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General Introduction

Recent advances in parallel computing and large-scale techniques of quantum
chemical calculations could have predicted various molecular properties for large systems.
In the present-day computer architecture, the development of an efficient parallelization
scheme is important as well as the acceleration on a single core. Large-scale techniques
have the potential to reduce CPU times and required memory sizes while maintaining
accuracy. The large-scale techniques can be categorized into two types: namely, (i) the
multilayer theories that define two or three layers treated at different levels of accuracy
and (ii) linear-scaling theories that divide an entire system into several fragments treated
at the same level. A fine example of the multilayer theories is QM/MM method developed
by Nobel Prize-winning Karplus, Levitt, and Warshel in 2013. QM/MM method applies
the QM calculations to an active center and MM calculations to the other parts. However,
this method is not suitable for the case that systems involve several active centers. On the
other hand, linear-scaling techniques accelerate the large QM calculations by separately
solving the local equation in each fragment. DC-SCF method originally proposed by Yang
and coworkers is one of the linear-scaling techniques. Unlike to other linear-scaling
techniques the DC method has a high applicability to delocalized electron and/or spin
systems due to the adoption of the common Fermi level for the entire system. Furthermore,
Nakai and Kobayashi have extended the DC method to electron correlation theories such
as MP2 and CC theories. The DC method, however, had been limited to ground-state
calculations for closed-shell systems. Further theoretical developments of the DC method
were required to enhance the applicability.

This thesis involves eight chapters divided into three parts, in addition to general
introduction here. Chapter 1 reviews the history and theoretical background of the DC-
based closed-shell calculations.

Part I, which consists of two chapters, summarizes studies on the extension of
the DC method for open-shell calculations. In Chapter 2, the DC-based linear-scaling SCF
method is extended to the spin-unrestricted methods for treating large open-shell systems.
The DC-UHF method can avoid specifying the numbers of up- and down-spin electrons
in each fragment by introducing up- and down-spin Fermi levels. Test calculations for
oligothiophenes demonstrate the high efficiency and accuracy of the DC-based
unrestricted methods even for spin-delocalized systems.

Chapter 3 extends the DC-based unrestricted open-shell scheme to the correlated

perturbation theory. According to the scaling analysis by the double-logarithmic plot, the



CPU times and required memory sizes scale with O(»°) and O(n*) for conventional
correlated calculations, respectively. In the DC method, the both CPU times and memory
sizes scale with O(n").

Part II, which consists of three chapters, summarizes studies on the extension of
the DC method for excited-state calculations. In Chapter 4, the author develops the SAC
theory based on the DC method. While the perturbative configuration selection adopted
in the SAC program significantly reduces its computational cost compared with the CC
calculations, the reduction of the configurations leads to less inclusion of the total
correlation energy. However, the numerical assessments confirm that the use of the local
orbitals constructed in each subsystem in DC-SAC calculations reduces the loss in total
correlation energy, which provides more reliable total and relative energies than the
standard SAC method.

In Chapter 5, the DC method is extended to CIS, TDDFT, and SACCI methods
for enabling excited-state calculations of large systems. In the DC-based excited-state
theories, one subsystem is selected as an active center. Test calculations for formaldehyde
in water and a conjugated aldehyde demonstrate the high accuracy and effectiveness of
these methods. The numerical applications to PYP confirm that the DC-SACCI method
significantly accelerates the excited-state calculations while maintaining high accuracy.

Chapter 6 presents the development and numerical assessments of an algorithm
to calculate excited states using the dynamic polarizability as an alternative methods. The
author proposes the algorithm in three sections: a constant frequency interval search,
bisection method with a convergence condition of oscillator strength, and subtracting the
contribution of calculated excitations from dynamic polarizability. The numerical
assessment shows an appropriate interval and convergence condition to yield a large
number of excitations and small errors to the conventional method. This algorithm is
applied to calculate excited states of several molecules. All excitations are detected with
smaller errors than the conventional method.

Part I1I, which consists of two chapters, summarizes studies on the high parallel
programs of the DC method. Chapter 7 presents efficient algorithms for the linear-scaling
DC-SCF for parallel computations. The methods adopt approximate Fermi level in order
to reduce the network communication. Numerical assessments demonstrate the high
parallel efficiency for the present methods without loss of accuracy.

Chapter 8 examines the DC-SCF calculation using RI approximation on GPUs.
GPUs are emerging in computational chemistry to include HF methods and electron-
correlation theories. However, ab initio calculations of large molecules face technical

difficulties such as slow CPU-GPU memory access and other shortfalls of GPU memory.



The DC method could avoid these bottlenecks by separately solving local equations in
individual fragments. In addition, the RI approximation enables an effective reduction in
computational cost with respect to the GPU memory. The author implements the DC-RI-
HF code on GPUs by using math libraries, which guarantee compatibility with future
development of the GPU architecture. Numerical applications confirm that the present
code using GPUs significantly accelerates the HF calculations while maintaining

accuracy.






Chapter 1
Theoretical Background

1.1. History of DC method

The DC method is one of the linear-scaling techniques and originally proposed
to pure Kohn—Sham DFT by Yang and the coworker [1,2]. The DC method requires no
artificial prediction related to the positions of the spins and/or charges, because the
distribution of electrons in the system under consideration is uniformly settled by the
common Fermi level. Since the first proposal, it has been mainly applied to semiempirical
MO calculations [3,4]. For performing HF and hybrid DFT calculations, Nakai’s group
developed and assessed the DC method including the HF exchange interactions [5-7].
Furthermore, two strategies have been proposed for evaluating the electron correlation
energy. The first one uses density matrix of the entire system obtained from the DC-HF
calculation for evaluating the MP2 energy by means of the DM-Laplace MP2 method [8].
The second one uses subsystem MOs for evaluating the correlation energy corresponding
to the subsystem. The correlation energy of entire system is evaluated as the sum of the
subsystem correlation energies by EDA techniques [9]. The second one was applied to
the MP2 [10] and CC [11,12] calculations and succeeded in achieving gold-standard
accuracy for the ground-state calculations for closed-shell systems.

Since 2009, Nakai’s group has applied the DC method to several methodologies
to enhance the applicability. The author and coworkers extended it to spin-unrestricted
HF [13] and MP2 [14] calculations for open-shell systems, explained as Part I. The DC-
based unrestricted calculations separately solve the local equations for up and down spins.
Furthermore, the author and coworkers developed the DC-based excited-state methods
[15], explained as Part II. Around the same time, the DC method was applied to property
calculations with derivation such as gradient [16,17] and poralizability [18,19], and
hyperporalibazility [20]. Recently, the relativistic framework has been combined with the
DC-based HF, MP2, and CC theories to enhanced applicability for heavy metal systems
[21]. By LUT scheme [22], which approximates the one-particle unitary transformation
as a block-diagonal form of the subsystem contributions, the relativistic calculations
could be performed in same computational cost as non-relativistic calculations.

Fragmentation techniques, including the DC method, could reduce the network
communications by separately solving the local equation in each fragment. Therefore, the
DC method has higher affinity with the multi-node parallelization than conventional

quantum chemical calculations: for example, two-level hierarchical parallelization



algorithm for the DC-MP2 method [23]. The coarse-grain and fine-grain parallel
treatments are accomplished by assigning one subsystem to one node and distributing the
computational task of each subsystem in the same node, respectively. Because DC-HF
calculations are more expensive than DC-MP2 ones in many cases, the author and the
coworkers implemented and assessed the new algorithms of the DC-HF method for

parallel computations, explained as Part III.



1.2. DC-SCF method

In the DC method, the system under consideration is spatially divided into disjoint
subsystems, where a set of AOs in a subsystem s is represented as § (s) :
SSNS(sH=D Vs=zs, (1.1)

and the union of §(s) becomes a set of AOs in the entire system represented as T

US@)=T. (1.2)

The disjoint subsystem is called the central region. To improve the description of the
subsystem, the neighboring region from the central region, which is called the buffer
region, is taken into consideration when expanding subsystem MOs in the DC calculation.
A set of AOs corresponding to the buffer region of subsystem s, which is denoted by
B(s),1s added to §(s) and one constructs a set of AOs in the localization region of
subsystem s, L (s);namely,

S(s)U B(s)=L(s). (1.3)

Hereafter, indices {/V, ...} refer to AOs, {i,, ...} to occupied MOs, {a, b, ...} to
virtual MOs, and {p,q, ...} to all MOs. In the DC-SCF method, the density matrix of the
entire system D is constructed from local density matrices for subsystems {s} D¥, as

follows:
ﬂ DDC Z PﬂVD;W, (1.4)

where s runs all subsystems. In Eq. (1.4), P’ represents the partition matrix with

elements of

1 [ s s |
p=2 [ B s ][ s B ]
!LO otherwise. (1.5)

P avoids the double counting for the electron numbers of the buffer region. D* is
obtained by the subsystem MO coefficients, C*, subsystem orbital energies, &, and
common Fermi level, &,:

:Z fﬁ(g _gS\F; o, (1.6)

where p runs all MOs of the subsystem s, i.e., L(s). C' and & are determined by
solving the following Roothaan—Hall or Kohn—Sham equation for the subsystem s:

FSCS :€S‘SSCS. (1'7)



Here, §° and F® represent the local overlap and Fock matrices for subsystem s, i.e.,
submatrices of the entire overlap and Fock matrices in the basis of L(s). After solving

the local equations, the common Fermi level can be determined via constraint of the total

number of electrons, Ne:

N, =Tt D"S]. (1.8)



1.3. DC-based correlation method

The DC based correlation energy is estimated by summing up the correlation

energies corresponding to individual subsystems as follows:

subsystem

IV SN (19

Here, the correlation energy of subsystem s is estimated using subsystem MOs analogous

to the EDA applied to the Nesbet’s correlation energy representation as follows:

AEC :"i(‘i”ii(“:)/ Z o Z ~ /e .clvbs>j
7 @\ owes veSs (1.10)

17 )

where {#,/°, ...} and {d’, b’, ...} represent the occupied and virtual MOs of the subsystem

s

s, respectively. 7, is the effective two-electron excitation amplitude for subsystem s
defined by

_ <aﬁbﬁ i&j?>

L =" : DC-MP2, 1.11
e 8(1 +£‘[1 _6‘1 _8j ( )
b=ttt : DC-CCSD. (1.12)

In DC-CCSD method, %, and /;,, are the so-called 71 and T> amplitudes, which
are determined by solving the CCSD equation for the localization region of subsystem s.
Wwoee and wvir are the weight parameters satisfying woce + wvir = 1 that determine the
contributions to the correlation energy from occupied and virtual partitionings,
respectively. Kobayashi and Nakai assessed the weight parameters for the DC-MP2
method and concluded that (Woce, wvir) = (1, 0) gives more accurate correlation energy
than (Woce, wvir) = (0, 1). Therefore, the reduced energy expression of Eq. (1.10) is used,

unless otherwise noted.

occ(s) vir(s)

DI WA

i ab peS(s)

(1.13)

L1

v



1.4. DC-based property calculations

The definition of the polarizability follows from an expansion of the total dipole

moment d with respect to the external electric field E:

2
d=d,+—| E+ ad,
O0E|,  OEOE

=d,+o +PEE +--

od EE +---
0 (1.14)

where db is the dipole moment of the unperturbed system, ¢ is the polarizability and SBis
the first hyperpolarizability. The polarizability for an oscillating electric field
E,(t)= A(e”‘” +e"“") is denoted as @, @), and that for a static field E,(1)=4 is
a(0).

One consider the interaction of an N-electron closed-shell molecule with an external
electric field. At the HF level, the molecular wave function is described in terms of the
unperturbed self-consistent field solutions of the coefficient matrix ¢° and the orbital

energy g’
F°Cc’=¢°SC’, (1.15)

where the superscript 0 indicates the unperturbed matrix.

