
Predictive Learning with
Uncertainty Estimation for Achieving

Adaptive and Flexible Behavior

February 2016

Shingo MURATA

Doctoral Thesis

Predictive Learning with
Uncertainty Estimation for Achieving

Adaptive and Flexible Behavior

February 2016

Waseda University

Graduate School of Creative Science and Engineering

Department of Modern Mechanical Engineering,
Research on Intelligent Machine

Shingo MURATA

Abstract

One of the most fascinating human cognitive abilities is adaptive and flexible

behavior generation together with adequate action, perception, and attention in

dynamic and uncertain environment. Such an ability must also be necessary for

artificial agents, for example, intelligent robots that are expected to provide liveli-

hood support in everyday life. Therefore, acquisition of the ability to generate

adaptive and flexible behavior is a crucial issue for these robots.

Looking at the developmental process of human infants, they gradually ac-

quire cognitive abilities through dynamic interactions with their physical and

social environment. In particular, at the early stage of the developmental pro-

cess, interactions with their caregivers who actively support them are essential

to achieve cognitive behavior such as playing with objects, imitation, and joint

attention. They further acquire more social cognitive skills through playing with

other infants or children who may sometimes violate their expectations about

others’ behavior. What human infants learn through these interactions is what

will happen when they do something, namely, the relationship between causal

states and their consequences. This can be cast as predictive learning of sensory

consequences including exteroceptive (or visual) and proprioceptive states which

are caused by the self and the external world including others. The predictive

learning is enabled by so-called internal or generative models of the world which

are considered to be acquired in the brain. A study on acquisition of generative

models is crucial for both understanding brain mechanisms of biological agents

and implementing such mechanisms in artificial agents.

Recurrent neural networks (RNNs) have been adopted as one of possible com-

putational frameworks to specify these models thanks to their input- and context-

dependent predictive learning capabilities under the simple computational prin-

ciple of prediction error minimization. RNNs can learn to generate predictions

about the next state of target temporal sequence data by receiving the current

state of those as input and incorporating contextual dynamics stored in the net-

works. This thesis explores a computational framework of RNNs that enables

intelligent robots to achieve adaptive and flexible behavior which can be per-

formed in real environment.

vi

Conventional RNN-based frameworks, however, face three potential problems

or issues due to their deterministic properties by which all data structures are

modeled as deterministic dynamical systems even though the data are the suc-

cessive states of stochastic processes. The first is that if RNNs are forced to

learn multiple temporal sequence data with stochastic or random fluctuations,

the learning process tends to become unstable with the accumulation of errors.

The second is their inability to learn to extract and reproduce stochastic struc-

tures, such as the amplitude of the fluctuations, latent in the data. These two

issues regarding fluctuations or uncertainty at a trajectory level are tightly cou-

pled and important to consider the acquisition of adaptive action primitives. The

third is that RNNs cannot estimate uncertainty at an event level such as transition

probability of the action primitives. The estimation of event-level uncertainty is

important to consider the development of reactive and proactive behavior for re-

alizing flexible behavior that produces various action sequences consisting of the

action primitives.

The aim of this thesis is to develop an advanced RNN-based framework for

intelligent robots to acquire generative models of the external world for achieving

adaptive and flexible behavior by tackling these three non-trivial issues regard-

ing the different levels of uncertainty. The framework enables RNNs to learn to

predict both the mean and the variance of the next state of target data with fluc-

tuations, where the variance corresponds to the uncertainty of target variables

and the reciprocal of the variance is called precision. Studies described in this

thesis especially consider the implementation of this framework on conventional

continuous-time RNNs (CTRNNs) whose context states employ leaky-integrator

neural units to deal with continuous data flow. The novel network is referred

to as stochastic CTRNN (S-CTRNN) in terms that an aspect of stochasticity

is introduced into the conventional CTRNN. The additional variance prediction

mechanism enables the S-CTRNN (1) to stably learn multiple temporal sequence

data with random fluctuations because the learning process tries to minimize pre-

diction errors scaled by the predicted variance, which are called precision-weighted

prediction errors, and (2) to extract and reproduce stochastic structures latent

in such data in terms of the time-varying mean and variance states. These two

points contribute to solve the aforementioned first and second issues. For the

third issue, an extension of the S-CTRNN is considered. The extended hier-

archical network referred to as stochastic multiple timescale RNN (S-MTRNN)

consists of the lower-level and higher-level subnetworks with different timescale

vii

dynamics of the context states. The S-MTRNN can self-organize internal rep-

resentations of primitives in the lower-level subnetwork with fast dynamics and

those of sequences of the primitives in the higher-level subnetwork with slow dy-

namics. By incorporating this ability to self-organize hierarchical representations

and the variance prediction mechanism, the S-MTRNN is able (3) to determine

its modeling way, namely, probabilistic or deterministic modeling, depending on

the condition of learning.

The abilities of these stochastic RNNs are verified through a series of numeri-

cal experiments and two kinds of robot experiments. The numerical experiments

in which artificial training data are generated in different ways utilizing Gaussian

noise consider the first and second issues regarding the trajectory-level uncer-

tainty. The first robot experiment on learning reaching movement toward a fixed

target object also considers these issues in more realistic situations. The results

demonstrate the development of adaptive behavior by estimating the trajectory-

level uncertainty. The second robot experiment on learning interactive behavior

with another robot considers the third issue regarding the event-level uncertainty.

The results demonstrate the development of flexible behavior based on reactive

and proactive behavior by estimating the event-level uncertainty.

This thesis consists of six chapters. Chapter 1 provides the background, re-

search questions, hypotheses, research objective, related work, and overview of

the proposed approach as an introduction of the current study.

Chapter 2 proposes a novel computational framework that enables RNNs to

deal with stochasticity. The form of generative model is first introduced and then

an architecture based on the CTRNN is introduced. Computational methods of

forward propagation for generating predictions and backward propagation for the

learning are provided. After specifying the basic architecture of the S-CTRNN,

an advanced architecture called S-MTRNN is introduced together with a novel

dynamic recognition method called error regression scheme (ERS) which modifies

higher-level internal neural dynamics online by minimizing precision-weighted

prediction errors.

Chapter 3 demonstrates the results of a series of numerical experiments on

learning and reproduction of temporal sequence data with random fluctuations.

The first experiment demonstrates the comparison of learning capabilities be-

tween the conventional CTRNN and the proposed S-CTRNN by using a set

of temporal sequence data with random fluctuations. The second experiment

demonstrates the learning results of a sinusoidal curve with random fluctuations

viii

whose variance changes depending on the time. The third experiment demon-

strates the learning results of random dynamical system in which the variance

for the added Gaussian noise changes depending on the state of the system itself.

Through these numerical experiments, the ability of the S-CTRNN for extracting

different types of uncertainty is demonstrated.

Chapter 4 demonstrates the results of a robot experiment on learning to de-

velop adaptive behavior from human demonstrations via kinesthetic teaching.

The S-CTRNN is applied to robot learning in the context of primitive skill acqui-

sition for reaching movement toward a target object. The human demonstrations

include stochastic structures such that some parts are variant and other parts

are invariant. The robot equipped with the S-CTRNN is required to learn these

structures specifying a task constraint. After the learning process, the robot is

able to generate adaptive behavior together with the stochastic structures not

only in learned situations but also in unlearned situations by utilizing generaliza-

tion ability of the S-CTRNN.

Chapter 5 demonstrates the results of a robot experiment on learning to de-

velop flexible behavior. The S-MTRNN is applied to robot learning in the context

of learning to interact with another agent. The experimental results show that

self-organized reactive behavior–based on probabilistic prediction with high event-

level uncertainty–emerges when learning proceeds without a precise specification

of initial conditions of the S-MTRNN. In contrast, proactive behavior with deter-

ministic predictions with low event-level uncertainty emerges when precise initial

conditions are available. These results indicate that two different ways of treating

uncertainty about perceptual events in learning, namely, probabilistic modeling

and deterministic modeling, contribute to the development of different dynamic

neuronal structures governing the two types of behavior generation schemes.

Chapter 6 summarizes the achievements of a series of both numerical and

robot experiments. The reviews on remaining issues and on future directions

conclude this thesis.

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Shigeki Sugano,

for providing me this precious study opportunity as a doctoral student in his

laboratory. Over the last six years including studies for the bachelor’s and mas-

ter’s degrees, his objective and logical advices on both my research and life as a

researcher have supported me many times. I would also like to thank my four

examiners, Prof. Masakatsu G. Fujie, Prof. Tetsuya Ogata, Prof. Tomoyuki

Miyashita, and Prof. Hiroyasu Iwata, for providing me accurate and helpful com-

ments on my presentation and an earlier version of this thesis. Especially, I am

very grateful to Prof. Ogata for allowing me to be a member of his laboratory

from the first year of the doctoral course and for providing me insightful comments

in weekly group meetings.

I would like to thank Prof. Jun Tani of Korea Advanced Institute of Science

and Technology (KAIST). He has taught me a lot of things for becoming a good

researcher since he was a team leader of the Lab. for Behavior and Dynamic

Cognition (BDC), RIKEN Brain Science Institute, where I was a trainee from the

fourth-year undergraduate to the beginning of the second-year master student.

I couldn’t have concluded this research without his kind guidance and support

for six years. I have been greatly influenced by his attitude as a researcher from

which everyone can understand that he does enjoy his research. I am very grateful

to all the BDC Lab. ex-members, especially Dr. Jun Namikawa and Dr. Yuichi

Yamashita for their technical supports and helpful discussions.

I would like to thank Dr. Hiroaki Arie, Dr. Kuniaki Noda, and Dr. Yuki

Suga for their valuable comments on my study. I would also like to thank the

graduate and undergraduate students belonging to “Cognitive Robotics” group,

a joint research group between Sugano Lab. and Ogata Lab., especially, Ms.

Yiwen Chen, Ms. Yuxi Li, and Ms. Saki Tomioka from Sugano Lab.; and Ms.

Kai Hirano, Mr. Tatsuro Yamada, and Mr. Ryoichi Nakajo from Ogata Lab.

with whom I have conducted really exciting cognitive robotics studies in Waseda

University. The everyday discussion on their research contents and chats with

them have made my life as a doctoral student all the more enjoyable. I am

thankful to the other Sugano Lab. and Ogata Lab. members for their comments,

x

their encouragement, and their interest in my research.

I would like to thank the members of Cognitive Neuro-Robotics Lab. in

KAIST, especially, Mr. Minju Jung and Mr. Gibeom Park who are the first

graduate students belonging to the newly established Prof. Tani’s laboratory in

KAIST. The life in a foreign country as a visiting student in this laboratory with

them was very impressive and influential experiences.

I would like to thank the following secretaries in Waseda Univ.: Ms. Kyoko

Arai and Ms. Yoko Ono of Sugano Lab., Ms. Naomi Nakata and Ms. Junko

Inaniwa of Ogata Lab. I would also like to thank Ms. Junghyun Yoon, Ms.

Jungmin Park, and Ms. Sarah (Seung-A) Oh who supported me not only to

conduct research in KAIST but also to live in Korea as a foreigner.

I would like to acknowledge the Yoshida Scholarship Foundation for their

financial support. My living expenses and graduate school fees for the three

years as a doctoral student have been fully supported by their great scholarship,

Doctor 21. A part of my international research activities including research stays

in KAIST and participation in international conferences was also supported by

this scholarship. I would also like to thank the Hara Research Foundation for

their grant for participating in the 24th International Conference on Artificial

Neural Networks (ICANN 2014).

Last but not least, I would like to express my gratitude to my friends and

family for their ongoing support and encouragement, especially, to my parents

who have allowed me to do whatever I want to do from childhood up to now.

Tokyo, January 18, 2016 Shingo Murata

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Artificial Intelligence for Robotic Systems 2

1.1.2 Cognitive Robotics . 2

1.1.3 Action Primitives and Action Sequences 3

1.1.4 Intra-Primitive and Inter-Primitive Variations 4

1.1.5 Reactive Behavior and Proactive Behavior 5

1.2 Research Questions and Hypotheses 7

1.2.1 Importance of Uncertainty Estimation 7

1.2.2 Event-Level Uncertainty and Behavior Generation 8

1.3 Research Objective . 9

1.4 Related Work . 10

1.4.1 Predictive Processing . 10

1.4.2 Uncertainty in Robot Learning 12

1.5 Overview of Proposed Approach 13

1.6 Organization of the Thesis . 14

2 Stochastic Recurrent Neural Networks 17

2.1 Introduction . 17

2.2 Review of Conventional Neural Networks 18

2.2.1 Feedforward Neural Networks (FNNs) 18

2.2.2 Recurrent Neural Networks (RNNs) 18

2.2.3 Sensitivity to Initial Conditions 19

2.3 Overview of Stochastic Continuous Time RNN (S-CTRNN) 19

2.4 Form of Generative Model . 21

2.5 Forward Propagation . 22

2.6 Predictive Learning . 23

xi

xii CONTENTS

2.6.1 Objective Function . 23

2.6.2 Gradient Ascent Method 26

2.6.3 Back-Propagation Through Time 27

2.7 Parameter Initialization for Predictive Learning 28

2.8 Generation Method . 29

2.9 Recognition Method . 31

2.10 Stochastic Multiple Timescale RNN (S-MTRNN) 31

2.10.1 Forward Propagation . 33

2.10.2 Dynamic Recognition Method 34

3 Predictive Learning of Fluctuating Temporal Sequences 37

3.1 Introduction . 37

3.2 Learning of Multiple Fluctuating Lissajous Curves 38

3.2.1 Training Data . 38

3.2.2 Parameter Settings for Predictive Learning 39

3.2.3 Comparison of Learning Capabilities between CTRNN and

S-CTRNN . 41

3.2.4 Extraction of Multiple Time-Invariant Uncertainty 42

3.2.5 Recognition Results . 42

3.2.6 Initial State Space Analysis 47

3.3 Learning of Fluctuating Sinusoidal Curve 47

3.3.1 Training Data . 48

3.3.2 Parameter Settings for Predictive Learning 49

3.3.3 Extraction of Time-Varying Uncertainty 49

3.4 Learning of Random Dynamical System 49

3.4.1 Training Data . 51

3.4.2 Parameter Settings for Predictive Learning 52

3.4.3 Extraction of State-Dependent Uncertainty 52

3.5 Discussion and Conclusions . 55

4 Predictive Learning to Develop Adaptive Behavior 57

4.1 Introduction . 57

4.2 Methods . 58

4.2.1 Design of Reaching Experiment 58

4.2.2 Experimental Procedure 59

4.2.3 System Architecture . 61

CONTENTS xiii

4.2.4 Parameter Settings for Predictive Learning 63

4.3 Results . 63

4.3.1 Extraction of Task Constraints 63

4.3.2 Generalization and Adaptation Abilities 64

4.4 Discussion and Conclusions . 66

5 Predictive Learning to Develop Flexible Behavior 69

5.1 Introduction . 69

5.2 Methods . 70

5.2.1 Design of Interaction Experiment 70

5.2.2 Experimental Procedure 72

5.2.3 System Architecture . 75

5.2.4 Parameter Settings for Predictive Learning 76

5.3 Results . 76

5.3.1 Reproduction of Visuo-Proprioceptive Sequences with Dif-

ferent Representations of Uncertainty 76

5.3.2 Action Generation Test . 79

5.3.3 Effect of Differences in Uncertainty Estimation on Reaction

Times . 81

5.3.4 Action Generation with ERS for Proactive Behavior 84

5.3.5 Effect of ERS on Reaction Times 88

5.4 Discussion and Conclusions . 90

5.4.1 Treating Event-Level Uncertainty in Probabilistic or Deter-

ministic Manner . 91

5.4.2 Reactive Behavior versus Proactive Behavior 92

5.4.3 Limitation and Future Work 94

6 Conclusions 97

6.1 Overall Summary of the Current Study 97

6.2 Future Work . 99

6.2.1 Action Generation for Changing the World 99

6.2.2 Online Learning . 99

6.2.3 Scalability of the Proposed Framework 99

6.2.4 Beyond Uncertainty in Observable States 100

References 101

xiv CONTENTS

A Details of Conventional Neural Networks 113

A.1 Feedforward Neural Networks (FNNs) 113

A.1.1 Forward Propagation . 113

A.1.2 Predictive Learning . 115

A.2 Recurrent Neural Networks (RNNs) 117

A.2.1 Forward Propagation . 119

A.2.2 Predictive Learning . 122

B Stochastic Recurrent Neural Networks 125

B.1 Derivation of the BPTT . 125

B.1.1 Supplemental Explanation for (2.20) 125

B.1.2 Supplemental Explanation for (2.21) 125

B.1.3 Supplemental Explanation for (2.22): Context Unit Case . 126

B.1.4 Supplemental Explanation for (2.22): Output Unit Case . 126

B.1.5 Supplemental Explanation for (2.22): Variance Unit Case . 126

C Predictive Learning of Fluctuating Temporal Sequences 127

C.1 Learning of Multiple Fluctuating Lissajous Curves 127

C.1.1 Supplemental Explanation for Target Sequences in (3.2) . 127

C.1.2 Different Cases of Learning Failure with CTRNNs 128

D Predictive Learning to Develop Flexible Behavior 131

D.1 Acceleration of Network Training 131

D.2 Reaction Time Measurement . 132

List of Figures

1.1 Organization of the thesis. 15

2.1 Comparison of architectures and temporal processing between FNN

and RNN. 20

2.2 Comparison of architectures between (A) the proposed S-CTRNN

and (B) the conventional CTRNN. 21

2.3 Network diagram of S-CTRNN. 24

2.4 Generation method: (A) open-loop mode and (B) closed-loop mode

with the addition of Gaussian noise with the predicted variance. . 30

2.5 Schematic of S-MTRNN. 32

3.1 Twelve fluctuating Lissajous curves in training data. 40

3.2 Phase plots of output states generated by the trained network: (A)

output states of the trained CTRNN with closed-loop dynamics,

and (B) output states of the trained S-CTRNN with closed-loop

dynamics with the addition of Gaussian noise with the predicted

variance. 43

3.3 Phase plots of two selected context activation states of the trained

S-CTRNN. 44

3.4 Temporal sequences of the predicted variances of the trained S-

CTRNN in the case of closed-loop dynamics with the addition of

Gaussian noise with the predicted variance for time steps 500–700. 45

3.5 Initial internal state space of the context units 48

3.6 Temporal sequences with time-varying uncertainty. 50

3.7 Temporal sequences with state-dependent uncertainty. 53

xv

xvi LIST OF FIGURES

3.8 Comparison of phase plots: (A) training data ŷt−zt, (B) output of

the trained S-CTRNN with closed-loop dynamics with the addition

of Gaussian noise with the predicted variance yt − zt, and (C) two

selected context activation states of the trained network. 54

4.1 Movement sequence recorded during a tutoring session. 58

4.2 Three positions of the target object. 59

4.3 System architecture for action generation in reaching task. 62

4.4 Temporal sequences obtained in the experiment for each object

position (Positions 1–3). 65

4.5 Snapshots of action sequences performed by NAO controlled by

the trained S-CTRNN for each object position (Positions 1–3). . . 66

4.6 Phase plots of the training data, the output and the two selected

context states of the trained network for each object position. . . 67

5.1 Experimental environment for interaction task. 71

5.2 Task design. 72

5.3 Initial state (IS) space of the higher-level network containing SC

units. 74

5.4 System architecture for action generation in interactive task. . . . 75

5.5 Temporal sequences obtained in the experiment. 78

5.6 Temporal sequences obtained in the experiment. 80

5.7 Reaction times of the self-robot during action generation. 83

5.8 Open-loop generation with ERS. 85

5.9 Temporal sequences obtained in the experiment. 86

5.10 Regression dynamics. 87

5.11 Reaction times of the self-robot during action generation with and

without error regression scheme (ERS). 89

A.1 Network diagram of FNN. 114

A.2 Network diagram of RNN. 118

A.3 Network diagram of CTRNN. 121

C.1 Phase plots of output states generated by CTRNNs initialized with

different random values. 129

List of Tables

3.1 Comparison between mean of predicted variances and the corre-

sponding true values. 46

3.2 Number of successful recognitions (SR) out of 20 trials. 47

xvii

Chapter 1

Introduction

1.1 Background

One of the most fascinating human cognitive abilities is adaptive and flexible

behavior generation together with adequate action, perception, and attention in

dynamic and uncertain environment. Such an ability must also be necessary

for artificial agents, for example, intelligent robots [1–3] that are expected to

provide livelihood support in everyday life. Therefore, acquisition of the ability to

generate adaptive and flexible behavior is a crucial issue for these robots situated

in dynamic and uncertain real environment in contrast to industrial robots that

only need to play-back pre-designed motions.

Looking at the developmental process of human infants as an example of

intelligent agents, they gradually acquire cognitive abilities through dynamic in-

teractions with their physical and social environment. In particular, at the early

stage of the developmental process, interactions with their caregivers who actively

support them are essential to achieve cognitive behavior such as playing with ob-

jects [4], imitation [5], and joint attention [6]. They further acquire more social

cognitive skills through playing with other infants or children who may some-

times violate their expectations about others’ behavior. What human infants

learn through these interactions is what will happen when they do something,

namely, the relationship between causal states and their consequences [7]. This

can be cast as predictive learning of sensory consequences including exteroceptive

(or visual) and proprioceptive states which are caused by the self and the exter-

nal world including others [8–12]. The predictive learning is enabled by so-called

internal or generative models of the world that are considered to be acquired

in the brain [13–16]. A study on acquisition of generative models is crucial for

1

2 CHAPTER 1. INTRODUCTION

both understanding brain mechanisms of biological agents and implementing such

mechanisms in artificial agents.

This thesis explores a generic computational framework for generative models

which enables artificial agents or intelligent robots to achieve adaptive and flexible

behavior.

1.1.1 Artificial Intelligence for Robotic Systems

The classical approach for realizing an internal model or representation for agents

is to design and implement itself with symbolic representation by considering

possible situations of the external world. This research paradigm based on the

manipulation of symbols is referred to as symbolic artificial intelligence (AI) or

classical AI and was dominant by the 1980s. One of the most crucial problems

of the symbolic AI is the frame problem [17, 18]. This problem describes that a

robot with a set of if-then rules designed by a human is necessary to renew the

rules whenever the assumed surrounding environment changes even just a little.

Another crucial problem is the symbol grounding problem [19] that describes the

difficulty in the gap between discrete symbolic representations and their objectives

in the continuous physical world with fluctuations.

Brooks [20] proposed an alternative approach, which is diametrically opposed

to the symbolic AI, based on the so-called subsumption architecture [21] with-

out any symbolic representation. This approach referred to as the behavior-based

approach, also known as nouvelle AI or embodied intelligence, enhanced the im-

portance of physical interaction between agents and the surrounding environ-

ment, and realized a certain level of intelligence without representation [22]. The

behavior-based approach with the concept of embodiment had played a crucial

role in the research field of intelligent or autonomous robots and originated a new

research paradigm referred to as embodied cognitive science integrating cognitive

science, psychology, artificial intelligence, and robotics [23]. Although robots

developed based on this approach can produce behavioral patterns that are ob-

served as intelligent behavior, the patterns are limited to reactive behavior due

to the lack of higher-order cognitive functions such as planning and situational

judgement.

1.1.2 Cognitive Robotics

Cognitive robotics, also referred to as cognitive developmental robotics [24–26]

1.1. BACKGROUND 3

and cognitive neurorobotics [27], has become popular since the 2000s. This is a

new research paradigm to elucidate issues regarding the developmental process

and underlying neural mechanism of human cognitive abilities in a synthetic or

constructive manner. This research area, which also enhances the importance

of embodiment, aims to provide computational models and mathematical hy-

potheses with reference to knowledge achieved by analytic approaches such as

developmental psychology and cognitive neuroscience. The essential difference

between behavior-based approach and cognitive robotics is that the latter tries

to understand the developmental or learning process of higher-order cognitive

functions by providing a minimal computational framework with a learning al-

gorithm to artificial agents or humanoid robots that interact with the external

world.

There are two research streams that are usually considered independently but

closely related to cognitive robotics, namely, theoretical neurobiology [28, 29] and

robot learning [30, 31]. Both the approaches emphasize the importance of ma-

chine learning perspective, however, their research focuses are totally different.

Theoretical neurobiology, also known as computational neuroscience, focuses on

theoretical understanding of brain or neural mechanisms of biological agents in

both microscopic and macroscopic levels through numerical simulation. On the

other hand, robot learning, also known as robot programming by demonstration

(PbD) or learning from demonstration (LfD), focuses on developing learning algo-

rithms for enabling artificial agents (robots) to achieve generalized skills based on

acquired and embodied intelligence through their own experiences in real environ-

ment instead of pre-designed intelligence. In other words, the former emphasizes

a scientific perspective, while the latter emphasizes an engineering or practical

perspective.

Cognitive robotics trying to develop computational models that can be oper-

ated in real robotic systems may bridge the gap between these distinct scientific

and engineering research streams. Especially, this thesis tries to apply the recent

perspective from theoretical neurobiology through cognitive robotics to robot

learning. Key studies in each research area are reviewed in a later section.

1.1.3 Action Primitives and Action Sequences

As an example, let us consider a situation where a boy is trying to carry a full

glass of water from one place to another. He must pay attention to the glass

4 CHAPTER 1. INTRODUCTION

for delicately reaching for it with a precise hand positioning, and after grasping

it he modulates his posture in order to avoid spilling the water. At the same

time, he also needs to carefully plan a path toward a target place before actual

movement if the floor is cluttered with his toys. He may start moving without

any specific path planning and determine it in a reflexive manner as the occasion

arises. Perhaps, he may drink a little on the way to avoid accidental spilling.

Furthermore, if the environment includes others who may suddenly appear in

an unpredictable manner, he needs to avoid collision with them by dynamically

recognizing the environmental change. After arriving at the target place through a

series of complicated situations that require dynamic cognitive processes of action,

perception, and attention, he finally puts down the glass in a gentle manner on a

target position. It should be noted that this situation can also be applied to an

artificial agent (e.g. a humanoid robot) instead of a boy.

One of the important aspects considered in the above situation is that the

whole action sequence can be understood as a combination of reusable action

primitives such as “reaching for a target object,” “grasping the object,” “walking

toward a target place,” and “putting the object.” These action primitives can be

flexibly combined into an action sequence based on intentional states of agents

or on sensory inputs derived from environmental changes. The idea to combine

primitives to form a sequence was proposed by Arbib in terms of schema the-

ory [32,33] in which primitives are called schemas and combinations or sequences

of primitives are called schema assemblages. Another important aspect is that

each action primitive should be acquired as a generalized skill that can be adap-

tively applied to novel situations. For example, the action primitive of reaching

is adaptively modulated based on the position of a target object and flexibly fol-

lowed by another primitive such as grasping the object or pushing it toward the

opposite side.

1.1.4 Intra-Primitive and Inter-Primitive Variations

The adaptability and flexibility of action primitives, which enable humans to

produce various types of complicated behavior, are acquired through experiences

of interacting with the world including others. Repetitive experiences or trials

in similar situations provide humans to extract task constraints that represent

characteristics of action primitives and action sequences. The action primitive of

reaching, for example, has a particular constraint or goal such that a hand finally

1.1. BACKGROUND 5

must be close to a target object. This invariant relationship between the final

hand position and the target object position across trials may be the most crucial

representation for specifying the skill of reaching. In other words, other features

such as the path of the hand and the speed of the movement can vary depending

on the situation in the reaching context. In what follows, these variations in each

primitive are called intra-primitive variations, and the other variations that are

produced by combining primitives are called inter-primitive variations.

The above account for specifying a skill in terms of the difference in the level of

intra-primitive variations is similar to the concept of global dynamics for design of

human and humanoid robot motion suggested by Kuniyoshi and Nagakubo [34].

The analysis of human rising motion [35, 36] revealed that there are invariant

features or points called nodes and variant features or regions called envelopes in

the phase space of body dynamics. Experiments with a simulated humanoid robot

and an actual one also exhibited such nodes corresponding to critical conditions

for the success of the rising motion [36]. These results imply that a precise

controlling of the motion at each node and a relatively relaxed controlling in

other regions may be crucial for achieving a task motion and for adapting to

environmental conditions, respectively. A relevant psychological experiment [36]

suggests the importance of the invariant features not only for action generation

but also for action recognition. In the experiment, subjects were asked to watch

a set of movie clips each of which showed a human rising motion with a different

temporal length and to judge whether the performance was success or failure. The

experimental results demonstrated that the inclusion of the invariant features to

the clips enhances the performance of human action recognition.

1.1.5 Reactive Behavior and Proactive Behavior

Inter-primitive variations in which an adaptive action primitive is flexibly com-

bined with another are realized by two distinct behavior generation schemes,

namely, reactive behavior and proactive behavior1. These two behavior gener-

ation schemes are distinguished based on the origin of their causes [40] to de-

1There is another behavioral distinction, for example, between habitual behavior and goal-
directed behavior [37]. The former behavior can be acquired bymodel-free reinforcement learning
(RL) approaches and the latter by model-based RL approaches [37–39]. It should be noted that
the behavioral distinction in this thesis is different from this distinction in terms of presence
or absence of specific intentional states representing whole visuo-proprioceptive consequences
of actions.

