
Reliability-driven High-level Synthesis Algorithms

for Distributed-register SoC Architectures

レジスタ分散型集積回路アーキテクチャを対象

とした信頼性指向の高位合成に関する研究

February 2016

Kazushi KAWAMURA

川村 一志

Reliability-driven High-level Synthesis Algorithms

for Distributed-register SoC Architectures

レジスタ分散型集積回路アーキテクチャを対象

とした信頼性指向の高位合成に関する研究

February 2016

Waseda University

Graduate School of Fundamental Science and Engineering

Department of Computer Science and Engineering,

Research on Information System Design

Kazushi KAWAMURA

川村 一志

Contents

1 Introduction 1

2 Related Works 5

2.1 Introduction . 5

2.2 Regular-distributed-register Architecture 5

2.3 Thermal-aware High-level Synthesis Techniques 7

2.4 Fault-secure High-level Synthesis Techniques 9

2.5 Conclusion . 11

3 A Thermal-aware High-level Synthesis Algorithm 12

3.1 Introduction . 12

3.2 Problem Formulation . 13

3.3 The Algorithm . 15

3.3.1 Strategy . 15

3.3.2 Overall synthesis flow . 18

3.3.3 Energy-balanced FU binding (Step1) 18

3.3.4 Additional FU allocation (Step2) 25

3.4 Experimental Results . 26

3.5 Conclusion . 29

4 An Overhead Constraint-based Partially Redundant Fault-secure

High-level Synthesis Algorithm 30

4.1 Introduction . 30

4.2 Problem Formulation . 31

4.3 The Algorithm . 36

4.3.1 Strategy . 37

4.3.2 Overall synthesis flow . 39

4.3.3 Scheduling/binding for duplicated operations (Step1) 39

4.3.4 Comparator binding (Step2) 44

4.3.5 Removing duplicated operations (Step3) 47

i

ii CONTENTS

4.4 Experimental Results . 48

4.5 Conclusion . 50

5 A Low-overhead Fully Redundant Fault-secure High-level Synthe-

sis Algorithm 52

5.1 Introduction . 52

5.2 Problem Formulation . 53

5.3 The Algorithm . 56

5.3.1 Strategy . 56

5.3.2 Overall synthesis flow . 57

5.3.3 Scheduling/binding for duplicated operations with FU allo-

cation and register synthesis 60

5.4 Experimental Results . 70

5.5 Conclusion . 71

6 Conclusion 72

Acknowledgment 74

List of Publications 78

List of Figures

2.1 RDR architecture [7]. 6

2.2 MCAS for RDR architecture [7]. 7

2.3 Technology node and power density [20]. 8

2.4 The thermal-aware HLS algorithm through resource allocation op-

timization [27]. 9

2.5 Technology node and soft error rate [22]. 10

3.1 An example of a DFG. 13

3.2 An example of interconnect delay aware operation scheduling. . . . 14

3.3 The proposed thermal-aware HLS algorithm. 17

3.4 An example of Binding tree. 19

3.5 An input example of thermal-aware HLS for RDR architecture. . . 22

3.6 Process of generating Binding tree. 23

3.7 Two FU binding solutions. 24

3.8 The partition algorithm. 25

3.9 Temperature distribution when applying each algorithm to DCT

(the number of islands: 3× 2). 28

3.10 The results of FU allocation when applying each algorithm to DCT

(the number of islands: 3× 2). 28

4.1 An example of fully redundant fault-secure scheduling/binding. . . . 32

4.2 An example of partially redundant fault-secure scheduling/binding. 33

4.3 An input example of partially redundant fault-secure HLS for RDR

architecture. 36

4.4 The proposed partially redundant fault-secure HLS algorithm. . . . 38

4.5 Scheduling/binding of re-computational DFG by ignoring re-computational

edges (Step(1.2)). 41

4.6 Removing operation nodes violating the step constraint (Step(1.3)). 42

4.7 Restoring re-computational edges (Step(1.4)). 42

4.8 Re-scheduling/re-binding of re-computational DFG (Step(1.5)). . . 44

iii

iv LIST OF FIGURES

4.9 Allocating comparators (Step(2.1)). 45

4.10 Inserting and scheduling/binding of comparison nodes (Step(2.2)). . 46

4.11 Adjusting comparison nodes (Step(2.3)). 46

4.12 Scheduled/bound re-computational DFG output from our partially

redundant fault-secure HLS algorithm. 48

4.13 FU placement output from our partially redundant fault-secure HLS

algorithm. 48

5.1 Impact of an area overhead on circuit performace in RDR archi-

tecture. The size of islands (W ×H) has a direct effect on a given

clock period constraint (Tclk) and an interconnect delay between two

islands (Dc(ip, iq)). 53

5.2 Comparison of conventional and our fault-secure HLS algorithms. . 56

5.3 The proposed fully redundant fault-secure HLS algorithm. 58

5.4 An input example of fully redundant fault-secure HLS for RDR ar-

chitecture. 59

5.5 Register binding. 59

5.6 Scheduling/FU binding ‘+6′’ to ⟨S5, A2⟩. 64

5.7 Area cost after scheduling/FU binding of ‘+6′’. 65

5.8 Scheduling/binding ‘+5′’ to ⟨S4,M4⟩. 66

5.9 Scheduling/binding ‘+5′’ to ⟨S3,M1⟩. 67

5.10 Scheduling/binding ‘+5′’ to ⟨S4,M1⟩. 68

5.11 An output example of Step(1.2). 69

List of Tables

3.1 Capacity cost, delay, energy, and leakage power of modules [3]. . . . 26

3.2 Experimental results. 27

4.1 Area and delay of modules. 49

4.2 The set of constraints. 49

4.3 Experimental results (reliability). 50

4.4 Experimental results (overhead). 51

5.1 Experimental results. 70

5.2 Comparison of area and performance. 70

v

Chapter 1

Introduction

Advanced semiconductor process technology expands the use of system-on-a-chip

(SoC) which integrates a series of desired functions into one chip. While SoCs make

electronic devices small size and high performance, recent market trend demands

to integrate a wide variety of functions into them and hence complicates their

design process. High-level synthesis (HLS) is an important technique to reduce the

cost of designing complicated systems or ICs. Conventional IC design flow begins

with a register-transfer-level (RTL) description which is written by designers with

consideration for synchronization by a clock signal. In a design flow using HLS, its

designing cost can be reduced since an RTL description is automatically generated

from a behavioral description (written in such as C or C++) by applying an HLS

algorithm. Various design factors, like performance, power, and reliability, are

globally optimized by taking them into account in HLS algorithms. However, most

HLS algorithms reported so far tend to separate low-level design phases from their

algorithms and cannot achieve sufficient optimization of these factors.

With process technology scaling, the ratio of interconnect delays to circuit de-

lays becomes increasingly dominant. This trend creates a serious problem faced

by HLS and may result in performance degradation of ICs. In an HLS algorithm

which separates low-level design phases and ignores the impact of interconnect de-

lays, an excessive amount of timing margins might be required. While several HLS

techniques have tried to avoid performance degradation by utilizing feed-backed

interconnect-delay information, these approaches may complicate performance op-

timization in HLS phase. Utilizing distributed-register (DR) architectures is one

of the effective and reasonable solutions to tackle this interconnect-delay problem,

and several kinds of architectures have been studied so far [2,3,7,8,11,12,18,19]. In

the DR architecture, an entire circuit is divided into small blocks and floorplanning

is performed at the block level. In an HLS algorithm for DR architectures, inter-

connect delays can be appropriately handled based on the estimated inter-block

1

2 CHAPTER 1. INTRODUCTION

interconnect delays, which expects to improve circuit performance.

The reliability of SoCs is one of the most important design factors. With

growing use of SoCs, highly-reliable systems are required in various situations

such as vehicle systems, medical devices, and social infrastructure. On the other

hand, advanced process technology creates many technological challenges related

to reliability. Increasing heat problem in IC chips is one of these challenges. Hot-

spots, where a chip is locally too much heated, are main cause of the problem. In

terms of reliability, reducing hot-spot temperature is quite important since high

temperature reduces the switching speed of transistors as well as accumulates severe

damage in the long run [10,23]. Several thermal-aware HLS algorithms have been

proposed [9, 13, 15–17, 27], which can effectively reduce the temperature of hot-

spots. However, their algorithms are not reasonable because their high- and low-

level design phases are separated and hot-spot temperature is tried to reduce in HLS

phase based on feed-backed information obtained through a thermal simulation

for post-designed circuits. Moreover, all the conventional algorithms have not

considered the impact of interconnect delays, which degrade circuit performance

severely. By handling module floorplan and reducing the temperature of hot-spots

in HLS phase, a reasonable HLS algorithm, which considers the impact of both

hot-spot and interconnect delay, can expect to be realized.

As process technology advances, increasing soft error rate (SER) becomes an-

other challenge in the aspect of reliability [4, 21]. A soft error is induced when a

radiation particle strikes on a circuit node, which may cause a transient fault and

partly upset the circuit function. Since current IC manufacturing technology can-

not completely prevent the faults, fault-secure design methodologies are strongly

required for highly-reliable systems. The overhead of performance and/or area is

essentially a serious problem in fault-secure designs and thus circuits generated

by a fault-secure design methodology should be low-overhead as much as possi-

ble. Incorporating a fault-secure design into HLS is one of the effective solutions

to realize low-overhead fault-secure design, and several algorithms have been pro-

posed [5,24–26]. Conventional fault-secure HLS algorithms [5,24,26] are based on

concurrent error detection (CED) schemes, which can detect a transient fault by

duplicating operations and comparing their results. While they have tried to re-

duce the overhead with well-suited resource sharing, the area overhead is evaluated

insufficiently because they have only considered the number of required functional

units. To evaluate the overhead sufficiently and then reduce it, it is important to

consider module floorplan more minutely in a fault-secure HLS algorithm.

In this dissertation, a thermal-aware HLS algorithm and fault-secure HLS al-

gorithms for DR architectures are newly proposed. As discussed before, highly-

reliable SoCs or ICs become increasingly important, and reducing additional cost

3

or overhead is so much required for their designing methodologies. In an HLS flow

using DR architectures, additional design information such as interconnect delay,

area, and hot-spot can be estimated more accurately at HLS phase based on the

result of module floorplanning. The estimated information is utilized for optimiz-

ing various design factors in each step of HLS flow, and HLS algorithms achieving

high-reliability at low-cost or low-overhead are constructed. All the our proposed

algorithms have been implemented and evaluated computationally. Compared to a

conventional approach with no thermal consideration, our proposed thermal-aware

HLS algorithm reduces the peak temperature inside a chip by up to 15.5% with

no performance/area overhead. Our firstly proposed fault-secure HLS algorithm

improves reliability by up to 24% with no performance/area overhead compared

to a conventional approach with no fault-security consideration, and our secondly

proposed algorithm reduces area by up to 47% and improves performance by up

to 41% compared to a conventional fault-secure algorithm.

This dissertation is organized as follows:

Chapter 2 [Related Works] presents the key techniques related to our re-

search. First we introduce regular-distributed-register architecture (RDR archi-

tecture) which is one of the DR architectures and the HLS algorithm for this

architecture. Next we introduce conventional leading algorithms of thermal-aware

HLS which focuses on reducing hot-spot temperature and fault-secure HLS which

is based on CED scheme. Chapter 3 [A Thermal-aware High-level Synthesis

Algorithm] proposes a novel thermal-aware HLS algorithm for DR architectures.

Not only interconnect delays but also hot-spots can be estimated at HLS phase by

utilizing DR architectures, which enables us to deal with hot-spots in HLS flow and

hence expects to reduce the designing cost drastically. Our proposed algorithm bal-

ances the energy consumption among divided blocks by focusing on the number of

operations executed in each block. Balancing the energy consumption can reduce

the temperature of hot-spots with no performance degradation. Allocating new

functional units further balances the energy consumption. Experimental results

demonstrate that our proposed algorithm reduces the peak temperature inside a

chip by up to 15.5% compared to a conventional HLS algorithm for DR architec-

tures. Chapter 4 [An Overhead Constraint-based Partially Redundant

Fault-secure High-level Synthesis Algorithm] proposes a novel fault-secure

HLS algorithm for DR architectures which partially duplicates operations based

on constraints of performance/area overhead. Within a set of performance and

area constraints, this algorithm attempts to maximize reliability which is evalu-

ated by the output probability when a soft error occurs. Our proposed algorithm

adopts a greedy search method by removing duplicated operations. Experimental

results demonstrate that our proposed algorithm improves reliability by up to 24%

4 CHAPTER 1. INTRODUCTION

without any performance/area overhead compared to a conventional HLS algo-

rithm for DR architectures. Chapter 5 [A Low-overhead Fully Redundant

Fault-secure High-level Synthesis Algorithm] proposes a novel low-overhead

fault-secure HLS algorithm for DR architectures which fully duplicates operations.

By utilizing DR architectures, both the block area and the interconnect delay be-

tween each block can be evaluated at HLS phase. This evaluated information is

used for optimizing circuit area/performance in HLS flow. In contrast to conven-

tional approaches, our proposed algorithm adopts an integrative approach which

concurrently performs scheduling, binding, allocation, and register synthesis. Since

this approach monitors the cost of not only functional units but also registers and

multiplexers during scheduling/binding, the area/performance can be estimated

accurately and then reduced. Experimental results demonstrate that our proposed

algorithm reduces area by up to 47% and improves performance by up to 41% com-

pared to a conventional fault-secure HLS algorithm for DR architectures. Chapter

6 [Conclusion] summarizes this dissertation and gives future works.

Chapter 2

Related Works

2.1 Introduction

In this chapter, we briefly discuss the key techniques related to our research. First

we introduce regular-distributed-register (RDR) architecture which is one of the

distributed-register (DR) architectures and the HLS algorithm for this architecture.

Next we introduce conventional leading algorithms of thermal-aware HLS which

focuses on reducing hot-spot temperature and fault-secure HLS which is based on

concurrent error detection (CED) scheme.

2.2 Regular-distributed-register Architecture

Advanced semiconductor process technology increases the average interconnect de-

lays. Moreover, it becomes impossible to transfer data across a chip in a single

clock cycle as the operating frequency advances. For these reasons, considering

interconnect delays in HLS flow becomes so important. Several HLS algorithms

have been reported [2,3,7,8,11,12,18,19], which consider interconnect delay effects

in their synthesis flows. They are based on DR architecture families which divide

an entire circuit into small blocks such that the intra-island interconnect delay can

be assumed to be zero. In HLS for DR architectures, floorplanning is performed

at the block level and then the inter-block interconnect delays are estimated from

the placement information.

As one of the DR architectures, regular-distributed-register (RDR) architecture

has been proposed by Cong et al. in [7]. In the RDR architecture, a circuit is

assigned to an array of small partitions called islands. In each island, a local

computational cluster (LCC), local registers, and a finite state machine (FSM)

are allocated, where LCC includes several functional units (FUs) such as adders

5

6 CHAPTER 2. RELATED WORKS

LCC

Reg. File FSM

LCC

Reg. File FSM

LCC

Reg. File FSM
LCC

Reg. File FSM

LCC

Reg. File FSM

LCC

Reg. File FSM

Global Interconnect

(a) 3× 2 island-based RDR architecture.

Local
Computational

Cluster
(LCC)

Register File

B
ank k

B
ank 1

B
ank 2

FSM

H

W

Cluster with area constraint

MUX ADD MUL

(b) Components of a single island.

Figure 2.1: RDR architecture [7].

and multipliers. Fig. 2.1 illustrates an example of RDR architecture. Considering

the RDR architecture from an architectural point of view, its advantages and

disadvantages are summarized as follows:

Advantages:

• Inter-island interconnect delays are estimated very accurately in HLS because

of the regularity of architecture.

• Intra-island interconnect delays between FUs and registers can be reduced

since registers are distributed to each island.

• Clock cycle time can be occupied by almost intra-island delays since inter-

island communication can be realized by multicycle communication between

registers.

Disadvantages:

• Some islands might have vacant spaces due to the regularity of architecture.

The HLS algorithm for RDR architecture called MCAS [7] is shown in Fig. 2.2.

MCAS first determines the number of allocated FUs in the “Resource allocation”

and then performs FU floorplanning in the “Scheduling-driven placement”. After

that, in the “Post-layout scheduling with rebinding”, each operation is conclusively

scheduled to an execution step and bound to an FU. We finally obtain an RTL

2.3. THERMAL-AWARE HIGH-LEVEL SYNTHESIS TECHNIQUES 7

Figure 2.2: MCAS for RDR architecture [7].

circuit and floorplan constraints through the steps “Register and port binding”

and “Datapath & FSM generation”. The objective of MCAS is minimizing the

number of required steps to execute the input behavior under a given specification

of RDR architecture and clock period constraint.

2.3 Thermal-aware High-level Synthesis Techniques

With process technology scaling, increasing power density or energy density in IC

chips is becoming a serious concern. The relationship between feature size and

power density is shown in Fig. 2.3. Power density inside a chip is exponentially

increasing as the technology node advances. Increased energy density generates a

great deal of heat and thus increases chip temperature. High temperature is one

of the factors having a significant negative impact on circuit reliability [10, 23].

Firstly, increasing chip temperature reduces the switching speed of transistors and

leads to increase in the error rate of circuits. Secondly, high temperature can lead

to permanent damage in the long run.

In general, energy density is spatially non-uniform across a chip. This results

in uneven temperature distribution and hence we have so-called hot-spots where a

chip is locally too much heated. Hot-spots are main cause of reliability degradation

described above and it is quite necessary to reduce their temperature. Though

low-energy design techniques have been reported by many researchers, they do not

8 CHAPTER 2. RELATED WORKS

1

10

100

1000
W
/c
m

2

1.5μ 1μ 0.7μ 0.5μ 0.35μ 0.25μ 0.18μ 0.13μ 0.1μ 0.07μ

Hot plate

Nuclear Reactor

Rocket Nozzle

Sun's Surface

i386 i486

Pentium processor
®

Pentium III processor®
Pentium II processor

®
Pentium Pro processor®

Figure 2.3: Technology node and power density [20].

specifically address energy density and thus do not reduce the temperature of hot-

spots. In other words, thermal-aware design techniques which minimize the peak

temperature inside a chip are quite required.