Under the external electric field, the total density matrix D can be expanded as

D=D"+D(@)E,+ (1.16)

where D(a)) is the first-order perturbed density matrix. The total dipole moment d is

represented as

d=Tr[Dd|, (1.17)
where d is the dipole moment matrix defined as
A
d#"_<’u| |V>’ (1.18)

and d is the dipole moment operator defined as
n N
d==Yr. (1.19)

By expanding D in Eq. (1.18) and comparing it with Eq. (1.15),

A

aw="[D d].
As well as the unperturbed density matrix in the DC-HF method, the density

10



response D(£®) appeared in the TDHF method is constructed in the DC manner:
D, (tw)= ZD/‘ZV (tw), (1.20)

D;V(ia)\: /: Zn/g _gc\r/w/: /ia)\ /N'nv*+/wnc /N'c* /ia))]
" (1.21)

*

K K N A~ —~ck ,
= p;VZrC;;(J_ra) T+ tw)]
1

As well as the standard TDHF scheme, the first-order CPHF equation for the subsystem

s 1is given by,

F'(w C” +F"C* tw + wS'C" "+w) =

S'C (rws" + 8 C s *w), (1.22)
with the orthonormalization condition,
C”'S'C°'(xw +C" Fw)S*C” =1 (1.23)
U'(xw) for the subsystem s is defined as
C'(xw =C"U* *w), (1.24)
and G’ (xw) for the subsystem s as
G (tw =C"'F* +o)C” (1.25)

Using Egs. (1.23) and (1.24), the element of U°(zw) for the subsystem s is given by

(£
Uy o) = LaED (126)
£ —€ ' Fw
U'(zw, +U"" Fw) =0, (1.27)

11
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Chapter 2
Divide-and-Conquer Self-Consistent Field Calculation for
Open-Shell Systems

2.1. Introduction

Transition metals in biological systems, as typified by metalloenzymes and heme
proteins, play important roles for biogenic processes through the use of their flexible spin
states. Thus far, the open-shell electronic state calculations based on the UHF or UDFT
treatments [1] have succeeded in explaining and predicting the mechanisms of these
biomolecular spin systems by using the model picking up the spin active site from the
entire system [2,3]. Although the cut-out models work reasonably well for spin-localized
systems, it becomes hard to effectively pick up model systems from spin-delocalized
systems or bimolecular radicals and to specify their spin states. Additionally, molecular
magnetic materials and nanomagnets recently attract considerable attention because these
materials have good prospects as novel molecular devices. To tackle these systems in the
quantum chemistry, the acceleration of the electronic structure calculations is
indispensable because of their tremendous computational scaling.

Since 1980s, many types of accelerating techniques for ab initio electronic
structure calculations have been developed. In the HF and DFT calculations, there are
two obstacles to the application to large molecular systems: the construction and the
diagonalization of the Fock matrix. For accelerating Fock matrix construction, several
linear-scaling Coulomb methods have been proposed based on the multipole expansion
[4—6] or auxiliary function expansion [7-9]. Linear-scaling HF exchange methods [10—
12] are also available for insulators. These accelerated Fock techniques can be applied to
both restricted and unrestricted SCF procedures.

For accelerating the step of Fock diagonalization, two categories of the linear-
scaling schemes have been proposed: (i) diagonalization-free one-electron density-matrix
updating approaches using, for instance, Fermi operator expansion or the purification
projection (see Refs. 13 and 14 for review), and (ii) fragmentation approaches which
divide the system under consideration into several subsystems and obtain the properties
of the entire system by merging the results of subsystem calculations [15-21]. Although
the former can be straightforwardly applied to the spin unrestricted SCF [22], its
application was limited to mean-field theories. On the other hand, the latter is applicable
to the post-HF correlation calculations [18,19,23-25]. However, the treatment of open-

shell systems has been limited because the number of each up- and down-spin electrons
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should be specified for each fragment [26,27] or a local open-shell moiety should be
selected [28].

The DC method firstly proposed by Yang and Lee [29] has both aspects; the DC
method divides the system under consideration into several fragments and constructs the
entire density matrix by integrating the results of all fragments by means of the unique
Fermi level. Recently, Nakai resarch group has assessed the DC method in HF
calculations [30,31], applied to the dynamic polarizability calculations [32], and extended
to the post-HF correlation theories [33—37]. Several convergence acceleration techniques
have been also proposed [30,38]. After basic assessments of the DC-HF method by Nakai
resarch group, He and Merz [39] independently developed the DC-HF code and assessed
its effectiveness in calculations of realistic proteins. Although the DC-HF or DC-DFT
calculation achieves near-linear scaling computational cost with slight loss of accuracy,
its applications have been limited within the closed-shell systems so far. In the DC method,
unlike with the other fragmentation methods, the definite Fermi level determines the
number of electrons in each subsystem.

In this Chapter, the author enables the DC-HF and DC-DFT calculations of open-
shell systems by introducing up- and down-spin Fermi levels. This scheme only requires
the numbers of up- and down-spin electrons in the entire system (i.e., the total number of
electrons and spin multiplicity) and can avoid specifying the numbers of up- and down-
spin electrons in each subsystem. The organization of this Chapter is as follows. Section
2.2 presents the theoretical aspects of the DC-UHF method. The performance of this
combined method is numerically assessed in Section 2.3. Conclusion will follow as
Section 2.4.

15



2.2. Theory

In the UHF calculation of a system with »n, up-spin and », down-spin
electrons, the one-electron density matrices for up- and down-spins, D' and D', are given
by

"
T T ~T+
D, = Zcﬂ.qi : (2.1)

n
{ L~
D, = ZCﬂCW. , (2.2)
where C;’ (o =T or | ) represents the MO coefficient for o-spin, which is an element of

the transformation matrix from an AO basis {¢[} to an MO basis {l//fr } :

y r=> "¢ (2.3)

ueT

Equations (2.1) and (2.2) can be rewritten by introducing the Heaviside step function

1 (x>0)
= 2.4
7(x) 0 (<o) (2.4)
as follows:
D, :ang”—g"f.(,;(,g*, (2.5)
q

where & represents the gth orbital energy for o-spin, and & is the Fermi level for o-
spin, which can have any value between highest occupied and lowest virtual o-spin orbital
energies.

Hereafter, the author follows the same story as the derivation of the spin-
restricted version of the DC-HF scheme [29,30]. In the DC approximation, the o-spin
density matrix of the entire system is represented in terms of subsystem density matrices

as follows:

Dy, =g, =) . (2.6)

)

The density matrix of the subsystem s, D, is constructed from subsystem orbitals

{lﬂf‘y} that are expanded with subsystem bases {¢ HE L(s)} :
Dj, = n#VZn iSﬂ —&° v\u," o (2.7)
q

Hoovg

vor=23 "¢, 2.8)

16



where C;) and & are the subsystem MO coefficient and energy for o-spin, which are

determined by solving the following Pople—Nesbet equation for subsystem ¢,

F°C] =¢7 S C". (2.9)
Here, $° and F°' represent local overlap and o-spin Fock matrices for subsystem s
that are the submatrices of the entire overlap and Fock matrices in the basis of L(s).

Each Fermi level &7 in Eq. (2.7) is determined independently and uniquely
through the entire system by the following constraint of the total number of o-spin
electrons n?:

n=1ur|D S|=Y > (D”S),. (2.10)

s peL(s)

To make the solution of Eq. (2.10) exist, a step function is substituted with the Fermi

function,

- e o’ o, o*
DS, =, > Ty e =g T T (2.11)
q

Then the entire density matrix D™ can be obtained from Eq. (2.6). The entire Fock
matrix F° is constructed in the usual manner: e.g., in the DC-UHF calculation,
=y Y I (2.12)
s ApeL(s)

with two-electron integral notation of (uv\/lp: =” g rvr ~Ar p(r)drdr, and
core Hamiltonian matrix H**. The Fock matrix construction of Eq. (2.12) and the
density matrix construction of Egs. (2.6) and (2.11) are iterated until convergence, as well
as the standard SCF procedure. Finally, the DC-UHF energy is given as

Epein = ZZ > DY, +rg). (2.13)
s o pvelL(s)

The same procedure can be adopted in the DC-UDFT calculation by substituting the Fock
matrix of Eq. (2.12) with the unrestricted Kohn—Sham Hamiltonian, and the energy
expression of Eq. (2.13) with the Kohn—Sham energy.

A quantity that is specific in the open-shell UHF/UDFT calculation is the
expected value of the squared spin operator S?. The UHF wavefunction is the pure
eigenfunction of the z-spin operator S’Z, but usually not of S?. The expected value of

A

S* operator for the UHF wavefunction, which is given by [40]
s\ w2 nT+n¢_”T il N
(8 >—SZ+—2 ZZ/:/\‘/’ i) (2.14)
incaseof n, >n, with S =(n,—n))/2,isagood indicator to estimate the level of spin
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contamination. Since this value can be estimated in terms of density and overlap matrices,

being as:
>y Y =1e[p s 5], (2.15)
i

its estimation in the framework of the DC-UHF method is possible by replacing the
density matrix expression.

It should be noted that the DC-UHF/UDFT scheme described above does not
refer to the numbers of up- and down-spin electrons in each subsystem at all. The Fermi
levels, or Eq. (2.10) in other words, control the apportionment of the electrons. This is a
remarkable advantage over the other fragmentation-based UHF approaches that requires
the numbers of up- and down-spin electrons in each fragmented system, because the
prediction of the spin distribution in some systems (e.g., graphene) is more difficult than

that of the electron distribution.

18



2.3. Numerical assessment

The DC-UHF/UDFT method was assessed in calculations of spin- and charge-
delocalized oligothiophenes H(C4H2S)»-H having D2» symmetry, one of which is depicted
in Fig. 2.1 for n = 14. All calculations were performed with the modified version of the
GAMESS program package [41], where the closed-shell DC codes are incorporated. In
the DC SCF calculations, the inverse temperature parameter of the Fermi function £ in
Eq. (2.11) was fixed to 200 a.u. unless otherwise noted. One thiophene unit in the system
was adopted as one subsystem, and adjacent left and right n» units were adopted as the
corresponding buffer region (see Fig. 2.1 representing an example for n, = 2). Carbon
atoms and subsystems were numbered from the edge as shown in Fig. 2.1. All following
calculations were performed with 6-31G* basis set [42—44].

Subsystem
) @2 ) #H  0O) (14)
C 8 < 54 [
10 C C 53 P& °°
¢ 3 C C C C
Carbon ’
Central region Bufferregion (n,=2)

Fig. 2.1. Structure of the oligothiophene H(C4H2S),H (n = 14) and the schematic of
the central and buffer regions in the DC calculations with n» = 2. The carbon atoms are

numbered from one end to the other end of the conjugated chain.
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Fig. 2.2(a) shows the buffer-size dependence of the total energies obtained by
the DC-HF calculations of closed-shell singlet, open-shell singlet, and triplet
oligothiophenes with size of n = 14. The horizontal axis represents the buffer size nb, and
the right-most data represent the conventional RHF or UHF results. The open-shell singlet
is the most stable species among three and the closed-shell singlet follows. Every size of
buffer can reproduce this order. As the buffer size nv increases, all three energies rapidly
converge to the conventional HF energies and the variance cannot be confirmed for
n, 23 . Fig. 2.2(b) shows the buffer-size dependence of the expected values of S?
operator, which presents similar dependence on the buffer size to the energy. The
deviations of <§ 2> from the conventional UHF results are sufficiently small (< 0.06) for
n, =3, compared to that for n, =2 of ~0.82.

