t, x) = 0

uniformly in [0, l];

(ii) If l > R∗
1, then (2.43) has a unique positive solution q = ql(x) and limt→∞ u(t, x) =

ql(x) uniformly in [0, l].

For the proof, see Cantrell and Cosner [10, Corollary 3.4]. The number R∗
1 is often

called “minimal patch size” in the sense that the population establishes themselves as
time tends to infinity if the length of their habitat is larger than R∗

1. Theorem 2.7 also
implies that this patch size has an important role in the free boundary problem.

We next prepare two key propositions for solutions (u, h) of (FBP).

Proposition 2.4. If limt→∞ h(t) <∞, then limt→∞ h(t) ≤ R∗
1

Proof. Assume that there exists T > 0 such that l := h(T ) > R∗
1 and consider the

solution w(t, x) of problem (2.42) with initial data satisfying ϕ(x) ≡ u(T, x). Then the
standard comparison problem shows

u(t+ T, x) ≥ w(t, x) for t > 0, 0 < x < l.

Note that, by Proposition 2.3, the function w(t) converges to the solution ql of (2.43)
as t→ ∞. Then we find

lim inf
t→∞

u(t, x) ≥ ql(x) > 0 for 0 < x < l,
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However this fact gives an contradiction because any solution of (FBP) with the prop-
erty limt→∞ h(t) < ∞ must satisfy limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0 by Theorem 2.4. Hence
limt→∞ h(t) ≤ R∗

1 and the proof is complete. �

Proposition 2.5. If limt→∞ h(t) = ∞, then u(t) converges to v∗ as t→ ∞ uniformly
in any compact subset of [0,∞), where v∗(x) is a unique positive solution of (2.4).

Proof. Since limt→∞ h(t) = ∞, for any given positive number l > R∗
1 we can take

T > 0 such that h(T ) = l. Then, as in the proof of Proposition 2.1, we obtain

lim inf
t→∞

u(t, x) ≥ lim
t→∞

w(t, x) = v∗(x) for x ≥ 0. (2.44)

Here we note that w(t) converges to v∗ uniformly in any compact subset of [0,∞)
because of Dini’s theorem and the non-decreasing of w(t) by Theorem 2.5.

We next consider the solution u(t, x) of⎧⎪⎨⎪⎩
ut − duxx = f(u), t > 0, x > 0,

u(t, 0) = 0 (resp. ux(t, 0) = 0), t > 0,

u(0, x) = max{1, ‖u0‖C(Ω0)}, x > 0.

It follows from u0(x) ≤ u(0, x) for x ≥ 0 that the standard comparison principle (see
Protter and Weinberger [56] or Smoller [61]) shows

u(t, x) ≤ u(t, x) for t ≥ 0, 0 < x < h(t). (2.45)

Moreover, because v ≡ M := max{1, ‖u0‖C(Ω0)} is regarded as an upper solution of
(2.4), the function u is monotone decreasing with respect to t and u(t) converges to
v∗(x) as t→ ∞ uniformly in any compact subset of [0,∞) (see Sattinger [58] or Smoller
[61]). Hence, letting t→ ∞ in (2.45), we obtain

lim sup
t→∞

u(t, x) ≤ lim
t→∞

u(t, x) = v∗(x) for 0 < x <∞. (2.46)

From (2.44), (2.46) and the uniform convergence of w and u to v∗, we find that u(t, x)
converges to v∗(x), as t→ ∞, uniformly in any compact subset of [0,∞), and the proof
is complete. �

2.6.3 Proofs of main theorems

Proof of Theorem 2.7.We can apply Theorem 2.6 to this case. Moreover Proposition
2.5 shows if Ω(t) = (0,∞), then u(t, x) converges to v∗(x) as t → ∞ uniformly in any
compact subset of (0,∞), while Proposition 2.4 implies if Ω(t) is bounded for all t > 0,
then it is included by the interval (0, R∗

1). When limt→∞ ‖u(t, ·)‖C(Ω(t)) = 0, there is
some T > 0 such that u(T, x) is sufficiently small. Then, as in the proof of part (ii-a)
in Theorem 2.8, we can prove

u(t, x) ≤ ε0e
−βt sin

(π − γ

s(t)
x+ γ

) (
resp. u(t, x) ≤ ε0e

−βt cos
( π

2s(t)
x
))



2.6. SPREADING AND VANISHING FOR LOGISTIC EQUATIONS 41

for t ≥ T, 0 < x < h(t), where s(t) = s0(1 + δ(1− e−αt)) and s0, ε0, α, β, γ and δ are
suitable constants. This implies ‖u(t, ·)‖C(Ω(t)) = O(e−βt) as t → ∞, and we complete
the proof. �

Proof of Theorem 2.8. (i) We remark that, when vanishing occurs, the free boundary
must satisfy limt→∞ h(t) ≤ R∗

1 by Theorem 2.7. Since h0 ≥ R∗
1 and h(t) is strictly

increasing with respect to t, we find limt→∞ h(t) > R∗
1. Hence Theorem 2.7 implies

limt→∞ h(t) = ∞ and spreading occurs.

(ii-a) We first discuss the case R∗
1 = π

√
d/f ′(0) (where we put the Dirichlet boundary

condition at x = 0 in (FBP)). Define

s(t) = s0(1 + δ(1− e−αt)) and v(t, x) = ε0e
−βt sin

(π − γ

s(t)
x+ γ

)
,

where s0 ∈ [h0, R
∗
1), γ ∈ (0, π/2), and α, β, δ and ε0 are positive constants. We will

prove that (v(t, x), s(t)) is an upper solution of (FBP) by choosing suitable positive
numbers. Since s0 < π

√
d/f ′(0), we have dπ2/s20 − f ′(0) > 0 and there exist small

positive constants γ and δ such that

d(π − γ)2

s20(1 + δ)2
− f ′(0) ≥ 2δ (2.47)

For such δ > 0, we can choose small ε0 > 0 to satisfy

f(v) ≤ (f ′(0) + δ)v for 0 < v ≤ ε0.

Then direct calculation gives

vx = ε0e
−βt

(π − γ

s(t)

)
cos

(π − γ

s(t)
x+ γ

)
,

vxx = −ε0e−βt
(π − γ

s(t)

)2

sin
(π − γ

s(t)
x+ γ

)
,

vt = −βε0e−βt sin
(π − γ

s(t)
x+ γ

)
+ ε0e

−βt
(−s′(t)(π − γ)x

s(t)2

)
cos

(π − γ

s(t)
x+ γ

)
.

Hence we get

vt − dvxx − f(v) ≥
{
− β +

d(π − γ)2

s(t)2
− f ′(0)− δ

}
ε0e

−βt sin
(π − γ

s(t)
x+ γ

)
− s′(t)(π − γ)x

s(t)2
ε0e

−βt cos
(π − γ

s(t)
x+ γ

)
≥

{
− β +

d(π − γ)2

s20(1 + δ)2
− f ′(0)− δ

}
ε0e

−βt sin
(π − γ

s(t)
x+ γ

)
− s′(t)(π − γ)x

s(t)2
ε0e

−βt cos
(π − γ

s(t)
x+ γ

)
.

(2.48)
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By (2.47), we can take β < δ to obtain

−β +
d(π − γ)2

s20(1 + δ)2
− f ′(0)− δ ≥ −β + δ > 0.

Hence {
− β +

d(π − γ)2

s20(1 + δ)2
− f ′(0)− δ

}
sin

(π − γ

s(t)
x+ γ

)
> 0 (2.49)

for t > 0, 0 ≤ x < s(t). If the second term in the right-hand side of (2.48) is negative,
then we can immediately obtain vt − dvxx − f(v) ≥ 0. However we actually find

cos
(π − γ

s(t)
x+ γ

){
≥ 0 for t > 0, 0 ≤ x ≤ Xt := (π − 2γ)s(t)/{2(π − γ)},
≤ 0 for t > 0, Xt ≤ x ≤ s(t).

For t > 0, 0 ≤ x ≤ Xt, because of 0 < s′(t) ≤ s0αδ, it holds that

−s
′(t)(π − γ)x

s(t)2
cos

(π − γ

s(t)
x+ γ

)
≥ −s0αδ(π − γ)Xt

s(t)2
cos γ

≥ −αδ(π − 2γ)

2
cos γ

(2.50)

and

sin
(π − γ

s(t)
x+ γ

)
≥ sin γ. (2.51)

Choosing the constant α satisfying

α ≤ α∗ :=
2 tan γ

(π − 2γ)δ

{
− β +

d(π − γ)2

s20(1 + δ)2
− f ′(0)− δ

}
.

we can deduce from (2.48) – (2.51) that vt− dvxx− f(v) ≥ 0 for t > 0 and 0 ≤ x ≤ Xt.
Hence

vt − dvxx − f(v) ≥ 0 for t > 0, 0 ≤ x ≤ s(t). (2.52)

We will next check

s′(t)− (−μvx(t, s(t))) ≥ 0. (2.53)

Indeed we observe

s′(t)− (−μvx(t, s(t))) = s0αδe
−αt − μ(π − γ)

s(t)
ε0e

−βt

≥
{
s0αδ − με0(π − γ)

s0
e(α−β)t

}
e−αt.

If necessary, we will choose again small α and small ε0 such that

0 < α ≤ min{α∗, β}, ε0 ≤ s20αδ

μ(π − γ)
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to get (3.32). Note that for t > 0

u(t, 0) = 0 ≤ ε0e
−βt sin γ = v(t, 0) and v(t, s(t)) = 0 (2.54)

and we can choose u0 small to satisfy

u0(x) ≤ w(x) := v(0, x) = ε0 sin
(π − γ

s0
x+ γ

)
in Ω0, (2.55)

then it follows from (2.52) – (2.55) that Lemma 2.2 shows

h(t) ≤ s(t) for t > 0 and u(t, x) ≤ v(t, x) for t > 0, 0 ≤ x ≤ h(t).

Hence limt→∞ h(t) ≤ limt→∞ s(t) = s0(1 + δ) < ∞ and vanishing occurs by Theorem
2.7. Moreover ‖u(t, ·)‖C(Ω(t)) = O(e−βt) as t→ ∞.

We finally remark on the case of the Neumann boundary condition at x = 0 (that
is R∗

1 = (π/2)
√
d/f ′(0)). Replacing v(t, x) in the Dirichlet problem to

v1(t, x) = ε0e
−βt cos

( π

2s(t)
x
)
,

we get the conclusion more easily in an almost same way.

(ii-b) We consider a Stefan problem for the heat equation:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wt − dwxx = 0, t > 0, 0 < x < y(t),

w(t, 0) = 0, (resp. wx(t, 0) = 0), t > 0,

w(t, y(t)) = 0, t > 0,

y′(t) = −μwx(t, y(t)), t > 0,

y(0) = h0, w(0, x) = u0(x), 0 ≤ x ≤ y0,

(2.56)

where d, μ, h0 and u0 are same as those of (FBP). It is well known that problem (2.56)
has a unique classical solution globally in time. Define

Y ∗ =
(
h20 +

2μ

d

∫ h0

0

xu0(x) dx
)1/2 (

resp. h0 +
μ

d

∫ h0

0

u0(x) dx
)
.

Then we will show limt→∞ y(t) = Y ∗. Indeed by the Green’s theorem∫
Dy(t)

v(dwxx − wt)− w(dvxx + vt) dxdt =

∫
∂Dy(t)

d(vwx − wvx) dt+ wv dx

for any smooth function v = v(t, x), where Dy(t) =
⋃

0≤s≤t({s} × (0, y(s))). We set
v = −x (resp. v = 1) in the above identity to get∫

∂Dy(t)

d(−xwx + w) dt− xw dx = 0
(
resp.

∫
∂Dy(t)

dwx dt+ w dx = 0
)
.
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Using (2.56), we deduce from the direct calculations

y(t)2 = (Y ∗)2 − 2μ

d

∫ y(t)

0

xw(t, x) dx
(
resp. y(t) = Y ∗ − μ

d

∫ y(t)

0

w(t, x) dx
)

(cf. Nogi and Yamaguchi [54], Cannon and Denson [9]). Note that y(t) ≤ Y ∗ for t ≥ 0

and ‖w(t, ·)‖C(0,y(t)) → 0 as t → ∞, and hence
∫ y(t)

0
xw(t, x) dx and

∫ y(t)

0
w(t, x) dx

converge to 0 as t→ ∞. Thus limt→∞ y(t) = Y ∗.
We assume ‖u0‖C(Ω0) < 1. Then 0 < w(t, x) < 1 for t > 0, 0 < x < y(t), and

hence f(w(t, x)) ≥ 0 for t > 0, 0 < x < y(t). Since wt − dwxx = 0 ≤ f(w), the
solution (w(t, x), y(t)) is regarded as a lower solution of (FBP). Hence Lemma 2.3
shows h(t) ≥ y(t) for t ≥ 0. By the assumption, letting t→ ∞ in the above inequality
implies

lim
t→∞

h(t) ≥ lim
t→∞

y(t) = Y ∗ =
(
h20 +

2μ

d

∫ h0

0

xu0(x) dx
)1/2

> R∗
1(

resp. lim
t→∞

h(t) ≥ lim
t→∞

y(t) = Y ∗ = h0 +
μ

d

∫ h0

0

u0(x) dx > R∗
1

)
.

(2.57)

Thus we can conclude from Theorem 2.7 that spreading occurs for the solution. We
finally consider any solution of (FBP) with an initial function larger than u0(x). Then
Lemma 2.3 shows spreading occurs as t→ ∞. Hence the proof is complete. �

Proof of Theorem 2.9. Define

σ∗ := inf{ ρ | For any σ > ρ, spreading occurs for the solution with initial data (σφ, h0)}.
We recall by part (ii) of Theorem 2.8 that vanishing occurs for small u0. Hence we find
σ∗ ∈ (0,∞]. By the definition of σ∗ and the dichotomy theorem (Theorem 2.7), for
any σ < σ∗, we can choose a number τ ∈ [σ, σ∗] such that the solution (uτ (t, x), hτ (t))
of (FBP) with initial data (τφ, h0) satisfies the property of vanishing as t → ∞. In
other words

lim
t→∞

hτ (t) = 0 and lim
t→∞

‖uτ (t, ·)‖C(Ω(t)) = 0.

By the comparison principle, we see that hσ(t) ≤ hτ (t) for t > 0 and uσ(t, x) ≤ uτ (t, x)
for t > 0, 0 < x < hσ(t) if σ < τ because of σφ ≤ τφ. Hence hσ(t) is finite and uσ(t, x)
also converges to 0 as t→ ∞. Hence vanishing occurs for all σ < σ∗.

We will show that the solution (uσ∗(t, x), hσ∗(t)) satisfies the property of vanishing.
Otherwise there is some constant T > 0 satisfying h(T ) > R∗

1. By the continuous
dependence of solutions on initial data, we can take small δ > 0 such that hσ(T ) > R∗

1

for any σ ∈ [σ∗ − δ, σ∗ + δ]. Using this fact and part (i) of Theorem 2.8, we find that
spreading occurs for the solution (uσ∗−δ(t, x), hσ∗−δ(t)) of (FBP) as t → ∞. This is a
contradiction to the definition of σ∗. Hence Theorem 2.7 implies that vanishing occurs
for σ = σ∗.

Thus, if initial data satisfies u0 ≤ σ∗φ, then the comparison theorem shows

h(t) ≤ hσ∗(t) for t > 0, u(t, x) ≤ uσ∗(t, x) for t > 0, 0 < x < h(t),
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and vanishing occurs. On the other hand, if u0 > σ∗φ, then spreading occurs because
of the definition of σ∗ and the comparison principle. We complete the proof. �

Proof of Theorem 2.10. We first show that spreading occurs for large μ. By same
way as the proof of part (ii-b) of Theorem 2.8, if μ is large enough to satisfy

μ >
d

2
∫ h0

0
xu0(x) dx

((R∗
1)

2 − h20)
(
resp. μ >

d∫ h0

0
u0(x) dx

(R∗
1 − h0)

)
instead of choosing large u0, then (2.57) also holds true. Hence Theorem 2.7 implies
spreading for the solution.

We next show a threshold number on μ. Define

μ∗ := inf{ρ > 0 | vanishing occurs for any μ > ρ}.
Since spreading occurs for large μ, we find that μ∗ is finite. For any μ > μ∗, there is
some μ1 ∈ [μ∗, μ] such that spreading occurs for a solution (uμ1 , hμ1) of (FBP) with
μ = μ1. Taking any μ1 < μ2, we can compare (uμ2 , hμ2) with (uμ1 , hμ1) by Theorem
2.4 and find that spreading occurs for μ = μ2. Thus spreading occurs for all μ > μ∗.
We finally show vanishing occurs for μ = μ∗. Otherwise there is some T > 0 such that
hμ∗(T ) > R∗

1. By the continuous dependence of solutions on μ, we also find hμ(T ) > R∗
1

for μ ∈ [μ∗ − a, μ∗ + a] with some small a > 0. This result, together with part (i) of
Theorem 2.8, implies that spreading occurs for such μ. This is a contradiction to the
definition on μ∗. Hence vanishing occurs for μ ≤ μ∗.

Assuming that f(u) ≤ f ′(0)u for u ≥ 0, we find that vanishing occurs for small μ.
Indeed define s(t) and v(t, x) (resp. v1(t, x)) as in the the proof of Theorem 2.8, where
s0 ∈ [h0, R

∗
1), γ ∈ (0, π/2), and α, β, δ and M are positive constants. We choose α, β,

γ and δ in the same way as the proof of Theorem 2.8. Moreover taking

μ ≤ s20αδ

M(π − δ)
, M ≥ ‖u0‖C(Ω(t))

S∗ , S∗ = min
0≤x≤h0

sin
(π − γ

s0
x+ γ

)
,

we can show that (v, s) is an upper solution of (FBP) (Here we need the condition
f(u) ≤ f ′(0)u for u ≥ 0 to get vt − dvxx − f(v) ≥ 0). Hence it holds that

h(t) ≤ s(t) for t > 0, u(t, x) ≤ v(t, x) for t > 0, 0 < x < h(t).

Since limt→∞ h(t) ≤ limt→∞ s(t) = s0(1 + δ) < ∞, vanishing occurs by Theorem 2.7.
We complete the proof. �

2.7 Spreading and vanishing for bistable equations

We consider in this section the case where the nonlinear function is bistable. Here we
call Case (B) (or a bistable case) when f satisfies

f ∈ C1[0,∞), f(0) = f(c∗) = f(1) = 0, f ′(0) < 0, f ′(c∗) > 0, f ′(1) < 0,

f(u) < 0 (0 < u < c∗, u > 1), f(u) > 0 (c∗ < u < 1) and

∫ 1

0

f(u) du > 0.
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In Section 3.7 we will consider more general polystable nonlinearity satisfying (2.37)
and f ′(0) < 0, and generalize some theorems of this section.

2.7.1 Main theorems

Let (u, h) be any solution of (FBP). A dichotomy theorem in Case (B) is given in
Theorem 2.6. We recall, as t→ ∞, either spreading

lim
t→∞

Ω(t) = (0,∞) and lim inf
t→∞

‖u(t, ·)‖C(Ω(t)) > 0

or vanishing

lim
t→∞

Ω(t) is a bounded set in (0,∞) and lim
t→∞

‖u(t, ·)‖C(Ω(t)) = 0

occurs. Also we find more detailed behaviors of solutions.

Theorem 2.11. The following results hold true:

(i) Let l > 0 be a large number such that (2.3) has a solution q(x) in [0, l]. If h0 ≥ l,
u0(x) ≥ q(x) in [0, l], then spreading occurs and

lim inf
t→∞

u(t, x) ≥ v∗(x) in [0,∞),

where v∗(x) is a minimal positive solution of (2.4).

(ii) If ‖u0‖C(Ω0) < c∗, then vanishing occurs. Moreover, when vanishing occurs, for
any ε > 0 there exist positive numbers Tε and Cε such that

u(t, x) ≤ Cεe
−(k∗−ε)(t−Tε) for t ≥ Tε, 0 ≤ x ≤ h(t),

where k∗ = −f ′(0) > 0.

Remark 2.5. It is well known that (2.3) have at least one positive solutions in [0, l]
if l > 0 is sufficiently large. Moreover, when f has a special form: u(u − c)(1 − u)
for 0 < c < 1/2, we have the precise structure of solutions (see Smoller [61, Theorem
24.13] or Smoller and Wasserman [62]); There exists a positive number L such that

• If l < L, then (2.3) has a unique trivial solution q ≡ 0;

• If l = L, then (2.3) has a unique positive solution q(x);

• If l > L, then (2.3) has two positive solutions q1(x) and q2(x) which satisfy
q1(x) < q2(x) in (0, l).

Also, in part (i) of Theorem (2.11), we get the uniform convergence of limt→∞ u(t, x) =
v∗(x) in any compact subset of [0,∞) where v∗ is a unique solution of (2.4).

We can give a criterion for spreading and vanishing.
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Theorem 2.12. Let φ ∈ C2(Ω0)∩C(Ω0) be any function which satisfies φ(0) = φ(h0) =
0 (resp. φx(0) = φ(h0) = 0). Then there exists a number σ∗ = σ∗(φ, h0) ∈ (0,∞] with
the following properties:

• spreading occurs if u0 ≥ σ∗φ in Ω0. Moreover there exists a positive number
σ∗∗ ≥ σ∗ such that if u0 > σ∗∗φ in Ω0, then lim inft→∞ u(t, x) ≥ v∗(x) in [0,∞),
where v∗(x) is a minimal positive solution of (2.4).

• vanishing occurs if u0 < σ∗φ in Ω0.

Moreover if h0 is sufficiently large, then σ∗ ≤ σ∗∗ <∞.

Remark 2.6. Concerning a more complete classification of the behavior of u, we can
refer to recent papers of Du-Lou [20] and Liu-Lou [47]. In [20], they have considered a
related free boundary problem whose results are applicable to (FBP) with homogeneous
Neumann boundary condition at x = 0 (ux(t, 0) = 0). They classify the spreading
lim inft→∞ ‖u(t, ·)‖C(Ω(t)) > 0 into two cases; if u0 > σ∗φ, then the solution converges
locally uniformly to a stationary solution of (2.4), and if u0 = σ∗φ, then transition
occurs in the following sense:

lim
t→∞

|u(t, x)− V (x)| = 0 locally uniformly in [0,∞), (2.58)

where V is a unique solution of⎧⎪⎨⎪⎩
dVxx + f(V ) = 0, x ∈ R,

Vx(0) = 0,

limx→±∞ V (x) = 0.

Moreover, in [47], they have studied (FBP) with Robin boundary condition at x = 0
(aux(t, 0)− (1− a)u(t, 0) = 0 for any a ∈ [0, 1]), and, furthermore, they have found the
transition-phenomenon: if u0 = σ∗φ, then

lim
t→∞

‖u(t, ·)− V (·+ γ(t))‖L∞(0,h(t)) = 0

for some continuous function γ(t). They also investigate the behavior of γ(t). In case
of the Dirichlet boundary condition, they obtain limt→∞ γ(t) = +∞.