6 CHAPTER 1. INTRODUCTION

termine the next action primitive. The former generation scheme corresponds

to exogenously formed behavior in which action primitives are determined by

external causes such as sensory inputs of the moment [41, 42]. In contrast, the

latter scheme corresponds to endogenously formed behavior in which whole ac-

tion sequences are represented by particular intentional states2 (internal causes)

of agents [10, 44]. In the case of proactive behavior generation, different action

sequences can be produced in terms of predictions (prior expectations) about

visuo-proprioceptive consequences of actions depending on the intentional states.

During reactive behavior generation, action generation will be delayed whereas

during proactive behavior generation, an over dependence on own prediction can

lead to inflexibility in action modification when the prediction fails.

In the context of robot behavior, reactive behavior has been considered in the

behavior-based approach (introduced in Section 1.1.1) in which agents’ actions are

generated by sensory-motor mapping [45, 46] or sensory-motor coordination [47]

without any contextual information. On the other hand, proactive behavior has

been considered in model-based (learning) approach [48] in which agents’ actions

are determined by their context-dependent internal representations of the ex-

ternal world [49, 50]. Both the approaches have advantages and disadvantages.

Behavior-based approach is suitable for producing simple robot behavior such as

adaptive wall-following and collision-avoidance that can be determined by the cur-

rent sensory state. However, this approach is unsuitable to deal with higher-order

cognitive functions such as planning and situational judgement depending on the

context which require agents to integrate past experiences, the current situation,

and future states. On the other hand, model-based approach enables agents to

realize these functions by acquiring the model through learning processes [51].

One crucial problem of this approach is its inflexibility when the model predic-

tion fails and it does not fit to the current situation as mentioned above. This

problem implies the necessity of dynamic model optimization or at least dynamic

optimization of internal representations in the model-based approach.

Given these perspectives on both behavior-based approach for reactive be-

havior and model-based approach for proactive behavior, if we can handle these

approaches in a unified framework, the usability of robotic systems may increase.

2More specifically, intentional states here mean prior intention introduced by Searle [43] to
distinguish from the other intention called intention in action.

1.2. RESEARCH QUESTIONS AND HYPOTHESES 7

1.2 Research Questions and Hypotheses

Considering the adaptive and flexible behavior generation described in the pre-

ceding section, essential research questions that have not been revealed yet are

twofold:

• How can artificial cognitive agents acquire adaptive action primitives to-

gether with the difference in the level of intra-primitive variations?

• How can these agents develop the distinct behavioral generation schemes for

flexibly combining primitives into an action sequence together with inter-

primitive variations?

This thesis tackles these two questions by focusing on the importance of predictive

learning with uncertainty estimation together with the following two hypotheses:

• Estimation of trajectory-level uncertainty contributes to specifying action

primitives that can be modulated based on environmental changes.

• Estimation of event-level uncertainty contributes to developing the distinct

behavior generation schemes that produce various action sequences.

The remaining two subsections describe the reason for formulating these two

hypotheses.

1.2.1 Importance of Uncertainty Estimation

At the beginning of this chapter, the importance of a generative model that can

be acquired through the predictive learning of sensory consequences of action

generation is pointed out. As noted above, this thesis hypothesizes that the

generative model needs to learn to predict not only sensory consequences but

also uncertainty of these consequences in both trajectory and event levels.

Regarding the acquisition of adaptive action primitives, estimation of trajectory-

level uncertainty may be essential because intra-primitive variations can be de-

scribed by the uncertainty about the time-varying visuo-proprioceptive trajectory

representing a specific primitive. Invariant and variant parts in the trajectory are

represented by low and high trajectory-level uncertainty, respectively.

On the other hand, regarding the development of the distinct behavioral gener-

ation schemes for flexibility, estimation of event-level uncertainty may be essential

8 CHAPTER 1. INTRODUCTION

because inter-primitive variations can be produced by transition of primitives (or

events) from one to another and the transition can be described by the uncer-

tainty about the next event such as transition probability. The next subsection

further considers the aspect of the event-level uncertainty together with the re-

lationship between differences in estimation of the uncertainty and the behavior

generation schemes.

1.2.2 Event-Level Uncertainty and Behavior Generation

In human case, it can be considered that individuals construct their own inter-

pretation of experiences or observed events through learning processes [7,52]. In

particular, when sensory events are observed as occurring probabilistically, there

could be two interpretations by estimating event-level uncertainty in a different

manner. One assumes a deterministic causal rule from the background or the con-

text of the current sensation without considering any event-level uncertainty and

the other assumes a probabilistic rule with considering a particular event-level

uncertainty.

For example, let us suppose that one has already observed two sequences

“AB” and “AD” where A, B and D are sensory events. When one next receives

A, a probabilistic rule with event-level uncertainty would predict the occurrence

of B or D with equal probability. On the other hand, if one uses a deterministic

rule without any event-level uncertainty, then the prediction of both occurrences

would be made deterministically by inferring a distinct background or context

for each case. More specifically in the current example, if different contexts C′ or

C′′ can lead to the observation of A, the prediction of the next sensory state as B

or D is made deterministically depending on the context inferred. The problem

here is ill-posed because one can use both types of rule with different estimation

of event-level uncertainty even though the past experience is exactly the same.

It is presumed that the choice to use the probabilistic rule or the determin-

istic rule would affect significantly the method of behavior generation by agents

while interacting with the world and with others. If the next sensory state can be

predicted only in a probabilistic manner, agents would generate reactive behav-

ior in which the next action primitive to be taken will be determined optimally

after the sensation is confirmed, as reaction to observed events. On the other

hand, if the next and further sensation can be predicted deterministically with

confidence, agents would generate proactive behavior in which the next and suc-

1.3. RESEARCH OBJECTIVE 9

ceeding actions would be generated proactively based on a particular intentional

state without waiting for the sensory input. This thesis considers how agents

estimate event-level uncertainty in a different manner and how the differences

influence the development of the behavior generation schemes in a self-organized

fashion.

1.3 Research Objective

As we have seen in earlier sections, acquisition of generative models via predictive

learning with uncertainty estimation may be crucial for achieving adaptive and

flexible behavior. Generative models are known to be formulated in terms of a

predictive coding [53] framework considering both action and perception, which is

also called predictive processing [54]. Recurrent neural networks (RNNs) [55–58]

have been adopted as one of possible computational frameworks to specify gen-

erative models thanks to their input- and context-dependent predictive learning

capabilities under the simple computational principle of prediction error mini-

mization [8, 9, 59]. RNNs can learn to generate predictions about the next state

of target temporal sequence data by receiving the current state of those as input

and incorporating contextual dynamics stored in the networks.

Conventional RNN-based frameworks, however, face three potential problems

or issues due to their deterministic properties by which all data structures are

modeled as deterministic dynamical systems even though the data are the suc-

cessive states of stochastic processes. The first is that if RNNs are forced to

learn multiple temporal sequence data with stochastic or random fluctuations,

the learning process tends to become unstable with the accumulation of errors.

The second is their inability to learn to extract and reproduce stochastic struc-

tures, such as the amplitude of the fluctuations, latent in the data. These two

issues regarding the trajectory-level uncertainty are tightly coupled and important

to consider the acquisition of adaptive action primitives as explained in Section

1.2.1. The third is that RNNs cannot estimate the event-level uncertainty that

is important to consider the development of reactive and proactive behavior for

realizing flexible behavior as explained in Section 1.2.2.

The objective of this thesis is to develop a novel RNN-based framework for

generative models which can solve these three non-trivial issues and enables ar-

tificial cognitive agents to achieve adaptive and flexible behavior via predictive

learning with uncertainty estimation. A series of studies in this thesis especially

10 CHAPTER 1. INTRODUCTION

tries to demonstrate the following two capabilities of the developed framework

by conducting experiments on robot learning:

• Extraction of trajectory-level uncertainty via predictive learning and re-

production of learned skills (or action primitives) adaptively in unlearned

situations

• Extraction of event-level uncertainty via predictive learning, reproduction

of learned action sequences with the distinct behavior generation schemes,

and flexible modification of the action sequences

The subsequent section reviews key concepts derived from studies in theoret-

ical neurobiology, cognitive robotics, and robot learning which are tightly related

to the present study.

1.4 Related Work

Predictive processing has gained widespread acceptance as one unified framework

accounting for human cognitive aspects such as action, perception, attention, and

learning. This framework has been developed in both cognitive neurorobotics

with a connectionist scheme [8,9,59] and theoretical neurobiology with a Bayesian

scheme [11,29] under the principle of prediction error or free energy minimization

[10,28,60, 61]. The first subsection reviews these schemes.

The second subsection reviews studies about skill acquisition by artificial

agents in both cognitive neurorobotics and robot learning. Especially, we focus

on how uncertainty has been dealt with in these research areas.

1.4.1 Predictive Processing

Connectionist Scheme

Tani and colleagues [8, 9, 59, 62] proposed a deterministic connectionist scheme

using an RNN-based hierarchical generative model, called RNN with paramet-

ric biases (RNNPB). RNNPB can learn to map top-down priors to predictions

about visuo-proprioceptive consequences of an action by means of prediction er-

ror minimization. The parametric biases (PBs) are higher-level static vectors

corresponding to the top-down priors that determine the characteristics of the

forward dynamics of a lower-level network in a manner similar to the bifurcation

parameters, also known as control parameters, of nonlinear dynamical systems.

1.4. RELATED WORK 11

They demonstrated that learning, generation, and recognition of multiple

visuo-proprioceptive consequences of actions produced by a robot can be formu-

lated as prediction error minimization by using RNNPB. Under this formulation,

the learning of action sequences is the process of optimizing network parame-

ters including synaptic weights, biases that are shared by all sequences, and the

PBs that are specific to each sequence, in order to regenerate the action se-

quences given visuo-proprioceptive sequences. After the learning process, a robot

equipped with the trained network can regenerate each learned action sequence

in a top-down manner based on the corresponding PB value, which represents

a top-down prior, by sending the predicted proprioceptive state to the motor

controller as the next target state of the robot.

During top-down behavior generation, a dynamic recognition process can also

be performed in a bottom-up manner by inferring the PB value that can regener-

ate a given part of visuo-proprioceptive states through prediction error minimiza-

tion with fixed weights and biases. More specifically, generated prediction errors

in a “window” spanning the immediately preceding steps are back-propagated to

the PB units and the current PB states are modulated in the direction of min-

imizing the prediction errors. This scheme for the dynamic recognition process

is referred to as the error regression scheme (ERS). The ERS introduces a fun-

damentally different sort of inference scheme in which the prediction errors are

dynamically minimized online by modulating the internal neural dynamics with

not forward but backward dynamics.

Bayesian Scheme

Friston and colleagues [10,11,29] proposed a Bayesian scheme, called active infer-

ence, which entails the Bayesian brain hypothesis [13, 63] and is based on a free-

energy principle [28,64,65]. Active inference can be organized by a hierarchically

structured probabilistic generative model in which neural states at higher levels

provide empirical priors on lower-level states in a top-down manner, and lower-

level states provide prediction errors to higher levels for inference in a bottom-up

manner. Under this scheme, prediction errors can be reduced by changing the

externally given sensory signals being predicted and the internally generated pre-

dictions, through action and perception, respectively. As described in [11, 27],

active inference is a generic Bayesian perspective on the above mentioned con-

nectionist scheme using RNNPB. The key aspect of this Bayesian approach is

12 CHAPTER 1. INTRODUCTION

the ability to deal with uncertainty or precision, which has been related to at-

tentional mechanisms [28,66–69]. The implicit estimation of uncertainty has not

been considered in the deterministic connectionist scheme.

1.4.2 Uncertainty in Robot Learning

Learning with Deterministic Frameworks

Tani and colleagues [44,70,71] demonstrated that not only deterministic sequences

but also probabilistic transition sequences can be embedded in RNN-based deter-

ministic models. In the context of action imitation learning by cognitive agents,

Namikawa et al. [44] showed that a functional hierarchy [72, 73], which accounts

for spontaneous behavior generation, can be self-organized in a multiple timescale

RNN (MTRNN) [74]. The MTRNN consisted of a lower-level network containing

a set of action primitives with fast dynamics and a higher level with slow dy-

namics that drove the lower-level network for combining the primitives. In their

experiments, a humanoid robot controlled by the trained network was able to gen-

erate “pseudo-stochastic” action sequences by deterministic chaos self-organized

in the higher-level network. When the transition probabilities of training data

or observed events were changed, the network was able to reconstruct the prob-

abilities in a deterministic manner by using the self-organized chaotic dynamics.

Although this can be considered as one approach to the generation of stochastic

sequences, it only models proactive behavior generation and does not consider re-

active behavior. Furthermore, the problem of inflexibility in action modification

has not been addressed.

Learning with Probabilistic Frameworks

In the context of PbD or LbD, Calinon and Billard greatly contributed by using

probabilistic frameworks such as hidden Markov model (HMM) with interpola-

tion [75–78] and the joint use of Gaussian mixture model (GMM) and Gaussian

mixture regression (GMR) [30]. One of important aspects of their probabilis-

tic frameworks using GMM is the ability to encode the uncertainty of multiple

demonstration of behavioral trajectories in terms of covariance matrix. In their

approach, GMM is used for encoding a set of behavior trajectories with mean and

covariance matrix and GMR is used for retrieving a smooth generalized version of

these trajectories and associated variables. Although continuous task constraints

1.5. OVERVIEW OF PROPOSED APPROACH 13

can be represented by the time-varying covariance matrix, the crucial problem is

the sensitivity to temporal and spatial perturbations due to the time-dependency.

As alternative approaches, recently dynamical systems approaches such as

stable estimator of dynamical systems (SEDS) [79–81] and statistical dynamical

systems [82] have been adopted. These dynamical systems approaches are good at

encoding primitive actions, however, methods to flexibly combine these primitives

have not been established.

1.5 Overview of Proposed Approach

This thesis proposes a novel computational framework that enables RNNs to learn

to predict both the mean and the variance of the next state of target data with

fluctuations, where the variance corresponds to the uncertainty of target variables

and the reciprocal of the variance is called precision. Studies described in this

thesis especially consider the implementation of this framework on conventional

continuous-time RNNs (CTRNNs) whose context states employ leaky-integrator

neural units to deal with continuous data flow. The novel network is referred

to as stochastic CTRNN (S-CTRNN) in terms that an aspect of stochasticity is

introduced into the conventional CTRNN.

The additional variance prediction mechanism enables the S-CTRNN (1) to

stably learn multiple temporal sequence data with random fluctuations because

the learning process tries to minimize prediction errors scaled by the predicted

variance, which are called precision-weighted prediction errors, and (2) to extract

and reproduce stochastic structures latent in such data in terms of the time-

varying mean and variance states. These two points contributes to solve the

first and second issues described in Section 1.3. For the third issue, an exten-

sion of the S-CTRNN, which is inspired by the MTRNN introduced in Section

1.4.2, is considered. The extended hierarchical network referred to as stochas-

tic multiple timescale RNN (S-MTRNN) consists of the lower-level and higher-

level subnetworks with different timescale dynamics of the context states. The

S-MTRNN can self-organize internal representations of primitives in the lower-

level subnetwork with fast dynamics and those of sequences of the primitives in

the higher-level subnetwork with slow dynamics. By incorporating this ability to

self-organize hierarchical representations and the variance prediction mechanism,

the S-MTRNN is able (3) to determine its modeling way, namely, probabilistic

or deterministic modeling, depending on the condition of learning. A novel er-

14 CHAPTER 1. INTRODUCTION

ror regression scheme (ERS) for the dynamic recognition considering uncertainty

by the S-MTRNN, which is inspired by the ERS for the RNNPB introduced in

Section 1.4.1, is also proposed.

The abilities of these stochastic RNNs are verified through a series of numeri-

cal experiments and two kinds of robot experiments. The numerical experiments

in which artificial training data are generated in different ways utilizing Gaussian

noise consider the first and second issues regarding the trajectory-level uncer-

tainty. The S-CTRNN demonstrates its ability to stably learn to extract and

reproduce stochastic structures latent in these data. The first robot experiment

on learning reaching movement toward a fixed target object from human demon-

strations via kinesthetic teaching also considers these issues in more realistic

situations. The experimental results demonstrate the development of adaptive

behavior by estimating the trajectory-level uncertainty. The second robot ex-

periment on learning interactive behavior with another robot considers the third

issue regarding the event-level uncertainty. The experimental results demonstrate

the development of flexible behavior based on reactive and proactive behavior by

estimating the event-level uncertainty.

1.6 Organization of the Thesis

Figure 1.1 shows the organization of the thesis. Chapter 2 proposes a new com-

putational framework that enables RNNs to deal with stochasticity. Chapter 3

demonstrates the results of a series of numerical experiments on learning and

reproduction of temporal sequence data with random fluctuations. Chapter 4

demonstrates the results of a robot experiment on learning to develop adaptive

behavior from human demonstrations via kinesthetic teaching. Chapter 5 demon-

strates the results of a robot experiment on learning to develop flexible behavior

via interaction with another robot. Chapter 6 summarizes the achievements of a

series of both numerical and robot experiments. The reviews on remaining issues

and on future directions conclude this thesis.

1.6. ORGANIZATION OF THE THESIS 15

Model

Evaluation

Application
Chapter 5. Robot Experiment (2)

Dvelopment of Flexible Behavior

with Event-Level Uncertainty

Chapter 4. Robot Experiment (1)

Development of Adaptive Behavior

with Trajectory-Level Uncertainty

Chapter 3. Numerical Experiments

Model Evaluation with Artificially

Generated Data

Chapter 2. Proposed Models

S-CTRNN, S-MTRNN,

Dynamic Recognition Method

Chapter 1. Introduction

Background, Objective,

Related Work, Approach

Chapter 6. Conclusions

Overall Summary,

Future Work

Figure 1.1 Organization of the thesis.

Chapter 2

Stochastic Recurrent Neural
Networks

2.1 Introduction

This chapter proposes a novel computational framework that enables the con-

ventional CTRNNs to learn to predict not only deterministic but also stochastic

(or fluctuating) temporal sequence data. The proposed framework is based on

the predictive learning with uncertainty estimation and the CTRNN with this

framework is referred to as stochastic CTRNN (S-CTRNN) from the ability to

deal with stochasticity of target data. The predictive learning with uncertainty

estimation contributes to the following three issues: (1) the stability in the learn-

ing of temporal sequence data with random fluctuations, (2) the reproduction of

the stochastic structures latent in the learned data, and (3) the development of

both reactive and proactive behavior in the context of robot learning.

This chapter also proposes an extension of the S-CTRNN, which is inspired

by the MTRNN introduced in the preceding chapter (Section 1.4.2). The ex-

tended model with multiple timescale dynamics of the context units is referred to

as stochastic MTRNN (S-MTRNN). In addition to the implementation of mul-

tiple timescale dynamics, this chapter considers a novel error regression scheme

(ERS) together with the uncertainty estimation for the dynamic recognition by

the S-MTRNN, which is inspired by the ERS for the RNNPB introduced in the

preceding chapter (Section. 1.4.1).

Numerical and robot experiments with the S-CTRNN mainly regarding the

first and second issues are presented in Chapters 3 and 4, and a robot experiment

with the S-MTRNN mainly regarding the third issue is presented in Chapter 5.

17

18 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

The next section reviews conventional artificial neural networks including feed-

forward neural networks (FNNs) and RNNs as a preliminary step toward the

proposed framework detailed in the sections after the next.

2.2 Review of Conventional Neural Networks

This section provides a review of conventional artificial neural networks including

FNNs and RNNs. Their computational frameworks are detailed in Appendix A.

2.2.1 Feedforward Neural Networks (FNNs)

FNNs, also known as multi-layer perceptrons (MLPs), can learn non-linear input–

output function by using training data consisting of multiple sets of input–target

observations. These networks can be applied for both classification problems in

which target states are discrete categories and regression problems in which target

states are continuous values. Computational models for classification problems

are called discriminative model and for regression problems generative model.

FNNs consist of three kinds of layers as shown in Fig. 2.1A: an input, a

hidden, and an output layer, each of which includes some neural units. More

detailed illustration representing a network diagram of an FNN is provided in Fig.

A.1 in Appendix A (Section A.1). The units in the input layer have connections

from them to the units in the hidden layer. The units in the hidden layer have

connections from them to the units in the output layer. Gradient-based predictive

learning of FNNs can be conducted by using the back-propagation (BP) algorithm

[83] as detailed in Appendix A (Section A.1.2).

2.2.2 Recurrent Neural Networks (RNNs)

The FNNs introduced in the preceding subsection have a potential problem of

their inability to deal with context dependency. In order to overcome this prob-

lem, RNNs [55–58] were developed. The essential difference between FNNs and

RNNs is their neural units in the hidden layer. The units of the hidden layer in

RNNs have recurrent connections by which networks can memorize past states.

In terms of the fact that the hidden layer can deal with contextual information,

the layer is called context layer instead of hidden layer. It should be noted that

RNN whose context states employ leaky-integrator neural units to deal with con-

tinuous data flow is called continuous-time RNNs (CTRNNs). Architecture of an

2.3. OVERVIEWOF STOCHASTIC CONTINUOUS TIME RNN (S-CTRNN)19

RNN is illustrated in Fig. 2.1B. More detailed illustration representing a network

diagram of an RNN is provided in Fig. A.2 in Appendix A (Section A.2).

Temporal processing of the FNN and that of the RNN is provided in Fig.

2.1C and D, respectively, where the recurrent connection of the RNN is unfolded

through time. From this illustration, we can understand that the input informa-

tion at the time step t = 1 is stored in the context state at the final time step

t = T thanks to the recurrent connections. Gradient-based predictive learning

of RNNs can be conducted by applyig the BP algorithm to the unfolded RNN,

which is called back-propagation through time (BPTT), as detailed in Appendix

A (Section A.2.2).

2.2.3 Sensitivity to Initial Conditions

When learning temporal sequences with RNNs through optimizing the parame-

ters consisting of synaptic weights and biases, context sensitivity can be modeled

using sensitivity to initial conditions of the internal neural dynamics. By opti-

mizing specific initial internal states of the context units (the leftmost state in

Fig. 2.1D) for each sequence, multiple attractors such as fixed point, limit cycle,

and strange (chaotic) attractors can be self-organized in a single CTRNN [84].

Heuristically, the initial conditions encode different contexts by starting in differ-

ent basins of attraction that give rise to attractor dynamics with distinct forms.

In deterministic chaos, it is well known that small differences in initial conditions

can yield widely diverging state trajectories.

In the context of robot learning, Nishimoto et al. [85] showed that three

essential functions of learning, generation, and recognition can be achieved by

using the sensitivity to initial conditions or initial precision characteristic of the

context states of a CTRNN. This characteristic is also related to biological brains.

For example, a monkey electrophysiological study [86] suggests that preparatory

activity in motor and premotor cortex sets the initial states of a neural dynamical

system whose evolution produces reaching movement activity.

2.3 Overview of Stochastic Continuous Time RNN
(S-CTRNN)

In the preceding section, the conventional artificial neural networks including

FNNs and RNNs (CTRNNs) were reviewed. Especially, CTRNNs are well-known

20 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

Context State

Input

Output

RNN

Recurrent

Connection

H
id

d
e
n
 S

ta
te

In
p

u
t

O
u
tp

u
t

H
id

d
e
n
 S

ta
te

In
p

u
t

O
u
tp

u
t

H
id

d
e
n
 S

ta
te

In
p

u
t

O
u
tp

u
t

H
id

d
e
n
 S

ta
te

In
p

u
t

O
u
tp

u
t

1 2 t T time

C
o

n
te

x
t S

ta
te

In
p

u
t

O
u
tp

u
t

C
o

n
te

x
t S

ta
te

In
p

u
t

O
u
tp

u
t

C
o

n
te

x
t S

ta
te

In
p

u
t

O
u
tp

u
t

C
o

n
te

x
t S

ta
te

In
p

u
t

O
u
tp

u
t

1 2 t T time

B

Output

Hidden State

Input

FNNA

C

D

In
itia

l C
o

n
te

x
t S

ta
te

FNN

RNN

Forward Propagation

Backward Propagation

Recurrent

Connection

Forward Propagation Through Time

Backward Propagation Through Time

Figure 2.1 Comparison of architectures and temporal processing between FNN and RNN.
Architecture of (A) an FNN and (B) an RNN. The FNN consists of an input layer, a hidden
layer, and an output layer. The RNN consists of an input layer, a context layer with recurrent
connections, and an output layer. The architecture of the RNN is the same as that of the FNN
except for the recurrent connection in the context layer. Temporal processing of (C) the FNN
and (D) the RNN. Information flow of forward propagation is colored with green and that of
backward propagation is colored with orange. The recurrent connection of the RNN by which
the network can deal with context dependency are unfolded through time. Context states at
each time step receive weighted sum of the input states at that time step and context states at
the previous time step. Especially, the context states at the time step t = 1 receive weighted
sum of the initial context states that can be optimized in the learning process. These initial
context states have a role to determine the forward dynamics by utilizing the characteristic of
non-linear dynamical systems referred to as sensitivity to initial conditions or initial precision
characteristic. By utilizing this characteristic, multiple attractors such as fixed point, limit
cycle, and chaotic attractors can be embedded into a single RNN.

2.4. FORM OF GENERATIVE MODEL 21

to be powerful tools for learning to predict various types of temporal sequence

data [46,87,88]. Due to the deterministic computational frameworks based on the

prediction error minimization, however, these networks have potential problems

of their inability to deal with target data with stochastic or random fluctuations

which cannot be predicted in a deterministic manner.

The S-CTRNN makes use of a novel feature manifested by additional neural

units allocated in the variance layer whose states are mapped from the context

layer as well as the output states. By utilizing these states, the network predicts

not only the mean of the next input states in the output layer, but also their

variance states in the variance layer. In this method, the mean and the variance

can be obtained by means of maximization of the likelihood function for network

parameters. Furthermore, upon achieving convergence of the likelihood, the net-

work can reproduce temporal sequence data with the same stochastic structures

as the fluctuating target sequence by adding Gaussian noise with the variance

predicted at each time step to the predicted mean and subsequently feeding these

values as input states. Figure 2.2 presents a comparison between the proposed

S-CTRNN and the conventional CTRNN.

Conventional CTRNNProposed S-CTRNN

Context State

Input

Output

Context State

Input

Output Variance

A B

Figure 2.2 Comparison of architectures between (A) the proposed S-CTRNN and (B) the con-
ventional CTRNN (already shown in Fig. 2.1B). Context states of the S-CTRNN are mapped
to both the output and variance states. The additional parts compared to the conventional
CTRNN are colored with red (the variance layer and the connection from the context layer).
The other parts are the same as those for the CTRNN.

2.4 Form of Generative Model

When a set of fluctuating temporal sequence data is given, under Gaussian as-

sumptions the ith dimension of the target state at time step t of the sth sequence

22 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

(ŷ(s)t,i) can be modeled in the form

ŷ(s)t,i ∼ N (y(s)t,i , v
(s)
t,i), (2.1)

where N (y(s)t,i , v
(s)
t,i) is Gaussian distribution with mean y(s)t,i and variance v(s)t,i . The

S-CTRNN as a generative model is trained to generate both the mean states

y(s)t,i = f(u(s)
t,i) as output states and the variance states v(s)t,i = g(u(s)

t,i) by receiving

current input states and using contextual dynamics stored in the network, where

u(s)
t,i : internal state of the ith output or variance unit at time step t corre-

sponding to the sth sequence,

f(·), g(·): activation functions for the output and variance states, respectively.

Here, the variance corresponds to the uncertainty of taget states and the recip-

rocal of the variance is called precision.

2.5 Forward Propagation

Consider an S-CTRNN consisting of an input layer with NI-dimensional units, a

context layer with NC-dimensional units, an output layer with NO-dimensional

units, and a variance layer with NO-dimensional units as shown in Fig. 2.3. The

forward dynamics of the internal states of the ith context, output, and variance

unit at time step 1 ≤ t corresponding to the sth target sequence (u(s)
t,i) are given

by

u(s)
t,i =






(
1− 1

τi

)
u(s)
t−1,i +

1

τi

{(
∑

j∈II

wijx
(s)
t,j

)
+

(
∑

j∈IC

wijc
(s)
t−1,j

)
+ bi

}
(i ∈ IC),

(
∑

j∈IC

wijc
(s)
t,j

)
+ bi (i ∈ IO ∪ IV).

(2.2)

where

τi: time constant of the ith context unit,

II, IC, IO, IV: index sets for the input, context, output, and variance units, respec-

tively,

wi,j: synaptic weight of the connection from the jth unit to the ith unit,

x(s)
t,j : the jth external input state at time step t corresponding to the sth

targe sequence,

2.6. PREDICTIVE LEARNING 23

c(s)t,j : neural activation state of the jth context unit at time step t corre-

sponding to the sth target sequence,

bi: bias of the ith unit.

