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ABSTRACT 

In corporation with advanced technologies, how to conduct “response control” has 

become a very important issue in designing anti-seismic building structures. Structural 

response control aims at not only the earthquake resistance improvement, but also the 

comfort enhancement. Currently, vibration control can be mainly classified into three 

categories: active, semi-active and passive control. Active control could achieve the best 

control performance, but it requires external energy supply and sometimes lacks of 

reliability. Semi-active control utilizes the change of mechanical characteristics of a 

control device and does not require large external energy supply, and it has much less 

potential of injecting vibration energy to a structure. Passive control schemes are widely 

adopted in practice because of their relatively simple, maintenance-easy mechanisms that 

could reduce the seismic responses of structures with relative ease at low cost.  

 

Widely recognized as one of the representative passive control schemes, tuned mass 

dampers (TMDs) have been regarded to be effective in mitigating structural vibrations 

under wind, harmonic excitations and human movements. However, the effectiveness of 

TMDs for seismic response control applications is still a topic of controversial discussion. 

The objective of this study is to present the optimal design frameworks for traditional and 

non-traditional TMDs for seismic response control and propose a novel multiple TMD 

floor system together with its optimum design schemes. The proposed design schemes for 

traditional and non-traditional TMDs aim at compensating the vulnerability of 

base-isolated buildings to large-amplitude, long-period and pulse-like ground motions. 

On the other hand, the proposed multiple TMD floor system is implemented into mid- or 

high-rise buildings to provide an innovative structural control scheme. This system would 
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bring about a large TMD mass ratio and exhibit less sensitive control performance to the 

natural frequency of a main oscillator. 

 

This dissertation consists of six chapters. 

 

In Chapter 1, the background of tuned systems for vibration control is firstly discussed, 

and then the motivation, objectives and scope of this study is stated. Pertinent works with 

respect to the design methods of traditional TMDs, new types of TMDs and large mass 

ratio TMD systems are reviewed. 

 

In Chapter 2, a hybrid control strategy based on the combination of a traditional TMD 

and a semi-actively controlled variable slip-force level damper is proposed, and it is 

applied to a base-isolated structure. A general framework for the optimization design of 

traditional TMDs is presented and demonstrated to be validated for the heavily-damped 

primary system integrated with the variable slip-force level damper. Through the 

numerical simulations of the hybrid-controlled system under different types of ground 

excitations, the performance of the hybrid control strategy is demonstrated to be superior 

to TMD based passive control and VSFLD based semi-active control, especially for 

protecting the base-isolated structure from low-frequency resonance induced by long 

period ground motions. 

 

A non-traditional TMD in which the dashpot is directly connected to the ground instead 

of the primary structure is studied in Chapters 3 and 4. It is adopted so as to mitigate the 
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seismic vibrations of base-isolated structures utilizing two different design criteria, 

respectively, in Chapters 3 and 4. 

 

Chapter 3 proposes an optimum design method of non-traditional TMDs based on the 

criterion for obtaining wider suppression frequency bandwidths than traditional TMDs, 

since the fixed points theory assumption cannot provide the global minimum value of 

objective functions for the case of non-traditional TMD systems. Conducted numerical 

simulations demonstrate that, compared to the traditional TMD, the control effect of the 

optimally designed non-traditional TMD is significantly improved and furthermore the 

stroke length is greatly reduced, during long period earthquakes. 

 

In Chapter 4, the stability maximization criterion for designing non-traditional TMD 

systems is discussed, and the largest degree of stability is achieved compared with the 

traditional TMDs designed by the quasi-fixed points theory and the stability 

maximization criterion, and non-traditional TMD based on the quasi-fixed points theory. 

It is demonstrated that non-traditional TMDs provide better performance than traditional 

TMDs via either the quasi-fixed points theory or the stability maximization criterion in 

terms of both the response of the primary structure and stroke length of TMD. The free 

vibration response of the primary structure decays the most quickly in the non-traditional 

TMD system designed by the stability maximization criterion. Though the non-traditional 

TMD attached system designed by the method proposed in Chapter 3 achieves the 

minimum values of the maximum relative displacement of the primary structure as well 

as the stroke length of the TMD, the stability maximization criterion is still recommended 
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as a design criterion because the required stiffness and damping coefficient are smaller 

than those designed by the method proposed in Chapter 3. 

 

In Chapter 5, a new vibration control system with multiple TMD floors integrated is 

proposed for mid- or high-rise buildings. This system takes advantages of both the 

benefits of floor isolation systems and multiple TMDs, in which both of the absolute 

accelerations of floors and inter-storey drift displacements of storeys are significantly 

mitigated. Since the floor components themselves serve as TMDs in this scheme, the 

system does not need any additional masses for TMDs, but achieves larger mass ratios 

than a common TMD system. To validate the effectiveness of the TMD floor system, a 

shaking table test on a small-scaled frame model has been carried out. Numerical 

simulation conducted to reproduce the experimental result has also been carried out. The 

obtained numerically-simulated results agree with the scale model experimental results 

with favorable accuracy. Moreover, the problem of selecting the optimum locations of 

TMD floors, if not all the floors can serve as TMDs, has also been investigated by 

employing the so-called multimode approach. All the performance of the TMD floor 

systems designed based upon H∞, H2 and stability maximization criteria has been 

demonstrated to be effective for different types of seismic excitations, indicating that the 

proposed TMD floor system has a great potential of achieving very satisfactory, 

innovative vibration control effect for building structures. The comparison of the 

performance based on the employed design criteria indicates that the TMD floor system 

designed via the stability maximization criterion can achieve smaller stroke lengths of 

TMD floors and quicker decay of free vibrations than the system designed via H∞ or H2 
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criterion.  

 

Chapter 6 lists some of the important conclusions drawn from the present research. 
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1. INTRODUCTION 

1.1 Tuned Systems for Vibration Control 

Seismic vibration control of structures is a relatively new research field in civil 

engineering. It aims at not only the earthquake resistance improvement, but also the 

comfort enhancement. Currently, vibration control can be classified into four categories: 

active control, semi-active control, passive control and hybrid control. Active control 

could achieve the best control performance, but it requires external energy supply and 

sometimes lacks of reliability, and thus it is not very widely applied in the world. 

Semi-active control utilizes the change of mechanical characteristics of a control device 

and does not require large external energy supply, and it has much less potential of 

integrating vibration energy to a structure. Passive control schemes are widely adopted in 

practice because of their simplicity and reliability, which generally include two groups: 

passive dampers and tuned systems. Hybrid control is the combination of at least two of 

the above control schemes, which can take advantages of the benefits of multiple control 

schemes. In this section tuned systems are discussed, which comprise tuned mass 

dampers, tuned liquid dampers and tuned liquid column dampers, etc. 

 

1.1.1 Tuned mass dampers 

A tuned mass damper (TMD) is one of the simplest and most reliable structural control 

devices in terms of reducing the resonant vibration of a primary structure. A TMD is also 

named as a dynamic vibration absorber (DVA) in many literatures. Frahm (1911) firstly 

proposed the un-damped tuned mass system, in which a secondary oscillator is attached 
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to an un-damped primary oscillator by a linear spring with its frequency tuned to the 

natural frequency of the primary oscillator, as shown in Figure 1.1.  

 

 

Figure 1.1 Un-damped linear TMD attached to un-damped linear primary structure 
 

The vibration response of the primary structure at the natural frequency is reduced to zero 

(anti-resonance of the tuned mass system), while resonances occur at the two new 

resonant frequencies lying in the left-hand and right-hand side neighborhood of the 

anti-resonance frequency. The magnitude of a frequency response function (FRF) is 

presented in Figure 1.2. It can be found from the figure that the vibration magnitude of 

the primary structure will be significantly amplified with an un-damped TMD if the input 

frequency is not close to the natural frequency of the primary structure, or if the natural 

frequency of the primary structure fluctuates. This phenomenon implies the tuned mass 

system lacks of frequency robustness and its effectiveness is limited. For the purpose of 

reducing the responses at the two new resonant frequencies, as shown in Figure 1.3, an 

energy dissipation damper connected between the secondary and primary oscillators is 

Ms 

mT 

kT 

ks 
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supplemented in the tuned mass system by Ormondroyd and Den Hartog (1928), while at 

the expense of increasing the response at the anti-resonance frequency as referring to 

Figure 1.4. This system is referred to as a traditional TMD system in this study. When the 

primary structure is subjected to external excitations, the attached TMD is excited and the 

kinetic energy is transferred from the primary structure to the TMD, and then the 

transferred energy is dissipated by the damping device. Traditional TMDs usually exhibit 

large stroke length. 

 

Figure 1.2 FRF magnitudes for un-damped SDOF primary structure w/ and w/o TMD 
(TMD mass ratio of 0.01, un-damped TMD with T s� �� ) 

 

TMDs have been mainly applied to mechanical systems, and have also been implemented 

in high-rise building structures primarily for reducing wind-induced vibrations. Several 

examples are as follows (Lee et al., 2006). Two TMDs of each weigh 2700 kN consisting 

of a lead-filled steel box have been installed in the 60-storey John Hancock Tower in 

Boston for reducing wind gust induced vibration. A concrete mass block of 3660 kN has 

been implemented in the 279-metre high Citicorp Center building in Manhattan as a 

TMD for mitigating the building sway amplitude. Two lead dampers are utilized for 
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Figure 1.3 Damped linear TMD attached to un-damped linear primary structure 
 

 

Figure 1.4 FRF magnitudes for un-damped SDOF primary structure w/ and w/o TMD 
(TMD mass ratio of 0.01, damped TMD with damping ratio of 0.03 and T s� �� ) 

 

preventing the deflection of antenna which is on the top of the 535-metre high Canadian 

National Tower in Toronto. Chiba Port Tower is the first tower equipped with a TMD for 

increasing the first modal damping in both the x and y directions in Japan. The 

aforementioned TMDs are all classified into the translational TMDs. Pendulum TMDs 

are of another typical type. Air cooling and heating ice thermal storage tanks are used as 
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pendulum TMDs in the Crystal Tower in Osaka, Japan for mitigating wind-induced 

vibration. A 6600 kN TMD system is installed in the 508-metre high Taipei 101 tower for 

reducing the effects of wind-induced vibration and withstanding forces in a 2500-year 

recurrence interval seismic event. 

 

1.1.2 Tuned liquid dampers 

Tuned liquid dampers (TLDs) are also a typical tuned system, in which a rigid tank 

contained with shallow liquid is utilized instead of steel, concrete or lead blocks of TMD 

systems. The sloshing motion absorbs the energy and viscous characteristic of the liquid 

dissipates it in a TLD system. The frequencies of TLDs can be adjusted by changing the 

dimensions of the tanks. The effects of TLDs on the responses of structures subjected to 

excitations are not as well understood as TMDs because of the complexity of liquid 

sloshing motions. The studies of TLD systems have been carried out by some researchers 

(Sun et al., 1989; Fujino et al., 1992; Wakahara et al., 1992; Banerji et al., 2000). TLDs 

have been implemented in the Shin Yokohama Prince Hotel and the control tower at the 

Narita Airport in Japan (Tamura et al., 1992). 

1.1.3 Tuned liquid column dampers 

Tuned liquid column dampers (TLCDs) utilize U-tube-like containers with liquid filled, 

which are attached rigidly to structures. Liquid moves through the orifice in the tube and 

dissipates energy. The frequency and damping of a TLCD can be adjusted by changing 

the liquid column length and the orifice opening, respectively. In a tall building, the 

container can be used as the water supply. Studies on TLCDs were carried out by some 
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researchers (Sakai and Takaeda, 1989; Xu et al., 1992; Abe et al., 1996; Gao et al., 1997; 

Sadek et al., 1998; Yalla and Kareem, 2000). TLCDs have been implemented in the deck 

of the Higashi Kobe cable stayed bridge in Japan. 

 

1.2 Research Motivation, Objectives, and Scope 

The number of base-isolated structures has significantly increased in Japan since the 1995 

Kobe earthquake at a speed of more than 150 buildings per year (Pan et al., 2005). Base 

isolation systems are very effective in reducing the responses of buildings, while the base 

isolation layer itself undergoes a relatively large displacement when subjected to 

large-amplitude, long period, and pulse-like ground motions, i.e., near-field motions in 

the forward directivity (Wongprasert and Symans, 2005). Possible damage can be 

induced, e.g., collision with the surrounding retaining walls, which remains not fully 

resolved (Pan et al., 2005). High damping devices are incorporated in base isolation 

systems for reducing large deformation of isolation layers, while at the expense of 

increasing inter-storey drifts and floor accelerations of superstructures (Kelly, 1999). 

 

For the last decade, it has been frequently warned that high-rise buildings would exhibit 

long-lasting vibrations due to the effect of resonances under the excitations of long period 

earthquake ground motion. At the occasion of the occurrence of the 3.11 earthquake at 

the Tohoku (north-east) area in Japan in the year of 2011, unfortunately or rather 

anticipatorily, the phenomena of long-lasting vibrations were recognized in quite a few 

high-rise buildings which were far away from the Tohoku area. A piece of TV news 
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visually reported how one of the high-rise buildings in Tokyo exhibited several-minute 

lasting vibration responding to the seismic wave propagated a long distance from the 

epicenter. Installing auxiliary damping devices is an efficient strategy to resolve tall 

building motion problems (Ali and Moon, 2007). Simple passive dampers, such as 

viscous, friction or viscoelastic dampers, rely on relative motions between the two 

components they are mounted to dissipate vibration energy. As the major component of 

the deformation associated with the fundamental mode of high-rise buildings is the 

bending deformation, damping devices utilizing shear deformation would not be very 

effective. 

 

TMDs have been verified to be effective in mitigating structural vibrations under wind 

excitations (McNamara, 1977; Luft, 1979; Kwok and MacDonald, 1990), harmonic 

excitations (Den Hartog, 1956) and human movements (Setareh and Hanson, 1992). 

However, the effectiveness of TMDs for seismic applications is still a topic of 

controversial discussion. Some researchers reported TMDs are not effective for seismic 

vibration mitigation (Kaynia et al., 1981; Sladek and Klingner, 1983; Lee et al., 2012), 

while some researchers held the opposite opinion (Wirsching, 1974; Jagadish et al., 1979; 

Pinkaew et al., 2003; Hoang et al., 2008). 

 

The objective of this study is to formulate frameworks for the optimal design of TMDs 

and propose innovative structural control schemes of applying TMDs to mitigating 

vibrations of base-isolated buildings and high-rise buildings, which are vulnerable to 

different types of long period ground motions, such as some famous earthquakes, Landers 
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(1992), Northridge (1994), Kobe (1995), and Chi-Chi (1999), characterized by pulse-type 

wave shape, long pulse period, abundant long period components, high ratio of peak 

ground velocity to peak ground acceleration, or large permanent ground displacement (Li 

et al. 2007; Makris 1997), due to resonant behaviors (Heaton et al. 1995; Takewaki et al. 

2011; Ribakov 2010). 

 

1.3 Literature Review of Pertinent Works 

1.3.1 Design methods of tuned mass dampers 

The design parameters of a TMD system are tuning ratio   (frequency ratio of the 

natural frequency of TMD to the dominant natural frequency of a primary structure) and 

damping ratio T�  (the ratio of TMD’s damping coefficient to its critical damping 

coefficient). They need to be optimally designed so as to obtain the best control effect. 

Design methods of TMDs in the literature can be generally classified into two main 

categories: one is based on approximate or exact algebraic design formulae; and the other 

is to use numerical searching methods. 

 

(1) Algebraic design formulae 

The formulae for TMDs are only available to the cases in which the primary structure is 

simplified as a single-degree-of-freedom (SDOF) structure. The most famous formulae 

were derived originally by Hahnkamm (1932) and Brock (1946), which are presented in a 

well-known textbook Mechanical Vibrations by Den Hartog (1956). The derivation 
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method is called the fixed points theory. For an un-damped SDOF primary structure, the 

FRFs pass through two fixed or invariant points which are independent of the damping 

ratio of a TMD. The optimal tuning ratio, opt , is obtained by making the magnitudes of 

the two fixed points equal to each other, and then two damping ratios which make the 

FRF curve pass through the two fixed points with a horizontal tangent can be derived. 

The root mean square (RMS) value of the two possible damping ratios is taken to be the 

optimal damping ratio, opt
T� . The optimum parameters are formulated as: 

 

opt 1
1


�

�
�

 (1.1) 

 

� �
opt
T

3
8 1

��
�

�
�

 (1.2) 

where �  is the mass ratio of the TMD to the primary structure. 

 

The above formulae are derived with the performance index set as the maximum value of 

the dimensionless FRF magnitude ratio of the primary structure’s absolute displacement, 

1absx , to the statical deflection, stx , in the case of a force excitation, i.e., 1abs stx x . For 

un-damped SDOF primary structure systems, the fixed points theory formulae are also 

applicable to the optimum design of TMDs for ground motion excitations if the 

performance index is set as the maximum value of the dimensionless FRF magnitude 

ratio of the primary structure’s absolute response to the ground input, i.e., 1abs gx x , or 

1abs gx x1abs gx x1abs g , or 1abs gx x1abs gx x1abs g  ( 1absx , 1absx1absx1 , and 1absx1absx1  respectively denote the absolute 
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displacement, velocity and acceleration of the primary structure, and gx , gxgx , and gxgx  

represent the ground displacement, velocity and acceleration, respectively), because the 

formulae of the FRF magnitude ratios are the same both for the force excitation and 

ground motion excitation cases. Following the procedure of the fixed points theory, 

Warburton (1982) derived the optimum parameter design formulae for the cases with 

various combinations of excitation and performance indices. For instance, Equations 

(1.3) and (1.4) are the design formulae for a TMD system subjected to a ground motion 

excitation, and the performance index is set as the maximum FRF magnitude of the 

relative displacement of the un-damped SDOF primary structure with respect to the 

ground acceleration.  
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For a damped primary structure, the fixed points theory is not applicable, because the two 

fixed or invariant points do not exist anymore. The quasi-fixed points theory, which is 

constructed by regarding as if the two fixed points still existed for lightly or even 

moderately damped primary structures, was employed by Ghosh and Basu (2007), and a 

closed-form formula for the optimum tuning ratio of a TMD has been derived as 
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where s�  denotes the damping ratio of the primary structure. 

 

Anh and Nguyen (2012) proposed another closed-form expression for the optimum 

tuning ratio, which is obtained based on the equivalent linearization method by replacing 

the damped primary structure with an equivalent un-damped primary structure and 

utilizing Equation (1.1), as follows 
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(1.6) 

 

The derived formulae for damped SDOF primary structures for the force excitation cases 

are not applicable to optimal design of TMDs under ground motion excitations. 

 

A lot of researches have been carried out to derive the optimum design formulae of 

TMDs attached to un-damped or damped SDOF primary structures for different 

combinations of excitations and performance indices. Three criteria, termed as H∞-norm, 

H2-norm and stability maximization, are the representative optimization criteria. For H∞ 

optimization, the objective is to minimize the maximum magnitude of an FRF, which is 

the same as that of the fixed points theory. However, even for a TMD attached to an 

un-damped SDOF primary structure, the optimum parameters in the fixed points theory 

are only the approximate solution of H∞ optimization, because the damping ratios that 
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make the curve horizontally pass through the fixed points obtained by the fixed points 

theory are not identical, and their RMS value is approximately taken as the optimum 

damping ratio as mentioned before. For un-damped SDOF primary structures under either 

force or ground motion excitations, the accurate solutions of H∞ optimization for different 

objective FRFs have been derived by Asami and Nishihara (2003). However, closed-form 

solutions of H∞ optimization cannot be obtained for damped SDOF primary structures. 

The series solutions for optimum parameters of a TMD obtained by using a perturbation 

method were proposed by Asami et al. (Asami et al., 2002). 