Remark 2.7. In Theorem 2.12, it is also important whether σ∗ is finite or not, if
h0 < L. It is proved in [20] and [47] that σ∗ < ∞ when f has other conditions.
Moreover, for special kind of f , spreading cannot occur (σ∗ = ∞) even if u0 is large.

2.7.2 Proofs of main theorems

We will prove the main theorem in the following.
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Proof of Theorem 2.11. (i) Let (u, h) be a solution of (FBP) with initial data
(q(x), l). Then Corollary 2.1 shows limt→∞ h(t) = ∞ and

lim inf
t→∞

u(t, x) ≥ lim
t→∞

u(t, x) = v∗(x) for x ≥ 0.

(ii) Let w = w(t) be the solution of⎧⎨⎩
dw

dt
= f(w), t > 0,

w(0) = ‖u0‖C(Ω0) < c∗.
(2.59)

Then, since f(w) < 0 for 0 < w < c∗ and f(0) = 0, the function w(t) is decreasing and
limt→∞w(t) = 0. Noting that

u(t, 0) = 0 < w(t) and u(t, h(t)) = 0 < w(t) for t > 0.

we find from the standard comparison principle that

u(t, x) ≤ w(t) for t ≥ 0, 0 ≤ x ≤ h(t). (2.60)

Hence limt→∞ ‖u(t, ·)‖C(Ω(t)) ≤ limt→∞w(t) = 0. Thus we conclude from Proposition
2.2 that limt→∞ h(t) <∞ and vanishing occurs.

We will next show some decay properties of solutions. Using the mean-value theo-
rem, one can get f(w) = f ′(θw)w for some θ ∈ [0, 1]. Since f ′ is continuous in [0,∞)
and limt→∞w(t) = 0, for any small ε > 0, there is a positive number Tε such that

f(w(t)) ≤ (f ′(0) + ε)w(t) for t ≥ Tε.

Hence for t ≥ Tε the solution of (2.59) has a linear estimate dw/dt ≤ (f ′(0) + ε)w,
which implies

w(t) ≤ w(Tε)e
−(k∗−ε)(t−Tε) for t ≥ Tε (2.61)

with k∗ = −f ′(0) > 0. Thus it follows from (2.60) and (2.61) that

u(t, x) ≤ w(t) ≤ w(Tε)e
−(k∗−ε)(t−Tε) =: Cεe

−(k∗−ε)(t−Tε)

for t ≥ Tε and 0 ≤ x ≤ h(t).
Finally we remark that, when vanishing occurs, there exist some T > 0 such that

the solution satisfies ‖u(T, ·)‖C(Ω(T )) < c∗. Then we can use the same argument to the
case of ‖u0‖C(Ω0) < c∗, which enables us to obtain the same decay estimate and the
proof is complete. �

Proof of Theorem 2.12. We consider the solution of (FBP) with initial data (σφ, h0)
for a parameter σ > 0. Define σ∗ := inf{ ρ > 0; spreading occurs for any σ > ρ}. Us-
ing Theorem 2.11, we can show σ∗ ∈ (0,∞] and prove that spreading occurs if u0 > σ∗φ
and vanishing occurs if u0 < σ∗φ as in the proof of Theorem 2.9. Moreover, in the
spreading case, we also define σ∗∗ := inf{ ρ > 0; lim inft→∞ u(t, x) ≥ v∗(x) in [0,∞)}.
If u0 is so large that there exists a number T ∈ (0,∞] with h(T ) ≥ l and u(T, x) ≥ q(x)
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where q is a positive solution of (2.3) for large l > 0, then part (i) of Theorem 2.11
implies lim inft→∞ u(t, x) ≥ v∗(x) in [0,∞). This result, together with the compar-
ison principle, shows σ∗∗ ∈ [σ∗,∞]. In particular, if h0 ≥ l, then we can choose
σ∗∗ < ∞ such that the solution of (FBP) with initial function u0 ≥ q in (0, l) satisfies
lim inft→∞ u(t, x) ≥ v∗(x) in [0,∞).

We remark that spreading occurs for u0 = σ∗φ. Otherwise, vanishing occurs and
we can choose some T > 0 such that uσ∗(T, x) < c∗/2 for the solution of (FBP) with
initial data (σ∗φ, h0). We continue to use such a notation. Then there exists small
number δ > 0 such that

uσ(T, x) ≤ c∗

2
for any σ ∈ [σ∗ − δ, σ∗ + δ]

by the continuous dependence of solutions on initial data. Hence Theorem 2.11 implies
the solution uσ∗−δ(t, x) must vanish as t→ ∞. This is a contradiction to the definition
of σ∗. Hence we get the conclusion by the dichotomy result (Theorem 2.6). �





Chapter 3

A free boundary problem in
multi-dimensions

3.1 Problem

In this chapter we study problem (1.1) in multi-dimensions with radially symmetric
settings. Through sections 3.1–3.8, we discuss the case where Ω(t) has a fixed boundary.
The problem is given in the following:

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − dΔu = f(u), t > 0, R < r < h(t),

Bu = 0, t > 0, r = R, h(t),

h′(t) = −μur(t, h(t)), t > 0,

h(0) = h0, u(0, r) = u0(r), R ≤ r ≤ h(t),

where d, μ and h0 are positive constants, R is a non-negative constant, r = |x| (x ∈
R

N , N ≥ 2) and Δu = urr + ((N − 1)/r)ur. Moreover, concerning the boundary
condition, Bu = 0 for t > 0, r = R, h(t) means

u(t, R) = 0, u(t, h(t)) = 0, t > 0; (3.1)

or ur(t, R) = 0, u(t, h(t)) = 0, t > 0 (3.2)

if R > 0 in (P), and

ur(t, 0) = 0, u(t, h(t)) = 0, t > 0 (3.3)

if R = 0 in (P). We basically assume that the nonlinear function f is in

Sf := {f : [0,∞) → R| f is locally Lipschitz continuous, f(0) = 0, f(u) < 0 for u > 1},

Moreover initial function u0 is assumed to satisfy

u0 ∈ C2[R, h0], u0 > 0 in (R, h0), u0(h0) = 0,

and the same boundary condition as that of u for t > 0 at r = R.
(3.4)

51
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From the view of mathematical ecology, as stated in Introduction, u = u(t, r) is a
population density of non-native species whose habitat is

Ω(t) = {x ∈ R
N | R < |x| < h(t)},

where we assume, for simplicity, the distribution of the species and their habitat are
radially symmetric. The habitat is a multi-dimensional annulus and the inner boundary
r = R is fixed, while the outer boundary r = h(t) is moving depending on time, which
implies that the outer free boundary is a propagation front of the species. We put
three different types of boundary conditions (3.1) – (3.3) in (P); (3.1) implies that an
inner ball BR := {x ∈ R

N | |x| ≤ R} is a hostile environment for the species and they
cannot survive in this region; (3.2) means BR is a barrier and they cannot enter the
region; (3.3) does no hostile environment and no barrier inside the spreading front.

habitat

ur(t, h(t))

h(t)

u(t, r) : density

R r

Figure 6. The solution (u, h) for problem (P) with (3.1)

The main purpose in this chapter is to study

• the existence and uniqueness of solutions for (P) (well-posedness for the model)

• spreading and vanishing in multi-dimensions as t→ ∞.

It is possible to extend the results in one dimension to this multi-dimensional case.
In other words we get a general dichotomy theorem for spreading and vanishing, and
show a close relation to an elliptic problem in annulus⎧⎪⎨⎪⎩

dΔq + f(q) = 0, R < r < l,

q > 0, R < r < l,

q(R) = q(l) = 0 (resp. qr(R) = q(l) = 0)

(3.5)

for some l > 0 and an elliptic problem in an exterior domain in R
N⎧⎪⎨⎪⎩

dΔv + f(v) = 0, R < r <∞,

v > 0, R < r <∞,

v(R) = 0 (resp. vr(R) = 0).

(3.6)

Moreover we will present criteria for spreading and vanishing in (P), where the nonlinear
function satisfies (1.7) with f ′(0) > 0 or f ′(0) < 0. Hence the results which will be
proved in this chapter are more general than those in the one-dimensional case.
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For the proof, we need lots of techniques to handle the multi-dimensional problem.
For example, we have to construct upper and lower solutions more precisely, and also
the existence and uniqueness of solutions for (3.5) and (3.6) is not so trivial. For this
reason we will show some results and remarks, which partly supports our main results.

We denote, by (P1), (P2) or (P3), problem (P) with conditions (3.1), (3.2), or (3.3)
respectively, and we also represent

D(t) =
⋃

0<s≤t

({s} × (R, h(s))), D =
⋃
t>0

({t} × (R, h(t))).

We remark that the main results and their proofs in this chapter are based on the
author’s work [36].

3.2 Existence and uniqueness of solutions

In this section we will show the global existence and uniqueness of solutions and con-
tinuous dependence of the solutions on initial data, coefficients and the nonlinearity in
(P).

The following theorem means a local existence and uniqueness of classical solutions.

Theorem 3.1. Suppose that initial data satisfies (3.4) and f ∈ Sf . For any given
constant α ∈ (0, 1), there exists a positive number T such that (P) has a unique solution

(u, h) ∈ {C (1+α)
2

,1+α(D(T )) ∩ C1+α
2
,2+α(D(T ))} × C1+α

2 [0, T ],

where T is depending on R, h0, α and ‖u0‖C2[R,h0].

We show an a priori estimate of solutions. This estimate also helps us to find that
the local solutions are extended uniquely to all t > 0.

Theorem 3.2. Problem (P) has a unique classical solution (u, h) such that

0 < u(t, r) ≤ C1 for (t, r) ∈ D, 0 < h′(t) ≤ μC2 for t > 0,

where positive constants C1 and C2 depend on ‖u0‖C(R,h0) and ‖u0‖C1(R,h0), respectively.

The following theorem is a property of the continuous dependence of parameters.

Theorem 3.3. The solution of (P) depends continuously on initial data (u0, h0), coef-
ficients d, μ and nonlinearity f in (P).

We show the proofs of these theorems in the following.

Proof of Theorem 3.1. We can prove this theorem in an almost same way as Theorem
2.1 in one dimension or by some modifications of the proof in Du-Guo [14, Theorem
4.1]. �
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Proof of Theorem 3.2. We first prove the a priori estimate in [0, T ] for some constant
T > 0. Using the strong maximum principle (cf. Protter-Weinberger [56] or Cantrell-
Cosner [10]), we can see

u(t, r) > 0, ur(t, h(t)) < 0 for 0 ≤ t ≤ T, R < r < h(t). (3.7)

Define C1 := max{‖u0‖C[R,h0], 1} and let u = u(t) be the solution of⎧⎨⎩
du

dt
= f(u), t > 0,

u(0) = C1.

Then, since u0(x) ≤ u(0) = C1 in [R, h0], the comparison principle (cf. [56] or Smoller
[61]) shows

u(t, r) ≤ u(t) for 0 ≤ t ≤ T, R ≤ r ≤ h(t).

By the condition of f ∈ Sf , u(t) is decreasing with respect to t as long as u(t) > 1,
and u satisfies u(t) ≤ C1 for all t ≥ 0. Hence we have

u(t, r) ≤ sup
0≤t≤T

u(t) ≤ C1.

Combining this result with (3.7), we get the a priori estimate for u(t, r).
We will next show 0 < h′(t) ≤ μC2 for 0 < t ≤ T with some C2 > 0. By (3.7), one

can easily get h′(t) = −μux(t, h(t)) > 0 for 0 ≤ t ≤ T . Set

w(t, r) = −C1M
2(r − h(t))(r − h(t) + 2/M),

DM = {(t, r) ∈ R
2 | 0 ≤ t ≤ T, h(t)− 1/M < r < h(t)},

where

M = max{1/(h0 −R), ‖u′0‖C[R,h0]/C1,
√
L/(2dC1)}, L = max

0≤u≤C1

f(u).

It should be noted thatR ≤ h0−1/M ≤ h(t)−1/M for t ≥ 0 because ofM ≥ (h0−R)−1.
It follows from direct calculations that

wt = 2C1Mh′(t){1−M(h(t)− r)} ≥ 0 in DM ,

wr = −2C1M{1−M(h(t)− r)} ≤ 0 in DM ,

wrr = −2C1M
2.

Hence

wt − dΔw − f(w) ≥ 2dC1M
2 − L ≥ 0 in DM .

We observe

w(t, h(t)) = 0, w(t, h(t)− 1/M) = C1 ≥ u(t, h(t)− 1/M)
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for 0 ≤ t ≤ T. Noting from the definition of M that

w(0, r) = C1M
2(h0 − r)(r − h0 + 2/M) ≥ C1M(h0 − r) ≥ (h0 − r)‖u′0‖C[R,h0]

u0(r) =

∫ r

h0

u′0(y)dy ≤ (h0 − r)‖u′0‖C[R,h0]

for h0 − 1/M ≤ r ≤ h0, we get w(0, r) ≤ u0(r) in DM . Hence the comparison principle
presents

w(t, r) ≥ u(t, r) in DM .

This inequality together with w(t, h(t)) = u(t, h(t)) = 0 enables us to get

ur(t, h(t)) ≥ wr(t, h(t)) = −2C1M for 0 ≤ t ≤ T,

and thus
h′(t) = −μur(t, h(t)) ≤ μ(2C1M) =: μC2 for 0 ≤ t ≤ T.

Since we have the local existence and the a priori estimate, we can prove the global
existence of solutions for (P) in the standard manner (cf. the proof of Theorem 2.2 or
[14]). Let [0, Tmax) be the maximal existence time in which the unique solution exists.
We assume Tmax <∞ to get a contradiction. For any δ0 ∈ (0, Tmax) and anyM > Tmax,
using the a priori estimate, the parabolic estimates and Sobolev’s embedding theorem,
we have

‖u(t, ·)‖C2[R,h(t)] ≤ C3 for all t ∈ [δ0, Tmax),

where the constant C3 only depends on δ0, M , C1 and C2 (C1 and C2 are also in-
dependent of Tmax). Hence we can get a time interval τ > 0 which is independent
of t ∈ [δ0, Tmax). Applying the local existence result of Theorem 3.1, we can extend
the solution with initial data at t = Tmax − τ/2 uniquely to t = Tmax − τ/2 + τ =
Tmax + τ/2 > Tmax. However this result contradicts the definition of Tmax, and thus
we obtain Tmax = ∞. We complete the proof. �

Proof of Theorem 3.3. Consider the solution (uε, hε) of⎧⎪⎪⎪⎨⎪⎪⎪⎩
(uε)t − dεΔuε = fε(uε), t > 0, Rε < r < hε(t),

Buε = 0, t > 0, r = Rε, hε(t),

h′ε(t) = −με(uε)r(t, h(t)), t > 0,

hε(0) = (h0)ε, uε(0, r) = (u0)ε(r), Rε ≤ r ≤ (h0)ε,

where dε, Rε, με, (h0)ε are positive constants, fε ∈ Sf and (u0)ε satisfies (3.4) with h0
replaced by (h0)ε. Moreover at least one of them is different from d, R, μ, h0, f and
u0 in (P), respectively. Assume that as ε→ 0

dε → d, Rε → R, με → μ, (h0)ε → h0, fε(u) → f(u) for all u ≥ 0,

(u0)ε

( r −R

(h0)ε −R
(h0)ε +

(h0)ε − r

(h0)ε −R
Rε

)
→ u0(r) in C2(R, h0).

Then, as in the proof of Theorem 2.3, the compactness argument implies

lim
ε→0

‖uε − u‖C1,2(Dε) = 0, lim
ε→0

‖hε − h‖C1(0,∞) = 0,

where Dε = ∪0<s<∞{s} × (Rε, hε(s)). Hence we complete the proof. �
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3.3 Energy identity and comparison principle

We will prepare an energy identity and comparison results which help us to study the
asymptotic behaviors of solutions as t→ ∞.

Proposition 3.1. The following identity holds true for any solution (u, h) of (P):

d

2

∫ h(t)

R

rN−1ur(t, r)
2 dr +

∫ t

0

{∫ h(s)

R

rN−1ut(s, r)
2 dr

}
ds

+
d

2μ2

∫ t

0

h(s)N−1h′(s)3 ds =
d

2

∫ h0

R

rN−1u′0(r)
2 dr

+

∫ h(t)

R

rN−1F (u(t, r)) dr −
∫ h0

R

rN−1F (u0(r)) dr,

where F (u) =

∫ u

0

f(s) ds.

We define (u, h) in the following comparison principle as an upper (super) solu-
tion of (P) for 0 < t ≤ T .

Lemma 3.1. For any given T > 0, let h ∈ C1[0, T ] and u ∈ C(D1(T )) ∩ C1,2(D1(T ))
satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − dΔu ≥ f(u), (t, r) ∈ D1(T ),

u(t, R) ≥ 0 (resp. ur(t, R) ≤ 0), t ∈ (0, T ],

u(t, h(t)) = 0, t ∈ (0, T ],

h
′
(t) ≥ −μur(t, h(t)), t ∈ (0, T ],

where d, μ and R are positive constants (resp. R is a non-negative constant) and
D1(T ) =

⋃
0≤s≤T ({s} × (R, h(s))). Moreover let (u, h) be the solution of (P) with

initial data (u0(r), h0). If h0 ≤ h(0) and u0(r) ≤ u(0, r) in [R, h0], then it holds that

h(t) ≤ h(t) in [0, T ] and u(t, r) ≤ u(t, r) in
⋃

0≤s≤T ({s} × (R, h(s))).

The function (u, h) in the following comparison principle is called an lower (sub)
solution of (P) for 0 < t ≤ T .

Lemma 3.2. For any given T > 0, let h ∈ C1[0, T ] and u ∈ C(D2(T )) ∩ C1,2(D2(T ))
satisfy ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − dΔu ≤ f(u), (t, r) ∈ D2(T ),

u(t, R) ≤ 0 (resp. ur(t, R) ≥ 0), t ∈ (0, T ],

u(t, h(t)) = 0, t ∈ (0, T ],

h′(t) ≤ −μur(t, h(t)), t ∈ (0, T ],

where d, μ and R are positive constants (resp. R is a non-negative constant) and
D2(T ) =

⋃
0≤s≤T ({s} × (R, h(s))). Moreover let (u, h) be the solution of (P) with

initial data (u0(r), h0). If (R ≤) h(0) ≤ h0 and u(0, r) ≤ u0(r) in [R, h(0)], then it
holds that
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h(t) ≤ h(t) in [0, T ] and u(t, r) ≤ u(t, r) in
⋃

0≤s≤T ({s} × (R, h(s))).

We will also prepare a variant of the above comparison principles.

Lemma 3.3. For any given T > 0, let (uμi
, hμi

) (i = 1, 2) satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(uμi
)t − dΔuμi

= f(uμi
), 0 < t ≤ T, R < r < hμi

(t),

uμi
(t, R) = 0 (resp. (uμi

)r(t, R) = 0), 0 < t ≤ T,

uμi
(t, hμi

(t)) = 0, 0 < t ≤ T,

h′μi
(t) = −μi(uμi

)r(t, hμi
(t)), 0 < t ≤ T,

hμi
(0) = h0, uμi

(0, r) = u0(r), R ≤ r ≤ h0,

where d, h0 and R are positive constants (resp. R is a non-negative constant) and u0
satisfies (3.4). If μ1 ≤ μ2, then

hμ1(t) ≤ hμ2(t) in [0, T ] and uμ1(t, r) ≤ uμ2(t, r) in
⋃

0≤s≤T ({s} × (R, hμ1(s))).

In the following, we will prove Proposition 3.1 and Lemmas 3.1–3.3.

Proof of Proposition 3.1. We start with the following calculation.

d

dt

{d
2

∫ h(t)

R

rN−1ur(t, r)
2 dr

}
=
d

2
h(t)N−1ur(t, h(t))

2h′(t)

+ d

∫ h(t)

R

rN−1ur(t, r)urt(t, r) dr.

(3.8)

We calculate the right-hand side of (3.8). By the Stefan condition h′(t) = −μur(t, h(t)),
it holds for the first term that

d

2
h(t)N−1ur(t, h(t))

2h′(t) =
d

2μ2
h(t)N−1h′(t)3.

We next integrate the second term by parts to get

d

∫ h(t)

R

rN−1ur(t, r)urt(t, r) dr

= d
[
rN−1ur(t, r)ut(t, r)

]r=h(t)

r=R
− d

∫ h(t)

R

(rN−1ur(t, r))rut(t, r) dr

= dh(t)N−1ur(t, h(t))ut(t, h(t))− d

∫ h(t)

R

(rN−1ur(t, r))rut(t, r) dr,

where we have used ut(t, R) = 0 in (P1) or ur(t, R) = 0 in (P2) and (P3). Observe
that

ur(t, h(t))h
′(t) + ut(t, h(t)) = 0
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by differentiation of u(t, h(t)) = 0 with respect to t. We also represent the diffusion
equation as

rN−1ut(t, r)− d(rN−1ur(t, r))r = rN−1f(u).

Hence it follows from the above relations that

d

∫ h(t)

R

rN−1ur(t, r)urt(t, r) dr

= − d

μ2
h(t)N−1h′(t)3 −

∫ h(t)

R

rN−1ut(t, r)
2 dr +

∫ h(t)

R

rN−1ut(t, r)f(u(t, r)) dr.

Substituting these to the right-hand side of (3.8), we have

d

dt

{d
2

∫ h(t)

R

rN−1ur(t, r)
2 dr

}
= − d

2μ2
h(t)N−1h′(t)3

−
∫ h(t)

R

rN−1ut(t, r)
2 dr +

∫ h(t)

R

rN−1 ∂

∂t
F (u(t, r)) dr,

(3.9)

where F (u) =
∫ u

0
f(s) ds. Noting from F (u(t, h(t))) = F (0) = 0 that∫ h(t)

R

rN−1 ∂

∂t
F (u(t, r)) dr =

d

dt

∫ h(t)

R

rN−1F (u(t, r)) dr − h(t)N−1F (u(t, h(t)))h′(t)

=
d

dt

∫ h(t)

R

rN−1F (u(t, r)) dr,

we obtain

d

dt

{d
2

∫ h(t)

R

rN−1ur(t, r)
2 dr −

∫ h(t)

R

rN−1F (u(t, r)) dr
}

= − d

2μ2
h(t)N−1h′(t)3 −

∫ h(t)

R

rN−1ut(t, r)
2 dr.