(a) -7702.94 A 7 7 — "y
27702.96 | o
o
£ -7702.98 } * *
E —e— Singlet (RHF)
= -7703.00 } e :
2 ®-- Singlet (UHF)
= AL SLEADs :
g -7703.02 | Trplet
~ - -, - =
-7703.04 f 7
-
-7703.06 = : ' - '
(b) 8.0 |
.......... AR (SRR SCR T
70F .t
o e
‘@ 6.0}
v i — R . S -
s0F
-
4‘0 1 1 1 1 1
2 3 4 5 HF

Buffer size n,

Fig. 2.2. Buffer-size dependence of (a) the total energies (in hartree) and (b) the

expected values of S? operator obtained by DC-HF/6-31G* calculations of closed-
shell singlet (RHF), open-shell singlet (UHF), and triplet oligothiophenes
H(C4H2S)14H. The right-most data show the conventional HF results.
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Fig. 2.3 shows the buffer-size dependence of the total energy errors
AE=E .y — Eye 10 the DC-UHF/6-31G* calculations of oligothiophene (n = 14).
Here, the data of the cation doublet state are also shown in addition to those shown in Fig.
2.2. For all four states, the absolute energy errors for the buffer size of n, >3 achieve
2.2 mhartree or less, and those of n, =4 do 0.07 mhartree or less error. For the singlet
and triplet states, the energies with n, =2 have ~20 mhartree errors. However, the
relative energies among the singlet and triplet states already achieve < 2.6 mhartree error.
On the other hand, the doublet state superficially attains < 1.5 mhartree error in the total
energy. This state, however, corresponds to a higher energy SCF solution, which can be

verified as the following.

2
§ 0 -
=
<
=
g 2}
s T
o-18F S~ —e— Singlet (RHF)
£ %

55 I --B-- Singlet (UHF)
2-20 F J;’f.-"' - Triplet
= : —¥— Doublet (cation)

22 L - - ,

2 3 4 5

Buffer size n,

Fig. 2.3. Buffer-size dependence of the total energy errors (in mhartree) in DC-HF/6-
31G* calculations of closed-shell singlet (RHF), open-shell singlet (UHF), triplet, and
cation doublet states of a oligothiophene molecule H(C4H2S)14H.
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Table 2.1 lists the Mulliken spin densities on Ci atom (depicted in Fig. 2.1)
obtained from DC-UHF calculations for each state with n, = 2-5. The spin densities by
conventional UHF calculations are shown at the bottom row. For the singlet and triplet
states, the differences from conventional UHF are less than 0.001 for all sizes of the buffer
region. However for the doublet state, even the sign of the spin density by n, =2 is
different from those by n,= 3-5 or conventional UHF. By changing convergence
parameters, one can circumstantially obtain an excited-state UHF solution that has ~19
mhartree higher energy than the ground-state solution and has negative spin density at Ci.
In summary, the DC-UHF method with n, 23 offers a reasonably good (< 1 kcal/mol

energy error) approximation to the conventional UHF for all four states of this system.

Table 2.1. Buffer-size dependence of Mulliken spin densities at Ci obtained by DC-
UHF/6-31G* calculations of open-shell singlet (UHF), triplet, and doublet (cation)
oligothiophenes H(C4H2S)14H. The conventional UHF results are also listed at the bottom.

Mb Singlet (UHF) Triplet Doublet (cation)

2 +0.5603 +0.5604 -0.5275

3 +0.5613 +0.5608 +0.5611

4 +0.5607 +0.5606 +0.5618

5 +0.5607 +0.5609 +0.5616
Conventional UHF +0.5607 +0.5607 +0.5615
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Fig. 2.4(a) shows the Mulliken spin density on each carbon atom obtained by
DC and conventional UHF calculations of the cation doublet-state oligothiophene (n =
14). The buffer size was varied within 2<n, <5 in the DC-UHF calculations. The
horizontal axis represents the position of carbon atom, which is numbered in Fig. 2.1.
Because the molecule has the symmetry, the values corresponding to the left moiety of
Fig. 2.1 are shown. Except for the DC-UHF results with », =2, in which the SCF
solution converges to the higher-energy state, the spin densities agree well with the
conventional UHF result that oscillates along with the conjugated carbon chain. The
deviations of the spin densities from the conventional UHF results, which are plotted in
Fig. 2.4(b) for 3<n, <5, are considerably small; the largest deviations are 0.0022,
0.0003, and 0.0002 for n, =3, 4, and 5, respectively. The Mulliken spin density on each

atom also converges to the conventional UHF result with respect to the buffer size.

0.8
0.6

04} l —w¥—n, =3
02} \- saeci: iy, =4
o LU ARRELARESNERAR INAHLRS .~ n, =3
02| | =
| —e— UHF
-0.4 ‘

(@)

Spin density

-0.6

0.8 —
®) 00015}
0.0010 | A
0.0005 } ra
0.0000 %A
-0.0005 F
-0.0010 }
-0.0015

Spin density errc

4 8 12 16 20 24 28
Position of carbon atom

Fig. 2.4. (a) Mulliken spin density on each carbon atom obtained by DC and
conventional UHF calculations of the cation doublet-state oligothiophene
H(C4H2S)14H with the 6-31G* basis set. The values are plotted for each buffer size of
2<n, <5. (b) The deviations of the DC-UHF spin densities from the conventional
UHF results for 3<n, <5.
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Table 2.2 shows Mulliken charge and spin densities corresponding to each
subsystem obtained by DC and conventional UHF calculations of the cation doublet-state
oligothiophene (n = 14) with n, =4 . The differences of densities between DC and
conventional UHF results, which are given in parentheses, are sufficiently small
(£0.0004 ). Because the excess charge and spin are delocalized, each subsystem has
fractional charge and spin densities. Note again that the number of charges or spins in
each subsystem is determined from Eq. (2.10), and one needs not to specify the value
before the DC-UHF/UDFT calculation. Despite this simple scheme, the DC-UHF/UDFT
method can treat charge- and spin-delocalized open-shell systems with a reasonable
accuracy.

Next, the accuracy of the DC-UDFT energies with typical functionals (i.e., BLYP
[45,46], B3LYP [47], BHHLYP [48], and LC-BOP [49,50]) was assessed. Table 2.3 shows
the adopted functional dependence of the DC and conventional UDFT energies of triplet
oligothiophene (n = 14) with n, =4. Here, the results with 4= 200 and 400 a.u. [the
inverse temperature parameter appeared in Eq. (2.11)] are listed together. The energy
errors from the conventional UDFT results are given in parentheses. Attending to the
results with #=200 a.u., the errors of BLYP and B3LYP energies are comparatively large,
although those of BHHLYP and LC-BOP energies are small enough. The error introduced
by the DC treatment can be roughly classified into two: the cut-off error by constructing
subsystem orbitals in reduced AO space L(s) and the finite temperature error by the
Fermi distribution of the occupation number in Eq. (2.11). In general, smaller band gap
(the energy difference between highest occupied and lowest unoccupied MOs) leads to
larger temperature error. Because the band gaps of this system evaluated from the
conventional BLYP and B3LYP calculations are small (0.005 and 0.031 hartree, compared
to that of HF of 0.261 hartree), large temperature errors in DC-BLYP and DC-B3LYP
energies are prospective. Actually, the energy errors of DC-BLYP and DC-B3LYP can be

reduced by using lower electronic temperature (= 400 a.u.) as shown in Table 2.3.
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Table 2.2. Mulliken charge and spin densities corresponding to each subsystem obtained
by DC and conventional UHF calculations of the doublet (cation) oligothiophene
H(C4H2S)14H with the 6-31G* basis set. The buffer size of n» = 4 was adopted in the DC-
UHF calculation.

Charge density Spin density
Subsystem
UHF DC-UHF (diff.) UHF DC-UHF (diff.)

(1), (14) +0.0148 +0.0147 (-0.0001) —0.0401 —0.0402 (—0.0000)
(2), (I13) +0.0024 +0.0024 (—0.0000) —-0.0015 —-0.0015 (+0.0000)
3), (12) +0.0075 +0.0075 (—0.0000) +0.0001 +0.0000 (—0.0000)
4), (11) +0.0170 +0.0170 (+0.0001) +0.0015 +0.0016 (+0.0001)
(%), (10) +0.0392 +0.0395 (+0.0003) +0.0093 +0.0095 (+0.0002)

(6), (9) +0.1063 +0.1064 (+0.0000) +0.0715 +0.0716 (+0.0001)

(7), (8) +0.3128 +0.3125 (-0.0002) +0.4593 +0.4589 (—0.0004)

Table 2.3. Adopted DFT functional dependence of the total energy (in hartree) obtained
by DC and conventional UDFT calculations of triplet oligothiophene H(C4H2S)14H with the
6-31G* basis set. The buffer size of n» = 4 was adopted in DC calculations.

UDFT DC-UDFT (B = 200 a.u.) DC-UDFT (8 = 400 a.u.)

Functional energy Energy (diff) Energy (diff)
[hartree] [hartree] [mhartree] [hartree] [mhartree]

HF —7702.942813 —7702.942871 (-0.058) —7702.942871 (—0.058)
BLYP —7725.220236 —7725.212877 (+7.359) —7725.215185 (+5.051)
B3LYP —7726.359647 —7726.352891 (+6.756) —7726.358038 (+1.609)
BHHLYP —7724.784913 —7724.784753 (+0.160) —7724.784791 (+0.122)
LC-BOP —7716.659317 —7716.659314 (+0.003) —7716.659317 (+0.000)
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Finally, the efficiency of the DC-UHF method was examined by measuring the CPU
time. An Intel Xeon X5355 (2.66 GHz) processor was used on a single core. Triplet
oligothiophenes (n = 10-24) were calculated with the buffer size of n, = 3 in DC-UHF
calculations. Fig. 2.5(a) shows the CPU times for solving SCF equations in the first SCF
iteration of the conventional and DC-UHF calculations. The horizontal axis represents
the number of units 7. As is expected from the DC-RHF result presented in the previous
paper [30], the DC-UHF method drastically reduces the computational time from the
conventional UHF time. Although the larger system makes the efficiency of the DC-UHF
method greater, the DC-UHF time becomes shorter than the conventional UHF time even
for n = 14. According to the scaling analysis by the double-logarithmic plot, the times
scale with O(n*>*) and O(n'3*) for conventional and DC-UHF calculations, which
reasonably agree with the theoretical asymptotic values of O(#®) and O(n'), respectively.
Fig. 2.5(b) shows the times for constructing Fock matrix in the first SCF iteration. In these
calculations, FMM implemented in the GAMESS program was switched on. Although
the Fock matrix construction scheme for the DC calculations is the same as that for the
conventional calculations, the DC-UHF times are always shorter than the conventional
UHF times. Furthermore, the DC-UHF method reduces the order of this step; the times
scale with O(n!%%) and O(n'-!®) for conventional and DC-UHF calculations, respectively.
The combination of the DC method with FMM works considerably well and achieves the
linear-scaling computational time because the sparse density matrix of the DC-UHF

calculation makes the screening more efficiently than that of conventional UHF.
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Fig. 2.5. System-size dependence of the CPU times (in sec) for (a) solving SCF
equations and (b) constructing Fock matrix in the first SCF iteration of the DC and
conventional UHF calculations of triplet oligothiophenes H(C4H2S)-H (n = 10-24)
with the 6-31G* basis set. An Intel Xeon X5355 (2.66 GHz) processor was used on a
single core. The buffer region was fixed at no = 3 in DC-UHF calculations. The FMM

option implemented in the GAMESS program was switched on.
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2.4. Conclusion

In this Chapter, the author has derived the spin-unrestricted open-shell version
of the linear-scaling DC SCF method. Unlike to the other fragmentation-based linear-
scaling open-shell treatments, the DC-UHF/UDFT does not require the position of excess
spins or charges. This method was implemented into the GAMESS program and was
assessed by the illustrative application to spin-delocalized oligothiophenes. Numerical
assessments revealed that the accuracy of the DC-UHF method was comparable to that
of the closed-shell DC-HF method: the energy and spin-density errors reduced along with
the buffer size. Non-integer charge and spin densities in each subsystem were also
confirmed. Furthermore, the CPU time for the DC-UHF calculation scaled linearly with
respect to the system size by combining with the FMM.

The DC-UHF/UDFT method that only requires the entire charge and spin
multiplicity of a system will enable us the black-box linear-scaling treatments of
interesting open-shell systems such as magnetic materials, to say nothing of biological
spin systems. Although the author only showed the results of one-dimensional uniform
polymers in this Chapter, the DC-UHF/UDFT method can be straightforwardly applied
to three-dimensional systems, to which the closed-shell DC method has already be
applied (e.g., see Ref. 39). Applications to various systems such as the organic spin
devices and the metalloenzymes will appear in the near future.