 

While the H∞ optimization criterion is stick to the resonant frequency response, H2 

optimization aims to reduce the total vibration energy for all the frequency range of the 

primary structure subjected to a random excitation with infinitely frequencies. The area 

under the FRF curve is minimized in this criterion. The H2 optimization criterion for 

TMD design was firstly proposed by Crandall and Mark (1963). The exact solutions for 

both un-damped and damped SDOF primary structures subjected to a force excitation or 

ground motion excitation have been derived by Asami et al. (2002), and they also derived 

the approximate solutions, which are more convenient to utilize, by using a perturbation 

method. Tigli (2012) derived the accurate optimum parameters of TMDs with the 

performance index set as the variance of the velocity of the primary structure subjected to 

a force excitation, and also obtained the solutions of the optimum tuning ratios as 

functions of optimum damping ratios for mitigating the displacement and acceleration 

variances, respectively. 
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Both of the H∞ and H2 optimization criteria are based on the FRFs. This fact implies that 

the steady-state responses are the performance indices to be minimized. The stability 

maximization criterion is employed to decay free vibration responses in the minimum 

duration. The criterion was firstly proposed by Yamaguchi (1988), and developed by 

Nishihara and Matsuhisa (1997) for demonstrating the stability maximization criterion 

optimization can be achieved by maximizing the minimum absolute value of the real 

parts of the system eigenvalues. The closed-form solutions of the stability maximization 

criterion have been derived for both un-damped (Equations (1.7) and (1.8)) and damped 

(Equations (1.9) and (1.10)) SDOF primary structures as follows: 

For un-damped primary structures 

opt 1
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For damped primary structures 

opt
s 2

s

1 1
1 1

� �
� � �

� �
� �� �� �� � �� �

 (1.9) 

 

� �� �opt 2
T s s

1 1
1

� � � � �
�

� � � �
�

 (1.10) 

 

On the other hand, Villaverde et al. (Villaverde, 1985; Villaverde and Koyama, 1993; 

Villaverde and Martin, 1995) suggested that TMDs performed well for seismic vibration 
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mitigation when the first two modal damping ratios of the single-TMD (STMD) attached 

SDOF primary system have the same values. Sadek et al. (1997) pointed out Villaverde’s 

formula does not result in equal damping in the first two modes, especially for the cases 

of large mass ratios, and they improved the research results of Villaverde et al. by giving 

the following two equations 
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In fact, the essence of the method proposed to achieve equal and large modal damping in 

the first two modes is the stability maximization. It is obvious that the formulae 

(Equations (1.11) and (1.12)) proposed by Sadek et al. are approximate to the exact 

solutions of the stability maximization criterion (Equations (1.9) and (1.10)) derived by 

Nishihara and Matsuhisa. 

 

(2) Numerical searching methods 

To obtain the accurate optimal solutions of TMD parameters for multi-degree-of-freedom 

(MDOF) primary structures in a variety of specific cases, i.e., specific excitations or 

outputs (performance indices), numerical searching methods by using optimization 

techniques were employed by some researchers. Linear Quadratic Gaussian (LQG) 
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control method was employed to design active TMDs for MDOF primary structures 

subjected to a Gaussian random excitation with a dominant frequency by Nishimura et al. 

(1989). Genetic algorithm (GA) developed by Holland (1975) was applied to designing 

TMDs in recent years. GA searches the possible solutions from many different points and 

finds a nearly global optimum solution. Hadi and Arfiadi (1998) employed GA to design 

an STMD attached to the top of damped MDOF primary structures, with the objective 

function set as the H2-norm value of the frequency transfer function from an unit intensity 

and zero mean white noise to the top displacement relative to the ground. Singh et al. 

(2002) applied GA to the optimization of TMDs for response control of torsional building 

systems subjected to bi-directional seismic excitations. Desu et al. (2006) used GA for 

optimal design of coupled TMDs attached to asymmetric buildings to control the 

lateral-and-torsional coupled vibrations. Pourzeynali et al. (2007) investigated the 

combined applications of GA and fuzzy logic to design active TMD control systems 

under seismic excitations. Gradient-based algorithms with initial values given by the 

analytical formulae of the fixed points theory were adopted by some researchers (Rana 

and Soong, 1998; Zuo and Nayfeh, 2005). For optimization problems with non-smooth 

objective functions, such as maximization of the minimum damping, sub-gradient 

optimization method was adopted (Zuo and Nayfeh, 2004). Hoang and Warnitchai (2005) 

utilized a numerical optimizer that followed the Davidon-Fletcher-Powell algorithm 

(Davidon, 1959; Fletcher and Powell, 1963) to design multiple TMDs for SDOF 

structures subjected to wide-band excitations. Lee et al. (2006) proposed a step-by-step 

iteration method integrating the golden section search method (Mathews, 1992) to search 

the optimal design parameters with the objective function set as the mean square value of 
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the structural responses in the frequency domain. Leung et al. (Leung et al., 2008; Leung 

and Zhang, 2009) applied particle swarm optimization algorithm to the design of TMDs 

attached to a viscously damped SDOF primary structure under non-stationary excitations, 

with the objective function set as the mean square response of either displacement or 

acceleration. Bekdas and Nigdeli (2011; 2013) utilized the harmony searching method 

(Geem et al., 2001) to design TMD parameters (mass, stiffness and damping) with the 

objective to reduce the peak values of the first storey displacement and acceleration 

transfer functions. 

 

1.3.2 New types of tuned mass dampers 

A traditional TMD, comprising of a mass, a linear spring and a linear damper, is usually 

not very effective for vibration mitigation of a system. Accordingly, new types of TMDs 

have been proposed by some researchers. 

 

(1) Non-passive tuned mass dampers 

TMDs integrated with active or semi-active control strategies, possibly would improve 

the performance. Active or semi-active TMDs require prescribed control algorithms and 

external power supplies for on-line analyses and generation of driving forces. Active 

TMD was firstly presented by Morison and Karnopp (1973), and then the studies of 

active TMDs in civil engineering began from 1980 (Chand and Soong, 1980; Udwadia 

and Tabaie, 1981). Semi-active TMDs with variable stiffness and/or damping 

characteristics were also investigated to mitigate vibration responses induced by winds 



 

 17 

and earthquakes (Hrovat et al., 1983; Abe, 1996). In addition to that, many studies 

focusing on non-passive TMDs were conducted. Aldemir (2003) incorporated a 

magnetorheological damper in a TMD to semi-actively control the peak responses of an 

SDOF structure subjected to a broad class of seismic inputs. Rüdinger (2006) proposed a 

TMD with the damping governed by a nonlinear viscous power law, where the law is 

dependent on both the structural damping and excitation intensity. Cheung et al. (2012) 

proposed a hybrid control (active-passive) TMD to minimize the velocity response of a 

structure based on the H2 optimization criterion by using displacement and velocity 

feedback.  

 

(2) Multiple tuned mass dampers 

Single-tuned mass damper (STMD) installed on the top floor is usually used to control 

the fundamental vibration mode of a building, indicating that an STMD system is 

effective only when the dominant frequency of a narrow-banded earthquake excitation is 

close to the fundamental frequency of the structure. Thus, STMD is not always effective 

in reducing vibrations induced by various kinds of earthquakes. On the other hand, 

multiple-tuned mass dampers (MTMDs) with distributed natural frequencies have been 

confirmed to be robust for excitations with wide spectrum of frequency components (Xu 

and Igusa, 1992; Yamaguchi and Harnpornchai, 1993; Abe and Fujino, 1994; Igusa and 

Xu, 1994 ;Kareem and Kline, 1995; Joshi and Jangid, 1996; Strasberg and Feit, 1996; Li, 

2000; Park and Reed, 2001), and be able to moderately reduce peak responses even under 

impulsive earthquakes (Chen and Wu, 2001). MTMDs have been recently employed to 

solve multimodal vibration problems in bridge engineering (Kwon and Park, 2004; Li et 
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al., 2010; Daniel et al., 2012). 

 

(3) Non-traditional tuned mass dampers 

A new type of TMD was recently proposed by Ren (2001), in which the dashpot is 

directly connected to the ground instead of the primary structure, and it can achieve a 

larger suppression of the maximum magnitude of FRFs for primary structures than a 

traditional TMD with the same mass ratio. This type of TMDs may provide an 

inexpensive and convenient solution to the TMD-based vibration suppression issue in 

some cases, such as when a damper is too massive to be attached between the primary 

structure and TMD. Further studies on this new type of TMD, termed as “non-traditional 

TMD”, have been conducted by some other researchers (Liu and Liu, 2005; Wong and 

Cheung, 2008; Liu and Coppola, 2010; Cheung and Wong, 2011). Figure 1.5 presents the 

comparison of the analytic model between the non-traditional TMD system and the 

traditional TMD system. 

 

 
(a) traditional TMD 

 
(b) non-traditional TMD 

Figure 1.5 Analytic model comparison of two systems 
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For un-damped SDOF primary structures with non-traditional TMDs attached, two fixed 

points of FRFs also exist where their magnitudes are independent of the TMD damping. 

Ren (2001) derived design formulae for the optimum parameters of such a non-traditional 

TMD that is attached to an un-damped SDOF primary structure under a force excitation, 

utilizing the fixed points theory with the performance index set as the maximum 

magnitude of the normalized displacement FRF. The formulae are as follows 

 

opt 1
1


�

�
�

 (1.13) 

 

� �
opt
T

3
8 1 0.5

��
�

�
�

 (1.14) 

 

Cheung and Wong (2009) proposed design formulae of non-traditional TMDs for 

minimizing the normalized velocity FRF magnitude of a force excited un-damped SDOF 

primary structure, as shown in the following 
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where 2 3 4 516 48 12 84 3 15A � � � � �� � � � � � , 

2 3 4 516 64 28 112 61 38B � � � � �� � � � � � � . 
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Wong and Cheung (2008) derived the formulae of optimum parameters in the case in 

which a non-traditional TMD is attached to an un-damped SDOF primary structure under 

a ground motion excitation, where the same procedures as Ren were employed. The 

derived optimum tuning condition is the same as Equation (1.13), while the optimum 

damping ratio is  
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Cheung and Wong (2011) investigated the optimum tuning and damping of a 

non-traditional TMD attached to an un-damped SDOF primary structure under a force 

excitation, where the performance index is the mean square value of the normalized 

displacement FRF magnitude. Higher tuning ratio is preferable, because the global 

optimum tuning ratio does not exist. For � < 2 4 2 3�  (note an error in the reference 

on Page 1043), the optimum damping ratio is related to the tuning ratio as  
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Cheung and Wong (2011) pointed out that the optimum parameters of non-traditional 

TMDs, which are derived based on the fixed-points theory, i.e., Equations (1.13) and 

(1.14), do not lead to the global minimum FRF magnitude. They proposed a new set of 

optimum tuning and damping ratios as follows 
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(1.20) 

It can be found that a very high TMD damping ratio is required in the proposed design 

method (it becomes larger than 1 when the mass ratio is smaller than 0.2). 

 

For a damped SDOF primary structure subjected to a force excitation, Liu and Coppola 

(2010) derived the optimum tuning ratio of non-traditional TMDs based on the 

assumption proposed by Ghosh and Basu (2007). In the assumption, the FRF magnitude 

curves are postulated to join at two points when a damped TMD with a small mass ratio 

is attached to a lightly or moderately damped primary structure. The derived optimum 

tuning ratio is as shown in Equation (1.21). 
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where s�  denotes the damping ratio of the damped SDOF primary structure. 

 

Anh and Nguyen (2013) derived the following approximate analytical formula of the 

tuning ratio of a non-traditional TMD attached to a damped SDOF primary structure 

under a force excitation, by replacing the original damped structure by an equivalent 

un-damped structure and utilizing Equation (1.13). 
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1.3.3 Large mass ratio tuned mass damper systems 

A TMD usually requires a large mass to achieve a better control effect (Rana and Soong, 

1998; De Angelis et al., 2012). A TMD with a large mass ratio has been found to be able 

to function properly even if its parameters shift away from the optimally designed values. 

In this regard, a TMD with a larger mass ratio would be robust with respect to the 

variations in the structural properties (Hoang et al., 2008). From this point of view, those 

TMD systems with large mass ratios, have been proposed by some researchers, in which 

a part of a building is utilized as TMD for vibration control while it can still retain the 

structural and architectural functions of the buildings. 

 

Feng and Mita (1995) proposed a mega-subcontrol system for super tall buildings by 

utilizing the substructures as TMDs, which takes advantages of the mega-substructure 

configuration of super tall buildings. The mass ratio in the system can reach as much as 

1.0. As the substructures naturally have several vibration modes, energy in a broad 

frequency range can be absorbed accordingly, which cannot be realized by the traditional 

TMD system. 

 

Tian et al. (2008) proposed a sliding roof system, in which the roof acts as the mass of 

TMD. Springs implemented between the roof and the supporting beams provide lateral 
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stiffness, and the friction force between the roof beams and the supporting beams 

supplies damping. A mass ratio of 23% was achieved in the sliding roof system. 

 

Matta and De Stefano (2009) proposed a roof garden TMD system, which combines the 

dynamic response mitigation ability of traditional TMDs with the environmental 

advantages of traditional roof gardens. The ratio of TMD’s mass to total structural mass 

was 17.1% in the study. 

 

Ziyaeifar and Noguchi (1998) firstly proposed an idea to isolate a part of a tall building 

by an isolator layer located in the height of the building. This system is termed as 

“middle-storey isolation system” (Murakami et al., 2000; Sueoka et al., 2004) or 

“segmented upper storeys system” (Chey et al., 2010). Chey et al. (2010) developed the 

segmented upper storeys system by integrating a semi-active TMD for providing robust 

adaptability to broader ranges of the structural response. In the study, the ratios of the 

segmented upper storey mass to the lower storey mass are 24.4% and 59.4%, respectively, 

for the 10+2 and 8+4 models. 

 

Fu and Johnson (2011) proposed a shading fin mass damper system to improve buildings 

both structurally and environmentally. External shading fins can adjust the amount of 

sunlight entering a building, and meanwhile act as TMDs to dissipate energy during 

strong earthquakes or winds. The TMDs are distributed along the height of a building 

with the mass ratio of 5%. 
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1.4 Dissertation Organization 

This dissertation aims to study and develop innovative applications of TMDs for 

mitigation of building structural responses under seismic excitations. 

 

In Chapter 2, a hybrid control strategy based on the combination of a traditional TMD 

and a damper with variable slip-force level, is presented, and is applied to a base-isolated 

structure. A general framework for optimization design of TMDs is presented and verified 

to be validated for the heavily-damped primary system integrated with the variable 

slip-force level damper. Based on numerical simulation results, the hybrid control 

strategy is demonstrated to be effective for both harmonic excitations and non-stationary 

seismic excitations, and can effectively protect base-isolated structures from 

low-frequency resonance induced by long period ground motions. 

 

In Chapters 3 and 4, the non-traditional TMD introduced in Section 1.3.2 (3) is discussed 

for the purpose of adopting it to mitigate the seismic vibrations of base-isolated structures 

via two different design criteria, respectively. 

 

In Chapter 3, an optimum design method is proposed to obtain a wide suppression 

bandwidth based on frequency response functions, since the fixed points assumption 

cannot provide the global minimum value of objective function for non-traditional TMD 

systems. Numerical simulations demonstrate that the control effect of the optimally 

designed non-traditional TMD is significantly improved by the proposed design method, 

and furthermore the stroke length is greatly reduced, compared with the traditional TMD 
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during near-field long period earthquake ground motions. In Chapter 4, the stability 

maximization criterion for designing non-traditional TMD systems is discussed. The free 

vibration response of a primary structure decays the most quickly in the optimally 

designed non-traditional TMD system.  

 

In Chapter 5, a concept of a TMD floor system is proposed, in which building floors 

serve as TMDs is proposed. This system takes advantages of the characteristics of both 

the floor isolation system and MTMDs. Since the floor components themselves serve as 

TMD in this scheme, the system does not need any additional masses for TMDs, and also 

achieves larger TMD mass ratios than a common TMD system. To validate the 

effectiveness of the TMD floor system, a shaking table test on a small-scaled model is 

carried out. Numerical simulation demonstrates that the numerical results agree with the 

experimental results with favorable accuracy. Moreover, the problem of how to select the 

optimum locations of TMD floors if not all the floors can serve as TMDs, is also 

investigated by employing the so-called multimode approach. The performance of the 

TMD floor systems designed via different criteria have been compared and demonstrated 

to be effective for different types of seismic excitations, indicating that the TMD floor 

systems have a great potential of achieving very satisfactory, innovative vibration control 

effect for building structures. 

 

Chapter 6 gives some of the important conclusions drawn from this research. 
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2. HYBRID STRUCTURAL CONTROL COMBINING TRADITIONAL TUNED 

MASS DAMPER AND VARIABLE SLIP-FORCE LEVEL DAMPER 

2.1 Introduction 

As is mentioned in Chapter 1, TMD is one of the simplest and most reliable structural 

control devices in terms of reducing the resonant vibration of a primary structure. For 

achieving superior control performance, hybrid control schemes integrating TMDs have 

been proposed by some researchers. Loh and Chao (1996) investigated the control effect 

of active TMD located between the basement and foundation of base-isolated structures. 

The weighting matrix in the optimal algorithm was determined by the pole assignment 

method. The hybrid control system was verified to have good control performance 

especially for reducing isolator deformation. Mitchell et al. (2012) proposed a hybrid 

control system consisting of a TMD and an actuator placed on the top of a building, and 

viscous liquid dampers located on each floors. The system adopts an algorithm which 

combines the fuzzy logic theory and neural networks to create an adaptive neuro-fuzzy 

inference system, and then is combined with wavelet theory to filter the response data. 

Numerical simulations demonstrate that though the proposed control system uses fewer 

sensors in the building than full state feedback controllers, less computation time than 

adaptive neuro-fuzzy inference system is required with comparable resulting responses. 

Bozer and Altay (2013) studied a combined structure/un-damped TMD system which is 

equipped with an active controller to track the response of an oscillator with natural 

frequency set to the operating frequency of the TMD unit. This tracking type controller is 

formulized by both linear quadratic regulator and H∞ control schemes. The response of 

the controlled structure matches the desired operating frequency of the un-damped TMD 
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unit even if the structure is excited by a broadband input, and thus supports the 

un-damped TMD unit to function effectively. Nishitani and Inoue (2001) summarized the 

information of buildings integrating hybrid TMDs in Japan. The hybrid TMD integrates 

certain active control operation into passive TMD movement, and can work more 

effectively employing a smaller driving force. 

 

Variable slip-force level damper (VSFLD), firstly proposed by Nishitani et al. (2003), is a 

semi-actively controlled damper which provides an elastic-perfectly plastic hysteresis 

with variable slip-force levels. It can be controlled so as to maintain a ductility factor of 

two responding to harmonic excitations. The ductility factor of two can be the optimum 

value in mitigating the relative displacement amplitude of steady-state resonant vibrations. 

By hybrid-combining TMD and VSFLD, enhancement of response control performance 

for different types of seismic excitations can be achieved. 

 

In this chapter, first of all, it is theoretically demonstrated that, an elastic-perfectly plastic 

hysteresis would be the most effective in mitigating the steady-state resonant vibration to 

harmonic excitations, with the ductility factor of two. Secondly, an optimization method 

is presented to determine the optimum parameters of an STMD. Then, the hybrid control 

strategy is applied to a base-isolated structure, and the dynamic iterative equation of the 

hybrid-controlled nonlinear system is derived. Through numerical simulations of the 

hybrid-controlled system under different types of seismic excitations, the effectiveness of 

the hybrid control strategy is demonstrated by comparing with the un-controlled, passive 

control based on only TMD and semi-active control based on only VSFLD. 
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2.2 Variable Slip-Force Level Dampers 

A VSFLD is a semi-actively controlled damper which provides an elastic-perfectively 

plastic hysteresis with variable slip-force levels. Its concept has been proposed by 

Nishitani et al. (2000, 2003). It is controlled so as to maintain a ductility factor of two 

responding to harmonic excitations. It has been demonstrated that, with the ductility 

factor of two, an elastic-perfectly plastic hysteresis would be the most effective in 

mitigating steady-state vibrations to harmonic excitations (Tajimi, 1965; Nishitani et al., 

2009). Herein, however, a different way is employed to demonstrate that a ductility factor 

of two is the optimum value for mitigating the relative displacement amplitude of 

steady-state resonant vibrations. 