The neural activation states of context units c(s)t,i , output units y(s)t,i , and

varaince units v(s)t,i at time step t corresponding to the sth target sequence are

calculated by using the respective activation function as follows:

c(s)t,i = tanh(u(s)
t,i) (0 ≤ t ∧ i ∈ IC), (2.3)

y(s)t,i = tanh(u(s)
t,i) (1 ≤ t ∧ i ∈ IO), (2.4)

v(s)t,i = exp(u(s)
t,i) (1 ≤ t ∧ i ∈ IV). (2.5)

2.6 Predictive Learning

The predictive learning of S-CTRNNs is conducted based on the maximum like-

lihood estimation by utilizing the gradient ascent method [89]. The learning

process consists of the following phases.

1. Initialization of learnable parameters (synaptic weight wij, bias bi, and ini-

tial internal states of context units u(s)
0,i) (described in Section 2.7).

2. Generation of mean states y(s)t,i and variance states v(s)t,i by forward dynamics

under the current parameter settings (described in Section 2.5).

3. Calculation of likelihood by using target states ŷ(s)t,i , and the mean and

variance states predicted by the network.

4. Updating the parameters with the gradient ascent method.

5. Repeating phases 2-4 until the likelihood converges.

The current section introduces phases 3 and 4.

2.6.1 Objective Function

Here, the learnable parameters of the network (synaptic weight wij, bias bi, and

initial internal states of context units u(s)
0,i) are denoted as θ. Suppose that we

are given S target sequences, each of which consists of

{ŷ(s)
t }T (s)

t=1 = {ŷ(s)
1 , ŷ(s)

2 , · · · , ŷ(s)
t , · · · , ŷ(s)

T (s)}, (2.6)

24 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

... ...Training Data:

 -Dimensional Vector

... ...Likelihood:

 -Dimensional Vector

...

...

Context Layer:

 -Dimensional Vector

...

... Activation State

Internal State

... ...

Output Layer:

 -Dimensional Vector

... ...

...

...

... Activation State
Input Layer:

 -Dimensional Vector
...

Copy

... ...

... ...

...

...

Variance Layer:

 -Dimensional Vector

Activation State

Internal State

Figure 2.3 Network diagram of S-CTRNN. The input layer including NI-dimensional neural
units (nodes in the input layer) receives external input states xt. These units are connected with
NC-dimensional neural units (nodes in the bottom of the context layer) and internal states ut

of the context layer are computed as an weighted sum of the current input states and previous
context activation states ct−1. Synaptic weights are represented by links (black dashed lines)
between the nodes. The bold black dashed line indicates the connection from the jth to the ith
unit (wij). The computed internal states are transformed to activation states ct (nodes in the
top of the context layer) by using the hyperbolic tangent function tanh(·). In a similar way,
internal states ut of the output layer are computed as an weighted sum of context activation
states and output activation states yt are achieved by applying tanh(·) to the internal states.
In addition to the states of the output layer, internal states ut of the variance layer are also
computed as an weighted sum of context activation states and variance activation states vt are
achieved by applying exp(·) to the internal states. By computing the product of the probability
of training data under Gaussain assumption, we obtain the likelihood function of the network
parameters (Lt) that is defined by target states ŷt, output activation states yt, and variance
activation states vt. This likelihood function is used for the gradient-based predictive learning
with BPTT. The additional parts compared to the conventional CTRNN shown in Fig. A.3 are
colored with red (internal and activation states in the variance layer and connections related to
the states). The other parts are the same as those for the CTRNN.

2.6. PREDICTIVE LEARNING 25

where ŷ(s)
t is a NO-dimensional target state vector whose ith element is repre-

sented as ŷ(s)t,i , s is the index of the sequence, and T (s) is the length of the sth

sequence. The input to an S-CTRNN is desribed as x(s)
t = ŷ(s)

t−ξ and an input

sequence is given by

{x(s)
t }T (s)

t=1 = {x(s)
1 ,x(s)

2 , · · · ,x(s)
t , · · · ,x(s)

T (s)}, (2.7)

where 1 ≤ ξ is called delay length. In this case, the probability density function

of the target state ŷ(s)t,i is defined as

p(ŷ(s)t,i | {x(s)
t′ }

t
t′=1,θ) = N (ŷ(s)t,i | y(s)t,i , v

(s)
t,i) (2.8)

=
1√

2πv(s)t,i

exp

(
−
(ŷ(s)t,i − y(s)t,i)

2

2v(s)t,i

)
, (2.9)

where y(s)t,i and v(s)t,i are the output and variance states generated by the network.

This equation is derived from the Gaussian assumption explained in Section 2.4.

The likelihood function Lout parameterized by θ is denoted by the following

product of (2.8) with respect to the sequence s, the time step t, and the output

dimension i:

Lout =
∏

s∈IS

T (s)∏

t=1

∏

i∈IO

p(ŷ(s)t,i | {x(s)
t′ }

t
t′=1,θ). (2.10)

The parameters θ are optimized through the learning process in the direc-

tion to maximize the likelihood Lout. More precisely, we use the gradient ascent

method with a momentum term as the procedure for the parameter otpimization.

Here, the logarithm of the expression in (2.10) is used to facilitate the calculation.

lnLout =
∑

i∈IS

T (s)∑

t=1

∑

i∈IO

(
−
ln(2πv(s)t,i)

2
−

(ŷ(s)t,i − y(s)t,i)
2

2v(s)t,i

)
. (2.11)

It is well known that minimizing the squared error is equivalent to maximizing

the log-likelihood determined from Gaussian distribution. Up to constants, from

(2.11) the negative log-likelihood Lout = − lnLout is given by

Lout =
∑

i∈IS

T (s)∑

t=1

∑

i∈IO





ln v(s)t,i

2︸ ︷︷ ︸
log-uncertainty

+
(ŷ(s)t,i − y(s)t,i)

2

2v(s)t,i︸ ︷︷ ︸
precision-weighted prediction error




. (2.12)

26 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

This equation means that the objective function for the predictive learning of

S-CTRNNs consists of the sum of log-uncertainty and prediction error divided

by the predicted variance or precision-weighted prediction error. By comparing

the objective function for CTRNNs (A.22) and that for S-CTRNNs (2.12), we

can understand the following key features: The S-CTRNN can avoid unstable

learning of temporal sequence data with random fluctuations since the predicted

variance v(s)t,i functions as an inverse weighting factor for the prediction errorr

(squared error) (ŷ(s)t,i − y(s)t,i)
2/2. More specifically, the effect of the prediction

error is reduced when the predicted variance is large (as the error is divided by the

variance), whereas the effect is increased when the variance is small. Therefore,

the extent of error back-propagation can be autonomously reduced in the case of

learning parts of temporal sequences that display considerable fluctuations. This

relaxes the predictive learning of stochastic temporal sequence data.

When a set of several sequences is used as training data, distinct initial in-

ternal states u(s)
0 must be provided for each sequence. We consider that the

distribution of the initial internal states also conforms to Gaussian distribution.

The probability density function for u(s)
0,i , which is the initial internal state of the

ith unit corresponding to the sth target sequence, is defined as

p(u(s)
0,i | ui, σ

2
IS) = N (u(s)

0,i | ui, σ
2
IS) (2.13)

=
1√

2πσIS

exp

(
−
(u(s)

0,i − ui)2

2σ2
IS

)
, (2.14)

where ui is the mean value of the initial internal states, which is a learnable

parameter, and σ2
IS is the predefined variance.

The likelihood function Linit parameterized by u(s)
0,i and ui is given by

Linit =
∏

s∈IS

∏

i∈IC

p(u(s)
0,i | ui, σ

2
IS). (2.15)

The logarithm of the expression in (2.15) is used to facilitate the calculation.

lnLinit =
∑

s∈IS

∑

i∈IC

(
− ln(2πσ2

IS)

2
−

(u(s)
0,i − ui)2

2σ2
IS

)
. (2.16)

2.6.2 Gradient Ascent Method

The network parameters θ, consisting of synaptic weights, biases, initial inter-

nal states of the context units, and the mean values of these initial states, are

2.6. PREDICTIVE LEARNING 27

optimized to maximize the corresponding log-likelihood lnL. The parameters at

learning step n (θn) are updated by the gradient ascent method with a momentum

term:

θn = θn−1 + α∆θn, (2.17)

∆θn =
∂ lnL

∂θ
+ η∆θn−1, (2.18)

∆θn = 0, (2.19)

where α is the learning rate and η is a parameter representing the momentum

term.

For updating the parameters θshare, consisting of weights wij and biases bi that

are shared for the generation of all sequences, the likelihood L and the learning

rate α in (2.19) are replaced with Lout and αshare, respectively. For updating

the other parameters θinit, consisting of the initial internal states of the context

units u(s)
0,i that are provided for the generation of each sequence s and their mean

values ui, the likelihood L and the learning rate α in (2.19) are replaced with

Lall = LoutLinit and αinit, respectively. Details about the calculation of gradients
∂ lnLout
∂θshare

and ∂ lnLall
∂θinit

are provided in the subsequent section.

2.6.3 Back-Propagation Through Time

The gradient ∂ lnLout
∂θshare

and ∂ lnLall
∂θinit

for each learnable parameter can be obtained by

applying the conventional BPTT method [83]:

∂ lnLout

∂wij
=






1

τi

∑

s∈IS

T (s)∑

t=1

x(s)
t,j

∂ lnLout

∂u(s)
t,i

(i ∈ IC ∧ j ∈ II),

1

τi

∑

s∈IS

T (s)∑

t=1

c(s)t−1,j

∂ lnLout

∂u(s)
t,i

(i ∈ IC ∧ j ∈ IC),

∑

s∈IS

T (s)∑

t=1

c(s)t,j

∂ lnLout

∂u(s)
t,i

(i ∈ IO ∪ IV ∧ j ∈ IC),

(2.20)

28 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

∂ lnLout

∂bi
=






1

τi

∑

s∈IS

T (s)∑

t=1

∂ lnLout

∂u(s)
t,i

(i ∈ IC),

∑

s∈IS

T (s)∑

t=1

∂ lnLout

∂u(s)
t,i

(i ∈ IO ∪ IV),

(2.21)

∂Lout

∂u(s)
t,i

=






{
1− (c(s)t,i)

2
}(

∑

k∈IC

wki

τk

∂Lout

∂u(s)
t+1,k

+
∑

k∈IO∪IV

wki
∂Lout

∂u(s)
t,k

)

+

(
1− 1

τi

)
∂Lout

∂u(s)
t+1,i

(0 ≤ t ∧ i ∈ IC),

{
1− (y(s)t,i)

2
} ŷ(s)t,i − y(s)t,i

v(s)t,i

(1 ≤ t ∧ i ∈ IO),

−1

2
+

(ŷ(s)t,i − y(s)t,i)
2

2v(s)t,i

(1 ≤ t ∧ i ∈ IV),

(2.22)

∂ lnLall

∂u(s)
0,i

=
∂ lnLout

∂u(s)
0,i

− 1

σ2
IS

(u(s)
0,i − ui) (i ∈ IC), (2.23)

∂ lnLall

∂ui
=

∑

s∈IS

1

σ2
IS

(u(s)
0,i − ui) (i ∈ IC). (2.24)

2.7 Parameter Initialization for Predictive Learn-
ing

Synaptic weights wij were initialized with values randomly chosen from a uniform

distribution on the intervals
[
− 1

NI
, 1
NI

]
(if j ∈ II) and

[
− 1

NC
, 1
NC

]
(otherwise),

where NI and NC are the numbers of the input and context units, respectively.

Biases bi were initialized with values randomly chosen from a uniform distribution

on the interval [−1, 1]. Initial internal states u(s)
0,i and the mean values ui of the

initial states were set to 0 and values randomly chosen from a uniform distribution

on the interval
[
− 1

NC
, 1
NC

]
, respectively. Since the maximum value of Lout depends

on the total length Ttotal of the target sequences and the dimensionality NO of the

output units, the learning rate αshare for updating weights and biases was scaled

by a parameter α̃ satisfying the relation αshare =
1

TtotalNO
α̃. The learning rate for

updating initial internal states and mean values was αinit =
1

NO
α̃.

It should be noted that because most parameters are scaled by the features

of training data such as the total length and the dimensionality of the data, the

2.8. GENERATION METHOD 29

above setting can be reused for other training data. Although the non-scaled

parameters including the time constants and the numbers of the context units

should be tuned by trial and error, learning results are not so sensitive to their

setting.

2.8 Generation Method

After the predictive learning process, the S-CTRNN as a generative model is able

to predict the future input state x(s)
t+ξ from the current input state x(s)

t given

a specific initial internal state of context units (u(s)
0). This can be cast as the

process to map a static causal state (initial state) to the corresponding dynamic

consequence (temporal sequence) by means of forward dynamics.

There are the following two different ways to feed the current input x(s)
t,i into

the network for generation:

x(s)
t,i =

{
ŷ(s)t−ξ,i, (2.25a)

y(s)t−ξ,i + ε(s)t−ξ,i, (2.25b)

where ŷ(s)t−ξ,i is an external input state representing a recorded target state or

actual sensory information acquired by a robot, y(s)t−ξ,i is an output state or a

predicted input state generated by the trained network, and ε(s)t−ξ,i is Gaussian

noise given by

ε(s)t−ξ,i = ε(v(s)t−ξ,i) ∼ N (0, v(s)t−ξ,i), (2.26)

where ε(σ2) is a Gaussian noise generator with a zero mean and a standard

deviation of σ (Fig. 2.4).

In (2.25a), the current input is the current external input, and this case is

referred to as the open-loop mode. On the other hand, in (2.25b), the current

input is derived from the predicted mean value to which Gaussian noise with the

predicted variance at the previous step is added. This case is referred to as the

closed-loop mode or more precisely, closed-loop mode with the addition of Gaus-

sian noise with the predicted variance. Equation (2.25b) can autonomously gen-

erate fluctuating states whose ensembles are assumed to reproduce the stochastic

structure latent in the target sequence. It should be noted that we can apply a

different generation method for each output dimension. For example, it is possi-

ble to use the open-loop mode for visual states and the closed-loop mode with the

30 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

+

+
Gaussian Noise
GeneratorClosed-Loop

Dynamics

Open-Loop

Dynamics

Recorded Training Data /

Actual Sensory Information

Context State

Input

Output Variance

Context State

Input

Output Variance

External Input

A

B

Figure 2.4 Generation method: (A) open-loop mode and (B) closed-loop mode with the addition
of Gaussian noise with the predicted variance. For simplicity, an example with the delay length
ξ = 1 is illustrated.

2.9. RECOGNITION METHOD 31

addition of Gaussian noise with the predicted variance for proprioceptive states

for action generation by robots.

2.9 Recognition Method

In the preceding section, generation method using the S-CTRNN after the predic-

tive learning is introduced as a mapping from a static causal state (initial internal

state of context units) to its corresponding dynamic consequence (temporal se-

quence) with forward dynamics. The recognition of given temporal sequences can

be performed as an inverse mapping, namely, the mapping from a dynamic con-

sequence to the corresponding static causal state with backward dynamics. This

means that S-CTRNNs as a generative model can be used for both the “genera-

tion” and “recognition” processes againt other approaches that require different

models for each process, for example, forward model for generation and inverse

model for recognition.

The recognition process based on such an inverse mapping is realized in a sim-

ilar manner to the learnig process that is also based on the backward dynamics.

The learning corresponds to the process of optimizing both the shared (weight

and bias) and respective (initial state) parameters to generate or reproduce tar-

get sequences. On the other hand, the recognition corresponds to the process of

inferring the optimized initial internal states of context units which can repro-

duce given sequences. This inference process is enabled by the gradient ascent

method as well as the learning process. Although all the parameters (including

the shared parameters collected in θshare, which are common for all sequences,

and the parameters regarding the initial internal states of context units collected

in θinit, which are different for each sequence) are optimized during the learning

process, only the initial internal states u(s)
0,i are optimized during the recognition

process. In other words, the five phases for the learning process mentioned in

Section 2.6 can be reused only by changing the “parameters” in phases 1 and 4

to “only initial internal states of context units (u(s)
0,i)”.

2.10 Stochastic Multiple Timescale RNN (S-MTRNN)

This section considers an extention of the S-CTRNN by introducnig multiple

timscale dynamics, which are implemented in the MTRNN introduced in the

32 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

preceding chapter (Section 1.4.2), to the context units. The extended model is

called stochastic MTRNN (S-MTRNN).

Figure 2.5 shows a schematic illustration of the S-MTRNN. As shown in the

figure, the context units of the S-MTRNN are divided into two groups charac-

terized by a difference in time constants of neural activity. Hereinafter faster

timescale units with a smaller time constant (τFC) are called fast context (FC)

units, and slower timescale units with a larger time constant (τSC) are called slow

context (SC) units. Yamashita and Tani [74] demonstrated that a difference of

timescales in the MTRNN enables the self-organization of a functional hierarchy

in which a set of action primitives can be stored in the FC units, and sequential

combinations of the primitives can be represented in the SC units. In addition

to the multiple timescales of the neural activity, the two groups of context units

had different connectivities to introduce constraints on information flow. The

FC units with the smaller time constant were connected with all units. On the

other hand, the SC units with the larger time constant were only connected with

the context units. In addition to the multiple timescale property, the constraint

on information flow derived from the connection setting is also essential for the

self-organization of functional hierarchy.

Fast Context State

Input

Output Variance

Slow Context State

Figure 2.5 Schematic of S-MTRNN. The S-MTRNN consists of an input, a fast context (FC), a
slow context (SC), an output, and a variance layer. The additional parts compared to the basic
S-CTRNN shown in Fig. 2.2A are colored with red (the slow context states and the related
connections). The other parts are the same as those for the S-CTRNN. The neural activity
of the SC units with larger time constant is slow and that of the FC units with smaller time
constant is fast. In addition to the difference of neural activity in the FC and SC units, these
units have different connection settings. The FC units have connections from input, SC units
to them, and from them to themselves, SC, output, and varaince units. The SC units have
connections from FC units to them, and from them to FC units and themselves.

2.10. STOCHASTIC MULTIPLE TIMESCALE RNN (S-MTRNN) 33

2.10.1 Forward Propagation

The forward dynamics of the internal states of the ith FC, SC, and output unit

at time step t corresponding to the sth target sequence (u(s)
t,i) are given by

u(s)
t,i =






(
1− 1

τi

)
u(s)
t−1,i +

1

τi

{(
∑

j∈II

wijx
(s)
t,j

)
+

(
∑

j∈IFC∪ISC

wijc
(s)
t−1,j

)
+ bi

}
(i ∈ IFC ∪ ISC),

(
∑

j∈IFC

wijc
(s)
t,j

)
+ bi (i ∈ IO ∪ IV),

(2.27)

where

τi: time constant of the ith FC or SC unit (τFC or τSC),

II, IFC, ISC, IO, IV: index sets for the input, FC, SC, output, and variance units, respec-

tively,

wij: synaptic weight of the connection from the jth unit to the ith unit (if

i ∈ ISC ∧ j ∈ II then wij = 0),

x(s)
t,j : the jth external input state at time step t corresponding to the sth

targe sequence,

c(s)t,j : neural activation state of the jth FC or SC unit at time step t corre-

sponding to the sth target sequence,

bi: bias of the ith unit.

By considering IC = IFC ∪ ISC, we can apply all the computation methods of the

S-CTRNN descirbed before to those of the S-MTRNN.

The dynamics of the FC units started from a neutral initial state (zero value),

and those of the SC units started from a particular initial state that had been

optimized during the learning process. Thus, the two groups of FC and SC units

can be regarded as a lower-level and a higher-level network, respectively. The

higher level with SC units and the lower level with FC units may correspond to

the rostral and the caudal part in cortex creating a so-called rostro-caudal gradient

of timescales [90]. From the viewpoint of the integration of information processing

and memory, Hasson et al. [91] proposed a hierarchical process memory framework

based on their neurophysiological and neuroimaging studies. In their framework,

the processing timescale of each area of cortex is characterized by the temporal

receptive window (TRW), which is analogous to the time constants. They argue

that the TRW gradually increases from early sensory areas to higher-order areas.

34 CHAPTER 2. STOCHASTIC RECURRENT NEURAL NETWORKS

2.10.2 Dynamic Recognition Method

In a similar way to the recognition (more precisely, static recognition) of given

temporal sequences described in Section 2.9, a dynamic recognition of situational

changes can also be performed by inferring the internal state of the context units

which can reproduce the target states within a certain time window of the imme-

diate past. This is a novel error regression scheme (ERS) that is inspired by the

ERS for the RNNPB introduced in the preceding chapter (Section. 1.4.1).

In the static recognition process, we consider the inference of the optimized

initial internal states of context units (u(s)
0,i) after observing (receiving) a whole

sequence. On the other hand, in the dynamic recognition process, we consider

the inference of the internal states of context units at the current time step t

(u(s)
t,i) by regressing immediate past states in the time window. Although the

internal states of all the context units including FC and SC units can be inferred

theoretically, only the inference of the internal state of SC units is considered for

real-time computation. More specifically, the internal states of the SC units are

modulated in a way that maximizes a part of the likelihood defined in (2.10) by

regressing past states. Actually, because the lower-level network with FC units

is influenced by the higher-level network with SC units, the neural activity of FC

units can also be modulated by the inferred internal states of SC units. This is a

formal extension of active inference [11] in the field of theoretical neurobiology.

The internal states of the SC units at time step t−W (u(s)
t−W,i) are dynamically

modulated by using the gradient ascent method to maximize the likelihood

Lreg =
t∏

t′=t−W+1

∏

i∈IO

1√
2πv(s)t′,i

exp

(
−
(ŷ(s)t′,i − y(s)t′,i)

2

2v(s)t′,i

)
, (2.28)

where the same BPTT scheme [83] adopted for the learning and static recognition

process was used without changing the synaptic weights and biases, and W is the

length of the time window that shifts along with the increment of the time step

t′. This error regression was conducted for several regression steps for each time

step t. In this study, the mean and variance predictions about target states and

the context states for time steps from t−W +1 to t were generated using closed-

loop generation (2.25b) without adding noise in which the “re-interpreted” or

“postdicted” [92] mean state was used as an input for the next time step. During

this generation mode, the set of internal states of the context units at time step

t−W serves as an initial internal state within the time window for ERS. Although

2.10. STOCHASTIC MULTIPLE TIMESCALE RNN (S-MTRNN) 35

we can consider a balance between the forward dynamics state predicted in the

past and that state postdicted at the present with the regression, in the present

study the scheme assumed that the former state is completely overwritten with

the latter state. The robot experiment described in Chapter 5 investigates the

difference of behavior produced by the robot driven by the trained S-MTRNN

with or without dynamic recognition using the ERS.

Chapter 3

Predictive Learning of
Fluctuating Temporal Sequences

3.1 Introduction

This chapter focuses on the numerical evaluation of the proposed computational

framework for predictive learning with uncertainty estimation introduced in the

preceding chapter. Three numerical experiments are conducted to demonstrate

how the S-CTRNN based on the proposed framework learns, reproduces, and

recognizes fluctuating or noisy temporal sequence data. Each experiment employs

different sort of temporal sequence data including trajectory-level uncertainty for

the predictive learning which are artificially generated by adding stochastic or

random fluctuations to clean target states or to a dynamical system generating

these states.

The first experiment, described in Section 3.2, considers the comparison of

learning capabilities between the conventional CTRNN and the proposed S-

CTRNN. This experiment involves learning a set of temporal sequences (multiple

Lissajous curves) with random fluctuations. The fluctuations are derived from the

added Gaussian noise whose variance is both sequence-specific and time-invariant.

The results demonstrate that the conventional CTRNN fails to learn these fluctu-

ating temporal sequences. The S-CTRNN, in contrast, can learn all the temporal

sequences as multiple limit cycle attractors and can also reproduce the stochastic

structures (sequence-specific variances) latent in the data. The results of recog-

nition of given sequences using the trained S-CTRNN are also demonstrated.

The second experiment, described in Section 3.3, considers the extraction and

reproduction of another type of stochastic structures. This experiment involves

37

38CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

learning a temporal sequence (sinusoidal curve) with Gaussian noise whose vari-

ance changes temporally with a certain period. The results demonstrate that the

S-CTRNN can extract and reproduce such a time-varying stochastic structure

via the predictive learning with uncertainty estimation.

In the above-mentioned experiments, Gaussian noise is added to the reference

trajectories of the Lissajous curves or a sinusoidal curve at each time step. There-

fore, the generated (or observed) target states exhibit discontinuous fluctuations.

The third experiment, described in Section 3.4, considers the extraction and re-

production of the other type of stochastic structures. This experiment involves

learning temporal sequences that are generated from a random dynamical system

(limit cycle attractor) in which Gaussian noise with state-dependent variance is

added. Because Gaussian noise is added not to reference trajectories but to the

dynamical system itself, the stochastic structure of the generated target states is

relatively more continuous than the previous cases. The results demonstrate that

the S-CTRNN can also extract and reproduce such a state-dependent stochastic

structure via the predictive learning with uncertainty estimation.

3.2 Learning of Multiple Fluctuating Lissajous
Curves

This section describes the results of learning, reproduction, and recognition of

fluctuating temporal sequences by extracting multiple time-invariant uncertainty

in terms of variance prediction. In the experiment, fluctuating temporal sequences

for predictive learning were produced by adding Gaussian noise with sequence-

specific and time-invariant variance to clean target states (or reference trajecto-

ries).

3.2.1 Training Data

Training data {ŷ(s)
t }T (s)

t=1 for predictive learning consisted of 12 Lissajous curves

with random fluctuations (s ∈ IS = {1, 2, · · · , 12}). To prepare the training data,

clean Lissajous curves with a period P = 25 and a length T (s) = 1000 (= 40P)

were first generated as combinations of the following four sinusoidal curves Ŷt,i

3.2. LEARNING OF MULTIPLE FLUCTUATING LISSAJOUS CURVES 39

(i ∈ {1, 2, 3, 4}):





Ŷt,1 = −0.4

{
cos

(
2πt

P

)
− 1

}
,

Ŷt,2 = 0.8 sin

(
2πt

P

)
,

Ŷt,3 = −0.4

{
cos

(
4πt

P

)
− 1

}
,

Ŷt,4 = 0.8 sin

(
4πt

P

)
.

(3.1)

Then, Gaussian noise ε̂(s)t,i (i ∈ IO = {1, 2}) with sequence-specific and time-

invariant variance v̂(s)t = {σ̂(s)}2 was added to each dimension of the clean Lis-

sajous curves at each time step. The resultant fluctuating target states (ŷ(s)t,1 , ŷ
(s)
t,2)

were expressed as follows (refer to Appendix C for details about all expressions):

(ŷ(1)t,1 , ŷ
(1)
t,2) = (Ŷt,1 + ε̂(1)t,1 , Ŷt,2 + ε̂(1)t,2),

...

(ŷ(12)t,1 , ŷ(12)t,2) = (Ŷt,2 + ε̂(12)t,1 ,−Ŷt,3 + ε̂(12)t,2).

(3.2)

The value of the standard deviation, which is the square root of the sequence-

specific and time-invariant variance, of the added Gaussian noise was defined

as

σ̂(s) =






0.01 (s ∈ {1, 5, 9}),

0.03 (s ∈ {2, 6, 10}),

0.05 (s ∈ {3, 7, 11}),

0.07 (s ∈ {4, 8, 12}).

(3.3)

Figure 3.1 presents phase plots of the 12 fluctuating Lissajous curves. The

predictive learning task used a set of these 12 fluctuating temporal sequences with

the length T (s) = 1000 as training data including multiple time-invariant uncer-

tainty. It was considered that the fluctuating temporal sequences can be embed-

ded as multiple limit cycle attractors in a single S-CTRNN by self-organizing the

corresponding initial internal states of context units.

3.2.2 Parameter Settings for Predictive Learning

Both the conventional CTRNN and the proposed S-CTRNN were trained with

the same parameter settings for comparison of learning capabilities. The number

40CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Training Data

Figure 3.1 Twelve fluctuating Lissajous curves in training data. Gaussian noise ε̂(s)t,i ∼ N (0, v̂(s))

whose variance v̂(s) depends on the sequence s was added in ŷ(s)t,1 and ŷ(s)t,2 . In each row, the

variance increases from left to right (v̂(s) = 0.0001, 0.0009, 0.0025, 0.0049).