As mentioned in the Introduction, the DC method has both aspects of two linear-
scaling SCF categories. Therefore, the extension to the post-HF correlation calculation is
possible by means of the density matrix-based formalism [33] or energy partitioning-

based method [34-37], which will be reported next Chapter.
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Chapter 3
Divide-and-Conquer Second-Order Meller—Plesset
Perturbation Calculation for Open-Shell Systems

3.1. Introduction

The MP2 theory [1] has been widely used because it is the most practical
(modestly accurate and fast) MO method that can deal with electron correlation in
nonempirical manner. Therefore, many quantum chemists have practiced the efficient
implementations of the MP2 computation to date. Recent trends in developing the
efficient MP2 schemes have been to approximate the MP2 computation by using a rapid
calculation trick of the standard MP2 formalism (e.g., local correlation methods [2—7],
Laplace-transformed methods [8—15], RI techniques [16,17], and Cholesky decomposed
techniques [18,19]) or by fragmenting the system under consideration (e.g., FMO method
[20-23], molecular tailoring approach [24-26], incremental correlation schemes [27,28],
and the DC method [29-31]). However, an efficient implementation of the
straightforward MP2 formalism is indispensable not only to improve the fundamental
performance of the approximate treatment but also to evaluate these approximation
schemes.

In the past several years, Nagase and coworkers have offered efficient MP2
schemes especially tuned to parallel implementation. They first provided non-
approximate MP2 energy calculation scheme [32] and extended it to the nuclear gradient
evaluation [33]. This scheme, commonly called IMS-MP2, allowed one to run actual MP2
calculations with ~2000 basis functions using a moderate-size PC cluster. In the next
place, they presented parallel RI-MP2 implementation in 2009 [34]. This MP2 scheme is
further extended to the periodic system calculations with Bloch Gaussian basis functions
[35]. These two excellent schemes have been implemented into the GAMESS program
package [36] and interfaced to the GAMESS-FMO program [37] with an exception of the
periodic RI-MP2 method.

Nakai resarch group also implemented the fragmentation-based linear-scaling
DC-MP2 method into the GAMESS package (for review, see Refs. [38,39]). The DC
method was firstly proposed by Yang and coworkers [40,41] in the framework of the one-
body approximation such as the HF method and DFT. Nakai resarch group investigated
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its performance for calculations including HF exchange interactions [42—44] and have
applied the method to static and dynamic (hyper)polarizability calculations [45,46]. After
basic assessments of the DC-HF method by Nakai resarch group, He and Merz [47]
independently developed the DC-HF code and assessed its effectiveness in calculations
of realistic closed-shell proteins. Furthermore, its extensions to MP2 and the other
electron correlation theories (namely, a series of CC methods) were handled by Nakai
resarch group in a different fashion [29-31,48,49] with the assistance of EDA [50].
Recently the DC-MP2 module in GAMESS has been interfaced to the IMS-MP2 code
[51]. The history of the DC method is well described in a recent review paper [39].

The applications of the DC method were limited to the closed-shell systems until
the author utilized the UHF or UDFT scheme to the DC method [52]. The DC-
UHF/UDFT methods have an important advantage over the other fragmentation-based
linear-scaling open-shell treatments [53-57], because they do not require an artificial
guess for the position of excess spins or charges. In the elongation method [55,56], where
the spin-delocalized m-conjugated systems have been treated with reasonable accuracy,
each piecewise calculation is performed for an integer number of electrons, and the
number of electrons for the fragment that is frozen in the forthcoming calculation should
be specified in integer number. On the other hand, in the DC method, no artificial
prediction related to the positions of the spin and/or charge is required because the
distribution of electrons in the system under consideration is uniformly settled by the
common Fermi level. However, no ab initio electron correlation theories have been
practiced in the DC calculations of open-shell systems.

In this Chapter, the author extends the DC-MP2 method to the unrestricted
orbital based open-shell calculations, which the author calls DC-UMP2. The organization
of this Chapter is as follows. Section 3.2 presents the theoretical aspects of the DC-UMP2
method after a brief summary of the DC-UHF/UDFT method. Numerical applications of
the DC-UMP2 scheme are given in Section 3.3 in calculations of the charge- and spin-

delocalized polyene cation systems. The conclusion follows as Section 3.4.
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3.2. Theory

The electron correlation energy of the MP2 method can be expressed in terms of
active occupied orbitals {(pj,(pj} and virtual orbitals {p_,¢,} with the two-electron
integral notations as follows:

2
oce vir \(ijlab) —(ij|ba

&[] ab) - (i7]ba)

o =0 : (3.1)
i<j a<b gu +€u _8[ _81

in spin-orbital notation. In the UMP2 theory, the correlation energy can be rewritten with
spatial orbitals as sum of up-spin, down-spin, and cross terms as follows:

AE e, = OZCC: i <iTjT‘aTbT>[~ ) :|

<" d'<p
Y (i*]a"s* )|~ -] (32)
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where Zw, o, Tepresents an effective two-electron excitation coefficient as follows:

Do opr == <a0b0"iaja,> —. (3.3)

e +e) —& —¢€]

rJ

In the DC-based correlation theory, the total correlation energy is estimated by
summing up correlation energies corresponding to individual subsystems. The author has
extend this strategy to the UMP2 theory:

subsystem

AEre = D D (3:4)
Here, the correlation energy of subsystem s is estimated using subsystem orbitals, which
are constructed in the localization region, containing not only the central region but also
the buffer region. While the buffer regions overlap in several subsystems, the central ones
have no overlap. To avoid double counting, the correlation energies corresponding to the
central regions should be estimated. Thus, the author adopts the EDA technique [50] to

the UMP2 correlation energy representation as follows:
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represents an effective two-electron excitation coefficient for subsystem s as

follows:

c o ' o os
- _ <a D |l ] >
i a ao‘n(f’ - pe P P s (3.6)
I g, TE, —& —§

In the calculations, the author utilizes the dual-buffer DC scheme, where the
buffer regions used for the DC-based correlation calculation are set to be smaller than
those for the DC-HF calculation. This scheme, described in detail in Ref. 31, reduces the
computational efforts for the evaluation of the correlation energy with keeping its
accuracy. Furthermore, the DC-HF procedure can be substituted with the standard HF by
taking the limit of infinite buffer size. Although the computational cost for the
conventional HF calculation scales as O(n%), it is usually significantly less than the cost
for the MP2 calculation.

A quantity that specifically appears in unrestricted open-shell calculations is the
expected value of the squared spin operator S?, which indicates the degree of spin
contamination. One should care more about the issue of spin contamination when
adopting the UHF or UMP2 method than UDFT. Although the spin-projection methods
such as projected UHF and UMP2 [58] are the possible candidates for regaining from the
spin contamination, they violate the size-consistency, which must be maintained in the
DC scheme. <§2> is generally given with the reduced two-electron density matrix I" as
[59]

pPqrs

<§z>2522 n¢+n¢+uu< ‘ >< ‘T>FHH’ 37)

where n_ is the number of o-spin electrons and S, = (nT —n l)/2 . In the DC-UHF
method [52], the third term of Eq. (3.7) can be evaluated with the DC-UHF density
matrices. However, no one has derived the DC-MP2 density matrix so far. The author will
report the scheme to evaluate <S’ 2> in the DC-UMP?2 elsewhere.
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3.3. Numerical assessment

The DC-UMP2 method was assessed in calculations of polyene cation doublet
CxHn+2". All calculations were performed with the modified version of the GAMESS
program package [36]. C2Ha4 (or C2Hs for the edges) was adopted as a central region and
several adjacent C2H4 (or C2Hs) units were treated as the corresponding buffer region.
The size of buffer region is denoted by »;™* that indicates the number of carbon atoms
in each left and right buffer region. The following calculations were performed with the
6-31G** basis set [60] unless otherwise noted. Applying the dual-buffer DC correlation
scheme, only the electron correlation was treated with the DC approach after the standard
UHF calculations for clearly showing that the errors reported in the present study
originate only in the DC-UMP2 approximation.

Table 3.1 shows the correlation buffer size (#."" ) dependence of the correlation
energies obtained by the DC-UMP2 calculations of polyene cation CsoHs2". The energies
of neutral polyene C3oH32 obtained by the restricted MP2 calculations are also tabulated
for comparison. The conventional MP2 correlation energies are listed on the bottom line,
and the differences between DC and standard energies are presented in parentheses in

T

mbhartree. As the correlation buffer size »™ increases, the energy error became small.
The energy errors for »"> ¢ were less than 1.4 mhartree that achieves so-called
chemical accuracy (1 kcal/mol). It was also found that the errors by the DC-UMP2
calculations are comparable to those by the closed-shell DC-MP2 calculations except for
the case adopting the smallest buffer size of »" =4 , where the so-called error
cancellation may occur. Note that the correlation energy errors of the neutral polyene
system reported in the results were slightly larger than those in Ref. 48, where the smaller
6-31G basis set was adopted, although they were comparable to those in Ref. 49 adopting
the same 6-31G** basis set in the CCSD(T) level of theory.

Table 3.2 compares the total energies of polyene cation systems C.Hn+2" (n =10,
20, 26, 30, 40, and 60) obtained by the DC and conventional UMP2 methods. The
correlation buffer size was fixed to »,"* = 8 in the DC calculations, which is larger than
in the DC-CC studies [48,49] because the cost for the MP2 correlation calculation is
significantly lower than that for CC calculation. The differences between DC and

conventional energies are shown in parentheses in mhartree. The energy error for n = 10

corr
b

= 8. It was found that the errors introduced by the DC method keep less than 0.5 mhartree
for n=20-40 by using »" =8.

b

became zero because all localization regions contain the entire system when using »
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Table 3.1. Correlation buffer-size dependence of DC-MP2 correlation energies (in
hartree) of the neutral and cation polyenes, C3oH32 and C3oHs2", at the 6-31G** level. The
closed-shell neutral polyene was calculated adopting the restricted orbitals. DC scheme
was only applied to the correlation calculation after the standard HF calculation. Energy

deviations from conventional MP2 results are shown in parentheses in mhartree.

Neutral Cation
ne" AEyp, [hartree] (diff.) [mhartree] AE \p, [hartree] (diff.) [mhartree]
4 -3.992941 (+2.780) -3.774790 (-0.452)
6 -3.994383 (+1.339) -3.772970 (+1.367)
8 -3.995231 (+0.490) -3.773936 (+0.402)
10 -3.995582 (+0.140) -3.774274 (+0.064)
Conventional -3.995721 - —3.774338 -

Table 3.2. System-size dependence of DC and conventional UMP?2 total energies (in
hartree) of the polyene cation C»Hn+2" at the 6-31G** level with »** = 8. DC scheme
was only applied to the correlation calculation after the standard UHF calculation. Energy

deviations from conventional UMP2 results are shown in parentheses in mhartree.

n E\\p, [hartree] Enc.omp, [hartree]  (diff.) [mhartree]
10 —386.646383 —386.646383 (—0.000)

20 —772.401788 —772.401678 (+0.105)

26 —1003.812448 —1003.812359 (+0.090)

30 —1158.112941 —1158.112539 (+0.402)

40 —1543.817715 —1543.817507 (+0.209)

60 — —2315.223720 —

36



The efficiency of the DC-UMP2 method was examined by measuring the CPU
time. An Intel Xeon X5470 (3.33 GHz) processor was used on a single core. Table 3.3
shows the system-size dependence of the CPU times and required memory sizes for the
DC and conventional UMP2 calculations of polyene cation systems C.Hu+2" (n = 10, 20,
26,30, 40, and 60) with the correlation buffer-size »™" = 8. The CPU times and required
memory sizes are plotted in Figs. 3.1(a) and (b), respectively. Note that the time for the
HF iterations preceding the MP2 calculation is not included because the author utilized
the standard full SCF procedure for both DC and conventional calculations. As expected
from the closed-shell DC-MP2 presented in the previous paper [30], the DC-UMP2
method drastically reduced the CPU time from the conventional UMP2 time. For n <20
the times for DC-UMP2 calculations were larger than those for the conventional
calculations, because the median localization region contains up to 18 carbon atoms.
However, for n > 26, the DC method becomes faster than the conventional method.
According to the scaling analysis by the double-logarithmic plot, the CPU times scaled
with O(»°>7) and O(n'**) for conventional and DC-UMP2 calculations, respectively,
which are slightly larger than the theoretical asymptotic values of O(n°) and O(n'). The
implementation is based on the UMP2 code in the GAMESS program, which requires
heavy disk I/O. The disk I/O may reduce the effectiveness of both conventional and DC-
MP2 from their theoretical limit. For » = 10, where all localization regions contain the
entire system, the required memory size for the DC-UMP2 calculation is approximately
twice as large as that for the conventional UMP2 calculation because the evaluation of
the correlation energy corresponding to the central region requires additional memories
to the conventional UMP2 calculation. For n > 26, however, the memory size required for
the DC-UMP2 calculation is constant with respect to the system size », while that for the

conventional calculation increases quasi-proportionally to #°.
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Table 3.3. System-size dependence of DC and conventional UMP2 CPU times (in min)
and required memory size (in MB) of the polyene cation C,Hn+2" at the 6-31G** level
with »"" = 8. An Intel Xeon X5470 (3.33 GHz) processor was used on a single core.