To effectively reduce hot-spot temperature, several thermal-aware HLS algo-

rithms have been reported so far [9, 13, 15–17, 27]: A voltage island technique has

been proposed in [9] for thermal management; A Dijkstra-like binding algorithm

has been propsed in [17] to reduce the peak temperature; Lim et al. have proposed

in [13] a binding algorithm based on the network flow method to reduce the peak

temperature with the primary objective of minimizing the peak dynamic power

and the secondary objective of minimizing the total dynamic power; Mukjerjee et

al. have proposed techniques for controlling the peak temperature based on feed-

backed temperature information [15,16]. Their binding and scheduling algorithms

move operations from the hottest to the coldest resources based on the resource

temperatures obtained in floorplanning; Based on the HLS algorithm in [15], Yu

et al. have proposed in [27] an allocation algorithm to reduce the difference in

temperature among not only resources of the same types but also resources of the

different types.

Fig. 2.4 shows the thermal-aware HLS algorithm proposed in [27]. In the algo-

rithm, each of the HLS phases including operation scheduling, FU binding, and FU

allocation is performed based on feed-backed temperature information obtained in

the steps “Thermal-aware floorplanning” and “Thermal analysis with ISAC” of

Fig. 2.4. It is therefore concerned that the designing cost can be high because the

2.4. FAULT-SECURE HIGH-LEVEL SYNTHESIS TECHNIQUES 9

Figure 2.4: The thermal-aware HLS algorithm through resource allocation opti-

mization [27].

thermal analysis (or thermal simulation) will need to be rum many times in the

design flow. Moreover, conventional thermal-aware HLS algorithms such as [15]

and [27] have used resource floorplanning only for obtaining temperature informa-

tion and hence absolutely have not considered the impact of interconnect delays in

HLS phases.

2.4 Fault-secure High-level Synthesis Techniques

With process technology scaling, increasing soft error rate (SER) becomes another

serious concern [4, 21]. Fig. 2.5 shows the relationship between feature size and

SER on memory and logic components. Memory components have been tradition-

ally more susceptible to soft errors than logic components because soft errors on

logic components can be masked by various effects such as logic masking, elec-

tric masking, and latch-window masking [22]. In order to deal with soft errors

on memory components, many countermeasure techniques have been researched

so far, and thus there have been effective and reasonable solutions such as error

correction code (ECC) [6]. However, as shown in Fig. 2.5, logic components also

susceptible to soft errors as the technology node advances. A transient fault may

be caused when a soft error occurs in a logic component close to the clock edge.

10 CHAPTER 2. RELATED WORKS

1e+04

1e+02

1e+00

1e-02

1e-04

1e-06

1e-08
600nm
1992

250nm
1997

130nm
2002

100nm
2005

50nm
2011

SRAM
 A logic chain 6 gates
A logic chain 16 gates

Technology Generation

So
ft

 E
rr

or
 R

at
e

(F
IT

/c
hi

p)

Figure 2.5: Technology node and soft error rate [22].

Since current IC manufacturing technology cannot completely prevent the faults,

fault-secure design methodologies are strongly required.

In fault-secure designs, performance and/or area overhead is essentially a seri-

ous problem. Incorporating a fault-secure design into HLS is one of the effective

solutions to realize low-overhead IC design, and several algorithms have been pro-

posed [5, 24–26]. In [5, 24, 26], fault-secure HLS algorithms have been constructed

by using CED schemes, which can detect a fault by duplicating operations and

comparing their results. We call a set of original operations normal-computation

and a set of duplicated operations re-computation.

Antola et al. have proposed in [5] an FDS-based fault-secure scheduling algo-

rithm with the objective of minimizing the area overhead. Wu et al. have proposed

in [26] a CED-based fault-secure HLS algorithm selectively breaks data dependen-

cies between re-computational operations so that the performance overhead can be

minimized. Breaking data dependencies enables us to improve the FU sharing be-

tween normal-computational and re-computational operations. Tanaka et al. have

proposed in [24] a fault-secure HLS algorithm for RDR architecture by expanding

the technique developed by [26]. Additionally, [14] has reported the relationship

between reliability and the number of required FUs when a normal-computation is

partially duplicated. We can expect to improve reliability with quite small overhead

by introducing the idea of partial duplication. While the conventional CED-based

fault-secure HLS algorithms try to reduce the performance/area overhead with

2.5. CONCLUSION 11

well-suited FU sharing, the area overhead is evaluated insufficiently because they

have only considered the number of required FUs.

2.5 Conclusion

In this chapter, we have first introduced RDR architecture and the HLS algorithm

for RDR architecture called MCAS. Next we have introduced conventional leading

algorithms of thermal-aware HLS and CED-based fault-secure HLS.

Chapter 3

A Thermal-aware High-level

Synthesis Algorithm1

3.1 Introduction

A thermal-aware HLS algorithm for DR architectures is proposed in this chapter.

In our HLS algorithm, we use RDR architecture which is one of the DR architec-

tures. In RDR architecture, a circuit is assigned to an array of small partitions

called islands as illustrated in Fig. 2.1. Considering the amount of heat generated

in an island strongly depends on its energy density, we expect that balancing the

energy consumption among islands directly leads to reduce the temperature of hot-

spots. Our proposed algorithm balances the energy consumption among islands

by focusing on the number of operations executed in each island, which effectively

reduces the temperature of hot-spots. Some of the islands in RDR architecture

may have vacant spaces due to the regularity of architecture. In our proposed

algorithm, by utilizing the vacant spaces and allocating additional new functional

units into them, further balancing the energy consumption and thus reducing the

hot-spot temperature are achieved. Experimental results demonstrate that our

proposed algorithm reduces the peak temperature inside a chip by up to 15.5%

with no performance degradation compared to a conventional HLS algorithm for

RDR architecture.

1Technical contents in this chapter have been presented in the publications ⟨1⟩, ⟨6⟩, ⟨17⟩, and
⟨18⟩.

12

3.2. PROBLEM FORMULATION 13

+*

* *

+ +

*

+

Figure 3.1: An example of a DFG.

3.2 Problem Formulation

In HLS, behavioral description used as input is transformed into graphical rep-

resentation like a control-data flow graph (CDFG) or a data-flow graph (DFG).

Hereafter we use a DFG as an input for simplicity. Note that the discussion below

can be easily extended to a CDFG. A DFG G = (V,E) is represented by a directed

graph, where V is a set of operation nodes and E is a set of edges which show the

data dependencies between two operation nodes. Fig. 3.1 shows an example of a

DFG.

In RDR architecture, an entire circuit is assigned to N ×M array of islands.

Let I(x, y) be an island located at x-th column and y-th row of the array, where

1 ≤ x ≤ N and 1 ≤ y ≤M . All the islands assume to be square and have the same

size. A functional unit (FU) fu is allocated to one of the islands and has a delay

of dfu. Each island i = I(x, y) has a set of local registers {R(i, 1), R(i, 2), . . . }.
In the following discussion, one of the registers allocated to the island i is shown

as R(i, ∗). Let i1 and i2 be two islands I(x1, y1) and I(x2, y2), respectively. An

interconnect delay Dc(i1, i2) between the two islands i1 and i2 is proportional to

the square of their distance and it is given by

Dc(i1, i2) = Cd × (|x1 − x2|+ |y1 − y2|)2 (3.1)

where Cd shows the constant interconnect delay coefficient.

Let fu1 be one of the FUs allocated to the island i1. Assume that the output

of fu1 is continuously used by an FU allocated to the island i2. Let Tclk be the

given clock period constraint. For the clock period constraint Tclk and the FU fu1

14 CHAPTER 3. THERMAL AWARE HLS

Register1

Adder1

nsd A 11 = nsd M 21 =

i1

() nsiiD ic 1, 2 =

Register2

Multiplier1

i2

(a) FU placement.

+ S 1

S 2

S 3

*

A1

M1

*

+

M1

A1

R2

R1

R2

(b) Scheduling.

Figure 3.2: An example of interconnect delay aware operation scheduling.

which has a delay of dfu1
, the computation by fu1 can be done in sfu1

=

⌈
dfu1

Tclk

⌉
steps. When

Dc(i1, i2) + dfu1
≤ sfu1

× Tclk (3.2)

holds, the computation by fu1 and its output data transfer to a register R(i2, ∗)
are done in sfu1

steps. On the other hand, when

Dc(i1, i2) + dfu1
> sfu1

× Tclk (3.3)

holds, the computation by fu1 is done in sfu1
steps and its output is stored into

a register R(i1, ∗) at the sfu1
-th step. After that the output of fu1 is transferred

from R(i1, ∗) to R(i2, ∗) using
⌈
Dc(ii, i2)

Tclk

⌉
steps.

Example 3.1. Fig. 3.2 shows an example of operation scheduling with interconnect

delay consideration. We assume the FU placement shown in Fig. 3.2a as a part of RDR

architecture. In this example, the delays of the adder ‘A1’ and the multiplier ‘M1’ are

assumed to be dA1 = 1 ns and dM1 = 2 ns, respectively, and the data transfer delay

between the two adjacent islands is assumed to be Dc(i1, i2) = 1 ns. The given clock

period constraint is assumed to be Tclk = 2 ns.

When we try to schedule two continuous operations, the 1st is addition and the 2nd

is multiplication, the operation by ‘A1’ and the data transfer to the register ‘R2’ are

completed in a single step (‘S1’ shown in Fig. 3.2b) because Eq. (3.2) is satisfied. Then

the 2nd operation can be scheduled to the step ‘S2’ as shown in the left side of Fig. 3.2b.

On the other hand, when we try to schedule two continuous operations, the 1st is multi-

plication and the 2nd is addition, only the operation by ‘M1’ is completed and its output

is stored into the register ‘R2’ in the step ‘S1’ because Eq. (3.3) is satisfied. In this

3.3. THE ALGORITHM 15

case, the output of ‘M1’ is transferred from ‘R2’ to ‘R1’ using

⌈
Dc(ii, i2)

Tclk

⌉
(= 1) step.

Therefore, the step ‘S2’ is used only for data transfer, and then the 2nd operation must

be scheduled to later step than the step ‘S2’ as shown in the right side of Fig. 3.2b.

Every island in RDR architecture has a capacity C and every FU fu has a

capacity cost cfu. Let Fu(i) be the set of FUs allocated to an island i. Any island

i satisfies ∑
fu∈Fu(i)

cfu ≤ C. (3.4)

In other words, an FU fuj can be newly allocated to an island i when

cfuj
+

∑
fu∈Fu(i)

cfu ≤ C (3.5)

holds.

Now we define a thermal-aware HLS problem for RDR architecture as follows:

Definition 3.1. For a given DFG G = (V,E), specification of RDR architecture (the

number of islands N ×M and the island capacity C), library of FUs, and clock period

constraint Tclk, our thermal-aware HLS problem for this RDR architecture is to schedule

and bind its DFG G and to allocate FUs to each island with the objective of minimizing

the peak temperature.

3.3 The Algorithm

In this section, we propose a novel thermal-aware HLS algorithm for RDR archi-

tecture. First we discuss the strategy and then propose our algorithm.

3.3.1 Strategy

In general, temperature in a module such as an FU or a register is affected by

its energy consumption, area, and floorplanning. If two different modules with

different sizes consume the same amount of energy, the module with the smaller

size can have higher energy density and hence can be heated more. Even if a

module has low energy density, it will be heated when its surroundings are heated.

When we estimate hot-spots, it is required to know the accurate floorplanning

of modules and to simulate their on-chip temperatures, which is difficult to be

achieved in HLS phase or is computationally expensive.

In RDR architecture, since each module is allocated to one of the islands and

every island has the same size, we can easily expect that an island having high

16 CHAPTER 3. THERMAL AWARE HLS

energy consumption has high energy density and hence will be heated much. By

balancing the energy consumption among islands when executing the given DFG,

the energy consumed in an island having the highest energy consumption can be

reduced. Therefore, by focusing on the intra-island energy consumption and maxi-

mally balancing it among islands, we can expect to minimize the peak temperature

inside a chip.

High-level synthesis for RDR architecture consists of operation scheduling, FU

binding, FU allocation, and floorplanning. The next problem here is which steps

should be focused on and what strategies should be applied to each of them. Each

step is focused on as follows:

Operation scheduling:

Compared to the conventional scheduling algorithm for RDR architecture [7],

changing scheduling results may cause alomst no effect on reducing temperature

since clock period is too short to reduce it. Furthermore, since considering inter-

connect delays in scheduling is very complicated, we may result in performance

degradation even if developing new scheduling algorithms.

FU binding:

The energy consumption in each island is directly affected by binding results. FU

binding is the most important step when we balance the energy consumption among

islands.

FU allocation:

Generally, decreasing the number of FUs results in performance degradation. On

the other hand, energy consumption can be further balanced by increasing the

number of FUs since per unit energy consumption can be decreased.

Floorplanning:

In interconnect-delay aware HLS, changing the original floorplanning may result

in performance degradation.

Based on the strategy discussed above, in HLS for RDR architecture, we pro-

pose thermal-aware FU binding and FU allocation algorithms.

For a given DFG and its initial FU placement, we first apply a conventional

HLS algorithm for RDR architecture called MCAS [7] and obtain a scheduling

solution. Original FU allocation and floorplanning will not be changed in our

3.3. THE ALGORITHM 17

Clock period

True

False

(0.1) Perform scheduling by
applying MCAS

(1.1) Arrange operation nodes

(1.2) Generate Binding tree

(1.3) Search an optimal
solution by traversing Binding

tree and perform binding Optimal placement?

(2.2) Save the solution

(2.3) Allocate a new FU

Can add FUs?

True

False

DFG
RDR architecture and

FU placement

Library of FUs

Optimal FU allocation and
scheduling/binding solution

Step1:
Energy-balanced FU binding

Step2:
Additional FU allocation

(2.1) Perform register binding
and evaluate energy consumption

Figure 3.3: The proposed thermal-aware HLS algorithm.

synthesis flow in order not to cause any performance degradation, but we may

allocate additional new FUs to islands with vacant spaces. After that we perform

thermal-aware FU binding with the objective of balancing energy consumptions

among islands (Step1). Moreover, new FUs will be allocated if they satisfy the

capacity constraint and can reduce the maximum energy consumption in RDR

architecture (Step2).

18 CHAPTER 3. THERMAL AWARE HLS

3.3.2 Overall synthesis flow

Fig. 3.3 shows our proposed algorithm. The main inputs to our algorithm are a

DFG and its initial FU placement which is obtained in MCAS [7]. Note that MCAS

first performs FU allocation and floorplanning and then we utilize its intermediate

output as our input.

For a given DFG and its FU placement, we first generate a scheduling solution

by applying MCAS. Based on this scheduling solution, we perform thermal-aware

FU binding with the objective of balancing energy consumption among islands.

If there are some vacant islands and we can add new FUs to them, we perform

FU binding again. The iteration will be finished when all the pattern of adding

FUs are evaluated through FU binding and register binding. We finally output an

optimal FU allocation/floorplanning and scheduling/binding solution for its FU

placement.

The algorithm shown in Fig. 3.3 mainly consists of two steps: energy-balanced

FU binding (Step1) and additional FU allocation (Step2). As discussed in Section

3.3.1, we do not change the scheduling solution and the initial FU placement which

are generated by MCAS in order not to cause any performance degradation in Step1

and Step2, but focus on FU binding and new FU allocation.

3.3.3 Energy-balanced FU binding (Step1)

For the FU placement in RDR architecture and the scheduling solution generated

by MCAS, Step1 performs FU binding with the objective of balancing energy

consumption among islands.

In Step(1.1), based on the scheduling solution, we arrange operation nodes

included in the DFG G = (V,E) in the order of their assigned steps. In the

following discussions, nk ∈ V denotes a k-th operation node in G.

In Step(1.2), we generate Binding tree. By using Binding tree, we search all

the binding solutions which can be realized for the current FU placement and

scheduling. In Binding tree, each tree node v located at the level of k (1 ≤ k ≤ |V |)
satisfies the conditions (1) to (5) below:

(1) Let Fu be a set of the FUs allocated in the current placement in RDR

architecture. The tree node v has a label pointing to an FU fu ∈ Fu.

(2) FUs pointed to by v’s sibling nodes are different from fu and allocated to

different islands from fu.

(3) fu can execute the operation node nk.

3.3. THE ALGORITHM 19

S 1

S 2

S 3

+7

+5

S 4

S 5

+1 +2

*6

*3 *4

(a) Scheduled DFG.

Multiplier3
(1step)

I(1,1)

Multiplier2
(1step)

I(1,2)

Multiplier1
(1step)

I(2,1)

I(2,2)

(1step)

(1step)

Adder1
(1step)
Adder2
(1step)

(b) FU placement.

A1

root

Operation
node +1

M1

M2

A1

M2

M3

M3

M2

A2

M3

A1

M1 M1

A1 A1 A1 A1

A1 A1 A1 A1

M1 M2 M1 M2

Adder1A1

Adder2A2

Multiplier1M1

Multiplier2M2

Multiplier3M3

Operation
node +2

Operation
node *3

Operation
node *4

Operation
node +5

Operation
node *6

Operation
node +7

(c) Binding tree.

Figure 3.4: An example of Binding tree.

(4) When an operation node nl (1 ≤ l ≤ k−1) and nk are scheduled in the same

step, every ancestor tree node located at the level of l points to a different

FU from fu.

(5) When we bind the operation node nk to fu, no data transfer violation occurs

for the current FU placement and scheduling. Note that the FUs bound to

source operation nodes of nk can be identified from v’s ancestor tree nodes.

20 CHAPTER 3. THERMAL AWARE HLS

Algorithm 3.1 Generate Binding tree (Step(1.2)).

Require: arranged operation node list L

1: Generate root and insert root into the queue Q.

2: while L ̸= ∅ do
3: Set n← the head of L and remove n from L.

4: while Q ̸= ∅ do
5: Pick up a first tree node t from Q.