3.2. LEARNING OF MULTIPLE FLUCTUATING LISSAJOUS CURVES 41

of input, output, and variance (only for the S-CTRNN) units were NI = NO =

NV = 2, respectively. These were determined by the dimensionality of the target

sequences. The delay length that determines the relationship between input states

and target states was set to ξ = 1, namely, x(s)
t = ŷ(s)

t−1. The number of context

units, the time constant of the context units, and the variance of the initial

internal states of the context units were chosen to be NC = 60, τi = 2 (i ∈ IC =

{1, 2, · · · , NC}), and σ2
IS = 100, respectively. Here, in order to embed multiple

attractors into a single network, a large value was chosen for the variance of the

initial states. The parameter for determining the learning rate was chosen to be

α̃ = 0.01 for the CTRNN and α̃ = 0.0001 for the S-CTRNN. This difference was

attributed to the difference of the objective function of each network, namely, the

prediction error for the CTRNN and the model likelihood for the S-CTRNN in

which prediction error is scaled by the predicted variance. The momentum term

was chosen to be η = 0.9.

The network parameters optimized in the learning process including synaptic

weights, biases, and initial internal states of context units were initialized in the

way written in Chapter 2 (Section 2.7).

3.2.3 Comparison of Learning Capabilities between CTRNN
and S-CTRNN

Both the conventional CTRNN and the proposed S-CTRNN were trained for

500,000 training epochs by optimizing the network parameters with the open-loop

mode (2.25a). After the training, the trained networks were evaluated whether

they were able to reproduce all the learned Lissajous curves by using the respec-

tive optimized initial internal state for each network.

Temporal sequences of output states were generated from the CTRNN (y(s)t,1 , y
(s)
t,2)

and from the S-CTRNN (y(s)t,1 +ε(v(s)t,1), y
(s)
t,2 +ε(v(s)t,2)) with the closed-loop dynamics

by setting each optimized initial internal state u(s)
0,i (i ∈ IC). Especially in the case

of the S-CTRNN, Gaussian noise with the predicted variance v(s)t,i (i ∈ IV) was

added during the closed-loop generation by using (2.25b). Figure 3.2 presents

phase plots of output states of the CTRNN, and output states (with the addition

of Gaussian noise) of the S-CTRNN, respectively. By comparing both sets of the

phase plots of the training data (Fig. 3.1) and the output states (Fig. 3.2A), we

can see that the CTRNN failed to generate some patterns whose noise variance

are small (refer to Appendix C for learning results in different random seed cases).

42CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

Specifically for example, the three patterns with the smallest noise variance (1,

5, 9) are corrupted by the three patterns with the largest noise variance (4, 12,

8). The network also failed to reproduce the stochastic structures latent in the

target sequences.

In contrast, the S-CTRNN succeeded to reproduce the target sequences with

the corresponding stochastic structures (Fig. 3.2B). Because all 12 patterns were

reproduced stably by starting from the corresponding initial context states, it is

considered that they were successfully embedded as multiple limit cycle attrac-

tors. Figure 3.3 presents phase plots of two selected context activation states

of the S-CTRNN. It appears that the context states lack stochastic structures

corresponding to the target sequences although output states show them. This

finding is revisited in the discussion.

3.2.4 Extraction of Multiple Time-Invariant Uncertainty

The temporal sequences of the variance states predicted by the trained S-CTRNN

and their true values for each pattern are shown in Fig. 3.4. Although the values

of the predicted variance v(s)t,1 oscillate, we can see that they are close to the true

value v̂(s).

In order to evaluate the accuracy of the predicted variance, the following tem-

poral mean of predicted variance (v(s)i) of the trained network for each sequence

s was computed,

v(s)i =
1

T (s)

T (s)∑

t=1

v(s)t,i , (3.4)

where T (s) = 1000 is the length of the sequence, as mentioned above. Table 3.1

shows the calculated mean and standard deviation (SD) values of the predicted

variances v(s)i and their corresponding true values v̂(s).

3.2.5 Recognition Results

In a recognition experiment, the trained S-CTRNN was evaluated whether it

was able to infer the initial internal states of the context units given multiple

temporal patterns. Although all parameters (including the synaptic weights,

biases, and initial internal states) were updated 500,000 training epochs during

the predictive learning, the initial internal states were updated only 300 epochs,

with the remaining parameters fixed during the recognition process as explained

3.2. LEARNING OF MULTIPLE FLUCTUATING LISSAJOUS CURVES 43

Output: Proposed S-CTRNN
(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

×

Output: Conventional CTRNNA

B

Figure 3.2 Phase plots of output states generated by the trained network: (A) output states of
the trained CTRNN with closed-loop dynamics, and (B) output states of the trained S-CTRNN
with closed-loop dynamics with the addition of Gaussian noise with the predicted variance. The
crosses mark cases of failure.

44CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

Context: Proposed S-CTRNN
(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 3.3 Phase plots of two selected context activation states of the trained S-CTRNN. There
are no fluctuations observed in output states of the trained S-CTRNN shown in Fig. 3.2.

3.2. LEARNING OF MULTIPLE FLUCTUATING LISSAJOUS CURVES 45

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

Figure 3.4 Temporal sequences of the predicted variances of the trained S-CTRNN in the case
of closed-loop dynamics with the addition of Gaussian noise with the predicted variance for

time steps 500–700. The blue line indicates the predicted variance v(s)t,1 of the trained network,

and the red line indicates its true value v̂(s).

46CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

Table 3.1 Comparison between mean of predicted variances and the corresponding true values.

Index of
Sequence

True
Value

Mean and SD of
Predicted Variance

s v̂(s) v(s)1 SD(s)
1 v(s)2 SD(s)

2

1 0.0001 0.000084 0.0000090 0.000080 0.0000058

2 0.0009 0.000874 0.0000919 0.000901 0.0000827

3 0.0025 0.002452 0.0002574 0.002414 0.0002623

4 0.0049 0.004813 0.0005368 0.004799 0.0005712

5 0.0001 0.000090 0.0000094 0.000086 0.0000101

6 0.0009 0.000837 0.0000717 0.000854 0.0000912

7 0.0025 0.002525 0.0002705 0.002448 0.0001840

8 0.0049 0.004602 0.0004271 0.004654 0.0003304

9 0.0001 0.000094 0.0000130 0.000094 0.0000090

10 0.0009 0.000846 0.0000679 0.000854 0.0000700

11 0.0025 0.002614 0.0002061 0.002521 0.0002025

12 0.0049 0.004581 0.0005425 0.004545 0.0004428

3.3. LEARNING OF FLUCTUATING SINUSOIDAL CURVE 47

in Chapter 2 (Section 2.9). In the experiment, the search for initial states using

the gradient ascent method sometimes falls to a local maximum. Therefore, 20

different sets of randomly chosen values for the initial internal state for each

sequence were tested.

In order to evaluate the recognition error, the following mean square error

(MSE) for each sequence s was computed:

E(s) =
1

2T (s)NO

T (s)∑

t=1

NO∑

i=1

(ŷ(s)t,i − y(s)t,i)
2, (3.5)

where ŷ(s)t,i and y(s)t,i are the ideal value in the target states and the output value of

the S-CTRNN corresponding to the sth sequence, respectively. T (s) = 1000 and

NO = 2 are the length and output dimension of each sequence, respectively. As

a criterion for the success or failure of recognition, the upper bound of MSE for

successful recognition was set to (3σ̂(s))2/2 with respect to the noise variance of

each trained pattern.

Table 3.2 shows the total number of successful recognitions out of 20 trials. All

fluctuating patterns were recognized, although the success rate for the patterns

with the largest noise variance (4, 8, 12) was lower than that for the patterns

with the smallest noise variance (1, 5, 9).

Table 3.2 Number of successful recognitions (SR) out of 20 trials.

Sequence (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Number of SR 17 14 11 9 11 16 9 1 12 16 9 9

3.2.6 Initial State Space Analysis

The 60-dimensional initial internal state space of the context units, which was

self-organized during the learning process, was visualized by applying principal

component analysis (PCA) in the space. Figure 3.5 shows the compressed initial

state space defined by the first and second principal components, where we can

see four clusters based on the noise variance of the training patterns.

3.3 Learning of Fluctuating Sinusoidal Curve

This section describes the results of learning and reproduction of a fluctuating

temporal sequence by extracting time-varying uncertainty in terms of variance

48CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

PCA Results of Initial States

Figure 3.5 Initial internal state space of the context units. The dimensionality of the space
was reduced from 60 to 2 by PCA. Four clusters based on the noise variance of the training
patterns can be observed.

prediction. In the experiment, a fluctuating temporal sequence was produced

by adding Gaussian noise with time-varying variance to clean target states (or

reference trajectories).

3.3.1 Training Data

Training data {ŷt}Tt=1 for predictive learning consisted of a one-dimensional fluc-

tuating sinusoidal curve with a period P = 25 and a length T = 1000 (= 40P).

Gaussian noise ε̂t with time-varying variance v̂t = σ̂2
t was added to the clean

sinusoidal curve at each time step as follows:

ŷt = 0.8 sin

(
2πt

P

)
+ ε̂t. (3.6)

Here, σ̂t is the standard deviation of the added Gaussian noise, which is defined

by

σ̂t =






0.12

P
(t− nP) + 0.01

(
nP ≤ t <

(2n+ 1)

2
P

)
,

−0.12

P
(t− (n+ 1)P) + 0.01

(
(2n+ 1)

2
P ≤ t < (n+ 1)P

)
,

(3.7)

3.4. LEARNING OF RANDOM DYNAMICAL SYSTEM 49

where n is a non-negative integer (n ∈ {0, 1, 2, · · · , 39}). The predictive learning
task used one target sequence with the length T = 1000 as training data including

time-varying uncertainty.

3.3.2 Parameter Settings for Predictive Learning

The number of input, output, and variance units were NI = NO = NV = 1,

respectively. These were determined by the dimensionality of the target sequence.

The delay length that determines the relationship between input states and target

states was set to ξ = 1, namely, xt = ŷt−1. The number of context units, the time

constant of the context units, and the variance of the initial internal states of the

context units were chosen to be NC = 10, τi = 2 (i ∈ IC = {1, 2, · · · , NC}), and
σ2
IS = 1, respectively. The parameter for determining the learning rate and the

momentum term were chosen to be α̃ = 0.0001 and η = 0.9, respectively.

The network parameters optimized in the learning process including synaptic

weights, biases, and initial internal states of context units were initialized in the

way written in Chapter 2 (Section 2.7).

3.3.3 Extraction of Time-Varying Uncertainty

The S-CTRNN was trained for 100,000 training epochs with the open-loop mode

(2.25a). After the training, the trained network was evaluated whether it was able

to reproduce the learned pattern by using the optimized initial internal state.

Temporal sequences (yt + ε(vt)) were generated with the closed-loop dynamics

with the addition of Gaussian noise with the predicted variance by using (2.25b).

An example of generated temporal sequences is shown in Fig. 3.6. As can be

seen from the figure, the output states of the trained network reproduces the

stochastic structure latent in the target sequence, which consists of a periodic

pattern with a time-varying variance. Furthermore, the predicted variance of the

trained network vt is close to the true value v̂t = σ̂2
t .

3.4 Learning of Random Dynamical System

This section describes the results of learning and reproduction of fluctuating

temporal sequences by extracting state-deponent uncertainty in terms of variance

prediction. In the experiment, fluctuating temporal sequences were produced by

adding Gaussian noise with state-dependent variance not to target states but to

50CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

Figure 3.6 Temporal sequences with time-varying uncertainty. Training data (first row), output
of the trained S-CTRNN with closed-loop dynamics with the addition of Gaussian noise with the
predicted variance (second row), and variance predicted by the trained network (third row). In
the third row (temporal sequences of variance), the blue line indicates the variance vt predicted
by the trained network, and the red dashed line indicates its true value v̂t.

3.4. LEARNING OF RANDOM DYNAMICAL SYSTEM 51

a dynamical system generating these states, such that the noise can affect not

only the current but also subsequent states.

3.4.1 Training Data

Training data {ŷ(s)t }T (s)

t=1 for predictive learning were generated by using the fol-

lowing piecewise stochastic differential equations:

{
dŷ(t) = z(t)dt+ σ(ŷ(t))dB(t),
dz(t) = (f(z(t))− k1ŷ(t))dt.

(3.8)

f(z(t)) =






k2z(t) (|z(t)| ≤ za),
−k2(z(t)− 2za) (za < z(t)),
−k2(z(t) + 2za) (z(t) < −za),

(3.9)

where B(t) denotes Brownian motion. In fact, target sequences were computed

according to the following equations, which are numerical approximations of (3.8)

and (3.9):

{
ŷt = ŷt−1 + zt−1∆t+ ε̂t,
zt = zt−1 + (f(zt−1)− k1ŷt−1)∆t.

(3.10)

f(zt−1) =






k2zt−1 (|zt−1| ≤ za),
−k2(zt−1 − 2za) (za < zt−1),
−k2(zt−1 + 2za) (zt−1 < −za).

(3.11)

The parameter settings were ∆t = 0.1, k1 = 1.0, k2 = 2.0, za = 0.25, and the

state-dependent standard deviation σ̂t of the added Gaussian noise ε̂t was defined

as follows:

σ̂t =

{
0.03ŷt−1 (0 < ŷt−1),
0 (else).

(3.12)

The predictive learning task used a set of 10 target sequences generated from the

above equations, each with a length T (s) = 1000 as training data including state-

dependent uncertainty. Here, only one-dimensional sequences ŷ(s)t were used for

the learning (z(s)t was used for calculation of ŷ(s)t).

52CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

3.4.2 Parameter Settings for Predictive Learning

The number of input, output, and variance units were NI = NO = NV = 1, re-

spectively. These were determined by the dimensionality of the target sequences.

The delay length that determines the relationship between input states and tar-

get states was set to ξ = 1, namely, x(s)
t = ŷ(s)t−1. The number of context units, the

time constant of the context units, and the variance of the initial internal states

of the context units were chosen to be NC = 10, τi = 2 (i ∈ IC = {1, 2, · · · , NC}),
and σ2

IS = 1, respectively. The parameter for determining the learning rate and

the momentum term were chosen to be α̃ = 0.0001 and η = 0.9, respectively.

The network parameters optimized in the learning process including synaptic

weights, biases, and initial internal states of context units were initialized in the

way written in Chapter 2 (Section 2.7).

3.4.3 Extraction of State-Dependent Uncertainty

The S-CTRNN was trained for 500,000 training epochs with the open-loop mode

(2.25a). After the training, the trained network was evaluated whether it was able

to reproduce the learned pattern by using the optimized initial internal state.

Temporal sequences (yt + ε(vt)) were generated with the closed-loop dynamics

with the addition of Gaussian noise with the predicted variance by using (2.25b).

An example of generated temporal sequences is shown in Fig. 3.7. As can be

seen from the figure, the output states of the trained network reproduces the

stochastic structure latent in the target sequences, which contains a non-periodic

pattern of the state-dependent variance. Furthermore, the predicted variance vt
of the trained network provides a close approximation of the correct value, which

is calculated by v̂t = σ̂2
t = (0.03yt−1)2.

Figure 3.8 presents phase plots of training data ŷt−zt, the output of the trained

network yt − zt, and the two selected context activation states. Comparing the

phase plots of the training data and the output generated by the closed-loop

dynamics, we can see that the trained network can generate a dynamic stochastic

structure similar to that of the target sequence. Furthermore, it appears that the

context state also shares the same dynamic stochastic structure.

3.4. LEARNING OF RANDOM DYNAMICAL SYSTEM 53

Figure 3.7 Temporal sequences with state-dependent uncertainty. Training data (first row),
output of the trained S-CTRNN with the addition of Gaussian noise with the predicted variance
(second row), and variance predicted by the trained network (third row). In the third row
(temporal sequences of variance), the blue line indicates the variance vt predicted by the trained
network, and the red dashed line indicates the true value v̂t. Here, the true value can be
calculated by substituting the output of the trained network yt into (3.12) as follows: v̂t+1 =
(σ̂t+1)2 = (0.03yt)2.

54CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

Training Data Output

Context

A B

C

Figure 3.8 Comparison of phase plots: (A) training data ŷt − zt, (B) output of the trained
S-CTRNN with closed-loop dynamics with the addition of Gaussian noise with the predicted
variance yt − zt, and (C) two selected context activation states of the trained network.

3.5. DISCUSSION AND CONCLUSIONS 55

3.5 Discussion and Conclusions

In the first experiment described in Section 3.2, the task was predictive learning of

the multiple fluctuating Lissajous curves in which Gaussian noise with sequence-

specific and time-invariant variance was added. The experimental results revealed

that the conventional CTRNN fails to learn these fluctuating temporal sequences

(see Fig. 3.2A). Training of CTRNNs whose parameters were initialized with

different random values showed that (1) patterns with smaller uncertainty were

corrupted by patterns with larger uncertainty, (2) untrained attractors appeared,

and (3) almost none of the training patterns were learned (see Fig. C.1). These

results imply that when a CTRNN is used, temporal sequences with large un-

certainty (or large fluctuations) tend to form strong attractors with a wide basin

that attract a board range of states due to their large prediction error. There-

fore, temporal sequences with smaller uncertainty (or smaller fluctuations) are

corrupted by the former, to the extent where in some cases almost none of the

target sequences are learned because this corruption mechanism interferes with

the entire predictive learning process.

These problems can be solved by using an S-CTRNN in which the predicted

variance scales the prediction error (refer to (2.12)) that contributes to the forma-

tion of attractors. The S-CTRNN can learn the temporal sequences as multiple

limit cycle attractors with multiple time-invariant uncertainty (see Fig. 3.2B).

The variance prediction mechanism also enables the network both to reproduce

the stochastic structures of the fluctuating temporal sequences by adding Gaus-

sian noise with the predicted variance in the closed-loop dynamics and to recog-

nize these sequences by adequately scaling the prediction error used for the BPTT

process in the same manner as the learning process. This sequence-specific vari-

ance prediction is enabled by the self-organized initial state of the context units

whose space represents isolated clusters based on the noise variance of the training

data (see Fig. 3.5).

In the second experiment described in Section 3.3, the task was predictive

learning of the fluctuating sinusoidal curve in which Gaussian noise with the

time-varying variance was added. It is confirmed that the variance predicted by

the S-CTRNN is close to the correct one (see Fig. 3.6). It should be noted that

in both of the above-mentioned experiments, Gaussian noise was added not to

the intrinsic dynamics of generating those patterns but directly to the reference

trajectories of the target sequences at each time step.

56CHAPTER 3. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

In contrast, in the third experiment described in Section 3.4, Gaussian noise

was added to the dynamics of the limit cycle attractor itself. In this case as well,

the S-CTRNN was able to predict the variance correctly (see Fig. 3.7) and to

reproduce the stochastic structure hidden in the training data (see the training

data and the output in Fig. 3.8). By comparing the context states in Figs. 3.3 and

3.8C, we can see a qualitative difference between their trajectories. In the case

where noise was added to the reference trajectories, such as in the experiments in

Sections 3.2 and 3.3, future states are independent of any noise added at previous

steps. Therefore, the hidden stochastic structures did not appear in the context

state trajectories of the trained network (see Fig. 3.3). On the other hand, in the

case where noise was added to the dynamical system generating the target states,

such as in the case described in Section 3.4, the stochastic structure appeared in

the context trajectories in the trained network. Thanks to the fluctuations stored

in the contextual dynamics, because noise added at previous time steps affects

future states, relatively continuous fluctuating output states can be generated

(see Fig. 3.8C).

Chapter 4

Predictive Learning to Develop
Adaptive Behavior

4.1 Introduction

In the preceding chapter, the proposed S-CTRNN is evaluated in terms of its

learning, reproduction, and recognition capabilities through a set of simple nu-

merical experiments employing different sort of fluctuating temporal sequences

with one or two dimensions. This chapter considers more realistic situations by

applying the S-CTRNN into a framework for integrative learning of exteroceptive

(or visual) states and proprioceptive states of a humanoid robot. Namely, the

S-CTRNN is utilized as a generative model for learning to generate predictions

about visuo-proprioceptive states.

The experiment focuses on the development of adaptive behavior by extract-

ing stochastic structures latent in fluctuating behavioral (or visuo-proprioceptive)

sequences with trajectory-level uncertainty. In the experiment, a small humanoid

robot equipped with the S-CTRNN is required to learn a primitive skill for

reaching movement toward a fixed target object from multiple demonstrations

by means of kinesthetic teaching, where the robot’s arm is directly guided by a

human tutor. A resultant ensemble of proprioceptive states in behavioral tra-

jectories represents stochastic structures such that certain parts corresponding

to the touching moment are invariant across the demonstrations and other parts

corresponding to the moment after retracting its arm are variant. The ability to

extract this sort of structures specifying a task constraint from multiple demon-

strations with trajectory-level uncertainty is important for intelligent robots to

achieve adaptive behavior depending on the situations.

57

58CHAPTER 4. PREDICTIVE LEARNING TODEVELOP ADAPTIVE BEHAVIOR

Although it is difficult to identify possible sources of fluctuations and the true

characteristic of such dynamically changing stochastic structures of the fluctua-

tions unlike the numerical experiments, the S-CTRNN demonstrates its ability to

extract and reproduce the structures via the predictive learning with uncertainty

estimation. The results also show that such structures specifying the task con-

straint of reaching movement can be represented not only in learned situations

but also in unlearned situations by utilizing generalization abilities of the trained

network.

4.2 Methods

4.2.1 Design of Reaching Experiment

A small humanoid robot “NAO” developed by Aldebaran Robotics was employed

for the experiment. The task for the robot was to learn reaching movement

toward a target object affixed to a workbench (Fig. 5.2) by integrating visuo-

proprioceptive states and contextual dynamics. The S-CTRNN was utilized as a

generative model for learning to predict visuo-proprioceptive states.

RetractTouch

Certain Position

Uncertain Positions

Figure 4.1 Movement sequence recorded during a tutoring session. The task for the robot was
simply to touch a red sphere placed on a workbench with its right hand and then retract the
hand. This touch-and-retract movement was repeated several times via kinesthetic teaching to
record a target visuo-proprioceptive sequence that included various trajectories with a stochastic
structure.

Multiple demonstrations of the reaching movement were performed by means

of kinesthetic teaching, where the robot’s arm was directly guided by a human

tutor. During the demonstrations, the tutor was instructed to guide the robot’s

4.2. METHODS 59

hand precisely until it touched the target object and to subsequently retract the

hand without following a precise trajectory. Therefore, the resultant hand move-

ment represented a specific stochastic structure as illustrated in Fig. 5.2. The

stochastic structure contains the certain hand position at the touching moment

and uncertain positions after retracting the arm. It was expected that this sort of

structure representing both the important and less important parts for specifying

the task constraint of the reaching movement can be extracted via the predictive

learning with uncertainty estimation by using the S-CTRNN. After the successful

predictive learning, the robot equipped with the trained network was expected to

be able to reproduce the tutored reaching movement together with the extracted

structure.

The object was located at one of three positions (denoted by Positions 1–3)

in the tutoring phase (Fig. 4.2), and it was affixed at the same position while the

tutor repeatedly demonstrated the touch-and-retract movement. Here, Position

3 was the center of the workbench on the line of symmetry between the left and

right sides of the robot.

Position 1 Position 2 Position 3

Figure 4.2 Three positions of the target object. The distance between two neighboring positions
was 7 cm.

4.2.2 Experimental Procedure

The robotics learning experiment consisted of (1) recording visuo-proprioceptive

sequences from the robot, (2) predictive learning with the S-CTRNN in an offline

manner using the recorded target sequences, and (3) testing action generation in

which the robot was controlled by the trained network.

60CHAPTER 4. PREDICTIVE LEARNING TODEVELOP ADAPTIVE BEHAVIOR

Recording Visuo-Proprioceptive Sequences

In the first phase of data recording, the robot was directly tutored on its own

movements in terms of the joint angles of the head and right arm for generating

reaching movement. The touch-and-retract action guided by the tutor was re-

peated 15 times for one target sequence. Note that the touch-and-retract action

in each target sequence was not always completely periodic, although the tu-

tor attempted to generate precise periodic patterns by using a metronome. The

actual learning took place with such training data with uncertainty. To ensure

robust learning, 10 target sequences were recorded for each of the three object

positions. Therefore, the total number of target sequences used in the learning

phase was 30, for a total of 450 touch-and-retract actions. Each target sequence

consisted of a time series of a two-dimensional vector representing head joint an-

gles (yaw and pitch), and a four-dimensional vector representing right arm joint

angles (shoulder pitch, shoulder roll, elbow yaw, and elbow roll) of the robot.

The remaining joint angles were fixed.

The head joint angles were controlled to fixate automatically on the center

of the target object, regardless of the robot’s action both in the data recording

phase with kinesthetic teaching and in testing phase with the trained network.

Therefore, the head direction provided visual information about the relative posi-

tion of the object in this experiment. The target visuo-proprioceptive sequences

were recorded every half a second, and the length of each sequence T (s) was about

180.

Predictive Learning

In the second phase of the predictive learning, visuo-proprioceptive states recorded

in target sequences were mapped to values ranging between −0.8 and 0.8 because

the activation function of the output units of the S-CTRNN was tanh (ranging

between −1.0 and 1.0). The S-CTRNN was trained to predict the mean and vari-

ance states of the visuo-proprioceptive state at the next time step by integrating

the current state in the target sequence and contextual dynamics stored in the

network.

Testing Action Generation

In the third phase of actual action generation, the robot was tested for reproduc-

tion of the learned reaching movement with the object located in learned as well

4.2. METHODS 61

as in new positions. Changes in the object position represented by the head joint

angles were sent back to the network as visual sensory feedback. As mentioned

above, in both the first recording and third testing phases, the head joint angles

were controlled to automatically fix on the center of the target object, regardless

of the robot’s movement. For action generation, initial internal states u(s)
0,i of con-

text units corresponding to each sequence s were not used, and instead the mean

value ûi of the initial states of all target sequences was used. Therefore, differ-

ences in behavior trajectories are not due to the sensitivity to initial conditions of

the trained network but arise from differences in the open-loop visual states (i.e.,

object position) and the Gaussian noise added to the closed-loop proprioceptive

states.

4.2.3 System Architecture

Figure 4.3 presents an overview of the system architecture for the action genera-

tion after the predictive learning.

Inputs to the S-CTRNN were in the form of visual states x(v)
t and proprio-

ceptive states x(p)
t . It should be noted that the superscripts here such as (·)(v)

and (·)(p) are used for discriminating the modalities and the index for specifying

the sth sequence is not written for simplicity. The network predicted the input

states for the next time step as output states y(v)
t and y(p)

t , and also predicted

the variances v(v)
t and v(p)

t corresponding to each output. The predicted propri-

oceptive states y(p)
t with the addition of Gaussian noise ε(p)t with the predicted

variance v(p)
t was fed into the next input state, and these states were remapped

into joint angles. The remapped values were sent to the robot in the form of

target joint angles, which acted as motor commands for the robot to generate

movements. However, the predicted visual states y(v)
t and variance v(v)

t were not

used for action generation because the joint angles of the robot’s head were con-

trolled independently, as mentioned above. Therefore, the inputs to the network

were expressed as follows:






x(p)
t = y(p)

t−1 + ε(p)t−1,

x(v)
t = ŷ(v)

t−1,

(4.1)

where ŷ(v)
t−1 is an actual visual feedback at time step t that corresponds to the

target state at the previous time step t− 1.

62CHAPTER 4. PREDICTIVE LEARNING TODEVELOP ADAPTIVE BEHAVIOR

Virtual

Proprioceptive Feedback

+

+Target

Joint Angle

Robot & Environment

Closed-Loop

Dynamics

Actual Vision (Target Direction)

Predicted Proprioception

Open-Loop

Dynamics

Context State

Input

Output Variance

Gaussian Noise
Generator

S-CTRNN

(Forward Model)

Figure 4.3 System architecture for action generation in reaching task. The S-CTRNN model
was used as a forward model for controlling the robot. Inputs to the network were in the form

of visuo-proprioceptive states x(v)
t and x(p)

t . The network was trained to predict the inputs for

the next time step. The predicted proprioceptive state y(p)
t with addition of Gaussian noise ε(p)t

with the predicted variances v(p)
t was sent to the robot in the form of target joint angles, which

acted as motor commands for the robot to generate movements. The addition of Gaussian noise
enables the network to generate output states with fluctuations whose stochastic structure is
similar to that in the training data.

4.3. RESULTS 63

4.2.4 Parameter Settings for Predictive Learning

The number of input, output, and variance units wereNI = NO = NV = 6, respec-

tively. These were determined by the dimensionality of the target sequences con-

taining the time series of the two-dimensional visual states and four-dimensional

proprioceptive states. The delay length that determines the relationship between

input states and target states was set to ξ = 1, namely, x(s)
t = ŷ(s)

t−1. The num-

ber of context units, the time constant of the context units, and the variance

of the initial internal states of the context units were chosen to be NC = 30,

τi = 2 (i ∈ IC = {1, 2, · · · , NC}), and σ2
IS = 0.001, respectively. The parameter

for determining the learning rate and the momentum term were chosen to be

α̃ = 0.0001 and η = 0.9, respectively.

The network parameters optimized in the learning process including synaptic

weights, biases, initial internal states of context units were initialized in the way

written in Chapter 2 (Section 2.7).