We finally integrate this identity over [0, t] to get the conclusion. �

Proof of Lemma 3.1. This theorem is proved with a slight modification of the proof
of Lemma 2.2 (see also [14, Lemma 3.2]). The argument basically follows [18, Lemma
3.5]. Consider the following problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

(uε)t − dΔuε = f(uε), 0 < t ≤ T, R < r < hε(t),

Buε = 0, 0 < t ≤ T, r = R, hε(t),

h′ε(t) = −μ(1− ε)(uε)r(t, hε(t)), 0 < t ≤ T,

hε(0) = (1− ε)h0, uε(0, r) = ũ0(r), R ≤ r ≤ hε(0),

where

ũ0(r) := u0

( r −R

hε(0)−R
h0 +

hε(0)− r

hε(0)−R
R
)
,
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and ε is a sufficiently small positive constant such that ũ0(r) ≤ u(0, r) for R ≤ r ≤
hε(0). Then we find that the above problem has a unique global solution (uε, hε) by
Theorem 3.2. Using the strong maximum principle, we have

uε(t, r) > 0 in Dε(T ), (uε)r(t, hε(t)) < 0 for 0 ≤ t ≤ T, (3.10)

where Dε(T ) :=
⋃

0≤s≤T ({s} × (R, hε(s))). Since hε(0) < h(0), we have hε(t) < h(t)
for small t > 0, and we may assume that for some t∗ ∈ (0, T )

hε(t) < h(t) in [0, t∗), hε(t
∗) = h(t∗) and h′ε(t

∗) ≥ h
′
(t∗). (3.11)

Then we can show by the maximum principle that u(t, r) ≥ uε(t, r) in Dε(T ) (see e.g.
the proof of Lemma 2.2). Since hε(t

∗) = h(t∗) and u(t∗, h(t∗)) = uε(t
∗, hε(t∗)) = 0, we

deduce ur(t
∗, h(t∗))− (uε)r(t

∗, hε(t∗)) ≤ 0. Hence it follows from (3.10) that

h
′
(t∗)− h′ε(t

∗) ≥ −μur(t∗, hε(t∗)) + μ(1− ε)(uε)r(t
∗, hε(t∗))

= −μ{ur(t∗, hε(t∗))− (uε)r(t
∗, hε(t∗)} − εμ(uε)r(t

∗, hε(t∗))

> 0.

This contradicts the assumption of (3.11), and thus we obtain hε(t) ≤ h(t) in [0, T ].
Moreover we use the maximum principle to get uε(t, r) ≤ u(t, r) in Dε(T ) . Noting
from Theorem 3.3 that

lim
ε→0

hε(t) = h(t) in C1[0, T ], lim
ε→0

‖uε(t, ·)− u(t, ·)‖C(Dε(T )) = 0,

we are able to prove, by taking ε→ 0 in the above inequality,

h(t) ≤ h(t) in [0, T ] and u(t, r) ≤ u(t, r) in D(T ).

The proof is complete. �

We can prove Lemma 3.2 in the same way as Lemma 3.1. Hence we omit the proof
of Lemma 3.2.

Proof of Lemma 3.3. Since h′μ2
(t) = −μ2(uμ2)r(t, hμ2(t)) ≥ −μ1(uμ2)r(t, hμ2(t)) in

[0, T ] because of μ1 ≤ μ2, we can regard (uμ2(t, r), hμ2(t)) as an upper solution of (P)
with μ = μ1. Hence we apply Lemma 3.1 to get the conclusion. �

3.4 Properties of spreading and vanishing

In this section we will discuss the asymptotic behaviors of solutions for (P) as t→ ∞.
Since the free boundary h(t) is strictly increasing for all t ≥ 0 (Theorem 3.2), we get
its limit which is allowed to be infinity. Hence it holds that

lim
t→∞

h(t) = ∞ or lim
t→∞

h(t) <∞.

The asymptotic behavior of u(t, r) is different from each of the above cases. We will
characterize this phenomenon as spreading and vanishing.
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3.4.1 Main theorems

We will show main theorems of this section. The following theorem means a property
of vanishing.

Theorem 3.4. If limt→∞ h(t) <∞, then limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0.

We will show a property of spreading as follows.

Theorem 3.5. Let (u, h) be the solution of (P1) (resp. (P2) or (P3)) with initial data
(q(r), l), where the function q(r) and the number l > R satisfy⎧⎪⎨⎪⎩

dΔq + f(q) ≥ 0, R < r < l,

q(r) > 0, R < r < l,

q(R) = 0 (resp. qr(R) = 0), q(l) = 0.

(3.12)

Then the following properties hold true:

(i) limt→∞ h(t) = ∞; that is limt→∞ Ω(t) = R
N \BR,

(ii) ut(t, r) is non-decreasing with respect to t ≥ 0 for R ≤ r ≤ h(t),

(iii) limt→∞ u(t, r) = v∗(r): uniformly for r in any compact subset of [R,∞), where
v∗(r) is a minimal positive solution of{

dΔv + f(v) = 0, R < r <∞,

v(R) = 0 (resp. vr(R) = 0)

satisfying v∗(r) ≥ q(r) in [R, l].

Remark 3.1. In Theorem 3.5, problem (3.12) may be replaced by (3.5). In particular,
the solution of (3.5) always satisfies (3.12).

The following property on spreading is an immediate consequence of Theorem 3.5.

Corollary 3.1. Suppose that q(r), v∗(r) and l > R are defined as in Theorem 3.5. If
h0 ≥ l and u0(r) ≥ q(r) in [R, l], then

lim
t→∞

Ω(t) = R
N \BR and lim inf

t→∞
u(t, r) ≥ v∗(r) for R ≤ r <∞.

Remark 3.2. In Corollary 3.1, assumption “u0(r) ≥ q(r) in [R, l]” may be replaced
by “ u0(r) is an upper solution of (3.5)”.
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3.4.2 Proofs of main theorems

We prepare two lemmas.

Lemma 3.4. Let (u, h) be any solution of (P). Assume limt→∞ h(t) < ∞. If v(t, y) is
defined by v(t, y) = u(t, (h(t)− R)y + R), then {v(t, ·)| t ≥ 1} is relatively compact in
C1[0, 1].

Lemma 3.5. Let (u, h) be any solution of (P). Assume limt→∞ h(t) < ∞. Then both

h′(t) and U(t) :=
∫ h(t)

R
rN−1ut(t, r)

2dr are uniformly continuous with respect to t ∈
[1,∞).

The proofs are basically similar to those in one-dimensional case (see Lemmas 2.5 and
2.6), and we omit details here.

We will prove the main theorems in the following.

Proof of Theorem 3.4. We may assume that (u, h) is a solution of (P1) because,
in the other cases, one can also get the conclusion in the same way. Let U(t) :=∫ h(t)

R
rN−1ut(t, r)

2dr. We will first prove

lim
t→∞

h′(t) = 0 and lim
t→∞

U(t) = 0. (3.13)

Indeed, since we see from Theorem 3.2

sup
R≤r≤h(t), t≥0

F (u(t, r)) ≤ max
0≤u≤C1

F (u) =: C3 <∞,

it follows from the energy identity (Proposition 3.1) and assumption h∞ := limt→∞ h(t) <
∞ that

d

2

∫ h(t)

R

rN−1ur(t, r)
2 dr +

∫ t

0

U(s)ds+
d

2μ2

∫ t

0

h(s)N−1h′(s)3 ds

≤ C0 + C3
hN∞ −RN

N
=: C4

for all t ≥ 0, where C0 := d
2

∫ h0

R
rN−1u′0(r)

2 dr − ∫ h0

R
rN−1F (u0(r)) dr. Hence it holds

that

sup
t≥0

∫ h(t)

R

rN−1ur(t, r)
2 dr ≤ C4,

∫ ∞

0

U(s) ds ≤ C4

and
dhN−1

0

2μ2

∫ ∞

0

h′(s)3 ds ≤ d

2μ2

∫ ∞

0

h(s)N−1h′(s)3 ds ≤ C4.

Since Lemma 3.5 means that h′(t) and U(t) are uniformly continuous with respect to
t, it follows from the above estimates that h′(t) → 0 and U ′(t) → 0 as t → ∞. Hence
we have (3.13).
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We now change variable by r = (h(t)−R)y +R with

v(t, y) := u(t, (h(t)−R)y +R).

One can check that v satisfies the following problem:⎧⎪⎨⎪⎩
vt = a(t)vyy + b(t, y)vy + f(v), t > 0, 0 < y < 1,

v(t, 0) = 0, v(t, 1) = 0, t > 0,

v(0, y) = v0(y) := u0((h0 −R)y +R), 0 ≤ y ≤ 1,

(3.14)

where

a(t) =
d

(h(t)−R)2
, b(t, y) =

h′(t)y
h(t)−R

+
(N − 1)d

(h(t)−R)2y +R(h(t)−R)
.

By Lemma 3.4, there exist a sequence {tn} ↗ ∞ and a non-negative function v̂(y)
such that

lim
n→∞

v(tn, y) = v̂(y) in C1[0, 1]. (3.15)

Note that

ut(tn, r) = vt(tn, y)− h′(tn)y
h(tn)−R

vy(tn, y),

h′(tn) = −μur(tn, h(tn)) = − μ

h(tn)−R
vy(tn, 1),

(3.16)

and we also recall from (3.13) that

lim
t→∞

h′(t) = 0 and lim
t→∞

U(t) = lim
t→∞

∫ h(t)

R

rN−1ut(t, r)
2dr = 0.

Then, using (3.16), we have vt(tn, ·) → 0 in L2(0, 1) as n → ∞. Hence it is possible
from (3.13), (3.14) and (3.15) to show in the standard manner that, as n → ∞, v̂
satisfies

d

(h∞ −R)2
v̂yy +

(N − 1)d

(h∞ −R)2y +R(h∞ −R)
v̂y + f(v̂) = 0 (3.17)

for 0 < y < 1 with v̂(0) = v̂(1) = 0. Moreover we also get 0 = −μv̂y(1)/(h∞ −R), and
hence v̂y(1) = 0. Thus v̂ satisfies second-order differential equation (3.17) with initial
condition v̂(1) = v̂y(1) = 0. Using the uniqueness of solutions, we obtain v̂ ≡ 0. This
implies that

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = lim
t→∞

‖v(t, ·)‖C(0,1) = 0.

The proof is complete. �

Proof of Theorem 3.5. The proof is similar to the one dimensional case (see the proof
of Theorem 2.5). We apply the comparison principle for the free boundary problem
to prove (ii). Let u(t, r) ≡ q(r) and h(t) ≡ l. Then we can regard (u, h) as a lower
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solution of (P) because u satisfies the equation of (P) with the boundary conditions
and it holds that

h′(t) = 0 ≤ −μqr(l) = −μur(t, h(t)).
Hence it follows from Lemma 3.1 that

h(τ) ≥ h(τ) ≡ l and u(τ, r) ≥ u(τ, r) ≡ q(r) in [R, l] (3.18)

for all τ > 0. In this paragraph, to clarify the dependence of solution (u, h) for
(P) on initial data (q, l), we write u(t, r; q, l) and h(t; q, l) instead of u(t, r) and h(t),
respectively. We will compare (u(t, r; u(τ, r; q, l), h(τ ; q, l)), h(t; u(τ, r; q, l), h(τ ; q, l)))
with (u(t, r; q, l), h(t; q, l)) by Lemma 3.1. It follows from (3.18) that for every t ≥ 0

h(t; u(τ ; q, l), h(τ ; q, l)) ≥ h(t; q, l),

u(t, r; u(τ ; q, l), h(τ ; q, l)) ≥ u(t, r; q, l) in [R, h(t; q, l)].

Here, noting the uniqueness of solutions of (P), we find that

h(t; u(τ ; q, l), h(τ ; q, l)) = h(t+ τ ; q, l),

u(t, r; u(τ ; q, l), h(τ ; q, l)) = u(t+ τ, r; q, l).

Hence it follows that

u(t+ τ, r; q, l) ≥ u(t, r; q, l) for any t, τ ≥ 0 and R < r < h(t; q, l).

Thus ut(t, r; q, l) ≥ 0 for t > 0 and R < r < h(t; q, l).
We will next prove (i). By virtue of (ii), we find

lim inf
t→∞

u(t, r) ≥ q(r) > 0 for R < r < l. (3.19)

If we assume limt→∞ h(t) <∞, then we deduce from Theorem 3.4 that

lim
t→∞

‖u(t, ·)‖C(R,h(t)) = 0.

This is a contradiction to (3.19). Hence the free boundary must satisfy limt→∞ h(t) =
∞ and limt→∞ Ω(t) = R

N \BR.
Finally we will prove (iii). Since u(t, r) is nondecreasing with respect to t for r ≥ R

and uniformly bounded by Theorem 3.2, there exists a nonnegative function v̂(r) such
that

lim
t→∞

u(t, r) = v̂(r) for every r ≥ R with v̂(r) ≥ q(r) in [R, l]. (3.20)

We will show that v̂ ≡ v∗ in [R,∞). Multiplying the equation of (P) by any function
φ ∈ C∞

0 (R,∞) and integrating it over (t, t+ δ)× (R,∞) for any positive number δ, we
find that ∫ t+δ

t

∫ ∞

R

ut(s, r)φ(r) drds = d

∫ t+δ

t

∫ ∞

R

u(s, r)φrr(r) drds

−(N − 1)d

∫ t+δ

t

∫ ∞

R

u(s, r)
(φ(r)

r

)
r
drds+

∫ t+δ

t

∫ ∞

R

f(u(s, r))φ(r) drds.
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We calculate the above identity in detail. Using Lebesgue’s dominated convergence
theorem and (3.20) , we see

lim
t→∞

∫ t+δ

t

∫ ∞

R

ut(s, r)φ(r) drds

= lim
t→∞

{∫ ∞

R

u(t+ δ, r)φ(r) dr −
∫ ∞

R

u(t, r)φ(r) dr
}

= 0.

Similarly it holds that

lim
t→∞

∫ t+δ

t

∫ ∞

R

u(s, r)φrr(r) drds = δ

∫ ∞

R

v̂(r)φrr(r) dr,

lim
t→∞

∫ t+δ

t

∫ ∞

R

u(s, r)
(φ(r)

r

)
r
drds = δ

∫ ∞

R

v̂(r)
(φ(r)

r

)
r
dr,

lim
t→∞

∫ t+δ

t

∫ ∞

R

f(u(s, r))φ(r) drds = δ

∫ ∞

R

f̂(v̂(r))φ(r) dr.

Hence v̂ satisfies
dΔv̂(r) + f(v̂(r)) = 0

in the sense of distribution with v̂(R) = 0 for (P1) or v̂y(R) = 0 for (P2) and (P3). By
the standard manner, v̂ satisfies (3.6) in a classical sense with v̂(r) ≥ q(r) for r ∈ [R, l].

We will show that v̂ is equal to the minimal solution v∗ of (3.6) satisfying v∗(r) ≥
q(r) in [R, l]. Let v(r) be any positive solution of (3.6) satisfying v(r) ≥ q(r) in [R, l].
We find from the standard comparison principle that u(t, r) ≤ v(r) for t > 0 and
R ≤ r ≤ h(t). Therefore

v̂(r) = lim
t→∞

u(t, r) ≤ v(r) for every r ≥ R.

Since v is arbitrary solution of (3.6), this inequality implies v̂ ≡ v∗ in [R,∞). We
conclude from the monotone convergence of (3.20) and Dini’s theorem that

lim
t→∞

u(t, r) = v∗(r) uniformly for r in any compact subset of [R,∞).

The proof is complete. �

Proof of Corollary 3.1. Let (u, h) be a solution of (P) with initial data (q, l).
By the assumption that h0 ≥ l and u0(r) ≥ q(r) in [R, l], the comparison principle
(Lemma 3.1) shows

h(t) ≥ h(t) and u(t, r) ≥ u(t, r)

for t > 0 and R ≤ r ≤ h(t). Note from Proposition 3.5 that

lim
t→∞

h(t) = ∞ and lim
t→∞

u(t, r) = v∗(r) for R ≤ r <∞.

Hence, taking t→ ∞ in the above inequalities, we see that

lim
t→∞

h(t) = ∞ and lim inf
t→∞

u(t, r) ≥ v∗(r) for R ≤ r <∞.

This completes the proof. �
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3.5 General dichotomy theorem

In this section, we will prove a general dichotomy theorem and a criterion for spreading
and vanishing of solutions (u, h) for (P) in multi-dimensions.

The following theorem shows a general dichotomy.

Theorem 3.6. Suppose that f satisfies

f ∈ C1[0,∞), f(0) = f(1) = 0, f(u) < 0 for u > 1, f ′(0) �= 0. (3.21)

Then any solution (u, h) of (P) satisfies either (i) or (ii) as t→ ∞ :

(i) Spreading: limt→∞Ω(t) = R
N \BR, lim inft→∞ ‖u(t, ·)‖C(R,h(t)) > 0;

(ii) Vanishing: limt→∞ Ω(t) is a bounded set in R
N \BR, limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0.

Moreover ‖u(t, ·)‖C(R,h(t)) = O(e−βt) as t→ ∞ for a positive constant
β depending on f ′(0).

We can also give a criterion for spreading and vanishing.

Theorem 3.7. Let φ be a function in C2(R, h0) ∩ C[R, h0] which satisfies the same
boundary condition as u. Then there exists a number σ∗ > 0 depending on φ, h0 and
R such that the following criterion holds true:

• If u0 > σ∗φ in (R, h0), then spreading occurs;

• If u0 < σ∗φ in (R, h0), then vanishing occurs;

• If u0 = σ∗φ in (R, h0), then vanishing occurs for f ′(0) > 0, while spreading occurs
for f ′(0) < 0.

We can prove Theorem 3.7, combining Theorems 3.10 and 3.14. Hence we omit the
proof of Theorem 3.7. To prove Theorem 3.6, we need two key propositions.

Proposition 3.2. Suppose that f satisfies (3.21) and f ′(0) > 0. If limt→∞ h(t) = ∞,
then lim inft→∞ u(t, r) > 0 in (R,∞).

Proof. Consider the eigenvalue problem:{
dΔq + λ1q = 0, R < r < l,

q(R) = q(l) = 0 (resp. qr(R) = q(l) = 0)

for l > R. By the Sturm-Liouville theory, there exist the first eigenvalue λ1(l) and
the corresponding eigenfunction q(r) of the problem. Since λ1(l) is continuous and
monotone decreasing with respect to l, λ1(l) > 0 for all l > 0 and liml→+∞ λ1(l) = 0,
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we can take l > h0 large enough to satisfy f ′(0) > λ1(l) for given f
′(0) > 0. Choosing

ε sufficiently small, we can show that φ := εq satisfies{
dΔφ+ f(φ) ≥ 0, R < r < l,

φ(R) = φ(l) = 0 (resp. φr(R) = φ(l) = 0).

Let (w(t, r), s(t)) be the solution of (P) with initial data (φ, l). By limt→∞ h(t) = ∞,
there exists some T > 0 such that h(T ) = l, and also, if necessary, we can choose small
ε > 0 so that φ(r) = εq(r) ≤ u(T, r) in (R, l). Hence we apply Lemma 3.2 to get

s(t) ≤ h(t+ T ) for t > 0 and w(t, r) ≤ u(t+ T, r) for t > 0, R < r < s(t).

Noting from Theorem 3.5 that limt→∞ s(t) = ∞ and limt→∞w(t, r) = v∗(r) uniformly
in any compact set of [R,∞) where v∗ is a minimal solution of (3.6), we deduce

lim inf
t→∞

u(t, r) ≥ lim
t→∞

w(t, r) = v∗(r) > 0 in (R,∞). (3.22)

The proof is complete. �

Proposition 3.3. Suppose f satisfies (3.21) and f ′(0) < 0. If lim inft→∞ ‖u(t, ·)‖C(R,h(t))

= 0, then limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0 and limt→∞ h(t) <∞.

Proof. Let f(v) = vg(v) and define c∗ = inf{c > 0; f(c) = 0}. Since f ′(0) < 0, we
see g(v) < 0 for 0 < v < c∗. Take 0 < c1 < c∗. Then, by the assumption, there exists
a positive number T ∗ such that

u(T ∗, r) ≤
√
3c1
2

for R ≤ r ≤ h(T ∗). (3.23)

We fix such T ∗ > 0 and set

s(t) = s0(1 + δ(1− e−αt)), v(t, r) = c1e
−αt cos

( π(r −R)

2(s(t)−R)

)
,

where α, s0 and δ are chosen as follows:

0 < α ≤ m1, m1 := min{−g(v); 0 ≤ v ≤ c1} > 0,

s0 ≥ max{3h(T ∗)− 2R, h0} and δ ≥ πμc1
2αs0(s0 −R)

.
(3.24)

We will prove that (v, s) is an upper solution of (P). Indeed direct calculations give

vr = c1e
−αt

{
− π

2(s(t)−R)

}
sin

( π(r −R)

2(s(t)−R)

)
,

vrr = c1e
−αt

{
− π2

4(s(t)−R)2

}
cos

( π(r −R)

2(s(t)−R)

)
,

vt = −αc1e−αt cos
( π(r −R)

2(s(t)−R)

)
+ c1e

−αt
{s′(t)π(r −R)

2(s(t)−R)2

}
sin

( π(r −R)

2(s(t)−R)

)
.
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Hence we get

vr ≤ 0 and vt ≥ −αc1e−αt cos
( π(r −R)

2(s(t)−R)

)
for t > 0, R ≤ r ≤ s(t). Note from 0 ≤ v ≤ c1 for t > 0, R ≤ r ≤ s(t) that
−g(v) ≥ m1 > 0. Then it follows that

vt − dΔv − f(v)

≥ c1e
−αt cos

( π(r −R)

2(s(t)−R)

){
− α +

π2d

4(s(t)−R)2
− g(v)

}
≥ c1e

−αt cos
( π(r −R)

2(s(t)−R)

){
− α +

π2d

4(s0(1 + δ)−R)2
+m1

}
.

Since α ≤ m1 by (3.24), we find

−α +
π2d

4(s0(1 + δ)−R)2
+m1 > 0.

Thus it holds that

vt − dΔv − f(v) ≥ 0 for t > 0, R ≤ r ≤ s(t). (3.25)

Using (3.24), we can also get

s′(t)− (−μvr(t, s(t))) = αs0δe
−αt − πμc1

2(s(t)−R)
e−αt

≥ αs0

{
δ − πμc1

2αs0(s0 −R)

}
e−αt

≥ 0

(3.26)

for t > 0. We next compare u(t + T ∗) with v(t, r) at t = 0. We recall (3.23) and note
from (3.24) that

0 <
π(h(T ∗)−R)

2(s0 −R)
≤ π

6
.

Then it follows that

u(T ∗, r) ≤
√
3c1
2

= c1 cos
π

6
≤ c1 cos

(π(h(T ∗)−R)

2(s0 −R)

)
and

c1 cos
(π(h(T ∗)−R)

2(s0 −R)

)
≤ c1 cos

( π(r −R)

2(s0 −R)

)
= v(0, r)

for R ≤ r ≤ h(T ∗). Hence we obtain

u(T ∗, r) ≤ v(0, r) for R ≤ r ≤ h(T ∗). (3.27)
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We finally check the boundary conditions in the following:

u(t+ T ∗, R) = 0 ≤ c1e
−αt = v(t, R) for (P1),

ur(t+ T ∗, R) = vr(t, R) = 0 for (P2) and (P3),

u(t+ T ∗, h(t+ T ∗)) = v(t, s(t)) = 0

(3.28)

for t > 0.

From (3.25) – (3.28), the comparison principle for upper solutions (Lemma 3.1)
shows

h(t+ T ∗) ≤ s(t) for t > 0, u(t+ T ∗, r) ≤ v(t, r) for t > 0, R ≤ r ≤ h(t+ T ∗).