CPU time [min] Required memory size [MB]
n
Conventional UMP2 DC-UMP2 Conventional UMP2 DC-UMP2
10 2.0 16.7 76.4 150.2
20 313 139.8 558.8 783.0
26 319.6 264.3 1203.1 751.4
30 697.1 347.0 1831.8 751.4
40 3514.8 551.2 4278.5 751.4
60 - 960.9 - 751.4
(@ 4000
-4 Conventional UMP2
__ 3000 = DC-UMP2
§ 2000 F
~
© 1000 |
(b) 0
)
g 4000 -
:\)
5 3000 F
2
=}
£ 2000 F
g
£ 1000
2 0

0 10 20 30 40 50 60

n

Fig. 3.1. System size dependences of UMP2 (a) CPU times (in min) and (b) required
memory size (in MB) for the DC and conventional UMP2 calculations of the polyene
cation CxHx2" at the 6-31G** level with »n™ = 8. An Intel Xeon X5470 (3.33 GHz)

processor was used on a single core.
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Finally, Table 3.4 shows the basis-set dependence of the total energies obtained
by the DC-UMP2 calculations of polyene cation CsoH42". STO-6G [61], 6-31G [62], 6-
311G [63], and 6-311G** [63] basis sets were adopted in addition to the 6-31G** set.
The correlation buffer size was fixed to »,”" = 8. The differences between DC and
conventional energies are presented in parentheses in mhartree. The energy errors did not
show significant dependence on the basis set adopted and were comparatively small: less
than 0.4 mhartree. Therefore, the use of larger basis set did not deteriorate the
effectiveness of the method, unless diffuse functions are added. The issue on the diffuse

functions in the DC method should be resolved elsewhere.

Table 3.4. Basis-set dependence of DC and conventional UMP?2 total energies (in hartree)
of the polyene cation CaoH42" with »n?" = 8. DC scheme was only applied to the
correlation calculation after the standard UHF calculation. Energy deviations from

conventional UMP2 results are shown in parentheses in mhartree.

Basis set EUMPZ [hartree] EDc.UMpz [hartree] (dlff) [mhartree]

STO-6G —1536.939441 —1536.939354 (+0.087)
6-31G —1541.380225 —1541.380017 (+0.208)
6-31G** —1543.817715 —1543.817507 (+0.209)
6-311G —1541.873844 —1541.873865 (-0.021)
6-311G** —1544.368953 —1544.368583 (+0.370)
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3.4. Conclusion

In the previous Chapter, the author has introduced the unrestricted orbital scheme
to the DC-SCF method for treating large open-shell systems. In this Chapter, the author
developed the correlated open-shell treatment in the framework of the DC-based
correlation method. The DC-UMP2 method was implemented into the GAMESS program
and was assessed in calculations of the spin- and charge-delocalized polyene cation
systems C,Hx+2". Numerical assessments revealed that the DC-UMP2 method has the
advantageous features of the closed-shell DC-MP2 method: the correlation energy errors
are generally small achieving the chemical accuracy and are controllable with the buffer
size, the CPU time scales quasi-linearly with respect to the system size, and the required
memory size becomes constant.

In the recent computer architecture, the development of an efficient
parallelization is important as well as acceleration on a single core. Because the
correlation energy of a subsystem is evaluated independently of the other subsystems in
the DC-MP2 method, straightforward parallelization over subsystems will enhance the
parallel efficiency in DC-MP2 calculation. In the case of closed-shell systems, the DC-
MP2 code applied to the GDDI was developed in order to achieve a two-level hierarchical
parallelization under the collaboration with Katouda and Nagase [51]. The use of this
parallelization scheme as well as the development of the individual MP2 algorithm that
is appropriate for the recent computer architecture will extend the applicability of the DC-
(U)MP2 method to huge systems, including nano magnetic materials, carbon materials,

metalloenzymes, and heme proteins.
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Part 11

Linear-Scaling Divide-and-Conquer Method

for Excited-State Calculation
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Chapter 4

Divide-and-Conquer Symmetry Adapted Cluster Method:
Synergistic Effect of Subsystem Fragmentation and
Configuration Selection

4.1. Introduction

In the field of quantum chemistry, the cluster expansion of the wavefunction
provides accurate ground-state theories, including a series of CC [1,2] and SAC [3,4]
methods. They also give a good starting point to excited-state calculations by means of
the LR theory, yielding the SACCI [5-7], CC-LR [8,9], and the EOM-CC [2,10]
methods. Several theoretical and practical differences exist between the CC and SAC
methods, although they adopt the similar wavefunction structures. A notable advantage
of the practical SAC implementation over CC one is that the amplitude of each
configuration contributing to the focusing state is estimated a priori and the
configurations of which great contributions are expected are only involved in the
wavefunction. This configuration selection significantly reduces the computational cost
of the cluster expansion and makes the SAC/SACCI methods applicable to wide
varieties of systems. On the contrary, the reduction of the configurations leads to less
inclusion of the total correlation energy. Its efficient implementation has been
completed using the direct algorithm [11] and been distributed as a part of Gaussian
program package [12]. To further diminish its computational cost, Nakatsuji and
coworkers developed the fragmentation-based acceleration approach, called the giant
SAC/SACCI method [13].

There have been many other fragmentation-based approaches that have realized
the low-scaling computation of the cluster expansion methods. Several examples are the
FMO method [14-16], the incremental correlation scheme [17,18], the natural
linear-scaled CC [19,20], and the molecular tailoring approach [21-23], which are all
capable of performing CC calculations with single, double, and partial triple excitations
such as CCSD(T) [24] and CCSDT-3 [25] models. The author has also developed the
fragmentation-based linear-scaling methods based on the DC method. The DC method
for density functional theory was firstly proposed by Yang and coworkers [26,27].
Nakai research has assessed the DC method in HF calculations of closed- [28—31] and
open-shell [32,33] systems, and applied it to the static and dynamic
(hyper)polarizability calculations [34-36]. Furthermore, Nakai research has extended to
electron correlation methods: the MP2 [37-39] and CC theories [40,41] with the
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assistance of the EDA [42]. Unlike the other fragmentation-based method, the DC
method requires no artificial prediction related to the positions of the spin and/or charge
because the distribution of electrons in the system under consideration is uniformly
settled by the common Fermi level. It enables the accurate treatment of large
m-conjugated systems. In recent years, the groups of Bettens and Gadre have assessed
its effectiveness in calculations of beta carotene and other conjugated systems by other
fragmentation-based method [43,44].

In this Chapter, the author implemented the DC method into the SAC program,
employing the configuration selection. The present DC-SAC method is expected to be
computationally less demanding than the DC-CC method, since the cost of the SAC
calculation of each fragment is lower than that of the CC one. Moreover, the author
found that the subsystem fragmentation in the DC method can reduce the loss in the
correlation energy by the configuration selection. The organization of this Chapter is as
follows. Section 4.2 presents the theoretical aspects of the present DC-SAC method
after brief summaries of the DC-HF and standard SAC theories. The performance of this
combined method is numerically assessed in Section 4.3. Conclusion will follow as
Section 4.4.
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4.2. Theory

4.2.1. SAC method
For the closed-shell HF single determinant @&,, the SAC expansion for a

totally symmetric singlet ground state is expressed as

/ AN\

TDA\J = 1\ /¢\) (4'1)

A

S represents a symmetry-adapted single and double excitation operators as

S‘ :§s +§D :ZZ - ZZ(Cg/asz, ab +d1] ab ]ab) 5 4.2)
i a i,j ab
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S = (a7 5) N2, (4.3)
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Here, subscripts {7, j} and {a, b} refer to occupied and virtual orbitals, and a,, and a;{,

(4.5)

represent the annihilation and creation operators for spatial orbital ¢ of o spin,

respectively. The expansion coefficients ¢,,, ¢, ,, and d,, are determined by
solving the nonvariational equation
I~ |
<¢u I T sal | 5IISAC> = O > (4'6)

where H and E,,. are the Hamiltonian and the SAC energy composed of the HF
energy, E,.,and the SAC correlation energy, AE,.. The SAC correlation energy can

be calculated with the two-electron integral notation as follows
AEgpe = (iflab)2e, e, =C1sCp 0 +Cpan + 3y 0 ). 4.7)

The SAC method introduces the perturbative configuration selection for reducing

computational time. Namely, the double excitation operators S 4 € {S’”ﬂb,l%i/,ab} whose
second-order contribution to the energy £,, given in Eq. (4.8), is greater than a given

threshold, A, hartree, are only included in the cluster expansion.
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T ¢V>, (4.8)

4.2.2. DC-SAC method
In the DC-based correlation theory, the total correlation energy is estimated by
summing up correlation energies corresponding to individual subsystems. The author

extends this strategy to the SAC theory:

subsystem

AEcsac = Z AEg,. . 4.9)

Here, the SAC correlation energy of subsystem s is estimated using subsystem orbitals,
which are constructed in the localization region, containing not only the central region
but also the buffer region. While the buffer regions overlap in several subsystems, the
central ones are disjoint each other. To avoid double counting, the SAC correlation
energies corresponding to the central regions should be estimated. Thus, the author
applies the philosophy of EDA [42] to the SAC correlation energy representation as
follows:

AE} sac ZZI; Zs: ;1 <;U/

J

i,a ]b tjab

a'b')(2e; ¢ e, 3y, ). (410)
In the present calculations, the author utilizes the dual-buffer DC scheme [36] where the
buffer size used for the DC-based correlation calculation is set to be smaller than that
for the DC-HF calculation. In the dual-buffer scheme, the orbitals used in the DC-SAC
calculation are obtained by diagonalizing the small submatrices of the converged Fock
matrix that is obtained by the preceding standard HF calculation, or DC-HF calculation
with larger buffer size. This scheme reduces the computational efforts for the evaluation
of the SAC energy with keeping its accuracy. Although the computational cost for the
standard HF calculation scales as O(#?), it is usually significantly less than the cost for
the SAC calculation.

49



4.3. Numerical assessment

The present DC-SAC method was first assessed by calculations of
one-dimensional hydrogen fluoride (HF). clusters (Fig. 4.1) by comparing the findings
with the standard SAC results. Individual HF molecule was adopted as a central region
and several adjacent HF molecules were treated as the corresponding buffer region. The
size of buffer region is denoted by 7" that indicates the number of HF molecules in
each left or right buffer region. Applying the dual-buffer DC correlation scheme, only
the electron correlation was treated with the DC approach after the standard HF
calculations for clearly showing that the errors reported in the present study originate

only in the present DC-SAC approximation.

