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1. Preface

This thesis demonstrates applications of non-commutative Specker
phenomenon to set theory and group theory. Non-commutative Specker
phenomenon plays an important role in wild topology. More precisely,
the notion “n-slender group” is a central notion in non-commutative
Specker phenomenon and it plays central roles in studies of the funda-
mental groups of wild spaces, detecting points in groups. Historically
n-slender groups were introduced as the non-commutative version of
slender groups and it is known that an abelian group A is n-slender if
and only if A is slender ([8] Theorem 3.3). There is a nice characteri-
zation of slender groups by J. Nunke (see [15],[17]), which implies that
any countable torsion-free abelian group containing no rational group
Q is slender. The main result in this thesis is that certain HNN ex-
tensions and amalgamated free product preserve the atomic property
of the Hawaiian earring group. Roughly speaking, the atomic property
is the property that the group is hard to be decomposed to non-trivial
free products. As corollaries to the main results we prove that any
surface group except real projective plane and Baumslag-Solitar group
are n-slender. Free groups are basic examples of n-slender groups and
in this thesis we shows other examples of n-slender groups, which are
known in combinatorial group theory.

Apart from the main results we demonstrate results of the non-
commutative Specker phenomenon respect to cardinal invariants and
also in uncountable cases. The commutative case of cardinal invariants
has already been studied by K. Eda, S. Kamo, A. Blass and J. Brendle,
S. Shelah. Specker-Eda number se is introduced by A. Blass [2] and is
finally shown that se = ¢; =min{e, b} by J. Brendle and S. Shelah [3],
where ¢ and b are known cardinal invariants defined combinatorially.
We introduce non-commutative Specker-Eda number se,. in the same
way as the commutative case and prove se,, = se. Actually the proof
of this equality is done by reducing a problem to the commutative case.
Uncountable Specker phenomenon also have been studied around 1955.
The well-known result is that, if s is less than the least measurable
cardinal, then Z" exhibits Specker phenomenon by J. Lo$ and E. C.
Zeeman [25] independently. After then it was generalized to arbitrary
cardinality by K. Eda [7, 15] in 1983.

On the other hand, the non-commutative version to this direc-
tion is two-fold. Specker phenomenon does not occur in the first un-
countable cardinal by S. Shelah and L. Stringmann [23] for complete
free products. But, the unrestricted free products satisfies the non-
commutative version of the Los-Eda theorem [15], which was proved
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by K. Eda and S. Shelah [14]. When we study the case over mea-
surable cardinals, in a non-commutative version of ultraproducts, ho-
mogeneous elements and the subgroup consisting of them play an im-
portant role. We show some basic results of it. One of them is that,
H* ={W € %,,Z,|W is homogeneous} is n-slender.

In this thesis we demonstrate results which show relationships be-
tween set theory and combinatorial group theory. Definitions and ba-
sics come from concepts of set theory, but essential ideas in proofs lie
in finite combinatorics of group theory. We also use basic techniques in
set theory for cardinal invariants or uncountable Specker phenomenon.

In the introduction we summarize basic techniques of the non-
commutative Specker phenomenon and in the following sections we
state our results.



2. Introductions of Specker phenomenon

In this section, we introduce Specker phenomenon and its applica-
tions to wild spaces.

2.1. The commutative case. E. Specker showed Z satisfies the
following diagram, which is the best example of Specker phenomenon.

h:7% — 7 a homomorphism.

Vi Z
h
/
~
m<w pn e
S
Jh
~
Zm
m—1
h=hop, pmpprojection. h(z)= z(i)h(e;)
i=0

Specker’s theorem says that for any homomorphism h, its value h(z)
is determined by only finite components of x. Let e; is the element of
Z% which i-th component is 1, other components are all zero. We can
represent an elements x of Z“ for m < w as,

r = E:x(z)eZ = 2_: z(i)e; + Z x(i)e;.
Theri,ﬂ;z(x) is rep;}gented, e
h(z) = h(Zx(i)ei)th( > a(i)e) = w(hle)+h( Y x(i)er).

m<i<w =0 m<i<w

Specker’s theorem says that ) x(i)e; is in Ker(h), we have

hiz) = 327 @ (i)h(e:).

We introduce the slenderness, which is based on Specker phenom-
enon. The slenderness was introduced by J. Los. An abelian group S
is slender, if S satisfies the following diagram.

m<i<w
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h:7Z“ — S ahomomorphism.

zZ¥ S

dInm<w pm -

h="hopnm
Zm

We can say that, a slender group S satisfies Specker’s theorem. Z
is a typical example of slender groups. Slender groups have the good
characterization proved by R.J. Nunke ([15]).

THEOREM 2.1. An abelian group s slender if and only if, it is
torsion-free and contains no copy of Q,Z*, or p-adic integer group J,
for any prime p.

2.2. The non-commutative case. Now, we introduce the non-
commutative Specker phenomenon. G. Higman showed the next dia-
gram, which is called the non-commutative Specker’s theorem.

Let F be a free group and h : x,,.,Z, — F a homomorphism.

Xn<wZn F
h
/
~
dIm<w pm -
o
dh
~
i <m i

N-slenderness was introduced by K. Eda in 1992. A group S is
n-slender if, G satisfies the following diagram.



Xn<wZn h S
/
e
Im<w pn e
" 3h B
- h="hopn
*i<m L

An n-slender group satisfies non-commutative Specker’s theorem.
7 is also a good example of n-slender groups. The next theorem means
that the n-slenderness is a generalization about the slenderness to non-
commutative groups [8] .

THEOREM 2.2. Let A be an abelian group. A is slender if and only
if, A is n-slender.

The n-slenderness also is preserved by the restricted direct products
and free products, which is a generalization that the slenderness is
preserved by direct sums [17], [8] .

THEOREM 2.3. Let G;(i € I) be n-slender. Then, the free product
%ic1Gi and the restricted direct product [[i., G; = {z € [[,e; Gil{i €
I|z(i) # e} is finite } are n-slender.

There is a characterization of n-slender groups using fundamental
groups [8].

THEOREM 2.4. m (X, z) is n-slender if and only if, for any ho-
momorphism h : m(H, 0) — (X, x), there exists a continuous map
f:(H,o0) — (X, z) such that h = f, where f, is the induced homomor-
phism.

We can rephrase Higman’s theorem in topological terms as follows:
Let h be a homomorphism from 7 (H, 0) to m;(S'). Then, there exists
a continuous map f : H — S! such that h = f,.