Thus we obtain

lim
t→∞

h(t) ≤ lim
t→∞

s(t) = s0(1 + δ),

lim
t→∞

‖u(t, ·)‖C(R,h(t)) ≤ lim
t→∞

‖v(t, ·)‖C(R,h(t)) = 0.

We complete the proof. �

Proof of Theorem 3.6. Since the free boundary is strictly increasing, we find that it
satisfies limt→∞ h(t) < ∞ or limt→∞ h(t) = ∞. If limt→∞ h(t) < ∞, then limt→∞ Ω(t)
is a bounded set in R

N \ BR and we deduce limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0 by Theo-
rem 3.4. On the other hand, if limt→∞ h(t) = ∞, then limt→∞ Ω(t) = R

N \ BR.
For the behavior of u as t → ∞, we need to discuss each case of f ′(0) > 0 and
f ′(0) < 0. In the former case, Propositions 3.2 implies lim inft→∞ u(t, r) > 0 in (R,∞),
which leads to lim inft→∞ ‖u(t, ·)‖C(R,h(t)) > 0. In the latter case we get the same
inequality by Proposition 3.3. When vanishing occurs, we can prove decay estimate
‖u(t, ·)‖C(R,h(t)) = O(e−βt) for some β > 0 as t → ∞. The proof of this estimate is
divided into two cases: f ′(0) > 0 and f ′(0) < 0. For each case, we can prove the decay
rate by Theorems 3.8 and 3.12, respectively. We complete the proof. �

3.6 Spreading and vanishing for Case f ′(0) > 0

We discuss free boundary problem (P) under the assumption that

f satisfies (3.21) and f ′(0) > 0.

We will give a more precise dichotomy theorem in this case and give some sufficient
conditions and criteria for spreading and vanishing. As we have seen in Section 3.1,
the results in this section are applicable to general polystable (in particular, monos-
table/logistic) nonlinearities.
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3.6.1 Main theorems

A dichotomy theorem is given in the following:

Theorem 3.8. Let (u, h) be any solution of (P) and let BR be a multi-dimensional ball
with radius R. Suppose that f satisfies (3.21) and f ′(0) > 0. Then either spreading (i)
or vanishing (ii) holds true:

(i) limt→∞ Ω(t) = R
N \BR and lim inft→∞ u(t, r) ≥ v∗(r) in [R,∞), where v∗(r) is a

minimal positive solution of (3.6). Moreover if f(u)/u is strictly decreasing with
respect to u ∈ [0, 1], then limt→∞ u(t, r) = v∗(r) uniformly in any compact subset
of [R,∞);

(ii) limt→∞ Ω(t) ⊂ BR∗
N
\BR and limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0 with a positive number

R∗
N = R∗

N(d,R, f
′(0)). Moreover ‖u(t, ·)‖C(R,h(t)) = O(e−βt) for some β > 0 as

t→ ∞.

Remark 3.3. The number R∗
N in Theorem 3.8 is determined by f ′(0) = λ1(d,R,R

∗
N),

where, for (P1) (resp. (P2) or (P3)), λ1(d,R, l) is the least eigenvalue of⎧⎪⎨⎪⎩
−dΔφ = λ1φ, R < r < l,

φ > 0, R < r < l,

φ(R) = φ(l) = 0 (resp. φr(R) = φ(l) = 0)

(3.29)

with l > R. Indeed it is well known that λ1(d,R, l) is continuous and decreasing with
respect to l, and satisfies liml→R+ λ1(d,R, l) = +∞ and liml→+∞ λ1(d,R, l) = 0. Thus,
for given d, R and f , there exists a unique positive number R∗

N = R∗
N(d,R, f

′(0)) such
that

f ′(0) = λ1(d,R,R
∗
N) and f ′(0) > λ1(d,R, l) for l > R∗

N . (3.30)

In the case of N = 1, R∗ is given explicitly by π
√
d/f ′(0)+R for (P1) or (π/2)

√
d/f ′(0)

+R for (P2) and (P3).

Remark 3.4. In Theorem 3.8, if the nonlinear term is logistic, f(u) = u(a − bu) for
a, b > 0, then f(u)/u is strictly decreasing for u > 0 and we get the convergence of u
as t → ∞. In particular, v∗(r) ≡ a/b for (P2) and (P3). When f(u) is logistic with
inhomogeneous coefficients, Du-Guo [14] have obtained a similar dichotomy result for
(P3).

Proposition 3.4. The function R∗
N = R∗

N(d,R, α) with α = f ′(0) in Theorem 3.8 is
monotone increasing with respect to d and R, and monotone decreasing with respect to
α. Moreover, for fixed numbers d and R, limα→+∞R∗

N = R and limα→0R
∗
N = ∞.

This proposition implies that, as the hostile environment (barrier) becomes larger, the
threshold radius between spreading and vanishing gets larger.

Some sufficient conditions are given in the following theorem.
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Theorem 3.9. Let (u, h) be any solution of (P) and define a∗ = inf{a > 0; f(a) = 0}.
(i) Suppose that h0 ≥ R∗

N ; then spreading occurs. If initial function u0 also satis-
fies ‖u0‖C(R,h0) ≤ a∗ and f(u)/u is decreasing with respect to u ∈ [0, a∗], then
limt→∞ u(t, r) = v∗(r) uniformly in any compact subset of [R,∞), where v∗ is a
minimal solution of (3.6).

(ii) Suppose that h0 < R∗
N . If initial function u0 is small enough to satisfy 0 ≤

u0(r) ≤ w(r) in [R, h0] for a positive function w defined in [R, h0], then vanishing
occurs. Moreover ‖u(t, ·)‖C(R,h(t)) = O(e−βt) for some β > 0 as t→ ∞.

Consider the solution of (P1) (resp. (P2) or (P3)) with initial data (u0, h0). We
can find a sharp threshold on initial data which separates spreading and vanishing.

Theorem 3.10. Suppose that h0 < R∗
N . Let φ ∈ C2(R, h0) ∩ C[R, h0] be any function

which satisfies φ(R) = φ(h0) = 0 (resp. φr(R) = φ(h0) = 0). Then there exists a
number σ∗ = σ∗(φ, h0) ∈ (0,∞] such that spreading occurs if u0 > σ∗φ in (R, h0) and
vanishing occurs if u0 ≤ σ∗φ in (R, h0).

We can also give another criterion, focusing on the speed parameter.

Theorem 3.11. Suppose that h0 < R∗
N . Then there exists some number μ∗ = μ∗(u0, h0)

∈ [0,∞) such that spreading occurs for μ > μ∗, while vanishing occurs for μ ≤ μ∗.
Moreover, if f(u) ≤ f ′(0)u for u ≥ 0, then μ∗ ∈ (0,∞).

3.6.2 Proofs of main theorems

We prepare for the proof of the main theorems.

Proposition 3.5. If limt→∞ h(t) <∞, then limt→∞ h(t) ≤ R∗
N .

Proof. We assume limt→∞ h(t) > R∗
N to get a contradiction. By the assumption, there

exists a constant T > 0 such that l := h(T ) > R∗
N , and we find that f ′(0) > λ1(l),

where λ1(l) is the least eigenvalue of (3.29). As in the proof of Proposition 3.2, we
deduce

lim inf
t→∞

u(t, r) ≥ v∗(r) > 0 in (R,∞),

where v∗ is a minimal solution of (3.6). This contradicts the fact of Theorem 3.4 that
limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0 if limt→∞ h(t) < ∞. Thus the free boundary must satisfy
limt→∞ h(t) ≤ R∗

N . �

We now prove the main theorems.

Proof of Theorem 3.8. Since the free boundary is strictly increasing, it must satisfy
limt→∞ h(t) = ∞ or limt→∞ h(t) < ∞. In the former case, we have limt→∞ Ω(t) =
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R \ BR and lim inft→∞ u(t, r) ≥ v∗(r) for R ≤ r <∞ by Proposition 3.2. In the latter
case, we find from Theorem 3.4 and Proposition 3.5 that limt→∞ Ω(t) ⊂ BR∗

N
\ BR

and limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0. When vanishing occurs, there exists some T > 0
such that u(T, r) ≤ w(r) in [R, h0] for a positive function w. Then we can prove
‖u(t, ·)‖C(R,h(t)) = O(e−βt) for some β > 0 as t→ ∞ (see Theorem 3.9).

In the case of spreading, if we further assume f(u)/u is decreasing with respect to
u ∈ [0, 1], then (3.6) has a unique solution (see Section 3.8). Then we find the unique
convergence of solutions as t → ∞ for any initial data. Indeed one can construct a
suitable upper solution for (P1) (resp. (P2) or (P3)). Let u(t, r) be the solution of⎧⎪⎨⎪⎩

ut − dΔu = f(u), t > 0, R < r <∞,

u(t, R) = 0 (resp. ur(t, R) = 0), t > 0,

u(0, r) =M := max{1, ‖u0‖C(R,h0)}, R ≤ r <∞.

Noting that v ≡M is regarded as an upper solution of (3.6), we find from the monotone
method and the uniqueness of solutions for (3.6) that u(t, ·) is decreasing and converges
to v∗(r) uniformly for r in any compact subset of [R,∞) as t → ∞ (cf. Sattinger
[58]). It also follows from the standard comparison principle that u(t, r) ≤ u(t, r) for
R ≤ r <∞. Hence letting t→ ∞ in this inequality shows

lim sup
t→∞

u(t, r) ≤ lim
t→∞

u(t, r) = v∗(r) for R ≤ r <∞.

Thus, combining the above inequality and (3.22), we conclude that limt→∞ u(t, r) =
v∗(r) uniformly for r in any compact subset of [R,∞). We complete the proof. �

Proof of Proposition 3.4. Consider the least eigenvalue λ1(d,R, l) of (3.29). One
can represent it as

inf
{d ∫ l

R
rN−1φr(r)

2 dr∫ l

R
rN−1φ(r)2 dr

∣∣∣ φ ∈ H1
0 (R, l) (resp. φ ∈ H1(R, l), φr(R) = φ(l) = 0)

}
.

By the representation, λ1(d,R, l) is monotone increasing with respect to d. We recall
that R∗

N(d,R, α) is determined by (3.30). Hence we find that R∗
N(d,R, α) is monotone

increasing with respect to d.
Next we will show that R∗

N(d,R, α) is monotone increasing with respect to R. We
assume R∗

N(d,R1, α) > R∗
N(d,R2, α) if R1 < R2 to get a contradiction. Since λ1(d,R, l)

is monotone decreasing with respect to l, we get

α = λ1(d,R2, R
∗
N(d,R2, α)) > λ1(d,R2, R

∗
N(d,R1, α)).

On the other hand, we have

λ1(d,R2, R
∗
N(d,R1, α)) > λ1(d,R1, R

∗
N(d,R1, α)) = α

because λ1(d,R, l) is monotone increasing with respect to R. This result gives us a
contradiction. Hence R∗

N(d,R1, α) ≤ R∗
N(d,R2, α).
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Finally, note that λ1(d,R, l) is decreasing with respect to l, liml→R+ λ1(d,R.l) =
+∞, liml→∞ λ1(d,R.l) = 0 and l = R∗

N is a point of the intersection between λ1(d,R, l)
and α. Then we get R∗

N(d,R, α1) ≥ R∗
N(d,R, α2) if α1 < α2, and moreover R∗

N satisfies

lim
α→+∞

R∗
N = R and lim

α→0
R∗

N = ∞.

We complete the proof. �

Proof of Theorem 3.9. (i) Since h0 ≥ R∗
N and the free boundary is strictly increasing,

it must satisfy h(t) > R∗
N for all t > 0, and limt→∞ h(t) > R∗

N . Hence the dichotomy
theorem (Theorem 3.8) implies limt→∞ h(t) = ∞ and spreading occurs. Next let u(t, r)
be the solution of⎧⎪⎨⎪⎩

ut − dΔu = f(u), t > 0, R < r <∞,

u(t, R) = 0 (resp. ur(t, R) = 0), t > 0,

u(0, r) = a∗, R ≤ r <∞

for (P1) (resp. (P2) or (P3)). If ‖u0‖C(R,h0) ≤ a∗, then the standard comparison
principle shows u(t, r) ≤ u(t, r) for t > 0, R ≤ r ≤ h(t). Moreover the assumption of
h0 ≥ R∗

N implies that the solution satisfies the property of spreading, and in particular
limt→∞ h(t) = ∞. Note that the solution v of (3.6) satisfying v(r) ≤ a∗ in [R,∞) is
unique, that is v = v∗, under the assumption that f(u)/u is decreasing in u ∈ [0, a∗]
(See Section 3.8). Hence we obtain

lim sup
t→∞

u(t, r) ≤ lim
t→∞

u(t, r) = v∗(r) in [R,∞).

As in the proof of Proposition 3.2, we get

lim inf
t→∞

u(t, r) ≥ v∗(r) in [R,∞).

Thus we can prove that u(t, r) converges to v∗(r) uniformly for r in any compact set
of [R,∞) as t→ ∞.

(ii) We will construct an upper solution for (P1) (resp. (P2) or (P3)). Let λ1(γ) be
the least eigenvalue and let ϕ(y; γ) be the corresponding eigenfunction for{

−dΔyϕ = λ1ϕ, ϕ > 0, γ < y < s0,

ϕ(γ) = ϕ(s0) = 0 (resp. ϕy(γ) = ϕ(s0) = 0),

where Δyϕ = ϕyy + (N − 1)ϕy/y, s0 ∈ [h0, R
∗
N), γ ∈ (0, R) for (P1) and (P2), and

γ = 0 for (P3). Define

s(t) = s0(1 + δ(1− e−αt)) and v(t, r) = ε0e
−βtϕ

( s0
s(t)

r; γ
)
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with positive constants α, β, δ and ε0. If v(t, r) and s(t) satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt − dΔv ≥ f(v), 0 < t < T, R < r < s(t), (3.31)

v(t, R) ≥ 0 (resp. vr(t, R) ≤ 0), 0 < t ≤ T, (3.32)

v(t, s(t)) = 0, 0 < t ≤ T, (3.33)

s′(t) ≥ −μvr(t, s(t)), 0 < t ≤ T (3.34)

and u0 is sufficiently small, then we can regard (v, s) as an upper solution of (P). We
choose α, β, γ, δ and ε0 in the following way. Since s0 < R∗

N , we get f ′(0) < λ1(R).
Hence there exists some small δ > 0 satisfying

λ1(R)

(1 + δ)2
− f ′(0) > 2δ.

By the continuous dependence of λ1(γ) on γ, we choose γ sufficiently close to R and,
if necessary, take small δ again such that

λ1(γ)

(1 + δ)2
− f ′(0) ≥ 2δ, γ <

R

1 + δ
(3.35)

(The second condition on γ is not necessary when we consider γ = 0 in (P3)). In what
follows, we simply denote λ1 and ϕ((s0/s(t))r) in place of λ1(γ) and ϕ((s0/s(t))r; γ),
respectively. Taking β < δ, we see from (3.35) that

m := −β +
λ1

(1 + δ)2
− f ′(0)− δ > 0. (3.36)

Here we note that δ depends on f ′(0) by (3.35); so does β. Remark that ϕ((s0/s(t))r) >
0 for t > 0, R ≤ r < s(t) because γ < (s0/s(t))r < s0 for t > 0, R ≤ r < s(t) by the
second inequality in (3.35). By using these numbers, we take α satisfying

0 < α ≤ min{α∗, β}, (3.37)

where

α∗ :=
mL

δs0M
, L = ϕ

( R

1 + δ

)
, M = ‖ϕy‖C[γ,s0].

Moreover there exists a constant ε0 > 0 such that

0 < ε0 ≤ αδs0
μ(−ϕy(s0))

, f(v) ≤ (f ′(0) + δ)v for 0 < v ≤ ε0. (3.38)

We will first show (3.31). Direct calculation gives

vr = ε0e
−βt

( s0
s(t)

)
ϕy

( s0
s(t)

r
)
,

vrr = ε0e
−βt

( s0
s(t)

)2

ϕyy

( s0
s(t)

r
)
,

vt = −βε0e−βtϕ
( s0
s(t)

r
)
+ ε0e

−βt
(−s′(t)s0r

s(t)2

)
ϕy

( s0
s(t)

r
)
.
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Then we have

vt − dΔv − f(v)

= ε0e
−βt

{
− βϕ

( s0
s(t)

r
)
−
(s′(t)s0r

s(t)2

)
ϕy

( s0
s(t)

r
)
− dΔϕ

( s0
s(t)

r
)
− ϕ

( s0
s(t)

r
)
(f ′(0) + δ)

}
.

Note that y = (s0/s(t))r and

−dΔϕ
( s0
s(t)

r
)
= −d

( s0
s(t)

)2

ϕyy

( s0
s(t)

r
)
− (N − 1)d

r

( s0
s(t)

)
ϕy

( s0
s(t)

r
)

=
( s0
s(t)

)2(
− dΔyϕ

( s0
s(t)

r
))

≥ λ1
(1 + δ)2

ϕ
( s0
s(t)

r
)
.

Hence we obtain

vt − dΔv − f(v) ≥ ε0e
−βt

[
mϕ

( s0
s(t)

r
)
−
(s′(t)s0r

s(t)2

)
ϕy

( s0
s(t)

r
)]
, (3.39)

where m is given in (3.36). Since ϕ(y) has only one critical point in (γ, s0) for (P1)
(no critical point in (γ, s0) for (P2) and (P3)), we find that

ϕy

( s0
s(t)

r
)
≤ 0 for t > 0 and R < r < s(t) (3.40)

for (P2) and (P3), while

ϕy

( s0
s(t)

r
)⎧⎪⎨⎪⎩

> 0 for t > 0, r ∈ [R,Rt),

= 0 for t > 0, r = Rt,

< 0 for t > 0, r ∈ (Rt, s(t)]

(3.41)

for (P1), where Rt > 0 is a positive number depending on t (recalling that γ is suf-
ficiently close to R). When (3.40) holds, the second term in the right-hand side of
(3.39) is nonnegative. This result together with m > 0 enables us to get (3.31). When
(3.41) holds, we can similarly show the inequality for (t, r) ∈ (0,∞) × [Rt, s(t)]. For
(t, r) ∈ (0,∞)× [R,Rt), we see

s′(t) ≤ αδs0 and − s′(t)s0r
s(t)2

≥ −αδs
2
0

s(t)
≥ −αδs0.

Hence it follows from (3.37) that

vt − dΔv − f(v) ≥ ε0e
−βt

[
mϕ

( s0
s(t)

r
)
− αδs0ϕy

( s0
s(t)

r
)]

≥ ε0e
−βt(mL− αδs0M)

≥ 0
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for t > 0, R ≤ r < Rt. We thus obtain (3.31).
We can easily check boundary conditions (3.32) and (3.33) as follows:

u(t, R) = 0 < v(t, R) for (P1),

ur(t, R) = 0 ≥ vr(t, R) for (P2) and (P3),

v(t, s(t)) = 0

for t > 0. We will next show (3.34). By calculation, it holds that

s′(t)− (−μvr(t, s(t))) = αδs0e
−αt +

μs0ϕy(s0)

s(t)
ε0e

−βt

≥
{
αδs0 − ε0μ(−ϕy(s0))e

(α−β)t
}
e−αt.

Using (3.38), we deduce

s′(t)− (−μvr(t, s(t))) ≥ μ(−ϕy(s0))
{ αδs0
μ(−ϕy(s0))

− ε0

}
e−αt ≥ 0

for t > 0. Thus (3.31) – (3.34) holds true.
Finally, taking initial function u0 so small that

u0(r) ≤ v(0, r) = ε0ϕ(r) =: w(r) in [R, h0],

we can apply Lemma 3.1 to show

u(t, r) ≤ v(t, r) and h(t) ≤ s(t) for t > 0, R ≤ r ≤ h(t).

Therefore u(t, r) ≤ ε0‖ϕ‖C(γ,s0)e
−βt for t > 0, R ≤ r ≤ h(t) and limt→∞ h(t) ≤

limt→∞ s(t) = s0(1 + δ). Hence we conclude that vanishing occurs as t→ ∞. �

Proof of Theorem 3.10. Theorem 3.9 has an important role in the proof. Let
(uσ, hσ) be the solution of (P) with initial data (σφ, h0) and define

σ∗ := inf{ ρ ≥ 0 | spreading occurs for any σ > ρ}.

By the definition, spreading occurs for all solutions with σ > σ∗ as t → ∞. Since
part (ii) of Theorem 3.9 shows that vanishing occurs for small initial data, we find
σ∗ > 0. By the definition of σ∗ and Theorem 3.8, for any σ < σ∗, there exists a
number τ ∈ [σ, σ∗) such that the solution (uτ (t, r), hτ (t)) of (P) satisfies the property
of vanishing as t → ∞. Noting that σφ ≤ τφ in (R, h0), we deduce from Lemma 3.1
that

hσ(t) ≤ hτ (t) and uσ(t, r) ≤ uτ (t, r) for t ≥ 0, R < r < hσ(t).

Hence, by letting t→ ∞ in the above inequality, we get

lim
t→∞

hσ(t) <∞ and lim
t→∞

‖uσ(t, ·)‖(R,hσ(t)) = 0.
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This result implies that vanishing occurs for all solutions with σ < σ∗ as t → ∞.
Moreover, using Lemma 3.1, we can easily show that, as t → ∞, spreading occurs if
u0 > σ∗φ in (R, h0), while vanishing occurs if u0 < σ∗φ in (R, h0).

We will show that vanishing occurs when u0 = σ∗φ. If σ∗ = ∞, then there is
nothing to prove. Hence we may assume that σ∗ <∞ in the rest of the proof. Assume
that spreading occurs for the solution as t → ∞, and then we can take a constant
T > 0 such that h(T ) > R∗

N . By the continuous dependence of solutions on initial data
(Theorem 3.3), there exists so small δ > 0 that

hσ(T ) > R∗
N for any σ ∈ [σ∗ − δ, σ∗ + δ].

In particular, by virtue of part (i) of Theorem 3.9, the solution (uσ∗−δ(t, r), hσ∗−δ(t)) of
(P) satisfies the property of spreading as t→ ∞. This result contradicts the definition
of σ∗. Hence, by Theorem 3.8, vanishing occurs when u0 = σ∗φ as t→ ∞. We complete
the proof. �

Proof of Theorem 3.11. We can prove this theorem with suitable modification of
the proof of Theorem 2.10 in one dimension. Hence we omit details here. �

3.7 Spreading and vanishing for Case f ′(0) < 0

In this section we discuss multi-dimensional free boundary problem (P) where

the nonlinear function satisfies (3.21) and f ′(0) < 0.

We show a dichotomy theorem and a criterion for spreading and vanishing.

3.7.1 Main theorems

A dichotomy theorem is given in the following:

Theorem 3.12. Let (u, h) be any solution of (P). Then any solution of (P) satisfies
either spreading (i) or vanishing (ii) as t→ ∞ :

(i) limt→∞ Ω(t) = R
N \BR and lim inft→∞ ‖u(t, ·)‖C(R,h(t)) > 0;

(ii) limt→∞ Ω(t) is a bounded set in R
N \ BR and limt→∞ ‖u(t, ·)‖C(R,h(t)) = 0. In

addition, ‖u(t, ·)‖C(R,h(t)) = O(e−kt) for any k ∈ (0,−f ′(0)) as t→ ∞.