 

In the hysteresis loop of an elastic-perfectly plastic damper shown in Figure 2.1, kd 

represents the stiffness of the damper, kseq denotes the required equivalent linear stiffness 

of the system, and �  is the ratio of kd to kseq. xy and �  are the elastic limit 

displacement and ductility factor, respectively. The equivalent linear stiffness, kdeq, and 

equivalent viscous damping coefficient, cdeq, of the damper can be obtained as 
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where ω is circular frequencies of harmonic excitations. 
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Figure 2.1 Elastic-perfectly plastic hysteresis loop 

 

Under the condition that the total equivalent linear stiffness, kseq, of the structure 

incorporating with the damper is a constant, the stiffness of the structure, ks, and the 

equivalent damping ratio, ζeq, of the whole system can be obtained as Equations (2.3) and 

(2.4), respectively. 
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where s�  and seq�  denote the damping ratio of the structure and equivalent linear 

natural circular frequency of the whole system, respectively, and s�  is approximately in 

the range of 0.01~0.02 for most building structures. 

 

The relative displacement amplitude, xm, of the steady-state resonant vibration for the 

damper attached structure is 

Qd (force provided by the damper) 

xd (relative displacement between 
two ends of the damper) 

O 

kd=αkseq 

xy ηxy 

kdeq 
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where ms denotes the mass of the structure, eqr�  represents the equivalent damping ratio 

of the system consisted of the structure and VSFLD in the case of resonance, and Ag is 

the amplitude of a harmonic excitation. 

 

It can be found that xm is the minimum when eqr�  is the maximum. In other words, the 

minimum value of xm can be obtained when the first and second order derivatives of eqr�  

with respect to �  are equal to zero and negative, respectively. The equation of the first 

order derivative of eqr�  is 

 

� � � �2 2 3 2(16 ) 16 4 64 1 64 0s� � � � � � � �� � � � � � �  (2.6) 

 

The coefficient, 2 2
s� � , in Equation (2.6) can be neglected compared with the coefficient 

16, thus the following formulation can be obtained. 
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It can be found from Equation (2.7) that two is the optimum value of the ductility factor 

� , otherwise sk  will be zero. On the other hand, it can be easily proved that the second 
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order derivative of eqr�  with respect to �  is negative when �  equals two. Therefore, 

when the ductility factor of the elastic-perfectly plastic damper is equal to two, the 

relative displacement amplitude of the steady-state resonant vibration can be maximally 

mitigated, which is the same as the conclusion drawn by Tajimi (1965). In addition, it is 

found from the denominator of Equation (2.5) that the equivalent linear damping ratio for 

resonant vibrations, i.e. eqr� , is equal to 1/2π that is approximately 16% corresponding 

to the ductility factor of two if only the VSFLD is taken into consideration (without 

considering the primary structure), which is the same as the numerical result obtained by 

Tajimi (1965). In the case of steady-state harmonic oscillations, zero displacement occurs 

when velocity reaches its peak value. Therefore, VSFLD is designed so as to slip when 

the peak velocity is reached, and then the ductility factor of two will be automatically 

satisfied. 

 

The behavior of the hysteresis illustrated in Figure 2.1 could be compared with that of a 

visco-elastic damper (VED). Figure 2.2 shows the hysteresis loops of a VSFLD and its 

corresponding VED when responding to a harmonic excitation with increasing 

amplitudes. It can be found that the relative displacements are identical to each other for 

the two hystereses, while the maximum force required by the equivalent VED is larger 

than the VSFLD by 19%. Additionally, in consideration of such a fact for VEDs that 

properties are temperature-dependent, the design is in general complex and cumbersome, 

and visco-elastic materials are possibly de-bonding and tearing, VSFLDs could be 

idealistic alternatives of VEDs. 
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2.3 Design of Tuned Mass Dampers 

In this section, the optimum design for the hybrid-controlled system consisting of a TMD 

and VSFLD is discussed. The system is shown schematically in Figure 2.3. The VSFLD 

is installed between the primary structure and ground. The symbols M or m, k, and c 

denote the mass, stiffness, and damping coefficient, respectively, with the subscripts s 

and T representing the primary structure and TMD, and ag denotes the ground motion 

acceleration. 

 

 

Figure 2.2 Hysteresis loops for VSFLD and equivalent VED 

 

If structures are lightly-damped, such as damping ratios of 0.01~0.02, these damping 

ratios have practically very little influence on the optimum parameters of linear TMDs 

(Ankireddi and Yang, 1996; Rüdinger, 2006). Accordingly, it is reasonable to neglect the 

damping ratios in determining the optimum parameters of TMDs based on the fixed 

points theory (Den Hartog, 1956). Even for those moderately-damped structures, to 

which the fixed points theory can be no longer applied, the quasi-fixed points theory has 
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Figure 2.3 Analytic model of hybrid-controlled system 

 

been employed by some researchers (Tsai et al., 1993; Asami et al., 1995; Ghosh et al., 

2007) as mentioned in Section 1.3.1 (1). As also stated in Section 1.3.1 (2), numerical 

searching procedures can be employed for the optimal design of TMDs corresponding to 

each specific situation. In this dissertation, a gradient-based optimization analysis method 

is employed. The optimization problem can be formulated to search the optimal set of the 

design variables over an admissible domain so as to minimize the objective function. 

Herein, the design variables are the tuning ratio which is the frequency ratio of TMD to 

primary structure,  , and the damping ratio of TMD, T� , within the admissible 

domains which are respectively 0 1 �� �  and T0 1.00�� �  (Bakre and Jangid, 

2007). It should be noted that the gradient-based method requires a set of initial values 

with respect to the design variables, and the method efficiency and accuracy are quite 

sensitive to these initial values. The numerical method is thus classified into the local 

optimum method category rather than the global optimum method category. However, if 
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the initial values are given properly, gradient-based methods can be more accurate and 

efficient than those global optimum design methodologies such as the genetic algorithm 

(GA). To derive a global optimization result, a number of sets of initial values are given 

in terms of random numbers (e.g., using rand function in MATLAB), and then the global 

optimum parameters opt  and opt
T�  are searched. The values of   and T�  that would 

provide the global minimum objective function would be the global optimum parameters 

opt  and opt
T� . Since there are only two design variables to be considered in the present 

study, it is not time-consuming to carry out the above analysis. The flowchart for the 

gradient-based optimization method is shown in Figure 2.4, and the corresponding 

MATLAB program is given in Appendix A. 

 

In designing a TMD for this hybrid-controlled system, the equivalent damping ratio, eqr� , 

of the combination of the primary structure and the VSFLD for the case of resonance is 

regarded as the damping ratio of the primary structure. 

 

The circular frequency and damping coefficient of TMD can be obtained as 

 

opt
T seq�  ��  (2.8) 

 

opt
T T T T2c m � ��  (2.9) 

where T sm m�� . 
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Figure 2.4 Flowchart of gradient-based optimization method 

 

The dimensionless FRF magnitudes of the equivalent linear primary structure from the 

ground harmonic acceleration input to the relative displacement response (denoted as 

|HXs|), are shown in Figure 2.5 (a) and (b), respectively, with respect to η and α. The 

dashed lines in the figures represent the cases without TMD, while the solid lines 

correspond to the cases with TMD. In Figure 2.5 (a), the optimum ductility factor is 

found to be two, which is consistent with the result discussed in Section 2.2. On the other 

hand, Figure 2.5 (b) demonstrates the effectiveness of the employed hybrid control 

strategy, where the maximum magnitudes of the FRFs are significantly mitigated. The 
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larger the stiffness of VSFLD is, the larger mitigation can be achieved, whereas TMD is 

less effective. 

 

 
(a) � =0.01, s� =0.02 and � =0.4 

 

 
(b) � =0.01, s� =0.02 and � =2 

Figure 2.5 Magnitudes of dimensionless FRF from harmonic acceleration input to relative 

displacement of primary structure: ‘---’ without TMD, ‘―’ with TMD. 
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2.4 Analysis of Hybrid-Controlled Base-Isolated Structure 

2.4.1 Analytic model and method 

In the following, the hybrid control strategy is applied to a base-isolated structure. The 

structural model is schematically illustrated in Figure 2.6. The mass Ms, natural period Ts 

and damping ratio ζs of the superstructure are 1.0×106 kg, 1.0 s and 0.02, respectively. 

The mass of the base isolation layer mb is 5.0×104 kg, and the natural period Tis and 

viscous damping ratio ζis of the base isolators are assumed to be 4.0 s and 0.10, 

respectively, and �  is set to be 0.76 to achieve an equivalent damping ratio, ζeqr, of 0.2. 

The mass ratio of TMD to the primary structure μ is 0.1. 

 

 

Figure 2.6 Hybrid-controlled base-isolated structural analytic model 

 
Figure 2.7 (a) and (b) show, respectively, the FRF magnitudes of deformations for base 

isolators (denoted as |HXb|), and absolute accelerations for the superstructure (denoted as 

|HAs|) from the ground harmonic acceleration input. The parameters of TMD are 

determined by using both the quasi-fixed points theory (QFPT in the figure) and the 

gradient-based optimization method (O.F. in the figure) discussed in Section 2.3. ω1 
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denotes the fundamental natural circular frequency of the base-isolated primary structure, 

which is 1.53 rad/s. It can be found from the figures that, for the cases in which primary 

structures are MDOF systems or the objective functions are set differently (e.g., Max|HX|), 

the design formulae of quasi-fixed points theory is not available anymore, while the 

gradient-based optimization method can be conveniently used to obtain the optimum 

parameters for TMD design in different cases.  

 

 
(a) deformation of base isolators 

 

 
(b) absolute acceleration of superstructure 

 
Figure 2.7 Magnitudes of FRFs from harmonic acceleration input to structural responses 

for different control strategies 
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Figure 2.8 shows the optimization results by the gradient-based optimization method 

corresponding to ten different sets of initial values in the case of hybrid control with the 

objective function of Max|HXb|, for instance. It can be seen from the figure that the 

stability of the optimization method is satisfying. 

 

 

Figure 2.8 Optimum results obtained by gradient-based optimization method 

 

As the control of large base isolator deformation is a critical concern for base-isolated 

structures, the parameters of TMD obtained by the gradient-based optimization method 

with the objective function set as Max|HXb|, corresponding to the red lines in Figure 2.7 

(a), are adopted in the following time domain analysis. The optimal parameters of the 

TMD are opt =0.83 and opt
T� =0.20 for the passive control, and opt =0.75 and opt

T�

=0.22 corresponding to the hybrid control. 
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linearization method in the above frequency domain discussion. 

 

With ag representing the ground acceleration, the equation of motion for the 3DOF 

system shown in Figure 2.6 can be written as 

 

1 d 2 gQ a� � � � �Mx Cx Kx r MrMx Cx Kx� � ��  (2.10) 
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x , with xb, xs and xT respectively 

denoting deformation of base isolators, displacements of the superstructure and TMD 

relative to the ground, and Qd represents the damping force of the VSFLD.  

 

Solving Equation (2.10) based on the Newmark-β method, the dynamic iterative equation 

expressed by the variable, x , can be obtained as 
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where, nx , nx nx and nx nx  are displacement, velocity and acceleration vectors at the time 

instant � �n t�  ( t�  is the sampling time); and 1n�x , g 1na �, and d 1nQ �,  are the 

displacement vector, ground acceleration scalar and VSFLD force scalar at the time 

instant � �1n t� �( ) , respectively. 0 5� � .  and 0 25� � .  are employed. 1n�x  can be 

solved iteratively during the time period � � � �~ ( 1)n t n t� � �  from Equation (2.11), and 

then 1n�x 1n�x  and 1n�x 1n�x  can be obtained by the following formulations: 
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� � � � �� � � � �, ,x M (Cx Kx r ) r1x M (Cx Kx1
1n

�
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1 111 111  (2.13) 

 

Subsequently, x, xx  and xx  at the next time step can be obtained from Equations 

(2.11)~(2.13). 
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2.4.2 Numerical simulations 

With the computer program written based on the above formulation, the hybrid controlled 

system is analyzed in different excitation situations. The sampling time is set to be 0.01 s. 

 

(1) Harmonic resonant excitation 

The case in which the frequency of a harmonic excitation is equal to the fundamental 

natural frequency of the base-isolated structure is considered. In Figure 2.9 two different 

hysteresis loops of VSFLD are presented. The green and red lines, respectively, 

correspond to the case when only the VSFLD is attached to the primary structure 

(referred to as “semi-active” in the figure), and the case of the combination of the TMD 

and the VSFLD (referred to as “hybrid” in the figure). It is evident from the figure that 

the algorithm of the VSFLD exhibits satisfactory hysteresis in both cases when the 

base-isolated structural system is subjected to the harmonic excitation. 

 

 

Figure 2.9 Hysteresis loops of VSFLD 
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The response time histories (deformations of the base isolators, absolute accelerations of 

the base isolation layer, relative displacements and absolute accelerations of the 

superstructure) are shown in Figure 2.10. In the figure, the blue dashed, black solid, green 

dashed and red solid lines correspond to the un-controlled (base-isolated), 

passive-controlled (base-isolated with TMD), semi-active-controlled (base-isolated with 

VSFLD), and hybrid-controlled (base-isolated with both TMD and VSFLD) responses, 

respectively. To make a quantitative evaluation of the control effects of these control 

schemes, Figure 2.11 gives the response ratios of the three control schemes to the 

un-controlled case, with respect to the maximum deformation of base isolators (Max.db), 

maximum and root mean square values of absolute acceleration of the superstructure 

(Max.as and RMS.as). It can be seen from the figure that, by incorporating both the TMD 

and the VSFLD into the system, all the responses are mitigated. Among the schemes, the 

hybrid control achieves the best control effect. Compared with the responses of the 

un-controlled case, i.e., simple base-isolated system, the responses are reduced by 

40~46% for the passive control system with only the TMD; A reduction of 40~50% is 

achieved for the semi-active control with only the VSFLD; and they are reduced by 

52~62% for the hybrid control with both the TMD and the VSFLD. 

 

(2) Earthquake excitations 

The effect of the hybrid control strategy is investigated by using four un-scaled near-fault 

earthquake records from the PEER Ground Motion Database

(http://peer.berkeley.edu/peer_ground_motion_database): the 1952 Kern County 

(TAF111), the 1995 Kobe (KJM000), the 1999 Chi-chi (TCU068EW) and the 2011 
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Tohoku (TKY007EW). These seismic records are chosen as representatives of distinct 

classes of earthquakes (Hisada, 2004; Takewaki et al., 2011). Figure 2.12 shows the 

hysteresis loops of the VSFLD for the case of the four different ground motions. It can be 

seen from the figure that plumpness of the hysteresis loops of VSFLD is favorable even 

under random excitations either in pure VSFLD or in hybrid scheme. 

 

 
(a) deformation of base isolators 

 

  
(b) absolute acceleration of base isolation layer  

 
Figure 2.10 Time histories of responses 
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(c) displacement of superstructure relative to base isolation layer 

 

 
(d) absolute acceleration of superstructure 

Figure 2.10 Continued 
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Figure 2.11 Response ratios of different control strategies: ‘db’ deformation of base 

isolators, ‘as’ absolute acceleration of superstructure. 

 

 
(a) Kern County (TAF111) 

 
Figure 2.12 Hysteresis loops of VSFLD 
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(b) Kobe (KJM000) 

 

 
(c) Chi-chi (TCU068EW) 

       
(d) Tohoku (TKY007EW) 

Figure 2.12 Continued 
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Figures 2.13 and 2.14 show the FRF magnitudes for the deformation of base isolators in 

the passive and hybrid control cases, respectively. The FRFs are the ratio of the Fourier 

spectra of the deformation responses of the base isolators to the Fourier spectra of the 

earthquake excitations. The flowchart for the calculation procedure of FRF magnitude is 

given in Appendix B. From Figure 2.13 it can be found that in the passive control case, 

the FRF magnitudes obtained by the Fourier transform of the responses in the time 

domain are well close to the theoretical FRF magnitudes in the frequency domain, as 

illustrated by the red solid line in Figure 2.13 or the red dashed line in Figure 2.7 (a). This 

fact also indicates the accuracy of the time domain analyses. For the VSFLD integrated 

hybrid control on the other hand, the FRF magnitudes corresponding to the low 

frequencies, do not agree well with the frequency domain results, while corresponding to 

high frequencies, the FRF magnitudes obtained from the time domain analysis, agree 

relatively well with the frequency domain results. The reason for the inconsistency is due 

to the nonlinearity characteristic of the VSFLD. 

 

 
Figure 2.13 FRF magnitudes for deformation responses of base isolators from random 

earthquakes in passive control strategy 
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(a) Kern County (TAF111) 

 

 
(b) Kobe (KJM000) 

 
Figure 2.14 FRF magnitudes for deformation responses of base isolators from random 

earthquakes in hybrid control strategy 
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(c) Chi-chi (TCU068EW) 

 

 
(d) Tohoku (TKY007EW) 

Figure 2.14 Continued 

 

Figure 2.15 gives the response ratios of the three control schemes to the un-controlled 

case for the four earthquakes. It can be seen from the figure that, the hybrid control 
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components. It can be seen from Figure 2.15 (b) and (c) that, the reduction of the 

deformation of base isolators will not be at the expense of increasing the responses of the 

superstructure. Max.db, Max.as and RMS.as can be respectively mitigated by 36%, 36% 

and 32% in the hybrid strategy for Tohoku (TKY007EW) excitation. The reason for the 

relatively large improvement achieved for Tohoku earthquake is that, the periods of 4 and 

6 seconds are the predominant periods of the Tohoku earthquake from the view point of 

input energy of earthquakes (Takewaki et al. 2011), which are close to the natural period 

of the base-isolated primary structure. 

 

 
(a) Max.db 

Figure 2.15 Response ratios of different control strategies 
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(b) Max.as 

 

 
(c) RMS.as 

Figure 2.15 Continued 
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damper (TMD) and a variable slip-force level damper (VSFLD). It is theoretically 

demonstrated that, with a ductility factor of two, an elastic-perfectly plastic hysteresis 
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control strategy is then applied to a base-isolated structure. A gradient-based optimization 

method for designing the parameters of the TMD in the hybrid-controlled system is 

proposed, and the dynamic iterative equation of the nonlinear system is also presented. 

Through the numerical simulations of the hybrid-controlled system under different types 

of ground excitations, the performance of the hybrid control strategy is demonstrated to 

be superior compared with TMD based passive control and VSFLD based semi-active 

control, especially for protecting the base-isolated structure from low-frequency 

resonance induced by long period ground motions. 
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3. OPTIMUM DESIGN OF NON-TRADITIONAL TUNED MASS DAMPER 

SYSTEM FOR WIDER SUPPRESSION BANDWIDTHS 

3.1 Introduction 

Base isolation systems are very effective in reducing the seismic responses of buildings, 

while the base isolation itself undergoes a relatively large displacement. They are 

vulnerable to long period ground motions due to resonant behaviors. Some researchers 

proposed and studied the hybrid control strategy of combining traditional TMDs with 

base isolation systems, and demonstrated the effectiveness of TMDs (Yang et al., 1991; 

Tsai, 1995; Palazzo et al., 1997; Taniguchi et al., 2008; Petti et al., 2010). However, a 

traditional TMD would need a large stroke to diminish the large responses of the primary 

structure in the event of resonance, and thus a large clearance is needed to accommodate 

the large stroke. In addition, a traditional TMD is less effective for broad banded ground 

motions or ineffective for those narrow banded ground motions of which the predominant 

frequencies are not close to the natural frequency of the primary structure. To overcome 

this kind of drawback, new types of TMDs have been proposed which involve either 

weakly or strongly nonlinear characteristics (Nissen et al., 1985; Natsiavas, 1992; 

Vakakis et al., 2003). For those TMDs which nonlinear elements are involved into, 

however, additional attention should be paid to the instability problems, such as chaos, 

limit cycles and bifurcations. As mentioned in Section 1.3.2 (3), a new type of TMD 

systems termed as “non-traditional TMDs” was recently proposed and studied by some 

researchers (Ren, 2001; Liu and Liu, 2005; Wong and Cheung, 2008; Liu and Coppola, 

2010; Cheung and Wong, 2011). Such a non-traditional TMD is directly connected to the 

ground with a dashpot. It may provide an inexpensive and convenient solution to the 
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TMD-based vibration suppression issue. Furthermore, a non-traditional TMD would 

achieve a larger suppression of the maximum FRF magnitude than a traditional TMD. 