4.3 Results

The S-CTRNN was trained for 500,000 training epochs with the open-loop mode

(2.25a). After the training, the robot equipped with the trained network was

evaluated whether it was able to reproduce the learned movement together with

the stochastic structures latent in the visuo-proprioceptive sequences. Adaptation

to unlearned situations was also evaluated.

4.3.1 Extraction of Task Constraints

Figure 4.4 illustrates an example of visuo-proprioceptive sequences in the training

data, output states and variance predicted by the trained S-CTRNN. As can be

seen from the figure, the output states of the trained network with closed-loop

dynamics with addition of Gaussian noise with the predicted variance reproduce

the stochastic structure of the training data which contains cyclic patterns con-

sisting of invariant and variant parts. Furthermore, the regions of increase and

decrease can be observed in the predicted variances, where we see that the vari-

ance decreases to the minimum at the very moment of touching the object (at the

crests highlighted in gray) and increases after the robot retracts its arm (at the

intermittent valleys). In other words, the task constraints of reaching movement

64CHAPTER 4. PREDICTIVE LEARNING TODEVELOP ADAPTIVE BEHAVIOR

latent in multiple demonstrations was able to be extracted by via the predictive

learning with uncertainty estimation.

Figure 4.5 shows snapshots capturing the moments of touching and after re-

tracting for each object position. As seen in the figure, the position of the robot’s

hand is converged to the point corresponding to the position of the object. In

contrast, it diverges when the robot retracts its hand after touching the object.

4.3.2 Generalization and Adaptation Abilities

The robot equipped with the trained S-CTRNN was able to produce the reaching

movement not only in the cases where the object was located at the learned

positions, but also when it was placed in new positions which did not appear in

the training data, for example, between Positions 1 and 2 and between Positions

2 and 3, by means of generalization. Moreover, the robot was able to adapt

to perturbations such as sudden changes in the object position in the action

generation stage, although the robot had never experienced such situations in the

learning process. Specifically, as long as the object was within the range between

Positions 1 and 3, including new positions, the robot was able to adaptively touch

the object even if the object was shifted from its original position when the robot

started to move.

Figure 4.6 presents phase plots of one of training data, the output and two

selected context states of the trained network for each position, including cases

where the object is located between learned positions. In comparing Fig. 4.6,

the phase plots of the training data and those of the output of the trained net-

work share similar dynamic stochastic structures in which the trajectories tend

to converge in the upper right corner of the phase plot for the shoulder and the

upper left corner of the phase plot for the elbow (corresponding to the moment of

touching the object), and diverge in the lower left corner of the phase plot for the

shoulder and the lower right corner of the phase plot for the elbow (corresponding

to the moment of retracting the arm). Furthermore, the same stochastic struc-

tures can be seen in the context states. Additionally, the trajectories of output

and context states for new positions appear to be situated between those of the

two learned positions and show the same stochastic structures.

These results suggest that the proposed S-CTRNN model can reproduce the

observed fluctuating trajectories to some extents by inferring hidden stochastic

structures in terms of time-varying means and variance states. Furthermore, the

4.3. RESULTS 65

Position 1 Position 2 Position 3

Position 3

Figure 4.4 Temporal sequences obtained in the experiment for each object position (Positions
1–3). Training data (first row), output of the trained S-CTRNN with closed-loop dynamics with
addition of Gaussian noise with the predicted variance (second row), and predicted variance of
the trained network (third row). Each panel shows a plot of one out of two visual dimensions
(blue: head pitch) and two out of four proprioceptive dimensions (green: right shoulder pitch,
red dashed: right elbow roll). The upper parts of the trajectories of the training data and
the output correspond to movement directed towards touching the object, and the lower parts
correspond to retraction of the robot’s arm. The gray areas correspond to the moments at
which the robot touched the object.

66CHAPTER 4. PREDICTIVE LEARNING TODEVELOP ADAPTIVE BEHAVIOR

Position 1 Position 2 Position 3

Touch

Retract

Touch

Retract

Touch

Retract

Figure 4.5 Snapshots of action sequences performed by NAO controlled by the trained S-
CTRNN for each object position (Positions 1–3). The upper panels correspond to movement
directed towards touching the object, and the lower panels correspond to the moment after the
robot retracts its arm.

generalization and adaptation capabilities via learning for new sensory inputs

(e.g., new object positions) were also confirmed.

4.4 Discussion and Conclusions

In the experiment, S-CTRNN was able to reproduce fluctuating behavioral se-

quences with trajectory-level uncertainty demonstrated by a human tutor. The

robot controlled by the trained network reproduced the reaching movement and

exhibited fluctuations with a structure similar to that of the demonstrated tra-

jectories. Although it is difficult to identify sources of noise or to estimate the

characteristics of noise directly in this real-world situation, at least it was ob-

served that the network was capable of reproducing fluctuating trajectories with

a structure similar to that of the demonstrated ones. Such behavioral trajectories

were generated successfully even for new sensory inputs through generalization

of learning. Moreover, the robot was able to adapt to perturbations such as

sudden changes in the object position during action generation. Namely, the re-

sults demonstrated the extraction of trajectory-level uncertainty via predictive

learning and adaptive reproduction of learned skills (or action primitives) in un-

learned situations. These results suggest that the proposed model can achieve

generalization and adaptation to some extent by learning.

Several issues remain to be examined in future studies. One such issue is

4.4. DISCUSSION AND CONCLUSIONS 67

Position 1 Position 2 Position 3

Training Data

Output

Training Data

Output

Training Data

Output

Context ContextContext

Midpoint between
Position 1 and 2

Midpoint between
Position 2 and 3

Output Output

Context Context

Figure 4.6 Phase plots of the training data, the output and the two selected context states of
the trained network for each object position. Shoulder space of the training data (first row),
elbow space of the training data (second row), shoulder space of the output (third row), elbow
space of the output (fourth row), and context space (fifth row). The gray areas correspond to
the moments at which the robot touched the object.

68CHAPTER 4. PREDICTIVE LEARNING TODEVELOP ADAPTIVE BEHAVIOR

the temporal registration problem. In the probabilistic approach employing a

combination of GMM and GMR [30,93,94], dynamic time warping (DTW) is used

for temporal normalization because GMM contains time as a variable, and the

mean and variance information for a given time step is calculated with GMR. For

performing expert-level aerobatics by an autonomous helicopter, Coates et al. [95]

proposed an algorithm that extracts the unobserved target trajectory that an

expert pilot was trying to demonstrate from multiple suboptimal demonstrations,

and then constructs an accurate dynamics model by using the extracted trajectory

for controlling the helicopter. In the former process, they also used DTW to

enable the model to be simpler. In the current study, temporal registration

was not applied to the target sequence because there is no time warping in the

data. Although it can be argued that the context states can absorb time warping

to a certain extent as well as other dynamical systems approaches [80, 96], the

acceptable range should be investigated in future work.

Another issue concerns the utilization of the predicted variance for the robot’s

action generation. For example, when the humanoid robot ASIMO was given a

pouring task in [94], the learned variance information was interpreted as a mea-

sure of the importance of parts of the pouring movement. In parts with large

variance, the robot’s movement diverged more from the actual learned movement

in the case of avoiding self-collision because the required movement precision in

this part of the task execution was lower. Although the predicted variance was

used only to reproduce stochastic structures in the training data in this chapter,

it is considered that the proposed model can also be applied to the acquisition of

skilled behavior by mediating physical constraints and the variability in generat-

ing trajectories, as demonstrated in the aforementioned example.

Chapter 5

Predictive Learning to Develop
Flexible Behavior

5.1 Introduction

In the preceding chapter, the S-CTRNN was applied to robot learning in the con-

text of learning to develop adaptive behavior. The generalization and adaptation

abilities of the network via the predictive learning with uncertainty estimation

was demonstrated. This chapter focuses on the development of reactive and

proactive behavior. These different behavior generation schemes enable cogni-

tive agents (or intelligent robots) to realize flexible behavior. More precisely, we

consider how adequate actions are selected and generated in a flexible manner

based on acquired generative models via the predictive learning with uncertainty

estimation.

The S-MTRNN, which is an extension of the S-CTRNN used in Chapters 3

and 4, is employed as a generative model to achieve hierarchical predictive repre-

sentation about complex visuo-proprioceptive states consisting of the sequential

combination of some primitive patterns. The higher-level network with slow dy-

namics represents sequential information with abstraction of primitives and the

lower-level network with fast dynamics represents specific profiles of the primi-

tives. Furthermore, we consider not only optimizing parameters for learning, but

also inferring internal states by the ERS for dynamic recognition of situational

changes.

In the experiment, the same humanoid robot as the one used in Chapter

4 is used for a cooperative interaction task. The robot equipped with the S-

MTRNN is required to learn to interact with the other pre-programmed robot.

69

70CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

A computer program probabilistically determines the other’s action primitive

from repertoire of primitives. Because the action primitives represented by be-

havioral (visuo-proprioceptive) trajectories are fixed, there is no trajectory-level

uncertainty. However, the transitions of these events (or fixed primitives) are

uncertain. Therefore, the robot controlled by the S-MTRNN is necessary to

deal with event-level uncertainty about the other’s behavior represented as vi-

sual states. The robot interacting with the other robot is expected to flexibly

change action primitives in a reactive manner based on the current sensory states

when external situations are estimated as uncertain. In contrast, it is expected to

change the primitives in a proactive manner based on the own prior intentional

states and predictions when the situations are estimated as certain.

Experimental results demonstrate that these differences can be emerged in

a self-organized fashion in accordance with learning conditions. Specifically, a

probabilistic generative model for reactive behavior is developed when the sensi-

tivity to initial conditions of context units is allowed during the learning process.

On the other hand, a deterministic generative model for proactive behavior is

developed when the sensitivity is not allowed. Based on an analysis of the ex-

perimental result for the different learning conditions, this chapter discusses the

mechanism of learning to develop reactive and proactive behavior for realizing

flexibility.

5.2 Methods

5.2.1 Design of Interaction Experiment

Two humanoid robots “NAO”, which have already been introduced in the pre-

ceding chapter, were employed for the experiment (Fig. 5.1). One robot called

the “self-robot” was required to generate action sequences flexibly corresponding

to those generated by the “other-robot” via learning in a supervised manner.

More specifically, the self-robot faced the other-robot and learned to predict how

the positions of an object held by the other-robot change in time based on vi-

sual sequences. It also learned its own corresponding arm movements in terms of

proprioceptive sequences.

Figure 5.2 (left) shows a schematic illustration of the task. The self-robot was

controlled by the S-MTRNN model and the other-robot followed action sequences

pre-programmed by the experimenter; for simplicity, only the self-robot was re-

5.2. METHODS 71

Figure 5.1 Experimental environment for interaction task. Two NAO robots were utilized for
the experiment.

quired to generate flexible behavior and the other-robot’s action sequences were

not affected by the self-robot. In the task, the other-robot arbitrarily repeated

action primitives involving moving a colored object either to the left (labeled as

“L”) or to the right (labeled as “R”) from the view point of the self-robot. The

self-robot was required to generate corresponding behavior in terms of moving

its right arm in the same direction and simultaneously with the other-robot at

each time step. For the purpose of simultaneous action generation, the self-robot

was required to predict the direction in which the object was about to be moved

before the other-robot actually generated its movement.

The self-robot acquired this skill in a supervised learning phase. In the context

of adaptation to the other-robot’s behavior, the task for the self-robot can be

considered as a cooperative interaction task in which the self-robot attempted

to generate cooperative behavior with the other-robot. It should be noted that,

after the learning phase, the S-MTRNN model implemented in the self-robot

cannot predict the visuo-proprioceptive sequence completely in the test phase in

this task because the decision about whether to move the object to the left or to

the right at each branching level is generated at random by the pre-programmed

other-robot. In this context, the objective of the experiment was to examine

how, after learning, the self-robot can generate cooperative behavior in a flexible

manner even when the self-robot occasionally fails to make a correct prediction

about the branching points.

72CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

Training Patterns

L

R

L L L L

L L L L

L L L R L

R R R R

R R R R R

L

R R R RL

:
:

Choose left Choose rightMake decision

50 % 50 %

L R

S-MTRNN controlled

self-robot

Pre-programmed

other-robot
00

01

02

31

29

30

Figure 5.2 Task design. The left part of the figure shows a schematic of a cooperative interaction
task. The “self-robot” controlled by the S-MTRNN and a pre-programmed “other-robot” were
used in the experiment. In the task, the other-robot arbitrarily moved a colored object either
to the left or to the right with equal probability (P = 0.5). The self-robot was required to learn
to flexibly interact with the other-robot in terms of moving its right arm in the same direction
at the same time as the other-robot (left and right photographs in the figure). The right part
of the figure illustrates the 32 training patterns used in the experiment. These patterns covered
all the transition patterns in the case where the transition was repeated five times in each
sequence.

5.2.2 Experimental Procedure

The robotics learning experiments consisted of (1) recording visuo-proprioceptive

training sequences from the self-robot interacting with the other-robot, (2) pre-

dictive learning with the S-MTRNN in an offline manner using the recorded target

sequences, and (3) testing action generation in which the self-robot was controlled

by the trained network.

Recording Visuo-Proprioceptive Sequences

In the first phase of data recording, the self-robot was directly tutored on its own

movements in terms of head angle and right arm posture for generating cooper-

ative behavior that matched the actions of the other-robot for action primitive

sequences consisting of five-level decision branching. Each branch corresponded

to moving the object to the left or to the right. In the current experiment, 32

pattern sequences covering all possible five-level branching sequences (such as

“RRLLR”) were recorded as a training data set (see the right hand part of Fig.

5.2). Each sequence consisted of a temporal sequence of a two-dimensional vec-

tor representing the object’s center position in visual images obtained from the

5.2. METHODS 73

camera mounted on the tutored self-robot, a two-dimensional vector representing

head joint angles (yaw and pitch), and a four-dimensional vector representing

right arm joint angles (shoulder pitch, shoulder roll, elbow yaw, and elbow roll)

of the self-robot. These data were recorded 10 times a second, and the length of

each sequence T (s) was about 470.

Predictive Learning

In the second phase of the network training, visuo-proprioceptive states recorded

in training sequences were mapped to values ranging between −0.8 and 0.8 be-

cause the activation function of the output units of the S-MTRNN was tanh

(ranging between −1.0 and 1.0).

Two different values for the variance of the initial internal states of the SC

units were employed: one with a small variance (σ2
IS = 0.00001) and one with a

large variance (σ2
IS = 10). For simplicity, we refer to the former and the latter

cases as the “narrow IS distribution” and the “wide IS distribution”, respectively,

where IS means initial state. In the narrow IS distribution, the initial sensitiv-

ity of the network explained in Chapter 2 (Section 2.2.3) seems to be utilized

less frequently to differentiate between the initial states for generating different

sequences, and in the wide IS distribution, the sensitivity seems to be utilized

more frequently (see Fig. 5.3). By imposing these different learning conditions,

the effect of the difference in the IS distribution on the development of differ-

ent behavior generation schemes was investigated. The S-MTRNN was trained

to predict the mean and variance states of the visuo-proprioceptive state at the

next time step by using the current state in the training sequence.

Testing Action Generation

In the third phase of actual action generation, an arbitrary set of initial inter-

nal states of the SC units was given to the trained network. Changes in the

environment, including changes in the object position and changes in the actual

joint angle positions were sent back to the network as sensory feedback. In both

the first and third phases, the self-robot’s head joint angles were controlled to

automatically fix on the center of the target object, regardless of the robot’s

behavior.

74CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

Small variations
in initial states

Narrow
IS distribution

Wide
IS distribution

Large variations
in initial states

Initial state (IS) space

Sequence 1

Sequence 2

Sequence 3…

u0,1

u0,2

u0,1

u0,2

Figure 5.3 Initial state (IS) space of the higher-level network containing SC units. These initial
conditions were optimized during learning and confer context sensitivity on the subsequent
dynamics. Although the actual dimensionality of the space was 10 (the number of SC units),
this space is shown here as a two-dimensional space for visualization purposes. Left: narrow
IS distribution case, in which a small variance (σ2

IS = 0.00001) was employed; right: wide IS
distribution case in which a large variance (σ2

IS = 10) was employed. This difference in variance
affected the initial sensitivity of the S-MTRNN. By the “initial internal state” we mean the

initial values of the internal states of the SC units (u(s)
0,i). Each colored circle represents an

initial internal state associated with a particular visuo-proprioceptive sequence.

5.2. METHODS 75

5.2.3 System Architecture

Figure 5.4 presents an overview of the system architecture for the action genera-

tion after the predictive learning.

Virtual

Proprioceptive Feedback

Target

Joint Angle

Robot & Environment

Closed-Loop

Dynamics

Actual Vision (Target Direction)

Predicted Proprioception

Open-Loop

Dynamics

S-MTRNN

(Forward Model)

Fast Context State

Input

Output Variance

Slow Context State

Predicted

Vision

Figure 5.4 System architecture for action generation in interactive task. The S-MTRNN model
was used as a forward model for controlling the self-robot. Inputs to the network were in the

form of visuo-proprioceptive states x(v)
t and x(p)

t . The network was trained to predict the

inputs for the next time step. The predicted proprioceptive state y(p)
t was sent to the robot

in the form of target joint angles, which acted as motor commands for the robot to generate
movements.

Inputs to the S-MTRNN were in the form of visual states x(v)
t and proprio-

ceptive states x(p)
t . It should be noted that the superscripts here such as (·)(v)

and (·)(p) are used for discriminating the modalities and the index for specifying

the sth sequence is not written for simplicity. The network predicted the input

states for the time step t+ξ as output states y(v)
t and y(p)

t , and also predicted the

variances v(v)
t and v(p)

t corresponding to each output. The previously predicted

proprioceptive state y(p)
t−ξ+1 was fed into the next input state, and these states

were remapped into joint angles. The remapped values were sent to the robot in

the form of target joint angles, which acted as motor commands for the robot to

generate movements. However, the predicted visual states y(v)
t−ξ+1 and variances

(v(v)
t−ξ+1 and v(p)

t−ξ+1) were not used for action generation because the joint angles

of the robot’s head were controlled independently, as mentioned above.

76CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

5.2.4 Parameter Settings for Predictive Learning

The number of the input, output, and variance units were NI = NO = NV = 8, re-

spectively. These were determined by the dimensionality of the visuo-proprioceptive

state of a humanoid robot (two-dimensional visual inputs, two-dimensional head

joint angles, and four-dimensional right arm joint angles as described in the fol-

lowing section). The delay length that determines the relationship between input

states and target states was set to ξ = 5, namely, x(s)
t = ŷ(s)

t−5. The numbers

of FC and SC units were NFC = 30 and NSC = 10, respectively. The time con-

stants of the FC and SC units were τFC = 5 and τSC = 100, respectively. The

same parameters were employed for the training in both the narrow and wide IS

distribution conditions for comparison.

In all experiments presented in this chapter, the parameter for determining

the learning rate α̃ and the momentum term were chosen to be α̃ = 0.0001 and

η = 0.9, respectively.

The network parameters optimized in the learning process including synaptic

weights, biases, and initial internal states of context units were initialized in

the way written in Chapter 2 (Section 2.7). To accelerate network training, the

adaptive learning rate scheme based on the works of Namikawa et al. [44,71] was

employed. Details are provided in Appendix D (Section D.1).

5.3 Results

The S-MTRNN with two different learning conditions, one with the narrow IS

distribution (σ2
IS = 0.00001) and the other with the wide IS distribution (σ2

IS =

10), was trained for 500,000 training epochs with the open-loop mode (2.25a).

5.3.1 Reproduction of Visuo-Proprioceptive Sequences with
Different Representations of Uncertainty

After the network training, the visuo-proprioceptive sequences produced by each

trained network with a closed-loop generation were first analyzed before the self-

robot commenced the actual cooperative interaction with the other-robot. In this

generation mode, an optimized initial internal state of the SC units is set for the

higher-level network, and the input state at the current time step is derived from

the predicted mean value to which Gaussian noise with the variance predicted

at the previous time step is added by using (2.25b). Because this generation

5.3. RESULTS 77

mode does not receive actual sensory feedback, the process can be regarded as a

simulation of action generation or motor imagery [44, 74, 97] taking fluctuations

into account.

The trained network can deterministically regenerate learned sequences if ad-

equate initial states are acquired for each sequence [44] and if the estimated

variances remain sufficiently small (almost zero) through time. If the estimated

variances are non-zero, for example at decision branching points, the sequences

are generated stochastically by the effect of Gaussian noise added in accordance

with the predicted variance.

Figure 5.5A and 5.5B show examples of sequences reproduced by the trained

network in the narrow and wide IS distribution conditions. The sequences include

temporal sequences of sensory targets (training data), sensory (mean) predictions,

variance predictions, SC states, and FC states obtained from the S-MTRNN with

closed-loop generation in which the initial state of the higher-level network was

set to the “RRLLR” sequence.

In the narrow IS distribution condition, the network was unable to reproduce

any learned sequence associated with a particular initial state with closed-loop

generation. In Fig. 5.5A, for example, although the initial state for the network

was set with the values optimized for the “RRLLR” sequence in the learning

process, the generated sequence was “LRLLR”. The figure suggests that a large

variance is predicted at each branching point, indicating that the network regards

the forthcoming perceptual event as uncertain. This prediction of a large vari-

ance or small precision at each branching point is reasonable because the visual

input derived from the other-robot’s behavior is essentially unpredictable. It was

confirmed that the network was able to flexibly produce various combinatorial se-

quences derived from visual perturbations caused by self-generated noise with the

predicted variances added at each branching point, instead of utilizing sensitivity

to initial conditions of the higher-level network. These results indicate that the

network developed a probabilistic prediction model at the branching points and

a deterministic one for the other segments. It can be said that the regenerated

sequences contained deterministic chunks (moving to either the left or the right)

with probabilistic transitions or high event-level uncertainty.

In contrast, in the wide IS distribution condition, the network was able to

reproduce every learned sequence from the acquired initial state set in the higher-

level network. In Fig. 5.5B it can be seen that the predicted variance at all times

is nearly zero. These results indicate that the branching sequences are flexibly

78CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

B Wide IS distribution
R R L L R

R R L L R

A Narrow IS distribution
R R L L R

L R L L R

Figure 5.5 Temporal sequences obtained in the experiment. Temporal sequences of sensory
targets (training data), sensory predictions (network mean output), variance predictions, SC
states, and FC states during the closed-loop operation of the networks trained with (A) the
narrow IS distribution and (B) the wide IS distribution. One time step corresponds to 100 ms.
In the upper three panels, the red, green, blue, and cyan lines indicate the horizontal position
of the object in a visual image, the head yaw angle, the shoulder pitch angle, and the elbow
yaw angle, respectively. In the lower two panels, neural activities of five selected units (from
10 SC units and 30 FC units) are shown. The vertical dashed lines indicate branching points
from which the object was moved either to the left or to the right by the other-robot in the
training sequence. The labels over the panels of sensory targets and sensory predictions denote
the action performed by the self-robot.

5.3. RESULTS 79

reproduced as deterministic dynamic sequences depending on the initial state.

The two IS distributions also show differences in terms of FC and SC unit

states. In the narrow IS distribution condition, the initial value of each SC unit

is not widely spread and is located near 0. The activities of both FC and SC

units at the branching points seem to be almost the same, regardless of future

sensory predictions. Therefore, it can be said that transitions are determined

not by the internal context dynamics but by the self-generated noise, where the

variance shows a sharp peak at the branching point. In contrast, in the wide

IS distribution condition, both SC and FC units exhibit specific activation pat-

terns. The dynamics of the SC units gradually change and those of the FC units

have distinct forms at each branching point by which the subsequent sensory pre-

dictions can be discriminated. In summary, top-down prediction does not take

place at branching points in the narrow IS distribution condition, whereas it does

when using the deterministic neural dynamics developed with the initial precision

characteristics in the wide IS distribution condition.

5.3.2 Action Generation Test

After evaluating the training results, experiments looking at actual cooperative

interactions between the self-robot and the other-robot were performed. The

self-robot was controlled by the system shown in Fig. 5.4. The other-robot was

pre-programmed and its behavior was not affected by the self-robot.

To observe how the self-robot flexibly changes its behavior to interact with

the other-robot’s unpredictable behavior, an arbitrarily selected initial state for

the trained S-MTRNN controlling the self-robot was set. Therefore, there is a

discrepancy between the actions of the other-robot as anticipated by the self-

robot and the actual actions generated by the other-robot during the interaction.

Through the action generation test, it was investigated how unmatched internal

context dynamics can be modified in order to adapt to the unpredictable behavior

of the other-robot in the two learning conditions. Success or failure in this test

phase was distinguished by means of the self-robot’s hand position. A movement

was judged to be successful when the hand was moved from the center of the body

to the object’s side, while it was judged to be a failure when the hand moved to

the opposite side of the object or collided with the other-robot.

Figure 5.6A and 5.6B show examples of temporal sequences of online-sensory

predictions, variance predictions, prediction errors, SC states, and FC states ob-

80CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

tained from the S-MTRNN for narrow and wide IS distribution conditions imple-

mented on the self-robot. In this example, the initial state for the self-robot was

set with the values optimized for the “LLRRL” sequence in the learning process,

whereas the other-robot was programmed to generate the “RRLLR” sequence for

both the narrow IS and the wide IS distribution conditions. This setting means

that if a particular initial state encodes the learned action sequence of “LLRRL”,

this initial state can regenerate the same sequence for the self-robot’s action plan

which becomes exactly opposite to the action program to be generated by the

other-robot.

B Wide IS distribution
R R L R R

A Narrow IS distribution
R R L L R

Figure 5.6 Temporal sequences obtained in the experiment. Temporal sequences of one-step
sensory predictions, variance predictions, prediction errors, SC states, and FC states during
action generation of the robot using the network trained with (B) the narrow IS distribution
and (C) the wide IS distribution. The format of these panels is the same as that in Fig. 5.5B
and 5.5C, except that here prediction errors are shown instead of sensory targets. In the case of
the wide IS distribution, the cross on one label “R” represents a failure to predict the behavior
of the other-robot, in which the hand of the self-robot collided with that of the other-robot.

5.3. RESULTS 81

In the narrow IS distribution condition, it was observed that the self-robot

succeeded to generate the “RRLLR” sequence which corresponds to the sequence

generated by the other-robot without any failure movements. This is evidenced

by the observation that the one-step prediction profile is rather similar to the

sensory target profile of the same sequence shown in Figure 5.5A. Also, it can be

seen that some prediction errors were generated at each branching point. The

states of both SC and FC units at each branching point are almost the same.

In contrast, for the wide IS distribution condition, the one-step prediction

sequence was significantly poorer than that for the narrow IS distribution condi-

tion. In fact, the prediction error at each branch point often became significantly

larger than the one in the narrow IS distribution condition. In this situation, the

movement of the self-robot became inflexible. Although the self-robot seemed to

try to follow the movements of the other-robot, its movements were significantly

delayed. Furthermore, after three transitions between action primitives (i.e., after

300 time steps), the hand of the self-robot collided with that of the other-robot

because the two robots moved their arms in opposite directions.

At first glance, it may appear counterintuitive that the narrow IS distribution

can cope with violations of top-down predictions, whereas the wide IS distribu-

tion could not. Heuristically, one can understand this as follows: because we

are optimizing the dynamics through the parameters, then the self-robot (after

learning) is only optimal when the world behaves as expected. Crucially, these

expectations include beliefs about precision. Therefore, paradoxically, an agent

with a narrow IS distribution at the highest level learn that (precise) beliefs at

lower levels can be violated and therefore contextualize sensory information by

modulating the precision of prediction errors at those levels. In other words, only

an agent with a narrow IS distribution can recognize its beliefs at lower levels are

not always true.

5.3.3 Effect of Differences in Uncertainty Estimation on
Reaction Times

To evaluate the effect of differences in uncertainty estimation on cooperative in-

teractions, the reaction time of the self-robot, which is the number of time steps

before the self-robot generated cooperative action primitives corresponding to the

other-robot’s action, was measured for the two learning conditions. In each condi-

tion, two initial types of state for the trained network were considered. In one case

82CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

the initial state corresponded to the other-robot’s action sequence (this is referred

to as the “corresponding IS” case) and in the other case an arbitrarily selected

initial state was used (this is referred to as the “non-corresponding IS” case). In

the current experiment, the initial state optimized for the “LLRRL” sequence

was adopted for the non-corresponding IS case regardless of the other-robot’s ac-

tion sequences. This analysis was conducted not on physical interaction results

but on ones simulated by using a set of recorded data and 10 trained sample

networks with differently randomized initial parameters for each IS distribution

condition. For details of the measurement, please refer to Appendix D (Section

D.2). Mean reaction times over the 10 trained sample networks were computed,

each of which generated 32 sequences including all combinations of the five tran-

sitions of the two action primitives (or 160 branches), for the corresponding and

non-corresponding IS cases in each learning condition.