Define c∗ := inf{c > 0; f(c) = 0} ∈ (0, 1] and suppose that the nonlinear function
also satisfies ∫ 1

0

f(u) du > 0.

Then we will also show some sufficient conditions for spreading or vanishing.

Theorem 3.13. Let (u, h) be any solution of (P). The following results hold true:
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(i) If h0 ≥ l and u0(r) ≥ q(r) in [R, l] for a positive solution q(r) of (3.5) with a
sufficiently large constant l > R, then spreading occurs and

lim inf
t→∞

u(t, r) ≥ v∗(r) for R ≤ r <∞,

where v∗(r) is a minimal positive solution of (3.6) satisfying v∗(r) ≥ q(r) in [R, l].

(ii) If ‖u0‖C(R,h0) < c∗, then vanishing occurs. Moreover ‖u(t, ·)‖C(R,h(t)) = O(e−kt)
for any k ∈ (0,−f ′(0)) as t→ ∞.

Remark 3.5. In part (i) of Theorem 3.13, assumption “u0(r) ≥ q(r) in [R, l] for a
positive solution q(r) of (3.5) ” may be replaced by “ u0(r) is an upper solution of
(3.5)”.

Consider the solution of (P1) (resp. (P2) or (P3)) with initial data (u0, h0). We
can give a criterion for spreading and vanishing, focusing on initial data.

Theorem 3.14. Let φ ∈ C2(R, h0) ∩ C[R, h0] be any function which satisfies φ(R) =
φ(h0) = 0 (resp. φr(R) = φ(h0) = 0). Then there exists a number σ∗ = σ∗(φ, h0) ∈
(0,∞] with the following properties:

• spreading occurs if u0 ≥ σ∗φ in (R, h0). Moreover there exists a positive number
σ∗∗ ≥ σ∗ such that if u0 > σ∗∗φ in (R, h0), then lim inft→∞ u(t, r) ≥ v∗(r) in
[R,∞), where v∗(x) is a minimal positive solution of (3.6).

• vanishing occurs if u0 < σ∗φ in (R, h0).

Moreover if h0 is sufficiently large, then σ∗ ≤ σ∗∗ <∞.

In Theorem 3.14, we remark that, differently from the case of f ′(0) > 0, spreading
occurs if u0 = σ∗φ.

Remark 3.6. In Theorems 3.12 and 3.14, when spreading occurs, the large time be-
haviors of u(t, r) might be divided into some cases. For example, we consider problem
(P) with a bistable nonlinearity:

f ∈ C1[0,∞), f(u) < 0 for 0 < u < c∗, u > 1, f(u) > 0 for c∗ < u < 1,

f(0) = f(c∗) = f(1) = 0, f ′(0) < 0, f ′(c∗) > 0, f ′(1) < 0 and

∫ 1

0

f(u) du > 0.

If u0 > σ∗∗φ, then for (P1)

lim
t→∞

u(t, r) = v∗(r) uniformly for r in any compact subset of [R,∞),

where v∗ is a positive solution of (3.6), or

lim
t→∞

u(t, r) = 1 uniformly for r in any compact subset of [R,∞)

for (P2) or (P3). On the other hand, if u0 = σ∗φ, then transition phenomena as in
one-dimensional case might occur. For the proof, we need more precise information on
solutions for (3.5) and (3.6). We may also require additional assumptions on f .



78 CHAPTER 3. A FREE BOUNDARY PROBLEM IN MULTI-DIMENSIONS

3.7.2 Proofs of main theorems

We give the proofs of the main theorems.

Proof of Theorem 3.12. We can apply Theorem 3.6 to this case, and we get
this dichotomy theorem. When vanishing occurs, there exists a constant T > 0
such that u(T, r) ≤ c∗ in [R, h(T )]. As in the proof of Theorem 3.13, we can show
‖u(t, ·)‖C(R,h(t)) = O(e−kt) for any k ∈ (0,−f ′(0)) as t→ ∞. �

Proof of Theorem 3.13. (i) Note that elliptic problem (3.5) has at least two positive
solutions qi (i = 1, 2) for sufficiently large l > R (see Section 3.8). Let (u(t, r), h(t)) be
a solution of (P) with initial data (qi(r), l). Since h0 ≥ l and u0(r) ≥ qi(r) in [R, l], it
follows from Corollary 3.1 that

lim inf
t→∞

u(t, r) ≥ lim
t→∞

u(t, r) = v∗i (r) for R ≤ r <∞,

where v∗i (i = 1, 2) is a minimal positive solutions of (3.6) satisfying v∗i (r) ≥ qi(r) in
(R, l).

(ii) We can prove this property in the same way as the one-dimensional case. Let
w = w(t) be the solution of⎧⎨⎩

dw

dt
= f(w), t > 0,

w(0) = c1 ∈ [‖u0‖C(R,h0), c
∗).

Then w(t) is regarded as an upper solution for (P), and

u(t, r) ≤ w(t) for t > 0, R < r < h(t). (3.42)

Since f(w) < 0 for 0 < w < c∗ and f(0) = 0, the function w(t) is decreasing and
satisfies limt→∞w(t) = 0. Hence limt→∞ ‖u(t, ·)‖C(R,h(t)) ≤ limt→∞w(t) = 0. Thus it
follows from Proposition 3.3 that limt→∞ h(t) <∞ and vanishing occurs as t→ ∞.

We will next show a decay estimate of vanishing. Noting that f ′(w) is continuous
in [0,∞) and limt→∞w(t) = 0, for any small ε > 0, one can choose a positive number
Tε such that

f(w(t)) ≤ (f ′(0) + ε)w(t) for t ≥ Tε.

Then w(t) satisfies
dw

dt
≤ (f ′(0) + ε)w for t ≥ Tε.

Hence we have
w(t) ≤ w(Tε)e

−(k∗−ε)(t−Tε) for t ≥ Tε

with k∗ = −f ′(0) > 0. Using (3.42) and the above estimate, we get

u(t, r) ≤ w(t) ≤ w(Tε)e
−(k∗−ε)(t−Tε) =: Cεe

−(k∗−ε)(t−Tε)
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for t ≥ Tε, R ≤ r ≤ h(t). Hence ‖u(t, ·)‖C(R,h(t)) = O(e−kt) for any k ∈ (0,−f ′(0)) as
t→ ∞. We complete the proof. �

Proof of Theorem 3.14. For solutions of (P) with initial data (σφ, h0), define

σ∗ := inf{ ρ ≥ 0 | spreading occurs for any σ > ρ}.
In the same way as the proof of Theorem 3.10, we can prove by Theorem 3.13 that
σ∗ ∈ (0,∞] and, as t → ∞, spreading occurs if u0 > σ∗φ in (R, h0), while vanishing
occurs if u0 < σ∗φ in (R, h0). As in the proof of Theorem 2.12, we can show another
threshold number σ∗∗ for the case of spreading.

We assume that vanishing occurs for u0 = σ∗φ as t → ∞. Then there exists a
constant T > 0 such that u(T, r) < c∗/2. By the continuous dependence of solutions
on initial data (Theorem 3.3), we can choose a number δ > 0 such that, for σ ∈
[σ∗ − δ, σ∗ + δ], u satisfies

u(T, r) <
c∗

2
for R ≤ r ≤ h(t).

By part (ii) of Theorem 3.13, such a solution satisfies the property of vanishing as
t → ∞. This result contradicts the definition of σ∗. Hence the dichotomy theorem
(Theorem 3.12) implies that spreading occurs when u0 = σ∗φ as t→ ∞. We complete
the proof. �

3.8 Semilinear elliptic equations

In this section we will show some results and remarks on semilinear elliptic equations
in an annulus or an exterior domain in R

N , where the nonlinear function satisfies one
of the following conditions:

(3.21) with f ′(0) > 0 (3.43)

and

(3.21) with f ′(0) < 0 and

∫ 1

0

f(s) ds > 0. (3.44)

The results in this section partly support main theorems.

3.8.1 Semilinear elliptic equations in annulus

We consider semilinear elliptic equations in an annulus given by

(3.5)

⎧⎪⎨⎪⎩
dΔq + f(q) = 0, R < r < l,

q > 0, R < r < l,

q(R) = q(l) = 0 (resp. qr(R) = q(l) = 0)

for some l > R. We have the following results.
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Theorem 3.15. Suppose that f satisfies (3.43). Then problem (3.5) have at least one
positive solutions if l is sufficiently large.

Proof. We will first construct an lower solution for (3.5). Let ϕ be an eigenfunction
corresponding to the first eigenvalue λ1 for the problem:{

dΔϕ+ λ1ϕ = 0, R < r < l,

ϕ(R) = ϕ(l) = 0 (resp. ϕr(R) = ϕ(l) = 0)

for l > R. Consider a function φ := εϕ for a constant ε > 0. As in the proof of
Proposition 3.2, choosing sufficiently large l > R and sufficiently small ε, we find that
φ satisfies {

dΔφ+ f(φ) ≥ 0, R < r < l,

φ(R) = φ(l) = 0 (resp. φr(R) = φ(l) = 0),

and φ is a lower solution of (3.5). Next, we can easily see that Φ = 1 is an upper
solution for (3.5). Hence, by the monotone method (see Sattinger [58]), we can show
that there exists at least one positive solution q satisfying

φ(r) ≤ q(r) ≤ Φ(r) in R < r < l.

We complete the proof. �

Theorem 3.16. Suppose that f satisfies (3.44). Then there exists a sufficiently large
number l∗ > 0 such that, for every l > l∗, (3.5) has at least two positive and radially
symmetric solutions q1 and q2 satisfying

I(q1) < 0 < I(q2),

where

I(q) =
d

2

∫ l

R

rN−1qr(r)
2 dr +

∫ l

R

rN−1F (q(r)) dr

with F (q) = − ∫ q

0
f(s) ds.

We omit the proof of Theorem 3.16 here.

Remark 3.7. The existence of positive solutions has been also shown by Stakgold-
Payne [64] for a monostable nonlinearity and by Clément-Sweers [12] for a bistable
nonlinearity. In the above theorem we have given the results on existence of solutions
of (3.5), where f satisfies more general nonlinearity.
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3.8.2 Semilinear elliptic equations in exterior domain

We consider semilinear elliptic equations in an exterior domain in R
N given by

(3.6)

⎧⎪⎨⎪⎩
dΔv + f(v) = 0, R < r <∞,

v > 0, R < r <∞,

v(R) = 0 (resp. vr(R) = 0).

We have the following theorem on the existence of solutions.

Theorem 3.17. Suppose that f satisifies (3.43) or (3.44). Then there exist at least
one positive solutions for (3.6).

Proof. The proof is derived immediately from the existence of positive solution of
(3.5) by using Theorem 3.5. Hence the proof is complete from Theorems 3.15 and 3.16.
�

Let a∗ := inf{a > 0 | f(a) = 0}. Then we can show that a solution of (3.6)
satisfying 0 < v ≤ a∗ is unique if f satisfies (3.43) and another condition.

Theorem 3.18. Suppose that f satisfies (3.43) and that f(u)/u is decreasing with
respect to u ∈ [0, a∗]. Then a solution v(r) of (3.6) satisfying 0 < v ≤ a∗ in (R,∞) is
unique. Moreover the solution satisfies vr(r) > 0 for all r ≥ R and limr→∞ v(r) = a∗

with vr(r) = o(1/rN−1) as r → ∞ under the Dirichlet boundary condition at r = R,
while v(r) ≡ a∗ under the Neumann boundary condition at r = R.

We prepare the following propositions.

Proposition 3.6. Suppose that f satisfies (3.43) and that f(u)/u is decreasing with
respect to u ∈ [0, a∗]. Let v ∈ C2(R,∞) be any positive solution of (3.6) under the
Dirichlet boundary condition at r = R and let v satisfy 0 < v ≤ a∗ in (R,∞). Then
vr(r) > 0 for all r ≥ R and limr→∞ v(r) = a∗ with vr(r) = o(1/rN−1) as r → ∞.

Proof. We basically follow the proof of [36, Proposition 10]. We will first prove
limr→∞ v(r) = a∗. Assume limr→∞ v(r) �= a∗ to get a contradiction. Let P (r) :=
drN−1vr(r). Since 0 < v(r) ≤ a∗ for R < r <∞, we see f(v(r)) ≥ 0 for R < r <∞. It
follows from (3.6) that

Pr(r) = −rN−1f(v(r)) ≤ 0 for R < r <∞.

By P (R) = RN−1vr(R) > 0, vr changes its sign at most only once in (R,∞). Hence
we find that there exists a limit number ν := limr→∞ v(r) with ν ∈ [0, a∗). Since
f(0) = f(a∗) = 0, we denote f(v) = vg(v) for some positive function g. Then, for
sufficiently small ε > 0, there exists large R1,ε > 0 such that g(v(r)) ≥ g(ν)− ε > 0 in
[R1,ε,∞). Consider (3.6) in [R1,ε, R2] for R2 > R1,ε. Then v satisfies

(p(r)vr)r + q(r)v = 0, v > 0 for r ∈ (R1,ε, R2),
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where p(r) = drN−1 and q(r) = rN−1g(v(r)). Note that for r ∈ (R1,ε, R2)

p(r) = drN−1 ≤ dRN−1
2 =: C2

1 ,

q(r) = rN−1g(v(r)) ≥ RN−1
1,ε (g(ν)− ε) =: C2

2,ε.

We now compare v(r) with

w(r) = sin
(C2,ε

C1

(r −R1,ε)
)
,

which is the positive solution of

C2
1wrr + C2

2,εw = 0 for r ∈ (R1,ε, R2), w(R1,ε) = 0.

Choosing R2 ≤ (C1/C2,ε)π+R1,ε, if necessary, we see from Sturm’s comparison theorem
(see e.g. [13]) that v have at least one zero points in [R1,ε, R2]. This contradicts
0 < v ≤ a∗. Thus limr→∞ v(r) = a∗.

We next prove vr(r) > 0 for all r ≥ R. Assume that there exists r∗ > R satisfying
vr(r

∗) = 0. Since P (r) = rN−1vr(r) is strictly decreasing with respect to r, we find
vr(r) < 0 for all r > r∗. This implies a contradiction, limr→∞ v(r) �= a∗. Hence the
derivative of v with respect to r is positive for all r ≥ R.

We finally prove the rate of convergence. Let P (r) = drN−1vr(r) → β ∈ [0, P (R))
as r → ∞. We will prove that β must be 0. Suppose that β > 0 to get a contradiction.
For any η > 0, we find

β

rN−1
≤ vr(r) <

β + η

rN−1
if r is sufficiently large. (3.45)

Integrating this inequality in (ρ,M) for large M and ρ > R gives

β

∫ M

ρ

1

rN−1
dr ≤

∫ M

ρ

vr(r) dr = v(M)− v(ρ) < (β + η)

∫ M

ρ

1

rN−1
dr. (3.46)

When N = 2, the left-hand side of the inequality implies

a∗ > v(M)− v(ρ) ≥ β(logM − log ρ) → +∞ as M → +∞.

This gives us a contradiction, and β = 0. When N ≥ 3, it holds from (3.46) that

β

N − 2
(ρ2−N −M2−N) ≤ v(M)− v(ρ) <

β + η

N − 2
(ρ2−N −M2−N).

Letting M → +∞ and replacing ρ with r, we have

β

N − 2
r2−N ≤ a∗ − v(r) ≤ β + η

N − 2
r2−N (3.47)

for large r. Since f(a∗) = 0, we represent f(v) = v(a∗ − v)g1(v) for some positive
function g1. Recall (3.45), (3.47) and

vrr(r) = −(N − 1)

r
vr(r)− v(r)(a∗ − v(r))g1(v(r))

d
.



3.8. SEMILINEAR ELLIPTIC EQUATIONS 83

Then it follows that

−(N − 1)

r
· β + η

rN−1
− β + η

N − 2
· v(r)g1(v(r))

drN−2
≤ vrr(r) ≤ − β

N − 2
· v(r)g1(v(r))

drN−2
(3.48)

when r is large. Since a∗ − η < v(r) < a∗ and C < g1(v(r)) < C + η for large r and
some positive constant C, we see from (3.48) that

−(N − 1)(β + η)

rN
− β + η

d(N − 2)
· C + η

rN−2
≤ vrr(r) ≤ − β(1− η)

d(N − 2)
· C

rN−2
(3.49)

for large r. We integrate the right-hand side of (3.49) over (r,M) to see

vr(M)− vr(r) ≤ −βC(1− η)

d(N − 2)
(logM − log r) (N = 3),

vr(M)− vr(r) ≤ − βC(1− η)

d(N − 2)(N − 3)

( 1

rN−3
− 1

MN−3

)
(N ≥ 4).

Letting M → +∞, we obtain for N = 3

vr(r) ≥ βC(1− η)

d(N − 2)
(logM − log r) → +∞.

This result enables us to get β = 0. Similarly for N ≥ 4, we deduce from (3.45) that

β + η ≥ βC(1− η)

d(N − 2)(N − 3)
r2

for large r. This inequality implies that β must be zero. Hence rN−1vr(r) → 0 as
r → +∞, and vr(r) = o(1/rN−1) as r → +∞. We complete the proof. �

Proposition 3.7. Suppose that f satisfies (3.43) and that f(u)/u is decreasing with
respect to u ∈ [0, a∗]. Then v ≡ a∗ is a unique positive solution of (3.6) under the
Neumann boundary condition at r = R.

Proof. We can easily check that v ≡ a∗ is a solution of (3.6). If there exists another
solution for (3.6) with vr(R) = 0 and v(R) ∈ (0, a∗), then we find that v is non-
increasing because P (R) = 0 and Pr(r) ≤ 0 for R < r < ∞, following the proof
of Proposition 3.6. Hence we obtain the same contradiction in Proposition 3.6 by
employing Sturm’s comparison principle. �

Proof of Theorem 3.18. We basically follow the proof of [36, Theorem 10]. It has
been already shown in Proposition 3.7 that there exists a unique solution for (3.6) with
the Neumann boundary condition at r = R. For convenience, we prove the existence
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of solutions for the Dirichlet problem by a different way from the proof of Theorem
3.17. Let w(r) be a function represented as

w(r) =

{
φ(r), r ∈ [R, l],

0, r ∈ (l,∞),

where l is a positive number and φ is a solution of (3.29). Then we find that, for any
small δ > 0, δw is a lower solution of (3.6) in the distribution sense. On the other
hand, v ≡ a∗ is an upper solution of (3.6). Hence the standard monotone method (see
Sattinger [58]) shows that there exists a solution v satisfying δw(r) ≤ v(r) ≤ a∗ for
r ∈ [R,∞). By the elliptic regularity theory, v satisfies (3.6) in the classical sense. We
recall from Proposition 3.6 that

vr(r) > 0 for r ≥ R, lim
r→∞

v(r) = a∗ and lim
r→∞

rN−1vr(r) = 0. (3.50)

We next prove the uniqueness of solutions for (3.6). Since δ is any small positive
number, the uniqueness of solutions v for (3.6) satisfying δw(r) ≤ v(r) ≤ a∗ for r ∈
[R,∞) enables us to get the conclusion. Suppose that w∗ (resp. w∗) is a minimal
(resp. maximal) positive solution of (3.6), which is generated from δw(r) (resp. 1) by
the monotone method. Then

d(rN−1w∗,r(r))r + rN−1f(w∗(r)) = 0, R < r <∞, w∗(R) = 0

(resp. d(rN−1w∗
r(r))r + rN−1f(w∗(r)) = 0, R < r <∞, w∗(R) = 0)

(3.51)

with

w∗(r) ≤ w∗(r) for R < r <∞.

Multiplying (3.51) by w∗ (resp. w∗) and subtracting the both sides of (3.51), we obtain

d{(rN−1w∗,r(r))rw∗(r)− (rN−1w∗
r(r))rw∗(r)} = rN−1{w∗(r)f(w∗(r))− w∗(r)f(w∗(r))}

= rN−1w∗(r)w∗(r)
(f(w∗(r))

w∗(r)
− f(w∗(r))

w∗(r)

)
.

Moreover integrating the identity in [R, ρ] for ρ > R, we have∫ ρ

R

(rN−1w∗,r(r))rw∗(r)− (rN−1w∗
r(r))rw∗(r) dr

=
1

d

∫ ρ

R

rN−1w∗(r)w∗(r)
(f(w∗(r))

w∗(r)
− f(w∗(r))

w∗(r)

)
dr.

Integrating by parts the left-hand side of the identity implies

ρN−1w∗,r(ρ)w∗(ρ)− ρN−1w∗
r(ρ)w∗(ρ)

=
1

d

∫ ρ

R

rN−1w∗(r)w∗(r)
(f(w∗(r))

w∗(r)
− f(w∗(r))

w∗(r)

)
dr.

(3.52)
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We apply (3.50) to have

lim
ρ→∞

ρN−1w∗,r(ρ) = lim
ρ→∞

ρN−1w∗
r(ρ) = 0,

lim
ρ→∞

w∗(ρ) = lim
ρ→∞

w∗(ρ) = a∗.

Hence, taking ρ→ ∞ in (3.52), we get∫ ∞

R

rN−1w∗(r)w∗(r)
(f(w∗(r))

w∗(r)
− f(w∗(r))

w∗(r)

)
dr = 0.

Since f(u)/u is decreasing with respect to u ∈ [0, a∗] and w∗ ≥ w∗ > 0 in [R,∞), the
above identity implies w∗ ≡ w∗ in [R,∞). The proof is complete. �

3.9 Problem

Through sections 3.9 - 3.11, we consider free boundary problem (1.1) where Ω(t) has
no fixed boundary. The problem is given by

(DP)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − dΔu = f(u), t > 0, g(t) < r < h(t),

u(t, g(t)) = 0, u(t, h(t)) = 0, t > 0,

g′(t) = −μur(t, g(t)), t > 0,

h′(t) = −μur(t, h(t)), t > 0,

g(0) = g0, h(0) = h0, u(0, r) = u0(r), g0 ≤ r ≤ h0,

where d, μ, g0 and h0 are positive constants with g0 < h0, r = |x| (x ∈ R
N , N ≥ 2),

Δu := urr + ((N − 1)/r)ur, and the initial function is assumed to satisfy

u0 ∈ C2[g0, h0], u0 > 0 in (g0, h0), u0(g0) = u0(h0) = 0.

In (DP), we basically allow nonlinear function to be

f ∈ C1[0,∞), f(0) = f(1) = 0, f(u) < 0 (u > 1), (3.53)

and also, when we discuss the asymptotic behaviors of solutions, we further assume

f ∈ C1[0,∞), f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0, f(u) > 0 (0 < u < 1),

f(u) < 0 (u > 1), and f(u)/u is decreasing with respect to u ∈ [0, 1].
(3.54)

Problem (DP) corresponds to (P) with inner fixed boundary r = |x| = R replaced
by free boundary r = g(t) (see Figure 7). It will be proved that g′(t) < 0 and h′(t) > 0.
Hence the domain

Ω(t) = {x ∈ R
N | g(t) < |x| < h(t)}

is expanding as time passes, and hence outer radius r = h(t) can go to infinity as
t→ ∞ and also inner radius r = g(t) can reach the origin at some time.
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habitat

ur(t, h(t))

h(t)

u(t, r) : density

g(t)

ur(t, g(t))

r

Figure 7. The solution (u(t, r), g(t), h(t)) for problem (DP)

Such a phenomenon makes a big difference between (P) and other free boundary prob-
lems. Hence we call this phenomenon singularity.