Many things about wild algebraic topology can be reduced to the
Hawaiian earring and how the homomorphic image of the fundamen-
tal group of the Hawaiian earring can detect a point in the space in
question. It is due to the non-commutative Specker phenomenon. the
following two theorems are examples [10], [11].

THEOREM 2.5. Let X and Y be a one-dimensional Peano continua
which are not semi-locally simply connected at any point. Then, X and
Y are homeomorphic if and only if, the fundamental groups of X and
Y are isomorphic.
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THEOREM 2.6. Let X and Y be one-dimensional Peano continua.
If the fundamental groups of X andY are isomorphic, then X and Y
are homotopy equivalent.

3. Atomic properties of the Hawaiian earring group

The atomic property of the Hawaiian earring group and n-slenderness
of free groups play central roles in the study of the fundamental groups
of wild spaces and according to them certain spaces are recovered from
their fundamental groups [9, 11, 6]. In addition, the fundamental
groups of wild Peano continua also have the atomic property for free
products with injective homomorphisms [11].

In the present thesis we will show the the atomic property for certain
HNN extensions and will show that such HNN extensions preserve n-
slenderness using it. We will also show the atomic property and the
preservation of n-slenderness for certain amalgamated free products.

The atomic property for HNN extensions means that for any ho-
momorphism h from x,.,Z, to an HNN extension of a group G,
G* = (G,t|tAt™! = B), there exists a natural number N such that
h[%,>NZy) is contained in a conjugate subgroup to G. In other words,
“almost all” of a homomorphic image is contained in a subgroup conju-
gate to the base group. For amalgamated free products we also intro-
duce the atomic property as follows: for any homomorphism A from the
the Hawaiian earring group X,-,Z, to an amalgamated free product
A % B, there exists a natural number N such that h[x,>nZ,] is con-

tained in a conjugate subgroup to A or B. In this thesis, we prove that
any HNN extension with a certain condition has the atomic property
and apply it to prove n-slenderness of the Baumslag-Solitar groups.
The property of n-slenderness which is a non-commutative version
of slenderness of abelian groups was introduced by K. Eda in 1992
[8]. The class of slender groups is known as a remarkable class of
torsion-free abelian groups and a nice characterization of it due to
J. Nunke is known (see [15],[17]). The property of n-slenderness is
related to the fundamental group of the Hawaiian earring which is the
plane continnum H = J,_ {(z,y) | (z — =7)* +4* = m}, the
union of countably many circles in the Euclidean plane. It is known
that the Hawaiian earring group is isomorphic to X, %, where Z,
is a copy of the integer group Z. A group S is n-slender! if, for any
homomorphism A from X, .,Z, to S, h(d,) is identity for all but finitely
many n < w where ¢,, is the generator of Z,. It is proved that an
abelian group A is n-slender, if and only if A is slender [8]. There

IThere is a straightforward generalization of slenderness to non-commutative
groups G [18]. But it depends on only abelian subgroups of G. The property of
n-slenderness is essentially different from it.



is a topological characterization of n-slender groups, that is, G is n-
slender if and only if, for any pointed space (X, z) with m(X,z) = G
and for any homomorphism h : m(H, b*) — (X, x), there exists a
continuous map f : (H,b*) — (X,z) such that h = f, where f, is
a naturally induced homomorphism. There are some theorems about
wild algebraic topology of one-dimensional spaces which are reduced
to the Hawaiian earring group. The property of n-slenderness is a
supporting concept in these theorems (see [8, 9, 10]).

There are many questions left about n-slenderness. Since every
torsion-free abelian group of finite rank, in particular finitely gener-
ated, is slender, it is natural to question whether every finitely gener-
ated group is n-slender. G. R. Conner advised us on this problem and
we find that there exits a torsion-free finitely presented group which
contains a subgroup isomorphic to Q. It is due to the two famous the-
orems. One of them is that every countable group C' can be embedded
in a group G generated by two elements of infinite order and the other
is Higman’s embedding theorem, that is, a finitely generated group G
can be embedded in some finitely presented group if and only if G can
be recursively presented (see [22, Chap. IV, Theorems 3.1 and 7.1]).
By the first theorem, we obtain a two-generated recursively presented
group G which contains Q because Q is recursively presented and the
construction of this theorem preserves it. Then we obtain a finitely
presented group containing Gy by the Higman’s embedding theorem.
In proof of above two theorems, the desired groups are constructed by
amalgamated free products or HNN extensions. Since these construc-
tions do not add a new torsion element, we obtain the counterexample
as above.

Now, we conjecture that any one-relator torsion-free group is n-
slender. It is related to whether HNN extensions preserve n-slenderness
because any one-relator group is embedded in a HNN extension of the
one-relator group which has a shorter length than the given one [22].
This thesis is a first step to investigate the atomic property for HNN
extensions and to this conjecture.

3.1. Definitions and Basics.

This section is devoted to introduce the basics of infinitary words
and HNN extensions. We follow the notation in [8] and [22], but state
definitions and propositions for the reader’s convenience. Sometimes,
we shall abuse the notation of infinitary words and HNN extensions
without confusion.

DEFINITION 3.1. Let G; (i € I) be groups such that G; NG, = {e}
for any i # j € I. We call elements of (J,.; Gi\{e} letters. A word W
is a function W : W —  J,.; G: \ {e} where W is a linearly ordered

set and {a € W | W(a) € G,} is finite for any i € I. The class of all
words is denoted by W(G, : ¢ € I).(abbreviated by W)
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DEFINITION 3.2. Let U,V be words. U and V' are isomorphic, which
is denoted by U = V, if there exists an order isomorphism ¢ : U — V
such that Va € U (U(a) = V(p(a)). Tt is easily seen that W becomes
a set under this identification. Consider the cardinality of a domain
of a word W, it is greater than of equal to Max{|/|,w} = k because
elements of GG; appear only finitely in range of W for any ¢ € I. Then
we restrict a domain of a word function to subsets of k. Thus, W
becomes a set under this identification.

DEFINITION 3.3. For a subset X C I, the restricted word Wy of
W is given by the function

Wy : Wy — Ui Gi where Wx = {a € W|W(a) € U G;} and
i€X

Wx(a) = W(a) for all @ € Wx. Hence Wy € W. If X is finite, then
we can regard Wy as an element of the free product *;c xG;.

DEFINITION 3.4. Let U,V be words. U and V are equivalent, which
is denoted by U ~ V', if Up = Vg for all F CC I where we regard Up
and Vp as elements of the free product *;crG;.