Figure 5.7 shows the computed mean reaction times in each case and results

of t-test. In the narrow IS distribution condition estimating high event-level

uncertainty, there is no significant difference (t(18) = 0.71, n.s.) in reaction

times between the corresponding IS case (M = 17.77, SD = 4.37) and the non-

corresponding IS case (M = 17.80, SD = 4.36). This result indicates that initial

precision characteristics were no longer utilized on learning of different visuo-

proprioceptive sequences and that the self-robot’s behavior after learning relied

not on internally generated context dynamics but on externally given sensory

inputs. In contrast, in the wide IS distribution condition estimating low event-

level uncertainty, there is a significant difference (t(18) = 11.63, p < 0.001) in

reaction times between the corresponding IS case (M = 0.004, SD = 0.008) and

the non-corresponding IS case (M = 36.64, SD = 4.19). In both the correspond-

ing and non-corresponding IS cases, there are significant differences of reaction

times between the narrow and wide IS distribution conditions (t(18) = 12.21,

p < 0.001; t(18) = 9.34, p < 0.001; respectively). The shortest mean reaction

time obtained in the wide IS distribution condition indicates that when the net-

work was placed in the corresponding initial state, the action generation of the

self-robot was almost synchronized with that of the other-robot. On the other

hand, the longest mean reaction time obtained in the wide IS distribution condi-

tion indicates that a long time was required to revise behavioral contexts when

the self-robot’s anticipation derived from the initial state failed.

These differences observed between the two learning conditions can be at-

tributed to the different neural dynamic structures developed for these condi-

5.3. RESULTS 83

n.s.

Figure 5.7 Reaction times of the self-robot during action generation. Times are given for
the results of the simulated self-robot’s action generation using the network trained with the
narrow and wide IS distribution conditions. Bars and numbers in the graph correspond to mean
reaction times over 10 trained sample networks for each IS distribution condition, each of which
generated 32 sequences including the five transitions of the two action primitives. Black bars
show the reaction times for initial states corresponding to the other-robot’s action sequences
and the gray bars show times for an arbitrarily selected (non-corresponding) initial state. In
this case, the initial state optimized for the “LLRRL” sequence was adopted regardless of the
other-robot’s action sequences. Error bars indicate the standard deviation. Stars indicate a
significant difference (***: p < 0.001) and “n.s.” indicates no significant difference.

84CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

tions. In the case of the probabilistic dynamic structure with high event-level

uncertainty developed in the narrow IS distribution condition, the behavior of

moving either to the left or to the right is determined simply by following the

other-robot by means of a sensory reflex without any top-down prior based on ini-

tial states. Therefore, the difference in initial states did not affect the self-robot’s

behavior or its reaction times. In contrast, in the case of the deterministic dy-

namic structure with low event-level uncertainty developed to be sensitive to the

initial state, the top-down prior at the branching point is too strong to be modi-

fied by the sensory input. Therefore, when corresponding initial states were given

to the network, it worked positively toward the realization of cooperative interac-

tions without any time delay. However, when the non-corresponding initial states

were given, the self-robot required a long time to adapt to the unanticipated ac-

tions of the other-robot and sometimes flexible modification was not achieved. To

consider this problem, the effect of introducing an additional neural mechanism

of bottom-up recognition by using error information was examined.

5.3.4 Action Generation with ERS for Proactive Behavior

As we learned from the experiment in the preceding subsection, when the top-

down prior was too strong, a simple sensory reflex was insufficient for revising the

internal neural dynamics. To solve this problem, the ERS or dynamic recognition

method introduced in Chapter 2 (Section 2.10.2) was applied into the trained

network and reconducted an action generation test in the wide IS distribution

condition. Figure 5.8 shows a schematic illustration of the open-loop generation

with ERS.

For updating internal states of the SC units using ERS, the likelihood L and

the learning rate α in (2.19) are replaced with Lreg and αreg, respectively. The

learning rate was set to the same value used in the updating of the initial internal

states of the SC units. During the error regression process, the adaptive learning

rate scheme was not used for real-time computation and, therefore, the value was

fixed.

Figure 5.9 shows an example of the temporal sequences of sensory predictions,

variance predictions, prediction errors, SC states, and FC states obtained from

the S-MTRNN with ERS with a wide IS distribution condition implemented on

the self-robot. Clearly, the SC states in the gray areas change in a discontinuous

manner. Modulating the higher-level SC states in this way by using ERS caused

5.3. RESULTS 85

Virtual

Proprioceptive Feedback

Target

Joint Angle

Robot & Environment

Closed-Loop

Dynamics

Actual Vision (Target Direction)

Predicted Proprioception

Open-Loop

Dynamics

S-MTRNN

(Forward Model)

Fast Context State

Input

Output Variance

Slow Context State

Predicted

Vision

Dynamically Modified

Actual

Vision

Predicted

Variance

Figure 5.8 Open-loop generation with ERS. The internal states of the SC units are dynamically
modified by using the gradient ascent method with BPTT (orange arrows) to maximize the
likelihood (red arrow).

drastic changes in lower-level network activity, including the FC states and sen-

sory predictions. Through these processes, the prediction errors were rapidly

suppressed, and thus the self-robot was able to revise its behavioral context im-

mediately after encountering unanticipated perceptual events.

To clarify the dynamic process of the regression by which the record of past

states in the window can be overwritten and that of the prediction in which future

plans can be modified by the regression, the states for time steps 175 to 265 were

extracted from Fig. 5.9. Figure 5.10 shows three sets of the states when the

current time step (the window head) is 221, 224, and 227, corresponding to the

“pre-modification,” “modification,” and “post-modification” phases, respectively.

In the figure, the dynamically sliding windows are shown as gray frames. The

figure shows the states in the past (left side of the window head) with solid lines, in

the future (right side of the window head) with dashed lines, and at the present

(the window head) with labels “Now” and specific time indexes indicating the

boundary between the past and future states. It should be noted that although

the range of the time step of each panel is the same (from 175 to 265), not only

future predicted states but also the record of the past states at the same time

step can differ from each other because immediate past states within the time

window can be overwritten by revising the internal neural dynamics using ERS.

Past states outside of the window are not affected by the regression dynamics

86CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

R R L L RL R

Wide IS distribution
Resituation

Figure 5.9 Temporal sequences obtained in the experiment. Temporal sequences of one-step
sensory predictions, variance predictions, prediction errors, SC states, and FC states during
action generation with error regression for a robot using the network trained with the wide IS
distribution. The format of these panels is the same as that in Fig. 5.6A and 5.6B. Extracted
states for time steps 175 to 265 corresponding to the states in the light orange area are shown
in Fig. 5.10 when the current time step is 221, 224, and 227.

5.3. RESULTS 87

and are constant.

R L

Overwritten
past

L
Past Changed

plan
PlanPastPlanPast

Figure 5.10 Regression dynamics. Extracted states for time steps 175 to 265 corresponding
to the states in the light orange area in Fig. 5.9 (here variance predictions are not shown).
The current time steps labeled “Now” in the left hand, center, right hand panels are 221 (pre-
modification phase), 224 (modification phase), and 227 (post-modification phase), respectively.
Time windows are indicated by gray areas in each panel. The states, shown as solid lines, to
the left of the window head correspond to past states at the current time; the states, shown as
dashed lines, to the right of the window head correspond to future states at the current time.
These past and future states can be overwritten and changed by the ERS at each time step.
Note that the states shown in Fig. 5.9 correspond to the states at the current time step shown
in this figure, which are the actual states before they are overwritten by the regression.

From Fig. 5.10, we can see that the past states were overwritten in the

modification phase (center panels). In the pre-modification phase (left panels),

the neural dynamics of the FC state and the predicted visuo-proprioceptive states

corresponded to the action primitive labeled as “R”. At this time, the prediction

error of the visual input representing the horizontal position of the object (red

line) has increased, meaning that there was a discrepancy between the prediction

and actual sensory (visual) feedback. In the previous subsection, we observed

that the prediction error at each branching point cannot be suppressed (see the

88CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

wide IS distribution condition in Fig. 5.6) by only the received sensory inputs. On

the other hand in the modification phase shown in Fig. 5.10, the large prediction

error was suppressed by the bottom-up recognition using ERS that revises the

internal neural dynamics by back-propagating the precision-weighted prediction

error to the higher-level network. During this process, the internal states of the SC

units at the window tail were slightly modulated, and the modulation affected

the lower-level dynamics of the FC units. By comparing the pre-modification

and modification phases, we can confirm that the activity of the FC units was

distinctly different. By revising the past SC and FC dynamics, the previously

generated prediction (past) states were overwritten, and the future plan changed

from moving the hand to the right to moving it to the left. At this time, the

past states outside of the window were not affected by the recognition dynamics

as mentioned before. In the absence of the prediction error, the modulation of

the internal neural dynamics and overwriting of past states were not performed,

and forward dynamics were smoothly generated, as seen in the post-modification

phase (right panels).

5.3.5 Effect of ERS on Reaction Times

We now consider the effect of error regression on reaction times. Mean reaction

times over the 10 sample networks trained with the wide IS distribution condition

were computed, each of which generated 32 sequences including all combinations

of the five transitions of the two action primitives with and without the error

regression mechanism. For computing the reaction times, the initial state op-

timized for the “LLRRL” sequence was adopted regardless of the other-robot’s

action sequences in the same manner as for the non-corresponding IS case shown

in Fig. 5.7. As shown in Fig. 5.11, when the self-robot relied on only received

sensory inputs (no error regression), the mean time for reaction to unanticipated

external situations was 36.64 time steps (gray bar). By introducing the addi-

tional bottom-up recognition mechanism using ERS, the mean reaction time was

reduced to just 8.22 time steps (red bar) with SD = 2.75. There is a significant

difference between these mean reaction times (t(18) = 8.54, p < 0.001). This

change shows that the internal contextual dynamics can be revised by means

of interactions between the top-down intentional prediction and the bottom-up

recognition of the actual behavior when deterministic predictive dynamics is used

internally.

5.3. RESULTS 89

Figure 5.11 Reaction times of the self-robot during action generation with and without error
regression scheme (ERS). Times are given for the results of the simulated self-robot’s action
generation using the network trained with the wide IS distribution condition. An arbitrarily
selected initial state (values optimized for the “LLRRL” sequence) was given to the network
regardless of the other-robot’s action sequences. The bars and numbers in the graph correspond
to mean reaction times over 10 trained sample networks, each of which generated 32 sequences
including five transitions of the two action primitives. Error bars indicate the standard devia-
tion. Stars indicate a significant difference (***: p < 0.001). The gray bar, for the case without
ERS, corresponds to the rightmost bar in Fig. 5.7.

90CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

The mean reaction time in the wide IS distribution condition with ERS is

significantly shorter (t(18) = 5.57, p < 0.001) than that in the narrow IS dis-

tribution condition (17.80 time steps shown in Fig. 5.7). This difference can be

attributed to the time steps required for the mechanism of each flexible behavior

generation. In the narrow IS distribution condition, the flexible primitive selec-

tion for adapting to the other-robot’s behavior is based on the received sensory

(especially visual) inputs that gradually change the internal neural dynamics with

the longer period than the other. In contrast, in the wide IS distribution condi-

tion with ERS, the flexible selection is based on the forcible modification of the

top-down prior which rapidly changes the internal neural dynamics in a discon-

tinuous manner (see Fig. 5.9) with the shorter period than the other. It is noted

furthermore that this modification force becomes much larger in the case of the

wide IS distribution because the error divided by the smaller variance estimated

is used for the modification by means of BPTT algorithm.

5.4 Discussion and Conclusions

This chapter hypothesized that different types of behavior generation for realiz-

ing flexible behavior, namely, reactive and proactive behavior generation, could

be produced by a single neural mechanism depending on the learning condition.

To test the hypothesis, robotics learning experiments were conducted. In the

experiments, one robot, called the self-robot, equipped with the S-MTRNN was

required to interact cooperatively with another robot, called the other-robot. In

the experiments, the other-robot generated action sequences which were observed

by the self-robot as probabilistic transitions of action primitives. The self-robot

acquired an internal or generative model that was able to generate predictions of

visuo-proprioceptive states as well as their uncertainty levels (in terms of vari-

ances or inverse precisions) through its own actions and perceptual experiences.

The experimental results demonstrated that reactive behavior with a probabilistic

prediction mechanism with high event-level uncertainty was developed when the

initial precision characteristics of the higher-level network were not allowed in the

learning process. In contrast, proactive behavior with a deterministic prediction

mechanism with low event-level uncertainty was developed when the initial preci-

sion was allowed. Furthermore, the results also demonstrated that each behavior

generation scheme required different adaptation mechanisms, namely, simple sen-

sory reflex and error regression, for revising the internal neural dynamics when the

5.4. DISCUSSION AND CONCLUSIONS 91

self-robot encountered unanticipated actions of the other-robot. In the following,

we discuss the difference between the probabilistic model and the deterministic

one by focusing on their learning capabilities and on their contributions to the

development of different behavior generation schemes.

5.4.1 Treating Event-Level Uncertainty in Probabilistic
or Deterministic Manner

It was demonstrated that the difference in the distribution of initial states of

the higher-level network affected the learning of visuo-proprioceptive sequences

observed as probabilistic transitions. When the S-MTRNN was trained with the

narrow IS distribution condition, various combinatorial sequences were produced

by stochastic dynamics with closed-loop generation in which self-generated noise

with the estimated variances at each branching point (event-level uncertainty)

determined the next primitive, as in Markov chains [98] (see Fig. 5.5A). On

the other hand, when the network was trained with the wide IS distribution

condition, all the learned sequences could be reproduced exactly by the top-down

deterministic dynamics without any event-level uncertainty determined by the

optimized initial states of the higher-level network [44, 74,99] (see Fig. 5.5B).

The distinct models developed from the proposed S-MTRNN can be mecha-

nized by means of a learning scheme using the maximization of a model likelihood

in which sensory prediction error is divided by the predicted variance or weighted

by the predicted precision. In a previous study using the conventional MTRNN

model (without a variance prediction mechanism), Nishimoto et al. [99] demon-

strated that the developmental process of the functional hierarchy emerged from

the multiple timescale dynamics of the network and the learning scheme of pre-

diction error minimization. During the process, a set of reusable primitives was

first acquired in the lower-level network with fast dynamics. Then, sequential

combinations of the primitives were acquired in the higher-level network with

slow dynamics using initial precision characteristics to minimize prediction er-

rors. By utilizing these mechanisms, Namikawa et al. [44] demonstrated that

nondeterministic or probabilistic transition sequences can be embedded in de-

terministic chaotic dynamics, which were self-organized in the higher-level net-

work, as pseudo-stochastic sequences. The proposed S-MTRNN (which includes

a variance prediction mechanism), however, has another pathway to represent

probabilistic event sequences. In short, the S-MTRNN can represent the proba-

92CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

bilistic characteristics of event transitions by means of estimating the variance of

the noise externally added to the output units. This means that if the network

regards observed sequences as probabilistic transitions of primitives, the network

ceases to minimize prediction error at a certain level and instead optimizes the

variance. This has been identified by Friston [28, 66] as the mechanism of atten-

tion that controls the acquisition of prediction error or shapes precision-weighted

prediction error. However, the uniqueness of the current study is that, if the net-

work regards the same sequences as deterministic sequential combinations of the

primitives, the network tries to minimize both the prediction error and variance

by attributing the potential unpredictability to deterministic chaos generated by

sensitivity to initial conditions. The importance is that in the former case a prob-

abilistic model with high event-level uncertainty is developed and in the latter

case a deterministic model with low event-level uncertainty is developed, even

though the same network and the same training sequences were employed.

5.4.2 Reactive Behavior versus Proactive Behavior

In an actual action generation test, we confirmed that the difference in the mod-

eling of observed perceptual events was essential for the development of behavior

generation schemes. When the S-MTRNN trained with the narrow IS distribution

condition (probabilistic model) was employed, the self-robot generated reactive

behavior. On the other hand, when the S-MTRNN trained with the wide IS

distribution condition (deterministic model) was employed, the robot generated

proactive behavior. These results originating from the different parameter set-

tings are in general agreement with simulations of active inference [10]. Both

in the proposed approach and in active inference, because action generation can

be understood as fulfilling predictions (prior expectations) about proprioceptive

states, the type of generative model induced by the parameter setting works as

an essential factor for the development of behavior generation schemes.

During the generation of the reactive behavior, the network predicted a large

variance (or uncertainty) and generated a small prediction error at each branching

point (see Fig. 5.6A). These results indicate that the network predicted a neu-

tral sensory state at branching points. Therefore, there is no difference between

reaction times of the self-robot for the corresponding and non-corresponding IS

cases (see the narrow IS distribution condition in Fig. 5.7). It is believed that

the reactive behavior resulted from the allowance of uncertainty for sensory pre-

5.4. DISCUSSION AND CONCLUSIONS 93

dictions and the development of sensitive sensory structures at each branching

point.

In contrast, during the generation of the proactive behavior, the network tried

to generate exact sensory predictions with almost zero variance (or uncertainty).

In this case, when the intention of the self-robot corresponded to that of the

other-robot, cooperative interactions could be achieved smoothly without any-

time delay (see the corresponding IS case in the wide IS distribution condition

in Fig. 5.7). However, when a discrepancy between their intentions occurred, in-

flexible behavior by the self-robot was observed (see Fig. 5.6B) and long reaction

times were required (see the non-corresponding IS case in the wide IS distribution

condition in Fig. 5.7). In the previous subsection, the importance of the multiple

timescale dynamics for developing a functional hierarchy was discussed. From

the viewpoint of learning, the slowly changing higher-level dynamics are essential

for reproducing combinatorial sequences in a deterministic manner. While at the

same time, the slow dynamics that are not affected by sensory inputs directly

have a negative effect on generating flexible reactive behavior. As an alternative

mechanism to the sensory reflex, a novel ERS, which can be considered as an

extension of the predictive coding schemes used in RNNPB [8,59] and active in-

ference [10,11,29], was applied for revising the slow dynamics in a forcible manner

by means of propagating precision-weighted prediction errors from the lower-level

to the higher-level network. It should be noted that the aforementioned atten-

tion mechanism for controlling the acquisition of prediction error is utilized in

this error regression process.

In an action generation test with ERS, it was confirmed that the self-robot

controlled by the S-MTRNN trained with the wide IS distribution was able to gen-

erate cooperative behavior flexible when the robot encountered unanticipated ac-

tions by the other-robot. This adaptation was achieved because the ERS slightly

modulated the neural activity of the higher-level network in order to maximize the

model likelihood or to minimize precision-weighted prediction error. In Figs. 5.9

and 5.11, we can see the effect of the ERS on the revision of internal neural activ-

ity and on the reaction time of the self-robot, respectively. These results indicate

the importance of the interaction between the top-down process for anticipating

future states and the bottom-up process for recognizing perceptual reality during

proactive behavior generation [8, 100]. This interactive process with ERS corre-

sponds to the error monitoring process that might be mediated by the parietal

cortex [101].

94CHAPTER 5. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

Different types of computational models have been employed to implement the

robot control architectures for reactive behavior [47,102] and proactive behavior

[8, 44]. In contrast, in this study it has been demonstrated that these different

behavioral schemes can be produced by a single neural mechanism. Because the

learned action sequences were simple and each behavioral scheme was separately

developed depending on the learning condition in this study, our next step is to

consider these aspects as detailed in the next subsection.

5.4.3 Limitation and Future Work

Several issues remain to be examined in future studies. In this chapter, we have

focused on the learning of visuo-proprioceptive sequences observed as probabilis-

tic transitions, under the two distinct learning conditions of the narrow and wide

IS distributions. In a set of visuo-proprioceptive sequences used for the train-

ing, all the primitives were clean and concatenated with equal probability. In

other words, we have not considered a situation where each primitive includes

fluctuations as demonstrated in the preceding chapter or a situation where a cer-

tain statistical bias (e.g. more movements to the left than those to the right) is

given for a set of sequences [44]. Through the experiments, the robustness of the

proposed model to the uncertain situational changes (probabilistic transitions of

perceptual events) has been demonstrated by means of reactive behavior in the

narrow IS distribution condition and proactive behavior with ERS in the wide IS

distribution condition.

We should also consider the aforementioned situations for further evaluation of

the proposed schemes in future study. In the context of the IS distribution, a dis-

tribution with an intermediate variance between the two conditions or a mixture

distribution has not been employed. These considerations might be important

to discuss the adaptive modulation between reactive behavior and proactive be-

havior, each of which was separately developed depending on the two distinct

learning conditions in this study. Future work should therefore include follow-up

work designed to evaluate these cases.

In the present study for simplicity, only the self-robot was required to change

its actions and the other-robot’s behavior was automatically controlled to gener-

ate fixed action sequences that were not affected by the behavior of the self-robot.

That is, the interaction was unidirectional not bidirectional. However, bidirec-

tionality in social interactions is essential for understanding the mechanism of

5.4. DISCUSSION AND CONCLUSIONS 95

turn-taking behavior [103] and the acquisition of “nested” internal models in

which an internal model includes itself [104, 105]. Therefore, in future studies,

cases of mutual interactions by implementing the proposed model on two inter-

acting robots will be examined. This will allow us to investigate autonomous

mechanisms for the formation and manipulation of communicative interactions

between cognitive agents.

Chapter 6

Conclusions

6.1 Overall Summary of the Current Study

This thesis proposed a novel computational framework for RNNs that enables in-

telligent robots to achieve adaptive and flexible behavior which can be preformed

in real environment. The proposed framework can learn to predict both the mean

and the variance of the next state of target data with fluctuations, where the vari-

ance corresponds to the uncertainty of target variables and the reciprocal of the

variance is called precision. The novel RNN-based models including S-CTRNN

and S-MTRNN based on the predictive learning with uncertainty estimation were

evaluated through a series of numerical experiments and applied in robot learning

problems.

In the series of numerical experiments, the learning, reproduction, and recog-

nition capabilities of the proposed S-CTRNN were evaluated. The experimental

results demonstrated that the S-CTRNN can learn and reproduce various types of

fluctuating temporal sequences by extracting their latent stochastic structures in-

cluding multiple time-invariant uncertainty, time-varying uncertainty, and state-

dependent uncertainty. The results also showed that the S-CTRNN can recognize

multiple fluctuating temporal sequences by inferring initial internal states of the

context units which can reproduce the given sequences. These capabilities were

realized by estimating uncertainty by means of the variance prediction mech-

anism. In both the learning and recognition processes, the predicted variance

contributed to the autonomous scaling of the prediction error whose magnitude

depends on the level of uncertainty included in fluctuating target sequences. The

predicted variance also contributed to the reproduction process in which Gaussian

noise with the predicted variance was added during the closed-loop generation.

97

98 CHAPTER 6. CONCLUSIONS

In the first robot experiment, the S-CTRNN was applied into a framework for

integrative learning of visuo-proprioceptive states. The experiment focused on

the development of adaptive behavior by extracting stochastic structures latent

in fluctuating behavioral (or visuo-proprioceptive) sequences with trajectory-level

uncertainty. The results of the robot experiment on learning reaching move-

ment via the kinesthetic teaching demonstrated that the S-CTRNN can repro-

duce stochastic structures latent in tutored fluctuating behavior sequences. Such

structures can be produced not only in learned but also in unlearned situations

by utilizing the generalization abilities of the trained network. In addition to

the generalization abilities, adaptation to sudden changes in the target object

position was also realized. These abilities were enabled by the integration of vi-

sual and proprioceptive states by means of predictive learning with uncertainty

estimation.

In the second robot experiment, it was hypothesized that the underlying

mechanisms for generating reactive behavior and proactive behavior could be

accounted for by a single model by changing its learning conditions. For the

purpose of validating this hypothesis, experiments involving a robot learning to

develop cooperative interactions with another robot were conducted by utiliz-

ing S-MTRNN. This model is characterized by its capability to learn to predict

complex perceptual sequences by estimating event-level uncertainty by means

of self-organizing temporal hierarchy. The experimental results showed that the

network dynamics were developed to generate reactive behavior with probabilis-

tic estimation with high event-level uncertainty of subsequent behavior when the

initial sensitivity characteristics in the intention state were not utilized in the

learning process. In contrast, proactive behavior with deterministic prediction

with low event-level uncertainty of subsequent behavior was developed when the

initial sensitivity was utilized. It was concluded that the former case resulted in

the development of a probabilistic structure, whereas the latter case in a determin-

istic one. Follow-up experiments on cooperative behavior generation examined

how internal neural activity in the context units can be flexibly re-situated to

the behavioral context after perceiving an unexpected behavior produced by the

other in these two cases. In the network developed with a probabilistic struc-

ture, the behavioral context was re-situated by adaptation of the internal neural

dynamics by means of simple sensory reflex. On the other hand, in the network

developed with a deterministic structure, the behavioral context was necessary

to be re-situated by means of the error regression of the internal neural activity.

6.2. FUTURE WORK 99

6.2 Future Work

6.2.1 Action Generation for Changing the World

The studies described in this thesis did not consider the possibility that robots

can change the world by acting on it. It has been described how the proposed S-

CTRNN and S-MTRNN can learn to generate and recognize visuo-proprioceptive

sequences under the principle of model likelihood maximization which is formally

equivalent to the principle of free energy minimization [28, 60] (because the free

energy is an upper bound on the negative logarithm of model likelihood). In

particular, during action generation, the likelihood can be maximized by chang-

ing both the prediction state and the sensory signals that shape prediction error.

In Chapter 5, for example, because the object was held by the other-robot, the

self-robot was unable to change its visual input in response to its predictions.

However, by changing the experimental setup, active sensory sampling can be

conducted by the self-robot. For example, when the robot encounters an unan-

ticipated situation, it can change the prediction to fit the received sensory signals

and change the sensory signals to fit the prediction for minimizing prediction

error. As noted in [10,11,28,29], action is the only way to change sensory signals

for error minimization, and thus active sampling should be considered.

6.2.2 Online Learning

The proposed S-CTRNN and S-MTRNN was trained in an offline manner using

the gradient ascent method with BPTT. One might assume that the usage of the

offline learning method limits the utility of the proposed scheme for more practical

applications. We consider that the offline learning corresponds to the consolida-

tion learning [106, 107] that enables cognitive agents to consolidate perceptual

experiences into a long-term memory. In addition to the scheme of the offline

learning and online adaptive behavior generation demonstrated in this thesis, the

aspect of one-shot learning or online learning should also be considered.

6.2.3 Scalability of the Proposed Framework

Section 3.2 (Chapter 3) demonstrated that the S-CTRNN can learn to memorize

12 fluctuating Lissajous curves. Additional follow-up experiments confirmed that

144 patterns with different noise variance can also be learned by the S-CTRNN.

Although these patterns include different level of noise variance and the learning

100 CHAPTER 6. CONCLUSIONS

problem is not so easy, these patterns are just two-dimensional artificial data.

Future work therefore should evaluate the scalability of the proposed framework

by conducting learning experiments by using more realistic data such as a high-

dimensional data set of multiple human or robot action patterns.

The results in Chapters 4 and 5 can be considered as the integration of extero-

ceptive (or visual) states and proprioceptive states of a humanoid robot by means

of predictive learning with uncertainty estimation. From the point of view of the

integrative learning, the scalability of the proposed framework can also be eval-

uated through the integrative learning of neural and behavioral data, and that

of driving data, each of which contributes to the development of brain-machine

interaface and autonomous car technology, respectively.

6.2.4 Beyond Uncertainty in Observable States

The proposed computational framework considers uncertainty only in observable

states or target states. Natural extension of the framework is to introduce uncer-

tainty into both the observable and hidden or context states. This enables RNNs

to represent greater diversity of uncertainty. There are some possible methods.

One method is to simply assume probability distribution such as Gaussian dis-

tribution for both target states and context states. However, this method may

be difficult to be trained because basically RNN-based models require a large

number of context units and achieving proper distribution for each unit using

the gradient method is not realistic. Another method is to concatenate the S-

CTRNNs (with PB) and developmentally train them from the lower to the higher

levels. In this method, one level higher S-CTRNNPB is trained to predict the

mean and variance states of the PB dynamics of the one level lower S-CTRNNPB.

The lowest S-CTRNNPB is trained to predict the mean and variance states of

fluctuating target states. Because each network only needs to estimate the mean

and variance states of the dynamics of small number of PB units in the lower

level, this method may be more possible approach than the former.

References

［1］Hiroyasu Iwata and Shigeki Sugano. Design of human symbiotic robot

TWENDY-ONE. In Proceedings of the 2009 IEEE International Confer-

ence on Robotics and Automation, pages 580–586, Kobe, may 2009. IEEE.

［2］Jonathan Bohren, Radu Bogdan Rusu, E. Gil Jones, Eitan Marder-

Eppstein, Caroline Pantofaru, Melonee Wise, Lorenz Mosenlechner, Wim

Meeussen, and Stefan Holzer. Towards autonomous robotic butlers:

Lessons learned with the PR2. In Proceedings of the 2011 IEEE Interna-

tional Conference on Robotics and Automation, pages 5568–5575, Shang-

hai, 2011.