(a)Zigzag structure
0.97A
‘/ \ F F F A
250A
(b)Aligned structure
—F H F H F H
0974 | | | | |
—H F H F H F
S
2.15A

Fig. 4.1. (a) Zigzag and (b) aligned structures of hydrogen fluoride clusters (HF)¢
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Fig. 4.2 shows the buffer-size (m°°") dependence of the correlation energies
obtained by the DC-SAC and DC-CCSD calculations of a zigzag hydrogen fluoride
cluster (HF)¢ (Fig. 4.1(a)) with the 4-31G basis set [47]. The energies are tabulated in
Table 4.1. In the SAC method, 4z = 0 represents that no configuration selection is
adopted. The energy errors from the standard SAC (Az = 0) or CCSD result are given in
parentheses. The buffer size was varied in DC calculations. Note that in the DC
calculations with m,°°" = 5, each localization region contains the entire system. The
standard CCSD and SAC energies are given with dashed lines in Fig. 4.2.

The CCSD and SAC (A = 0) energy errors from the standard results rapidly
converge to 0 and are less than 1.5 mhartree even with m*" = 5. Adopting the
configuration selection decreases the standard SAC correlation energies by 161 and 77
mhartree for Az = 10~ and 107, respectively. However, in the DC-SAC calculations, the
decrease in the SAC correlation energy becomes smaller as the buffer size decreases.

04k O DCSAC(Z, = 107)

& DC-SAC(A, = 10°)

-0.5F A DC-SAC(4,=0)

- DC-CCSD SAC(Z, = 107)

AFE[hartree]

-0.6 ;
SAC(J, = 10° |

-0.7 F SAC(4, =0)
[ __ A A LA
N N N N S <>
08F© v I Y CCSD
I 2 3 4 5

corr

butter size n,

Fig. 4.2. Buffer-size dependence of the correlation energies (in eV) obtained by the
DC and standard SAC and CCSD calculations of a zigzag hydrogen fluoride cluster
(HF)6 with the 4-31G basis set.
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Table 4.1. Correlation buffer-size dependence of the DC-SAC and CCSD correlation
energies (in hartree) of a zigzag hydrogen fluoride cluster (HF)s with the 4-31G basis

set. Energy deviations from standard SAC with 4z = 0 and CCSD results are shown in

parentheses in mhartree.

e AEsac [hartree] AEccsp
A =107 A =10 A=0 [hartree]
1 -0.70038  (+39.71) -0.74091 (-0.82) —0.74122 (-1.13) —0.78535 (-1.52)
2 —0.64035 (+99.74) -0.70871 (+31.37) —0.74009  (0.00) —0.78384  (0.00)
3 —0.60340 (+136.69) -0.68220 (+57.89) —-0.74009  (0.00) —0.78383  (0.00)
4 —0.58468 (+155.41) -0.66892 (+71.17) —0.74009  (0.00) —0.78384  (0.00)
5 —0.57915 (+160.93) -0.66268 (+77.40) —0.74009  (0.00) —0.78384  (0.00)
standard  —0.57915 (+160.93) -0.66268 (+77.40) —0.74009 - —0.78384 -

Table 4.2. Threshold Ag dependence of the number of the configuration Neontf and SAC
correlation energy (in hartree) with or without the localized orbitals of 1, 3-butadiene
with the 6-31G** basis set.

Canonical Boys
& Neonf Asac Neonf ALsac
[hartree] [hartree]

107 850 -0.05617 861 -0.12143
104 1744 -0.20202 1589 —-0.29835
107 11041 —0.37956 5458 —-0.43269
107 40477 -0.47873 20079 -0.50192
107 71177 -0.50767 55506 —0.52775
108 86098 —-0.51531 119625 —-0.53622

0 341550 —-0.51889 341550 —0.54045

This paradoxal result is derived from the localization of orbitals used in the SAC

calculation, which was addressed by Toyota et al. [48] in the standard SAC calculations
with the localized orbitals. Table 4.2 lists the threshold Ag dependence of the correlation
energy of 1,3-butadiene obtained by SAC/6-31G** [49] calculations with canonical and

Boys localized orbitals [50], together with the number of the configurations satisfying

|Ey| >Ae. Comparing the results with the same A, the correlation energy obtained with

the Boys localized orbitals is commonly larger (in absolute value) than that with the
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canonical orbitals, although the numbers of configurations with the Boys localized
orbitals are less than those with the canonical orbitals, except for Az = 10 and 1073, It
means that the use of the Boys localized orbitals screens the important contribution
more effectively than using the canonical orbitals. The subsystem orbitals constructed in
a small localization region are expected to bring about the similar effect. In DC-SAC
calculations, it was found that the deterioration in the accuracy accompanying with the
reduction of the buffer size compensates with the improvement in the configuration
selection by the localization of orbitals.

In the SAC method, the total energy is significantly affected by the configuration
selection. Therefore, the relative energy will provide a good indicator to judge its
performance. Table 4.3 shows the threshold dependence of standard and DC-SAC
energies of zigzag and aligned (HF)e¢ clusters with the 4-31G basis set. The
reorganization energies (Er = FEaligned — Ezigzag) Of the zigzag cluster from the aligned
structure are listed together in kcal/mol. The differences from the standard SAC (4g = 0)
results are shown in parentheses. In DC calculations, the correlation buffer size was
fixed at m*®" = 1. Compared with the standard SAC (A = 0) result, the reorganization
energy errors introduced by the configuration selection are non-negligible, 16 and 5
kcal/mol for Az = 10 and 107, respectively, which are considerably larger than 0.6
kcal/mol of the error by the DC method. However, the combination of the DC method
with the configuration selection behaves significantly better, i.e., the error is less than 2
kcal/mol even with Az = 107.
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The efficiency of the DC-SAC method was examined by measuring the CPU time.
An Intel Xeon X5365 (3.00 GHz) processor was used on a single core. Fig. 4.3 shows
the system-size dependence of the CPU times for the DC and standard SAC calculations
of (HF). zigzag clusters (n = 2, 4, 6, and 10). The threshold Az was set to be 107°. In
DC calculations, the correlation buffer size was fixed at n,°°™ = 1. Note that the time for
the HF calculation preceding the SAC calculation is not included because the author
utilized the standard full SCF procedure for both DC and standard calculations. The
CPU times of the DC-SAC method are shorter than those of the standard SAC method
except for n = 2, where all localization regions in the DC calculation contain the entire
system. According to the scaling analysis by the double-logarithmic plot, the times scale
with O(n*?) and O(n'*) for standard and DC-SAC calculations, respectively.

1200

1000 p & 8AC
0 DC-SAC 4

ZO800F  (pm 1)
E 600} '
= 400}
@]

200 |

0

2 4 6 8 10

Number of units #»

Fig. 4.3. System-size dependence of the CPU times (in s) for the DC and standard
SAC calculations of zigzag (HF)x clusters with the 4-31G basis set. An Intel Xeon
X5365 (3.00 GHz) processor was used on a single core.
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Finally, the DC-SAC method was assessed by the calculations of m-conjugated
systems, namely bond alternating (BA) and uniform (U) polyene chains, CioHi2 (Fig.
4.4). In the BA chain, all C=C, C—C, and C—H lengths were fixed to 1.37, 1.43, and
1.10 A, while the all C—C lengths in the U chain were 1.40 A. In the DC calculation,
C2H2 (or C2H3 for the edges) was adopted as a central region and left-and-right one
C2H2 (or C2H3) units were treated as the corresponding buffer region. Again, the author
adopted the dual-buffer scheme, i.e., only the electron correlation was treated with the
DC approach after the standard HF calculations. 6-31G [51], 6-31G*[49], 6-31G** [49],
6-311G [52], and 6-311G* [52] basis sets were adopted. Table 4.4 shows the basis-set
dependence of the reorganization energy (Er = Eu — EBa) of the BA chain from the U
chain. The differences from the standard CCSD energies are shown in parentheses.
Although the buffer size adopted in the DC-SAC calculation was small, the calculated
reorganization energies well reproduced the standard CCSD results with Az = 10: the
deviations are less than 1.7 kcal/mol. The combination of the DC method with the SAC
configuration selection is effective even in calculations of delocalized m-conjugated

systems.

(a) BA chain

Buffer region (n,°°"*= 1)

9 9 F]

J'J"J"J‘"‘
¢ P o

2 9
o0 %

‘J__J

Central region

(b) U chain

Y I 9 9
J-‘.J‘J.J.JJ.QJ
J J 4 o

| ‘
4

Fig. 4.4. (a) Bond alternating (BA) and (b) uniform (U) polyene chain CioHi2. The
schematic of the central and buffer regions in the DC calculation with 7°°" = 1 is

also shown.
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Table 4.4. Basis-set dependence of the reorganization energy (in kcal/mol) of the BA
polyene chain CioHi2 from the U chain calculated with the DC-SAC and standard
CCSD methods. Energy deviations from the standard CCSD results are shown in

parentheses.
Basis set DC-SAC [kcal/mol] CCSD
Ag =107 A =10 [kcal/mol]
6-31G 6.887 (-0.694) 8.161 (+0.580) 7.581
6-31G* 7270 (-1.673) 8832  (+0.889)  8.943
6-31G** 5.060 (-3.977) 7.431 (-1.606) 9.037
6-311G 10.664 (+2.775) 8839  (+0.951)  7.888
6-311G* 3.072  (-5.840) 7519 (-1.392) 8912
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4.4. Conclusion

In this Chapter, the author developed the DC-based SAC method. In the numerical
assessments of the present method, the author confirmed that the local orbitals
constructed in the DC method improve the performance of the configuration selection in
the SAC calculations, as well as that the computational time scales quasi-linearly with
respect to the system size.

As mentioned in the section 4.1 the SAC wavefunction provides a good starting
point to excited-state calculations, called the SACCI method. The extension of the
present DC-SAC method to the SACCI theory will open up excited-state calculations of

huge systems such as biomolecules and nanomaterials.
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Chapter 5
Divide-and-Conquer Symmetry Adapted Cluster
Configuration Interaction Method

5.1. Introduction

Many biochemical systems, such as rhodopsin in vertebrate eyes and PYP in
purple bacteria, are photoactive. The absorption wavelength of a photoactive protein is
affected by the photon-absorbing pigment as well as interactions between the pigment
and its neighboring residues, which cause red- or blue-shifts from the excitation energy
of the free pigment. Although computational predictions of the shifts in biomolecular
systems are in demand, quantum chemical excited-state calculations of large
biomolecules are difficult because of the high computational cost.

Recently, excited-state calculations based on SACCI theory [1,2], which is one
of the most accurate excited-state theories, have successfully explained and predicted
the mechanisms of photoactive biomolecular systems using an active-site model
selected from the system [3,4]. Although active-site models work reasonably well for
many biomolecular systems, their calculations overlook interactions between the
pigment and outside residues, which may be important for accurate evaluation of the
excitation energy.

Several fragmentation-based approaches that enable to reduce the computation
cost for excited-state theories have been reported. For example, the FMO method was
applied to the CIS [5-7] and TDDFT [8,9]. The density-fragment interaction approach
[10] enables large-scale TDDFT calculations by describing the interactions between
many quantum-mechanical fragments. AO-based TDDFT [11,12] enables linear-scaling
computation via prescreening techniques and sparse matrix algebra. There are several
approaches that utilize localized MOs, including fragment-localized MO TDDFT [13],
local-excitation-approximation CIS and TDDFT [14], and the local CIS approach [15].
Also, linear-scaling TDDFT with a local density matrix [16,17] has been proposed. A
giant SACCI scheme [18] was proposed for the excited-state calculation of molecular
crystals.