So, "Ur = VF” means that they are equal in the sense of the free prod-
uct x;crG;.

Let [W] be the equivalence class of a word W. The composition
of two words and the inverse of a word are defined naturally. Thus
W/~ ={[W]| W € W} becomes a group.

DEFINITION 3.5. X;c;G; is the group W(G; : i € I)/ ~. Clearly, if
I is finite, then x;c;G; is isomorphic to the free product *;¢;G;.

DEFINITION 3.6. W is reduced if W = UXV implies [X] # e for
any non-empty word X where e is the identity, and for any contiguous
elements o and 8 of W, it never occurs that W(a) and W (3) belong
to the same G;.

DEFINITION 3.7. [;(W) is the cardinality of {a € X | X () € G;}
where X is the reduced word of W.

LEMMA 3.8. ([8, Theorem 1.4] ) For any word W, there exists a re-
duced word V' such that [W] = [V] and V' is unique up to isomorphism.

PROPOSITION 3.9. ([8, Proposition 1.9] ) If gx(A € A) are elements
of XierG; such that {\ € A | li(gr) # 0} are finite for all i € I,
then there exists a natural homomorphism ¢ XxeaZy — XierGi via
I = gr (A € A) where Zy(\ € A) are copies of the integer group and
0y 18 the generator of 7.

DEFINITION 3.10. Let G be a group, A and B be subgroups of G
with ¢ : A — B an isomorphism. The HNN extension of G relative to
A,B and ¢ is the group G* =< G, t|tat™" = p(a),a € A >.
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We call the group G is the base group of G* and denote G* =<
G, t|tAt~' = B > without confusion. In this thesis, G* always denotes
an HNN extension of G.

DEFINITION 3.11. [22, p.181] A sequence alternate with ¢,t~! and
elements of G, got'g; ---tg, (n >0, g; € G, ¢ = 1) is reduced if
there is no subsequence tg;t~! with ¢; € A or t~1g;t with ¢; € B.

Clearly, any element of G* is represented by some reduced sequence.
Since this notion is very different from the reducedness of words for
free products, we explain it by an example. Suppose that tat™! = b.
We remark that the both sequences 1,¢,b71,¢,a,1 and 1,¢,1,¢,1 are
reduced and represent the same element of G*. The following lemma
is basic for reducedness of HNN extension.

PROPOSITION 3.12. (Britton’s Lemma [22, p.181]) If the sequence
gotgy - - t"g, and n > 1, then got“ gy - - -t g, is not the identity of
G*

DEFINITION 3.13. For w € G*, Let [(w) be the length of a reduced
sequence which represents w.

The well-definedness of the length is due [22, Chap. IV, Lemma
2.3]. We remark the difference between free product and HNN exten-
sion about the lengths of words. In a free product, [(w) = 0 means w
is the empty word. On the other hand, in an HNN extension, [(w) =0
means w is an element of (G, so w could be non-trivial.

DEFINITION 3.14. An element w = gyt - - -t is cyclically reduced
if all cyclic permutations of the sequence are reduced.

If n > 1, it is equivalent to w? = gyt - - -t gt - - -t is reduced.
We note that any element of GG is cyclically reduced for the case n = 0.

PROPOSITION 3.15. Any element of G* is conjugate to some g € G
or cyclically reduced element whose length is greater than 0.

We omit proof because it is due to the fact, every element of G* is
conjugate to a cyclically reduced element, which is used to prove the
Torsion Theorem for HNN Extensions [22, Chap. IV, Theorem 2.4].

DEFINITION 3.16. Let Cg be the set of all elements of G* which is
conjugate to an element of G.

We remark that Cg = |J,,cq wGw™! is closed under conjugacy and
I(z™) < I(z) for any n > 2 and x € Cg. In addition, if x ¢ Cg, then
x is conjugate to some cyclically reduced element with non-zero length
and [(x),n < I(z") for any n > 2.

PROPOSITION 3.17. Let w = got* - - -t gttt - - - 17 go,, be reduced.
Then w € Cg if and only if there exists x € AUB such that got® - - - t» =
(t€n+1 e t52n92n)_1x



Atomic properties of the Hawaiian earring group 11

Proor. We prove it by the induction of n. The case n = 0 is clear.
Let consider the case of n+ 1. The necessity is easy, we only argue the
sufficiency. Let w = got® (g1t - - -t gttt - t2ntlgy, )2 420y, 1o €
Cqg. We consider the sub word t"2(go,12g0)t" of the second term.
If 4 = €9,12, we can easily conclude that [(w?) > I(w) which con-
tradicts to w € Cg. We obtain ¢, = —éy,10 and can assume ¢ =
—1. If goni2g0 € A, then w is conjugate to a cyclically reduced el-
ement, which is a contradiction. We find out there exists b € B
such that t(gani290)t™" = b. It implies got ™' = go, 0t - b and w =
g;}wt_l(bglte? ce gttt 2t go 1 ) Egan e, Since w € Cg and
Cq is closed under conjugacy, we can apply the inductive assump-
tion to bg t? - - -t gttt - t2niigy . It deduce that bgt® - - -t =
(ten+t o ganrigy, 1) La for some x € AUB. Multiply g5, 5t~ from the
left side to the both sides of this equation, then we have the conclusion.

O

3.2. Atomic properties for HNN extensions. In this section,
we prove HNN extensions with a certain condition have the atomic
property. The first lemma is essentially the same as Lemmas 11.5, 11.6
in Chapter I of [22], which are results for amalgamated free products.
Here, we arrange them to HNN extensions.

LEMMA 3.18. Let WaW =1, VyV =1 be reduced where W,V € G* and
r,y €G . If WaWWyV~1 € Cq, then exactly one of the following
holds:

(1) W=V e G;

(2) there exists a non-empty word W such that XW is reduced,
V=XW and X 'oX € AUB; or

(3) there exists a non-empty word W such that XV is reduced,
W =XV and X '2X € AUB.

PRrOOF. It is sufficient to prove that the negation of (1) implies (2)
or (3). Since Cg is closed under conjugacy, we consider V- 'WaWW~1Vy
which is conjugate to WazW 1VyV =1 by V~1. That is, we can assume
V = e and [(W) # 0 in the statement. We have WaW ™!y € Cg and
apply Proposition 3.17 to it. We conclude that W=ty € A U B,
which is the desired case (2). If you consider W 'VyV W1 then
we obtain the case (3). O

It says that if (W) > [(V), then VyV~! = WulWW~! for some
v € AUB and WaWVyV=1 = W(xzu)W~1. In other word, If
x,y € Cg, then l(zy) = Maz{l(x),l(y)}.