［3］Kunimatsu Hashimoto, Fuminori Saito, Takashi Yamamoto, and Koichi

Ikeda. A field study of the human support robot in the home environment.

In Proceedings of the 2013 IEEE Workshop on Advanced Robotics and its

Social Impacts, pages 143–150, Tokyo, 2013.

［4］Lana B. Karasik, Catherine S. Tamis-Lemonda, and Karen E. Adolph.

Transition from crawling to walking and infants’ actions with objects and

people. Child Development, 82(4):1199–1209, 2011.

［5］A. Meltzoff and M. Moore. Imitation of facial and manual gestures by

human neonates. Science, 198(4312):74–78, oct 1977.

［6］M Tomasello and M J Farrar. Joint attention and early language. Child

development, 57(1):1454–1463, 1986.

［7］Eleanor J. Gibson and Anne D. Pick. An Ecological Approach to Perceptual

Learning and Development. Oxford University Press, New York, NY, 2000.

101

102 References

［8］Jun Tani. Learning to generate articulated behavior through the bottom-

up and top-down interaction processes. Neural Networks, 16(1):11–23,

2003.

［9］Masato Ito and Jun Tani. On-line imitative interaction with a humanoid

robot using a dynamic neural network model of a mirror system. Adaptive

Behavior, 12(2):93–115, 2004.

［10］Karl J Friston, Jean Daunizeau, James Kilner, and Stefan J Kiebel. Ac-

tion and behavior: A free-energy formulation. Biological Cybernetics,

102(3):227–260, 2010.

［11］Karl Friston, Jérémie Mattout, and James Kilner. Action understanding

and active inference. Biological Cybernetics, 104(1-2):137–160, 2011.

［12］Yukie Nagai and Minoru Asada. Predictive Learning of Sensorimotor In-

formation as a Key for Cognitive Development. In Proceedings of the IROS

2015 Workshop on Sensorimotor Contingencies for Robotics, 2015.

［13］P Dayan, G E Hinton, R M Neal, and R S Zemel. The Helmholtz machine.

Neural Computation, 7(5):889–904, 1995.

［14］Daniel MWolpert, Zoubin Ghahramani, and Michael I Jordan. An internal

model for sensorimotor integration. Science, 269(5232):1880–1882, 1995.

［15］Daniel M Wolpert, R Chris Miall, and Mitsuo Kawato. Internal models in

the cerebellum. Trends in Cognitive Sciences, 2(9):338–347, 1998.

［16］M Kawato. Internal models for motor control and trajectory planning.

Current opinion in neurobiology, 9(6):718–27, dec 1999.

［17］John Mccarthy and Patrick J Hayes. Some Philosophical Problems from

the Standpoint of Artificial Intelligence. Machine Intelligence, pages 1–51,

1969.

［18］Patrick J Hayes. The Frame Problem and Related Problems in Artificial

Intelligence. Technical report, University of Edinburgh., 1969.

［19］Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear

Phenomena, 42:335–346, 1990.

References 103

［20］Rodney A Brooks. Elephants Don’t Play Chess. Robotics and Autonomous

Systems, 6:3–15, 1990.

［21］R. Brooks. A robust layered control system for a mobile robot. IEEE

Journal on Robotics and Automation, 2(1):14–23, 1986.

［22］Rodney A. Brooks. Intelligence without representation. Artificial Intelli-

gence, 47:139–159, 1991.

［23］Rolf Pfeifer and Christian Scheier. Understanding Intelligence. The MIT

Press, 1999.

［24］Minoru Asada, Karl F Macdorman, Hiroshi Ishiguro, and Yasuo Ku-

niyoshi. Cognitive developmental robotics as a new paradigm for the design

of humanoid robots. Robotics and Autonomous Systems, 37:185–193, 2001.

［25］Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Devel-

opmental robotics : A survey. Connection Science, 15(4):151–190, 2003.

［26］M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa,

M. Ogino, and C. Yoshida. Cognitive Developmental Robotics: A Survey.

IEEE Transactions on Autonomous Mental Development, 1(1):12–34, may

2009.

［27］Jun Tani. Self-organization and compositionality in cognitive brains: A

neurorobotics study. Proceedings of the IEEE, 102(4):586–605, apr 2014.

［28］Karl Friston. The free-energy principle: A rough guide to the brain?

Trends in Cognitive Sciences, 13(7):293–301, 2009.

［29］Karl J Friston, Jean Daunizeau, and Stefan J Kiebel. Reinforcement learn-

ing or active inference? PloS One, 4(7):e6421, 2009.

［30］Sylvain Calinon, Florent Guenter, and Aude Billard. On Learning, Rep-

resenting, and Generalizing a Task in a Humanoid Robot. IEEE Transac-

tions on Systems, Man and Cybernetics, Part B (Cybernetics), 37(2):286–

298, apr 2007.

［31］Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal.

Robot Programming by Demonstration. In Springer Handbook of Robotics,

pages 1371–1394. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

104 References

［32］Michael A Arbib, Peter Erdi, and Alice Szentagothai. Neural Organization:

Structure, Function, and Dynamics. The MIT Press, Cambridge, MA,

1997.

［33］Michael A Arbib. Schema theory. In Michael A Arbib, editor, The Hand-

book of Brain Theory and Neural Networks, volume 2, pages 830–834. The

MIT Press, Cambridge, MA, 2002.

［34］Y. Kuniyoshi and A. Nagakubo. Humanoid as a research vehicle into

flexible complex interaction. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robot and Systems, volume 2, Grenoble, 1997.

［35］Tomoyuki Yamamoto and Yasuo Kuniyoshi. Stability and controllability in

a rising motion: a global dynamics approach. In Proceedings of the 2002

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 2467–2472, Lausanne, 2002.

［36］Yasuo Kuniyoshi, Yoshiyuki Ohmura, Koji Terada, Akihiko Nagakubo,

Shin’ichiro Eitoku, and Tomoyuki Yamamoto. Embodied basis of invariant

features in execution and perception of whole-body dynamic actions―
knacks and focuses of Roll-and-Rise motion. Robotics and Autonomous

Systems, 48(4):189–201, 2004.

［37］Nathaniel D Daw, Yael Niv, and Peter Dayan. Uncertainty-based compe-

tition between prefrontal and dorsolateral striatal systems for behavioral

control. Nature Neuroscience, 8(12):1704–1711, 2005.

［38］Mehdi Khamassi and Mark D Humphries. Integrating cortico-limbic-basal

ganglia architectures for learning model-based and model-free navigation

strategies. Frontiers in Behavioral Neuroscience, 6(79):1–19, 2012.

［39］Erwan Renaudo, Benôıt Girard, Raja Chatila, and Mehdi Khamassi. De-

sign of a control architecture for habit learning in robots. In Nathan F.

Leopra, Anna Mura, Holger G Krapp, Paul F M J Verschure, and Tony J.

Prescott, editors, Biomimetic and Biohybrid Systems, pages 249–260.

Springer International Publishing AG, Cham (ZG), Switzerland, 2014.

［40］Marcel Brass and Patrick Haggard. The what, when, whether model of

intentional action. The Neuroscientist, 14(4):319–325, 2008.

References 105

［41］Brian J White, Dirk Kerzel, and Karl R Gegenfurtner. Visually guided

movements to color targets. Experimental Brain Research, 175(1):110–126,

2006.

［42］Andrew E Welchman, James Stanley, Malte R Schomers, R Chris Mi-

all, and Heinrich H Bülthoff. The quick and the dead: When reaction

beats intention. Proceedings of the Royal Society B: Biological Sciences,

277(1688):1667–1674, 2010.

［43］John R. Searle. Intentionality: An Essay in the Philosophy of Mind. Cam-

bridge University Press, New York, NY, 1983.

［44］Jun Namikawa, Ryunosuke Nishimoto, and Jun Tani. A neurody-

namic account of spontaneous behaviour. PLoS Computational Biology,

7(10):e1002221, 2011.

［45］Jun Tani and Naohiro Fukumura. Learning Goal-Directed Sensory-Based

Navigation of a Mobile Robot. Neural Networks, 7(3):553–563, 1994.

［46］Randall D Beer. On the dynamics of small continuous-time recurrent

neural networks. Adaptive Behavior, 3(4), dec 1995.

［47］Rolf Pfeifer and Christian Scheier. Sensory―motor coordination: The

metaphor and beyond. Robotics and Autonomous Systems, 20(2-4):157–

178, 1997.

［48］Jun Tani. Model-based learning for mobile robot navigation from the

dynamical systems perspective. IEEE transactions on systems, man, and

cybernetics. Part B, Cybernetics : a publication of the IEEE Systems,

Man, and Cybernetics Society, 26(3):421–436, jan 1996.

［49］Michael I. Jordan and David E. Rumelhart. Forward Models: Supervised

Learning with a Distal Teacher. Cognitive Science, 16(3):307–354, jul 1992.

［50］Norikazu Sugimoto, Jun Morimoto, Sang-Ho Hyon, and Mitsuo Kawato.

The eMOSAIC model for humanoid robot control. Neural Networks, 29-

30:8–19, 2012.

［51］Fady Alnajjar, Yuichi Yamashita, and Jun Tani. The hierarchical and func-

tional connectivity of higher-order cognitive mechanisms: neurorobotic

106 References

model to investigate the stability and flexibility of working memory. Fron-

tiers in neurorobotics, 7(February):2, jan 2013.

［52］Karl Friston. Hierarchical models in the brain. PLoS Computational Bi-

ology, 4(11):e1000211, 2008.

［53］R P Rao and D H Ballard. Predictive coding in the visual cortex: A func-

tional interpretation of some extra-classical receptive-field effects. Nature

Neuroscience, 2(1):79–87, 1999.

［54］Andy Clark. Whatever next? Predictive brains, situated agents, and the

future of cognitive science. The Behavioral and Brain Sciences, 36(3):181–

204, 2013.

［55］Michael I. Jordan. Attractor dynamics and parallelism in a connectionist

sequential machine. In Proceedings of the 8th Annual Conference of the

Cognitive Science Society, pages 531–546, Amherst, MA, aug 1986.

［56］Ronald J Williams and David Zipser. A learning algorithm for continually

running fully recurrent neural networks. Neural Computation, 1(2):270–

280, 1989.

［57］Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–

211, 1990.

［58］Jordan B. Pollack. The induction of dynamical recognizers. Machine

Learning, 7(2-3):227–252, 1991.

［59］Masato Ito, Kuniaki Noda, Yukiko Hoshino, and Jun Tani. Dynamic and

interactive generation of object handling behaviors by a small humanoid

robot using a dynamic neural network model. Neural Networks, 19(3):323–

337, 2006.

［60］Karl Friston. The free-energy principle: A unified brain theory? Nature

reviews. Neuroscience, 11(2):127–38, 2010.

［61］Jakob Hohwy. The Predicrive Mind. Oxford University Press, Oxford,

2013.

References 107

［62］Jun Tani and M Ito. Self-organization of behavioral primitives as multiple

attractor dynamics: A robot experiment. IEEE Transactions on Systems,

Man, and Cybernetics - Part A: Systems and Humans, 33(4):481–488, jul

2003.

［63］David C Knill and Alexandre Pouget. The Bayesian brain: The role of

uncertainty in neural coding and computation. Trends in Neurosciences,

27(12):712–719, 2004.

［64］Karl Friston. A theory of cortical responses. Philosophical Transactions of

the Royal Society of London. Series B, Biological Sciences, 360(1456):815–

836, 2005.

［65］Karl Friston, James Kilner, and Lee Harrison. A free energy principle for

the brain. Journal of Physiology, 100(1-3):70–87, 2006.

［66］Harriet Feldman and Karl J Friston. Attention, uncertainty, and free-

energy. Frontiers in Human Neuroscience, 4(215):1–23, 2010.

［67］Jakob Hohwy. Attention and conscious perception in the hypothesis testing

brain. Frontiers in Psychology, 3(96):1–14, 2012.

［68］Hanneke E M den Ouden, Peter Kok, and Floris P de Lange. How pre-

diction errors shape perception, attention, and motivation. Frontiers in

Psychology, 3(548):1–12, 2012.

［69］Andy Clark. Surfing Uncertainty: Prediction, Action, and the Embodied

Mind. Oxford University Press, 2015.

［70］Jun Tani and Naohiro Fukumura. Embedding a grammatical description in

deterministic chaos: An experiment in recurrent neural learning. Biological

Cybernetics, 72(4):365–370, 1995.

［71］Jun Namikawa and Jun Tani. Learning to imitate stochastic time series

in a compositional way by chaos. Neural Networks, 23(5):625–638, 2010.

［72］J M Fuster. The prefrontal cortex–an update: Time is of the essence.

Neuron, 30(2):319–333, 2001.

［73］Matthew M Botvinick. Hierarchical models of behavior and prefrontal

function. Trends in Cognitive Sciences, 12(5):201–208, 2008.

108 References

［74］Yuichi Yamashita and Jun Tani. Emergence of functional hierarchy in a

multiple timescale neural network model: A humanoid robot experiment.

PLoS Computational Biology, 4(11):e1000220, 2008.

［75］Aude Billard, Yann Epars, Sylvain Calinon, Stefan Schaal, and Gor-

don Cheng. Discovering optimal imitation strategies. Robotics and Au-

tonomous Systems, 47(2-3):69–77, jun 2004.

［76］S Calinon, F Guenter, and A Billard. Goal-Directed Imitation in a Hu-

manoid Robot. In Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, number April, pages 299–304. IEEE, 2005.

［77］Aude G. Billard, Sylvain Calinon, and Florent Guenter. Discriminative

and adaptive imitation in uni-manual and bi-manual tasks. Robotics and

Autonomous Systems, 54(5):370–384, may 2006.

［78］Sylvain Calinon and Aude Billard. Learning of Gestures by Imitation in

a Humanoid Robot. In Kerstin Dautenhahn and Chrystopher Nehaniv,

editors, Imitation and Social Learning in Robots, Humans and Animals:

Behavioural, Social and Communicative Dimensions, pages 153–177. Cam-

bridge Univ. Press, Cambridge, 2007.

［79］S Mohammad Khansari-Zadeh and Aude Billard. Imitation learning of

globally stable non-linear point-to-point robot motions using nonlinear

programming. In 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems, number 2, pages 2676–2683. IEEE, oct 2010.

［80］S Mohammad Khansari-Zadeh and Aude Billard. Learning Stable Nonlin-

ear Dynamical Systems With Gaussian Mixture Models. IEEE Transac-

tions on Robotics, 27(5):943–957, 2011.

［81］S.M. Khansari-Zadeh, Klas Kronander, and Aude Billard. Learning to

Play Minigolf: A Dynamical System-Based Approach. Advanced Robotics,

26(17):1967–1993, dec 2012.

［82］Sylvain Calinon, Zhibin Li, Tohid Alizadeh, Nikos G Tsagarakis, and Dar-

win G Caldwell. Statistical dynamical systems for skills acquisition in

humanoids. In Proceedings of the 12th IEEE-RAS International Confer-

ence on Humanoid Robots (Humanoids 2012), pages 323–329. IEEE, nov

2012.

References 109

［83］David E. Rumelhart, G. E. Hinton, and Ronald J. Williams. Learning

internal representations by error propagation. In David E. Rumelhart and

D. McClelland, editors, Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, pages 318–362. The MIT Press, Cam-

bridge, MA, 1986.

［84］Ryu Nishimoto and Jun Tani. Learning to generate combinatorial ac-

tion sequences utilizing the initial sensitivity of deterministic dynamical

systems. Neural Networks, 17(7):925–933, 2004.

［85］R. Nishimoto, J. Namikawa, and J. Tani. Learning multiple goal-directed

actions through self-organization of a dynamic neural network model: A

humanoid robot experiment. Adaptive Behavior, 16(2-3):166–181, 2008.

［86］Mark M Churchland, John P Cunningham, Matthew T Kaufman,

Stephen I Ryu, and Krishna V Shenoy. Cortical preparatory activity:

Representation of movement or first cog in a dynamical machine? Neu-

ron, 68(3):387–400, 2010.

［87］Kenji Doya and Shuji Yoshizawa. Adaptive neural oscillator using

continuous-time back-propagation learning. Neural Networks, 2(5):375–

385, jan 1989.

［88］Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical

systems by continuous time recurrent neural networks. Neural Networks,

6(6):801–806, jan 1993.

［89］Jun Namikawa and Jun Tani. A model for learning to segment tempo-

ral sequences, utilizing a mixture of RNN experts together with adaptive

variance. Neural networks, 21(10):1466–1475, 2008.

［90］Stefan J. Kiebel, Jean Daunizeau, and Karl J. Friston. A hierarchy of

time-scales and the brain. PLoS Computational Biology, 4(11):e1000209,

2008.

［91］Uri Hasson, Janice Chen, and Christopher J. Honey. Hierarchical process

memory: Memory as an integral component of information processing.

Trends in Cognitive Sciences, 19(6):304–313, 2015.

110 References

［92］Yuichi Yamashita and Jun Tani. Spontaneous prediction error generation

in schizophrenia. PloS One, 7(5):e37843, 2012.

［93］Sylvain Calinon and Aude Billard. Statistical Learning by Imitation of

Competing Constraints in Joint Space and Task Space. Advanced Robotics,

23(15):2059–2076, jan 2009.

［94］Manuel Muhlig, Michael Gienger, Sven Hellbach, Jochen J Steil, and

Christian Goerick. Task-level imitation learning using variance-based

movement optimization. In 2009 IEEE International Conference on

Robotics and Automation, volume 67, pages 1177–1184. IEEE, may 2009.

［95］Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Learning for control

from multiple demonstrations. In Proceedings of the 25th international

conference on Machine learning - ICML ’08, pages 144–151, New York,

New York, USA, 2008. ACM Press.

［96］E Gribovskaya, S M Khansari-Zadeh, and Aude Billard. Learning Nonlin-

ear Multivariate Dynamics of Motion in Robotic Manipulators. Interna-

tional Journal of Robotics Research, 30(1):80–117, 2011.

［97］Tom Ziemke, Dan-Anders Jirenhed, and Germund Hesslow. Internal sim-

ulation of perception: A minimal neuro-robotic model. Neurocomputing,

68:85–104, 2005.

［98］Leonard E. Baum and Ted Petrie. Statistical inference for probabilis-

tic functions of finite state markov chains. The Annals of Mathematical

Statistics, 37(6):1554–1563, 1966.

［99］Ryunosuke Nishimoto and Jun Tani. Development of hierarchical struc-

tures for actions and motor imagery: A constructivist view from synthetic

neuro-robotics study. Psychological Research, 73(4):545–558, 2009.

［100］Jun Tani. Autonomy of self at criticality: The perspective from synthetic

neuro-robotics. Adaptive Behavior, 17(5):421–443, 2009.

［101］Michel Desmurget, Karen T Reilly, Nathalie Richard, Alexandru Szath-

mari, Carmine Mottolese, and Angela Sirigu. Movement intention after

parietal cortex stimulation in humans. Science, 324(5928):811–813, 2009.

References 111

［102］J. Leitner, M. Frank, A. Fosrter, and J. Schmidhuber. Reactive reaching

and grasping on a humanoid towards closing the action-perception loop

on the iCub. In Proceedings of the 11th International Conference on In-

formatics in Control, Automation and Robotics, pages 102–109, Vienna,

sep 2014.

［103］Takashi Ikegami and Hiroyuki Iizuka. Turn-taking interaction as a cooper-

ative and co-creative process. Infant Behavior & Development, 30(2):278–

288, 2007.

［104］Makoto Taiji and Takashi Ikegami. Dynamics of internal models in game

players. Physica D: Nonlinear Phenomena, 134(2):253–266, 1999.

［105］Wako Yoshida, Ben Seymour, Karl J Friston, and Raymond J Dolan. Neu-

ral mechanisms of belief inference during cooperative games. The Journal

of Neuroscience, 30(32):10744–10751, 2010.

［106］J L McClelland, B L McNaughton, and R C O’Reilly. Why there are com-

plementary learning systems in the hippocampus and neocortex: Insights

from the successes and failures of connectionist models of learning and

memory. Psychological Review, 102(3):419–457, 1995.

［107］Lynn Nadel and Morris Moscovitch. Memory consolidation, retrograde

amnesia and the hippocampal complex. Current Opinion in Neurobiology,

7(2):217–227, 1997.

［108］Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

Appendix A

Details of Conventional Neural
Networks

This appendix provides the details of computational framework of the conven-

tional artificial neural networks including FNNs and RNNs that are briefly re-

viewed in Chapter 2 (Section 2.2).

A.1 Feedforward Neural Networks (FNNs)

Figure A.1 provides a network diagram of an FNN or detailed illustration of

Fig. 2.1A in Chapter 2 (Section 2.2.1). When multiple hidden layers are used to

construct a network architecture in which connections from the units in a hidden

layer to those in another hidden layer are considered, such a network is called

deep neural network (DNN) whose special learning schemes are referred to as deep

learning [108]. For simplicity, this section considers only one hidden layer case,

however, computation methods introduced later can be easily extended to those

for multiple layer cases.

The remaining subsections provide the computation method of forward prop-

agation of FNNs and their gradient-based predictive learning scheme.

A.1.1 Forward Propagation

Consider an FNN consisting of an input layer with NI-dimensional units, a hidden

layer with NH-dimensional units, and an output layer with NO-dimensional units

as shown in Fig. A.1. The forward dynamics of the internal states of the ith

113

114 APPENDIX A. DETAILS OF CONVENTIONAL NEURAL NETWORKS

... ...

Input Layer:

 -Dimensional Vector

Hidden Layer:

 -Dimensional Vector

Output Layer:

 -Dimensional Vector

... ...Training Data:

 -Dimensional Vector

...

...

... ...

... ...

Activation State

Internal State

Activation State

Internal State

Squared Error:

 -Dimensional Vector

...

...

...

...

...

Figure A.1 Network diagram of FNN. The input layer including NI-dimensional neural units
(nodes in the input layer) receives external input states x. These units are connected with
NH-dimensional neural units (nodes in the bottom of the hidden layer) and internal states u of
the hidden layer are computed as an weighted sum of the current input states. Synaptic weights
are represented by links (black dashed lines) between the nodes. The bold black dashed line
indicates the connection from the jth to the ith unit (wij). The computed internal states are
transformed to activation states h (nodes in the top of the hidden layer) by using non-linear
function such as tanh(·) used in the figure. In a similar way, internal states u of the output
layer are computed as an weighted sum of hidden activation states and output activation states
y are achieved by applying the non-linear function to the internal states. By computing the
difference between output activation states y and target states ŷ, we obtain prediction error
defined by squared error E that is used for the gradient-based predictive learning with BP.
Equations corresponding to each process are written in the right side of the figure.

A.1. FEEDFORWARD NEURAL NETWORKS (FNNS) 115

hidden and output units (ui) are given by

ui =






(
∑

j∈II

wijxj

)
+ bi (i ∈ IH),

(
∑

j∈IH

wijhj

)
+ bi (i ∈ IO),

(A.1)

where

II, IH, IO: index sets for the input, hidden, and output units, respectively (e.g.

II = {1, · · · , i, · · · , j, · · · , NI}),
wij: synaptic weight of the connection from the jth to the ith unit,

xj: the jth external input state,

hj: neural activation state of the jth hidden unit,

bi: bias of the ith unit.

The neural activation states of hidden units hi and output units yi are calcu-

lated by using the corresponding activation functions f(·) and g(·) as follows:

hi = f(ui) (i ∈ IH), (A.2)

yi = g(ui) (i ∈ IO). (A.3)

For f(·) and g(·), the hyperbolic tangent, sigmoid, softmax, and linear functions

are used depending on the problem to be solved. In what follows, as an example,

the hyperbolic tangent tanh(·) is used for both f(·) and g(·).

A.1.2 Predictive Learning

The predictive learning (parameter optimization) of FNNs is conducted based

on the prediction error minimization using the gradient descent method. In this

subsection, the definition of objective function, gradient descent method, and BP

algorithm are introduced.

Objective Function

Suppose that we are given training data comprising D sets of input–target ob-

servations {(x(1), ŷ(1)), (x(2), ŷ(2)), ... (x(d), ŷ(d)), ... (x(D), ŷ(D))}, where

d = {1, 2, · · · , d, · · · , D} is the index of the observations or data points, x(d) is

116 APPENDIX A. DETAILS OF CONVENTIONAL NEURAL NETWORKS

the dth NI-dimensional input states, and ŷ(d) is the dth NO-dimensional target

states. If the input states are sampled with a certain sampling rate or time step

from the states of a dynamical system and if the target states satisfy ŷ(d) = x(d+1),

the problem can be considered as a predictive learning problem. In this situation,

the objective function (prediction error defined by squared error) E is given by

E =
D∑

d=1

E(d), (A.4)

E(d) =
∑

i∈IO

E(d)
i (A.5)

=
∑

i∈IO

(ŷ(d)i − y(d)i)2

2
, (A.6)

where ŷ(d)i and y(d)i are the ith dimension of the target states ŷ(d) and that of the

output states y(d), respectively.

Gradient Descent Method

The network parameters, synaptic weights wij and biases bi that are collected

by θ, are optimized to minimize the prediction error (A.4) by using the gradient

descent method as follows:

θn = θn−1 + α∆θn, (A.7)

∆θn = −∂E(θn−1)

∂θ
+ η∆θn−1, (A.8)

∆θ0 = 0, (A.9)

where n is the learning step, α is the learning rate, and η is a parameter repre-

senting the momentum term.

Back-Propagation

Gradients of the objective function with respect to parameters wij and bi can be

obtained by the BP method. In the following, each variable corresponds to the

dth target states in training data is represented as (·)(d).
Because E(d) depends on the wij and bi through the internal state u(d)

i , each

A.2. RECURRENT NEURAL NETWORKS (RNNS) 117

gradient is given by

∂E(d)

∂wij
=

∂E(d)

∂u(d)
i

∂u(d)
i

∂wij
=

{
δ(d)i x(d)

j (i ∈ IH ∧ j ∈ II),

δ(d)i h(d)
j (i ∈ IO ∧ j ∈ IH),

(A.10)

∂E(d)

∂bi
=

∂E(d)

∂u(d)
i

∂u(d)
i

∂bi
= δ(d)i (i ∈ IO ∪ IH), (A.11)

where

δ(d)i =
∂E(d)

∂u(d)
i

=






∑

k∈IO

∂E(d)

∂u(d)
k

∂u(d)
k

∂u(d)
i

=
∑

k∈IO

δ(d)k

∂

∂u(d)
i

(
∑

j∈IH

wk,jh
(d)
j

)

=
{
1− (h(d)

i)2
} ∑

k∈IO

wkiδ
(d)
k (i ∈ IH),

∂E(d)

∂y(d)i

∂y(d)i

∂u(d)
i

= −
{
1− (y(d)i)2

}
(ŷi − y(d)i) (i ∈ IO).

(A.12)

For example, the first equation in (A.12) can be obtained by applying the chain

rule under the consideration of the influence of the internal state of the ith hidden

unit (u(d)
i : i ∈ IH) on the prediction error E(d) through the internal state of the

kth output unit (u(d)
k : k ∈ IO). These relationships among variables can be

understood from the network diagram illustrated in Fig. A.1.

It should be noted that because the gradient of the total error E with respect

to each parameter corresponds to the sum of the gradients of each error E(d), the

learning is conducted by using the following equation.

∂E

∂θ
=

D∑

d=1

∂E(d)

∂θ
. (A.13)

A.2 Recurrent Neural Networks (RNNs)

Figure A.2 provides a network diagram of an RNN or detailed illustration of Fig.

2.1B in Chapter 2 (Section 2.2.1).

The remaining subsections provide the computation method of forward propa-

gation of RNNs and their gradient-based predictive learning scheme derived from

that for FNNs.

118 APPENDIX A. DETAILS OF CONVENTIONAL NEURAL NETWORKS

... ...

Context Layer:

 -Dimensional Vector

Output Layer:

 -Dimensional Vector

... ...Training Data:

 -Dimensional Vector

...

...

... ...

... ...

Activation State

Internal State

Squared Error:

 -Dimensional Vector

...

...

...

...

... Activation State
Input Layer:

 -dimensional Vector
...

Copy

Activation State

Internal State

Figure A.2 Network diagram of RNN. The additional parts compared to the FNN shown in
Fig. A.1 are colored with red (activation states in the context layer at the previous time step
and connections from these states to the internal states in the context layer). The other parts
are the same as those for FNN.

A.2. RECURRENT NEURAL NETWORKS (RNNS) 119

A.2.1 Forward Propagation

Consider an RNN consisting of an input layer withNI-dimensional units, a context

layer with NC-dimensional units, and an output layer with NO-dimensional units

as shown in Fig. A.2. The forward dynamics of the internal states of the ith

context and output unit at time step 1 ≤ t corresponding to the sth target

sequence (u(s)
t,i) are given by

u(s)
t,i =






(
∑

j∈II

wijx
(s)
t,j

)
+

(
∑

j∈IC

wijc
(s)
t−1,j

)
+ bi (i ∈ IC),

(
∑

j∈IC

wijc
(s)
t,j

)
+ bi (i ∈ IO),

(A.14)

where

II, IC, IO: index sets for the input, context, and output units, respectively,

wij: synaptic weight of the connection from the jth unit to the ith unit,

x(s)
t,j : the jth external input state at time step t corresponding to the sth

target sequence,

c(s)t,j : neural activation state of the jth context unit at time step t corre-

sponding to the sth target sequence,

bi: bias of the ith unit.