 

From the standpoint of ensuring a wide frequency suppression range, this chapter intends 

to address the issue of optimum design for the aforementioned non-traditional TMD 

which is attached to a damped primary structure excited by ground motions and also 

investigates the combination effect of the non-traditional TMD and base isolation systems. 

First the analytic model of the non-traditional TMD system is given, and the formulae for 

the magnitudes of the FRFs are presented. Then it is demonstrated that the optimum 

parameters of the non-traditional TMD derived based on the quasi-fixed points theory are 

not the global optimal solutions. And an optimum design method of a non-traditional 

TMD is proposed, which can ensure the suppression covering a wider frequency range 

than a traditional TMD. Finally, numerical simulations are carried out, which demonstrate 

the improvement of control effect achieved by combining a non-traditional TMD with a 

base-isolated structure. 

 

3.2 Frequency Response Functions of Systems with Tuned Mass Dampers 

Consider the traditional and non-traditional TMDs attached to a damped SDOF system 

which is subjected to ground acceleration inputs. These two systems are schematically 

illustrated in Figure 3.1, where M or m, k and c are the mass, stiffness and damping 

coefficient, respectively, with the subscripts s and T denoting the primary structure and 

TMD, and ag represents the ground motion acceleration. 
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(a) traditional TMD 

 
(b) non-traditional TMD 

Figure 3.1 Analytic models of two systems 

 

The FRFs of the absolute accelerations of the primary structures are obtained in the 

following manner. The equations of motion for the structural systems integrating the 

traditional and non-traditional TMDs can be represented by Equations (3.1) and (3.2), 

respectively. 
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 (3.2) 

where sx  and Tx  are the relative displacements of the primary structure and TMD to 

the base, respectively, and the dot over the symbol denotes the derivative with respect to 

time. 

T sm M� �  

s s sk M� �  

T T Tk m� �  

s s s s(2 )c M k� �  

T T T T(2 )c m k� �  

T s � ��  
sr � ��  
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Assuming such a harmonic ground acceleration as g ge
j ta �� A , where gA  and �  are 

respectively the amplitude and circular frequency of the harmonic ground acceleration 

input, the steady-state responses may be written as  

 

2
s s s s s se , e , ej t j t j tx x j x� � �� �� � � �X X X2

s ses s
j t 2 es s ss s ss s
j tt 2 ess sss
j ttj t 22j tte se ,s se 2eee  (3.3) 

 

2
T T T T T Te , e , ej t j t j tx x j x� � �� �� � � �X X X2

T TeT T
j t 2 eT T TT T TT T
j tt 2 eTT TT
j ttj t 22j tte TeT Te 2eee  (3.4) 

where sX  and TX  are the steady-state amplitudes of the relative displacements for the 

primary structure and TMD to the base, respectively. 

 

Substituting Equations (3.3) and (3.4) into Equations (3.1) and (3.2), the equations of 

motion of the two structural systems can be obtained in the frequency domain as follows:  
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The FRF magnitudes of the absolute accelerations for the primary structures in the two 

systems can be solved in a straightforward manner from Equations (3.5) and (3.6) as: 
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 (3.8) 

where AccH  denotes the FRF from the ground accelerations to the absolute accelerations 

of the primary structure, with T

s

�
�

�  and 
s

r
�
�

� . And the terms related to the 

traditional and non-traditional TMDs are denoted by the subscripts A and B, respectively. 

 

3.3 Optimum Design of Non-traditional Tuned Mass Dampers 

As stated already in Section 1.3.1, there are two main methods for the optimum design of 

traditional TMD systems: one is the optimization analysis method and the other is the 



 

 60 

fixed-points or quasi-fixed points theory. For non-traditional TMD systems, the fixed 

points or quasi-fixed points theory, which assumes that the maximum FRF magnitude 

occurs at two points of frequencies, has been also adopted to obtain opt  and opt
T�  by 

some researchers (Ren, 2001; Liu and Liu, 2005; Wong and Cheung, 2008). It has been 

proved that a non-traditional TMD provides a larger suppression of steady-state resonant 

vibration amplitude of the primary structure than a traditional TMD does. Figure 3.2 

shows the comparison between the traditional and non-traditional TMDs, both of which 

employ the optimum value sets of   and T�  obtained by the quasi-fixed points theory. 

It can be seen from Figure 3.2 (a) that, with a small value of mass ratio � =0.01, very 

limited improvement can be achieved by the non-traditional TMD system compared with 

the traditional TMD system. Herein, the suppression bandwidth is defined as the 

frequency range in which the response magnitude ratio of the system with a TMD to the 

one without a TMD is not greater than unity. Even for such a large mass ratio � =0.2 as 

shown in Figure 3.2 (b), the maximum FRF magnitude is reduced to some extent in the 

non-traditional TMD system, but the suppression bandwidths for the traditional and 

non-traditional TMD systems (denoted as B*
A and B*

B, respectively, in Figure 3.3) are 

almost the same. 
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(a) � =0.01, s� =0.02, opt

A =0.987, opt
TA� =0.064, opt

B =1.003, opt
TB� =0.064 

 

 
(b) � =0.2, s� =0.02, opt

A =0.823, opt
TA� =0.253, opt

B =1.118, opt
TB� =0.280 

Figure 3.2 Magnitudes of FRF from harmonic acceleration input to absolute acceleration 

of primary structure 
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Figure 3.3 Comparison of maximum suppression bandwidths for traditional and 

non-traditional TMDs 

( � =0.2, s� =0.02, opt
A =0.823, opt

TA� =0.253, opt
B =1.118, opt

TB� =0.280) 
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the two peak points obtained by the quasi-fixed points theory if   is larger than a 

certain value. However, such a phenomenon is not found for the traditional TMD system. 

This can be also indicated from Figure 3.4. Figure 3.4 (a) indicates that the maximum 

FRF magnitude of the traditional TMD system will be minimum when   is near the 

value of 1, while Figure 3.4 (b) signifies that the maximum FRF magnitude of the 

non-traditional TMD system is a local minimum value when   is near the value of 1 

and the maximum FRF magnitude could be smaller if   is a large value. 
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(a) traditional TMD system 

 

 
(b) non-traditional TMD system 

Figure 3.4 Magnitudes of FRFs from harmonic acceleration input to absolute acceleration 

of primary structure in traditional and non-traditional TMD systems 

( � =0.01, s� =0.02, T� =0.2) 
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TMD system, on the other hand, the larger the value of T�  is, the smaller the maximum 

FRF magnitude can be obtained. 

 

 
(a) traditional TMD system 

 

 
(b) non-traditional TMD system 

Figure 3.5 Magnitudes of FRFs from harmonic acceleration input to absolute acceleration 

of primary structure in traditional and non-traditional TMD systems 

( � =0.01, s� =0.02,  =6) 
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An optimum design method for a non-traditional TMD is proposed to obtain wider 

suppression bandwidths. By substituting opt
A  and opt

TA�  into Equation (3.7), 

differentiating Equation (3.7) with respect to r, and then making thus-obtained equation 

equal to zero, the coordinates of the three extreme points p1, p2, and p3 (as shown in 

Figure 3.6) can be derived. 

 

 

Figure 3.6 Three extreme points in optimally designed traditional TMD system 

( � =0.01, s� =0.02, opt
A =0.987, opt

TA� =0.064,  

p1 (0.953, 9.473), p2 (1.033, 9.473), p3 (0.992, 8.543) ) 

 

By employing the constraints that the values of the parameters are: B0 1/ �� �  and 
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seen from the figure: when B =3.900 and TB� =1.0, the maximum FRF magnitude for 

the non-traditional TMD system equals the magnitude value at points p1 and p2 of the 

traditional TMD system; and when B =4.456 and TB� =1.0, it equals the corresponding 

value at point p3 of the traditional TMD system. By setting the parameters B  and TB�  

equal to the two sets of the above values, the FRF magnitudes for the non-traditional 

TMD system are obtained as shown in Figure 3.8. From the figure, it can be found that in 

the frequency range of r �1.15, the control effect is improved for the non-traditional 

TMD system, while in the frequency range of r -1.15, the FRF magnitudes for the 

non-traditional TMD system are a bit larger than those for the traditional TMD system. 

This is due to the fact that when r -1, the value of � �AccH �  for the traditional TMD 

system decreases monotonically with respect to T�  when T�  is a large value, while 

the value of � �AccH �  for the non-traditional TMD system increases monotonically with 

respect to T� . In other words, larger TB�  will result in a larger FRF magnitude in the 

high frequency range for a non-traditional TMD system. Therefore, too large values of 

TB�  are unfavorable. For achieving better performance than traditional TMD with respect 

to both maximum FRF magnitude and frequency suppression bandwidth, the optimum 

value of TB�  is obtained when the maximum FRF magnitude is equal to the magnitude 

at p3. 
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Figure 3.7 Global minimum values of maximum FRF magnitude for absolute acceleration 

of primary structure in non-traditional TMD system 

( � =0.01, s� =0.02) 

 

 

Figure 3.8 Magnitudes of FRFs from harmonic acceleration input to absolute acceleration 

of primary structure ( � =0.01, s� =0.02, opt
A =0.987, opt

TA� =0.064, opt
B(p1,p2) =3.900, 

opt
TB(p1,p2)� =1, opt

B(p3) =4.456, opt
TB(p3)� =1) 

 

0 2 4 6 8 10
0

5

10

15

20

25

M
in

.M
ax

.|H
A

cc
(�

)|



=3.900,
�

T
=1.0

=4.456,
�

T
=1.0

|H
Acc

(�)|=9.473

|H
Acc

(�)|=8.543

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

r

|H
A

cc
(�

)|

 

 

traditional TMD
non-traditional TMD:
maximum amplitude=p1,p2
non-traditional TMD:
maximum amplitude=p3

r=1.15



 

 68 

Based on the above discussion, an optimum design method for a non-traditional TMD 

system is proposed as follows. Firstly, choose a practical value of B  as large as 

possible. When � =0.01 and s� =0.02, referring to Figure 3.7, it can be seen that: if the 

practical value of B  is in the range from 0 to 3.9, the optimum values of B  and TB�  

can be determined by the quasi-fixed points theory; if B  is in the range from 3.9 to 4.5, 

TB�  should be set as large as possible under the constraint; and if B  can be larger than 

4.5, TB�  can be set so as to make the maximum FRF magnitude equal to the magnitude 

at point p3 in Figure 3.6. For base-isolated structures, it would be possible to set the 

stiffness of the attached non-traditional TMD equal to the stiffness of base isolation 

bearings, i.e., B 1/ �� . If � =0.01 and s� =0.02, for instance, then B =10 and 

TB�  can be obtained as 0.390 as illustrated in Figure 3.9. 

 

 

Figure 3.9 Relationship between maximum FRF magnitude for absolute acceleration of 

primary structure and TB�  ( � =0.01, s� =0.02, B =10) 
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The design method of traditional TMDs based on the stability maximization criterion, 

which ensures the same damping ratios in the first two vibration modes, has been verifed 

to be effective in seismic applications by Sadek (Sadek et al., 1997). Traditional TMDs 

designed according to the quasi-fixed points theory and the stability maximization 

criterion are compared with the non-traditional TMD designed according to the method 

proposed in this chapter. The FRF magnitudes and maximum suppression bandwidths are 

shown in Figures 3.10 and 3.11, respectively. It can be found from Figures 3.10 (a) and 

3.11 (b) that, the maximum FRF magnitude, i.e., Max|HAcc(ω)| in the stability 

maximization criterion (referred to as SMC in the figures) is larger than that in the 

quasi-fixed points theory method (referred to as QFPT in the figures), whereas |HAcc(ω)| 

in the stability maximization criterion are always smaller than that in the quasi-fixed 

points theory method except for the vicinity of the frequency range between the two fixed 

points. However, |HAcc(ω)| in the traditional TMD system are larger than that in the 

non-traditional TMD system in the frequency range r=0~1.497. Moreover, it can be seen 

from Figure 3.11 (a) and (b) that, the suppression bandwidths in the stability 

maximization criterion are almost the same as those in the quasi-fixed points theory 

method for the traditional TMD system, and they are much narrower than those in the 

non-traditional TMD system. From Figure 3.10 (b), it can be found that though the stroke 

length of the traditional TMD designed by the stability maximization criterion is reduced 

compared with that in the quasi-fixed points theory method, it is still much larger than the 

stroke length of the non-traditional TMD. 
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(a) absolute acceleration of primary structure 

 

 
(b) stroke length of TMD 

Figure 3.10 Magnitudes of FRFs from harmonic acceleration input to absolute 

acceleration of primary structure and stroke length of TMD 

( � =0.01, s� =0.02, s 2 4� �� , opt (QFPT)
A =0.987, opt (QFPT)

TA� =0.064, opt (SMC)
A =0.988, 

opt (SMC)
TA� =0.119, opt

B =10, opt
TB� =0.390) 
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(a) relative displacement of primary structure 

 

 
(b) absolute acceleration of primary structure 

Figure 3.11 Suppression bandwidths for structural responses 

( � =0.01, s� =0.02, s 2 4� �� , opt (QFPT)
A =0.987, opt (QFPT)

TA� =0.064, opt (SMC)
A =0.988, 

opt (SMC)
TA� =0.119, opt

B =10, opt
TB� =0.390) 
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B 1 �� . 

 

Table 3.1 Optimum values of TB�  ( B 1 �� ) 

 s�  
0.02 0.04 0.06 0.08 0.10 0.15 0.20 

�  

0.01 0.390 0.378 0.372 0.369 0.370 0.390 0.437 
0.02 0.394 0.386 0.382 0.380 0.380 0.392 0.419 
0.03 0.395 0.390 0.387 0.386 0.387 0.398 0.422 
0.04 0.396 0.392 0.390 0.391 0.392 0.404 0.427 
0.05 0.396 0.393 0.393 0.394 0.396 0.410 0.433 
0.06 0.395 0.394 0.394 0.396 0.399 0.414 0.438 
0.07 0.394 0.394 0.395 0.398 0.402 0.418 0.443 
0.08 0.393 0.394 0.396 0.399 0.404 0.421 0.448 
0.09 0.392 0.393 0.396 0.400 0.405 0.424 0.452 
0.10 0.391 0.393 0.396 0.401 0.407 0.427 0.455 
0.15 0.384 0.389 0.395 0.402 0.410 0.436 0.471 
0.20 0.376 0.383 0.391 0.400 0.410 0.441 0.481 
0.25 0.368 0.377 0.386 0.396 0.408 0.443 0.489 
0.30 0.361 0.370 0.381 0.392 0.405 0.438 0.469 

 

3.4 Numerical Example 

For simplicity in evaluating the efficiency and performance of an optimum 

non-traditional TMD attached to a base-isolated structure, the entire structural system 

including the base isolation system is assumed to be linear elastic. A 3-DOF linear model 

shown in Figure 3.12 represents the system by simplifying the superstructure as an SDOF 

system. The mass Ms, natural period Ts and damping ratio ζs of the superstructure are 

1.0×106 kg, 1.0 s and 0.02, respectively. The mass of the base isolation layer mb is 

5.0×104 kg, and the fundamental natural period of the base-isolated structure Tis is 4.0 s. 

The equivalent viscous damping ratios of the base isolators (ζis) are assumed to be 0.05 

and 0.10 in the following analyses. Accordingly, the first modal damping ratios of the 

base-isolated structures are 0.0461 and 0.0920, respectively.  
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Figure 3.12 Analytic model of hybrid controlled system 

 

The control effect of the optimum-designed non-traditional TMD ( � =0.01, B =10, and 

opt
TB� =0.376 for is� =0.05 and opt

TB� =0.369 for is� =0.10, which are obtained by applying 

the linear interpolation method to the values in Table 3.1) is investigated by conducting 

time-domain analyses with selected near- and far-field un-scaled earthquake records from 

the PEER Berkeley database (http://peer.berkeley.edu/peer_ground_motion_database): 

Kern County (TAF111, PEL090, in 1952), Kobe (KJM000, KAK000, in 1995) and 

Landers (LCN260, BRS000, in 1992) which represent the three different kinds of 

earthquakes (they are, respectively, classified into short period random phase type, 

mid-long period pulse type and long period fling step type (Hisada, 2004)), and are 

compared with the control effect of the optimum-designed traditional TMD ( � =0.01, 

opt
A =0.982 and opt

TA� =0.0671 for is� =0.05, opt
A =0.969 and opt

TA� =0.0705 for is� =0.10, 

which are obtained by the quasi-fixed points theory method). The velocity response 

spectra ( structure 0.05� � ) of these selected records are shown in Figure 3.13. It is found 
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that the velocity responses for KJM000 and LCN260 are larger than those for the other 

excitations.  

 

 

Figure 3.13 Velocity response spectra ( structure� =0.05) 

 

Figure 3.14 shows the time histories of damping forces resulting from the damping 

coefficient ( is is b s is2 ( )c k m M �� � ) of base isolators in the base-isolation system, the 

damping coefficient ( opt opt
TA T A TA

is

22c m
T

� �� ) of the traditional TMD attached to the 

base-isolation system and the damping coefficient ( opt
TB T B TB

is

22c m
T

� �� ) of the 

non-traditional TMD attached to the base-isolation system for the cases of KJM000 and 

LCN260. It is found that the maximum damping forces required by the non-traditional 

TMD could be practically realized though they are larger than those required by the 

traditional TMD.  
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(a) Kobe KJM000; is� =0.05 

 

 
(b) Kobe KJM000; is� =0.10 

 

 
(c) Landers LCN260; is� =0.05 

Figure 3.14 Time histories for damping forces 
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(d) Landers LCN260; is� =0.10 

Figure 3.14 Continued 

 

The response ratios of the traditional TMD system to the system without a TMD, those of 

the non-traditional TMD system to the system without a TMD and those of the 

non-traditional TMD system to the traditional TMD system are plotted in Figure 3.15 

(a)~(f), respectively, for the six earthquake records. In the figures, db represents 

deformation of the base isolators; ds and as denote displacements of the superstructure 

relative to the base-isolation layer and absolute accelerations of the superstructure, 

respectively; dT and aT represent stroke length and absolute accelerations of the TMDs; 

and ‘w/o TMD’ is the abbreviation of without a TMD. It is noted that the response ratios 

for ds and as are the same according to the results of numerical simulations. This fact can 

be demonstrated by the results in the frequency domain. It is found that for either 

traditional or non-traditional TMD system, the FRF magnitude ratios are exactly the same 

for ds and as. It is predicted that the response ratios in the time domain also will be the 

same for ds and as. Figure 3.16 is the combination of the figures in Figure 3.15 for 

response ratios of Max. db, Max. ds or as, and RMS. ds or as. 
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(a) Kern County TAF111 

   
 

   
(b) Kern County PEL090 

Figure 3.15 Comparison of responses of three different systems under earthquakes 
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(c) Kobe KJM000 

   
 

   
(d) Kobe KAK000 

Figure 3.15 Continued 
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(e) Landers LCN260 

   
 

   
(f) Landers BRS000 

Figure 3.15 Continued 
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(a) is 0.05� �  

 

(b) is 0.10� �  

Figure 3.16 Response ratios with respect to w/o TMD under earthquakes 
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for is� =0.10 except for BRS000. The maximum relative displacements and absolute 

accelerations of the superstructure (denoted as Max.ds and Max.as, respectively) can be 

reduced by 3%-12% for is� =0.05, and 0.5%-6.0% for is� =0.10 except for BRS000. 