The next lemma is an analogy of [20, Lemma 2].

LEMMA 3.19. Let x,,y, € G* (n<w), f € “w and y, = xnyiﬁ)
for any natural number n.
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(@) If Y .., Uzi) +n < f(n) and l(yn41) < l(y,{inl)) for any natural
number n, then there ewxists a natural number m such that vy, € Cq for
any n > m.

(0) If > .., Uzi) +n < f(n) for any natural number n, then the set
{n < wly, € Cg} is infinite.

PrOOF. We prove (a) and (b) by contradiction. For (a), suppose its
negation. Then, we can take a natural number N satisfying [(yg) < N
and yn11 ¢ Cg. By the remark of Definition 2.16, ZZSN l(x;)+ N <

l(y]];(fl)) We show that Y,y (i) + N < I(yn—g) for any 0 < k <
N — 1 by the induction of k. Consider the case k = 0. By yyy1 ¢ Cq
and the assumption of f, y{v(ivl) > f(N) 2 > i<y Uzi) + N. Then, we

have I(yv41) > (zy) and lyy) > WA = lan) by yy = 2yl

We conclude I(yy) > l(ny(fl)) —l(zn) 2 Y icy_1 l(xi) + N. Consider

the case k+1. By the inductive hypothesis and I(yy_;) < l(QfN(ivk_k_l))a

l(y]];(ivk_k_l)) > Uyn—k) > D ien_ny l(xi) + N. By the same argument
of the case k = 0, we have the desired. Then, we have Y, v, l(z:)+
N < I(yn_g) for any 0 < k < N — 1, it concludes N < (1), which
contradicts to N > I(yo).

Next for (b), suppose its negation. Then, we can take a natural
number ng such that y,, ¢ Cqg for any n > ng. Take N > I(yn,), no. We
can apply (a) to x,,y, (ng < n), which deduces a contradiction. O

The following two lemmas are related to infinitary words and HNN
extensions.

LEmMmA 3.20. Let h : X ,eosZy — G* be a homomorphism and
Im(h) C Cg. Then, there exists a natural number N such that h[x,>n7Z,]
s contained in a subgroup conjugate to G.

PRrOOF. Firstly, we claim N < wam < wVz € X,>nZ,(I(h(z)) <
m). To show this by contradiction, suppose its negation, then we obtain
inductively X,, € X;>,Z; such that h(X,) € Cg and n < I[(h(X,)) <
[(M(Xp41)) for any n < w. By Proposition 3.9, we can define the
following infinitary words.

(1) Vo=XoX1 - X1 X, -
(2) = XoX;--- X1V,

To comprehend to infinitary words, we explain its constructions.
Firstly we define words of x ,.,Z,, W, for any n < w such that
W,(i) = §; for n > i and W, (i) = e for others. These words sat-
isfy the followings.
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(3) W, = 5n5n+15n+2 T
(4> = 0,Whi1

(5) Wo = 800y -+ 610, + - -
(6) = 0001+ 01 Wiy

By Proposition 3.9, there exists a homomorphism ¢ X, ,Z, —
X<l Via 0, — X, (n < w), then V,, = p(W,,).

This definition is not exact since X, may not be a letter. But, we
can regard them as the composition of infinitary many words because
X,, does not contain §; for any ¢ < n. We find out V,, = X, V11
and h(V,) € Cg for any n < w. To deduce a contradiction, we show
h(V,,) = e for any m > [(h(Vp)), which contradicts to that h(X,)
is non-trivial for any n. If h(V,,) # e, then I[(h(V},)) > I(h(X,))
by V. = X, Vi1 and Lemma 3.18, which says that [(h(V},)) =
Maz{l(X),l(Vins1)}. Because of I(h(X,)) < l(h(X,+1)), we induc-
tively conclude that [(h(V,,_)) > [(h(X,,)) for any k& < m. It implies
that {(h(Vp)) > m, which is a contradiction.

Now, there exists a natural number N such that the image of
X >N2Zy has the maximum length. We can take w € G* satisfying
wgw™' € h[x,>nZ,] (reduced) and l(wgw™') is equal to the maxi-
mum. By Lemma 3.18 and Im(h) C Cg, h[X,>nZ,] is contained in
wGw™.

O

LEmMmA 3.21. Let h : X ,eosZy — G* be a homomorphism and
hX>nZy] € Cg for any N < w. Then, for any m,n < w, there
exists an element w € X;>,Z; such that h(w) € Cg and [(h(w)) > m.

ProOF. To show this by contradiction, suppose the negation of the
conclusion. We may assume Vz € X,,«,Z,(h(z) € Cqg — l(h(x)) < m)
for some m. By the assumption, there exists X,, € X;>,Z; such that
h(X,) & Cq and [(h(X,,)) > 2m for any n. Let f(n) = >, [(h(X;))+
n + 2m. Now, we define V,, € x,;.,Z; for any n < w from X,, and
f. This construction appeared in [8] and [20]. Let 7" be the tree
(Un<w I[Lnen f(m),C) and ¢, be an arbitrary element of Lev,(T) =
[I,,<n f(m). Clearly, T'is linearly ordered by the lexicographical order.
Let V, = {t € T| t, C t} and V,(z) = X} iff x € Levy(T) for any n.
Then, V,, = Xnan fll) for any n. Applying Lemma 3.19 (b), there exists
M < w such that [(h(Vp)) +1 < M and h(Vy41) € Cg. By a similar
way as the previous lemma, we inductively conclude that h(Vy_) &
Ceand I(h(Var—i)) = > icnp g LX)+ M —142mfor 1 <k <M
which implies [(h(Vg)) > M — 1, it is a contradiction. To prove it,
consider the case k = 1. Since h(Vir11) € Cq, h(Var1)?™ € Cy and
I(h(Var)TM) < m. We have h(Viy) ¢ Cg because 2m < I(h(Xas)),



14

Vir = Xy VP and Va € x,2,Z,(h(z) € Cq — I(h(x)) < m). Then
Ih(Vag)fM=0) > (M — 1) = >0 LR(X:)) + M — 1+ 2m since
h(Var) ¢ Co. We deduce [(h(Var—1)) > > ica o LX)+ M —1+2m
by h(Var—1) = h(Xar—1)h(Var)f™). Next, consider the case k + 1. By
the inductive hypothesis, we have [(h(Vys_p) M%) > [(h(Viy_1)) >
Y e L(X;))+ M —142m. Then, by a similar way, we conclude
the desired. U

Now, we show the atomic property for HNN extensions.