6: For each FU fu ∈ Fu, where Fu shows a set of the FUs allocated in RDR

architecture, check whether n can be bound to fu.

7: if n can be bound to fu then

8: Generate a tree node t′ having a label pointing to fu as a child node of t

if all the FUs labeled by t’s child nodes are allocated to islands different

from fu, and insert t′ into the queue Q′.

9: end if

10: end while

11: Move all the elements from Q′ to Q.

12: end while

Ensure: Binding tree

Example 3.2. When the scheduled DFG shown in Fig. 3.4a and the FU placement

shown in Fig. 3.4b are given, we obtain Binding tree shown in Fig. 3.4c. As in Fig. 3.4b,

we assume that one step is required to transfer data between the adjacent islands as well

as to execute an operation by each FU.

According to the condition (1), each tree node has a label which points to one of the

FUs allocated in RDR architecture. According to the condition (2), sibling tree nodes at

every level point to different FUs which are allocated to different islands. According to

the condition (3), each addition node uses an adder as well as multiplication node uses a

multiplier. According to the condition (4), the operation nodes ‘+1’ and ‘+2’ in the DFG

are bound to different FUs since both of them are scheduled in the step ‘S1’. According

to the condition (5), we bind the operation node ‘∗6’ to the FU not to cause any transfer

violation since it has to be done after the operation nodes ‘∗3’ and ‘∗4’.
By using Binding tree shown in Fig. 3.4c, we can find that the four different binding

solutions can be realized for the FU placement and scheduling.

We propose Algorithm 3.1 to realize Step(1.2). In the 7th step of Algorithm

3.1, we can bind an operation node n to an FU fu when n and fu satisfy the

following conditions:

• fu can execute n.

• fu is used by none of the operation nodes scheduled in the same step as n.

3.3. THE ALGORITHM 21

• When we bind n to fu, no transfer violation occurs.

• Let nd be one of the destination operation nodes of n. For each of nd, there

is an FU to which nd can be bound without causing any transfer violation

when we bind n to fu.

In Step(1.3), we traverse Binding tree and search an optimal binding solution

where the energy consumption is maximally balanced among islands. The main

problem here is how to determine how much the energy consumption is balanced

among islands. We propose cost1 calculated by Eq. (3.6) to show how much the

energy consumption is balanced among islands:

cost1 =
∑
i∈I

gapi, (3.6)

where I shows a set of islands which the target RDR architecture has. gapi here

shows the difference between ideal energy consumption per island and actual energy

consumption per island. We design cost1 by summing up the value of gapi. In the

following, we discuss how to design gapi.

gapi is based on the value goal which shows the ideal value of energy consump-

tion per island. We find goal by using the number of operation nodes and the

number of islands in RDR architecture, but goal must have the value of weighted

average depending on operations since two FUs executing different operations can

have different energy consumption. Let βf be the weight of an operation f 2 such

as an addition or a multiplication. We propose the equation to calculate goal as

follows:

goal =
sum

|I|
(3.7)

sum =
∑
f∈F

|Vf | × βf (3.8)

where F shows a set of operations appeared in the given DFG G, and Vf shows

a subset of operation nodes in G which execute an operation f . Then gapi is

calculated by the following equation:

gapi = |sumi − goal| (3.9)

sumi =
∑
f∈F

f(i)× βf (3.10)

where f(i) shows how many times an operation f is executed at an island i. sumi

roughly estimates the energy consumption in the island i and cost should be the
2In our experiments, we set βm = 2 for a multiplication and βa = 1 for an addition.

22 CHAPTER 3. THERMAL AWARE HLS

S 1

S 2

S 3

S 4

S 5

S 6

S 7

*11

+6

+1 +2

*8

*3

+4*7

+10

*12

*13+14

*9

+5

(a) Scheduled DFG.

I(1,1)

Multiplier2
(1step)

I(1,2)

Multiplier1
(1step)

I(2,1)

I(2,2)

(1step)

(1step)

Adder1
(1step)
Adder2
(1step)

(b) Initial FU placement.

Figure 3.5: An input example of thermal-aware HLS for RDR architecture.

minimum when the estimated energy consumption in all the islands gets close to

goal. Therefore, we expect that the energy consumption among islands can be

maximally balanced when cost becomes the minimum value.

Example 3.3. Assume that the scheduled DFG and the FU placement shown in Fig. 3.5

are given. We assume that one step is required to transfer data between the adjacent

islands as well as to execute an operation by each FU.

In Step(1.1), we arrange the operation nodes in their order of assigned step based on

the scheduled DFG. In other words, we arrange the operation nodes in the order of

{+1,+2, ∗3,+4,+6, ∗7,+5,+10, ∗8, ∗11, ∗9, ∗12, ∗13,+14}

and store them into the list L.

In Step(1.2), we generate Binding tree based on L. Fig. 3.6 shows the process of

generating Binding tree. We can bind the operation node ‘+1’ to ‘A1’ or ‘A2’ since it

is an addition node, but their FUs are allocated to the same island I(1, 1) and hence

we insert the tree node as shown in Fig. 3.6a. Though the operation node ‘+2’ is an

addition node, we cannot bind it to the same adder as the operation node ‘+1’ since they

are scheduled in the same step ‘S1’. Then we insert the tree node as shown in Fig. 3.6b.

In the same way, we can insert the tree nodes for the operation nodes ‘∗3’, ‘+4’, and

‘+6’. The operation node ‘∗7’ is a multiplication node and we have to consider data

transfer from the operation node ‘∗3’. We cannot bind the operation node ‘∗7’ to ‘M2’

if we bind the operation node ‘∗3’ to ‘M1’. Therefore, we insert the tree nodes as shown

in Fig. 3.6c.

3.3. THE ALGORITHM 23

A1

root
Operation
node +1

(a) Process 1.

A1

root
Operation
node +1

A2 Operation
node +2

(b) Process 2.

A1

root
Operation
node +1

M1

A1

M2

A2

A1

A2 A2

M1 M2

Operation
node +2

Operation
node *3

Operation
node +4

Operation
node +6

Operation
node *7

(c) Process 3.

Adder1A1

Adder2A2

Multiplier1M1

Multiplier2M2

Figure 3.6: Process of generating Binding tree.

In Step(1.3), we traverse Binding tree and evaluate cost to search a binding solution

where the energy consumption is maximally balanced among islands. In this example, we

set βa = 1 and βm = 2 for an addition and a multiplication, respectively. By using the

value of |Va| = 7, |Vm| = 7, and |I| = 4 obtained from Fig. 3.5, we calculate sum and

goal as follows:

sum = 7× 1 + 7× 2 = 21, goal = 21/4 = 5.25

Let i1 = I(1, 1), i2 = I(2, 1), i3 = I(1, 2), and i4 = I(2, 2) and assume that we have

a binding solution of Fig. 3.7a. In this case, additions are executed seven times in the

island i1 and we have i1(a) = 7. We also have i2(m) = 5 and i3(m) = 2 in the same

way. Then we calculate gapi as follows:

i1 = I(1, 1) i2 = I(2, 1) i3 = I(1, 2) i4 = I(2, 2)

sumi 7 10 4 0

gapi 1.75 4.75 1.25 5.25

Based on the value calculated above, we obtain cost1 = 13 from Eq. (3.6).

24 CHAPTER 3. THERMAL AWARE HLS

S 1

S 2

S 3

S 4

S 5

S 6

S 7

*11

+6

+1 +2

*8

*3

+4*7

+10

*12

*13+14

*9

+5

A1 M1A2

A1
M1

A2

A2A1

M1 M2

M1
M2

A1 M1

(a) Solution 1.

S 1

S 2

S 3

S 4

S 5

S 6

S 7

*11

+6

+1 +2

*8

*3

+4*7

+10

*12

*13+14

*9

+5

A1 M1A2

A2
M1

A1

A2A1

M1 M2

M1
M2

A1 M2

(b) Solution 2.

Figure 3.7: Two FU binding solutions.

If we have a binding solution of Fig. 3.7b, we have i1(a) = 7, i2(m) = 4, i3(m) = 3

and then obtain cost = 10.5 from Eq. (3.6). This result shows that the binding solution

shown in Fig. 3.7b balances the energy consumption more among islands compared with

the solution shown in Fig. 3.7a.

We have used HotSpot-5.0 [1] to simulate the peak temperature difference between

the surface and inside of the chip, and obtained 7.81◦C and 7.05◦C for the FU binding

solutions in Fig. 3.7a and Fig. 3.7b, respectively. This result demonstrates that a binding

solution with small cost1 gives low peak temperature.

Step1 may have a serious problem that the computational time exponentially

increases as the number of operation nodes increases. According to our experimen-

tal results, we cannot directly apply our thermal-aware FU binding algorithm to

application benchmarks having more than 30 operation nodes.

To solve this problem, we propose a partition algorithm for Binding tree. When

the application has a large number of operation nodes, Step(1.2) and Step(1.3) will

be done several times for partitioned Binding tree.

Fig. 3.8 shows the flow of our partition algorithm when partitioning the oper-

ation node list L into λ sub-lists. A set of the Step(1.2) and Step(1.3) is called

stage and we assign each operation node in L to one of the stages. In other words,

we assign all the operation nodes stored in the list L to several sub-lists Lk and

the stage k is applied to Lk where Lk has around |V |/λ operation nodes. In our

algorithm, we just store each node in L into Lk from the first node to the last node

in L. Note that we partition L into Lk so that the operation nodes assigned to the

3.3. THE ALGORITHM 25

Stage 1
Apply Step(1.2) and Step(1.3)

False

Stage 2
Apply Step(1.2) and Step(1.3)

Can find any solutions?

True

False

Stage 3
Apply Step(1.2) and Step(1.3)

Can find any solutions?

True
False

Stage λ
Apply Step(1.2) and Step(1.3)

Can find any solutions?

True

Figure 3.8: The partition algorithm.

same step is included into the same sub-list.

In each stage, we search a binding solution where the energy consumption is

maximally balanced among islands. After that we move to the next stage. If we

have no solutions, we go back to the previous stage.

3.3.4 Additional FU allocation (Step2)

Step2 tries all the pattern of adding FUs to vacant spaces in RDR architecture

so that the energy consumption is maximally balanced among islands and hence

the highest one is minimized. In Step2, we bind registers to islands based on the

scheduling/FU binding solution obtained in Step1, which enables more accurate

evaluation of energy consumption.

In Step(2.1), we first bind registers to each island based on the current FU

placement and its FU binding solution obtained just before. The register binding

algorithm is the same used in MCAS [7]. Binding registers enables us to evaluate

the intra-island energy consumption more accurately compared to Eq. (3.10) in

Step1 and then it is estimated for each island i by:

energyi =
∑

fu∈Fu(i)

Exe(fu)× Efu + CSreq ×
∑

reg∈Reg(i)

Ereg (3.11)

26 CHAPTER 3. THERMAL AWARE HLS

Table 3.1: Capacity cost, delay, energy, and leakage power of modules [3].

Capacity cost Delay (ns) Energy (pJ) Leakage power (mW)

Adder 1 1.32 0.064 0.0032

Multiplier 2 2.70 0.788 0.0165

Register – 0.11 0.743 0.0107

Multiplexer – 0.04 0.144 0.0017

where Fu(i) and Reg(i) show a set of the FUs and the registers allocated to the

island i, respectively. Exe(fu) and CSreq are obtaind from the scheduling/FU

binding solution, which show the number of operations bound to the FU fu and

the number of required steps when executing the DFG G, respectively. Efu and

Ereg show the per unit energy consumption of the FU fu and the register reg, re-

spectively. Note that they include the energy consumed by multiplexers connected

to each of them.

By utilizing Eq. (3.11) to estimate the energy consumed in each island, we can

improve the accuracy of the estimation and hence identify the island having the

highest energy consumption and then heated much. Therefore, by minimizing the

maximum energy consumption among islands when executing the DFG G, we can

expect to achieve minimization of the peak temperature. Then we propose cost2
calculated by Eq. (3.12) to show how much the maximum energy consumption is

minimized among islands, and attempt to minimize its value:

cost2 = max
i∈I

energyi (3.12)

In Step(2.2), based on cost2 calculated by Eq. (3.12), we determine whether

the current FU placement is the best so far. If cost2 gives the minimum value at

this time, we save this solution.

In Step(2.3), we try all the feasible pattern of allocating a new FU into a vacant

space. After allocating a new FU, we go back to the beginning of Step1. This step

is tried in a one-by-one manner.

3.4 Experimental Results

We have implemented our algorithm in C++. The algorithm has been run on

AMD Opteron 2360 SE (2.5 GHz, Quad core) with 16 GB memory and applied to

DCT (48 operation nodes), EWF3 (102 operation nodes), and FIR (75 operation

nodes). We have used RDR architectures with island capacity of C = 2. Table 3.1

3.4. EXPERIMENTAL RESULTS 27

Table 3.2: Experimental results.

App. Tclk Algorithm #Steps
#FUs Max area CPU time Max temp. Reducing

#Islands (ns) (Add, Mul) (µm2) (sec) diff. (◦C) rate (%)

DCT
3.0

[7] 12 (3, 2) 7,278 99.48 11.16 –

2× 2 Ours 12 (4, 2) 6,893 99.64 11.06 0.90

DCT
3.5

[7] 10 (4, 3) 6,639 124.25 8.80 –

3× 2 Ours 10 (4, 4) 6,517 149.80 7.53 14.4

EWF3
3.0

[7] 55 (2, 2) 10,213 81.53 8.51 –

2× 2 Ours 55 (4, 2) 7,988 107.67 7.19 15.5

FIR
3.0

[7] 24 (3, 2) 6,816 101.12 10.50 –

2× 2 Ours 24 (3, 2) 6,816 100.59 10.49 0.10

FIR
3.5

[7] 20 (3, 3) 6,667 125.32 8.07 –

3× 2 Ours 20 (3, 4) 6,653 151.22 7.47 7.43

shows the capacity cost, delay, energy, and leakage power of FUs, a register, and

a multiplexer used in this experiment, which are all assumed to have 16 bit width

under the CMOS 90 nm technology. A controller has been synthesized for each

island by Synopsys Desgin Compiler after applying our algorithm. We have set in

Eq. (3.1) the interconnect delay coefficient Cd = 1 ns as in [24].

We have compared our experimental results with those obtained by MCAS [7].

The partition algorithm described in Section 3.3.3 is utilized in our algorithm, and

set the parameter λ = 3, 7 and 5 when applying it to DCT, EWF3 and FIR,

respectively.

Table 3.2 shows the experimental results. The 1st column shows the given

DFG and specification of RDR architecture (the number of islands), and the 2nd

column shows the given clock period constraint. As shown in the 4th column,

ours and [7] have the same number of required steps in every application. This

means that no performance degradation occurs by applying our algorithm. The

5th and the 6th columns show the number of FUs and the maximum effective

island area, respectively. The maximum effective island area means the module

area of the island which gives the highest module occupancy of all the islands. As

the 6th column indicates, our algorithm reduces the maximum effective island area

and hence causes no area overhead. This is because ours reduces the number of

registers and multiplexers per island by balancing the operations among islands.

The 7th column shows CPU time to synthesize each circuit.

Then we have simulated the peak temperature difference between the surface

and inside of the chip using HotSpot-5.0 [1]. Its inputs are the chip floorplan and

the energy consumption trace and, after that, it outputs steady-state tempera-

tures inside the chip. In our experiments, we have input island floorplans in RDR

architecture and energy consumption traces in each island. The experimental re-

28 CHAPTER 3. THERMAL AWARE HLS

I(1,1) I(2,1) I(3,1)

I(1,2) I(2,2) I(3,2)

(a) MCAS [7].

I(1,1) I(2,1) I(3,1)

I(1,2) I(2,2) I(3,2)

(b) Ours.

8.8
8.01
7.23
6.45
5.67
4.89
4.11
3.59

(oC)

Figure 3.9: Temperature distribution when applying each algorithm to DCT (the

number of islands: 3× 2).

I(1,1)

Multiplier

I(1,2)

I(2,1)

I(2,2)

Adder

Adder

Adder

Adder

Multiplier

I(3,1)

Multiplier

I(3,2)

(a) MCAS [7].

I(1,1)

Multiplier

I(1,2)

I(2,1)

I(2,2)

Adder

Adder

Adder

Adder

Multiplier

I(3,1)

Multiplier

I(3,2)

Multiplier

(b) Ours.

Figure 3.10: The results of FU allocation when applying each algorithm to DCT

(the number of islands: 3× 2).

sults in the 8th and the 9th columns of Table 3.2 demonstrate that our algorithm

successfully reduces the peak temperature by up to 15.5%.

The temperature distribution inside a chip when applying MCAS [7] to the

application DCT is shown in Fig. 3.9a. In this result, four adders and three mul-

tipliers have been allocated to six islands as in Fig. 3.10a. Since decreasing the

number of FUs results in increasing the number of required steps and increasing it

does not change the number of required steps, FUs have been allocated appropri-

ately by applying MCAS with the objective of minimizing the number of required

steps. On the other hand, as in Fig. 3.10b, one multiplier has been newly allocated

to the island I(3, 2) by applying our algorithm. As a result, we have obtained the

temperature distribution shown in Fig. 3.9b. Note that temperature in Fig. 3.9a

and Fig. 3.9b shows the temperature difference between the surface and inside of

3.5. CONCLUSION 29

the chip. By compared these figures, we find that our algorithm balances chip

temperature and hence removes a hot-spot shown in the lower left-hand corner of

Fig. 3.9a.

3.5 Conclusion

In this chapter, we have proposed a thermal-aware HLS algorithm for RDR archi-

tecture through energy-balanced FU binding and additional FU allocation. Our

algorithm gives one of the solutions to tackle increasing heat problem in an IC

chip by incorporating a thermal-aware synthesis flow into HLS for RDR architec-

ture. The experimental results have shown that our algorithm can reduce the peak

temperature by up to 15.5% compared with the conventional approach.