The root mean square (RMS) values of relative displacements and absolute accelerations 

of the superstructure (denoted as RMS.ds and RMS.as, respectively) can be reduced by 

10%-17% for is� =0.05, and 4%-10% for is� =0.10 except for BRS000. For the 

non-traditional TMD, though it is less effective for Landers BRS000 compared with other 

excitations, certain control effect for Landers BRS000 is still achieved. Except for the 

case of BRS000, the maximum deformation of the base isolators (denoted as Max. db) 

can be reduced by 13%-22% for is� =0.05, and 4%-16% for is� =0.10; the maximum 

relative displacements and absolute accelerations of the superstructure (denoted as 

Max.ds and Max.as, respectively) can be reduced by 12%-17% for is� =0.05, and 

0.8%-11.0% for is� =0.10; the RMS values of relative displacements and absolute 

accelerations of the superstructure (denoted as RMS.ds and RMS.as, respectively) can be 

reduced by 20%-27% for is� =0.05, and 11%-16% for is� =0.10. It can be concluded 

that the non-traditional TMD is always much more effective than the traditional TMD in 

mitigating the responses of the base isolators and superstructure under the different types 

of seismic excitations. Furthermore, it is shown in Figure 3.17 that the stroke length of 

the traditional TMD is very large when the structural system is excited by the large 

near-field ground motions, i.e., Kobe (KJM000) or Landers (LCN260). For the 

non-traditional TMD, however, the stroke length is much smaller, which indicates that the 

required accommodation space of the TMD is greatly reduced. 
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(a) Kobe KJM000; is� =0.05 

 

 
(b) Kobe KJM000; is� =0.10 

Figure 3.17 Time histories for stroke length of TMDs 

 

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

St
ro

ke
 le

ng
th

 o
f T

M
D

 (m
)

 

 tra-TMD
non-tra-TMD

Max(tra)=1.469
Max(non-tra)=0.060

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

Time (s)

St
ro

ke
 le

ng
th

 o
f T

M
D

 (m
)

 

 

tra-TMD
non-tra-TMD

Max(tra)=1.028
Max(non-tra)=0.063



 

 83 

 
(c) Landers LCN260; is� =0.05 

 

 
(d) Landers LCN260; is� =0.10 

Figure 3.17 Continued 
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system are much smaller than those in the pure dashpot system under all the six 

earthquakes, which indicates that the non-traditional TMD system provides higher human 

comfortability to the ground floor. In addition, it is beneficial to protect rubbers in the 

base isolators from damage. Figure 3.18 (a)~(f) show the ratios of the maximum and 

RMS values of ab (denoted as Max. ab and RMS. ab, respectively) of the non-traditional 

TMD system to those of the pure dashpot system for the six earthquake records, 

respectively. It is found that the Max. ab can be reduced by 6%-28% and 6%-21% in the 

non-traditional TMD system compared with the pure dashpot system for ζis=0.05 and 

ζis=0.10, respectively. RMS. ab can be reduced by 1%-18% and 2%-18% in the 

non-traditional TMD system compared with the pure dashpot system for ζis=0.05 and 

ζis=0.10, respectively. Figure 3.19 is the combination of Figure 3.18 (a)~(f). 

 

To compare the differences of the responses of the superstructure between the 

non-traditional TMD system and the pure dashpot system, a parametric analysis is 

conducted with different combinations of mass ratios μ and damping ratios ζis. The FRF 

magnitudes, |HAcc(ω)|, of the superstructure in the non-traditional TMD system are 

compared with those in the pure dashpot system during the frequency range of 

0.6 1.6r� � . The 2-norm value of |HAcc(ω)| which can generally represent the area under 

the frequency response curve, and the maximum value of |HAcc(ω)| which indicates the 

resonant vibration amplitude are used as the two performance indices in the comparison. 

In Figure 3.20 (a), the ratios of the 2-norm values of |HAcc(ω)|B (magnitudes of the FRF 

HAcc(ω) in the non-traditional TMD system) to those of |HAcc(ω)|VD (magnitudes of the 

FRF HAcc(ω) in the pure dashpot system) are presented for μ=0.01, 0.05, 0.10, 0.15, 0.20, 
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0.25, 0.30, with the parameters of ζis=0.02, 0.06, 0.10 and 0.20, respectively. In Figure 

3.20 (b), the ratios of the maximum values of |HAcc(ω)|B to those of |HAcc(ω)|VD are given. 

It can be seen from Figure 3.20 that the 2-norm values and maximum values of |HAcc(ω)|B 

are all smaller than those in the pure dashpot system, and the ratios decrease 

monotonically with respect to μ when ζis=0.02. For the cases with ζis=0.06, the 2-norm 

values of |HAcc(ω)|B are smaller than those of |HAcc(ω)|VD when μ is larger than 0.15, 

while the maximum values of |HAcc(ω)|B are always smaller than those of |HAcc(ω)|VD and 

the ratios decrease monotonically with respect to μ. For ζis=0.10, the 2-norm values of 

|HAcc(ω)|B are larger than those of |HAcc(ω)|VD for all the seven values of μ, while the 

maximum values of |HAcc(ω)|B are smaller than those of |HAcc(ω)|VD when μ is larger than 

0.15. When ζis is 0.20, the 2-norm values and maximum values of |HAcc(ω)|B are larger 

than those of |HAcc(ω)|VD for all the seven mass ratios. In conclusion, the non-traditional 

TMD system has better performance than the pure dashpot system when mass ratio μ is 

large (e.g., larger than 0.15 in the numerical example), and damping ratio ζis is small (e.g., 

less than 0.06 in the numerical example). 

3.5 Conclusions 

For non-traditional TMD systems, it has been demonstrated that the conventional design 

method based on the quasi-fixed points theory cannot provide the global minimum value 

of the maximum FRF magnitude for responses of primary structures. This fact is different 

from traditional TMD systems. An optimum design method of non-traditional TMDs has 

been presented from the standpoint of obtaining much wider suppression bandwidths in 

this chapter. On the basis of the optimum-designed TMD discussion, a base-isolated 
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structural system with a non-traditional TMD combined is proposed. The control effect of 

the optimally designed non-traditional TMD integrated to a base-isolated structure under 

different types of earthquake excitations have been investigated and compared with that 

of the optimally designed traditional TMD. It is found that the control effect of the 

non-traditional TMD is significantly improved compared with the traditional TMD, in 

particular in terms of significant reduction of TMD stroke length. There is no need to 

consider the problem of stroke length exceeding the limitation for non-traditional TMDs, 

whereas traditional TMDs may exceed space limitations when systems are subjected to 

near-field long period earthquake ground motions. Compared with the pure dashpot 

system which has the same damping coefficient as the corresponding non-traditional 

TMD, the accelerations of the base isolation layer in the non-traditional TMD system are 

much smaller, which can prevent the base-isolation bearings from damage and also 

ensure human comfortability of the ground floor. In this regard, non-traditional TMDs 

may provide a better solution for either retrofitting or constructing base-isolated 

structures. 

 

(a) Kern County TAF111 

 

(b) Kern County PEL090 

Figure 3.18 Comparison of accelerations of base isolation layer in non-traditional TMD 

and pure dashpot systems under earthquakes 
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(c) Kobe KJM000 

 

(d) Kobe KAK000 

 

(e) Landers LCN260 

 

(f) Landers BRS000 

Figure 3.18 Continued 

 

Figure 3.19 Response ratios of absolute accelerations of base isolation layer in 

non-traditional TMD system with respect to those in pure dashpot system under 

earthquakes 

0.887 

0.947 
0.841 

0.831 

ζis=0.10 

ζis=0.05 

Ratio of Max. ab and RMS. ab of non-
traditional TMD system to pure 

dashpot system 

Max. ab RMS. ab 

0.824 

0.823 
0.788 

0.719 

ζis=0.10 

ζis=0.05 

Ratio of Max. ab and RMS. ab of non-
traditional TMD system to pure 

dashpot system 

Max. ab RMS. ab 

0.967 

0.983 
0.865 

0.838 

ζis=0.10 

ζis=0.05 

Ratio of Max. ab and RMS. ab of non-
traditional TMD system to pure 

dashpot system 

Max. ab RMS. ab 

0.953 

0.967 
0.932 

0.940 

ζis=0.10 

ζis=0.05 

Ratio of Max. ab and RMS. ab of non-
traditional TMD system to pure 

dashpot system 

Max. ab RMS. ab 

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

1

Re
sp

on
se

 ra
tio

 w
ith

 re
sp

ec
t t

o 
pu

re
 d

as
hp

ot
 sy

st
em

   
   

   
   

 

 
Max.(a

b
) (�

is
=0.05)

RMS.(a
b
) (�

is
=0.05)

Max.(a
b
) (�

is
=0.10)

RMS.(a
b
) (�

is
=0.10)

ab ab 

ab ab ab ab 

ab ab 

Kern      Kern      Kobe     Kobe     Landers    Landers 
County    County   (KJM000) (KAK000)  (LCN260)  (BRS000) 

(TAF111)  (PEL090) 



 

 88 

 
(a) ratios for 2-norm value of FRF magnitudes 

 

 
(b) ratios for maximum value of FRF magnitudes 

Figure 3.20 Comparison of FRF magnitudes between non-traditional TMD system and 

pure dashpot system 
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4. OPTIMUM DESIGN OF NON-TRADITIONAL TUNED MASS DAMPER VIA 

STABILITY MAXIMIZATION CRITERION 

4.1 Introduction 

A non-traditional TMD system has been designed for reducing steady state responses for 

wider suppression bandwidths in the frequency domain in Chapter 3. Stability 

maximization criterion has been employed to design traditional TMDs by some 

researchers as mentioned in Section 1.3.1 (1). In this chapter, stability maximization 

criterion is employed to design non-traditional TMD systems for decaying free vibration 

responses in the minimum duration. 

4.2 Stability Maximization Criterion 

The state space model of a scalar-input linear system of order N is written as 

 

u� �x Ax Bx Ax B� �  (4.1) 

where x and u are the state vector and input, respectively. The response of this system is 

given by 

 

� � � � � � � � � �0

0
0e e

tt t t

t
t t u d� � �� �� � .A Ax x B  (4.2) 

 

If i
  ( 1, ,i N� , N, ) are defined as the eigenvalues of the system and all of them are 

singular, then A is diagonalizable and semisimple, and the free vibration response term in 

Equation (4.2) can be given in terms of the spectral resolution as 
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� � � � � � � �0 0
0 0

1
e e i

N
t t t t

i
i

t t 
� �

�

�/A x Px  (4.3) 

where iP  is given by Lagrange’s interpolation polynominal as 

 

� � � �� � � �
� � � �� � � �
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� �� � �1 11� �� i ni n� �1 111� ��11 ��1 ��
 
 
 
 

 
 
 
� �� � �

 (4.4) 

 

The degree of stability is defined as the absolute value of the maximum real part of the 

eigenvalues: 

 

� �max Re i
i


� � �  (4.5) 

where 0� - , and the following inequality holds: 

 

� � � � � � � �0 0
0 0

1
e e

N
t t t t

i
i

t t� �� �

�

�/A x Px  (4.6) 

 

Thus �  indicates the speed of convergence of the free vibration response. 

 

The objective of this criterion is to decay the free vibration response of a system in the 

minimum duration. The optimization can be achieved when the degree of stability �  is 

maximized. In other words, all the eigenvalues are located far from the imaginary axis in 

the left-half s-plane.  
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4.3 Optimum Design of Non-traditional Tuned Mass Dampers 

If there is a ground motion applied to the non-traditional TMD system as shown in Figure 

4.1, the equations of motion of the system are 

 

� �s s s s s T s T T s g

T T T T T T T s T g

M x c x k k x k x M x

m x c x k x k x m x

� � � � � �$&
' � � � � �&)

� �s s s s T s T T s g� �x c x k k x k x M x� �s s s s T s T T s gs s s s T s T T s� �c x k k x k xc x k k x k x M� �s s s T s T Ts s s T s T Ts s s� �
T T T T T T s T gx c x k x k x m xT T T T T T s T gT T T T T T s Tc x k x k xc x k x k xT T T T T sT T T T TT T

 (4.7) 

where x denotes the displacement relative to the ground, the dot over the symbol denotes 

the derivative with respect to time t, and gxgx  represents the ground acceleration which 

can also be denoted as ga .  

 

 

 

Figure 4.1 Non-traditional TMD system 

 

If �  is defined as st� �� , where s s sk M� � , then � �sd d d dt � �� , 

� �2 2 2 2 2
sd d d dt � �� , Equation (4.7) becomes 

gxgx
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� �2 2
s s s s T g

2 2
T T T T s g

2 1

2

x x x x x

x x x x x

� � �

�  

$ � � � � � �&
'

� � � � �&)

� �xs s s s T gT gTxs s s s� �s s sss s s� �s s s Tss�s s �� �2 2�2 xx � � 2 2�1� 2� 2 x2
T2 � 2 2�1� xxx�2 ��1��

xT T T T s gs gsxT T T TT T TTT T T sT T TTT T T
2 22 xxT � 2 22x2� 22�  2 2x xx xx2

T T TTT T T

 (4.8) 

where � �x x �� � �x x � , d dx x �� d dx dd �dd dx dd � , 2 2d dx x ��x 2d dx d �d2d2x d2 , T T s sk m k M � , � �s s s s2c M k� � , 

� �T T T T2c m k� �  and T sm M� � . 

 

If the state vector x is defined as T
s T s T[ , , , ]x x x x�x T, , , ]s T s TT ss T s TT sT s, , , ]T, , ,, , ,T TTT , then the matrix A corresponding to 

Equation (4.1) in this system can be obtained as 

 

� �2 2
s

2 2
T

2 0 1

0 2
1 0 0 0
0 1 0 0

� � �

�  

� �� � �
 !

� � !�  !
 !
 !" #

A  (4.9) 

 

Accordingly, the characteristic equation can be obtained as  

 

� � � � � �4 3 2 2 2 2 2 2
s s s2 4 1 2 0z z z z
 � 
  � � 
 �  �  
 � � � � � � � � � � �  (4.10) 

where Tz �� . 

 

Assuming the solutions of Equation (4.10), i.e., four eigenvalues in complex conjugate 

pairs, are 1,2 1 1i
 � 	� � 0  and 3,4 2 2i
 � 	� � 0 , and thus the characteristic equation 

should satisfy 
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� �� �� �� �1 1 1 1 2 2 2 2 0i i i i
 � 	 
 � 	 
 � 	 
 � 	� � � � � � � � �  (4.11) 

 

The following equations can be obtained by comparing the coefficients of 
  in 

Equations (4.10) and (4.11): 

 

� � � �s 1 22 2z � � �� � �  (4.12) 

 

2 2 2 2
s 1 2 1 24 1 4z r r � � � �� � � � � �  (4.13) 

 

� � � �2 2 2 2
s 1 2 2 12 2z z r r�  �  � �� � � �  (4.14) 

 

2 2 2
1 2r r �  (4.15) 

where 2 2 2
1 1 1r � 	� �  and 2 2 2

2 2 2r � 	� � . 

 

For a certain value of z, it can be seen from Equation (4.12) that the degree of stability 

will be maximized if 1�  and 2�  are equal to each other, because the degree of stability 

is equal to the smaller value of 1�  and 2� . Accordingly, by replacing both 1�  and 

2�  by � , and then substituting Equations (4.12) and (4.15) into Equations (4.13) and 

(4.14), the following two equations are obtained: 

 

� �2 2 2 2 2 2 2
1 2 s s 1 2 1 24 2 1 4r r r r r r� � � � �� � � � � � �  (4.16) 
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� � � �2 2 2 2 2 2
s 1 2 s s 1 2 1 22 2r r r r r r� � � � � � �� � � � � �  (4.17) 

 

By substituting 2 2 2
2 1/r r�  into Equation (4.17),   can be obtained as 

 

� �
� �

2
1 s

1 2
s 1

2
1 2

r
r

r

� �


� � �� �

� �
�

� � �� �" #
 (4.18) 

 

Correspondingly, 

 

� �
� �

2
1 s

2 2
s 1

2
1 2

r
r

r

� �

� � �� �

� �
�

� � �� �" #
 (4.19) 

 

Substituting Equations (4.18) and (4.19) into Equation (4.16), we get 

 

4 2
1 1 0ar br c� � �  (4.20) 

where � �1a �� � , � �� �s s s2 1 2 2b � � � �� ��� � � � � �� �" #  and � �s1 4c � � �� � � . 

 

The following inequality should be satisfied to ensure that 1r  is a positive real value,  

 

2 4 0b ac� 1  (4.21) 
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In the special case when s 0� � , i.e., the primary structure has no damping, the upper 

limit value of �  can be obtained in the following fashion: 

 

� �1 3 1 1 41
2 2

� � �
�

�
� � � �

� , where 0 0.25�� �  (4.22) 

 

And �  equals the upper limit value when 

 

1 1 4
2

�


�
� �

�  (4.23) 

and 

 

� �T
2 1 3 1 1 4

1 1 4
� � � �

�
� � � � �

� �
 (4.24) 

Equation (4.23) is obtained from Equations (4.18) and (4.20) with the upper limit value 

of β combined, and Equation (4.24) is derived from Equation (4.12) and the relationship 

of Tz �� . 

 

In the general case when s 0� 2 , constraints can be obtained by solving Equation (4.21) 

as 0 0.25�� �  and 

 

� � � �
� �s

2 5 4 5 4 5 1 410
1 2 1

� � � � �
�

� �
� � � � � �

� �
� �

 (4.25) 
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By selecting �  and s�  in these ranges and substituting them into Equation (4.21), the 

corresponding upper limit value of �  can be obtained. Then the parameters,   and 

T� , can be solved via Equations (4.20), (4.18) and (4.12). Table 4.1 gives the values of 

  and T�  for different cases. According to Equation (4.25), solutions cannot be 

obtained for �  equals 0.2 and 0.25, if s�  is larger than 0.151 and 0, respectively. 

 

Table 4.1 Optimum values of   and T�  
 s�  
 0 0.05 0.10 0.15 0.20 

�  

0.05 
  1.056 

0.230 
1.070 
0.280 

1.084 
0.329 

1.100 
0.378 

1.118 
0.426 T�  

0.10 
  1.127 

0.336 
1.153 
0.386 

1.181 
0.436 

1.213 
0.485 

1.250 
0.534 T�  

0.15 
  1.225 

0.429 
1.270 
0.481 

1.323 
0.534 

1.389 
0.586 

1.475 
0.639 T�  

0.20 
  1.382 

0.526 
1.477 
0.586 

1.621 
0.651 

2.034 
0.751 - 

T�  

0.25   2.000 
0.707 - - - - 

T�  
 

4.4 Numerical Example 

In the following, five systems consisting of an SDOF primary structure and an STMD 

based on different design methods are investigated. The five different TMDs are, 

respectively, a non-traditional TMD using the design method proposed in Chapter 3 for 

wide suppression bandwidth (WSB), a non-traditional TMD via stability maximization 

criterion (SMC) discussed in this chapter, a non-traditional TMD utilizing quasi-fixed 

points theory (QFPT), a traditional TMD designed by stability maximization criterion 

(SMC), and a traditional TMD employing quasi-fixed points theory (QFPT). The 
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parameters of the non-traditional and traditional TMDs are listed in Table 4.2, where �  

and s�  are set to be 0.1 and 0.2, respectively, as an illustration. Figure 4.2 shows the 

corresponding FRF magnitude curves. It can be found that, either designed by the 

quasi-fixed points theory or the stability maximization criterion, the maximum FRF 

magnitudes of the non-traditional TMD systems are smaller than those of the traditional 

TMD systems, and the non-traditional TMD system designed by the method proposed in 

Chapter 3 is the best for both the relative displacement of the primary structure and the 

stroke length of the TMD. 

 

Table 4.2 Parameters of TMDs ( � =0.1 and s� =0.2) 
 non-traditional TMD traditional TMD 
 WSB SMC QFPT SMC QFPT 

  3.162 1.250 0.906 0.853 0.713 
T�  0.455 0.534 0.287 0.478 0.231 

 

The eigenvalues in s-plane are presented in Figure 4.3. The degree of stability, i.e., the 

minimum distances of the eigenvalues to the imaginary axis, of the non-traditional TMD 

system using stability maximization criterion is the maximum, which indicates that the 

free vibration response will decay the most quickly in the system. The degree of stability 

in the WSB case is the second largest, and since the other two eigenvalues (-1.289+2.953j, 

-1.289-2.953j) in the WSB case are far away from the imaginary axis, they are not 

presented in the figure. 

 

For response time history analyses, an SDOF primary structure with a period of 4 

seconds and a damping ratio of 0.2, attached by traditional and non-traditional TMDs 
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with a mass ratio of 0.1, is considered. Two representative types of pulse motions (Makris, 

1997), shown in Figure 4.4, are used as the excitations. 