THEOREM 3.22. Let G* = (G, t|tAt™" = B) be an HNN extension
of G and satisfying the following condition.

($)2<Ip<wVgeG\A (¢ A)AVgE G\ B (¢ € B)

Then, for any homomorphism h : X,c,Z, — G*, there exists a
natural number N such that h[X ,>nZ,] is contained in a subgroup
conjugate to G. That is, G* has the atomic property.

PRrROOF. By lemma 3.20, it is sufficient to show that for any ho-
momorphism h, there exists N such that h[x,>yZ,] C Cg. Assume
not. By Lemma 3.21, we obtain inductively X,, € x;>,Z; such that
h(X,) € Cg and n < l(h(X,)) < [(h(X,11)) for any n < w. Take p as
in () and f:w — w such that 3, I[(h(X;)) +n < p/™. We remark

that [(2?) = [(x) for any x € Cg. As above, we obtain V,, = XnV,ﬁ(ln)
for any n < w. Applying lemma 3.19 (a) to h(X,), h(V,,), there exists
M < w such that h(V,,) € Cg for any n > M. By the same argument
of lemma 3.20, we can deduce a contradiction. Il

Clearly, adding the assumption that G is n-slender to the assump-
tions of Theorem 3.22 we have the fact that G* is also n-slender. The
next theorem is about ascending HNN extensions (or mapping tori).

THEOREM 3.23. Any ascending HNN extension G* = (G, t[tGt™! =
B) has the atomic property.

PRroOF. Like the previous theorem, it is sufficient to show that for
any homomorphism h, there exists N such that h[x,>nZ,] C Cg.
Suppose the negation. We obtain X,, € %;>,7Z; such that h(X,) & Cq.
Let p : G* —+< t > be a natural homomorphism such that p [ G is
trivial. Considering the reduced forms of ascending HNN extensions
which is known ¢~9¢t? where p, ¢ are non-negative integer and g € G,
it is easy to find that Vo & Cg(p(z) # 0). Since the integer group is
n-slender, there exists m such that poh[%,>,Z,] = {0}. It contradicts
to po h(X,,) #0. O

The proof of Theorem 3.22 can be translated to amalgamated free
products. So, we obtain the same result for amalgamated free products.

COROLLARY 3.24. (Corollary to the proof of Theorem 3.22)
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Let A;;B be an amalgamated free product of A and B. If it satisfies
the following condition. ()2 < 3dp < w Vg € A\U (¢* € U) ANVg €

B\U (9" ¢U)
Then, A % B has the atomic property.

We show some one-relator groups are n-slender using the atomic
property for HNN extensions.

COROLLARY 3.25. The Baumslag-Solitar group is n-slender

PROOF. Since BS(m,n) = (a,blab™a™! = b") = ((b),t|tb"™t™ =
b"), BS(m,n) is the HNN extension of the integer group. Because we
can take a prime number p which is greater than |m/| and |n|, it satisfies
(). We can apply Theorem 3.22. O

We mention n-slenderness of surface groups, which are the funda-
mental groups of closed surfaces. Since any subgroup of a surface group
with infinite index is free and the class of n-slender groups is closed un-
der extensions as like of slender groups, any torsion-free surface group
is n-slender. More precisely, such a group has a homomorphism to Z
the kernel of which is free. But, this is also an example of applications
of the atomic property.

COROLLARY 3.26. Any surface group except real projective plane is
n-slender.

ProoOF. We only explain how to regard surface groups as amalga-
mated free products. Firstly, the case of closed orientable surface M,
with genus of g. It is known m1 (M) = (@1, - -+, Tog|[x1, 22] - - - [T29-1, Tag))-

Let A = (x1) % (x32), Uy be the subgroup generated by [z, xs], B =
(w3)%- - -x(z9,) and Uy be the subgroup generated by [x3, 4] - - - [T2g—1, Tog].
We amalgamate Uy and U; according to the isomorphism which maps
[21, 22] to ([23,24] - - [H2g-1, T2g]) 7"

The non-orientable case, m(N,) = (z1, -, x4|lx121 - - - THT,) 15 also
so by the similar way. Such amalgamated free products satisfy (). [

3.3. Problems. Finally, we introduce two open problems, the one
is about the atomic property and the other is about n-slender groups .

QUESTION 3.27. Does every HNN extension have the atomic prop-
erty?

In other words, can we drop the assumptions of Theorems 3.22
or not. The affirmative answer implies that HNN extensions preserve
n-slenderness and consequently does that any torsion-free one-relator
group is n-slender and that an amalgamated free product of two n-
slender groups is also n-slender.

QUESTION 3.28. Does there exist a good characterization of n-
slender groups ?
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This problem would be important to solve other problems about n-
slender groups. Especially, we wonder whether a torsion-free countable
group which does not contain QQ and is n-slender or not.

4. The non-commutative Specker-Eda number

4.1. Introduction. We show that the non-commutative Specker-
Eda number se,, is equal to the Specker-Eda number se and the sub-
group of X, .Z, consisting of all words which have no subword with un-
countable cofinality or coinitiality exhibits the non-commutative Specker
phenomenon. se,, is the smallest cardinality of subgroups of x,,.,Z,
which exhibit the non-commutative Specker phenomenon. And se is
the smallest cardinality of subgroups of Z* which exhibit the Specker
phenomenon.

E. Specker also established subgroups of Z“ which exhibit the Specker
phenomenon. But these subgroup have the cardinality of the contin-
uum 2%, So, the next question naturally arises whether the smallest
cardinality of subgroups which exhibit the Specker phenomenon is 2%°.
It turned out that this question is undecidable on ZFC by K. Eda [7]
in 1983. S. Kamo [21] also considered a related question in Cohen ex-
tensions in 1986. A. Blass [2] studied the cardinal invariant and named
it the Specker-Eda number, se. He pointed out K. Eda’s proof estab-
lished that p < se < 0 and proved that ¢; < se < b in 1994. Finally,
in 1996, J. Brendle and S. Shelah [3] proved that se = ¢, =min{e, b}.
Now, we consider the non-commutative case.

4.2. se,. = se. We have described Specker’ theorem and Higman’s
theorem as the non-commutative version of Specker’s theorem at Sec-
tion 2. Then, we can naturally introduce a new cardinal invariant, the
non-commutative version of the Specker-Eda number.