Chapter 4

An Overhead Constraint-based

Partially Redundant Fault-secure

High-level Synthesis Algorithm1

4.1 Introduction

In this chapter, an overhead constraint-based partially redundant fault-secure HLS

algorithm for DR architectures is proposed. In our HLS algorithm, RDR architec-

ture which is one of the DR architectures is utilized. As illustrated in Fig. 2.1, each

island in RDR architecture keeps a fixed area even when few circuit modules are

assigned, and hence some of the islands may have vacant spaces. By utilizing the

vacant spaces for re-computation in fault-secure design, we expect that reliability

can be improved without any area overhead. This algorithm attempts to maximize

reliability within a set of latency and area constraints. In order to quantitatively

evaluate reliability, we formulate the error output probability when a soft error

occurs. Particularly in our HLS algorithm proposed in this chapter, the latency

and area constraints are set not to cause any overhead. These constraints are set

in the design flow based on the synthesized results for normal-computation only.

Our proposed algorithm duplicates all the operations and then removes some of

them within a set of constraints by a greedy search method. Experimental results

demonstrate that our proposed algorithm improves reliability by up to 24% with-

out any performance/area overhead compared to a conventional HLS algorithm for

RDR architecture.

1Technical contents in this chapter have been presented in the publications ⟨7⟩, ⟨15⟩, and ⟨16⟩.

30

4.2. PROBLEM FORMULATION 31

4.2 Problem Formulation

In HLS, behavioral description used as input is transformed into graphical rep-

resentation like a control-data flow graph (CDFG) or a data-flow graph (DFG).

Hereafter we use a DFG as an input for simplicity. Note that the discussion below

can be easily extended to a CDFG.

A normal-computational DFG G = (V,E) is represented by a directed graph,

where V is a set of operation nodes and E is a set of edges which show the data

dependencies between two operation nodes. In fully redundant fault-secure HLS,

its re-computational DFG GR = (VR, ER) is generated by duplicating the normal-

computational DFG G = (V,E). Given a scheduling/binding result of the normal-

computational DFG G, its re-computational DFG GR is scheduled/bound so that

the fault-secure conditions (1) to (6) below are satisfied:

(1) The scheduling/binding result of the normal-computational DFG G is not

changed.

(2) Let n′ ∈ VR be one of the re-computational operation nodes, and n ∈ V be

the normal-computational operation node corresponding to n′. They cannot

share an identical functional unit (FU).

(3) All the outputs of the normal-computational DFGG and the re-computational

DFG GR must be compared.

(4) An edge e′ ∈ ER can be broken.

(5) Let e′ = (m′, n′) ∈ ER be the input edge of n′ in the re-computational

DFG GR, where m′ is one of the parent nodes of n′. Let m be the normal-

computational operation node corresponding to m′. If e′ is broken, n′ uses

the output of the normal-computational operation node m instead of m′.

(6) The outputs of m and m′ must be compared if all the output edges of m′ are

broken.

Example 4.1. Fig. 4.1a shows an example of fully redundant fault-secure schedul-

ing/binding. We assume that the three multipliers ‘M1’, ‘M2’, ‘M3’, the two adders

‘A1’, ‘A2’, and the two comparators ‘C1’, ‘C2’ can be used in this example. The re-

computational operation nodes are illustrated by the shaded nodes. According to the fault-

secure condition (1), the scheduling/binding result of the normal-computational DFG is

not changed. According to the fault-secure condition (2), the normal-computational op-

eration ‘∗1’ is bound to the multiplier ‘M1’ but its re-computational operation ‘∗1′’ is

32 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

S 1 *1 M1 *2 M2 *3 M3

+4 A1 *5 M1 *1' M2 *2' M3

*3' M1+4' A2

*5' M2

+6 A1

+6' A2

c1

S 2

S 3

S 4

S 5

S 6 C1

(a) Before edge breaking.

S 1 *1 M1 *2 M2 *3 M3

+4 A1 M1 *1' M2 *2' M3

*3' M2+4' A2

M2

+6 A1

+6' A2

c1

S 2

S 3

S 4

S 5

S 6

C1 c2 C2

*5'

*5

(b) After edge breaking.

Figure 4.1: An example of fully redundant fault-secure scheduling/binding.

bound to ‘M2’. According to the fault-secure condition (3), the outputs of the normal-

computational DFG and the re-computational DFG are compared by using the comparator

‘C1’.

Fig. 4.1b shows a scheduling/binding result of the re-computational DFG when the

edge marked as ‘×’ in Fig. 4.1a is broken. By breaking the edge, the re-computational

operation ‘+6′’ can be scheduled to the step ‘S4’. According to the fault-secure conditions

(4) and (5), the output of the normal-computational operation ‘∗5’ is used for the input

of the re-computational operation ‘+6′’. According to the fault-secure condition (6), the

outputs of the normal-computational operation ‘∗5’ and the re-computational operation

‘∗5′’ are compared by using the comparator ‘C2’. As shown in this example, breaking

edges in a re-computational DFG can reduce the number of steps required.

In partially redundant fault-secure HLS, partly removing operation nodes in

the re-computational DFG GR is acceptable at the risk of reliability degradation.

Let n′
1 ∈ VR be a re-computational operation node, and let n1 ∈ V be the normal-

computational operation node corresponding to n′
1. When n′

1 is removed, all the

input/output edges connected to n′
1 are broken and the fault which occurs during

executing n1 becomes less able to be detected. In this case, the following operations

are performed to prevent the secondary effect on fault detectability:

• Let n′
2 ∈ VR be the re-computational operation node whose input edge is

broken when removing n′
1. n

′
2 uses the output of n1 instead of n′

1.

• Let n′
3 ∈ VR be the re-computational operation node whose output is not

connected to any node when removing n′
1. The outputs of n′

3 and n3 ∈ V

which is the normal-computational operation node corresponding to n′
3 are

compared.

4.2. PROBLEM FORMULATION 33

S 1 *1 M1 *2 M2
M3

A1 M1 *1' M2 *2' M3

A2 M2A1

S 2

S 3

S 4

S 5

S 6

c1
C1

c2
C2

+4 *5

+4' *5'+6

*3

Figure 4.2: An example of partially redundant fault-secure scheduling/binding.

Example 4.2. Fig. 4.2 shows an example of partially redundant fault-secure schedul-

ing/binding which removes the re-computational operations ‘∗3′’ and ‘+6′’ from the result

of fully redundant fault-secure scheduling/binding shown in Fig. 4.1. As the operation

‘∗3′’ is removed, one of the input edges of ‘∗5′’ is broken and hence the output of ‘∗3’
is used for ‘∗5′’. As the operation ‘+6′’ is removed, both ‘+4′’ and ‘∗5′’ have no output

edges and hence their outputs are compared to ‘+4’ and ‘∗5’, respectively. As shown in

this example, removing some operation nodes in a re-computational DFG can reduce the

number of steps required.

In RDR architecture, an entire circuit is assigned to N ×M array of islands.

Let I(x, y) be an island located at x-th column and y-th row of the array, where

1 ≤ x ≤ N and 1 ≤ y ≤ M . All the islands assume to be square and have the

same size. Let W and H be the width and the height of islands, respectively. The

equation W = H is always true and the size of islands W ×H is calculated as

W ×H =
Amax

N ×M
, (4.1)

where Amax denotes the given total area constraint.

An RTL circuit is composed of FUs, registers, multiplexers, and controllers. Let

Fu(i), Reg(i), and Mux(i) be the set of FUs, registers, and multiplexers which are

allocated to an island i, respectively. Any island i in RDR architecture satisfies

W ×H ≥
∑

fu∈Fu(i)

Afu + |Reg(i)| ×Areg + |Mux(i)| ×Amux +Acont(i), (4.2)

where Afu, Areg, and Amux show the areas of an FU fu, a register, and a multi-

plexer, respectively. Acont(i) shows the area of a controller synthesized for control-

ling the datapath on an island i.

34 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

Let i1 and i2 be two islands I(x1, y1) and I(x2, y2), respectively. An interconnect

delay Dc(i1, i2) between the two islands i1 and i2 is proportional to the square of

their distance and it is given by

Dc(i1, i2) = Cd × (|x1 − x2|+ |y1 − y2|)2 (4.3)

where Cd shows the constant interconnect delay coefficient. Let fu1 be one of the

FUs allocated to the island i1, which has a delay of dfu1 . Assume that the output

of fu1 is continuously used by an FU allocated to the island i2. Let Tclk be the

given clock period constraint. For the clock period constraint Tclk and the FU fu1,

the computation by fu1 can be done in sfu1
=

⌈
dfu1

Tclk

⌉
steps. When

Dc(i1, i2) + dfu1
≤ sfu1

× Tclk (4.4)

holds, the computation by fu1 and its output data transfer to a register allocated

to the island i2 are done in sfu1
steps. On the other hand, when

Dc(i1, i2) + dfu1
> sfu1

× Tclk (4.5)

holds, the computation by fu1 is done in sfu1
steps and its output is stored into

a register allocated to the island i1 at the sfu1
-th step. After that the stored

data is transferred to a register allocated to the island i2 using

⌈
Dc(ii, i2)

Tclk

⌉
steps.

Therefore, when two continuous operations are serially executed by fu1 and fu2,

the step required only for data transfer between the two operations is summarized

as follows:

dt(fu1, fu2) =

 0 (Dc(i1, i2) + dfu1
≤ sfu1

× Tclk)⌈
Dc(ii, i2)

Tclk

⌉
(Dc(i1, i2) + dfu1

> sfu1
× Tclk)

(4.6)

We focus on a fault-secure design for logic cells and assume that all the memory

components have fault-tolerant capabilities such as ECC [6] based on the discus-

sions in Section 2.4. In this chapter, the fault model is set as follows:

• In a component (an FU, a register, a multiplexer, or a controller), the prob-

ability a soft error occurs is proportional to its area.

• A soft error which occurs in a component has no effect on all other compo-

nents.

• When a soft error occurs at a memory component such as a register or a part

of a controller, no faults are caused.

4.2. PROBLEM FORMULATION 35

• When a soft error occurs at a logic component such as an FU, a multiplexer,

or a part of a controller during it operates, a fault is always caused.

• When a soft error occurs at a logic component during it does not operate, no

faults are caused.

• A fault always upsets the circuit function during only one step.

When a fault is caused by a soft error and is not detected by operation duplication,

an erroneous result is output from the circuit.

Let Smax be the given total step constraint in partially redundant fault-secure

HLS. Assume that a single radiation-induced soft error occurs on RDR architecture

in a step k, where 1 ≤ k ≤ Smax. We define PE as the error output probability when

a soft error occurs. In partially redundant fault-secure HLS, minimizing the value

of PE is assumed to equal maximizing reliability. The following two paragraphs

discuss how to calculate PE:

Circuit behavior in RDR architecture is classified into (a) execution of an oper-

ation and (b) data transfer between two registers. (a) reads a data from a register,

executes an operation by an FU, and writes its execution result to a register, while

(b) reads a data from a register and writes it to another register. Since the input

port of every FU or register may have one or more multiplexers, a soft error which

occurs not only at each FU but also at each multiplexer must be considered. Let

v ∈ V be a normal-computational operation node not to be duplicated. With

respect to v, an erroneous result is output under any of the situations below:

• During the execution of v, a soft error occurs at an FU or a multiplexer

related to its behavior.

• During the inter-register transfer executed at one of the input edges of v, a

soft error occurs at a multiplexer related to its behavior.

When calculating PE, first we calculate in each step k the area of error sensitive

reagions where a fault is caused by a soft error and cannot be detected. Next we

sum up its area from 1-st to Smax-th steps, and obtain AES(1 : Smax) which shows

the total area of error sensitive reagions when executing a whole DFG:

AES(1 : Smax) =
Smax∑
k=1

AES(k). (4.7)

Based on Eq. (4.7), PE is calculated as follows:

PE =
AES(1 : Smax)

Amax × Smax

. (4.8)

36 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1
*1

M2
*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1
*11

M1
*10

clkT

(a) Scheduled/bound normal-computational DFG.

Multiplier1
(1step)

I(1,1)

Multiplier3
(1step)

I(1,2)

Multiplier2
(1step)

I(2,1)

I(2,2)

Adder1
(1step)
Adder2
(1step)

(1step) (1step)

(1step)

W

H

(b) RDR architecture and its initial FU

placement.

Figure 4.3: An input example of partially redundant fault-secure HLS for RDR

architecture.

Now we define a partially redundant fault-secure HLS problem for RDR archi-

tecture as follows:

Definition 4.1. For a given normal-computational DFG G = (V,E) which has already

been scheduled/bound, specification of RDR architecture (the number of islands N ×
M), FU placement on this RDR architecture, library of FUs, clock period constraint

Tclk, total area constraint Amax, and total step constraint Smax, our partially redundant

fault-secure HLS problem for this RDR architecture is to construct and schedule/bind

its re-computational DFG GR = (VR, ER) and to allocate FUs to each island with the

objective of minimizing the error output probability PE unless its initial FU placement is

changed.

4.3 The Algorithm

In this section, an overhead constraint-based partially redundant fault-secure HLS

algorithm for RDR architecture is proposed. In our HLS algorithm, the clock

period constraint Tclk and the total area constraint Amax are given identically with

those input to MCAS [7] which is a conventional HLS algorithm with no fault-

secure consideration. The number of required steps, which is obtained in applying

MCAS, is set as the total step constraint Smax in our HLS algorithm. The set of

constraints means that the proposed algorithm realizes a fault-secure design not

to cause any performance/area overhead.

4.3. THE ALGORITHM 37

Example 4.3. Fig. 4.3 shows an input example of partially redundant fault-secure

HLS for RDR architecture. The scheduled/bound normal-computational DFG and the

FU placement in RDR architecture are obtained by applying MCAS, which are shown

in Figs. 4.3a and 4.3b, respectively. The clock period constraint Tclk and the total area

constraint Amax are given identically with those input to MCAS. In this example, the

island size W × H =
Amax

2× 2
constrains the area of modules which can be allocated to

each island. Since the normal-computational DFG is executed in 5 steps, the total step

constraint Smax is set to be 5.

In the subsections below, we first discuss the strategy and then propose our

algorithm under the above constraint set.

4.3.1 Strategy

To solve the problem defined in Section 4.2, we need to determine which operations

to duplicate. Considering all combinations of duplicated operations is too compu-

tationally expensive because the number of combinations amounts 2|V | where V

shows the operation node set included in the given DFG G = (V,E). When deter-

mining a set of operation nodes to be duplicated and scheduling/binding each of

them, we can have two options as follows:

(a) We first determine which operation nodes to duplicate, and then sched-

ule/bind their operation nodes under the given constraint set. In other words,

the re-computational DFG is constructed by gradually increasing the number

of operation nodes which are duplicated.

(b) We first schedule/bind the re-computational DFG generated by fully dupli-

cating the normal-computational DFG, and then under the given constraint

set, determine which operation nodes to duplicate. In other words, the re-

computational DFG is constructed by gradually reducing the number of op-

eration nodes which are duplicated.

When adopting the strategy (a), the space of solution in scheduling/binding a

or some re-computational operation node(s) is too large to sufficiently increase

the number of operation nodes which are duplicated. On the other hand, when

adopting the strategy (b), the space of solution can be reduced because we only

determine which operation nodes to remove from the re-computational DFG. For

these reasons, we adopt the strategy (b) as our HLS algorithm.

38 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

Step2: Comparator binding

Step1: Scheduling/binding for
duplicated operations

Scheduled/bound normal-
computational DFG

RDR architecture and
FU placement

Yes

No

Step3: Removing duplicated
operations

C
lo

ck
 p

er
io

d
co

ns
tra

in
t,

to
ta

l a
re

a
co

ns
tra

in
t,

to
ta

l s
te

p
co

ns
tra

in
t

Library of FUs

(1.1) Generate re-computational DFG

(1.2) Schedule/bind re-computational DFG
by ignoring re-computational edges

(1.3) Remove operation nodes which
violate step constraint

(1.4) Restore re-computational edges if at
all possible

(1.5) Re-schedule/re-bind re-computational
DFG

(3.3) Remove an operation node maximally
reducing area cost

Scheduled/bound re-computational DFG and FU placement

(2.1) Allocate a comparator to each island

(2.2) Insert and schedule/bind comparison
nodes

(2.3) Adjust comparison nodes

(3.1) Evaluate area cost through register
binding

Satisfy area constraint?

(3.2) Evaluate area cost when removing
each operation node

Figure 4.4: The proposed partially redundant fault-secure HLS algorithm.

4.3. THE ALGORITHM 39

4.3.2 Overall synthesis flow

Fig. 4.4 shows our proposed algorithm. The algorithm consists of three steps:

scheduling/binding for duplicated operations (Step1), comparator binding (Step2),

and removing duplicated operations (Step3).

In Step(1.1), a re-computational DFG is generated by fully duplicating the given

normal-computational DFG. In Step(1.2), each re-computational operation node is

scheduled/bound with all the input edges broken, which can schedule each node as

soon as possible. In Step(1.3), the re-computational operation nodes which violate

the given total step constraint are removed from the re-computational DFG. In

Step(1.4) and Step(1.5), the re-computational DFG is re-scheduled/re-bound with

the objective of minimizing the number of comparison nodes inserted in the later

step.

In Step(2.1), a comparator for fault detection is allocated to each island in

RDR architecture. In Step(2.2), according to the fault-secure conditions shown in

Section 4.2, a comparison node is inserted to each of the re-computational nodes

having no output edges and then is scheduled/bound. In Step(2.3), the comparison

nodes which violate the given total step constraint are adjusted.

In Step(3.1), through register binding, the area of modules allocated to each

island is evaluated. When there are any islands which violate the area constraint

calculated by Eq. (4.1), a re-computational operation node is removed in Step(3.2)

and Step(3.3), and then Step(3.1) is tried again. Step3 is iterated until all the

islands in RDR architecture satisfy the area constraint.

4.3.3 Scheduling/binding for duplicated operations (Step1)

Under the clock period constraint Tclk and the total step constraint Smax, a re-

computational DFG GR = (VR, ER) is generated and scheduled/bound. The first

objective is to maximize the number of re-computational operation nodes, and the

second objective is to minimize the number of comparison nodes inserted in the

later step. In this step, the total area constraint Amax is not considered.