  

 
(a) relative displacement of primary structure 

 

 
(b) stroke length of TMD 

Figure 4.2 Magnitudes of FRFs from harmonic acceleration input to relative displacement 

of primary structure and stroke length of TMD (r=ω/ωs) 
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Figure 4.3 Eigenvalues in s-plane 

 

 
(a) type A 

 

 
(b) type B 

Figure 4.4 Two types of pulse motions 
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The time histories for the relative displacement of the primary structure and stroke length 

of TMD are shown in Figures 4.5 and 4.6, respectively. The maximum relative 

displacement of the primary structure as well as the stroke length of the TMD in the 

non-traditional TMD attached system designed by the method in Chapter 3 (WSB) are 

the minimum, among the five systems. These figures verify that the responses of the 

primary structure attached by the non-traditional TMD employing the stability 

maximization criterion (SMC) decay the most quickly, because the responses stop nearly 

at the same time in the SMC based and the WSB based non-traditional TMD systems 

though the maximum responses in the former system are larger than those in the latter 

system. SMC is still recommended as a design criterion because the required stiffness and 

damping coefficient are smaller than those in the WSB based system. 

 

4.5 Conclusions 

In this chapter, the design method for non-traditional TMDs using the stability 

maximization criterion is discussed. It is found that a non-traditional TMD provides 

better performance than a traditional TMD designed either by the quasi-fixed points 

theory or the stability maximization criterion. In the non-traditional TMD system 

designed by the stability maximization criterion, the degree of stability is the largest, i.e., 

the free vibration response decays the most quickly, and the stroke length of the TMD is 

the second smallest in comparison with the other four systems (non-traditional TMD 

system designed by the method proposed in Chapter 3, non-traditional TMD system 

designed by the quasi-fixed points theory, traditional TMD system designed by the 

stability maximization criterion, and traditional TMD system designed by the quasi-fixed 
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points theory). Though the non-traditional TMD attached system designed by the method 

proposed in Chapter 3 achieves the minimum values of the maximum relative 

displacement of the primary structure as well as the stroke length of the TMD among the 

five systems, SMC is still recommended as a design criterion for non-traditional TMD 

system because smaller stiffness and damping coefficient than those in WSB are required. 

 
(a) under Type A pulse motion 

 

  
(b) under Type B pulse motion 

Figure 4.5 Response time histories of relative displacement of primary structure 
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(a) under Type A pulse motion 

 

 
(b) under Type B pulse motion 

Figure 4.6 Response time histories of stroke length of TMD 
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5. SEISMIC PERFORMANCE OF FLOOR SYSTEM WITH TUNED MASS 

DAMPER FUNCTION 

5.1 Introduction 

Human safety and comfortability are two main concerns for seismic design of building 

structures. A floor isolation system (FIS) and a tuned mass damper (TMD) are two 

common devices to reduce dynamic responses of equipments or structures. FIS (e.g., 

Iwan, 1978; Lambrou and Constantinou, 1994; Iemura and Taghikhany, 2004; Fujimoto, 

2005; Cui et al., 2010) is effective in reducing floor accelerations, and is commonly used 

to ensure human comfortability or protect important equipments. However, excessive 

displacements of isolation floors could damage the FIS and overturn equipments during 

high-amplitude and long period ground motions, e.g., near-fault excitations (Fan et al., 

2009). Increasing damping can reduce displacements of isolation floors at the expense of 

increasing inertia forces sustained by equipments (Gavin and Zaicenco, 2007). Active (Lu 

et al., 2011) or semi-active (Fan et al., 2009; Gavin and Zaicenco, 2007) devices can be 

incorporated into conventional isolation systems to improve the performance of FIS, and 

such systems may be adaptive to a wide range of excitations with different characteristics. 

However, both active and semi-active systems require sensing, computation and actuation 

units, and they are more complicated and may require more maintenance than passive 

systems. Furthermore, FIS has been seldom designed accounting for the reduction of 

seismic responses of main structures under strong earthquakes. 

 

A TMD is a simple and reliable control device, and is usually installed on the top of a 

high-rise building (Sladek and Klingner, 1983; Soong and Dargush, 1997; Okhovat et al., 
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2006). Other simple passive dampers, such as viscous, friction or visco-elastic dampers, 

rely on relative motions between the two components they are mounted to dissipate 

vibration energy. A TMD relies only on vibrations of one component it is attached to, and 

thus it does not need to be fastened to other component and would be effective even in 

systems with small shear deformations. However, a TMD usually requires a large mass 

for better control effect (Rana and Soong, 1998; De Angelis et al., 2012). A TMD with a 

large mass ratio has been found to be able to function properly even if its parameters shift 

away from the optimally designed values. In this regard, a larger mass ratio TMD would 

be robust with respect to the changes in the structural properties (Hoang et al., 2008). 

From this point of view, those non-conventional TMD systems in which a part of a 

building is utilized as a TMD for vibration control have been proposed by some 

researchers, such as mega subconfiguration system (Feng and Mita, 1995), roof garden 

TMD system (Matta and De Stefano, 2009), sliding roof system (Tian et al., 2008), 

segmented upper storeys system (e.g. Chey et al., 2010) and shading fin mass damper 

system (Fu and Johnson, 2011). Moreover, these TMDs can still retain the structural or 

architectural functions of the buildings. A single-tuned mass damper (STMD) installed on 

the top floor is usually used to control the fundamental vibration mode of a building, 

which indicates that an STMD system is effective only when the dominant frequency of a 

narrow-banded earthquake excitation is near the fundamental frequency of the structure. 

Thus it is not always effective in reducing vibrations induced by various kinds of 

earthquakes. On the other hand, multiple-tuned mass dampers (MTMDs) have been 

confirmed to be robust for earthquake ground motions with wide spectrum of frequency 

components and be able to moderately reduce peak responses even under impulsive 
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earthquakes (Chen and Wu, 2001). MTMDs have been recently employed to solve 

multimodal vibration problems in bridge engineering (e.g. Daniel et al., 2012).  

 

This chapter presents a new type of vibration control system utilizing TMD floors, which 

takes advantages of both the benefits of FIS and MTMDs, but does not require additional 

masses for TMDs. In the presented TMD floor system (TMDFS), the floors themselves 

serve as TMDs, and thus can achieve larger mass ratio of TMDs than that of a 

conventional TMD system. Moreover, multi vibration modes of a building can be 

controlled by installing such TMD floors in different storeys. In addition, it is 

demonstrated that TMD floors have a merit in that the accelerations of TMD floors are 

smaller than those of main structure storeys. Therefore, TMDFS can achieve very 

satisfactory control effect in an innovative way, as described in the following sections. 

5.2 Proposed Floor System with Tuned Mass Damper Function 

5.2.1 Formulation of tuned mass damper floor system 

There are several approaches to realize the proposed TMDFS. For example, a main 

structure can be composed of primary beams, columns, bracings and sliding bearings. 

Floor slabs serving as TMDs can be connected with sliding bearings using stiffness and 

damping devices. (However, with such TMD floor slabs implemented, frame beams 

would have no constraint from the floor slabs. To prevent such an inconvenient situation 

and ensure the floor in-plane rigidity, diagonal bracings would be installed into the 

locations of TMD floor slabs and some side spans as shown in Figure 5.1, for example.) 

In TMDFS, there are some gaps between the TMD floor slabs and frame. Those gaps 
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could be filled with a kind of elastic material, such as polyisobutylene-based intumescent 

rubber (Chiba et al., 2003) which owns fireproof characteristics and can deform in 

accordance with the deformation of an object it is adhered to, as shown schematically in 

Figure 5.2. Waterproof problem can also be solved if the interfaces among the floor slabs, 

the elastic materials and the frame are carefully handled.  

 

 

Figure 5.1 Frame with bracings 

 

 

Figure 5.2 Illustration of connection between main structure and floor slab 

Elastic sealing Floor slab Wall or column 

Beam Stiffness and damping device 
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The mathematical model is shown in Figure 5.3 considering an N-storey building with 

N-degree-of-freedom (N-DOF). A number of TMD floors are connected to the frames of a 

building at the locations of supposed-to-be-floors with linear stiffness (spring) and linear 

viscous damping (dashpot). Mn (n=1, 2, …, N) in the figure denotes the n-th lumped mass 

of the main structure, but does not include the mass of the n-th floor if that floor serves as 

a TMD. If the n-th floor is an ordinary floor (not a TMD floor), Mn includes the floor 

mass as well. 

 

 

Figure 5.3 Schematic model of TMDFS for an N-DOF structure 

 

Suppose p storeys are equipped with TMD floors in a damped N-DOF lumped-mass 

elastic structure excited by a ground acceleration of ag, the equation of motion for the 

passively controlled system can be described as  

ga� � � �Mx Cx Kx MEMx Cx Kx� � ��  (5.1) 

with x, xx  and xx , respectively, the (N+p)×1 displacement, velocity and acceleration 

vectors of the system relative to the ground. M, C and K are the (N+p)×(N+p) mass, 
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damping and stiffness matrices, respectively. They are written as 
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where sM , sC  and sK  are respectively the N N�  mass, damping and stiffness 

matrices of the structure, and the superscript T denotes the transpose of a matrix or 

vector; Tim , Tic  and Tik  are respectively the mass, damping coefficient and stiffness 

of the i-th TMD floor; � � � �

T

1 1 11i N i p i� � � � �
� �� " #a 0 0 and 

� � � � � �

T

11 1 1 11 1
i ii p iloc N i loc � �� � � � � �

� �� �" #b 0 0 0  are (N+p)×1 location vectors, and loci 

represents the location of the i-th TMD floor; and E is a (N+p)×1 unit vector if a ground 

motion is considered as the excitation. 

 

Suppose that common reinforced concrete buildings are concerned, the average 

self-weight of the buildings is approximately 12.0kN/m2 (Nishitani and Matsui, 2001). 

The value is obtained based on the assumption that all the weights of beams, columns, 

slabs, exterior/interior walls and live loads, etc., are on the floor slabs. On the other hand, 

the value of real slab weight would be around 5.0kN/m2 if only the weight of slab and 

live loads are considered (Nishitani and Matsui, 2001). Accordingly, the mass ratio of 

such a floor to the corresponding main structure storey mass can be roughly estimated as 

5.00/(12.00-5.00)=0.71. If TMD floors are practically integrated into a building system, 

most of the parts of the extra floor supporting mechanisms which are fixed to the main 
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structure, such as bracings, sliding bearings and damping devices, are unmovable. Thus 

their weights are roughly counted as the weight of the main structure herein. Based upon 

such consideration, the mass ratio μ of each TMD floor is assumed to be 0.5, and the 

mass of the i-th TMD floor is written as Ti im M�� . 

 

5.2.2 Eigenvalue-problem and anti-resonance 

Under the zero initial condition, Laplace transform of Equation (5.1) gives 

� � � � � � � � � � � �2 1
g g g( ) ( ) ( )s s s A s s A s s A s�� � � + � + � + � + � +X M C K ME G ME H  (5.2) 

where G is the dynamic flexibility matrix, and H is the transfer function vector; ( )sX  

and � �gA s  are the Laplace transforms of x and ag, respectively. 

 

The standard eigenvalue-problem (Humar, 2002) of the TMD floor integrated system is 

-1 -1

s
� �
 !
" #

� �
�

M C M K v v
I 0

 (5.3) 

 

Because the coefficient matrix is real, the eigenvalues as well as the corresponding 

eigenvectors v are either real or complex conjugate pairs. The system natural frequencies, 

1 20 N p� � � �� � � � N p�NN� , are the absolute values of the eigenvalues. Suppose iv  is the 

2( ) 1N p� �  eigenvector corresponding to the i-th eigenvalue, and the last N+p elements 

should be selected so as to form the displacement eigenvector iq . The i-th participation 

vector ir  can be obtained as i i i��r q , where i�  is the i-th participation factor defined 



 

 110 

as 
3 4� �
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q M

q Mq
. The corresponding mass matrix normalized eigenvectors, ie , 

satisfying T 1i i �e Me  ( 1, 2, ,i N p� �N p, N, ),  which are used in this chapter, can be 

obtained by 

i
i

i i

�
T

re
r Mr

 (5.4) 

 

The element � �lkG s  in � �sG  is the complex amplitude of the structural response of the 

l-th DOF with a unit harmonic force applied at the k-th DOF. The anti-resonances of the 

system corresponding to � �nnG s  ( 1, 2, ,n N� , N, ) (Preumont, 2011) can be obtained by 

� � 0nnG s �  (5.5) 

where � �nnG s  denotes the n-th diagonal element. It should be noted that the solutions of 

Equation (5.5) are complex values with small real parts for lightly damped systems. The 

anti-resonance frequencies herein denoted as � �1, 2, , 1i i N p� � � �, p,,  are the imaginary 

parts of s. 

 

5.2.3 Frequency response functions 

In the frequency domain, the frequency response function (FRF) vector � �j�H  for 

relative displacements to the ground can be written as 

� � 2 1( ) ( )j j� � � �� � � � + �H M C K ME  (5.6) 
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� �j�H  includes N p�  elements, and each of the first N elements of � �j�H , i.e., 

XsH ( )
n

j�  ( 1, 2, ,n N� , N, ), denotes the FRF of the displacement of the n-th DOF relative 

to the ground, and each of the other p elements, i.e., XTMDH ( )
i

j�  ( 1, 2, ,i p� p, ), is the 

FRF of the displacement of the i-th TMD floor relative to the ground. 

 

The FRF, Xs(drift)H ( )
n

j� , of the n-th inter-storey drift displacement can be thus obtained 

by 

1Xs(drift) Xs XsH ( ) H ( ) H ( )
n n n

j j j� � �
�

� �  (5.7) 

where 1, 2, ,n N� , N, , and 
0XsH ( ) 0j� � . 

 

The FRF vector, � �A j�H , of absolute accelerations can be obtained as 

� � � �2 2 1
A ( ) ( )j j j j� � � � � ��� � � � � � � + �H H E M C K C K  (5.8) 

Each element in � �A j�H , i.e., AH ( )
n

j�  ( 1, 2, ,n N p� �N p, N, ), denotes the FRF of the 

absolute acceleration of the n-th DOF of the main structure for n N�  and of the i-th 

TMD floor for n N i� �  ( 1, 2, ,i p� p, ). 

 

5.3 Fundamental Experimental Test 

5.3.1 Description of experimental test configuration 

An experimental test structure is a one-storey one-bay frame with a TMD floor attached 

to the roof as shown in Figure 5.4. Two plexiglas plates with a size of 
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300.00×150.00×5.00(mm) are used as the roof and foundation of the main frame, and two 

300.00×100.00×0.50(mm) aluminum plates are used as columns. As shown in Figure 5.5, 

another plexiglas plate with a size of 140.00×200.00×5.00(mm) representing the TMD 

floor is connected to the roof by a linear ball slide. The linear ball slide LSP 2080 is 

manufactured by the THK Corporation. Each side of the TMD floor is connected to the 

roof with two extension coil springs, each with a stiffness of 7.00N/m, in series. The 

airpot dashpot 2KS56 manufactured by the Airpot Corporation, a damping adjustable 

dashpot, connects between the TMD floor and the roof of the main frame to provide 

damping. The test structure is rigidly attached to the shaking table, and accelerometers 

are placed on the basemat, roof and TMD floor to record the lateral accelerations. The 

masses of the test structure components are given in Table 5.1. The mass ratio between 

the TMD floor and the main frame is 0.51, which meets the assumption in Section 5.2.1. 

 

Table 5.1 Masses of components of test structure 
 Components Mass (g) 

Main frame 

Frame (includes one-half of columns, node plates, bolts, and roof Plexiglas) 561.11 
Slide base & bolts 55.33 
Spring node plates & bolts 57.42 
Dashpot node plate & bolts 23.67 
One-half of dashpot 4.25 
Accelerometer 25.00 
Sum 726.78 

TMD floor 

Slide block 122.50 
Spring node plates & bolts 29.82 
Dashpot node plates & bolts 25.70 
One-half of dashpot 4.25 
Accelerometer 25.00 
Plexiglas plate 165.10 
Sum 372.37 
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(a) Photograph 

 

 

(b) Illustration 

Figure 5.4 Panoramic view of experiment model 
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(a) Photograph 

 

 

(b) Illustration 

Figure 5.5 Close-up view of TMD floor 
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5.3.2 System identification of test structure 

Firstly, free vibration experiment of the test structure is carried out when the TMD floor 

is fixed on the roof of the main frame. The black solid line in Figure 5.6 represents the 

free vibration response of the test structure, and the red dashed lines are the envelop lines. 

The identified parameters of the test structure are listed in Table 5.2. 

 

 

Figure 5.6 Free vibration response 

 

Table 5.2 Identified parameters of test structure 
Parameter Value 

Fundamental frequency (Hz) 1.19 
Damping ratio 0.92×10-2 
Stiffness of columns (N/s) 61.00 
Damping coefficient (Ns/m) 0.15 

 

Then the identification test of the TMD floor is carried out by fixing the TMD floor 

directly on the shaking table as shown in Figure 5.7. A harmonic excitation at the 

frequency of 2.00Hz is applied as the input. At this step, the damping of the airpot 

dashpot is set to be zero. Figure 5.8 shows the hysteresis of the inertia force, and Figures 
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5.9 and 5.10 give the relationships between the friction force provided by the linear ball 

slide, and the relative displacement, the relative velocity of the TMD floor, respectively. 

The displacement and velocity data are the integrations of the obtained acceleration data 

by using a numerical integration algorithm with high accuracy (Chen et al., 2010) which 

is shown in Appendix C. It can be found from the figures that the slide provides a friction 

force of 0.10N, and the stiffness of the TMD floor provided by the extension coil springs 

is 7.53N/m. 

 

 
Figure 5.7 TMD floor identification test 

 

 

Figure 5.8 Inertia force hysteresis 
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Figure 5.9 Relationship between friction force and displacement 

 

 

Figure 5.10 Relationship between friction force and velocity 

 

The Stribeck friction model (Olsson et al., 1998) is adopted herein as the analytical 

model to simulate the friction of the linear ball slide. 
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with FD: the dynamic friction (equal to 0.10N herein); Fe: the external force; and FS: the 

static friction which is supposed to be equal to the dynamic friction of 0.10N herein; and 

v is the relative velocity of the TMD floor. 

 

Figure 5.11 gives the comparison between the test result and the simulation result of the 

absolute accelerations of the TMD floor. It can be found that they agree well with each 

other. Accordingly, the stiffness of the TMD floor and the friction model are verified to 

be validated. 

 

 

Figure 5.11 Comparison of experimental and analytical responses 
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5.3.3 Optimum design of tuned mass damper floor parameters in test 

Damage of a building structure is deeply related to the values of inter-storey drift 

displacements. Thus the objective function for the optimization of TMD floor design 

parameters herein is defined as 

Xs(drift)Max. H ( )J j��  (5.10) 

 

Based on the identified parameters of the main frame and the TMD floor, the optimum 

parameters are opt =0.56 and opt� =0.41 according to the gradient-based optimization 

method. Hence, the stiffness and the damping coefficient required for the TMD floor are 

opt
Tk =9.74N/m and opt

Tc =1.56Ns/m.  

 

Figure 5.12 schematically presents the spring connection between the TMD floor and the 

roof floor of the main frame, where l0 is the original length of the coil extension springs 1, 

2, 3, 4. Suppose k is the stiffness of the springs and ∆l is the initial tensile length of the 

springs. When t=0, the resultant force imposed on mT is F=0N. When t=t’, the force 

imposed on mT by springs 1 and 2 is Fleft=k(∆l+x/2), and the force imposed on mT by 

springs 3 and 4 is Fright=k(∆l-x/2), then the resultant force F=Fleft-Fright= k(∆l+x/2)- 

k(∆l-x/2)=kx. Accordingly, the stiffness of each coil extension spring should equal the 

required stiffness of the TMD floor. In order to keep the springs in the extension state, ∆l 

should be larger than the expected maximum displacement of mT. Due to the constraint of 

product types by considering the suitable dimension, allowable loading and maximum 

extension length, four extension coil springs with the stiffness of 7.00N/m are used for 

connecting the TMD floor and the roof floor, as mentioned in Section 5.3.1. And the 
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identified stiffness of the TMD floor provided by the springs is 7.53N/m, which is a little 

different from the theoretical value 7.00 N/m. 