The author developed fragmentation-based linear-scaling methods for
ground-state theories based on the DC method. The DC method for density functional
theory was first proposed by Yang and coworkers [19,20]. Unlike other
fragmentation-based methods, the DC method requires no artificial prediction related to

the positions of the spin and/or charge, because the distribution of electrons in the
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system under consideration is uniformly settled by the common Fermi level; this
enables accurate treatment of large m-conjugated systems. The author assessed the DC
method using HF calculations of closed-shell [21-24] and open-shell [25,26] systems,
and applied it to static and dynamic (hyper)polarizability calculations [27-29].
Furthermore, the author extended the DC method to electron-correlation theories, such
as the MP2 [30-34], CC [35,36], and SAC theories [37] with the assistance of EDA [38].
Energy gradient schemes for the DC method were also recently established [39,40]. For
biomolecules, the author successfully elucidated interactions between viral peptides and
their inhibitors [41,42]. Although the application of the DC method to excited-state
theories is desired for the accurate prediction of the excitation energies of biomolecules,
it has not yet been attempted.

In this chapter, the author extended the DC methodology to excited-state
theories, specifically CIS, TDDFT, and SACCI. In these DC-based excited-state
theories, the subsystem that contains the chromophore or pigment is first selected as the
excitation subsystem. Excited-state calculation of the ES yields the excitation energies,
which includes the effect of factors outside the ES through the electrostatic potential.
The organization of this chapter is as follows: Section 5.2 presents the theoretical
aspects of the DC-CIS, DC-TDDFT, and DC-SAC/SACCI methods after a brief
summary of the DC-SCF method; section 5.3 shows the numerical applications of the
present scheme via calculations of formaldehyde in water, conjugated aldehyde, and

PYP; and section 5.4 comprises the conclusion.
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5.2. Theory

5.2.1. DC-based excited-state theory

The DC-based excited-state theory utilizes the subsystem MOs obtained from
the preceding DC-HF or DC-DFT calculations. Following the ground-state DC
calculation, the subsystem that includes the pigment is selected as the ES. The
excited-state wavefunctions of the ES are constructed from its MOs, which can be

classified as either occupied or virtual via the Fermi level.

5.2.1.1. DC-CIS/TDDFT
In the DC-CIS method, the n™ excited-state wavefunction in the ES is
expressed as the linear combination of singly-excited determinants, @ff>, from the

cpfs> , as follows:

reference determinant,

occ(ES) vir (ES)

ES(n) \ __ ES(n)
‘TCIS >_ Z Z df,a
i a

CDfS> is defined as the Slater determinant of the occupied MOs in the ES that

D). (5.1)

Here,

have lower energies than the Fermi level determined via the DC-HF calculation; the
subscripts {7, j} and {a, b} refer to occupied and virtual MOs, respectively. Hereafter,
d=S™is referred to as the CI coefficients that are deduced as the normalized eigenvectors
of the Hamiltonian matrix, 45, which is expressed using the two-electron integral

notation, as follows:

4z, =(@k

ia, jb

A - B0 = (e - e)3,0, - (/Pa”]i™b™). (52)

iy ab

where E,° = <d§fs

eigenvalues of the matrix.

bék ;@fs>. The excitation energies, @™, can be obtained from the

The dual-buffer DC scheme, which was first proposed in the post-HF
electron-correlation calculation [33] can be applied to the excited-state calculation. In
the scheme, the Fock matrix, F, is first constructed from the density matrix converged
with the preceding conventional HF calculation. Then, the Roothaan-Hall equation for

the ES is solved to construct the MOs used for the excited-state calculation, as follows:
ES,~ES __ _.ES QES ~ES
F~°C =¢8§"C . (5.3)

The Fermi level that separates the occupied and virtual MOs is determined as the
middle of the highest occupied and lowest virtual MO energies that obtained from the

preceding conventional HF calculation. Alternatively, it can also be defined by
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calculating the MOs in all the subsystems.
The procedure can also be applied to TDDFT calculations by substituting the
CIS Hamiltonian of (5.2) with that of TDDFT [43].

5.2.1.2. DC-SAC/SACCI

In the previous Chapter, the author proposed the ground-state DC-SAC theory.
Here, the author briefly summarizes the conventional SAC/SACCI and DC-SAC
theories and present the DC-SACCI method.

The SAC expansion for a totally symmetric singlet ground state is expressed as
7, ) =exp(S)|a,), (5.4)

where S represents the symmetry-adapted single and double excitation operators, as
Egs. (4.2)(4.5). The SAC expansion coefficients, i.e., ., Cjawm , and C;‘,ah , are

determined by solving the following non-variational equations:
I~ |
<¢U| - DALlyISAC> =O, (5.5)

Here Esac is the SAC energy, which comprises the HF energy, Enr, and the SAC

correlation energy, AEsac. The SAC correlation energy can be calculated as

ia~ jb ij,ab

AE,. = <ij‘ab>(20 C o= CyCrytCyyt \BC,-,,,H;,)’ (5.6)

Based on the SAC wavefunction, the SACCI expansion for the n-th excited
state is expressed as

Vota) =2 dUPRYP ), (5.7)
where {R]} represKents a set of excitations, each of which generates a basis for the
target state. P=1-|%, ¥ | is the projection operator that projects out the
ground-state wavefunction. The SACCI coefficients, d,(:), and the excitation energies,

@", are calculated by solving the non-variational equation, as follows:

<(po‘]%1< ([:[ _ESAC - a)(n))

Téi’ca> =0. (5.8)

In the DC-SAC/SACCI theory, the ground-state SAC wavefunction for the ES
is

7o) = exp(§7)| @), (5.9)

where S™ represents the symmetry-adapted single and double excitation operator from

the reference determinant, CDOES> , in the ES, as follows:
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occ(ES) vir(ES) A occ(ES) vir(ES)

SAEDIY 3OS (e e, (5.10)

ij,ab™ ij,ab ij,ab™" ij,ab
i a ij ab

S, S and S‘:ii are the same as in Egs. (4.3)—(4.4), but are defined using the

ia ? ijab 2

annihilation and creation operators of the MOs in the ES, i.e., ais and a . The
expansion coefficients are determined by solving the non-variational equation for the
ES, as follows:

<¢ES H EES

SAC SAC

s >—o, (5.11)

Here, E... is the SAC energy of the ES. Note that E... is not the ground-state

DC-SAC energy that was presented in the previous chapter; instead, it is defined as

EES

SAC

ES ES
=E” +AE.,

EES <ESJES‘ EstS>(zc_Escgs _ ESES tjab_’_\/’c'l-:s) (512)

ia~ j,b l b J.a ij,ab
Based on the SAC wavefunction in the ES, the DC-SACCI expansion for the

n-th excited state is

V) = Zd“ PERSPE,), (5.13)

where { R™'} represents a set of excitations, each of which generates a basis for the
target state in the ES. P™ =1- w5 WV

the ground-state wavefunction in the ES. The DC-SACCI coefficients, d,fs("), and

excitation energies, @™, are calculated by solving the following non-variational

‘ is the projection operator that projects out

equation:

(@R (A —ER =™ )|Pite, ) = 0. (5.14)
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5.3. Numerical assessment

In this section, the performance of the presented DC-CIS, DC-TDDFT, and
DC- SACCI methods are numerically assessed by comparing the results with those of
conventional CIS, TDDFT, and SACCI calculations. All CIS and TDDFT calculations
were performed using a modified version of the GAMESS program [44], while SACCI
calculations were performed using a modified version of the Gaussian09 program [45].
In the section, only the excited-state calculations were performed using the DC scheme
following conventional calculation of the ground states. All chemical core orbitals are
frozen during the excited-state calculations. For the TDDFT calculations, the LCBLYP
exchange-correlation functional [46-48] was adopted unless otherwise noted. The
perturbation selection with a Level Three threshold in the Gaussian program was used
for the SACCI calculations.

5.3.1. Formaldehyde in water
The author first assessed the DC-based excited-state theory through

calculations of the n—7* and o—7* excitation energies of a formaldehyde molecule in 16
explicit water molecules, i.e., H2CO + 16H20. The ES comprises the H2CO molecule
and atoms in the union of spheres centered at the four atoms of the H2CO molecule
within radius rex. Fig. 5.1 and Table 5.1 show the ES-size (7ex) dependence of the n—z*
and o—r*excitation energies obtained via DC-based and conventional CIS, TDDFT, and
SACCI calculations of H2CO + 16H20 using the 6-31G** basis set [49]. The
conventional CIS, TDDFT, and SACCI excitation energies are shown as dashed lines in
Fig. 5.1. In Table 5.1, deviations of the DC excitation energies from those derived from
conventional methods are presented in parentheses. For all three methods, the DC-based
excited-state calculations showed 0.16 eV or less absolute-value excitation-energy
deviations for the ES size of rex > 3.0A. The excitation energy deviations converge to
zero when the ES is enlarged in the DC method, while the n—7* excitation energy
deviation for the DC-TDDFT calculation with 7ex = 2.0 A is smaller than that with rex =
2.5 A; this is probably due to error cancelation.

Next, the author increased the number of water molecules in the calculation to
investigate convergence with respect to the size of the solvation sphere. Here, the ES
size was fixed as rex = 3.5 A, and the 6-31G** basis set was adopted. Table 5.2 shows
the dependence of the n—z* excitation energy of H2CO on the number of explicit water
molecules; the gas-phase results calculated using conventional methods are also

included, and the deviations of the calculated excitation energies from experimental
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values are presented in parentheses. Empirically, the n—z* excitation energy of
formaldehyde in the gas phase is 4.07 eV [50], while that in water is 4.28 eV [51]; this
indicates a blue-shift of 0.21 eV. In the gas-phase calculations, the SACCI method gives
the best result with a deviation of 0.12 eV. The deviation of the results of the TDDFT
method is also small (0.15 eV), while the deviation of the results of the CIS method is
relatively large. By increasing the number of water molecules, the excitation energies
determined using the CIS and SACCI methods decrease gradually and approach the
experimental value, while it increases gradually for TDDFT method. The SACCI result
for H2CO + 61H20 gives the closest excitation energy (4.41 eV) to the empirical value
with a shift from the gas-phase results of 0.22 eV.

—
Lete)
T

— TDDFT{ o-#%)
—7 SAC/SACCI %)
-0 CIS{u-7*)

—& TDDFT{n-#*)
-~ SAC/SACCI{n-2*)

=)} [+ ]
T T

Excitation energy [eV]
N

Fig. 5.1. ES-size (rex) dependence of the excitation energies (in eV) obtained via
DC-based CIS, TDDFT, and SACCI calculations of the H2CO + 16H20 system using
the 6-31G** basis set. The conventional CIS, TDDFT, and SACCI excitation

energies are indicated by dashed lines
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5.3.2. Conjugated aldehyde

Next, the author applied the present methods to the n—z* excited-state
calculations of a conjugated aldehyde, i.e., CicH17CHO, which is depicted in Fig. 5.2.
The C=C, C-C, C=0, and C-H lengths are fixed at 1.36, 1.46, 1.22, and 1.10 A,
respectively, and all atoms lie in the same plane. The ES consists of the terminal CHO
group and several C:H2 units, the number of which is denoted by nex (see Fig. 5.2,
which shows an example for nex = 2). Fig. 5.3 shows the ES-size (nex) dependence of the
n—* excitation energies obtained via DC-based CIS, TDDFT, and SACCI calculations
of Ci6H17CHO using the 6-31G** basis set. The conventional CIS, TDDFT, and SACCI
excitation energies are represented by dashed lines in Fig. 5.3. For all three methods, the
results of the DC-based excited-state calculations show smooth convergence with
respect to the ES size and deviate by an absolute value of 0.12 eV or less for the ES size
of nex > 3.

The efficiencies of the DC-based CIS and TDDFT methods were determined
by measuring the CPU time required using an Intel Xeon X5470 (3.33 GHz) processor
on a single core. For diagonalization of the Hamiltonian matrix, the Davidson algorithm
was adopted; the maximum number of expansion vectors used by the solver’s iterations
was set at 50. The lowest 10 singlet excited states were obtained. Table 5.3 shows the
CPU times for the DC-based CIS and TDDFT calculations of CisHi7CHO using the
6-31G** basis set. The times required for the preceding HF or DFT calculation are not
included. It was confirmed that the DC method drastically reduces the required

computational time with only a slight energy error.