In Step(1.1), we generate a re-computational DFG GR = (VR, ER) by fully

duplicating the normal-computational DFG G = (V,E).

In Step(1.2), we schedule/bind the re-computational DFG GR by completely

ignoring re-computational edges. We propose Algorithm 4.1 to realize Step(1.2).

In the 1st step of Algorithm 4.1, a priority pr(n′) is set to each re-computational

operation node n′ ∈ VR. The priority pr(n′) is set based on the critical path length

from the end of GR and is calculated by:

pr(n′) = min
fus∈EFu(n′)

{cpl(n′, fus)} (4.9)

40 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

Algorithm 4.1 Scheduling/binding re-computational DFG by ignoring re-

computational edges (Step (1.2)).

1: Set a priority pr(n′) to each re-computational operation node n′ ∈ VR.

2: cs← 1.

3: while scheduling/binding is not finished do

4: Let PNode(n) be the set of parent operation nodes of an operation node n.

Insert an operation node n′ ∈ VR, which all the normal-computational nodes

corresponding to its parent nodes m′ ∈ PNode(n′) have been scheduled

before cs, into the ready list RL.

5: Arrange the operation nodes included in RL according to their priorities.

6: while RL ̸= ∅ do
7: Set n′ ← the head of RL and remove n′ from RL.

8: Insert an FU which can execute n′ into the FU list FL.

9: while FL ̸= ∅ do
10: Set fu← the head of FL and remove fu from FL.

11: if n′ can be scheduled to the step cs and bound to the FU fu then

12: Perform scheduling/binding of n′.

13: end if

14: end while

15: end while

16: cs← cs+ 1.

17: end while

cpl(n′, fus) = 1 + max
n′
c∈CNode(n′)

{
min

fud∈EFu(n′
c)
{dt(fus, fud) + cpl(n′

c, fud)}
}

(4.10)

where EFu(n′) and CNode(n′) show the set of FUs which can execute n′ and

the set of child operation nodes of n′, respectively. dt(fus, fud) is calculated by

Eq. (4.6). In the 11th step of Algorithm 4.1, we need to ensure that all the re-

computational operation nodes satisfy the fault-secure conditions (2) and (5). For

this reason, the following requirements must be satisfied when a re-computational

operation node n′ is scheduled in a step cs and bound to an FU fu:

1. Let n and PNode(n) be the normal-computational operation node corre-

sponding to n′ and the set of its parent operation nodes, respectively. When

n′ is scheduled to cs and bound to fu, the equation

max
m∈PNode(n)

{cs(m) + dt(fu(m), fu)} < cs

holds, where cs(m) and fu(m) show the step and the FU to which an oper-

ation node m has been scheduled/bound, respectively.

4.3. THE ALGORITHM 41

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2
+3'

A2
+6'

M1
*4'

M3
*5'

M2
*8'

M3
*10'

A2
+7'

A1
+9'

M3
*12'

M2
*11'

Re-computational DFG

: from normal-computational operation node

S 6

clkT

Figure 4.5: Scheduling/binding of re-computational DFG by ignoring re-

computational edges (Step(1.2)).

2. Any other operation nodes have been bound to fu in the step cs.

3. fu ̸= fu(n), where fu(n) shows the FU to which the normal-computational

operation node n has been bound.

By applying Algorithm 4.1, the re-computational DFG GR can be scheduled as

soon as possible according to the fault-secure conditions.

Example 4.4. For the input set as in Example 4.3, by applying Algorithm 4.1 after

Step(1.1), we obtain the scheduled/bound re-computational DFG shown in Fig. 4.5. Every

re-computational operation node satisfies the requirements (1)–(3) above, and is scheduled

as soon as possible. By scheduling each re-computational operation node to earlier step,

we expect to minimize the number of operation nodes removed in the later step.

In Step(1.3), considering the total step constraint Smax, we remove some op-

eration nodes from the re-computational DFG GR. A re-computational operation

node n′ ∈ VR is removed when

cs(n′) > Smax − 1 (4.11)

holds, where cs(n′) shows the step to which n′ has been scheduled in Step(1.2).

Note that the left side of Eq. (4.11) is not Smax but Smax − 1 because we need to

schedule/bind some comparison nodes in the step Smax for fault detection.

Example 4.5. In Step(1.3), for the result as in Example 4.4, we remove the re-

computational operation nodes which have been scheduled to the steps later than Smax −
1 = 4. As shown in Fig. 4.6, four nodes are removed.

42 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2
+3'

A2
+6'

M1
*4'

M3
*5'

M2
*8'

M3
*10'

A2
+7'

A1
+9'

M3
*12'

M2
*11'

Re-computational DFG

: from normal-computational operation node

S 6

clkT

Figure 4.6: Removing operation nodes violating the step constraint (Step(1.3)).

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2
+3'

A2
+6'

M1
*4'

M3M2
*8'

M3
*10'

Re-computational DFG

*5'

: from normal-computational operation node

clkT

Figure 4.7: Restoring re-computational edges (Step(1.4)).

In Step(1.4), we restore some edges in the re-computational DFG GR. Let

e′ = (m′, n′) ∈ ER be a re-computational edge, where m′ and n′ show a source

and a destination operation nodes in the re-computational DFG GR, respectively.

For an operation node n, cs(n) and fu(n) show the step and the FU to which

an operation node n has been scheduled/bound, respectively. We restore the edge

e′ = (m′, n′) when the following equation holds:

cs(m′) + dt(fu(m′), fu(n′)) < cs(n′). (4.12)

After applying Step(1.4), we can know the number of comparison nodes inserted

for fault detection.

Example 4.6. In Step(1.4), for the result as in Example 4.5, we restore the re-

computational edges which satisfy Eq. (4.12). In this example, we can restore the edge

4.3. THE ALGORITHM 43

Algorithm 4.2 Re-scheduling/re-binding re-computational DFG (Step (1.5)).

1: Insert an operation node n′ ∈ VR having no output edges into the list L.

2: Count the number of required comparison nodes Creq.

3: while L ̸= ∅ do
4: Set n′ ← the head of L and remove n′ from L.

5: Let cs(n) be the step to which an operation node n is scheduled. Let EFu(n)

be the set of FUs which can execute an operation node n. Insert a pair of a

step and an FU ⟨cs, fu⟩, where 1 ≤ cs ≤ cs(n′) and fu ∈ EFu(n′), into the

list SFL.

6: while SFL ̸= ∅ do
7: Set ⟨csi, fui⟩ ← the head of SFL and remove ⟨csi, fui⟩ from SFL.

8: if n′ can be scheduled to the step csi and bound to the FU fui then

9: Let n′
o be the re-computational operation node which has been sched-

uled/bound to ⟨csi, fui⟩. Try to schedule/bind n′ to ⟨csi, fui⟩ and re-

schedule/re-bind n′
o as soon as possible.

10: Count the number of required comparison nodes C ′
req.

11: if C ′
req < Creq then

12: Perform re-scheduling/re-binding of both n′ and n′
o.

13: Set L← ∅ and SFL← ∅.
14: Go back to the beginning of this algorithm.

15: end if

16: end if

17: end while

18: end while

whose source and destination nodes are ‘∗5′’ and ‘∗10′’, respectively. As shown in

Fig. 4.7, seven re-computational operation nodes have no output edges and hence we

need to insert a comparison node into each of them.

In Step(1.5), we re-schedule/re-bind the re-computational DFGGR with the ob-

jective of minimizing the number of comparison nodes inserted for fault detection.

We propose Algorithm 4.2 to realize Step(1.5). In the steps 8–9 of Algorithm 4.2,

we try to re-schedule/re-bind a re-computational operation node n′ ∈ VR in earlier

step instead of re-scheduling/re-binding another re-computational operation node

n′
o ∈ VR. In re-scheduling/re-binding any node in GR, according to the fault-secure

conditions, all the requirements described in Step(1.2) must be satisfied. In the

steps 11–12 of Algorithm 4.2, we re-schedule/re-bind the nodes n′ and n′
o when the

number of inserted comparison nodes can be reduced.

44 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2

A2
+3'

M3

M3M2
*8'

M3
*10'

Re-computational DFG

*5'

: from normal-computational operation node

*4'

+6'

clkT

Figure 4.8: Re-scheduling/re-binding of re-computational DFG (Step(1.5)).

Example 4.7. For the result as in Example 4.6, by applying Algorithm 4.2, we obtain

the re-scheduled/re-bound re-computational DFG shown in Fig. 4.8. In this example, ‘∗4′’
is first re-scheduled to the step ‘S1’ and re-bound to the FU ‘M3’ instead of ‘∗1′’, and
then ‘+6′’ is re-scheduled to the step ‘S2’ and re-bound to the FU ‘A2’ instead of ‘+3′’.

Every re-computational operation node still satisfies the requirements (1)–(3) described

in Step(1.2). As shown in Fig. 4.8, the number of comparison nodes inserted for fault

detection can be reduced by 7− 5 = 2.

4.3.4 Comparator binding (Step2)

According to the fault-secure conditions, comparators are newly allocated to RDR

architecture, and then comparison nodes are inserted to compare the outputs of

some operation nodes included in the normal-computational DFG G and the re-

computational DFG GR. All the comparison nodes are scheduled/bound under

the clock period constraint Tclk and the total step constraint Smax. The total area

constraint Amax is not considered also in this step. The objective is to maximize

the number of re-computational operation nodes.

In Step(2.1), we newly allocate a comparator for fault detection to each island

in RDR architecture.

In Step(2.2), according to the fault-secure conditions (3) and (6), we insert and

then schedule/bind comparison nodes to compare the outputs of some operation

nodes included in the normal-computational DFG G and the re-computational

DFG GR. We propose Algorithm 4.3 to realize Step(2.2). In the 2nd step of Al-

gorithm 4.3, we set a priority prc(c) to each comparison node c before its schedul-

ing/binding. The priority prc(c) is set by the earliest step to which a comparison

4.3. THE ALGORITHM 45

Algorithm 4.3 Inserting and scheduling/binding comparison nodes (Step (2.2)).

1: Let n′ ∈ VR and n ∈ V be a re-computational operation node which has no

output edges and a normal-computational node corresponding to n′, respec-

tively. Insert a comparison node c for each pair of n′ and n to compare their

outputs.

2: Set a priority prc(c) to each comparison node c.

3: Insert all the comparison nodes into the list L in the order of priority.

4: while L ̸= ∅ do
5: Set c← the head of L and remove c from L.

6: Schedule/bind c as soon as possible.

7: end while

Multiplier1
(1step)

I(1,1)

Multiplier3
(1step)

I(1,2)

Multiplier2
(1step)

I(2,1)

I(2,2)

Adder1
(1step)
Adder2
(1step)

(1step) (1step)

(1step)

W

H

Comparator2
(1step)

Comparator4
(1step)

Comparator3
(1step)

Comparator1
(1step)

Figure 4.9: Allocating comparators (Step(2.1)).

node c can be scheduled, and is calculated by:

prn(c) = min
fuc∈EFu(c)

{
max

np∈PNode(c)
{cs(np) + dt(fu(np), fuc)}

}
(4.13)

where EFu(c) and PNode(c) show the set of FUs which can execute c and the set

of parent operation nodes of c, respectively. cs(np) and fu(np) show the step and

the FU to which an operation node np has been scheduled/bound, respectively. By

scheduling each comparison node as soon as possible, we expect to maximize the

number of comparison nodes which satisfy the total step constraint Smax.

Example 4.8. In Step(2.1), for the initial FU placement shown in Fig. 4.3b, we newly

allocate a comparator to each island as shown in Fig. 4.9. For the result as in Example

4.7, by applying Algorithm 4.3, we obtain the scheduled/bound comparison nodes shown

46 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2

A2
+3'

M3

M3 M2
*8'

M3
*10'

Re-computational DFG

*5'

: from normal-computational operation node

+6'

*4'

C3
c1

C4
c2

C2
c3

C1
c5

C2
c4

clkT

Figure 4.10: Inserting and scheduling/binding of comparison nodes (Step(2.2)).

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2

A2
+3'

M3

M3 M2
*8'

M3
*10'

Re-computational DFG

*5'

: from normal-computational operation node

+6'

*4'

C3
c1

C4
c2

C2
c3

C1
c5

C2
c4

C3
c6

c7
C4

clkT

Figure 4.11: Adjusting comparison nodes (Step(2.3)).

in Fig. 4.10. Every comparison node is inserted for a re-computational operation node

having no output edges in Fig. 4.8 and scheduled/bound as soon as possible.

In Step(2.3), considering the total step constraint Smax, we remove some com-

parison nodes. A comparison node c is removed when cs(c) > Smax holds, where

cs(c) shows the step to which c has been scheduled in Step(2.2). When a com-

parison node c is removed, removing the re-computational operation node directly

connected to c is also required. Since it may result in some re-computational op-

eration nodes having no output edges, according to the fault-secure conditions, we

newly insert and schedule/bind comparison nodes. The algorithm of inserting and

scheduling/binding comparison nodes is almost the same as Algorithm 4.3.

Example 4.9. In Step(2.3), for the result as in Example 4.9, we remove the comparison

4.3. THE ALGORITHM 47

nodes which have been scheduled to the steps later than Smax = 5. In this example,

as shown in Fig. 4.11, two comparison nodes ‘c3’, ‘c5’ are removed and then two re-

computational operation nodes ‘+3′’, ‘∗10′’ are also removed. As a result, according to

the fault-secure conditions, two comparison nodes ‘c6’, ‘c7’ are newly inserted and then

scheduled/bound as soon as possible.

4.3.5 Removing duplicated operations (Step3)

Based on the result obtained in Step1 and Step2, the re-computational DFG GR is

re-constructed under the total area constraint Amax. The objective is to maximize

the number of re-computational operation nodes.

In Step(3.1), through temporary register binding, we evaluate the area of mod-

ules allocated to each island in RDR architecture. The register binding algorithm

is the same as in [7]. Let Fu′(i), Reg′(i), and Mux′(i) be the set of FUs, registers,

and multiplexers which need to be allocated to an island i, respectively. After

register binding, the maximum area cost CA is evaluated by:

CA = max
i∈I

 ∑
fu∈Fu′(i)

Afu + |Reg′(i)| ×Areg + |Mux′(i)| ×Amux +A′
cont

 , (4.14)

where I shows the set of islands which the target RDR architecture has. Afu, Areg,

and Amux show the areas of an FU fu, a register, and a multiplexer, respectively.

When evaluating Eq. (4.14), we secure a temporary area A′
cont for a controller in

each island because controller synthesis is too computationally expensive to run it

frequently.

For the total area constraint Amax, when the following equation is satisfied, we

remove all the comparators unused and complete Step3:

W ×H =
Amax

N ×M
≥ CA. (4.15)

On the other hand, when Eq. (4.15) is not satisfied, we attempt to reduce the

maximum area cost CA by removing a re-computational operation node.

In Step(3.2), we evaluate the maximum area cost CA when removing each re-

computational operation node. For an operation node n′ ∈ VR, we try to remove

n′ and, if necessary, insert and schedule/bind comparison nodes. Based on the

re-constructed DFG where n′ is newly removed, the maximum area cost CA(−n′)

is evaluated by Eq. (4.14) through temporary register binding.

In Step(3.3), we remove a re-computational operation node n′ giving the min-

imum value of CA(−n′) in the re-computational DFG GR. After that we go back

to the beginning of Step3.

48 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1
*1

M2*12

M1
*8

A1
+7

M2
*5

A1
+6

S 4

S 5

A2
+9

A2
+2

A1
+3

M2
*4

M1*11

M1
*10

M3
*1'

A1
+2'

A2

M3

M3 M2
*8'

Re-computational DFG

*5'

: from normal-computational operation node

+6'

*4'

C3
c1

C4
c2

C2
c4

C3
c6

c7
C4

clkT

Figure 4.12: Scheduled/bound re-computational DFG output from our partially

redundant fault-secure HLS algorithm.

Multiplier1
(1step)

I(1,1)

Multiplier3
(1step)

I(1,2)

Multiplier2
(1step)

I(2,1)

I(2,2)

Adder1
(1step)
Adder2
(1step)

(1step) (1step)

(1step)

W

H

Comparator2
(1step)

Comparator4
(1step)

Comparator3
(1step)

Figure 4.13: FU placement output from our partially redundant fault-secure HLS

algorithm.

After completing Step3, we output the scheduled/bound re-computational DFG

GR = (VR, ER) and the FU placement on RDR architecture.

Example 4.10. For the input set as in Example 4.3, by applying our HLS algorithm,

we obtain the scheduled/bound re-computational DFG shown in Fig. 4.12 and the FU

placement on RDR architecture shown in Fig. 4.13.

4.4 Experimental Results

We have implemented our algorithm in C++. The algorithm has been run on

AMD Opteron 2360 SE (2.5 GHz, Quad core) with 16 GB memory and applied

4.4. EXPERIMENTAL RESULTS 49

Table 4.1: Area and delay of modules.

Area (µm2) Delay (ns)

Adder 282 1.32

Multiplier 4661 2.70

Comparator 255 0.60

Register 288 0.11

Multiplexer 112 0.04

Table 4.2: The set of constraints.

The inputs to MCAS [7].
Tclk

The set of constraints.

App. N ×M W ×H (µm× µm) Amax (µm2) Smax

DCT 2× 2 90× 90 1.7 32, 400 20

DCT 3× 2 90× 90 1.7 48, 600 13

EWF 2× 1 90× 90 1.7 16, 200 27

EWF3 2× 2 90× 90 1.7 32, 400 70

FIR 2× 2 90× 90 1.7 32, 400 42

FIR 3× 2 90× 90 1.7 48, 600 30

to DCT (48 operation nodes), EWF (32 operation nodes), EWF3 (102 operation

nodes), and FIR (75 operation nodes). Table 4.1 shows the area and delay of FUs,

a register, and a multiplexer used in this experiment, which are all assumed to

have 16 bit width and have been synthesized by Synopsys Desgin Compiler under

the CMOS 90 nm technology. A controller has been synthesized for each island by

Synopsys Desgin Compiler after applying our algorithm. We have set in Eq. (4.3)

the interconnect delay coefficient Cd = 1 ns/250µm.