 

 

Figure 5.12 Spring connection 

 

Since the stiffness of the TMD floor provided by the springs, i.e., Tk , is a predetermined 

constant, only the corresponding optimization variable, i.e., the optimum damping 

coefficient opt
Tc , should be 1.53Ns/m. However, due to the fact that the identified stiffness 

of the coil springs (kT) which is 7.53N/m, is different from the required optimal value opt
Tk , 

the TMD floor is not theoretically optimum but sub-optimum. Figure 5.13 (a) and (b) 

give the magnitudes of the FRFs for the drift displacement of the main frame, and the 

absolute acceleration of the fixed/TMD floor, respectively. The black dashed lines display 

the FRF magnitudes of the fixed floor system, and the blue and red solid lines represent 

the FRF magnitudes for the optimum ( opt
Tk =9.74N/m and opt

Tc =1.56Ns/m) and 

sub-optimum ( sub-opt
Tk =7.53N/m and sub-opt

Tc =1.53Ns/m) cases, respectively. It can be 

found that the value of the objective function in the sub-optimum case is 0.040 which is 

larger than that in the optimum case (0.035). If the structure is subjected to a random 

excitation containing infinitely many frequencies, then the responses over all frequencies 
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is also of interest besides the response at the resonant frequency. Accordingly, the 2-norm 

values of the FRF magnitudes are given in Table 5.3. It can be found that the value of 

||HXs(drift)||2 in the sub-optimum case is very close to that in the optimum case, and the 

value of ||HA(floor)||2 in the sub-optimum case is even smaller than that in the optimum case 

due to the trade-off relationship between the responses of the main structure and TMD. 

Accordingly, the sub-optimum values of the parameters adopted in the practical 

experimental model are still reasonable. 

 
(a) drift displacement of main frame 

 
(b) absolute acceleration of floor 

Figure 5.13 FRF magnitudes of structural responses 
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 Table 5.3 2-norm value of FRF magnitudes 
 Fixed floor Optimum TMD floor Sub-optimum TMD floor 

||HXs(drift)||2 3.00 0.9861 0.9941 
||HA(floor)||2 252.22 64.20 57.99 

 

The linear ball slide provides friction, and the equivalent linear viscous damping 

coefficient of the friction can be approximately estimated by 

D
Tf

4F
c

X��
�  (5.11) 

where ω and X denote the circular frequency of response and displacement amplitude, 

respectively. 

 

The constrained maximum stroke of the slide is 50mm which will be used as X, and the 

natural circular frequency of the main frame is 9.16rad/s which will be used as ω, and 

thus according to Equation (5.11) the equivalent linear viscous damping coefficient of the 

slide friction (cTf) is found approximately 0.28Ns/m. Correspondingly, the damping 

provided by the airpot dashpot (cTd) should be 1.25Ns/m to achieve opt
Tc . By carrying out 

a number of tests and corresponding identification analyses with different adjustments of 

the airpot dashpot, the optimum position of the orifice has been determined, which can 

provide the optimum damping coefficient of 1.25Ns/m. The damping force hysteresis of 

the airpot and the absolute acceleration history of the TMD floor, obtained from the test, 

are compared with those of the analytical results as shown in Figures 5.14 and 5.15, 

respectively. It can be found that they agree well with each other, which further 

demonstrates the validity of the identified parameters and simulation method. It is noted 

that as the influence of the friction which is nonlinear, the hysteresis loops are no longer 

ellipses and the acceleration history is no longer harmonic wave even in the analytical 
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results, though the model is subjected to a harmonic excitation. 

 

 

Figure 5.14 Airpot damping force hysteresis: ‘○’ experimental, ‘―’ analytical. 

 

 

Figure 5.15 Absolute acceleration of TMD floor: ‘○’ experimental, ‘―’ analytical. 

 

5.3.4 Experimental results and discussion 

To investigate the seismic performance of the test structure with the TMD floor integrated, 
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the responses of the main frame and the TMD floor are studied under the three scaled 

earthquake records: the 1940 Imperial Valley (El Centro Array 6, NS component, referred 

to as El Centro in the following), the 1995 Kobe (JMA, NS component) and the 1992 

Landers (LCN, 260 component), which are chosen as representatives of distinct classes of 

earthquakes. The three acceleration time histories which the shaking table reproduced are 

shown in Figure 5.16.  

 

Figures 5.17-5.19 display the comparison results between the experimental and simulated 

absolute accelerations of the main frame and the TMD floor. The numerical results under 

all the three earthquake excitations compare well with the experimental results. 

Furthermore, it can be found that the accelerations of the TMD floor are smaller than 

those of the main frame for all the cases. 

 

Figure 5.20 gives the experimental result comparisons with respect to the inter-storey 

drift displacement of the main frame between the case of fixed floor and the case of TMD 

floor. Figure 5.21 shows the corresponding comparison with respect to the absolute 

accelerations of the floor between the two cases. It is worth noting that the predominant 

periods of El Centro, JMA Kobe and LCN Landers are 0.56s, 0.86s and 4.15s (Adrian, 

2000), respectively, and the former two are close to 0.69s which is the natural period of 

the main frame. Thus, the seismic performance of the test structure with the single TMD 

floor integrated is more significant under El Centro and JMA Kobe than that under LCN 

Landers. 
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(a) El Centro NS 

 

 
(b) JMA Kobe NS 

 

 
(c) LCN Landers 260 

Figure 5.16 Inputs of shaking table 
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(a) Main frame 

 

(b) TMD floor 

Figure 5.17 Experimental and analytical absolute accelerations under El Centro 
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(a) Main frame 

 

(b) TMD floor 

Figure 5.18 Experimental and analytical absolute accelerations under JMA Kobe 
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(a) Main frame 

 

(b) TMD floor 

Figure 5.19 Experimental and analytical absolute accelerations under LCN Landers 
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(a) El Centro NS 

 
(b) JMA Kobe NS 

 
(c) LCN Landers 260 

Figure 5.20 Inter-storey drift displacements of main frame 
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(a) El Centro NS 

 
(b) JMA Kobe NS 

 
(c) LCN Landers 260 

Figure 5.21 Absolute accelerations of floor 
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Table 5.4 compares the response reduction ratios between the analytical and experimental 

results with respect to the maximum (Max) and root mean square (RMS) values of the 

inter-storey displacements and floor absolute accelerations under the three seismic 

excitations. It can be found that the response reduction ratios of the experimental results 

are close to those of the analytical results, which verifies the validity of the analytical 

model and method. 

 

Table 5.4 Comparison of response reduction ratios 
  analytical experimental 

El Centro 
Inter-storey Disp. Max 54.93% 54.27% 

RMS 69.75% 70.51% 

Floor absolute Acc. Max 66.27% 61.07% 
RMS 70.42% 72.22% 

JMA Kobe 
Inter-storey Disp. Max 48.66% 46.66% 

RMS 76.75% 76.02% 

Floor absolute Acc. Max 53.23% 33.83% 
RMS 77.69% 77.37% 

LCN Landers 
Inter-storey Disp. Max 5.41% 0.028% 

RMS 25.93% 26.30% 

Floor absolute Acc. Max 14.73% 19.71% 
RMS 27.22% 30.04% 

 

5.4 Optimum Design of Multiple Tuned Mass Damper Floors Integrated Structural 

System 

5.4.1 Optimum parameters of tuned mass damper floors 

Considering an N-storey building, the objective function for the optimization of TMD 

floor design parameters is set as follows 

� �1 2Xs(drift) Xs(drift) Xs(drift)Max. Max. H ( ) , Max. H ( ) , , Max. H ( )
N

J j j j� � �� M HMa HMax H  (5.12) 

where Xs(drift)Max. H ( )
n

j�  ( 1, 2, ,n N� , N, ) denotes the maximum magnitude of the FRF 
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of the inter-storey drift displacement for the n-th storey. 
By using the gradient-based optimization method as mentioned in Section 2.3, the 

optimization problem herein can be formulated so as to search the optimal set of the 

design variables, tuning ratio,  , i.e., the frequency ratio of the TMD to main structure, 

and damping ratio T� , over an admissible domain with the objective function J. 

 

5.4.2 Optimum locations of tuned mass damper floors 

If not all the floors in a building can serve as TMDs due to certain reasons, e.g. 

construction cost constraints, the optimum attachment locations of TMD floors need to be 

determined. In general, the anti-nodal location of a single mode is taken as a priori for the 

attachment location (e.g., Rana and Soong, 1998; Daniel et.al., 2012). However, this 

single mode approach loses accuracy for the cases of large mass TMDs attached systems 

with closely spaced natural frequencies, while the multimode approach proposed by Petit 

et.al., (2009) can solve these problems. Therefore, the multimode approach is applied to 

search the optimum TMD floor locations.  

 

Each TMD can only be tuned to a single mode, and the procedure for reducing the i-th 

resonance mode is presented in the flowchart in Figure 5.22. The neighboring 

anti-resonances are a representation of the activity of the neighboring modes, and a high 

activity of the neighboring modes has a negative effect on the vibration reduction of the 

i-th mode. Accordingly, the multimode approach combines the information about the 

eigenvector of the mode to be controlled with knowledge about the neighboring 

anti-resonances, as shown in the flowchart (Figure 5.22). 
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Figure 5.22 Flowchart of multimode approach 

5.4.3 Numerical examples 

(1) Mid-rise building 

In conducting numerical simulations, a six-storey building is considered firstly, and the 

parameters are listed in Table 5.5. The first modal damping ratio is assumed to be 0.01, 

and the damping matrix is proportional to the stiffness matrix. 

Table 5.5 Parameters of six-storey building 
Storey Mass [×103 kg] Stiffness [×9.8×102 kN/m] 

6th 87.10 26.00 
5th 79.30 26.40 
4th 79.00 29.90 
3rd 78.10 30.50 
2nd 78.20 36.30 
1st 78.10 67.20 

START 

Find the location of the element with the 

maximum magnitude in the i-th eigen-vector 

ei. That location is an optimal location 

candidate (LC1) for TMD. 

 

Find the location where the separation between 
the two neighboring anti-resonances, i.e., 1i� �  

and i� , lying on the both sides of the i-th 

resonant frequency i�  is the largest. That location 

is another optimal location candidate (LC2). 

LC1=LC2 

Optimal Location (OL) is found. 

(OL=LC1=LC2) 

Calculate the new resonant frequencies ˆ
i�  

and 1ˆ
i� �  of the system with the 

optimally-designed TMD attached at LC1. 

OL=LC2 OL=LC1 

END 

Yes No 

1 1 1ˆ ˆ ˆ ˆ
i i i i i i i i� � � � � � � �� � �� � � � � � �  

Yes No 
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The following two cases for the building are studied. One is the case in which all the 

floors can serve as TMDs, including the ground floor. And the other one is the case in 

which only three floors can be used as TMDs. 

 

 All floors serving as tuned mass dampers 

For simplicity, the design parameters for all TMDs in this case are assumed to be same, 

i.e., only one set of opt  and opt
T�  needs to be determined. The gradient-based 

optimization method as mentioned in Section 2.3 is applied with the objective function as 

defined in Section 5.4.1. The optimization results are opt =0.70 and opt
T� =0.40, and the 

frequency of a TMD floor is calculated according to opt opt
1�  �� + , where 1�  denotes 

the first modal natural circular frequency of the uncontrolled building. The stiffness and 

damping coefficient of the i-th TMD floor are then obtained as � �2

T T
opt

i ik m ��  and 

opt
T T T

opt2i ic m ��� , respectively. The inter-storey drifts of the main structure and absolute 

accelerations of TMD floors are defined as the two main performance indices in this 

study. Figure 5.23 (a)-(c) shows the magnitudes of the FRFs from the ground acceleration 

to the inter-storey drifts, the absolute accelerations of the TMD floors and the absolute 

accelerations of the main structure, respectively. It can be seen from Figure 5.23 (a) that 

the FRF magnitude for the third storey drift is the maximum at the fundamental frequency, 

and the two peak values are identical to each other. Thus the gradient-based optimization 

method of designing TMDs is verified to be effective for damped MDOF main structure 

and specified objective functions. Figure 5.23 (b) and (c) show that the FRF magnitudes 

of accelerations for both the TMD floors and main structure storeys at the fundamental 
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frequency increase as the height increases. For the comparison of (b) and (c), Figure 5.23 

(d) shows the magnitude ratio of the FRFs of the TMD floor acceleration to main 

structure acceleration. The relationships between the acceleration FRF magnitude ratio 

and input frequency are the same for all the floors since the same design parameters are 

adopted for all the TMD floors in this case. Thus the same curves are obtained in Figure 

5.23 (d). The FRF magnitudes of TMD floor accelerations are even smaller than those of 

the controlled main structure storey accelerations in most of the frequency ranges except 

for the ranges with small input frequencies (approximately smaller than the fundamental 

frequency of the uncontrolled building). This fact indicates that the merit of FIS can be 

achieved in TMDFS though the objective function of the optimum design framework in 

this study does not take explicitly the floor accelerations into consideration. 

 

 
(a) inter-storey drifts of main structure 

Figure 5.23 FRF magnitudes from ground accelerations to structural responses 

 (ω1~ω6 are natural circular frequencies of uncontrolled building) 
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(b) absolute accelerations of TMD floors 

 

 
(c) absolute accelerations of main structure 

 

 
(d) ratio of (b) and (c) 

Figure 5.23 Continued 
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To further demonstrate the seismic performance of TMDFS, the performance of the 

six-storey building with the TMDFS is studied with respect to the following six 

representative un-scaled earthquake records: 

i. El Centro (NS component), 1940; 

ii. JMA Kobe (NS component), 1995; 

iii. Northridge (NS component), 1994; 

iv. LCN Landers (260 component), 1992; 

v. TCU068 Chi-chi (EW component), 1999; 

vi. TKY007 Tohoku (EW component), 2011. 

 

The peak responses of the TMDFS subjected to the above six seismic excitations are 

presented in Figure 5.24 (a)-(l). The figures (a, c, e, g, i, k) show the peak values of the 

inter-storey drift displacements of the storeys, and the figures (b, d, f, h, j, l) show the 

peak values of the absolute accelerations of the TMD floors. In the figures, the dotted 

lines represent the responses of the un-controlled case (fixed floor system with the first 

modal damping ratio of 0.01); the solid lines indicate the responses of the TMDFS; and 

the dashed lines portray the responses of the fixed floor system in which damping devices 

are implemented in each storey with the same damping coefficient as the damping 

devices between the TMD floors and the corresponding storeys in TMDFS. In the figures 

(b, d, f, h, j, l), “floor 0” denotes the ground floor which is utilized as a TMD floor as 

well (referred to Figure 5.3). Though the ground TMD floor has no control effect for 

mitigating the vibration response of the main structure, its acceleration is smaller than the 

input ground motion PGA, as seen from the figures. For the other two cases than the 
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TMDFS, the ground floor peak acceleration is equal to the input ground motion PGA. 

From Figure 5.24, it is apparent that the TMDFS achieves the most significant control 

effect in terms of both the inter-storey drift displacements of the main structure and the 

absolute accelerations of the floors under all the six seismic excitations. In addition, 

Figure 5.25 presents the peak values of the stroke length of the TMD floors in TMDFS, 

and it can be found that the maximum stroke length of the TMD floors under the six 

seismic excitations i-vi is 0.12m, 0.34m, 0.50m, 0.32m, 0.40m and 0.068m, respectively, 

which are acceptable values in practical applications. Comparing with the control effects 

of the single TMD floor integrated system in the experiment, the multiple TMD floors 

integrated system is also effective for LCN Landers, though the predominant period of 

the excitation is far away from the fundamental period of the six-storey building (without 

considering floors) which is 1.00s, and this fact reflects the advantage of MTMDs. 
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(a) under El Centro 

 

(b) under El Centro 

Figure 5.24 Peak responses of six-storey building in different cases: (a, c, e, g, i, k) 

inter-storey drift displacements of storeys; (b, d, f, h, j, l) absolute accelerations of TMD 

floors; (a, b) El Centro; (c, d) JMA Kobe; (e, f) Northridge; (g, h) LCN Landers; (i, j) 

TCU068 Chi-chi; and (k, l) TKY007 Tohoku. 
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(c) under JMA Kobe 

 

(d) under JMA Kobe 

Figure 5.24 Continued 
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(e) under Northridge 

 

(f) under Northridge 

Figure 5.24 Continued 
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(g) under LCN Landers 

 

(h) under LCN Landers 

Figure 5.24 Continued 
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(i) under TCU068 Chi-chi 

 

(j) under TCU068 Chi-chi 

Figure 5.24 Continued 
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(k) under TKY007 Tohoku 

 

(l) under TKY007 Tohoku 

Figure 5.24 Continued 
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Figure 5.25 Peak stroke length of TMD floors: (a) El Centro; (b) JMA Kobe; (c) 

Northridge; (d) LCN Landers; (e) TCU068 Chi-chi; and (f) TKY007 Tohoku. 
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(a) first mode 

 

 
(b) second mode 

 
(c) third mode 

 
Figure 5.26 Modal natural circular frequencies and mass matrix normalized eigenvectors 

of uncontrolled six-storey building 
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fifth storey, which is different from LC1. So the optimal location (OL) should be further 

determined. If the first TMD floor is located on the top floor, the optimization results are 

obtained as opt
1 =0.92 and opt

T1� =0.23 by using the gradient-based optimization method 

presented in Section 2.3. For the structure with the top floor served as TMD, the new first 

and second resonant frequencies 1�̂  and 2�̂  are 4.30 and 5.82 (rad/s), respectively. As 

the original first resonant frequency 1�  and the neighboring anti-resonance 1�  

corresponding to the top location are 5.10 and 10.91 (rad/s), respectively, the magnitude 

of 2 1�̂ ��  is 5.09 rad/s, which is larger than the magnitude of 
1 1 2 1ˆ ˆ� � � �� � �  that 

equals 1.52 rad/s. Accordingly, LC1 defines OL, i.e., the top floor is OL for the first TMD 

floor. 

 

Then OL of the second TMD floor has to be determined for reducing the original second 

mode vibration which corresponds to the new third mode of the one-TMD-floor-attached 

system. As the damping matrix with the damping of the first TMD integrated is 

non-proportional, the resulting mass matrix normalized eigenvectors are complex. Herein, 

the magnitudes of the first six elements corresponding to the six DOF main storeys of the 

eigenvectors are presented, because only the magnitudes are required in the multimode 

approach. The magnitudes of the new eigenvector corresponding to the third mode of the 

main structure with the top floor serving as a TMD are obtained as [0.00078 0.0018 

0.0019 0.00082 0.0010 0.0021]T. The third floor is LC1 because the third element in the 

vector is the second maximum next to the sixth element, since the top floor has already 

served as the first TMD. Table 5.6 lists the neighboring anti-resonances lying on the both 

sides of the third resonant frequency, 2�5 (corresponding to the second modal natural 
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circular frequency of the uncontrolled building), of the main structure with the top floor 

serving as the first TMD. It can be concluded that LC2 for the second TMD floor is the 

third floor because the separation between the neighboring anti-resonances of the third 

location is the maximum. LC1 and LC2 are the same, and thus the third floor should 

serve as the second TMD. The optimum parameters for the second TMD obtained by the 

gradient-based optimization method are opt
2 =0.27 and opt

T2� =0.17.  

 
Table 5.6 Neighboring anti-resonances for mode 3 of one-TMD-floor-attached system 

( 2�5 =15.39 rad/s) 
Locations 1 2 3 4 5 6 

Anti-resonances 
(rad/s) 6.25-16.71 7.32-19.55 9.25-23.59 12.62-17.46 13.40-21.12 10.91-20.84 

Separation 
(rad/s) 10.46 12.23 14.34 4.84 7.72 9.93 

 

Finally, OL of the third TMD floor will be determined for controlling the original third 

mode which corresponds to the new fifth mode of the two-TMD-floor-attached system. 