Definition 3.1. Singularity: there exists some T > 0 such that g(T ) = 0.

After singularity appears, we cannot extend the solution of (DP) in a classical sense.
However we can extend the solution weakly to all t > 0. For this purpose we need to
define a weak solution, which will be given in next section.

The main purpose through sections 3.9 - 3.11 is to study

• the existence and uniqueness of classical and weak solutions;

• the asymptotic behaviors of solutions;

• a sufficient condition for singularity.

We finally mention that the situation described by (DP) arises from multi-dimensional
free boundary problems; for example the case where some parts of the boundaries hap-
pen to connect each other at some time (see Figure 8).

Figure 8. Development of the free boundaries (N = 2)

3.10 Classical and weak solutions

In this section we will first show a result on the existence and uniqueness of classical.
Next we define a weak solution for (DP) and give a result on the unique existence of
weak solutions for (DP). Finally we will show a relation between classical and weak
solutions.

The following theorem means a unique existence of classical solutions and some
estimates of the density function and the free boundaries.
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Theorem 3.19. For any given α ∈ (0, 1), there exists a number T > 0 depending on
g0, h0, α and ‖u0‖C2(g0,h0) such that (DP) has a unique classical solution

(u, g, h) ∈ {C (1+α)
2

,1+α(D(T )) ∩ C1+α
2
,2+α(D(T ))} × C1+α

2 [0, T ]× C1+α
2 [0, T ],

where D(T ) =
⋃

0<t≤T ({t} × (g(t), h(t))). Moreover let Tmax be a maximal existence
time of classical solutions for some Tmax ∈ (0,∞], and then it holds that

0 < u(t, r) ≤ C1 in D(Tmax),

−μC2 ≤ g′(t) < 0 < h′(t) ≤ μC2 for 0 < t < Tmax,

g(t) > 0 for 0 ≤ t < Tmax,

where C1 and C2 are positive constants depending on ‖u0‖C(g0,h0) and ‖u0‖C1(g0,h0),
respectively.

Proof. We prove this theorem with slight modification of Theorem 3.2. Hence we
omit the details here. We can show g(t) > 0 for 0 ≤ t < Tmax because, if g(T1) = 0
for some T1 < Tmax, then g

′(T1) < 0 gives a contradiction to g(t) = r = |x| ≥ 0 for all
t ∈ (0, Tmax). �

We next prepare for weak solutions for (DP).

Definition 3.2. Let GT := (0, T )×G for some T > 0 and a large domain G ⊃ (g0, h0).
A non-negative function u ∈ L∞(GT ) ∩ H1(GT ) is called a weak solution of (DP)
over GT when u(t, r) satisfies∫∫

GT

drN−1urφr − rN−1α(u)φt drdt−
∫
G

rN−1α(ũ0)φ(0, r) dr =

∫∫
GT

rN−1f(u)φ drdt

for any φ ∈ C1(GT ) which satisfies φ = 0 on ({T} ×G) ∪ ([0, T ]× ∂G), where

α(u) =

{
u if u > 0,

u− d/μ if u ≤ 0,
ũ0 =

{
u0, r ∈ [g0, h0],

0 r ∈ G \ (g0, h0).

We can prove the global existence and uniqueness of weak solutions for (DP).

Theorem 3.20. For any T > 0 and any domain G ⊃ (g0, h0), there exists a unique
weak solution for (DP) over [0, T ]×G.

Proof. We can apply a result on the unique existence of weak solutions by Du-Guo
[15, Theorems 3.1 and 3.5]. Hence we get the conclusions. �

By this theorem, we are able to consider the problem after inner boundary r = g(t)
reaches the origin.

We finish this section by showing the relation between classical solutions and weak
solutions.
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Theorem 3.21. The following results hold true.

(i) Let u = u(t, r) be a classical solution of (DP). Then the function

v(t, r) =

{
u(t, r), (t, r) ∈ (0, T )× (g(t), h(t)),

0, (t, r) ∈ (0, T )× (G \ (g(t), h(t)))

is a weak solution of (DP) over GT = (0, T )×G.

(ii) Let v be a weak solution of (DP) over (0, T )×G and assume the functions h, g ∈
C1(0, T ) (g(t) < h(t) for t ≥ 0) satisfy

{r ∈ G| g(t) < r < h(t)} = {r ∈ G| v(t, r) > 0},
{r ∈ G| r ≤ g(t), h(t) ≤ r} = {r ∈ G| v(t, r) = 0}

for 0 ≤ t ≤ T . If

• u = v for (t, r) ∈ (0, T )× [g(t), h(t)],

• u and ur is continuous in [0, T )× [g(t), h(t)],

• urr and ut is continuous in (0, T )× (g(t), h(t)),

then (u, g, h) is a classical solution of (DP).

Proof. (i) Note that the equation is also written as rN−1ut−d(rN−1ur)r = rN−1f(u).
Multiplying the equation by φ ∈ C1(GT ) (φ0(r) := φ(0, r)) which must vanish on
({T} × G) ∪ ([0, T ] × ∂G) and integrating the equation over (0, T ) × (g(t), h(t)), we
obtain ∫ T

0

∫ h(t)

g(t)

rN−1utφ drdt− d

∫ T

0

∫ h(t)

g(t)

(rN−1ur)rφ drdt

=

∫ T

0

∫ h(t)

g(t)

rN−1f(u)φ drdt.

(3.55)

Since u(t, h(t)) = u(t, g(t)) = 0 for t ≥ 0 and the choice of φ, integration by parts gives∫ T

0

∫ h(t)

g(t)

rN−1utφ drdt = −
∫ h0

g0

rN−1u0φ0 dr −
∫ T

0

∫ h(t)

g(t)

rN−1uφt drdt (3.56)

and ∫ T

0

∫ h(t)

g(t)

(rN−1ur)rφ drdt =

∫ T

0

h(t)N−1ur(t, h(t))φ(t, h(t)) dt

−
∫ T

0

g(t)N−1ur(t, g(t))φ(t, g(t)) dt−
∫ T

0

∫ h(t)

g(t)

rN−1urφr drdt.

(3.57)
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On the other hand, it follows from the divergence theorem∫ T

0

∫
G\(g(t),h(t))

rN−1φt drdt = −
∫
G\(g0,h0)

rN−1φ0 dr +

∫ T

0

h(t)N−1h′(t)φ(t, h(t)) dt

−
∫ T

0

g(t)N−1g′(t)φ(t, g(t)) dt.

(3.58)

Using the Stefan conditions, we find that∫ T

0

∫
G\(g(t),h(t))

rN−1φt drdt = −
∫
G\(g0,h0)

rN−1φ0 dr

−μ
{∫ T

0

h(t)N−1ur(t, h(t))φ(t, h(t)) dt−
∫ T

0

g(t)N−1ur(t, g(t))φ(t, g(t)) dt
}
.

(3.59)

Substituting (3.56) and (3.57) into (3.55) and using (3.59), we get

−
∫ h0

g0

rN−1u0φ0 dr −
∫ T

0

∫ h(t)

g(t)

rN−1uφt drdt+ d

∫ T

0

∫ h(t)

g(t)

rN−1urφr drdt

+
d

μ

∫
G\(g0,h0)

rN−1φ0 dr +
d

μ

∫ T

0

∫
G\(g(t),h(t))

rN−1φt drdt =

∫ T

0

∫ h(t)

g(t)

rN−1f(u)φ drdt.

We finally replace u(t, r) and u0 with v(t, r) and v0 to see v = vr = 0 on (0, T )× (G \
(g(t), h(t))), and hence f(v) = 0 on that region. Thus we can observe that v satisfies
the weak form.

(ii) By the assumption, we find that u satisfies the boundary condition and the equation
in (DP). By the definition of weak solutions, u satisfies∫ T

0

∫ h(t)

g(t)

(drN−1urφr − rN−1uφt) drdt+
d

μ

∫ T

0

∫
G\(g(t),h(t))

rN−1φt drdt

−
∫
Ω0

rN−1u0φ0 dr +
d

μ

∫
G\(g0,h0)

rN−1φ0 dr =

∫ T

0

rN−1f(u)φ drdt.

(3.60)

Let φ get its support on [0, T )× (g(t), h(t)). Then it follows that∫ T

0

∫ h(t)

g(t)

(drN−1urφr − rN−1uφt) drdt−
∫ h0

g0

rN−1u0φ0 dr =

∫ T

0

rN−1f(u)φ drdt.

This identity together with (3.55) and (3.56) gives∫ T

0

∫ h(t)

g(t)

(rN−1ut − d(rN−1ur)r − rN−1f(u))φ drdt = 0

for any φ ∈ C1(GT ), which implies that u is the solution of ut − dΔu = f(u) in
(0, T )× (g(t), h(t)).
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We next check the initial condition and the Stefan condition. We must recall (3.58).
Substituting this identity to (3.60), we get∫ T

0

∫ h(t)

g(t)

(drN−1urφr − rN−1uφt) drdt

=

∫ h0

g0

rN−1u0φ0 dr +

∫ T

0

∫ h(t)

g(t)

rN−1f(u)φ drdt

− d

μ

{∫ T

0

h(t)N−1h′(t)φ(t, h(t)) dt−
∫ T

0

g(t)N−1g′(t)φ(t, g(t)) dt
}
.

(3.61)

On the other hand, integrating by parts the following quantity as in (3.55) and
(3.56), we can show for any δ > 0∫ T

δ

∫ h(t)

g(t)

(drN−1urφr − rN−1uφt) drdt

=

∫ T

δ

∫ h(t)

g(t)

{rN−1ut − (drN−1ur)r}φ drdt+
∫ h0

g0

rN−1u(δ, r)φ(δ, r) dr

+ d
{∫ T

δ

h(t)N−1ur(t, h(t))φ(t, h(t)) dt−
∫ T

δ

g(t)N−1ur(t, g(t))φ(t, g(t)) dt
}
.

Letting δ → 0, we get from the continuity of u and ur at t = 0∫ T

0

∫ h(t)

g(t)

(drN−1urφr − rN−1uφt) drdt

=

∫ T

0

∫ h(t)

g(t)

{rN−1ut − (drN−1ur)r}φ drdt+
∫ h0

g0

rN−1u(0, r)φ0 dr

+ d
{∫ T

0

h(t)N−1ur(t, h(t))φ(t, h(t)) dt−
∫ T

0

g(t)N−1ur(t, g(t))φ(t, g(t)) dt
}
.

(3.62)

Comparing (3.61) and (3.62), we obtain∫ h0

g0

rN−1(u(0, r)− u0)φ0 dr +
d

μ

∫ T

0

h(t)N−1φ(t, h(t))(μur(t, h(t)) + h′(t)) dt

− d

μ

∫ T

0

g(t)N−1φ(t, g(t))(μur(t, g(t)) + g′(t)) dt = 0.

(3.63)

Taking the support of φ in [0, T )× (g(t), h(t)), we find that∫ h0

g0

rN−1(u(0, r)− u0)φ0 dr = 0.

This means that u(0, r) = u0(r) in (g0, h0), and

d

μ

∫ T

0

h(t)N−1φ(t, h(t))(μur(t, h(t)) + h′(t)) dt

− d

μ

∫ T

0

g(t)N−1φ(t, g(t))(μur(t, g(t)) + g′(t)) dt = 0.
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By taking the support of φ in [0, T )×{r ∈ R| 0 ≤ r < h(t)}, it follows from the above
identity that

g′(t) = −μur(t, g(t)) for 0 ≤ t ≤ T,

and hence h′(t) = −μur(t, h(t)) for 0 ≤ t ≤ T . We complete the proof. �

3.11 Generation of singularity

Since h(t) is strictly increasing and g(t) is strictly decreasing, there exist their limits
which satisfy

lim
t→∞

g(t) ∈ [0, g0), lim
t→∞

h(t) ∈ (h0,∞].

The main purpose of this section is to prove the following dichotomy theorem in (DP).

Theorem 3.22. Let (u, g, h) be any solution of (DP). Then either (i) or (ii) holds true
as t→ ∞

(i) limt→∞ Ω(t) ⊂ BR∗(t) for all t ≥ 0, limt→∞ ‖u(t, ·)‖C(g(t),h(t)) = 0, where R∗(t) is
a bounded and continuous and decreasing function with respect to t.

(ii) Singularity appears and limt→∞ Ω(t) = R
N .

In particular, if h0 ≥ R∗(0), then part (ii) occurs.

We define R∗(t) in the following. Let λ1 be the least eigenvalue and let φ1 = φ1(r)
be the corresponding eigenfunction for the problem{

−dΔφ1 = λ1φ1, r ∈ Ω,

φ1 = 0, r ∈ ∂Ω,

where Ω is a bounded domain in R. It is well known that λ1 = λ1(d; Ω) is continuous
with respect to d and Ω, and λ1(d; Ω1) > λ1(d; Ω2) if Ω1 ⊂ Ω2 (Ω1 �= Ω2). We now
replace Ω to I(t) = (g(t), l) with a positive number l. Then we find that I(t1) ⊂ I(t2)
for t1 < t2 because g(t) is decreasing. For each t ≥ 0, we can uniquely determine some
number l = R∗(d, g(t), f ′(0)) =: R∗(t) > 0 such that

f ′(0) = λ1(d; (g(t), R
∗(t))) and f ′(0) > λ1(d; (g(t), l)) (l > R∗(t)).

Moreover we find that R∗(t) is bounded, continuous and monotone decreasing with
respect to t.

To prove Theorem 3.22, we need some propositions and lemmas. We establish an
energy identity.
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Proposition 3.8. Let (u, g, h) be solutions of (DP). Then the following identity holds
true:

d

2

∫
Ω(t)

rN−1ur(t, r)
2 dr +

∫∫
∪s=t
s=0Ω(s)

rN−1ut(s, r)
2 drds

+
d

2μ2

∫ t

0

h(s)N−1h′(s)3 ds− d

2μ2

∫ t

0

g(s)N−1g′(s)3 ds

=

∫
Ω(t)

rN−1F (u(t, r)) dr −
∫
Ω0

rN−1F (u0(r)) dr +
d

2

∫
Ω0

rN−1u′0(r)
2 dr,

where F (u) =
∫ u

0
f(s) ds.

Proof. We can show this theorem almost in the same way as Proposition 3.1. Hence
we omit details here. �

The following result is a property of vanishing.

Proposition 3.9. If limt→∞ h(t) <∞, then limt→∞ ‖u(t, ·)‖C(g(t),h(t)) = 0.

Proof. The proof is similar to that of Theorem 3.4. We introduce a new function by

v(t, y) = u(t, (h(t)− g(t))y + g(t)).

Then direct calculation gives

ut = vt − g′(t) + (h′(t)− g′(t))y
h(t)− g(t)

vy,

ur =
1

h(t)− g(t)
vy, urr =

1

(h(t)− g(t))2
vyy.

Hence v satisfies⎧⎪⎨⎪⎩
vt = a(t)vyy + (b(t, y) + c(t, y))vy + f(v), t > 0, 0 < y < 1,

v(t, 0) = 0, v(t, 1) = 0, t > 0,

v(0, y) = v0(y) := u0((h0 − g0)y + g0), 0 ≤ y ≤ 1,

(3.64)

where

a(t) =
d

(h(t)− g(t))2
, b(t, y) =

g′(t) + (h′(t)− g′(t))y
h(t)− g(t)

,

c(t, y) =
(N − 1)d

(h(t)− g(t))2y + g(t)(h(t)− g(t))
.

We will prove that v(t, y) converges to a stationary solution as t → ∞. By the as-
sumption that limt→∞ h(t) <∞, Theorem 3.8 implies∫ h(t)

g(t)

rN−1ur(t, r)
2 dr +

∫ ∞

0

U(t) dt ≤ C
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with some positive constant C independent of t and U(t) =
∫ h(t)

g(t)
rN−1ut(t, r)

2 dr.

Hence there exists a sequence {tn} ↗ ∞ as n→ ∞ such that

lim
n→∞

h(tn) = 0 and lim
n→∞

U(tn) = 0.

Since U(t) is uniformly continuous with respect to t (cf. Lemma 3.5), we see limt→∞ U(t)
= 0. Moreover, noting that {v(t, ·)| t ≥ 1} is relatively compact in C1[0, 1] (cf. Lemma
3.4), we find that

lim
n→∞

v(tn, y) = v̂(y) in C1[0, 1]

for some function v̂. In addition, we can prove that v̂ satisfies{
a∞v̂yy + c∞(y)v̂y + f̂(v̂) = 0, 0 < y < 1,

v̂(0) = v̂(1) = 0,
(3.65)

where a∞ = d/(h∞ − g∞) and c∞(y) = (N − 1)d/{(h∞ − g∞)2y + g∞(h∞ − g∞)}.
Taking account of the Stefan condition, we see from h′(tn) = −μvy(tn, 1)/(h∞ − g∞)
that v̂y(1) = 0. Hence the strong maximum principle shows v̂ ≡ 0. Thus

lim
t→∞

‖u(t, ·)‖C(g(t),h(t)) = lim
n→∞

‖v(tn, ·)‖C[0,1] = 0.

The proof is complete. �

We prepare a comparison principle for (DP).

Lemma 3.6. Let Tmax > 0 be a maximal existence time of classical solutions for (DP)
For any T ∈ (0, Tmax), suppose that g, h ∈ C1[0, T ] and u ∈ C(D1(T )) ∩ C1,2(D1(T ))
with D2(T ) = {(t, r) ∈ R

2| 0 < t ≤ T, g(t) < r < h(t)} satisfy⎧⎪⎨⎪⎩
ut − dΔu ≤ f(u), 0 < t ≤ T, g(t) < r < h(t),

u(t, g(t)) = 0, u(t, h(t)) = 0, 0 < t ≤ T,

g′(t) ≥ −μur(t, g(t)), h′(t) ≤ −μur(t, h(t)), 0 < t ≤ T.

Let (u, g, h) be a solution of (DP) with initial data (u0, g0, h0). If

g0 ≤ g(0) ≤ h(0) ≤ h0, u(0, r) ≤ u0(r) for g(0) ≤ r ≤ h(0),

then

g(t) ≤ g(t) ≤ h(t) ≤ h(t) for 0 < t ≤ T,

u(t, r) ≤ u(t, r) for 0 < t ≤ T, g(t) < r < h(t).

We have the following result.

Proposition 3.10. If limt→∞ h(t) = ∞, then there exists some T ∈ (0,∞) such that
g(T ) = 0.
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To prove this proposition, we need the following lemma.

Lemma 3.7. Let a function ϕ ∈ C2(0,∞) satisfy{
dΔϕ+ f(ϕ) = 0, 0 < r <∞,

0 ≤ ϕ ≤ 1, 0 ≤ r <∞.

Then ϕ is represented as

ϕ(r) = ϕ(0)− 1

d

∫ r

0

1

zN−1

∫ z

0

yN−1f(ϕ(y)) dydz,

where ϕ(0) := limr→0 ϕ(r). Moreover the function satisfies

ϕ ∈ C2[0,∞) and |ϕr(r)| ≤ maxϕ |f(ϕ)|
dN

r for r ≥ 0.

Proof. The function ϕ also satisfies d(rN−1ϕr)r + rN−1f(ϕ) = 0. Hence integrating
this equation in (ε, r) for ε < r implies

drN−1ϕr(r)− dεN−1ϕr(ε) = −
∫ r

ε

sN−1f(ϕ(s)) ds. (3.66)

Since ϕ is bounded in [0,∞) and satisfies ϕ ∈ C2(0,∞) and (3.66), the second term
in the left-hand side of (3.66) converges to a finite value as ε → 0. Hence we denote
a := limε→0 ε

N−1ϕr(ε) <∞. We can show a = 0. Indeed, by (3.66), we calculate

ϕr(r) =
εN−1ϕr(ε)

rN−1
− 1

drN−1

∫ r

ε

sN−1f(ϕ(s)) ds

→ a

rN−1
− 1

drN−1

∫ r

0

sN−1f(ϕ(s)) ds

(3.67)

as ε→ 0. We again integrate the above equation over (ε, r) to obtain

ϕ(r)− ϕ(ε) = a

∫ r

ε

1

sN−1
ds− 1

d

∫ r

ε

1

tN−1

∫ t

0

sN−1f(ϕ(s)) dsdt. (3.68)

Note that ϕ(ε) and the second term of the right-hand side of (3.68) is bounded as
ε→ 0, and that ∫ r

ε

1

sN−1
ds =

⎧⎨⎩log r − log ε (N = 2),
1

2−N

( 1

rN−2
− 1

εN−2

)
(N ≥ 3)

is not bounded as ε → 0. Hence, if a > 0, then letting ε → 0 in (3.68) gives a
contradiction. We thus obtain a = 0, and it follows from (3.67) and (3.68) that

ϕr(r) = − 1

drN−1

∫ r

0

sN−1f(ϕ(s)) ds, (3.69)

ϕ(r) = ϕ(ε)− 1

d

∫ r

ε

1

tN−1

∫ t

0

sN−1f(ϕ(s)) dsdt. (3.70)
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In particular we get by (3.69)

|ϕr(r)| ≤ maxϕ |f(ϕ)|
drN−1

∫ r

0

sN−1 ds ≤ maxϕ |f(ϕ)|
dN

r

for r > 0. Moreover we can find from (3.70) that

lim sup
ε→0

ϕ(ε) = lim inf
ε→0

ϕ(ε) = ϕ(r) +
1

d

∫ r

0

1

tN−1

∫ t

0

sN−1f(ϕ(s)) dsdt.

Hence we have

ϕ(0) := lim
ε→0

ϕ(ε) = ϕ(r) +
1

d

∫ r

0

1

tN−1

∫ t

0

sN−1f(ϕ(s)) dsdt,

and it holds that

ϕ(r) = ϕ(0)− 1

d

∫ r

0

1

tN−1

∫ t

0

sN−1f(ϕ(s)) dsdt.