For a given description of application behavior, specification of RDR architec-

ture (the number of islands N×M and the size of islands W×H), and clock period

constraint Tclk, we have first applied MCAS [7] which is the conventional HLS algo-

rithm and obtained the scheduled/bound normal-computational DFG and its FU

placement. The set of constraints input to our algorithm as well as the inputs to

MCAS are summarized in Table. 4.2. We have obtained the total step constraints

Smax in the 6th column of Table. 4.2 from the results of MCAS. The experimental

results are shown in Table 4.3 and Table 4.4.

50 CHAPTER 4. PARTIALLY REDUNDANT FAULT SECURE HLS

Table 4.3: Experimental results (reliability).

App.
Algorithm

Amax × Smax Error sensitive reasion (µm2)
PE#Islands (µm2) FU MUX Cont. Total

DCT Normal DFG
648000

158176 31024 15640 204840 (1.0000) 31.61%

2× 2 Ours 154228 26432 16940 197600 (0.9647) 30.49%

DCT Normal DFG
631800

158176 26880 8099 193155 (1.0000) 30.57%

3× 2 Ours 116940 19824 9243 146007 (0.7559) 23.11%

EWF Normal DFG
437400

81908 19600 11745 113253 (1.0000) 25.89%

2× 1 Ours 69766 14000 14904 98670 (0.8712) 22.56%

EWF3 Normal DFG
2268000

245724 89376 125720 460820 (1.0000) 20.32%

2× 2 Ours 205898 83664 139370 428932 (0.9308) 18.91%

FIR Normal DFG
1360800

306230 44352 48846 399428 (1.0000) 29.35%

2× 2 Ours 270650 15344 56364 342358 (0.8571) 25.16%

FIR Normal DFG
1458000

306230 40992 24720 371942 (1.0000) 25.51%

3× 2 Ours 265840 33264 34050 333154 (0.8957) 22.85%

4.5 Conclusion

In this chapter, we have proposed a partially redundant fault-secure HLS algorithm

for RDR architecture. The experimental results have shown that our algorithm can

improve reliability by up to 24% without any performance/area overhead compared

to the conventional approach.

4.5. CONCLUSION 51

Table 4.4: Experimental results (overhead).

App.
Algorithm #Steps

Module area Each module area (µm2) Vacant CPU time

#Islands (µm2) FU Reg. MUX Cont. (µm2) (sec)

DCT Normal DFG 20 6775 4661 864 896 354 1325 92.11

2× 2 6948 4661 1152 784 351 1152

4833 564 1728 1904 637 3267

6293 564 2304 2688 737 1807

Ours 20 6775 4661 864 896 354 1325 174.31

6957 4661 1152 784 360 1143

7430 819 2304 3472 835 670

7837 819 2592 3584 842 263

DCT Normal DFG 13 6393 4661 1152 336 244 1707 135.11

3× 2 6090 4661 864 336 229 2010

6084 4661 864 336 223 2016

6524 4661 1152 448 263 1576

5271 564 1728 2464 515 2829

5480 564 1728 2576 612 2620

Ours 13 6782 4916 1152 448 266 1318 149.97

6760 4916 1152 448 244 1340

6445 4916 864 448 217 1655

6895 4916 1152 560 267 1205

7733 819 2880 3360 674 367

7478 819 2304 3584 771 622

EWF Normal DFG 27 6003 4661 576 448 318 2097 45.59

2× 1 5598 564 1728 2576 730 2502

Ours 27 6410 4661 576 784 389 1690 82.04

7889 819 2592 3472 1006 211

EWF3 Normal DFG 70 6241 4661 576 560 444 1859 99.99

2× 2 6321 4661 576 560 524 1779

5664 564 1440 2576 1084 2436

7593 564 1728 4032 1269 507

Ours 70 6709 4916 576 672 545 1391 2676.90

6954 4916 576 896 566 1146

7366 819 1728 3584 1235 734

7583 564 1728 4032 1259 517

FIR Normal DFG 42 6712 4661 864 784 403 1388 93.09

2× 2 6890 4661 864 896 469 1210

4359 564 1152 1904 739 3741

6326 282 2592 2576 875 1774

Ours 42 7133 4916 864 896 457 967 140.31

7253 4916 864 1008 465 847

8039 819 2304 3808 1108 61

7669 537 3456 2688 987 431

FIR Normal DFG 30 6109 4661 864 336 248 1991 136.38

3× 2 5812 4661 576 336 239 2288

5798 4661 576 336 225 2302

6148 4661 864 336 287 1952

3234 282 1152 1344 456 4866

6537 564 1440 3696 837 1563

Ours 30 6775 4916 864 672 323 1325 473.37

6816 4916 864 672 364 1284

6957 4916 1152 560 329 1143

6401 4661 864 560 316 1699

6637 537 2016 3248 836 1463

7860 564 2016 4368 912 240

Chapter 5

A Low-overhead Fully Redundant

Fault-secure High-level Synthesis

Algorithm1

5.1 Introduction

In this chapter, a low-overhead fully redundant fault-secure HLS algorithm for DR

architectures is proposed. Also in this HLS algorithm, RDR architecture is uti-

lized. As described in Section 2.4, a fully redundant fault-secure HLS algorithm for

RDR architecture has already been proposed in [24]. The conventional algorithm

has tried to maximize circuit performance under a given functional unit constraint.

However, the area overhead is significantly large because it has only considered the

number of required functional units and ignored the cost of registers, multiplexers,

and controllers. Due to a large amount of area overhead, the size of islands in RDR

architecture becomes large and hence performance degradation may be caused. As

illustrated in Fig. 5.1, a given clock period constraint (Tclk) and an interconnect

delay between two islands (Dc(ip, iq)) increase with increase in the size of islands

(W ×H). Our proposed algorithm tries to maximize circuit performance under a

given area constraint. In contrast to conventional approaches like [24] or [26], our

proposed algorithm adopts an integrative approach which concurrently performs

scheduling, binding, allocation, and register synthesis. Since this approach moni-

tors the cost of not only functional units but also registers and multiplexers during

scheduling/binding, the area/performance overhead can be reduced sufficiently.

Experimental results demonstrate that our proposed algorithm reduces area by up

to 47% and improves performance by up to 41% compared to the conventional

1Technical contents in this chapter have been presented in the publication ⟨11⟩.

52

5.2. PROBLEMFORMULATION

Registers

FUs

FSM

MUXs

ip=I(xp,yp)

Registers

FUs

FSM

MUXs

iq=I(xq,yq)

W
H

()HWddT icfuclk +×+≥ 2

Clock period constrained by
intra-island data transfer :

Interconnect delay required for
inter-island data transfer :

() ()HdyyWdxx icqpicqp ×−+×−=

()qpc iiD ,

()Xdic :Interconnect delay corresponding to a distance X)(

53

Figure5.1:ImpactofanareaoverheadoncircuitperformaceinRDRarchitecture.

Thesizeofislands(W×H)hasadirecteffectonagivenclockperiodconstraint

(Tclk)andaninterconnectdelaybetweentwoislands(Dc(ip,iq)).

fault-secureHLSalgorithmforRDRarchitecture.

5.2 ProblemFormulation

InHLS,behavioraldescriptionusedasinputistransformedintographicalrep-

resentationlikeacontrol-dataflowgraph(CDFG)oradata-flowgraph(DFG).

HereafterweuseaDFGasaninputforsimplicity.Notethatthediscussionbelow

canbeeasilyextendedtoaCDFG.

Anormal-computationalDFGG=(V,E)isrepresentedbyadirectedgraph,

whereVisasetofoperationnodesandEisasetofedgeswhichshowthedata

dependenciesbetweentwooperationnodes.Infullyredundantfault-secureHLS,

itsre-computationalDFGGR=(VR,ER)isgeneratedbyduplicatingthenormal-

computationalDFGG=(V,E).Givenascheduling/bindingresultofthenormal-

computationalDFGG,itsre-computationalDFGGRisscheduled/boundsothat

thefault-secureconditions(1)to(6)belowaresatisfied:

(1)Thescheduling/bindingresultofthenormal-computationalDFGGisnot

54 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

changed.

(2) Let n′ ∈ VR be one of the re-computational operation nodes, and n ∈ V be

the normal-computational operation node corresponding to n′. They cannot

share an identical functional unit (FU).

(3) All the outputs of the normal-computational DFGG and the re-computational

DFG GR must be compared.

(4) An edge e′ ∈ ER can be broken.

(5) Let e′ = (m′, n′) ∈ ER be the input edge of n′ in the re-computational

DFG GR, where m′ is one of the parent nodes of n′. Let m be the normal-

computational operation node corresponding to m′. If e′ is broken, n′ uses

the output of the normal-computational operation node m instead of m′.

(6) The outputs of m and m′ must be compared if all the output edges of m′ are

broken.

In RDR architecture, an entire circuit is assigned to N ×M array of islands.

Let I(x, y) be an island located at x-th column and y-th row of the array, where

1 ≤ x ≤ N and 1 ≤ y ≤ M . All the islands assume to be square and have the

same size. Let W and H be the width and the height of islands, respectively. The

size of islands W ×H is calculated as

W ×H =
Amax

N ×M
, (5.1)

where Amax denotes the given total area constraint.

An RTL circuit is composed of FUs, registers, multiplexers, and controllers. Let

Fu(i), Reg(i), and Mux(i) be the set of FUs, registers, and multiplexers which are

allocated to an island i, respectively. Any island i in RDR architecture satisfies

W ×H ≥
∑

fu∈Fu(i)

Afu + |Reg(i)| ×Areg + |Mux(i)| ×Amux +Acont(i), (5.2)

where Afu, Areg, and Amux show the areas of an FU fu, a register, and a multi-

plexer, respectively. Acont(i) shows the area of a controller synthesized for control-

ling the datapath on an island i.

Let Tclk be the given clock period constraint. In order to ensure that execution

of an operation and intra-island data transfer are completed in Tclk, any island i

satisfies

max
fu∈Fu(i)

dfu + 2× dic(W +H) ≤ Tclk, (5.3)

5.2. PROBLEM FORMULATION 55

where dfu shows the delay of an FU fu and dic(X) shows the interconnect delay

corresponding to a distance X. Eq. (5.3) states that the clock period is constrained

by the sum of the largest FU delay and the worst-case interconnect delay within

an island.

Let i1 and i2 be two islands I(x1, y1) and I(x2, y2), respectively. An interconnect

delay Dc(i1, i2) between the two islands i1 and i2 is proportional to their distance

and it is given by

Dc(i1, i2) = dic(W)× |x1 − x2|+ dic(H)× |y1 − y2|. (5.4)

Let fu1 be one of the FUs allocated to the island i1, which has a delay of dfu1 .

Assume that the output of fu1 is continuously used by an FU allocated to the

island i2. For the clock period constraint Tclk and the FU fu1, the computation

by fu1 can be done in sfu1
=

⌈
dfu1

Tclk

⌉
steps. When

Dc(i1, i2) + dfu1
≤ sfu1

× Tclk (5.5)

holds, the computation by fu1 and its output data transfer to a register allocated

to the island i2 are done in sfu1
steps. On the other hand, when

Dc(i1, i2) + dfu1
> sfu1

× Tclk (5.6)

holds, the computation by fu1 is done in sfu1
steps and its output is stored into

a register allocated to the island i1 at the sfu1
-th step. After that the stored

data is transferred to a register allocated to the island i2 using

⌈
Dc(ii, i2)

Tclk

⌉
steps.

Therefore, when two continuous operations are serially executed by fu1 and fu2,

the step required only for data transfer between the two operations is summarized

as follows:

dt(fu1, fu2) =

 0 (Dc(i1, i2) + dfu1
≤ sfu1

× Tclk)⌈
Dc(ii, i2)

Tclk

⌉
(Dc(i1, i2) + dfu1

> sfu1
× Tclk)

(5.7)

Now we define a fully redundant fault-secure HLS problem for RDR architecture

as follows:

Definition 5.1. For a given normal-computational DFG G = (V,E) which has already

been scheduled/bound, specification of RDR architecture (the number of islands N ×
M), FU placement on this RDR architecture, library of FUs, clock period constraint

Tclk, and total area constraint Amax, our fully redundant fault-secure HLS problem for

this RDR architecture is to schedule/bind its re-computational DFG GR = (VR, ER), to

allocate additional FUs to each island unless its initial FU placement is changed, and

to synthesize registers and controllers. The objective here is to minimize the number of

required steps.

56 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

Operation scheduling

FU binding

Register binding

Controller synthesis

FU allocation

(a) Conventional (sequential) approach.

Operation scheduling

FU binding

Register binding

Controller synthesis

FU allocation

(b) Our (integrative) approach.

Figure 5.2: Comparison of conventional and our fault-secure HLS algorithms.

5.3 The Algorithm

In this section, we propose a low-overhead fully redundant fault-secure HLS algo-

rithm for RDR architecture. First we discuss the strategy and then propose our

algorithm.

5.3.1 Strategy

To solve the problem defined in Section 5.2, we need to consider how a given total

area constraint can be satisfied in fault-secure HLS. In order to answer this question,

it is important to (a) evaluate the area of modules allocated to each island and

then (b) minimize the area cost as much as possible.

(a) Area evaluation in HLS flow

The conventional algorithm [24] has tried to minimize the number of required steps

under a given FU constraint. In [24], scheduling/FU binding is first performed

under an FU constraint and then registers/controllers are synthesized based on

the result obtained in the precedent phases. Fig. 5.2a shows the brief synthesis

flow of the fault-secure HLS algorithm. In such a sequential approach, the total

module area is informed only after completing the flow and hence the area may

become large due to registers, multiplexers, and controllers.

In order to tackle this problem, it is required to adopt an integrative approach

which concurrently performs scheduling, FU binding, FU allocation, and register

5.3. THE ALGORITHM 57

binding. The brief synthesis flow of our fault-secure HLS algorithm is proposed in

Fig. 5.2b. Since such an integrative approach can tentatively inform the module

area even when DFGs are partly scheduled/FU bound, we can expect to evaluate

the area of modules at any point in the flow.

(b) Area cost minimization in scheduling/FU binding of re-computational

DFG

In fully redundant fault-secure HLS, its circuit area and circuit performance may

have a trade-off relation in general. To relax the total area constraint enables us to

allocate new additional modules for re-computation and we can expect to improve

circuit performance. On the other hand, by relaxing the total step constraint and

improving module reusability, we can expect to reduce circuit area. Especially in

terms of reusability, it is preferable that re-computational operations should be

delayed as much as possible to normal-computational operations.

When we focus on module reusability, the conventional algorithm [24] has two

concerns; one is the scheduling algorithm and the other is the way to break re-

computational edges, which are adopted in [24] to minimize the number of re-

quired steps. However, they may increase the number of modules such as registers

and multiplexers which consist of the datapath circuit since the scheduling is per-

formed in an ASAP manner and the additional cost of registers/multiplexers is not

considered in operation scheduling and breaking edges.

For these reasons, we start our fault-secure HLS algorithm with the minimum

total step constraint and then gradually relax the constraint in the synthesis flow.

Our operation scheduling is performed in an ALAP manner in order to maximally

delay the operation timing of re-computation to normal-computation and improve

module reusability. By adopting an integrative approach as in Fig. 5.2b, the area

cost of not only FUs but also registers and multiplexers are always monitored

and then minimized. In our scheduling/FU binding, some re-computational edges

will be broken only when the additional cost of registers/multiplexers with edge

breaking becomes smaller than the additional cost of FUs without it.

5.3.2 Overall synthesis flow

Fig. 5.3 shows our proposed algorithm.

Example 5.1. Fig. 5.4 shows an input example of fully redundant fault-secure HLS

for RDR architecture. The scheduled/bound normal-computational DFG and the FU

placement in RDR architecture are obtained by applying MCAS, which are shown in

Figs. 5.4a and 5.4b, respectively. In our HLS algorithm, we give the total area constraint

58 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

Step1: Scheduling/binding for
re-computational DFG

No

Yes

Step2: Controller synthesis

C
lo

ck
 p

er
io

d
co

ns
tra

in
t,

to
ta

l a
re

a
co

ns
tra

in
t

No

Yes

No

Yes

Exit this synthesis flow
(Given constraints cannot be satisfied.)

Scheduled/bound normal-
computational DFG

RDR architecture and
FU placement Library of FUs

(0.1) Bind register for normal-computational
DFG

(1.1) Set step constraint L

(1.2) Schedule/FU bind re-computational DFG
with FU allocation and register binding

Scheduled/bound re-computational DFG and
datapath with controller on RDR architecture

(2.1) Synthesize controllers

Satisfy area constraint?

Any violation?

L > Lmax?

Figure 5.3: The proposed fully redundant fault-secure HLS algorithm.

Amax and constrain the area of modules which can be allocated to each island. In this

example, we set Amax = 25, 600 and hence the island size W ×H is set to be 6, 400. As

in Fig. 5.4b, we assume that one step is required to transfer data between each island as

well as to execute an operation by each FU.

For the input set as in Fig. 5.4, we first bind registers for the scheduled/bound normal-

computational DFG in Step(0,1). Fig. 5.5a shows the result of register binding. By

binding registers, we can find out the area of modules for the datapath which realizes

5.3. THE ALGORITHM 59

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2
clkT

M2

M3
*1

+6

*5+4

*2 *3

(a) Scheduled/bound normal-computational

DFG.

Multiplier1
(1step)

I(1,1)

Multiplier3
(1step)

I(1,2)

Multiplier2
(1step)

I(2,1)

I(2,2)

Adder1
(1step)

(1step)

W

H

(1step)

(1step)

(b) RDR architecture and its initial FU place-

ment.

Figure 5.4: An input example of fully redundant fault-secure HLS for RDR archi-

tecture.

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2 clkT

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1 R2.2

R3.1

R4.1 R2.1

R4.1 R4.2

R4.1

(a) Register binding result.

A{I(1.1)} = 4,800

Multiplier3
(4,000)

Multiplier2
(4,000)

Adder1
(500)

W

H

Multiplier1
(4,000)

Register
(300×2)

MUX
(200×1)

A{I(2.1)} = 5,000

Register
(300×2)

A{I(2.1)} = 4,800

Register
(300×2)

A{I(2.2)} = 1,300

Register
(300×2)

MUX
(200×1)

MUX
(200×2)

MUX
(200×1)

(b) Area.