DEFINITION 4.1. Let GG be a subgroup of x;c;Z; containing all §;. G
exhibits the non-commutative Specker phenomenon if, there is a finite

subset [’ C [ such that h factors through *;c rZ; for any homomorphism
h from G to Z.

DEFINITION 4.2. The non-commutative Specker-Eda number is de-
noted by se, . It is the least cardinal of G which is a subgroup of
Xy <wZm and exhibits the non-commutative Specker phenomenon.

DEFINITION 4.3. A subgroup G of x,,.,7Z, is weakly fine if, for any
reduced word W in G and for any m < w,
G contains X, X1, -+, X, € *pemZy and Yo, -+ Y, 11 € X<n<wln
where W = YE)X()leXl s Xin}/;n‘l'l .

The next lemma says that it suffices to show that there are only
finitely n satisfying h(d,) # 0 for any homomorphism A from G to Z
when we prove GG exhibits the non-commutative Specker phenomenon
in this section.
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LEMMA 4.4. Let G be a subgroup of X, 2, containing all 6,,. If
there are only finitely n satisfying h(d,) # 0 for any homomorphism h
from G to Z, then there ezists a subgroup H such that |G| = |H| and
H exhibits the non-commutative Specker phenomenon.

Proor. For any reduced word W, let ¢y be a homomorphism :
Xpcwlin — Xn<wln Via 0y = Wn,, by Proposition 3.9. Then, we can
take a subgroup H satisfying followings;

(1)G C H and |G| = |H|

(2)VW € H(ew[H] C H) (where W is reduced.)

(3) G is weakly fine.

Now, we show that H is the desired subgroup. Suppose the nega-
tion. Then, for every n, there exists W € H such that h o p,(W) #
h(W) for some homomorphism h. Since G C H, there exists ngy such
that Vn > ng(h(d,) = 0). Take W such that hop,,(W) # h(W). Since
h(W) = h(Yo)h(Xo) - - - h(Xi, )M (Yi, 11), h(Y:) # O for some i. ho gy,
is a homomorphism from H to Z and h o ¢y,(6,) = h(Y;) for all n.
Because, if n > ng ,then (Y;)w\n € *po<kenliy ¥ Xp<k<wly, otherwise
(Yi)u\n =Y. It contradicts. O

THEOREM 4.5. se,. = 5¢ .

PRrooOF. Firstly, we show that se < se,.. Let 0 : X,.,Z, — Z“ be
the canonical homomorphism such that o(W)(n) = Wy, (n < w) and
G be a subgroup of x,,.,Z, which exhibits non-commutative Specker
phenomenon and whose cardinality is se,.. Then o[G] also exhibits
Specker phenomenon. Because, let h : o[G] — Z be a homomor-
phism. The composition of h and ¢ is a homomorphism from G to Z.
Therefore, h(e,) = hoo(d,) = 0 for all but finitely many n. Then, we
get se < |o[G]| < |G| = sey -

Next, we show that se,, < se. To show this, two lemmas are neces-
sary.

LEMMA 4.6. z,a € Z

n—1
‘v’n<w<n! | :L"—Zi!(l) = rz=0anda=0
i=1
n—1
PROOF. we can prove by induction that 2 < n implies Zz’! <
i=1

2(n — 1)!. Therefore, we can easily find a natural number n such that
n—1

n—1 n
|x—Zi!a| < n!and |x—Zi!a| < (n+1)!. It means that x—Zz’!a =
i=1 i=1

i=1

OZx—zn:i!a. O
i=1
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To show the next lemma, we consider the following words:U,,, U,.
For W € X, «,Zu, let V,, = Wy, To define Uy, U, , we consider such
atree T = <U( H m), C) like the binary tree < 2<“, C>. Then

n<w 1<m<n+1
we order T lexicographically, i.e; If z,y € T, define x <y iff z(n) < y(n)
where n € dom(z) N dom(y) is the least natural number such that
x(n) # y(n), or dom(x) < dom(y). Consequently, T is linearly ordered
by this lexicographical order. Now, we define U, U, as follows.

Uw =T, Us(x) =V, (x€lev,(T)= [] m),

1<m<n—+1

U, = {t € T| y, C t} where y, is an arbitrary element of Lev,, (T,

This definition is not exact because V,, may not be a letter. But
we can naturally regard them as the composition of infinitary many
words, since V,, does not contain letters §; for i < n. And we find that
they really become a word.

V3
Vs
Vs
Va V3
Va
Uoo:‘/O
Va
Va V3
Vs
Vs
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Vn+2
Vn+l
Vn+2
U,=1V,
Vn+2
Vn+l
Vn+2

Now, we state the second lemma.

LEMMA 4.7. Let G be a subgroup of X,<,Zy, containing all d,,.
If, for every W € ker(o)NG, G contains Uy, and all U, coressponding to W

and G is weakly fine, then any homomorphism h from G to 7Z factors
thorough o|G].

G Z

h=hoo o:canonical homomorphism

PRrOOF. It is sufficient to show that ker(c) N G C ker(h). Let G’
be a commutator subgroup of G and [W] be a element of G/G’. Let
W € ker(o) N G. Then [W] = [V,] for all n because G/G’ is abelian
and weakly fine. By the figure of Uy, U,,, we have

—_

n—

U] = S il[Vie] + nl[Up_i]

1
1

.
Il

3
|

= il[W] + nl[U,-4]

=1
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And there exists a homomorphism hg : G' — Z s.t h(x) =
for any x € G by the homomorphism theorem because G’ C ker(h).
Therefore, we get

nl | ho([Ux)) —Z_:i!ho([W]) for all n

So, we have h(W) = ho([W]) = 0 by Lemma 4.6 O

Now, we return to the proof of se,. < se. Our goal is getting a
subgroup of x,.,Z, whose cardinality is se and which exhibits the
non-commutative Specker phenomenon. In the diagram of Lemma 4.7,
if o[G] exhibits the Specker phenomenon, then G also exhibits the
non-commutative Specker phenomenon because h(d,) = h(e,). So, we
take a subgroup H of Z* whose cardinality is se and which exhibits
the Specker phenomenon. o ![H] also exhibits the non-commutative
Specker phenomenon, but, unfortunately, the cardinality of ker(o) is
2% Let X be a set such that o[X] = H and |X| = se. Then let G
be the smallest subgroup which contains X and satisfies the clause of
Lemma 4.7. Obviously, the size of G is se. And o[G| contains H, so
o[G] also exhibits the Specker phenomenon. Therefore, G is the desired
subgroup. O

5. The Specker phenomenon in the uncountable case

The uncountable Specker phenomenon in the commutative case
was studied around 1955. J. Lo§ and E. C. Zeeman [25] indepen-
dently showed that Z" exhibits the Specker phenomenon iff k is less
than the least measurable cardinal. There exists similar results of non-
commutative version. These results deduce that, If x is uncountable,
X o<nle fails the non-commutative Specker phenomenon. But, there
exist subgroups of X,.Z, which exhibit the Specker phenomenon. We
introduce and show these results.