Finally, by calculations, we find ϕr(0) := limε→0 ϕr(ε) = 0 and ϕrr(0) := limε→0 ϕrr(ε) =
0, and hence ϕ ∈ C2[0,∞). �

Proof of Proposition 3.10. We first assume g∞ := limt→∞ g(t) > 0 to get a contra-
diction. Since g(t) is decreasing, limt→∞ g(t) = g∞ and g′(t) is uniformly continuous
with respect to t, we have limt→∞ g′(t) = 0. On the other hand, since limt→∞ h(t) = ∞,
there exists some T > 0 such that h(T ) > R∗(T ). Define l1 = g(T ) and l2 = h(T ), and
in the same way as the proof of Proposition 3.2, we get

lim inf
t→∞

u(t, r) ≥ v(r) for r ∈ [g∞,∞),

where v is a unique positive solution of{
dΔv + f(v) = 0, g∞ < r <∞,

v(g∞) = 0.
(3.71)

Moreover the positive solution w = w(t, r) of⎧⎪⎨⎪⎩
wt − dΔw = f(w), t > 0, g∞ < r <∞,

w(t, g∞) = 0, t > 0,

w(0, r) = max{1, ‖u0‖C(g0,h0)}

is an upper solution for (DP). Hence

lim sup
t→∞

u(t, r) ≤ lim
t→∞

w(t, r) = v(r) for r ∈ [g∞,∞)

by the unique existence of solutions for (3.71) (see Theorem 3.18). Thus we find that
limt→∞ u(t, r) = v(r) uniformly in any compact subset of (g∞,∞). Note that, by the
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maximum principle, vr(g∞) > 0.Moreover there exists a sequence {tn} ↗ ∞ as n→ ∞
to satisfy

lim
n→∞

ur(tn, r) = vr(r) for g∞ ≤ r <∞.

Hence we obtain

lim
n→∞

g′(tn) = lim
n→∞

−μur(tn, g(tn)) = −μvr(g∞) < 0.

This contradicts limt→∞ g′(t) = 0.
We next prove that g(t) does not satisfy g∞ = 0. To show this result, we prepare

a solution (w(t, r), s(t), ρ(t)) of (DP) with initial data (εϕ(r), g0, l), where ε and l are
suitable constants determined later, and ϕ is an eigenfunction corresponding to the
first eigenvalue λ1 for the problem:{

dΔϕ+ λ1ϕ = 0, g0 < r < l,

ϕ(g0) = ϕ(l) = 0.

We can choose sufficiently small ε and large l such that φ := εϕ satisfies{
dΔφ+ f(φ) ≥ 0, g0 < r < l,

φ(g0) = φ(l) = 0.

It is possible to choose a constant T1 > 0 such that ρ(0) = l = h(T1) because we
assume limt→∞ h(t) = ∞. If we prove s(T ) = 0 for some T < ∞, then Theorem 3.6
shows g(T + T1) ≤ s(T ) = 0. Hence g(T + T1) = 0. Therefore we will prove that free
boundary s(t) reaches the origin at finite time. Since we have already found, by the
same way as above, that limt→∞ s(t) > 0 does not occur, we assume limt→∞ s(t) = 0
to get a contradiction. As in Theorem 3.5 for (P), we also obtain the following results:

• lim
t→∞

ρ(t) = ∞,

• w(t, r) is non-decreasing with respect to t for 0 < r < ρ(t),
(3.72)

where we allow w to satisfy w(t, r) = 0 in [0, g(t)) for t ≥ 0. Since w is bounded by
Theorem 3.19 and (3.72), there exists a function v̂ such that

lim
t→∞

w(t, r) = v̂(r) in (0,∞).

Then, as in similar way to the proof of Theorem 3.5, we can show that v̂ satisfies

dΔv̂ + f(v̂) = 0, 0 < r <∞

in the sense of distribution. Hence we find that v̂ ∈ C2(0,∞) and v̂ satisfies{
d(rN−1v̂r)r + rN−1f(v̂) = 0, 0 < r <∞,

0 ≤ v̂ ≤ 1, 0 ≤ r <∞.
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Hence we can apply Lemma 3.7 to see that v̂ satisfies v̂ ∈ C2[0,∞) and

v̂(r) = v̂(0)− 1

d

∫ r

0

1

zN−1

∫ z

0

yN−1f(v̂(y)) dydz,

where v̂(0) := limr→0 v̂(r). Then, by the monotone convergence of w(t, r) to v̂(r) as
t→ ∞ and v̂ ∈ C2[0,∞), we can show that w(t, r) converges to v̂(r) uniformly in any
compact subset of [0,∞) as t → ∞. Hence it follows from w(t, 0) = 0 that v̂(0) = 0
with v̂(r) ≥ u0(r) in (g0, h0), and

v̂(r) = −1

d

∫ r

0

1

zN−1

∫ z

0

yN−1f(v̂(y)) dydz.

Noting that f(u) ≥ 0 for u ∈ [0, 1], we deduce from the above identity that v̂(r) ≤ 0
in [0,∞). This is a contradiction to v̂(r) ≥ u0(r) in (g0, h0). Thus there exists some
finite T > 0 such that s(T ) = 0. Hence we complete the proof. �

To prove Theorem 3.22, we also need the following property.

Lemma 3.8. If limt→∞ h(t) <∞, then h(t) ≤ R∗(t) for all t ≥ 0.

Proof. Assume that there exists some T > 0 satisfying h(T ) > R∗(T ). Then we
consider a solution w(t, r) of the following problem:⎧⎪⎨⎪⎩

wt − dΔw = f(w), t > T, g(T ) < r < h(T ),

w(t, g(t)) = 0, w(t, h(t)) = 0, t > T,

w(T, r) = u(T, r), g(T ) ≤ r ≤ h(T ).

By the standard comparison principle, we see that

u(t, r) ≥ w(t, r) for t ≥ T, g(T ) ≤ r ≤ h(T ).

Since h(T ) > R∗(T ), letting t→ ∞ in the above inequality, we have

lim inf
t→∞

u(t, r) ≥ q∗(r) > 0 for g(T ) < r < h(T ), (3.73)

where q∗(r) is a unique positive solution of{
Δq∗ + f(q∗) = 0, g(T ) < r < h(T ),

q∗(g(T )) = q∗(h(T )) = 0.

However this leads to a contradiction. Indeed, by the assumption of limt→∞ h(t) < ∞
and Proposition 3.9, the function u(t, r) must satisfy

lim
t→∞

‖u(t, ·)‖C(g(t),h(t)) = 0,
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which contradicts (3.73). Hence we can conclude h(t) ≤ R∗(t) for all t ≥ 0. �

Proof of Theorem 3.22. Since h(t) is strictly increasing, we find that limt→∞ h(t) <
∞ or limt→∞ h(t) = ∞. In the case that limt→∞ h(t) <∞, it follows from Proposition
3.9 and Lemma 3.8 that

Ω(t) ⊂ BR∗(t) for all t > 0, lim
t→∞

‖u(t, ·)‖C(g(t),h(t)) = 0.

If limt→∞ h(t) = ∞, then, by Proposition 3.10, we can find some finite T > 0 such
that g(T ) = 0, and singularity appears. Hence limt→∞Ω(t) = R

N . In particular, if
h0 ≥ R∗(0), then h(t) > R∗(t) for all t ≥ 0. Thus Lemma 3.8 implies that singularity
(ii) occurs as t→ ∞. �

3.12 Remarks on problem in general domain

In this section we will briefly introduce some recent results in multi-dimensions. We
consider the following free boundary problem:⎧⎪⎨⎪⎩

ut − dΔu = f(u), t > 0, x ∈ Ω(t),

u = 0, ut = μ|∇xu|2 t > 0, x ∈ Γ(t)

u(0, x) = u0(x), x ∈ Ω0,

(3.74)

where d and μ are positive constants, Ω(t) is an N -dimensional domain in R
N , free

boundary Γ(t) := ∂Ω(t) has no fixed boundary, and Ω0 is a bounded domain in R
N .

The initial function satisfies

u0 ∈ C(Ω0) ∩H1(Ω0), u0 > 0 in Ω0.

Moreover f is assumed to be monostable, bistable or combustion type of nonlinearity.
In Du-Guo [15] and Du-Matano-Wang [21], they introduced a weak form of (3.74), and
get a global existence and uniqueness of weak solutions for (3.74).

For the asymptotic behavior of solutions of (3.74), we have remarkable results. Let
co(Ω0) denote a closed convex hull of Ω0, and d0 is a diameter of Ω0.

Theorem 3.23 (Du-Matano-Wang [21] Theorem 1.1). For any fixed t > 0, Γ̃(t) :=
Γ(t) \ co(Ω0) is a C2+α hypersurface in R

N , and Γ̃ := {(t, x) : x ∈ Γ̃(t), t > 0} is a
C2+α hypersurface in R

N+1. In particular, the free boundary is always C2+α smooth if
Ω0 is convex.

Theorem 3.24 ([21] Theorem 1.2). Ω(t) is expanding in the sense that Ω0 ⊂ Ω(t) ⊂
Ω(s) if 0 < t < s. Moreover, Ω∞ := ∪t>0Ω(t) is either the entire space R

N , or it
is a bounded set. Furthermore, when Ω∞ = R

N , for large t, Γ(t) is a smooth closed
hypersurface in R

N , and there exists a continuous function M(t) such that

Γ(t) ⊂
{
x : M(t)− d0

2
π ≤ |x| ≤M(t)

}
;

and when Ω∞ is bounded, limt→∞ ‖u(t, ·)‖L∞(Ω(t)) = 0.
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If we assume a logistic nonlinearity, we get more precise information.

Theorem 3.25 ([21] Theorem 1.3). If f(u) = au−bu2 with a, b positive constants, then
there exists μ∗ ≥ 0 such that Ω∞ = R

N if μ > μ∗, and Ω∞ is bounded if μ ∈ (0, μ∗].
Moreover, when Ω∞ = R

N , the following holds:

lim
t→∞

M(t)

t
= k0(μ), lim

t→∞
max
|x|≤ct

∣∣∣u(t, x)− a

b

∣∣∣ = 0 for all c ∈ (0, k0(μ)),

where k0(μ) is a positive increasing function of μ satisfying limμ→∞ k0(μ) = 2
√
ad.





Chapter 4

Spreading speed analysis for a free
boundary problem

4.1 Problem

In this chapter we will study propagation speed of the free boundary and sharp asymp-
totic profiles of solutions for a free boundary problem in one dimension given by

(DFBP)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − uxx + βux = f(u), t > 0, g(t) < x < h(t),

u(t, g(t)) = 0, u(t, h(t)) = 0, t > 0,

g′(t) = −μux(t, g(t)), t > 0,

h′(t) = −μux(t, h(t)), t > 0,

g(0) = −h0, h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0.

where μ and h0 are positive constants, and β ∈ [0, c0) with some constant c0 > 0 defined
later. The first equation in (DFBP) is called a reaction-advection-diffusion equation
and β is an advection-term which implies advective environments such as water flow
and wind.

In the case of β = 0, problem (DFBP) becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut − uxx = f(u), t > 0, g(t) < x < h(t),

u(t, g(t)) = 0, u(t, h(t)) = 0, t > 0,

g′(t) = −μux(t, g(t)), t > 0,

h′(t) = −μux(t, h(t)), t > 0,

g(0) = −h0, h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(4.1)

and this problem corresponds to (1.1) with d = 1 for Case (1-b). Moreover, as one
handles (4.1), we can deal with problem (1.1) for Case (1-a) with Neumann boundary
condition (1.3), for which it is possible to get the corresponding results to (4.1). In
Du and Lou [20], they have obtained the global existence and uniqueness of solutions
for (4.1) and the asymptotic behaviors as t → ∞ when f is a nonlinearity of logistic,

101
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bistable or combustion type. They have shown spreading, vanishing and transition phe-
nomenon for large time behaviors, and give sufficient conditions for these phenomenon.
Moreover they give propagation speed of the free boundaries; when spreading occurs,
there exists a constant c∗ > 0 such that

lim
t→∞

g(t)

t
= −c∗, lim

t→∞
h(t)

t
= c∗.

Here spreading in (4.1) and (DFBP) means

lim
t→∞

g(t) = −∞, lim
t→∞

h(t) = +∞,

lim
t→∞

u(t, x) = 1 uniformly in any compact subset of (−∞,∞),
(4.2)

which is a special version of the general definition of spreading in Theorem 2.6. For
(4.1), Du, Matsuzawa and Zhou [22] have further studied the sharp asymptotic profiles
of the free boundaries and the density function, and proved that there exist some
constants H̃, G̃ ∈ R such that

lim
t→∞

sup
x∈[g(t),0]

|u(t, x)− q∗(x− g(t))| = 0,

lim
t→∞

sup
x∈[0,h(t)]

|u(t, x)− q∗(h(t)− x)| = 0,

lim
t→∞

(h(t)− c∗t− H̃) = 0, lim
t→∞

h′(t) = c∗,

lim
t→∞

(g(t) + c∗t− G̃) = 0, lim
t→∞

g′(t) = −c∗,

(4.3)

where q∗(x) is called a semi-wave with speed c∗, which is uniquely determined by the
following problem: {

qxx − cqx + f(q) = 0, q > 0 in (0,∞),

q(0) = 0, limx→∞ q(x) = 1

with qx(0) = c/μ (see [20] for more details).
We will briefly introduce the results on the spreading speed in other cases of (1.1).

There are few results on the spreading speed for problem (1.1) with Dirichlet boundary
condition (1.2). In Liu and Lou [47], however, they considered (1.1) with a bistable
nonlinearity and a Robin boundary condition, and obtained a similar result to (4.3).
For multi-dimensional radially symmetric cases, it was shown in Du, Matsuzawa and
Zhou [23] that, if the domain is a ball, then there exist constants c∗ > 0 and ĥ ∈ R

which satisfy

lim
t→∞

(h(t)− c∗t+ (N − 1)c∗ log t− ĥ) = 0, lim
t→∞

h′(t) = c∗.

If the domain is an annulus as in Chapter 3, there is no result on the spreading speed.
On the other hand, for a general multi-dimensional case, it was shown in Du, Matano
and Wang [21] that the propagating speed approaches a constant in some sense.
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We intend to consider the case where the diffusion equation is replaced by more
general diffusion equations. For example, advection-diffusion equations in (DFBP) are
one of interesting extensions; it will be conjectured for (DFBP) that left and right
spreading speeds, limt→∞ g(t)/t and limt→∞ h(t)/t, are different by an effect of the
advective environment. In fact Gu, Lin and Lou [29] have shown that, if f(u) = u(1−u),
then there exist constants c∗l > 0 and c∗r > 0 with c∗l < c∗ < c∗r (c∗ is defined below
(4.3)) such that

lim
t→∞

g(t)

t
= −c∗l , lim

t→∞
h(t)

t
= c∗r.

We will further investigate the different spreading speeds as t→ ∞ and prove much
sharper estimate of speeds of the propagation fronts, and show asymptotic profiles of
solutions as t→ ∞, assuming that f is in Case (A) or Case (B) which we again recall
as follows:

Case (A)

{
f ∈ C1[0,∞), f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0,

f(u) > 0 (0 < u < 1), f(u) < 0 (u > 1);

Case (B)

{
f ∈ C1[0,∞), f(0) = f(c∗) = f(1) = 0, f ′(0) < 0, f ′(c∗) > 0, f ′(1) < 0,

f(u) < 0 (0 ≤ u < c∗, u > 1), f(u) > 0 (c∗ < u < 1) and
∫ 1

0
f(u) du > 0.

The main purpose in the present chapter is

• to study the spreading speeds of the free boundaries for this model;

• to investigate more precise asymptotic profiles of solutions (u, g, h);

• to learn more about the effects of the advection term.

To state main results in the next section, we should prepare the definition of speeds
c0, c

∗
l and c∗r. Consider the following problem:⎧⎪⎨⎪⎩

Qxx − cQx + f(Q) = 0, Q > 0, in R,

Q(0) = 1/2,

limx→−∞Q(x) = 0, limx→+∞Q(x) = 1.

(4.4)

It is well known (cf. Aronson and Weinberger [3, 4]) that there exists a number c0 >
0 (called minimal speed) such that problem (4.4) has a unique traveling wave
solution Qc for c ≥ c0 when f is a function of Case (A), while (4.4) has a unique
solution Qc only for c = c0 when f is a function of Case (B). Next consider{

qxx − (c− β)qx + f(q) = 0, q > 0 in (0,∞),

q(0) = 0, limx→∞ q(x) = 1.
(4.5){

qxx − (c+ β)qx + f(q) = 0, q > 0 in (0,∞),

q(0) = 0, limx→∞ q(x) = 1.
(4.6)

Then we have the following propositions whose proofs are completed with an obvious
modifications of [20, Proposition 1.8].
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Proposition 4.1. Suppose that f satisfies Case (A) or (B). Then the following results
hold true:

(i) For any μ > 0 there exist a unique constant c∗r ∈ (0, c0+β) and a unique solution
q∗r of (4.5) with c = c∗r such that (q∗r)x(0) = c∗r/μ.

(ii) For any μ > 0 there exist a unique constant c∗l ∈ (0, c0−β) and a unique solution
q∗l of (4.6) with c = c∗l such that (q∗l )x(0) = c∗l /μ.

The solutions q∗r and q∗l are called semi-waves with speeds c∗r and c∗l respectively
because v(t, x) := q∗r(c

∗
rt− x) and w(t, x) := q∗l (x+ c∗l t) satisfy⎧⎪⎨⎪⎩

vt − vxx + βvx = f(v), t ∈ R, x < c∗rt,

v(t, c∗rt) = 0, vx(t, c
∗
rt) = −c∗r/μ, t ∈ R,

limx→−∞ v(t, x) = 1, t ∈ R;⎧⎪⎨⎪⎩
wt − wxx + βwx = f(w), t ∈ R, −c∗l t < x,

w(t,−c∗l t) = 0, −μwx(t,−c∗l t) = −c∗l , t ∈ R,

limx→+∞w(t, x) = 1, t ∈ R.

In this chapter we always assume that spreading of (4.2) occurs for solutions as
t → ∞ because it can actually occur if the solutions has large initial data (u0, h0)
(this will be proved by the same way as in Chapter 2). In addition, some sufficient
conditions have been given in Gu, Lin and Lou [30] if f satisfies Case (A).

We remark that main results and their proofs in this chapter are found in the work
of Kaneko and Matsuzawa [37].

4.2 Main theorems

Let (u, g, h) be the solution of (DFBP) for which spreading of (4.2) occurs, and suppose
that the nonlinear function f satisfies the conditions of Case (A) or Case (B).

We show, in the following, a result on the spreading speed of the free boundaries
and give some rough estimates of them.

Theorem 4.1. Let c∗r and c
∗
l be positive numbers given by Proposition 4.1. There exists

a constant C > 0 such that

|g(t) + c∗l t|, |h(t)− c∗rt| ≤ C for all t > 0,

and then it holds that

lim
t→∞

g(t)

t
= −c∗l , lim

t→∞
h(t)

t
= c∗r.

We also give a convergence estimate on the density function u.
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Theorem 4.2. Let c∗r and c∗l be positive numbers defined in Proposition 4.1. Then,
for any ε > 0, there exist constants T > 0, M > 0 and δ∗ ∈ (0,−f ′(1)) such that the
following estimate holds true:

sup
x∈[−(c∗l −ε)t,(c∗r−ε)t]

|u(t, x)− 1| ≤Me−δ∗t for t ≥ T.

We will finally show the following theorem which means the sharp asymptotic pro-
files of (u(t, x), g(t), h(t)) as t→ ∞.

Theorem 4.3. Let (c∗r, q
∗
r) and (c∗l , q

∗
l ) be given by Proposition 4.1. Then there exist

Ĥ, Ĝ ∈ R such that

lim
t→∞

‖u(t, ·)− q∗r(h(t)− ·)‖C2[0,h(t)] = 0,

lim
t→∞

‖u(t, ·)− q∗l (· − g(t))‖C2[g(t),0] = 0,

lim
t→∞

(h(t)− c∗rt− Ĥ) = 0, lim
t→∞

h′(t) = c∗r,

lim
t→∞

(g(t) + c∗l t− Ĝ) = 0, lim
t→∞

g′(t) = −c∗l .

Remark 4.1. Theorems 4.1 – 4.3 also hold true when the nonlinear function f is
replaced by a combustion type nonlinearity: there exist some θ ∈ (0, 1) and δ0 > 0 such
that f ∈ C1[0,∞) is non-decreasing in (θ, θ + δ0) and

f(u) = 0 in [0, θ], f(u) > 0 in (θ, 1), f ′(1) < 0, f(u) < 0 in [1,∞).

We can refer to [37] for these results.

4.3 Preliminaries

We consider Case (A) or (B) for nonlinear term f(u). A result for the existence and
uniqueness of solutions is given as follows.

Proposition 4.2. For any α ∈ (0, 1) and any constant T > 0, problem (DFBP) has a
unique global solution

(u, g, h) ∈ {C (1+α)
2

,1+α(D(T )) ∩ C1+α
2
,2+α(D(T ))} × C1+α

2 [0, T ]× C1+α
2 [0, T ],

where D(T ) =
⋃

0<t≤T ({t} × (g(t), h(t))). Moreover the solution satisfies

0 < u(t, x) ≤ C1 in D(T ),

−μC2 ≤ g′(t) < 0 < h′(t) ≤ μC2 for 0 < t ≤ T,

where C1 and C2 are positive constants independent of T .
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Proof. Although problem (DFBP) has free boundaries on both ends of the one-
dimensional interval, we can prove this theorem essentially in the same way as the
proofs of Theorems 2.1 and 2.2. We can also refer to [20] (if β = 0) for more detail. �

We prepare various comparison principles. Their proofs are almost similar to that
of Lemma 2.2, and hence we omit the details here.

Lemma 4.1. For any T ∈ (0,∞), suppose that g, h ∈ C1[0, T ] and u ∈ C(D1(T )) ∩
C1,2(D1(T )) with D1(T ) = {(t, x) ∈ R

2| 0 < t ≤ T, g(t) < x < h(t)} satisfy⎧⎪⎨⎪⎩
ut − uxx + βux ≥ f(u), 0 < t ≤ T, g(t) < x < h(t),

u(t, g(t)) = 0, u(t, h(t)) = 0, 0 < t ≤ T,

g′(t) ≤ −μux(t, g(t)), h′(t) ≥ −μux(t, h(t)), 0 < t ≤ T.

Let (u, g, h) be a solution of (DFBP) with initial data (u0,−h0, h0). If
g(0) ≤ −h0, h0 ≤ h(0), u0(x) ≤ u(0, x) for − h0 ≤ x ≤ h0,

then

g(t) ≤ g(t), h(t) ≤ h(t) for 0 < t ≤ T,

u(t, x) ≤ u(t, x) for 0 < t ≤ T, g(t) < x < h(t).

Lemma 4.2. Suppose that T , g, h and u are the same as in Lemma 4.1 and satisfy⎧⎪⎨⎪⎩
ut − uxx + βux ≥ f(u), 0 < t ≤ T, g(t) < x < h(t),

u(t, h(t)) = 0, 0 < t ≤ T,

h
′
(t) ≥ −μux(t, h(t)), 0 < t ≤ T.

Let (u, g, h) be a solution of (DFBP) with initial data (u0,−h0, h0). If
g(t) ≤ g(t), u(t, g(t)) ≤ u(t, g(t)) for 0 ≤ t ≤ T,

h0 ≤ h(0), u0(x) ≤ u(0, x) for g(0) ≤ x ≤ h0,

then

h(t) ≤ h(t) for 0 < t ≤ T,

u(t, x) ≤ u(t, x) for 0 < t ≤ T, g(t) < x < h(t).