Figure 5.5: Register binding.

the behavior of normal-computational DFG. The total area of modules allocated to each

island is shown in Fig. 5.5b.

60 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

5.3.3 Scheduling/binding for duplicated operations with

FU allocation and register synthesis

Under the clock period constraint Tclk, the total step constraint Smax, and the

total area constraint Amax, we schedule/FU bind the re-computational DFG GR =

(VR, ER). In contrast to conventional approaches like [24] or [7], our scheduling/FU

binding algorithm is integrated with FU allocation and register binding so that

we can accurately monitor the area of modules allocated to every island during

scheduling/FU binding. By adopting an integrative approach which concurrently

performs scheduling, FU binding, FU allocation, and register binding, we can eval-

uate the area even when DFGs have been partly scheduled/FU bound. Let Fu′(i),

Reg′(i), and Mux′(i) be the set of FUs, registers, and multiplexers which need to

be tentatively-allocated to an island i, respectively. At any point in scheduling/FU

binding, the area of modules allocated to an island i is evaluated by:

Ai =
∑

fu∈Fu′(i)

Afu + |Reg′(i)| × Areg + |Mux′(i)| × Amux + A′
cont(i), (5.8)

where Afu, Areg, and Amux show the areas of an FU fu, a register, and a multi-

plexer, respectively. When evaluating Eq. (5.8), we secure in each island a tempo-

rary area A′
cont(i) for a controller because controller synthesis is too computation-

ally expensive to run it frequently. Let Acont(i)j be the controller’s area synthesized

for an island i in the j-th iteration of Step1 and Step2 in Fig. 5.3. In Step(1.2) of

its k-th iteration, A′
cont(i) is calculated for each island as:

A′
cont(i) =

{
0 (k = 1)

max
1≤j≤k−1

Acont(i)j (k ≥ 2) (5.9)

We propose Algorithm 5.1 and Algorithm 5.2 to realize Step(1.2). Algo-

rithm 5.1 shows the overall flow of Step(1.2). It should be noted that our schedul-

ing/FU binding for a re-computational DFG is performed in an ALAP manner. As

described in Section 5.3.1, it may enable us to maximally delay the operation tim-

ing of re-computation to normal-computation, and hence we can expect to improve

module reusability such as FUs and registers.

In the 1st step of Algorithm 5.1, a priority pr(n′) is set to each re-computational

operation node n′ ∈ VR before scheduling/FU binding of the re-computational DFG

GR = (VR, ER). The priority pr(n′) is set based on the critical path length from

the start of GR and is calculated by:

pr(n′) = min
fud∈EFu(n′)

{cpl(n′, fud)} (5.10)

5.3. THE ALGORITHM 61

Algorithm 5.1 Schedule/FU bind re-computational DFG with FU allocation and

register binding.

1: Set a priority pr(n′) to each re-computational operation node n′ ∈ VR.

2: cs← Smax − 1.

3: while scheduling/FU binding of the re-computational DFG G = (VR, ER) has

not been finished yet do

4: if cs = 0 then

5: Report violation and exit algorithm.

6: end if

7: Insert an operation node n′ ∈ VR, which all the child nodes of n′ have already

been scheduled, into the ready list RL.

8: Arrange the operation nodes included in RL according to their priorities.

9: while RL ̸= ∅ do
10: Set n′ ← the head of RL and remove n′ from RL.

11: Search an optimal scheduling/FU binding solution ⟨cs′, fu′⟩ for n′ (Algo-

rithm 5.2).

12: if cs′ = cs then

13: Schedule/FU bind n′ to ⟨cs′, fu′⟩ with FU allocation and register bind-

ing. A comparison node is inserted and scheduled/bound, if necessary.

14: end if

15: if area violation occurs then

16: Report violation and exit algorithm.

17: end if

18: end while

19: cs← cs− 1.

20: end while

cpl(n′, fud) = max
n′
p∈PNode(n′)

{
min

fus∈EFu(n′
p)
{dt(fus, fud) + cpl(n′

p, fus) + 1}

}
(5.11)

where EFu(n′) and PNode(n′) show the set of FUs which can execute n′ and

the set of parent operation nodes of n′, respectively. dt(fus, fud) is calculated by

Eq. (5.7).

In the 11th and 23th steps of Algorithm 5.2, the area cost, when we try to

schedule/bind a re-computational operation node n′ to a step cs and an FU fu,

is evaluated. In evaluating the cost, if necessary, additional FUs can be allocated

to islands and comparison nodes can be inserted and scheduled/bound in order to

satisfy the fault-secure conditions. Moreover, registers are bound to the input and

output edges of n′. Note that we bind comparison nodes and registers according

62 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

Algorithm 5.2 Search an optimal scheduling/FU binding solution for a re-

computational operation node.

Require: operation node n′, current step csc
1: ⟨csopt, fuopt⟩ ← ⟨null, null⟩.
2: Insert all the islands into the priority list PL in ascending order of module

areas.

3: while PL ̸= ∅ do
4: Set i← the head of PL and remove i from PL.

5: repeat

6: Select one of the FUs fu allocated to i.

7: if n′ can be executed by fu and n, which is the normal-computational

operation node corresponding to n′, has not been bound to fu then

8: Search the maximum step csmax (≤ csc) to which n′ can be scheduled

with no edge breaking when binding n′ to fu.

9: cs← csmax.

10: while cs ≤ csc do

11: Calculate the cost cost when n′ is scheduled/bound to ⟨cs, fu⟩.
12: if cost is minimum so far then

13: ⟨csopt, fuopt⟩ ← ⟨cs, fu⟩.
14: end if

15: cs← cs+ 1.

16: end while

17: end if

18: until all the FUs allocated to i are once selected.

19: An additional FU fua which can execute n′ is virtually-allocated to i.

20: Search the maximum step csmax (≤ csc) to which n′ can be scheduled with

no edge breaking when binding n′ to fua.

21: cs← csmax.

22: while cs ≤ csc do

23: Calculate the cost cost when n′ is scheduled/bound to ⟨cs, fua⟩.
24: if cost is minimum so far then

25: ⟨csopt, fuopt⟩ ← ⟨cs, fua⟩.
26: end if

27: cs← cs+ 1.

28: end while

29: end while

Ensure: a pair of scheduled step and bound FU ⟨csopt, fuopt⟩

5.3. THE ALGORITHM 63

to the rules as follows:

• Let n ∈ V be a normal-computational operation node corresponding to n′.

When a comparison node c is inserted for a pair of n′ and n to compare their

outputs, c is bound to a comparator in the island to which fu is allocated

and is scheduled as soon as possible.

• Registers are bound so that the area cost associated with registers and multi-

plexers may become minimum, which can be obtained by a nearly full-search

algorithm.

Let I be the set of islands which the target RDR architecture has. Since all

the islands in RDR architecture assume to have the same size, it is important

to minimize the maximum area

{
max
i∈I

Ai

}
when we schedule/FU bind operation

nodes with consideration for the total area constraint Amax. Now we propose the

following equation to evaluate the area cost cost after trying to schedule/FU bind

n′ with FU allocation and register binding:

cost =
∑
i∈I

Ai +N ×M ×max
i∈I

Ai (5.12)

By utilizing Eq. (5.12), we achieve scheduling/FU binding of the re-computational

DFG GR = (VR, ER) with the primary objective of minimizing the maximum area{
max
i∈I

Ai

}
and the secondly objective of minimizing the total area

{∑
i∈I

Ai

}
.

In the 13th step of Algorithm 5.1, each re-computational operation node is

scheduled/FU bound according to the evaluation by Eq. (5.12), and then allocat-

ing new FUs, inserting and scheduling/binding a comparison node, and binding

registers are concurrently performed as necessary.

Example 5.2. Assume that the total step constraint Smax is set to be 6 in Step(1.1).

In the following, the island size is set to be 6, 400 as in Example 5.1 and, for simplicity,

the area of a controller allocated to each island is assumed to be zero. In Step(1.2),

based on the normal-computational DFG shown in Fig. 5.5a, the re-computational DFG

is scheduled/FU bound.

According to Algorithm 5.1, we first seek to schedule/FU bind the re-computational

operation node ‘+6′’ which has no child operation nodes. According to Algorithm 5.2, we

select the island I(2, 2) having the minimum area of modules which have been allocated.

Binding ‘+6′’ to the adder ‘A1’ cannot be realized because the normal-computational

operation node ‘+6’ has been bound to ‘A1’. For this reason, an additional adder ‘A2’

is newly allocated to the island I(2, 2) and the re-computational operation node ‘+6′

64 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1 R2.2

R3.1

R4.1 R2.1

R4.1 R4.2

A2+6'

R4.# R4.#

c1

R4.# R4.#

(a) Scheduling/FU binding of ‘+6′’ and inserting a comparison node ‘c1’.

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1 R2.2

R3.1

R4.1 R2.1

R4.1 R4.2

A2+6'

R4.3 R4.4

S 6
C1

c1

R4.3 R4.4

(b) Scheduling/FU binding of ‘c1’ and register binding.

Figure 5.6: Scheduling/FU binding ‘+6′’ to ⟨S5, A2⟩.

is scheduled/FU bound to ⟨S5, A2⟩ as shown in Fig. 5.6a. In addition, as shown in

Fig. 5.6b, a comparison node ‘c1’ is inserted and scheduled/bound since ‘+6′’ has no

child operation nodes. As a result, we obtain module allocation shown in Fig. 5.7.

We next seek to schedule/FU bind the re-computational operation node ‘+5′’. Ac-

cording to Algorithm 5.2, we select the island I(2, 2) having the minimum area of modules

which have been allocated. Since there have been no multipliers in this island, we virtually-

allocate an additional multiplier ‘M4’ and try to schedule/FU bind the re-computational

operation node ‘+5′’ to ⟨S4,M4⟩. Fig. 5.8a shows the result of this scheduling/FU bind-

ing and the cost is calculated as cost = 49, 100 as in Fig. 5.8b.

According to Algorithm 5.2, we then select the island I(1, 1). The re-computational

operation node ‘+5′’ can be bound to the multiplier ‘M1’ and can be scheduled to the step

5.3. THE ALGORITHM 65

A{I(1.1)} = 4,800

Multiplier3
(4,000)

Multiplier2
(4,000)

Adder1
(500)

W

H

Multiplier1
(4,000)

Register
(300×2)

MUX
(200×1)

A{I(2.1)} = 5,000

Register
(300×2)

A{I(2.1)} = 4,800

Register
(300×2)

A{I(2.2)} = 2,700

Register
(300×4)

MUX
(200×1)

MUX
(200×2)

MUX
(200×1)

Comparator1
(300)

Adder2
(500)

cost
= 4,800 + 5,000 + 4,800 + 2,700
= + 2 × 2 × 5,000

= 37,300

Figure 5.7: Area cost after scheduling/FU binding of ‘+6′’.

‘S3’ with no edge breaking as shown in Fig. 5.9a. For this scheduling/FU binding result,

the cost is calculated as cost = 37, 500 as in Fig. 5.9b. The re-computational operation

node ‘+5′’ also can be scheduled to the step ‘S3’ and bound to the multiplier ‘M1’ with

edge breaking as shown in Fig. 5.10a. For this scheduling/FU binding result, the cost is

calculated as cost = 39, 000 as in Fig. 5.10b. The re-computational operation node ‘+5′’

is finally scheduled/FU bound to ⟨S3,M1⟩ by evaluating the value of cost.

Fig. 5.11 shows the scheduling/FU binding result of the re-computational DFG which

is obtained after Step(1.2).

66 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1 R2.2

R3.1

R4.1 R2.1

R4.1 R4.2

A2+6'

R4.3 R4.4

S 6
C1

c1

R4.3 R4.4

M4*5'

R4.2 R4.3

(a) Scheduling/FU binding and register binding.

A{I(1.1)} = 4,800

Multiplier3
(4,000)

Multiplier2
(4,000)

Adder1
(500)

W

H

Multiplier1
(4,000)

Register
(300×2)

MUX
(200×1)

A{I(2.1)} = 5,000

Register
(300×2)

A{I(2.1)} = 4,800

Register
(300×2)

A{I(2.2)} = 6,900

Register
(300×4)

MUX
(200×2)

MUX
(200×2)

MUX
(200×1)

Comparator1
(300)

Adder2
(500)

Multiplier3
(4,000)

cost
= 4,800 + 5,000 + 4,800 + 6,900
= + 2 × 2 × 6,900

= 49,100

(b) Area cost.

Figure 5.8: Scheduling/binding ‘+5′’ to ⟨S4,M4⟩.

5.3. THE ALGORITHM 67

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1 R2.2

R3.1

R4.1 R2.1

R4.1 R4.2

A2+6'

R4.3 R4.4

S 6
C1

c1

R4.3 R4.4

M1*5'

R1.1 R1.2

R1.1

(a) Scheduling/FU binding and register binding.

A{I(1.1)} = 4,800

Multiplier3
(4,000)

Multiplier2
(4,000)

Adder1
(500)

W

H

Multiplier1
(4,000)

Register
(300×2)

MUX
(200×1)

A{I(2.1)} = 5,000

Register
(300×2)

A{I(2.1)} = 4,800

Register
(300×2)

A{I(2.2)} = 2,900

Register
(300×4)

MUX
(200×2)

MUX
(200×2)

MUX
(200×1)

Comparator1
(300)

Adder2
(500)

cost
= 4,800 + 5,000 + 4,800 + 2,900
= + 2 × 2 × 5,000

= 37,500

(b) Area cost.

Figure 5.9: Scheduling/binding ‘+5′’ to ⟨S3,M1⟩.

68 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1 R2.2

R3.1

R4.1

R4.1 R4.2

A2+6'

R4.3

S 6
C1

c1

R4.3 R4.4

M1*5'

R1.1 R1.2

C2c2

R2.1

R4.4 R1.1R1.2

(a) Scheduling/FU binding and register binding.

A{I(1.1)} = 5,300

Multiplier3
(4,000)

Multiplier2
(4,000)

Adder1
(500)

W

H

Multiplier1
(4,000)

Register
(300×2)

MUX
(200×2)

A{I(2.1)} = 5,000

Register
(300×2)

A{I(2.1)} = 4,800

Register
(300×2)

A{I(2.2)} = 2,900

Register
(300×4)

MUX
(200×2)

MUX
(200×2)

MUX
(200×1)

Comparator1
(300)

Adder2
(500)

Comparator2
(300)

cost
= 5,300 + 5,000 + 4,800 + 2,900
= + 2 × 2 × 5,300

= 39,000

(b) Area cost.

Figure 5.10: Scheduling/binding ‘+5′’ to ⟨S4,M1⟩.

5.3. THE ALGORITHM 69

S 1

S 2

S 3

M1

A1

A1

S 4

S 5

M2

M2

M3*1

+6

*5+4

*2 *3

R1.1 R1.2 R2.1 R2.2 R3.1 R3.2

R1.1

R4.1

R2.1

R4.2 R2.1

R4.1 R2.1

R4.1 R4.2

A2+6'

R4.3 R4.4

S 6
C1

c1

R4.3 R4.4

M1*5'

R1.2

R1.1

A2+4'

R4.3 R4.4

M3*1'

R3.3 R3.2

R3.1

M1*2'

R1.3 R1.2

R1.1

M2*3'

R2.3 R2.2

R2.3

C2c2

R3.1

R2.2

(a) Scheduled/bound re-computational DFG.

A{I(1.1)} = 5,500

Multiplier3
(4,000)

Multiplier2
(4,000)

Adder1
(500)

W

H

Multiplier1
(4,000)

Register
(300×3)

MUX
(200×3)

A{I(2.1)} = 6,000

Register
(300×3)

A{I(2.1)} = 5,300

Register
(300×3)

A{I(2.2)} = 3,300

Register
(300×4)

MUX
(200×4)

MUX
(200×4)

MUX
(200×2)

Comparator1
(300)

Adder2
(500)

Comparator2
(300)

(b) Area.

Figure 5.11: An output example of Step(1.2).

70 CHAPTER 5. FULLY REDUNDANT FAULT SECURE HLS

Table 5.1: Experimental results.

App. Algorithm Island size Max area Tclk #Steps Latency Area Over- Time Over-

#Island (µm2) (µm2) (ns) (ns) head (%) head (%)

DCT Normal 8,100 6,336 3.0 11 33.0 – –

3× 2 [24] 16,900 15,811 3.0 39 117.0 108.64 254.55

16,900 15,811 3.5 39 136.5 108.64 313.64

Ours 12,150 9,014 3.0 23 69.0 50.00 109.09

12,150 8,327 3.5 20 70.0 50.00 112.12

EWF3 Normal 9,025 8,845 3.0 54 162.0 – –

2× 2 [24] 25,600 24,708 3.0 114 342.0 183.66 111.11

25,600 25,061 3.5 113 395.5 183.66 144.14

Ours 13,538 13,138 3.0 86 258.0 50.00 59.26

13,538 11,989 3.5 70 245.0 50.00 51.23

FIR Normal 8,100 5,683 3.0 30 90.0 – –

3× 2 [24] 16,900 12,168 3.0 43 129.0 108.64 43.33

14,400 12,168 3.5 43 150.5 77.78 67.22

Ours 12,150 12,109 3.0 37 111.0 50.00 23.33

Table 5.2: Comparison of area and performance.

App.
[24] Ours

Island size (µm2) Latency (ns) Island size (µm2) Latency (ns)

DCT 16,900 (1.00) 117.0 (1.00) 12,150 (0.72) 69.0 (0.59)

EWF3 25,600 (1.00) 342.0 (1.00) 13,538 (0.53) 258.0 (0.75)

FIR 16,900 (1.00) 129.0 (1.00) 12,150 (0.72) 111.0 (0.86)

5.4 Experimental Results

We have implemented our algorithm in C++. The algorithm has been run on

AMD Opteron 2360 SE (2.5 GHz, Quad core) with 16 GB memory and applied to

DCT (48 operation nodes), EWF3 (102 operation nodes), and FIR (75 operation

nodes). Table 4.1 shows the area and delay of FUs, a register, and a multiplexer

used in this experiment, which are all assumed to have 16 bit width and have been

synthesized by Synopsys Desgin Compiler under the CMOS 90 nm technology. A

controller has been synthesized for each island by Synopsys Desgin Compiler after

applying our algorithm.