As the magnitudes of the new eigenvector corresponding to the fifth mode of the main 

structure with the top and third floors serving as TMDs are [0.0012 0.0019 0.00015 

0.0021 0.00060 0.0020]T, LC1 of the third TMD should be the fourth floor. Table 5.7 lists 

the neighboring anti-resonances lying on the both sides of the fifth resonant frequency, 

3�55  (corresponding to the third modal natural circular frequency of the uncontrolled 

building), of the main structure with the top and third floors serving as TMDs. LC2 of the 

third TMD floor should be the fourth floor, which is the same as LC1. Accordingly, the 

third TMD floor is determined to be the fourth floor, and the optimization parameters for 

the third TMD are opt
3 =0.15 and opt

T3� =0.22. 
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Table 5.7 Neighboring anti-resonances for mode 5 of two-TMD-floor-attached system  
( 3�55=24.02 rad/s) 

Locations 1 2 3 4 5 6 
Anti-resonances 

(rad/s) 17.81-26.27 20.57-31.20 23.59-24.32 18.54-30.53 21.12-24.96 21.06-29.47 

Separation 
(rad/s) 8.46 10.63 0.73 11.99 3.84 8.41 

 

To verify the validity of the multimode approach, the control effect for the case of the 

second floor, which is the anti-nodal location of the third mode shape (referring to Figure 

5.26 (c)), serving as the third TMD is compared with that for the case of the fourth floor 

serving as the third TMD. The optimization results are opt
3 5 =0.16 and opt

T3� 5 =0.16 if the 

second floor serves as the third TMD floor. Figure 5.27 shows the magnitudes of the two 

FRFs, i.e., FRFs of the inter-storey drift of the third storey and the absolute acceleration 

of the top floor. They have the maximum magnitudes for FRFs of inter-storey drifts and 

absolute accelerations, respectively, among all the storeys. In the figure, the solid lines 

correspond to the case in which the fourth floor serves as the third TMD, while the 

dashed lines display the case in which the second floor serves as the third TMD. From the 

figures, it is apparent that the third TMD achieves much better control effect at the fourth 

floor location than at the second floor location. 

 

The control effect of the TMDFS will be illustrated by Figures 5.28 and 5.29. Figure 5.28 

(a)-(l) shows the FRF magnitudes of the inter-storey drift displacements and floor 

absolute accelerations. In the figure, the dotted lines represent the single TMD floor case 

in which only the top floor serves as the TMD, the dashed lines display the case in which 

the top and third floors serve as two TMDs, and the solid lines indicate the case in which 

the top, third and fourth floors serve as three TMDs. It can be seen from the figures that, 
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(a) inter-storey drift displacement of third storey 

 

(b) absolute acceleration of top floor 

Figure 5.27 Magnitudes of FRFs for two performance indices 

 

the peak magnitudes of the FRFs of the inter-storey drift displacements at the first three 
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of the FRFs for inter-storey drift displacements decrease as the number of TMD floors 

increases. On the other hand, the FRF magnitudes of the absolute accelerations for the top, 

third and fourth floors, which serve as TMDs in the three-TMD-floor-attached system, 

are mitigated significantly with wide suppression bandwidths achieved in the frequency 

range. 

 

Figure 5.29 gives responses of the three different TMD floor systems (i.e., with one TMD 

floor, with two TMD floors and with three TMD floors), as well as the un-controlled 

system, subjected to the above mentioned six seismic excitations. The figures (a, e, i, m, 

q, u) portray the maximum inter-storey drift displacements of storeys; the figures (b, f, j, 

n, r, v) show the maximum displacements of the main structure for all the stories relative 

to the ground; the figures (c, g, k, o, s, w) display the maximum absolute accelerations of 

the floors; and the figures (d, h, l, p, t, x) present the corresponding root mean square 

values of the absolute accelerations. From the figures, it can be found that the control 

effect for the inter-storey drifts achieved by the three-TMD-floor-attached system is the 

best among the four systems under all the six excitations. And the maximum absolute 

accelerations of the third, fourth and top floors which serve as TMDs in the 

three-TMD-floor-attached system are all smaller than those in the other three systems 

under all the excitations. As far as the root mean square values of the absolute 

accelerations of all the floors are concerned, the three-TMD-floor-attached system 

generally achieves the most satisfactory control effect among the four systems. 
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(a) 1st storey 

 

(b) 1st floor 

Figure 5.28 FRF magnitudes: (a, c, e, g, i, k) inter-storey drift displacements; (b, d, f, h, j, 

l) absolute accelerations; ‘ ’ top floor serving as one TMD floor; ‘---’ top and 3rd floors 

serving as two TMD floors; and ‘―’ top, 3rd and 4th floors serving as three TMD floors. 

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

� (rad/s)

|H
X

s(
dr

ift
)|

y

 

 

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

� (rad/s)

|H
A

 flo
or

|

 

 



 

 153 

 

(c) 2nd storey 

 

(d) 2nd floor 

Figure 5.28 Continued 
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(e) 3rd storey 

 

(f) 3rd floor 

Figure 5.28 Continued 
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(g) 4th storey 

 

(h) 4th floor 

Figure 5.28 Continued 
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(i) 5th storey 

 

(j) 5th floor 

Figure 5.28 Continued 
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(k) 6th storey 

 

(l) top floor 

Figure 5.28 Continued 
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(a) maximum inter-storey drift displacements of storeys 

 
(b) maximum displacements of storeys relative to ground 

Figure 5.29 Responses of different systems under El Centro 
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(c) maximum absolute accelerations of floors 

 
(d) root mean square values of absolute accelerations of floors 

Figure 5.29 Continued 
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(a) maximum inter-storey drift displacements of storeys 

 
(b) maximum displacements of storeys relative to ground 

Figure 5.30 Responses of different systems under JMA Kobe 
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(c) maximum absolute accelerations of floors 

 
(d) root mean square values of absolute accelerations of floors 

Figure 5.30 Continued 
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(a) maximum inter-storey drift displacements of storeys 

 
(b) maximum displacements of storeys relative to ground 

Figure 5.31 Responses of different systems under Northridge 
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(c) maximum absolute accelerations of floors 

 
(d) root mean square values of absolute accelerations of floors 

Figure 5.31 Continued 
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(a) maximum inter-storey drift displacements of storeys 

 
(b) maximum displacements of storeys relative to ground 

Figure 5.32 Responses of different systems under LCN Landers 
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(c) maximum absolute accelerations of floors 

 
(d) root mean square values of absolute accelerations of floors 

Figure 5.32 Continued 
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(a) maximum inter-storey drift displacements of storeys 

 
(b) maximum displacements of storeys relative to ground 

Figure 5.33 Responses of different systems under TCU068 Chi-chi 
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(c) maximum absolute accelerations of floors 

 
(d) root mean square values of absolute accelerations of floors 

Figure 5.33 Continued 
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(a) maximum inter-storey drift displacements of storeys 

 
(b) maximum displacements of storeys relative to ground 

Figure 5.34 Responses of different systems under TKY007 Tohoku 
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(c) maximum absolute accelerations of floors 

 
(d) root mean square values of absolute accelerations of floors 

Figure 5.34 Continued 

 

Figure 5.35 presents the maximum stroke length of TMD floors in the three TMDFSs. It 

can be seen from the figures that the maximum stroke length of a TMD floor can be 

mitigated if floors in other storeys are further utilized as TMDs. 
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(a) El Centro 

 

(b) JMA Kobe 

Figure 5.35 Peak stroke length of TMD floors in three TMDFSs 
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(c) Northridge 

 

(d) LCN Landers 

Figure 5.35 Continued 
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(e) TCU068 Chi-chi 

 

(f) TKY007 Tohoku 

Figure 5.35 Continued 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

Max. stroke length (m)

N
o.

 o
f T

M
D

 fl
oo

r

 

 

one TMD
two TMDs
three TMDs

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

Max. stroke length (m)

N
o.

 o
f T

M
D

 fl
oo

r

 

 

one TMD
two TMDs
three TMDs



 

 173 

(2) High-rise building 

In addition to the aforementioned six-storey building, a twenty-storey building which is 

representative of high-rise buildings is also analyzed. The mass and stiffness parameters 

of the twenty-storey building are listed in Appendix D, and the damping matrix is 

assumed to be proportional to the stiffness matrix with the first modal damping ratio of 

0.02. The peak responses of the twenty-storey building with all the floors serving as 

TMDs are compared with those of the uncontrolled fixed floor building and the fixed 

floor building equipped with the same amount of damping devices as TMDFS, as 

displayed in Appendix E. Figure 5.36 presents the maximum stroke length of the TMD 

floors in TMDFS for the six excitations, and it can be found that the global maximum 

stroke length achieves 0.76m which is a relatively large value. 

 

 

Figure 5.36 Peak stroke length of TMD floors: (a) El Centro; (b) JMA Kobe; (c) 

Northridge; (d) LCN Landers; (e) TCU068 Chi-chi; and (f) TKY007 Tohoku. 
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The aforementioned TMDFS is designed by the gradient-based optimization method via 

H∞ criterion (denoted as Hinf TMDFS in the following), i.e., with the objective function 

set as Equation (5.12), of which the objective is virtually the same as the fixed or 

quasi-fixed points theory. As stroke length of TMDs designed via the stability 

maximization criterion (SMC) is much smaller than that of TMDs designed by the 

quasi-fixed points theory according to the discussion in Chapter 4, a second TMDFS is 

designed via the SMC (denoted as SMC TMDFS in the following), i.e., using the 

gradient-based optimization method with the objective function set as the maximum 

value of the real parts of the eigenvalues of the MDOF TMDFS, as shown in the 

following equation.  

� �1 2Max. Re( ), Re( ), , Re( )N pJ 
 
 
 �� , Re( N, Re(  (5.13) 

where ( 1,2, , )i i N p
 � �, )p,,  are the i-th eigenvalue of the TMDFS, and p equals N for 

the case that all the floors serve as TMDs. 

 

A third TMDFS is designed by the approximate formula proposed by Sadek et.al. (1997) 

for MDOF primary structures, which is denoted as Sadek TMDFS in the following. 

 

Additionally, a fourth TMDFS is designed by the gradient-based optimization method 

with the objective function set as the maximum value of the 2-norm values of the FRF 

magnitudes for the inter-storey drift displacements (denoted as H2 TMDFS in the 

following) as follows 

� �1 2Xs(drift) Xs(drift) Xs(drift)2 2 2
Max. H ( ) , H ( ) , , H ( )

N
J j j j� � �� Xs(driXs(driXs(driHHHXs(dri  (5.14) 
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where Xs(drift) 2
H ( ) ( 1,2, , )

n
j n N� � , ),  denotes the 2-norm value of the FRF magnitude 

of the n-th inter-storey drift displacement. 

 

The optimum parameters of the four TMDFSs designed via four different criteria are 

given in Table 5.8. 

 

Table 5.8 Optimum parameters of TMD floors for twenty-storey building via different 
design criteria 

Optimum 
parameters Hinf H2 Sadek SMC 

υ 0.69536 0.71162 1 1
s1

1 1 1 1

1 1
1 1

n

n n

�
�

� �
� �6

�� �� �� 6 � 6� �
 0.80494 

ζT 0.40043 0.31429 s1 1
1

1 11 1n

� �
� �

� �
6 �� �� �� �� �

 0.59356 

Notes:  
1. 1�  is the mass ratio of the TMD mass to the generalized mass of the primary structure for the 
fundamental mode for a unit modal participation factor, and it is equal to 0.03406 for each TMD floor 
of the twenty-storey building in this case. 
2. 1n6  is the amplitude of the first mode of vibration for a unit modal participation factor computed 
at the location of the n-th TMD, and it equals 0.05612, 0.10914, 0.16748, 0.23065, 0.29816, 0.36881, 
0.44235, 0.51847, 0.59670, 0.67644, 0.75821, 0.84176, 0.92561, 1.00963, 1.09295, 1.17359, 1.25126, 
1.32434, 1.39078 and 1.44759 from bottom to top, respectively, in this case. 
3. s1�  is the first mode damping ratio of the twenty-storey building which equals 0.02 in this case. 
 

The degree of stability of the four TMDFSs is displayed in Figure 5.37, and the SMC 

TMDFS achieves the maximum degree of stability, which indicates that the free vibration 

of the SMC TMDFS decays the most quickly. 

 

The free vibration response time histories of the displacement of the top storey relative to 

the ground and the absolute acceleration of the top floor in the aforementioned four 

TMDFSs as well as those of the un-controlled building under the six seismic excitations 
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Figure 5.37 Degree of stability of four TMDFSs 

 

are presented in Appendix F, which verifies that the free vibration responses of the SMC 

TMDFS decay the most quickly under all the six excitations. 

 

The maximum stroke length of the TMD floors in the four TMDFSs is shown in 

Appendix G, and it can be found that the stroke length in the SMC TMDFS is generally 

smaller than that in other three TMDFSs. The global maximum stroke length in the SMC 

TMDFS is 0.57m, which is 25% smaller than the global maximum stroke length in the 

Hinf TMDFS. 

 

The comparison of the peak responses of the inter-storey drift displacements and floor 

absolute accelerations for the four TMDFSs are presented in Appendix H. It can be found 

that the peak responses in the SMC TMDFS are generally larger than those in the Hinf 

and H2 TMDFSs. However, the SMC is also recommended as the design criterion for 

high-rise TMDFSs, because stroke length can be mitigated considerably and also 
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vibration can stop the most quickly. 

 

5.5 Conclusions 

This chapter proposes a new vibration control system with TMD floors integrated. The 

focus of this study is the investigation the fundamental effectiveness of the TMD floor 

integrated system for protecting building structures subjected to earthquake ground 

motions. 

 

A test structure with single TMD floor integrated is experimentally investigated on a 

shaking table. System identification tests are performed to identify the parameters of the 

experimental main frame and the stiffness and damping of the experimental TMD system. 

The Stribeck friction model is verified to be suitable for simulating the friction force 

provided by the linear ball slide used in the TMD system. The orifice of the airpot 

dashpot is adjusted to the optimal position so as to provide the optimal damping 

coefficient based on the H∞ optimization solution. The test structure is subjected to three 

representative earthquakes, and the experimental results demonstrate that the 

performance of the TMD floor system is satisfactory in terms of reducing the inter-storey 

drift displacements of the main frame as well as achieving small floor accelerations. 

Furthermore, the numerical simulations are in good agreement with the experimental 

results.  

 

Multiple TMD floors integrated system, which takes advantages of both the benefits of 
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floor isolation systems and multiple tuned mass dampers, is also studied by numerical 

analyses. The parameter values of TMD floors are optimally determined with respect to 

the tuning ratio and damping ratio via the H∞ criterion. With such optimally designed 

parameters, the TMD floors do not only serve as normal floors but also mitigate the 

responses of the main structure. Both the absolute accelerations of floors and the 

inter-storey drift displacements of storeys can be significantly mitigated. The 

performance of the TMD floor system has been demonstrated to be effective for different 

types of seismic excitations. A multimode approach is employed to select the optimum 

locations of TMD floors if not all the floors can serve as TMDs. In addition, a 

twenty-storey TMDFS is designed via the stability maximization criterion for achieving 

small stroke length of TMD floors and quick decay of building free vibration. The above 

fundamental study indicates that the proposed TMD floor system has a great potential of 

achieving very satisfactory, innovative vibration control performance for building 

structures. 
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6. CONCLUSIONS 

This study has formulated frameworks for the optimal design of traditional and 

non-traditional tuned mass dampers (TMDs), and proposed innovative structural control 

schemes of applying TMDs to mitigating seismic vibration of base-isolated buildings and 

high-rise buildings, which are vulnerable to long period ground motions. The main 

conclusions are listed in the following. 

 

(1) A gradient-based optimization method to obtain the optimal parameters of a 

traditional TMD attached to a highly damped primary structure is proposed.  

 

(2) A hybrid control strategy based on the combination of a passive TMD and a 

semi-active variable slip-force level damper (VSFLD) is applied to a base-isolated 

structure. Through numerical simulations of the hybrid-controlled system under different 

types of ground excitations, the performance of the hybrid control strategy is verified to 

be superior compared with TMD based passive control and VSFLD based semi-active 

control, especially for protecting base-isolated structures from low-frequency resonance 

induced by long period ground motions. 

 

(3) The conventional design method based on the quasi-fixed points theory cannot 

provide the global minimum value of the maximum FRF magnitude of a primary 

structure response in a non-traditional TMD system, where dashpot is connected between 

the tuned mass and the ground.  
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(4) An optimum design method of non-traditional TMDs to obtain wider suppression 

bandwidths in the frequency domain has been proposed. The control effect of the 

optimally designed non-traditional TMD integrated to a base-isolated structure is 

significantly improved compared with the optimally designed traditional TMD, in 

particular in terms of significant reduction of TMD stroke length. 

 

(5) The design method for non-traditional TMDs via the stability maximization criterion 

is discussed. Non-traditional TMDs provide better performance than traditional TMDs 

designed by either the quasi-fixed points theory or the stability maximization criterion. 

The free vibration response decays the most quickly in the non-traditional TMD system 

designed by the stability maximization criterion. 

 

(6) A new vibration control system with multiple TMD floors integrated is proposed, 

where the benefits of both floor isolation systems and multiple tuned mass dampers are 

retained. Both the absolute accelerations of floors and the inter-storey drifts of storeys 

can be significantly mitigated in this new system. Larger mass ratios of TMDs than the 

conventional TMD systems can be realized by utilizing floors of a building as TMDs. 

The performance of the TMD floor system has been demonstrated to be superior under 

different types of seismic excitations. The seismic performance has also been 

demonstrated by a shaking table experiment using a scaled model. Numerical simulation 

is carried out, and the results compare with the experimental results with favorable 

accuracy. The TMDFS designed via the stability maximization criterion can achieve 

smaller stroke length of TMD floors and quicker decay of free vibration than the 
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TMDFSs designed via H∞ or H2 criterion. 
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Appendix A. STMD_design_fmincon.m 
clc 
clear 
close all 
 
mu=0.1; 
NUM=10; 
for n=1:NUM 
    n 

x0 = [rand(1)/sqrt(mu); rand(1)]; 
options = optimset('largescale', 'off'); 
[x, optimindex, exitflag, output] = fmincon('STMD_design_objfun', x0, [-1 0; 0 -1; 1 0; 0 1], 
[-0.01; -0.01; 1/sqrt(mu); 1], [], [], [], [], 'mycon',options) 

 
optimresult(n) = optimindex; 
parameter(n,:) = x; 
result(i) = optimindex; 

end 
 
[optiresult, num] = min(result); 
Optiparameter = parameter(num,:); 
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Appendix B. Flowchart for FRF magnitude calculation procedure 
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Appendix C. Numerical integration algorithm of acceleration signal 
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Appendix D. Parameters of twenty-storey building 

Table A.1 Parameters of twenty-storey building 
Storey Mass [×103 kg] Stiffness [×104 kN/m] 

20th 980 34 
19th 980 57 
18th 980 76 
17th 980 93 
16th 980 109 
15th 980 123 
14th 980 138 
13th 980 153 
12th 980 167 
11th 980 183 
10th 980 199 
9th 980 213 
8th 980 228 
7th 980 244 
6th 980 261 
5th 980 279 
4th 980 303 
3rd 980 332 
2nd 980 368 
1st 980 349 
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Appendix E. Peak responses of twenty-storey building in different systems 
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Appendix F. Free vibration responses of twenty-storey building in five systems 
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Appendix G. Maximum stroke length of TMD floors in four TMDFSs 

 

 

0.05 0.1 0.15 0.2 0.25 0.3
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o.

 o
f T

M
D

Max. stroke length (m)

El Centro

 

 

TMDFS (Hinf)
TMDFS (H2)
TMDFS (Sadek)
TMDFS (SMC)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o.

 o
f T

M
D

Max. stroke length (m)

JMA Kobe

 

 

TMDFS (Hinf)
TMDFS (H2)
TMDFS (Sadek)
TMDFS (SMC)



 

 218 

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o.

 o
f T

M
D

Max. stroke length (m)

Northridge

 

 

TMDFS (Hinf)
TMDFS (H2)
TMDFS (Sadek)
TMDFS (SMC)

0.1 0.2 0.3 0.4 0.5 0.6
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o.

 o
f T

M
D

Max. stroke length (m)

LCN Landers

 

 

TMDFS (Hinf)
TMDFS (H2)
TMDFS (Sadek)
TMDFS (SMC)



 

 219 

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o.

 o
f T

M
D

Max. stroke length (m)

TCU068 Chi-chi

 

 

TMDFS (Hinf)
TMDFS (H2)
TMDFS (Sadek)
TMDFS (SMC)

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

N
o.

 o
f T

M
D

Max. stroke length (m)

TKY007 Tohoku

 

 

TMDFS (Hinf)
TMDFS (H2)
TMDFS (Sadek)
TMDFS (SMC)



 

 220 

Appendix H. Peak responses of twenty-storey building in four TMDFSs 
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