Lemma 4.3. For any T ∈ (0,∞), suppose that g, h ∈ C1[0, T ] and u ∈ C(D1(T )) ∩
C1,2(D1(T )) with D2(T ) = {(t, x) ∈ R

2| 0 < t ≤ T, g(t) < x < h(t)} satisfy⎧⎪⎨⎪⎩
ut − uxx + βux ≤ f(u), 0 < t ≤ T, g(t) < x < h(t),

u(t, g(t)) = 0, u(t, h(t)) = 0, 0 < t ≤ T,

g′(t) ≥ −μux(t, g(t)), h′(t) ≤ −μux(t, h(t)), 0 < t ≤ T.
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Let (u, g, h) be a solution of (DFBP) with initial data (u0,−h0, h0). If

−h0 ≤ g(0) ≤ h(0) ≤ h0, u(0, x) ≤ u0(x) for g(0) ≤ x ≤ h(0),

then

g(t) ≤ g(t) ≤ h(t) ≤ h(t) for 0 < t ≤ T,

u(t, x) ≤ u(t, x) for 0 < t ≤ T, g(t) < x < h(t).

Lemma 4.4. Suppose that T , g, h and u are the same as in Lemma 4.3 and satisfy⎧⎪⎨⎪⎩
ut − uxx + βux ≤ f(u), 0 < t ≤ T, g(t) < x < h(t),

u(t, h(t)) = 0, 0 < t ≤ T,

h′(t) ≤ −μux(t, h(t)), 0 < t ≤ T.

Let (u, g, h) be a solution of (DFBP) with initial data (u0,−h0, h0). If

g(t) ≤ g(t), u(t, g(t)) ≤ u(t, g(t)) for 0 ≤ t ≤ T,

h(0) ≤ h0, u(0, x) ≤ u0(x) for g(0) ≤ x ≤ h0,

then

h(t) ≤ h(t) for 0 < t ≤ T,

u(t, x) ≤ u(t, x) for 0 < t ≤ T, g(t) < x < h(t).

Remark 4.2. We can show similar results to Lemmas 4.2 and 4.4, focusing on the
other free boundary g(t).

Definition 4.1. The triple of functions (u, g, h) given in Lemmas 4.1 and 4.2 is called
an upper (super-) solution for (DFBP). Similarly, the triple of functions (u, g, h)
denoted in Lemmas 4.3 and 4.4 is said to be a lower (sub-) solution for (DFBP).

We are now ready to show a key proposition to prove the main theorems. For
the proof, we can basically follow an argument in [20] (β = 0). However, because of
presence of the advection term, we need some modification.

Proposition 4.3. Let (u, g, h) be the solution of (DFBP) and suppose that spreading
occurs for the solution. For any c1 ∈ (0, c∗l ), c2 ∈ (0, c∗r) and δ ∈ (0,−f ′(1)) where c∗r
and c∗l are positive constants given by Proposition 4.1, there exist positive numbers T ,
M1, M2 and δ̃ = δ̃(c1) ∈ (0, δ) such that the following properties hold true for t ≥ T :

(i) [g(t), h(t)] ⊃ [−c1t, c2t];
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(ii) u(t, x) ≥ 1−M1e
−δ̃t in [−c1t, c1t];

(iii) u(t, x) ≤ 1 +M2e
−δt in [g(t), h(t)].

Proof. (i) We prepare a unique solution ql(z; c) of{
qxx − (c+ β)qx + f(q) = 0,

q(0) = 0, qx(0) = c∗l /μ

and a unique solution qr(z; c) of{
qxx − (c− β)qx + f(q) = 0,

q(0) = 0, qx(0) = c∗r/μ,

where μ is the same number as that in (DFBP). It is shown in [37, Proposition 2.4]
that, for any c ∈ (0, c∗l ) there is a unique constant zl(c) > 0 such that (ql)x(zl(c); c) = 0
and (ql)x(z; c) > 0 for 0 ≤ z < zl(c). Similarly for any c ∈ (0, c∗r), there is a unique
constant zr(c) > 0 such that (qr)x(zr(c); c) = 0 and (qr)x(z; c) > 0 for 0 ≤ z < zr(c).
We set

kl(t; c) := ct+ zl(c), kr(t; c) := ct+ zr(c)

and

w(t, x; c1, c2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
qr(kr(t; c2)− x; c2), x ∈ (c2t, kr(t; c2)],

qr(zr(c2); c2), x ∈ (0, c2t],

ql(zl(c1); c1), x ∈ (−c1t, 0],
ql(kl(t; c1) + x; c1), x ∈ [−kl(t; c1),−c1t].

Also we can choose c′1 ∈ (c1, c
∗
l ) and c′2 ∈ (c2, c

∗
r) close to c∗l and c∗r respectively such

that

ql(zl(c
′
1); c

′
1) = qr(zr(c

′
2); c

′
2) =: Q, (4.7)

which in particular means that w(t, x; c′1, c
′
2) is continuous at x = 0. Choosing a suitably

large constant T1 > 0, we can prove that (w(t, x; c′1, c
′
2),−kl(t; c′1), kr(t; c′2)) is a lower

solution of (DFBP) for t ≥ T1 (see the proof of [37, Proposition 3.2] in detail). Hence
it follows from Lemma 4.3 that

[g(t), h(t)] ⊃ [−kl(t− T1; c
′
1), kr(t− T1; c

′
2)] for t ≥ T1,

u(t, x) ≥ w(t− T1, x; c
′
1, c

′
2) for t ≥ T1, −kl(t− T1; c

′
1) ≤ x ≤ kr(t− T1; c

′
2).

Taking large constant T2 > max{c′1T1/(c′1 − c1), c
′
2T1/(c

′
2 − c2)}, we have

[−kl(t− T1; c
′
1), kr(t− T1; c

′
2)] ⊃ [−c1t, c2t] for t ≥ T2.
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Thus we obtain

[g(t), h(t)] ⊃ [−c1t, c2t] for t ≥ T2,

u(t, x) ≥ w(t− T1, x; c
′
1, c

′
2) for t ≥ T2, −c1t ≤ x ≤ c2t.

(ii) For any δ ∈ (0,−f ′(1)), noting the condition of f , we can take a constant ρ =
ρ(δ) > 0 which satisfies

f(u) ≥ δ(1− u) (u ∈ [1− ρ, 1]) and f(u) ≤ δ(1− u) (u ∈ [1, 1 + ρ]). (4.8)

By the proof of (i) and the choice of T2, it holds that

u(t, x) ≥ w(t− T1, x; c
′
1, c

′
2) = Q for t ≥ T2, −c1t ≤ x ≤ c2t,

where Q is defined in (4.7). Taking c′1 (resp. c′2) in (4.7) sufficiently close to c∗l (resp.
c∗r) such that Q ≥ 1− ρ, we get

1− ρ < Q ≤ u(t, x) for − c1t ≤ x ≤ c2t, t ≥ T2.

Without loss of generality, we assume c1 < c2. Fix any T ≥ T2 and let ψ = ψ(t, x) be
the solution of⎧⎪⎨⎪⎩

ψt = ψxx − βψx + δ(1− ψ), t > 0, −c1T < x < c1T,

ψ(t,−c1T ) = ψ(t, c1T ) = Q, t > 0,

ψ(0, x) = Q, −c1T ≤ x ≤ c1T.

Then, since ψ1 = 1 is a lower solution and ψ2 = Q is an upper solution for the
above problem, we find Q ≤ ψ(t, x) ≤ 1 for t > 0, −c1T < x < c1T . Hence we get
f(ψ) ≥ δ(1 − ψ) for t > 0, −c1T < x < c1T , and the standard comparison principle
implies

u(t+ T, x) ≥ ψ(t, x) for t > 0, −c1T ≤ x ≤ c1T.

Set Ψ = (ψ −Q)eδt; and then

u(t+ T, x) ≥ e−δtΨ+Q for t > 0, −c1T ≤ x ≤ c1T (4.9)

and Ψ satisfies⎧⎪⎨⎪⎩
Ψt = Ψxx − βΨx + δ(1−Q)eδt, t > 0, −c1T < x < c1T,

Ψ(t,−c1T ) = Ψ(t, c1T ) = 0, t > 0,

Ψ(0, x) = 0, −c1T ≤ x ≤ c1T.

Moreover, using the standard comparison principle, we can check

Ψ(t, x) ≥ Ψ(t, x) := δ(1−Q)

∫ t

0

eδs
(∫ c1T

−c1T

G1(t− s, x, z) dz
)
ds (4.10)
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for t > 0, −c1T ≤ x ≤ c1T , where

G1(t− s, x, z) := G(t− s, x− z)− eβ(x−c1T )G(t− s, x+ z − 2c1T + 2β(t− s))

− eβ(x+c1T )G(t− s, x+ z + 2c1T + 2β(t− s)),

G(t, x) :=
1√
4πt

e−
(x−βt)2

4t

(Note that Ψt ≤ Ψxx − βΨx + δ(1−Q)eδt for t > 0, −c1T < x < c1T , Ψ(t,±c1T ) ≤ 0
for t > 0 and Ψ(0, x) = 0 for −c1T ≤ x ≤ c1T ). We will further estimate Ψ(t, x) in
Ω(ε), where

Ω(ε) :=
{
(t, x) ∈ R

2| |x| ≤ (1− ε)c1T, 0 < t ≤ ε2c1T
}

for large T ≥ 4/(c1(1− βε)2) and small ε < 1/(6β). It is possible to obtain

Ψ(t, x) ≥ (1−Q)(eδt − 1)

(
1− 4√

π
e−

1−6βε
8

c1T

)
in Ω(ε) (4.11)

(see the proof of [37, Proposition 3.2] in detail). Thus it follows from (4.9), (4.10) and
(4.11) that

u(t+ T, x) ≥ 1− e−δt − 4√
π
e−

1−6βε
8

c1T in Ω(ε).

Taking t = ε2c1T and small ε > 0 such that δε2 < (1− 6βε)/8, we obtain

u(ε2c1T + T, x) ≥ 1− e−δε2c1T − 4√
π
e−

1−6βε
8

c1T

≥ 1−M1e
−δε2c1T

for |x| ≤ (1 − ε)c1T with T ≥ T3 := max{T2, 4/(c1(1 − βε)2)} and M1 := 4/
√
π + 1.

We recall that T is an arbitrary large positive number. Then setting

t = ε2c1T + T (T = (1 + ε2c1)
−1t),

we have

u(t, x) ≥ 1−M1e
−δ̃t for |x| ≤ (1− ε)(1 + ε2c1)

−1c1t,

where δ̃ := ε2c1
1+ε2c1

δ. Letting ε→ 0 in the above inequality, we get

u(t, x) ≥ 1−M1e
−δ̃t for t ≥ T3, |x| ≤ c1t.

(iii) Consider the solution u = u(t) of⎧⎨⎩
du

dt
= f(u), t > 0,

u(0) = C0 > max{‖u0‖C[−h0,h0], 1}.
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Then the standard comparison principle shows

u(t, x) ≤ u(t) for t > 0, g(t) ≤ x ≤ h(t). (4.12)

Since f(u) < 0 for u > 1 and f(1) = 0, we can check that u(t) is monotone decreasing
and converges to 1 as t→ ∞. Hence, for the given constant ρ > 0 in (4.8), there exists
T4 > 0 such that u(t) ≤ 1 + ρ for t ≥ T4. Hence we find from (4.8) that u(t) satisfies⎧⎨⎩

du

dt
= f(u) ≤ δ(1− u), t > T4,

u(T4) ≤ 1 + ρ.

By direct calculations, we get u(t) ≤ 1 +M2e
−δt for t ≥ T4, g(t) ≤ x ≤ h(t), where

M2 = ρeδT4 . Thus it follows from (4.12) that

u(t, x) ≤ 1 +M2e
−δt for t ≥ T4, g(t) ≤ x ≤ h(t).

If we define T = max{T2, T3, T4}, then we see that the assertions of (i)-(iii) hold for
all t ≥ T . Hence the proof is complete. �

4.4 Proofs of main results

In this section we will prove the main theorems of this chapter.

Proof of Theorem 4.1. We construct sharp upper and lower solutions for (DFBP).
In the construction of suitable functions, one can also refer to [22]. By Proposition 4.3,
for any c1 ∈ (0, c∗l ) and any δ ∈ (0,−f ′(1)), we can choose positive constants T , M1,
M2 and δ̃ ∈ (0, δ) such that for t ≥ T

g(t) ≤ −c1t, c1t ≤ h(t),

u(t, x) ≥ 1−M1e
−δ̃t in [−c1t, c1t],

u(t, x) ≤ 1 +M2e
−δt in [g(t), h(t)].

Moreover, since δ < −f ′(1), there exists some η ∈ (0, 1) such that

f(u) ≥ 0 in [1− η, 1], δ ≤ −f ′(u) for [1− η, 1 + η].

We will again take a large number T satisfying

max{M1e
−δ̃T ,M2e

−δT} < η/2. (4.13)

For σ > 0, define a lower solution by

u(t, x) := (1−M1e
−δ̃t)q∗r(h(t)− x),

g(t) := −c1t, h(t) := c∗r(t− T ) + c1T − σM1(e
−δ̃T − e−δ̃t).
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Then, choosing sufficiently large σ > 0, we can check from Lemma 4.4 that

h(t) ≤ h(t) for t ≥ T,

u(t, x) ≤ u(t, x) for t ≥ T, −c1t ≤ x ≤ h(t)

(see [37, Lemma 3.3] in detail). On the other hand, we take M ′
2 > M2 satisfying

M ′
2e

−δT < η. Since q∗r(x) → 1 as x → ∞, we can find X0 > 0 such that (1 +
M ′

2e
−δT )q∗r(X0) ≥ 1 +M2e

−δT . We now define an upper solution for (DFBP) by

u(t, x) := (1 +M ′
2e

−δt)q∗r(h(t)− x),

g(t) := g(t), h(t) := c∗r(t− T ) + σM ′
2(e

−δT − e−δt) + h(T ) +X0,

for some constant σ > 0. For suitably large σ > 0, we can get by Lemma 4.2

h(t) ≤ h(t) for t ≥ T,

u(t, x) ≤ u(t, x) for t ≥ T, g(t) ≤ x ≤ h(t)

(cf. [37, Lemma 3.5]). We combine the above estimates to have

(c1 − c∗r)T − σM1(e
−δ̃T − e−δ̃t) ≤ h(t)− c∗rt ≤ h(T )− c∗rT + σM ′

2(e
−δT − e−δt) +X0

for all t ≥ T . Setting

C0 := max
0<t≤T

|h(t)− c∗rt|,

C1 := max{C0, (c
∗
r − c1)T + σM1e

−δ̃T , h(T )− c∗rT + σM ′
2e

−δT +X0},
we deduce

|h(t)− c∗rt| ≤ C1 for t > 0.

In a similar way it follows that

|g(t) + c∗l t| ≤ C2 for t > 0

with some C2 > 0. Let C := max{C1, C2}. Thus we finally obtain

|g(t) + c∗l t|, |h(t)− c∗rt| ≤ C for t > 0.

The spreading speeds are easily deduced by the above estimates, and the proof is
complete. �

Proof of Theorem 4.2. From the proof of Theorem 4.1 we have

u(t, x) ≥ q∗r(h(t)− x)−M1e
−δ̃t for t ≥ T, −c1t ≤ x ≤ h(t),

where h(t) = c∗r(t−T )+c1T −σM1(e
−δ̃T −e−δ̃t) (T , c1,M1 and δ̃ are the same numbers

as in the proof of Theorem 4.1). Fix any constant κ ∈ (0, c∗r−c2), and then there exists
a constant T ∗ ≥ T such that

h(t)− x ≥ (c∗r − c2)t+ (c1 − c∗r)T − σM1 ≥ κt



4.4. PROOFS OF MAIN RESULTS 113

for t ≥ T ∗, −c1t ≤ x ≤ c2t, which in particular implies h(t) ≥ c2t for t ≥ T ∗. Noting
that q∗r(x) ≥ 1− ae−bx for x ≥ 0 for some constants a, b > 0, we find that

u(t, x) ≥ 1− ae−b(h(t)−x)t −M1e
−δ̃t

≥ 1− ae−bκt −M1e
−δ̃t

≥ 1−M ′
1e

−δ̃′t

for t ≥ T ∗, −c1t ≤ x ≤ c2t, where M
′
1 = a +M1 and δ̃′ = min{bκ, δ̃}. For any ε > 0,

we may take c1 = c∗l − ε and c2 = c∗r − ε. Hence the above inequality implies

u(t, x) ≥ 1−M ′
1e

−δ̃′t for t ≥ T ∗, −(c∗l − ε)t ≤ x ≤ (c∗r − ε)t. (4.14)

On the other hand we find from Proposition 4.3 that

u(t, x) ≤ 1 +M2e
−δt in [g(t), h(t)]

with some δ,M2 > 0. By Theorem 4.1, there is some T ∗∗ > 0 such that for given ε > 0

g(t) ≤ −(c∗l − ε)t, (c∗r − ε)t ≤ h(t) for t ≥ T ∗∗.

This result gives

u(t, x) ≤ 1 +M2e
−δt for t ≥ T ∗∗, −(c∗l − ε)t ≤ x ≤ (c∗r − ε)t. (4.15)

Hence (4.14) and (4.15) implies the conclusion by letting T = max{T ∗, T ∗∗}, M =
max{M ′

1,M2} and δ∗ = min{δ̃′, δ}. The proof is complete. �

We will prepare for the proof of Theorem 4.3. Define v(t, z) := u(t, z + c∗rt) and
H(t) := h(t)− c∗rt. Then (v,H) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩

vt − vzz − (c∗r − β)vz = f(v), t > 0, g(t)− c∗rt < z < H(t),

v(t, g(t)− c∗rt) = 0, v(t,H(t)) = 0, t > 0,

H ′(t) = −μvz(t,H(t))− c∗r, t > 0,

H(0) = h0, v(0, z) = u0(z), −h0 ≤ z ≤ h0.

We also denote w(t, y) := v(t, y +H(t)). Then (w,H) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − wyy − (c∗r − β +H ′(t))wy = f(w), t > 0, g(t)− c∗rt−H(t) < y < 0,

w(t, g(t)− c∗rt−H(t)) = 0, w(t, 0) = 0, t > 0,

H ′(t) = −μwy(t, 0)− c∗r, t > 0,

H(0) = h0, w(0, y) = u0(y), −h0 ≤ y ≤ h0.

Observe thatH(t) andH ′(t) = h′(t)−c∗r is bounded by Proposition 4.2 and Theorem
4.1. Moreover we get the following results.

Lemma 4.5. For any b ∈ R, H(t)− b changes its sign at most finitely many times.



114 CHAPTER 4. SPREADING SPEED ANALYSIS

For the proof, see [37, Lemma 3.7]. This lemma is proved by using a zero number
argument developed by Angenent [2]. See also Cai, Lou and Zhou [8] for an application
of this theory to a free boundary problem.

Proof of Theorem 4.3. By Theorem 4.1, we find that the function H(t) is bounded
for all t ≥ 0. Hence there exist a sequence {tn} ⊂ R with limn→∞ tn = ∞ and a
constant Ĥ ∈ R such that H(tn) → Ĥ as n → ∞. Assume that there exist another
sequence {t̃n} ⊂ R with limn→∞ t̃n = ∞ and a constant Ĥ1 �= Ĥ such that H(t̃n) → Ĥ1

as n → ∞. Then it follows from part (i) of Lemma 4.5 that H(t)− b changes its sign
at most finite times for min{Ĥ1, Ĥ} < b < max{Ĥ1, Ĥ}. This contradicts H(t̃n) → Ĥ
and H(t̃n) → H1 as n→ ∞. Hence H(t) converges to Ĥ as t→ ∞, that is,

lim
t→∞

(h(t)− c∗rt− Ĥ) = 0.

Moreover suppose that limn→∞ h′(tn) �= c∗r for some sequence {tn} ⊂ R with limn→∞ tn =
∞. Then there is a subsequence {t̃n} with limn→∞H(t̃n + · ) = Ĥ in C1

loc(R) (cf. [37,
Proposition 3.9]). Hence we see that limn→∞H ′(t̃n) = 0 and limn→∞ h′(t̃n) = c∗r. This
is a contradiction, and consequently limt→∞ h′(t) = c∗r.

It remains to prove the convergence of u to the semi-waves as t→ ∞. First we get
the following results by [37, Proposition 3.8]; for any constants K,L > 0

lim
t→∞

‖w(t, · )− q∗r(− · )‖C2[−K,0] = 0,

lim
t→∞

‖v(t, · )− q∗r(Ĥ − · )‖C2[−c∗rt,Ĥ−L] = 0
(4.16)

(These properties are proved by the parabolic estimates and some important arguments
used in Du, Matsuzawa and Zhou [23]). We now fix some K and some L > 0 to satisfy

[0, Ĥ + c∗rt− L] ∪ [h(t)−K, h(t)] = [0, h(t)] (4.17)

for sufficiently large t > 0. It is actually possible to take such constants; since H(t) =
h(t)−c∗rt is bounded, there are constants K, L > 0 such that Ĥ+K > L+supt≥0H(t),

and hence we have Ĥ + c∗rt − L > h(t) − K. Using (4.16), for any ε > 0 we find a
constant T0 > 0 such that

Ĥ − ε ≤ H(t) ≤ Ĥ + ε,

‖u(t, · )− q∗r(h(t)− · )‖C2[h(t)−K,h(t)] ≤ ε,

‖u(t, · )− q∗r(Ĥ + c∗rt− · )‖C2[0,Ĥ+c∗rt−L] ≤ ε

for t ≥ T0. Then it follows from the above inequality that

‖u(t, ·)− q∗r(h(t)− · )‖C2[0,Ĥ+c∗rt−L] ≤ ‖u(t, · )− q∗r(Ĥ + c∗rt− · )‖C2[0,Ĥ+c∗rt−L]

+ ‖q∗r(Ĥ + c∗rt− · )− q∗r(h(t)− · )‖C2[0,Ĥ+c∗rt−L]

≤ (1 + C‖q∗r‖C2[0,∞))ε
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for t ≥ T0 and some constant C > 0 independent of ε. Hence it holds for t ≥ T0 that

‖u(t, · )− q∗r(h(t)− · )‖C2[0,h(t)] ≤ ‖u(t, ·)− q∗r(h(t)− · )‖C2[0,Ĥ+c∗rt−L]

+ ‖u(t, · )− q∗r(h(t)− · )‖C2[h(t)−K,h(t)]

≤ (2 + C‖q∗r‖C2[0,∞))ε.

Thus we obtain

lim sup
t→∞

‖u(t, · )− q∗r(h(t)− · )‖C2[0,h(t)] ≤ (2 + C‖q∗r‖C2[0,∞))ε.

Since ε is an arbitrary small positive number, we conclude

lim
t→∞

‖u(t, · )− q∗r(h(t)− · )‖C2[0,h(t)] = 0.

We can prove in a similar way above

lim
t→∞

‖u(t, ·)− q∗l (· − g(t))‖C2[g(t),0] = 0,

lim
t→∞

(g(t) + c∗l t− Ĝ) = 0, lim
t→∞

g′(t) = −c∗l .

We complete the proof. �
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