We have compared our experimental results with those obtained by MCAS [7]

and the conventional fault-secure HLS algorithm for RDR architecture [24]. The

experimental results are shown in Table 5.1 and Table 5.2. Experimental results

demonstrate that our proposed algorithm reduces area by up to 47% and improves

5.5. CONCLUSION 71

performance by up to 41% compared to [24].

5.5 Conclusion

In this chapter, we have proposed a low-overhead fully redundant fault-secure HLS

algorithm for RDR architecture. The experimental results have shown that our

algorithm can reduce area by up to 47% and improve performance by up to 41%

compared to the conventional fault-secure HLS algorithm for RDR architecture.

Chapter 6

Conclusion

In this dissertation, a thermal-aware HLS algorithm and fault-secure HLS algo-

rithms for distributed-register SoC architectures have been proposed. By focusing

on HLS for distributed-register (DR) architectures, improvements in performance

and designing cost of SoCs have been realized. In particular, this dissertation has

covered RDR architecture which is one of the DR architectures.

In Chapter 3, a novel thermal-aware HLS algorithm for RDR architecture has

been proposed. Not only interconnect delays but also hot-spots can be estimated at

HLS phase by utilizing RDR architecture, which enables us to deal with hot-spots

in HLS flow and expects to reduce the designing cost drastically. Our proposed al-

gorithm has balanced the energy consumption among islands in RDR architecture

by focusing on the number of operations executed in each island. Balancing the

energy consumption can reduce the temperature of hot-spots with no performance

degradation. Allocating new functional units has further balanced the energy con-

sumption. Experimental results have demonstrated that our proposed algorithm

can reduce the peak temperature inside a chip by up to 15.5% compared to the

conventional approach.

In Chapter 4, a novel fault-secure HLS algorithm for RDR architecture which

partially duplicates operations based on overhead constraints has been proposed.

Within a set of performance and area constraints, this algorithm has attempted to

maximize reliability which is evaluated by the output probability when a soft error

occurs. Our proposed algorithm has adopted a greedy search method by removing

duplicated operations. Experimental results have demonstrated that our proposed

algorithm can improve reliability by up to 24% without any performance/area

overhead compared to the conventional approach.

In Chapter 5, a novel low-overhead fault-secure HLS algorithm for RDR ar-

chitecture which fully duplicates operations has been proposed. In contrast to con-

ventional approaches, our proposed algorithm has adopted an integrative approach

72

73

which concurrently performs scheduling, binding, allocation, and register synthe-

sis. Since this approach has monitored the cost of not only functional units but

also registers and multiplexers during scheduling/binding, the area/performance

overhead can be estimated accurately and then reduced. Experimental results

have demonstrated that our proposed algorithm can reduce area by up to 47% and

improve performance by up to 41% compared to the conventional approach.

Our proposed algorithms should be extended in the future so that we can target

various DR architectures. Using DR architectures enables us to estimate additional

design information such as interconnect delay, area, and hot-spot at HLS phase

based on the result of module floorplanning. The information can be utilized in a

similar manner for constructing novel HLS algorithms achieving high-reliability at

low-cost or low-overhead. In constructing these algorithms, we should also capture

and then utilize the feature of architectures.

The RTL circuits generated by applying our proposed algorithms have not been

implemented on FPGA yet. This is also one of our future works. Our proposed

algorithms should be evaluated on their effectiveness for FPGA platforms.

Acknowledgment

First and foremost, I would like to offer my heartfelt thanks to Professor Nozomu

Togawa at the department of Computer Science and Engineering of Waseda Uni-

versity for his thorough and enthusiastic guidance on my research. He has taught

and advised me about the foundation of my research work, research techniques,

writing and presentation skills, and the manners of researcher.

I’m deeply grateful to Professor Masao Yanagisawa at the department of Elec-

tronic and Physical Systems of Waseda University, Professor Shinji Kimura at the

Graduate School of Information, Production, and Systems of Waseda University,

and Professor Keiji Kimura at the department of Computer Science and Engineer-

ing of Waseda University for their strong support. Their technical comments have

been greatly helpful to the development of my research.

I also thank Professor Youhua Shi at Waseda Institute for Advanced Study for

his technical advice to my research work. I have also received technical support

from Dr. Shin-ya Abe and Mr. Sho Tanaka for my research work.

I also thank all of the students in Professor Togawa’s laboratory and Professor

Yanagisawa’s laboratory for their cooperation. Especially, I have received helpful

advice to my reserch life from Mr. Hiroyuki Akasaka, Mr. Yuta Atobe, Mr. Hiroaki

Igarashi, Mr. Yuta Shinoda, Ms. Manami Iwata, Ms. Yoko Oka, and Mr. Tomoharu

Hoda.

This dissertation has been supported partially by JSPS KAKENHI Grand-in-

Aid for JSPS Fellows.

74

References

[1] HotSpot 5.0 temperature modeling tool, http://lava.cs.virginia.edu/HotSpot/

index.htm.

[2] S. Abe, Y. Shi, M. Yanagisawa, and N. Togawa, “Mh4: multiple-supply-

voltages aware high-level synthesis for high-integrated and high-frequency cir-

cuits for hdr architectures,” IEICE Electronics Express, vol. 9, no. 17, pp.

1414–1422, 2012.

[3] S. Abe, M. Yanagisawa, and N. Togawa, “Energy-efficient high-level synthesis

for hdr architectures,” IPSJ Trans. on System LSI Design Methodology, vol. 5,

pp. 106–117, 2012.

[4] D. Alexandrescu, L. Anghel, and M. Nicolaidis, “New methods for evaluat-

ing the impact of single event transients in vdsm ics,” in Proc. of the 17th

IEEE International Symposium on Defect and Fault Tolerance in VLSI Sys-

tems (DFT), 2002, pp. 99–107.

[5] A. Antola, V. Piuri, and M. Sami, “High-level synthesis of data paths with

concurrent error detection,” in Proc. of IEEE International Symposium on

Defect and Fault Tolerance in VLSI Systems (DFT), 1998, pp. 292–300.

[6] R. Baumann, “The impact of technology scaling on soft-error rate performance

and limits to the efficacy of error correction,” in Proc. of IEDM: International

Electron Devices Meeting, 2002, pp. 329–332.

[7] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang, “Architecture and synthe-

sis for on-chip multi-cycle communication,” IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, no. 4, pp. 550–564, 2004.

[8] J. Cong, Y. Fan, and J. Xu, “Simultaneous resource binding and intercon-

nection optimization based on a distributed register-file microarchitecture,”

ACM Trans. on Design Automation of Electronic Systems, vol. 14, no. 3, pp.

35:1–35:31, 2009.

75

76 REFERENCES

[9] Z. P. Gu, Y. Yang, J. Wang, R. P. Dick, and L. Shang, “Taphs: Thermal-aware

unified physical-level and high-level synthesis,” in Proc. of the 2006 Asia and

South Pacific Design Automation Conference (ASP-DAC), 2006, pp. 879–885.

[10] W. Huangy, M. R. Stany, K. Skadronz, K. Sankaranarayananz, S. Ghoshyz,

and S. Velusamyz, “Compact thermal modeling for temperature-aware de-

sign,” in Proc. of the 41st Design Automation Conference (DAC), 2004, pp.

878–883.

[11] J. Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthesis under multi-

cycle interconnect delay,” in Proc. of the 2001 Asia and South Pacific Design

Automation Conference (ASP-DAC), 2001, pp. 662–667.

[12] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi, “Behavior-to-placed rtl synthe-

sis with performance-driven placement,” in Proc. of the 2001 IEEE/ACM In-

ternational Conference on Computer-Aided Design (ICCAD), 2001, pp. 320–

325.

[13] P. Lim and T. Kim, “Thermal-aware high-level synthesis based on network

flow method,” in Proc. of the 2006 Asia and South Pacific Design Automation

Conference (ASP-DAC), 2006, pp. 124–129.

[14] K. Mohanram and N. A. Touba, “Cost-effective approach for reducing soft

error failure rate in logic circuits,” in Proc. of 2003 IEEE International Test

Conference (ITC), 2003, pp. 893–901.

[15] R. Mukherjee and S. O. Memik, “An integrated approach to thermal manage-

ment in high-level synthesis,” IEEE Trans. on Very Large Scale Integration

Systems, vol. 14, no. 11, pp. 1165–1174, 2006.

[16] R. Mukherjee, S. O. Memik, and G. Memik, “Peak temperature control and

leakage reduction during binding in high level synthesis,” in Proc. of the 2005

International Symposium on Low Power Electronics and Design (ISLPED),

2005, pp. 251–256.

[17] R. Mukherjee, S. O. Memik, and G. Memik, “Temperature-aware resource

allocation and binding in high-level synthesis,” in Proc. of the 42nd Design

Automation Conference (DAC), 2005, pp. 196–201.

[18] A. Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “High-level synthesis

algorithms with floorplaning for distributed/shared-register architectures,” in

Proc. of 2008 IEEE International Symposium on VLSI Design, Automation

and Test (VLSI-DAT), 2008, pp. 164–167.

REFERENCES 77

[19] A. Ohchi, N. Togawa, M. Yanagisawa, and T. Ohtsuki, “Performance-driven

high-level synthesis with floorplan for gdr architectures and its evaluation,”

in Proc. of 2010 IEEE International Symposium on Circuits and Systems (IS-

CAS), 2010, pp. 921–924.

[20] F. J. Pollack, “New microarchitecture challenges in the coming generations of

cmos process technologies,” in Proc. of the 32nd annual ACM/IEEE interna-

tional symposium on Microarchitecture (MICRO), 1999, p. 2.

[21] R. R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “An efficient static

algorithm for computing the soft error rates of combinational circuits,” in

Proc. of Design, Automation and Test in Europe Conference and Exhibition

(DATE), vol. 1, 2006, pp. 164–169.

[22] P. Shivakumar and M. Kistler, “Modeling the effect of technology trends on

the soft error rate of combinational logic,” in Proc. of International Conference

on Dependable System and Networks (DSN), 2002, pp. 389–398.

[23] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and

D. Tarjan, “Temperature-aware microarchitecture,” in Proc. of the 30th an-

nual International Symposium on Computer Architecture (ISCA), 2003, pp.

2–13.

[24] S. Tanaka, M. Yanagisawa, T. Ohtsuki, and N. Togawa, “A fault-secure high-

level synthesis algorithm for rdr architectures,” IPSJ Trans. on System LSI

Design Methodology, vol. 4, pp. 150–165, 2011.

[25] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie, “Reliability-

centric high-level synthesis,” in Proc. of Design, Automation and Test in Eu-

rope Conference and Exhibition (DATE), vol. 2, 2005, pp. 1258–1263.

[26] K. Wu and R. Karri, “Fault secure datapath synthesis using hybrid time and

hardware redundancy,” IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol. 23, no. 10, pp. 1476–1485, 2004.

[27] J. Yu, Q. Zhou, and J. Bian, “Peak temperature control in thermal-aware

behavioral synthesis through allocating the number of resources,” in Proc. of

the 2009 Asia and South Pacific Design Automation Conference (ASP-DAC),

2009, pp. 85–90.

List of Publications

論文（学術誌原著論文）

⟨1⟩ ⃝ K. Kawamura, M. Yanagisawa, and N. Togawa, “A thermal-aware high-

level synthesis algorithm for RDR architectures through binding and alloca-

tion,” IEICE Transactions on Fundamentals of Electronics, Communications

and Computer Sciences, vol. 96-A, no. 1, pp. 312–321, Jan. 2013.

⟨2⟩ K. Fujiwara, K. Kawamura, S. Abe, M. Yanagisawa, and N. Togawa, “A

floorplan-driven high-level synthesis algorithm for multiplexer reduction tar-

geting FPGA designs,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. 98-A, no. 7, pp. 1392–1405,

July 2015.

国際会議

⟨3⟩ K. Fujiwara, K. Kawamura, M. Yanagisawa, and N. Togawa, “Clock skew

estimate modeling for FPGA high-level synthesis and its application,” in

Proceedings of the IEEE 11th International Conference on ASIC (ASICON),

Chengdu, China, Nov. 2015.

⟨4⟩ (招待講演) K. Kawamura, Y. Hagio, Y. Shi, and N. Togawa, “A floorplan-

aware high-level synthesis technique with delay-variation tolerance,” in Pro-

ceedings of 2015 IEEE International Conference on Electron Devices and

Solid-State Circuits (EDSSC), pp. 122–125, Singapore, Singapore, June 2015.

⟨5⟩ K. Fujiwara, S. Abe, K. Kawamura, M. Yanagisawa, and N. Togawa, “A

floorplan-aware high-level synthesis algorithm for multiplexer reduction tar-

geting FPGA designs,” in Proceedings of 2014 IEEE Asia Pacific Conference

on Circuits and Systems (APCCAS), pp. 244–247, Ishigaki, Japan, Nov.

2014.

⟨6⟩ (招待講演) K. Kawamura and N. Togawa, “Floorplan-driven architecture

and high-level synthesis for hot-spot temperature optimization,” in Proceed-

78

79

ings of the 29th International Technical Conference on Circuits/Systems,

Computers and Communications (ITC-CSCC), pp. 741–744, Phuket, Thai-

land, July 2014.

⟨7⟩ ⃝ K. Kawamura, S. Tanaka, M. Yanagisawa, and N. Togawa, “A partial

redundant fault-secure high-level synthesis algorithm for RDR architectures,”

in Proceedings of the 2013 IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 1432–1435, Beiging, China, May 2013.

国内学会

⟨8⟩ (査読あり) 伊東光希, 川村一志, 田宮豊, 柳澤政生, 戸川望, “ローテータベー
スマルチプレクサネットワークによるフィールドデータ抽出器の構成手法,”

情報処理学会DAシンポジウム 2015論文集, pp. 29–34, 加賀市, 2015年 8月.

⟨9⟩ 川村一志, 阿部晋矢, 史又華, 柳澤政生, 戸川望, “タイミングエラー予測回
路による再構成可能デバイス上でのデータ依存最適化回路設計,” 信学技報,

vol. 114, no. 328, pp. 51–56, 別府市, 2014年 11月.

⟨10⟩ 伊東光希,川村一志,柳澤政生,戸川望,田宮豊, “マルチプレクサ木分割による
フィールドデータ抽出器の構成手法,”信学技報, vol. 114, no. 328, pp. 197–202,

別府市, 2014年 11月.

⟨11⟩ 川村一志, 柳澤政生, 戸川望, “フロアプラン統合化アーキテクチャを対象と
した低面積指向フォールトセキュア高位合成,” 電子情報通信学会 2014年ソ
サイエティ大会, pp. 56, 徳島市, 2014年 9月.

⟨12⟩ (査読あり) 藤原晃一, 阿部晋矢, 川村一志, 柳澤政生, 戸川望, “フロアプラン
を考慮したマルチプレクサ削減 FPGA高位合成手法,” 情報処理学会 DAシ
ンポジウム 2014論文集, pp. 109–114, 下呂市, 2014年 8月.

⟨13⟩ 藤原晃一, 阿部晋矢, 川村一志, 柳澤政生, 戸川望, “フロアプランを考慮し
たマルチプレクサ入力数制限 FPGA向け高位合成手法,” 信学技報, vol. 114,

no. 123, pp. 219–224, 札幌市, 2014年 7月.

⟨14⟩ 川村一志, 柳澤政生, 戸川望, “信頼性と時間オーバーヘッド間のトレードオフ
を考慮した面積制約にもとづく RDRアーキテクチャ向けフォールトセキュ
ア高位合成手法,” 信学技報, vol. 113, no. 320, pp. 129–134, 鹿児島市, 2013

年 11月.

⟨15⟩ (査読あり) 川村一志, 柳澤政生, 戸川望, “RDRアーキテクチャを対象とした
時間・面積制約にもとづくフォールトセキュア高位合成手法,” 第 26回 回路
とシステムワークショップ, pp. 454–459, 淡路市, 2013年 7月.

80

⟨16⟩ 川村一志,柳澤政生,戸川望, “RDRアーキテクチャを対象とした時間及び面積
オーバーヘッドのないフォールトセキュア高位合成手法,”信学技報, vol. 113,

no. 30, pp. 61–66, 北九州市, 2013年 5月.

⟨17⟩ 川村一志, 柳澤政生, 戸川望, “島内消費電力量見積もりにもとづく温度特性を
考慮したRDRアーキテクチャ向け高位合成手法,”信学技報, vol. 112, no. 320,

pp. 13–18, 福岡市, 2012年 11月.

⟨18⟩ (査読あり) 川村一志, 柳澤政生, 戸川望, “温度特性を考慮した RDRアーキ
テクチャ向け高位合成手法,” 情報処理学会 DAシンポジウム 2012論文集,

pp. 133–138, 下呂市, 2012年 8月.

招待講演

⟨19⟩ 2015年 8月 IEEE SSCS Japan Chapter VDECデザイナーズフォーラム 2015

Ph.D企画セッション パネリスト.

業績賞等

⟨20⟩ 2015年 8月 アルゴリズムデザインコンテスト優秀賞.

⟨21⟩ 2014年 11月 情報処理学会 SLDM優秀発表学生賞.

⟨22⟩ 2014年 8月 アルゴリズムデザインコンテスト特別賞.

⟨23⟩ 2013年 11月 情報処理学会 SLDM優秀発表学生賞.

⟨24⟩ 2012年 11月 情報処理学会 SLDM優秀発表学生賞.

日本学術振興会 科学研究費補助金

⟨25⟩ 日本学術振興会特別研究員奨励費, “配線遅延の温度依存性を考慮し回路性
能を最適化する高位 LSI設計技術,” 2015–2016年度, 総額 190万円 (2015年
度:100万円, 2016年度:90万円).