It should be noted that the initial states of the context units (c(s)0,i) are optimized

for each sequence by which RNNs can discriminate different sequences such as

multiple attractor sequences and branching sequences. This characteristic of non-

linear dynamical system is referred to as sensitivity to initial conditions or initial

precision characteristic. The detail about the characteristic is explained in Chap-

ter 2 (Section 2.2.3).

In CTRNN models [46, 87, 88], internal states of each context unit are as-

sumed to be influenced not only by the weighted sum of current input states and

previous context activation states, but also their previous internal states. This

characteristic of contextual dynamics is described by the following differential

equation:

τiu̇
(s)
i = −u(s)

i +

(
∑

j∈II

wijx
(s)
j

)
+

(
∑

j∈IC

wijc
(s)
j

)
+ bi (i ∈ IC), (A.15)

where

120 APPENDIX A. DETAILS OF CONVENTIONAL NEURAL NETWORKS

τi: time constant of the ith context unit,

u(s)
i : internal state of the ith unit corresponding to the sth target sequence,

II, IC, IO: index sets for the input, context, and output units, respectively,

wij: synaptic weight of the connection from the jth unit to the ith unit,

x(s)
j : the jth external input state corresponding to the sth targe sequence,

c(s)j : neural activation state of the jth context unit corresponding to the

sth target sequence,

bi: bias of the ith unit.

The above equation can be rewritten as the following numerical equation:

τi

(
u(s)
t,i − u(s)

t−1,i

∆t

)
= −u(s)

t−1,i +

(
∑

j∈II

wijx
(s)
t,j

)
+

(
∑

j∈IC

wijc
(s)
t−1,j

)
+ bi (i ∈ IC),

(A.16)

u(s)
t,i =

(
1− ∆t

τi

)
u(s)
t−1,i +

∆t

τi

{(
∑

j∈II

wijx
(s)
t,j

)
+

(
∑

j∈IC

wijc
(s)
t−1,j

)
+ bi

}
(i ∈ IC).

(A.17)

By considering τi/∆t → τi, the internal states of the ith unit at time step 1 ≤ t

corresponding to the sth target sequence (u(s)
t,i) are given by

u(s)
t,i =






(
1− 1

τi

)
u(s)
t−1,i +

1

τi

{(
∑

j∈II

wijx
(s)
t,j

)
+

(
∑

j∈IC

wijc
(s)
t−1,j

)
+ bi

}
(1 ≤ t ∧ i ∈ IC),

(
∑

j∈IC

wijc
(s)
t,j

)
+ bi (1 ≤ t ∧ i ∈ IO).

(A.18)

By setting the time constant τi = 1, the forward dynamics of the internal state of

the context unit in (A.18) is exactly the same as those in (A.14). In other words,

the RNN can be cast as the special case of CTRNNs. Therefore, in what follows,

only the equations for CTRNNs are explained.

The neural activation states of context units c(s)t,i and output units y(s)t,i at

time step t corresponding to the sth target sequence are calculated by using the

activation function tanh(·) as follows:

c(s)t,i = tanh(u(s)
t,i) (0 ≤ t ∧ i ∈ IC), (A.19)

y(s)t,i = tanh(u(s)
t,i) (1 ≤ t ∧ i ∈ IO). (A.20)

A network diagram of a CTRNN is illustrated in Fig. A.3.

A.2. RECURRENT NEURAL NETWORKS (RNNS) 121

... ...

Context Layer:

 -Dimensional Vector

Output Layer:

 -Dimensional Vector

... ...Training Data:

 -Dimensional Vector

...

...

... ...

... ...

Activation State

Internal State

Squared Error:

 -Dimensional Vector

...

...

...

...

... Activation State
Input Layer:

 -dimensional Vector
...

Copy

Activation State

Internal State

Influence of
Time Constant

Figure A.3 Network diagram of CTRNN. The additional parts compared to the RNN shown
in Fig. A.2 are colored with red (arrows representing the influence of time constants on each
internal state in the context layer). The other parts are the same as those for the RNN.

122 APPENDIX A. DETAILS OF CONVENTIONAL NEURAL NETWORKS

A.2.2 Predictive Learning

The predictive learning of CTRNNs is conducted based on the prediction error

minimization using the gradient descent method in the same manner as that of

FNN. In this subsection, the definition of objective function, gradient descent

method, and BPTT algorithm are introduced.

Objective Function

Suppose that we are given S target sequences, each of which consists of

{ŷ(s)
t }T (s)

t=1 = {ŷ(s)
1 , ŷ(s)

2 , · · · , ŷ(s)
t , · · · , ŷ(s)

T (s)}, (A.21)

where s is the index of the sequence, and T (s) is the length of the sth sequence.

Basically, the input to an CTRNN is described as x(s)
t = ŷ(s)

t−1. In this situation,

the objective function (prediction error defined by squared error) E is given by

E =
∑

s∈IS

T (s)∑

t=1

∑

i∈IO

(ŷ(s)t,i − y(s)t,i)
2

2
(A.22)

where IS = {1, 2, · · · , s, · · · , S} is the index set for the sequences and ŷ(s)t,i is the

ith dimension value of ŷ(s)
t .

Gradient Descent Method

The network parameters, synaptic weights wij, biases bi, and initial internal states

of context units for each sequence (u(s)
0,i) that are collected by θ, are optimized

to minimize the prediction error (A.22) by using the gradient descent method as

follows:

θn = θn−1 + α∆θn, (A.23)

∆θn = −∂E(θn−1)

∂θ
+ η∆θn−1, (A.24)

∆θ0 = 0, (A.25)

where n is the learning step, α is the learning rate, and η is a parameter repre-

senting the momentum term.

A.2. RECURRENT NEURAL NETWORKS (RNNS) 123

Back-Propagation Through Time

Gradients of the objective function with respect to (time-invariant) parameters

wij and bi, and (time-varying) variables or states u(s)
t,i can be obtained by the

BPTT method by considering the dependency of the error E on each parameter

and state (to consider the dependency please refer to Figs. 2.1D and A.3):

∂E

∂wij
=






1

τi

∑

s∈IS

T (s)∑

t=1

x(s)
t,j

∂E

∂u(s)
t,i

(i ∈ IC ∧ j ∈ II),

1

τi

∑

s∈IS

T (s)∑

t=1

c(s)t−1,j

∂E

∂u(s)
t,i

(i ∈ IC ∧ j ∈ IC),

∑

s∈IS

T (s)∑

t=1

c(s)t,j

∂E

∂u(s)
t,i

(i ∈ IO ∧ j ∈ IC),

(A.26)

∂E

∂bi
=






1

τi

∑

s∈IS

T (s)∑

t=1

∂E

∂u(s)
t,i

(i ∈ IC),

∑

s∈IS

T (s)∑

t=1

∂E

∂u(s)
t,i

(i ∈ IO),

(A.27)

∂E

∂u(s)
t,i

=






{
1− (c(s)t,i)

2
}(

∑

k∈IC

wki

τk

∂E

∂u(s)
t+1,k

+
∑

k∈IO

wki
∂E

∂u(s)
t,k

)

+

(
1− 1

τi

)
∂E

∂u(s)
t+1,i

(0 ≤ t ∧ i ∈ IC),

−
{
1− (y(s)t,i)

2
}
(ŷ(s)t,i − y(s)t,i) (1 ≤ t ∧ i ∈ IO).

(A.28)

Appendix B

Stochastic Recurrent Neural
Networks

B.1 Derivation of the BPTT

B.1.1 Supplemental Explanation for (2.20)

∂ lnLout

∂wij
=

∑

s∈IS

T (s)∑

t=1

∂ lnLout

∂u(s)
t,i

∂u(s)
t,i

∂wij

=






1

τi

∑

s∈IS

T (s)∑

t=1

x(s)
t,j

∂ lnLout

∂u(s)
t,i

(i ∈ IC ∧ j ∈ II),

1

τi

∑

s∈IS

T (s)∑

t=1

c(s)t−1,j

∂ lnLout

∂u(s)
t,i

(i ∈ IC ∧ j ∈ IC),

∑

s∈IS

T (s)∑

t=1

c(s)t,j

∂ lnLout

∂u(s)
t,i

(i ∈ IO ∪ IV ∧ j ∈ IC).

(B.1)

B.1.2 Supplemental Explanation for (2.21)

∂ lnLout

∂bi
=

∑

s∈IS

T (s)∑

t=1

∂ lnLout

∂u(s)
t,i

∂u(s)
t,i

∂bi

=






1

τi

∑

s∈IS

T (s)∑

t=1

∂ lnLout

∂u(s)
t,i

(i ∈ IC),

∑

s∈IS

T (s)∑

t=1

∂ lnLout

∂u(s)
t,i

(i ∈ IO ∪ IV).

(B.2)

125

126 APPENDIX B. STOCHASTIC RECURRENT NEURAL NETWORKS

B.1.3 Supplemental Explanation for (2.22): Context Unit
Case

∂ lnLout

∂u(s)
t,i

=
∂ lnLout

∂c(s)t,i

∂c(s)t,i

∂u(s)
t,i

+
∂ lnLout

∂u(s)
t+1,i

∂u(s)
t+1,i

∂u(s)
t,i

=
∂ lnLout

∂c(s)t,i

{
1− (c(s)t,i)

2
}
+

∂ lnLout

∂u(s)
t+1,i

(
1− 1

τi

)

=
{
1− (c(s)t,i)

2
}{

∑

k∈IC

∂ lnLout

∂u(s)
t+1,k

∂u(s)
t+1,k

∂c(s)t,i

+
∑

k∈IO∪IV

∂ lnLout

∂u(s)
t,k

∂u(s)
t,k

∂c(s)t,i

}

+

(
1− 1

τi

)
∂ lnLout

∂u(s)
t+1,i

=
{
1− (c(s)t,i)

2
}{

∑

k∈IC

wki

τk

∂ lnLout

∂u(s)
t+1,k

+
∑

k∈IO∪IV

wki
∂ lnLout

∂u(s)
t,k

}

+

(
1− 1

τi

)
∂ lnLout

∂u(s)
t+1,i

(i ∈ IC). (B.3)

B.1.4 Supplemental Explanation for (2.22): Output Unit
Case

∂ lnLout

∂u(s)
t,i

=
∂ lnLout

∂y(s)t,i

∂y(s)t,i

∂u(s)
t,i

=
{
1− (y(s)t,i)

2
} ŷ(s)t,i − y(s)t,i

v(s)t,i

(i ∈ IO). (B.4)

B.1.5 Supplemental Explanation for (2.22): Variance Unit
Case

∂ lnLout

∂u(s)
t,i

=
∂ lnLout

∂v(s)t,i

∂v(s)t,i

∂u(s)
t,i

=

(
− 1

2v(s)t,i

+
(y(s)t,i − ŷ(s)t,i)

2

2(v(s)t,i)
2

)
v(s)t,i

= −1

2
+

(ŷ(s)t,i − y(s)t,i)
2

2v(s)t,i

(i ∈ IV). (B.5)

Appendix C

Predictive Learning of
Fluctuating Temporal Sequences

C.1 Learning of Multiple Fluctuating Lissajous
Curves

C.1.1 Supplemental Explanation for Target Sequences in
(3.2)

The equations for the fluctuating Lissajous curves in the training data in Chapter

3 (Section 3.2) are as follows:

(ŷ(1)t,1 , ŷ
(1)
t,2) = (Ŷt,1 + ε̂(1)t,1 , Ŷt,2 + ε̂(1)t,2), (C.1)

(ŷ(2)t,1 , ŷ
(2)
t,2) = (−Ŷt,1 + ε̂(2)t,1 , Ŷt,2 + ε̂(2)t,2), (C.2)

(ŷ(3)t,1 , ŷ
(3)
t,2) = (Ŷt,2 + ε̂(3)t,1 , Ŷt,1 + ε̂(3)t,2), (C.3)

(ŷ(4)t,1 , ŷ
(4)
t,2) = (Ŷt,2 + ε̂(4)t,1 ,−Ŷt,1 + ε̂(4)t,2), (C.4)

(ŷ(5)t,1 , ŷ
(5)
t,2) = (Ŷt,1 + ε̂(5)t,1 , Ŷt,4 + ε̂(5)t,2), (C.5)

(ŷ(6)t,1 , ŷ
(6)
t,2) = (−Ŷt,1 + ε̂(6)t,1 , Ŷt,4 + ε̂(6)t,2), (C.6)

(ŷ(7)t,1 , ŷ
(7)
t,2) = (Ŷt,4 + ε̂(7)t,1 , Ŷt,1 + ε̂(7)t,2), (C.7)

(ŷ(8)t,1 , ŷ
(8)
t,2) = (Ŷt,4 + ε̂(8)t,1 ,−Ŷt,1 + ε̂(8)t,2), (C.8)

(ŷ(9)t,1 , ŷ
(9)
t,2) = (Ŷt,3 + ε̂(9)t,1 , Ŷt,2 + ε̂(9)t,2), (C.9)

(ŷ(10)t,1 , ŷ(10)t,2) = (−Ŷt,3 + ε̂(10)t,1 , Ŷt,2 + ε̂(10)t,2), (C.10)

(ŷ(11)t,1 , ŷ(11)t,2) = (Ŷt,2 + ε̂(11)t,1 , Ŷt,3 + ε̂(11)t,2), (C.11)

(ŷ(12)t,1 , ŷ(12)t,2) = (Ŷt,2 + ε̂(12)t,1 ,−Ŷt,3 + ε̂(12)t,2). (C.12)

127

128APPENDIX C. PREDICTIVE LEARNINGOF FLUCTUATING TEMPORAL SEQUENCES

C.1.2 Different Cases of Learning Failure with CTRNNs

Figure C.1 shows the results for other CTRNNs in which different randomly

chosen values were used for parameter initialization before predictive learning.

For example, in Fig. C.1(b), patterns with smaller noise variance were corrupted

by patterns with larger noise variance, in the same manner as in Fig. 3.2. In Fig.

C.1(d), untrained attractors appeared (such as (1, 2)), and in Fig. C.1(f), almost

none of the training patterns were learned.

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

×

× ×

×

Output: Conventional CTRNN

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

×
Output: Conventional CTRNN

(a) Case 1. (b) Case 2.

× ×

× ×

× × × ×

Output: Conventional CTRNN

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

×

× × ×

Output: Conventional CTRNN

(c) Case 3. (d) Case 4.

C.1. LEARNING OF MULTIPLE FLUCTUATING LISSAJOUS CURVES 129

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

× ×

×

×

Output: Conventional CTRNN

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)

Output: Conventional CTRNN

× ×

× ×

× ×

× ×

× ×

× ×

(e) Case 5. (f) Case 6.

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

×

Output: Conventional CTRNN

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

×

×

× ×

Output: Conventional CTRNN

(g) Case 7. (h) Case 8.

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

× ×

× ×

Output: Conventional CTRNN

(5) (6) (7) (8)

(9) (10) (11) (12)

(1) (2) (3) (4)× ×

× ×

× ×

× ×

×

Output: Conventional CTRNN

(i) Case 9. (j) Case 10.

Figure C.1 Phase plots of output states generated by CTRNNs initialized with different random
values. The crosses mark cases of failure.

Appendix D

Predictive Learning to Develop
Flexible Behavior

D.1 Acceleration of Network Training

To accelerate network training, the adaptive learning rate scheme [44, 71] was

employed. In this scheme, the learning rate α is also optimized during the learning

process based on the change of a total error before and after updating parameters

in the following way:

1. For each learning step n, updated parameters are tentatively computed by

(2.17) and (2.19) using the learning rate α (αshare or αinit), and the total

error rate r defined by

r =

∑

s∈IS

E(s)(θ′
share(n),θ

′
init(n))

∑

s∈IS

E(s)(θshare(n),θinit(n))
, (D.1)

E(s)(θshare,θinit) =
T (s)∑

t=1

∑

i∈IO

(y(s)t,i (θshare,θinit)− ŷ(s)t,i)
2, (D.2)

where (θshare(n),θinit(n)) and (θ′
share(n),θ

′
init(n)) are the current parameters

and the tentatively updated parameters, respectively, is also computed.

2. If rth < r, then α is replaced with αdecα, and the procedure returns to step

(1) without updating the current parameters (θshare(n),θinit(n)). Otherwise

the procedure moves to step (3)

3. If r < 1, then α is replaced with αincα. The current parameters (θshare(n),θinit(n))

are updated with (θ′
share(n),θ

′
init(n)) and the procedure moves to the next

learning step n+ 1.

131

132APPENDIX D. PREDICTIVE LEARNING TODEVELOP FLEXIBLE BEHAVIOR

The present study used rth = 1.1, αdec = 0.7, and αinc = 1.05, which were

determined by reference to [44, 71]. The upper limit of 1000 for this iteration

process was put at each learning step.

D.2 Reaction Time Measurement

To measure reaction times, numerical sumulations were conducted instead of ac-

tual cooperative interactions by reutilizing the recorded 32 pattern visuo-proprioceptive

sequences used in the learning phase. During generation phases, the network re-

ceived sensory input values derived from recorded data for both the two-dimensional

object position and the automatically controlled two-dimensional head joint an-

gles, and from its own predictions of four-dimensional arm joint angles. In the

experiments for generating forward prediction dynamics, differences between the

arm movement state predicted by the trained network and the state recorded in

the sequence data at each time step were computed.

Reaction times were measured by counting time steps before the computed

differences became sufficiently small. More specifically, the sum of the mean

squared errors of predicted four-dimensional arm joint angle state E(s)
t at each

time step t for each sequence s was computed as follows:

E(s)
t =

1

2

∑

i∈IA

(y(s)t,i − ŷ(s)t,i)
2, (D.3)

where IA ⊂ IO is the index set for the output units provided for the prediction

of arm joint angles. After computing the above values, the time steps from when

the object was moved by the other-robot (branching point) until E(s)
t became less

than a threshold Eth = 0.01 (starting point of cooperative behavior), which was

empirically determined, were counted. These computations were conducted for

each generation condition, as shown in Figs. 5.7 and 5.11, by using 10 sample net-

works with differently randomized initial parameters trained with each learning

condition. The values shown in the figures are mean values over the 10 trained

sample networks, each of which generated 32 sequences including all combinations

of the five transitions of the two action primitives (160 branches).

Publications

Journal Articles

1. Shingo Murata, Yuichi Yamashita, Hiroaki Arie, Tetsuya Ogata, Shigeki

Sugano, and Jun Tani, “Learning to Perceive the World as Probabilistic or

Deterministic via Interaction with Others: A Neuro-Robotics Experiment,”

IEEE Transactions on Neural Networks and Learning Systems, Published

Online, pp.1–19, November 2015.

2. Shingo Murata, Hiroaki Arie, Tetsuya Ogata, Shigeki Sugano, and Jun

Tani, “Learning to Generate Proactive and Reactive Behavior Using a

Dynamic Neural Network Model with Time-Varying Variance Prediction

Mechanism,” Advanced Robotics, Vol. 28, Issue 17, pp. 1189–1203, Septem-

ber 2014.

3. Shingo Murata, Jun Namikawa, Hiroaki Arie, Shigeki Sugano, and Jun

Tani, “Learning to Reproduce Fluctuating Time Series by Inferring Their

Time-dependent Stochastic Properties: Application in Robot Learning via

Tutoring,” IEEE Transactions on Autonomous Mental Development, Vol.

5, Issue 4, pp. 298–310, December 2013.

International Conferences (Full Papers)

1. Shingo Murata, Saki Tomioka, Ryoichi Nakajo, Tatsuro Yamada, Hiroaki

Arie, Tetsuya Ogata, and Shigeki Sugano, “Predictive Learning with Uncer-

tainty Estimation for Modeling Infants’ Cognitive Development with Care-

givers: A Neurorobotics Experiment,” In Proceedings of the Fifth Joint

IEEE International Conference on Development and Learning and on Epi-

genetic Robotics (ICDL-EpiRob 2015), pp. 302–307, Providence, USA, Au-

gust 2015.

2. Shingo Murata, Yuichi Yamashita, Hiroaki Arie, Tetsuya Ogata, Jun Tani,

and Shigeki Sugano, “Generation of Sensory Reflex Behavior versus Inten-

tional Proactive Behavior in Robot Learning of Cooperative Interactions

with Others,” In Proceedings of the Fourth Joint IEEE International Con-

ference on Development and Learning and on Epigenetic Robotics (ICDL-

EpiRob 2014), pp. 242–248, Genoa, Italy, October 2014.

3. Shingo Murata, Hiroaki Arie, Tetsuya Ogata, Jun Tani, and Shigeki Sug-

ano, “Learning and Recognition of Multiple Fluctuating Temporal Patterns

Using S-CTRNN,” In Proceedings of the 24th International Conference on

Artificial Neural Networks (ICANN 2014), pp. 9–16, Hamburg, Germany,

September 2014.

4. Shingo Murata, Jun Namikawa, Hiroaki Arie, Jun Tani, and Shigeki Sug-

ano, “Development of Proactive and Reactive Behavior via Meta-Learning

of Prediction Error Variance,” In Proceedings of the 20th International Con-

ference on Neural Information Processing (ICONIP 2013), pp. 537–544,

Daegu, Korea, November 2013.

5. Shingo Murata, Jun Namikawa, Hiroaki Arie, Jun Tani, and Shigeki Sug-

ano, “Learning to Reproduce Fluctuating Behavioral Sequences Using a

Dynamic Neural Network Model with Time-Varying Variance Estimation

Mechanism,” In Proceedings of the Third Joint IEEE International Con-

ference on Development and Learning and on Epigenetic Robotics (ICDL-

EpiRob 2013), pp.1–6, Osaka, Japan, August 2013.

International Conferences (Abstracts)

1. Shingo Murata, Yuichi Yamashita, Hiroaki Arie, Tetsuya Ogata, Jun Tani,

and Shigeki Sugano, “Neuro-Dynamical Accounts for Postdiction,” The

19th Annual Meeting of the Association for the Scientific Study of Con-

sciousness (ASSC 19), Paris, France, July 2015.

2. Shingo Murata, Yuichi Yamashita, Hiroaki Arie, Tetsuya Ogata, Jun Tani,

and Shigeki Sugano, “Self-Organization of Distinct Neural Mechanisms for

Adaptive Behavior,” The 2014 IEEE International Conference on Robotics

and Automation (ICRA 2014), Neurobiologically Inspired Robotics Work-

shop: Incorporating Brain Processing into Robots Might for Better Auton-

omy, Hong Kong, China, June 2014.

3. Shingo Murata, Yuichi Yamashita, Tetsuya Ogata, Hiroaki Arie, Jun Tani,

and Shigeki Sugano, “Altered Prediction of Uncertainty Induced by Net-

work Disequilibrium: A Neuro-Robotics Study,” Computational Psychiatry

2013, Miami, USA, October 2013.

Domestic Conferences (in Japanese)

1. 村田真悟，山下祐一，有江浩明，尾形哲也，谷淳，菅野重樹: 予測誤差最小
化原理に基づくポストディクションの構成論的理解，発達神経科学学会 第
4回大会，大阪，2015年 9月．

2. 村田真悟，山下祐一，有江浩明，尾形哲也，谷淳，菅野重樹: 異なる神経メ
カニズムによる能動的・受動的行動の選択，日本機械学会ロボティクス・メ
カトロニクス講演会 2014，P3P2-Q03，富山，2014年 5月．

3. 村田真悟，山下祐一，有江浩明，尾形哲也，谷淳，菅野重樹: 予測精度の予
測に基づいた能動的・受動的な適応行動の生成学習，人工知能学会全国大
会 2014，2K4-OS-04a-3，愛媛，2014年 5月．

4. 村田真悟，有江浩明，尾形哲也，谷淳，菅野重樹: S-CTRNNを用いた複数
時系列パターンの記憶学習，情報処理学会 第 76回全国大会，3C-6，東京，
2014年 3月．

5. 村田真悟，並川淳，有江浩明，谷淳，菅野重樹: 再帰結合神経回路モデルに
よるばらつきを伴った運動軌道の確率的構造の獲得，第 31回日本ロボット
学会学術講演会予稿集，Vol. 31st，2C2-02，東京，2013年 9月．

6. 村田真悟，並川淳，有江浩明，谷淳，菅野重樹: プロアクティブ・リアク
ティブな行為とその自律的な切り替えの学習，日本ロボット学会第 30回記
念学術講演会予稿集，Vol. 30th，N3-5，北海道，2012年 9月．

7. 村田真悟，有江浩明，谷淳，菅野重樹: 自らの行為経験に基づいた言語学
習モデル 複数の文法構造をもつ文の学習における汎化，日本機械学会ロボ
ティクス・メカトロニクス講演会 2011，2P2-M03，岡山，2011年 5月．

Other International Conferences (Full Papers)

1. Tatsuro Yamada, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “At-

tractor Representations of Language―behavior Structure in a Recurrent

Neural Network for Human―robot Interaction,” In Proceedings of the 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2015), Hamburg, Germany, September 2015.

2. Ryoichi Nakajo, Shingo Murata, Hiroaki Arie, and Tetsuya Ogata, “Ac-

quisition of Viewpoint Representation in Imitative Learning from Own

Sensory-Motor Experiences,” In Proceedings of the Fifth Joint IEEE In-

ternational Conference on Development and Learning and on Epigenetic

Robotics (ICDL-EpiRob 2015), pp. 326–331, Providence, USA, August

2015.

3. Kuniyuki Takahashi, Tetsuya Ogata, Hadi Tjandra, Shingo Murata, Hi-

roaki Arie, and Shigeki Sugano, “Tool-body Assimilation Model based on

Body Babbling and a Neuro-dynamical System for Motion Generation,” In

Proceedings of the 24th International Conference on Artificial Neural Net-

works (ICANN 2014), pp. 363–370, Hamburg, Germany, September 2014.

Other Domestic Conferences (in Japanese)

1. 平野加依，村田真悟，張耀宇，有江浩明，尾形哲也: 神経回路モデルを用い
た人間とロボットの模倣インタラクション解析，第 16回計測自動制御学会
システムインテグレーション部門講演会，愛知，2015年 12月．

2. 山田竜郎，村田真悟，有江浩明，尾形哲也: インタラクションを行うロボッ
トの神経回路上アトラクタにおける言語と行動の動的統合，第 33回日本ロ
ボット学会学術講演会予稿集，Vol. 33rd，1B3-05，東京，2015年 9月．

3. 冨岡咲希，村田真悟，中條亨一，山田竜郎，有江浩明，尾形哲也，菅野重
樹：養育者―幼児間インタラクションの認知ロボティクスモデル 予測学習
とその不確実性に基づく注意対象の遷移，日本赤ちゃん学会第 15回学術集
会，香川，2015年 6月．

4. 中條亨一，村田真悟，有江浩明，尾形哲也: 再帰型神経回路モデルを用い
た観察視点の獲得によるロボットの模倣学習，人工知能学会全国大会 2015，
2D1-OS-12a-2，北海道，2015年 5月．

5. 鈴木彼方，高橋城志，Hadi Tjandra，村田真悟，菅野重樹，尾形哲也: 再
帰神経回路モデルによる分散予測を用いた柔軟関節ロボットの身体ダイナ
ミクスの探索，日本機械学会ロボティクス・メカトロニクス講演会 2015，
2P1-S06，京都，2015年 5月．

6. 山田竜郎，村田真悟，有江浩明，尾形哲也: 人間ロボットインタラクション
を目的とした神経回路による言語と行動のアトラクタ表現，情報処理学会
第 77回全国大会，5T-01，京都，2015年 3月．

7. 高橋城志，尾形哲也，Hadi Tjandra，野田邦昭，村田真悟，有江浩明，菅
野重樹: 神経回路モデルと身体バブリングによる道具身体化と道具機能の獲
得，日本機械学会ロボティクス・メカトロニクス講演会 2014，P3P2-P02，
富山，2014年 5月．

8. 高橋城志，尾形哲也，Hadi Tjandra，野田邦昭，村田真悟，有江浩明，菅野
重樹: 身体バブリングと再帰結合型神経回路モデルによる道具身体化～深層
学習による画像特徴量抽出～，人工知能学会全国大会 2014，1I4-OS-09a-4，
愛媛，2014年 5月．

9. Hadi Tjandra，高橋城志，村田真悟，有江浩明，山口雄紀，尾形哲也，菅
野重樹: 神経力学モデルと身体バブリングに基づく道具身体化と動作生成，
情報処理学会 第 76回全国大会，1S-4，東京，2014年 3月．