THEOREM 5.1. ( Los-Eda theorem [15]) Let S be a slender group.

For any homomorphism h : Z' — S, there exist wy-complete ultrafilters
Uy, U, on I such that h="hopy,, @ - Ppu,-

This theorem says that the following diagram satisfies.
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Al S

plh@”'@pun /

Z'u @Dz U,

It deduces the next result of uncountable Specker phenomenon.

COROLLARY 5.2. If Kk is less than the least measurable cardinal,
then Z" satisfies Specker’s theorem.

It means that the following diagram.

zx Z

X, €k Pxo e

7Xo

We remark that, let x be the least cardinal which has a non-
principal wi-complete ultrafilters on «, then, s is measurable.

The next theorem says that the non-commutative Specker phenom-
enon can not exhibit in uncountable cardinals.

THEOREM 5.3. (S. Shelah and L. Stringmann [23])

Ko< Lo fails the non-commutative Specker phenomenon, i.e; there
exists a homomorphism h : Xo<w, Lo — 7 such that h(d,) = 0 for any
a < wy but also h is non-trivial.

The following theorem is the non-commutative version of the above
result of J. Los and E. C. Zeeman.

THEOREM 5.4. (S. Shelah and K. Eda [14]) Let S be a n-slender
group. For any homomorphism h : @(*ie){zi,pxy XCYel) —
S, there exist wy-complete ultrafilters Uy, --- U, on I such that h =
h O PuyUe-tu, JOr any uy € Uy, -+ U, € U,.

It means that the following diagram satisfies.
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1I11<>|<Z XZZ-,pr .4 - Y e ]) S
lim(rie .

pu1U~~-Uun /

@(*ieXZiapXY X g Y e Uy UUun)

If |7] is less than the least measurable cardinal, then the above
diagram is changed to the following.

lim (*jexZi, pxy : X CY € I)
i (e "

E'X() el Pxo /

*iex L

PROPOSITION 5.5. For any homomorphism h from X..Zs to Z
there are only finitely a such that h(d,) # 0 .

PROOF. Assume not. Let A be a homomorphism from X, .Z, to Z
and oy, (n < w) be elements of x such that h(d,, ) # 0 for all n. Then,
we can take the homomorphism ¢ : X, <,Z, — Xo<xZo Via 0y — Oq,, -
The composition of h and ¢ is a homomorphism from x,,.,,7Z, to Z and
h o ¢(d,) # 0 for all n. It contradicts. O

We remark If s is uncountable, x,..Z, fails the non-commutative
Specker phenomenon. Our interest is whether any homomorphism from
Xo<wlin Y0 7 factors through *,cxZ, for some finite subset X of .

5.1. Subgroups exhibit the uncountable Specker phenome-
non. We have introduced non-commutative uncountable Specker phe-
nomenon and related results, such that the unrestricted free product
@(*iexGi,pr : X CY & I) exhibits the Specker phenomenon iff the
cardinality of the index set [ is less than the least measurable cardinal
[14]. We consider another non-commutative case, that is, X,.Z, and
its subgroups where « is an uncountable cardinal. We have mentioned,
S. Shelah and L. Striingmann [8] showed a counter example, i.e: there
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exists a homomorphism h from X, <, Z, to Z such that h(é,) = 0 for all
a < wp but A is not trivial. On the other hand, there exists a subgroup
of Xo<xZs which exhibits the non-commutative Specker phenomenon.

PROPOSITION 5.6. ([8] Proposition 3.5.) Let h: X3 _, Zo — Z be a
homomorphism. Then there exists a finite subset F' and a homomor-
phism h : *ocpZio — 7 such that h = h o pp.

It means that x¢_,7Z, exhibits the uncountable Specker phenom-
enon. We show that there is another subgroup which exhibits the

uncountable Specker phenomenon.

THEOREM 5.7. Let G be the subgroup of Xo<Zo consisting of all
words which have no subword with uncountable cofinality or coinitiality.
G is a maximal subgroup which exhibits the non-commutative Specker
phenomenon.

Proor. If a subgroup of % ,..Z, has a word with uncountable
cofinality or coinitiality, then it does not exhibits the non-commutative
Specker phenomenon by [23]. Therefore, it suffices to show that G
exhibits the non-commutative Specker phenomenon. Assume not. Let
F be a set of all a@ which satisfies h(d,) # 0 for some homomorphism
h from G to Z. Like Proposition 5.5, F' is finite. Then, we can find a
reduced word W such that h(W) # 0 and W € Xaep\pZq. Let Ty be
a maximal tail subword of W such that h(T) = 0 for any proper tail
subword of Ty. T, could be empty, but it is easy case. So, we consider
the case Ty is non-empty. Then, let W, be the subword such that
W = WyTy and d be the left end point of T,. We claim that h(Tp) = 0.
Let 400 be the right end point of Ty. Take a descending sequence
{bn}nea such that Inf{b,| n € A} = d. Since W € G, A is countable.
It is sufficient to consider the case that A = w. Let Vo = Tj [y, 400)
and Vo1 = 1o [0 for n < w. Clearly, h(V,) = 0 for all n.
We can take a homomorphism ¢ : x,.,Z, — G via 6, — V,, by
Proposition 3.9. h(1y) = h(---ViVy) = h(p(- - - 0160)) = 0 because hop
is trivial. Since any tail subword of W} is uncountable and the cofinality
of Wy is countable, we can take an ascending sequence {a,}n<, such
that sup{a,| n < w} = d and h(Wy [(a,.q)) # 0 for all n. It is easily
seen that {W [and) | 7 < w } satisfies the clause of Proposition 3.9.
It contradicts. U

5.2. Homogeneous elements and ultrafilters. We are moti-
vated from [13]. The author of [13] mentioned personally that a proof
about Question 5.16 does not work and hence Question 5.16 is still
open. The uncountable Specker phenomenon in the commutative case
was studied around 1955. J. Lo§ and E. C. Zeeman [25] indepen-
dently showed that Z* exhibits the Specker phenomenon if x is less
than the least measurable cardinal. There is a similar result in the
non-commutative case. S. Shelah and K. Eda [14] showed that the
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unrestricted free product T&n(*ieXGi,pxy : X CY & I) exhibits the
Specker phenomenon if the cardinality of the index set I is less than
the least measurable cardinal. Some problems occur from the non-
commutative case and we investigate them.

THEOREM b5.8. (S. Shelah and K. Eda [14]) Let S be a n-slender
group. For any homomorphism h : @(*iexzi,pxy XCYel) —
S, there exist wi-complete ultrafilters Uy,--- U, on I such that h =
TLopulLJmUun for any uy € Uy, --- ,u, € U,. Moreover, if the cardinality
of I is less than the least measurable cardinal, then h factors through
some finitely generated free group.

1I11<>|<Z XZZ-,pr .4 - Y e ]) S
Jim((rie .

PuiU--Uuy, ~

Y&l(*iexzi,pxy X - Y e Uy U---Uun)

Let F = {X|3uy € Uy - - Fu, € Uy (U<, us € X)}. It becomes an
ultrafilter on /. We introduce an equivalence relation ~» on lim(*;e xZ;, pxy
X CY € 1). z ~z yif and only if there exists u € F such that
pu() = pu(y). Then, we get the following diagram.

1I11<>|<Z XZZ-,pr X - Y e ]) S
Jim((rie .

@(*ieXZiapXY - XCYel)F

It is a problem that what kind of group is @(*iexzi,pxy X C
Y € I)/F. We remark that im(xexZipxy : X €Y € I)/F
could not be equal to @(*iexzi,pxy X CY e I)/Uy * - %
@(*iexzi,pxy : X CY € I)/U,. For the first step, we consider
the case n = 1 and we investigate its cardinality.
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DEFINITION 5.9. Let F,G € w with |F| = |G| and epg be the
order isomorphism from F' to G. Then, we naturally regard epg as an
isomorphism from *;cpZ; to *;cqZ;. An element x € lim(%;exZ;, pxy :
X CY € w) is homogeneous if and only if for any F,G € w with
|F| = |G, erc(pr(z)) = pa(z).

Let H be the subgroup consisting of all homogeneous elements.

THEOREM 5.10. Let k be a measurable cardinal and U be a k-
complete normal ultrafilter on k. Then, l'&l(*iGXZi,pxy X CY e
K)/U~H.

PRrROOF. Let U™ = {X € [x]"|Fu € U([u]" C X)} for n > 2 and
T € @(*iexzi,pxy : X CY € k). By the assumption, U" is a k-
complete ultrafilter for any n. Since [k]" = Uy c.,_, z{Flera(pr(z)) =
W}, there exist W, . € #;<,Z; such that {F|ep,(pr(z)) = W,.} € U.
We define a homomorphism A : @(*iexzi,pr XCYer)/U—H

as h([z])(n) = W, .. It is easily seen that h is an isomorphism.
U

PROPOSITION 5.11. the cardinality of H is 2*. In addition, H is
not n-slender.

To prove it, we prepare the following lemma.

DEFINITION 5.12. Let z,, € @(*ieXZi,pxy : X CY € w) for any
n < w and [xg, 71] = zoz125 "2, We define inductively [zg, - -+, x,] as
the following.

[ZCO, vt 7xn+1] = [ZCO, e 7xn]xn+1['r07 T 7'rn]_1x7_1-§1-1

LEMMA 5.13. There exists y, € H(n < w) such that Vi < n(y,(i) =
e) for any n < w.

PROOF. Let d; be the 1 of Z;. We define y,, as the following.

yn(n) = [507 e a5n—1]
yn<n+1> = [507”' 7511][507”' 7511—1][507”' 7511—27511]"'[517”' 7511]

More precisely, let A, x; = {f € (n+ k)|f is order preserving }
with n <1 < n+ k. An+k,l = {f2|'L < l}(l < j — fz < f]) is linear
ordered by the lexicographical order.

IT o0 bra-n] = By O] -+ B s0) -+ v

fE€An kL

Un(nk) = Tleanninl0r©: - 0pa-0] - Tlrea, o 107> - Or0-1)]
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Clearly, these are desired elements.
0

PROOF OF PROPOSITION 5.11. Let y,(n < w) be as Lemma 4.4.
There exists an homomorphism A : lim(x;exZ;, pxy : X C YV € w) —
%n(*iexzi,pxy : X CY & w) which maps 6, to y, for any n < w.

learly, the image of A is contained by H. Therefore, H is not n-slender.
By Lemma 2.6 in [6], we can conclude |H| = 2¢. O

PROPOSITION 5.14. H* = {W € X, ,Z,|W is homogeneous} is
n-slender.

PROOF. Firstly, we claim that W € H*\ {e} implies [;(W) # 0 for
any ¢ < w. Suppose the negation. Let n be the least natural number
such that Wi ... n—1} # e and take i < w with [;(W) = 0. If i < n, then
W{O,m,n—l} = Wn\{i}. Since W is homogeneous, e(n\{i})(n—l)(Wn\{i}) =
Wio,... n—2) 7# €. It is a contradiction to the minimality of n. If n <4, we
can deduce a contradiction as well. Now, we show the n-slenderness of
H*. Assume not, then there exists a homomorphism h : x,.,Z, — H*
such that h(d,) # e for all n < w. By theorem 2.3 in [12], there exists
a standard homomorphism hoand u € Xn<wly such that h = whu™t.
Because {n|lo(h(d,)) # 0} is finite, we can take N with lo(h(dy)) = 0.
On the other hand, h(Sy) is a non-trivial homogeneous word which is
a contradiction. O

5.3. Problems.

QUESTION 5.15. What is the cardinality of @(*iexzi,pxy : X C
Y € k)/U when there are only finitely n such that 4" is an ultrafilter.

In the proof of theorem 5.10, the fact U™ is a o-complete ultrafilter
for all n is essential. It is clear that ™! is an ultrafilter implies U™
is so. Therefore, the case there are only finitely n such that U™ is an
ultrafilter is left. We conjecture |l'&n(*iexZi,pr X CY EeEr)U|l>
k in the case.

QUESTION 5.16. Is the cardinality of H* countable or uncountable
?
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