ES (Mex = 2)

, 29

"f? _ .; (, e f‘" J’"‘" J«J
o - o o4 - o

4

“€

@

Fig. 5.2. Structure of the CisHi7CHO molecule and schematic of the ES in the DC

calculation.
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Fig. 5.3. ES-size (nex) dependence of the excitation energies (in eV) obtained via
DC-based CIS, TDDFT, and SACCI calculations of CisH17CHO using the 6-31G**
basis set. The conventional CIS, TDDFT, and SACCI excitation energies are

indicated by dashed lines.

Table 5.3. CPU times (in s) of the DC-CIS and TDDFT calculations of CisHi7CHO
using the 6-31G** basis set. The times required for the preceding HF or DFT

calculation are not included. An Intel Xeon X5470 (3.33 GHz) processor was used on a

single core.

CIS TDDFT
e [s) [s)
1 14 114
2 49 402
3 179 1290
4 242 1944
Conv. 708 4530
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Table 5.4 shows the basis-set dependence of the n—s*excitation energies
obtained via the DC-CIS, TDDFT, and SACCI calculations. 6-31G [52], 6-311G [53],
6-311G** [53], cc-pVDZ [54], and cc-pVTZ [54] basis sets were adopted in addition to
the 6-31G** set; note that conventional SACCI with cc-pVTZ could not be performed
due to the large computational cost. The ES size was fixed at nex = 3. In Table 5.4, the
deviations of the DC excitation energies from those obtained using conventional
methods are presented in parentheses. The energy deviations do not show a significant
dependence on the adopted basis set and, at a maximum of 0.15 eV, are quite small.
Therefore, the use of a larger basis set does not reduce the effectiveness of the present
method.
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Finally, the accuracies of the DC-TDDFT excitation energies obtained using
typical functionals, i.e., SVWN [55,56], BLYP [56,57], B3LYP [57], and LCBLYP, were
examined. Table 5.5 shows the functional dependence of the n—z* excitation energies
obtained via DC (with nex = 3) and conventional TDDFT methods. The excitation
energies obtained using pure DFT functionals (i.e., SVWN and BLYP) were lower than
those obtained using wavefunction-based correlated SACCI, i.e., 3.87 and 3.76 eV by
the conventional and DC-SACCI methods, respectively (Table 5.4). The hybrid DFT
functionals (i.e., B3LYP and LCBLYP) provided closer results. The results from TDHF,
which are listed in Table 5.5, overestimated the excitation energy as compared to the
SACCI results. For all the functionals, the DC-TDDFT calculations reproduced the

excitation energies obtained using the conventional method within 0.15 eV.

Table 5.5. DFT functional dependence of the n—z* excitation energy (in eV) of a
conjugated aldehyde CisHi7CHO obtained using DC- and conventional TDDFT
methods. The deviations of the energies from the conventional results are shown in

parentheses. An ES size of nex = 3 was adopted for the DC calculations.

Conv. DC (dift.)

Functional
[eV] [eV] [eV]
SVWN 2.15 2.30 (+0.15)
BLYP 2.31 2.45 (+0.14)

B3LYP 3.17 3.15 (=0.03)
LCBLYP 3.53 3.50 (—0.03)
HF 4.48 4.42 (=0.06)

5.3.3. Photoactive yellow protein

The present method was applied to PYP; the crystal structure, which is
depicted in Fig. 5.4(a), is registered under the accession code 2PHY in the Protein Data
Bank [58]. PYP is a photoreceptor protein that comprises 125 amino acid residues and a
pigment, which is deprotonated 4-hydroxycinnamic acid (HC4) linked with Cys69 by a
thioester bond. PYP shows an absorption maximum at 446 nm (2.78 eV); corresponds to
the lowest 7#—7z* excitation energy from HOMO to LUMO), while the absorption
maximum of HC4 is at 284 nm (4.37 eV) in water [59]. Thus, a large red-shift of 1.59
eV is induced via binding of the pigment to the apoprotein. It is possible to separately
quantify the effects of the pigment on the absorption maximum using quantum chemical

calculations. The author theoretically investigated the red-shift in PYP using DC-CIS,
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TDDFT, and SACCI calculations. Accordingly, the author constructed three models of
the system, of which the schematic is depicted in Fig. 5.4(b): (i) The AC model, which
comprises HC4, Tyr42, Glu46, Thr50, Arg52, and Cys69, and is depicted in blue, (ii) the
first coordination sphere (C1) model, which comprises AC, Ala67, Pro68, Phe96, and
Thr98, and is depicted in green, and (iii) the entire PYP protein, which is depicted in

orange. The 6-31G basis set was adopted for the following calculations.

@) ®  Ac C1

Fig. 5.4. (a) Structure of PYP. (b) Schematic of the three-model systems: (i) AC
model [HC4, Tyr42, Glu46, Thr50, Arg52, and Cys69] (blue), (ii) C1 model [AC,
Ala67, Pro68, Phe96, and Thr98] (green), and (iii) the entire PYP protein (orange).

First, the author evaluated the 77#7* excitation energy of a HC4 molecule in
water solvent. The solvent effect was accounted for using the integral equation
formulation of the polarizable continuum model [60]. The excitation energies calculated
using the conventional CIS, TDDFT, and SACCI methods are given in Table 5.6
together with the experimental results. The differences between the calculated and
experimental excitation energies are presented in parentheses. Although the SACCI
method gives the best result, with 0.15 eV deviation from the experimental value, the
deviations of the CIS and TDDFT results are also small, i.e., < 0.3 eV.

Table 5.6 shows the excitation energies for the AC model obtained using
conventional CIS, TDDFT, and SACCI methods. In contrast to HC4, the
excitation-energy results significantly depend on the methodology. Note that all the
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excitation energies exhibit red-shifts from those of HC4, which are caused by the
formation of the thioester bond with Cys69 and deprotonation of the OH group in HC4.
The SACCI method, which gives the lowest excitation energy, still has an
excitation-energy deviation of 0.81 eV. Therefore, it is evident that the simple AC model
could not sufficiently reproduce the experimental shift; this is due to the lack of
interactions with the outside residues.

The author attempted to include the effects of the outside residues by using the
ONIOM method [61] with the Gaussian09 program [45]; the method has been widely
used for calculating biomolecules in quantum chemistry. The AC model was adopted as
the high-level layer where the CIS and TDDFT methods were applied (note that
ONIOM-SACKCI is not implemented in Gaussian). The other atoms in the PYP system
were treated using the universal force field. [62] The calculated and experimental
excitation energies are shown in Table 5.6. Although the excitation energies obtained
using the ONIOM method are red-shifted from the results of the AC model, they still
did not reach the experimental value. The ONIOM method with a classical electrostatic

field for the low-layer region also could not reproduce the experimental value.

Table 5.6. Excitation energies (in eV) of the HC4 (4-hydroxycinnamic acid; pigment),
AC (active center; HC4, Tyr42, Glu46, Thr50, Arg52, and Cys69), and entire PYP
models. The HC4 and AC models were calculated using the conventional method and
the PYP model was calculated using the ONIOM scheme. The deviations of the

excitation energies from the experimental values are shown in parentheses.

HC4 (diff) AC (diff) PYP (diff)
[eV] [eV] [eV] [eV] [eV] [eV]
CIS 4.64 (+027) 440  (+1.61) 433 (+1.55)

TDDFT  4.60 (+0.23) 383  (+1.06) 338  (+0.60)
SACCI  4.52 (+0.15) 359  (+0.81) - -
Exptl. 4374 2.78¢ 2.78¢

aRef. [59].
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Next, the author performed DC-CIS, TDDFT, and SACCI calculations on the
C1 and PYP model systems; the results are given in Table 5.7. The AC region is adopted
as the ES. Although the excitation energies of the C1 model are red-shifted from the
results for the AC model (Table 5.6), they still do not match the experimental value.
However, the results for the whole PYP model with TDDFT and SACCI are close to the
experimental results; in particular, the DC-SACCI method reproduces the excitation
energy within 0.11 eV. Comparing the DC result with the ONIOM one given in Table
5.6, DC-TDDFT treatment of the entire PYP system leads to additional 0.23 eV shift
from the ONIOM-TDDFT excitation energy. Therefore, it was confirmed that the
inclusion of the classical electrostatic effects from the outside residues is not enough to
reproduce the biochemical excitation shift, but the QM treatment of the whole PYP
system using a highly accurate excited-state method is required.

The efficiency of the DC-SACCI method was examined by measuring the CPU
time required using an Intel Xeon X5470 (3.33 GHz) processor on a single core. Table
5.8 shows the CPU times for conventional SACCI calculation of the AC model and for
DC-SACCI calculations of the C1 and PYP models. The CPU time remained nearly
constant because the SACCI calculation was only performed on the same ES region, i.e.,
the AC region. The SAC/SACCI method introduces the perturbative configuration
selection for reducing computational time. The numbers of configurations selected in
the ground- and excited-state calculations, Ngr and Nex, respectively, are listed in Table
5.8. The number of configurations selected in the calculation of the AC model is larger
than those of the C1 and PYP models because ten hydrogen atoms are added at the
cleavages of the covalent bonds that are formed when constructing the active-site model.
By using DC-SACCI methodology, the author could accelerate the excited-state

calculations while maintaining high accuracy.
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Table 5.7. Excitation energies (in eV) of Cl (first coordination sphere; AC, Ala67,
Pro68, Phe96, and Thr98) and entire PYP models calculated using the DC scheme. The

deviations of the excitation energy from the experimental values are shown in

parentheses.
C1 (diff.) PYP (diff)
[eV] [eV] [eV] [eV]
CIS 4.22 (+1.44) 423 (+1.46)
TDDFT 3.52 (+0.74) 3.15 (+0.37)
SACCI 3.29 (+0.52) 2.89 (+0.11)
Exptl. 2.78 2.78

Table 5.8. CPU times (in min) for conventional and DC-SACCI calculations of the AC
(active center; HC4, Tyr42, Glu46, Thr50, Arg52, and Cys69), C1 (first coordination
sphere; AC, Ala67, Pro68, Phe96, and Thr98), and entire PYP models. An Intel Xeon
X5470 (3.33 GHz) processor was used on a single core. The numbers of the

configurations selected in the ground and excited states, Ngr and Nex are listed together.

CPU time

Model ) Ngr Nex
[min]
AC 897.0 340013 444369
C1 852.6 318392 326815
PYP 662.4 305349 274343
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5.4. Conclusion

In the previous Chapter, the author developed the DC-SAC theory as a starting
point for highly accurate excited-state calculations. In this Chapter, the author
developed the DC-based SACCI theory in conjunction with the DC-based CIS theory
and TDDFT. To demonstrate the high accuracy and effectiveness of our approach, the
author calculated the excited states of both a formaldehyde molecule in 16 explicit
water molecules and a conjugated aldehyde. The excitation energy errors are generally
small, indicating that high chemical accuracy is achieved. It was confirmed that the
present scheme enabled efficient excited-state calculation of large systems.

To demonstrate the DC-SACCI method, the author calculated the lowest singlet
excitation energy of PYP. The obtained value of 2.89 eV is in reasonable agreement
with the experimental absorption energy of 2.78 eV.
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Chapter 6
Efficient Pole-Search Algorithm for Dynamic Polarizability
toward Alternative Excited-State Calculation

6.1. Introduction

Charge-transfer excitations, where light absorption causes a charge transfer
from a donor to an acceptor, play an important role in novel photovoltaic phenomena
and many biological reactions. The development of ab initio methods that allow for
both accurate treatment and low computational cost of charge-transfer excitations is a
topic of recent scientific interest. Various acceleration techniques for large-scale
molecules have been reported [1-5]. In excited-state theories, most of these techniques
are based on multilayer theories, which select one or more active centers and perform
the excited-state calculations there. The multilayer theories have been largely successful
for treating local excitations. It is difficult to treat delocalized excitations such as spread
charge-transfer excitations for large molecules.

One of the solutions to the delocalized excitation problem is to calculate the
excited state indirectly from dynamic polarizabilities, as proposed by Roy et al [6]. The
frequency-dependent response properties implicitly obtain the information about the
electronic excited states. The computational cost of the dynamic polarizability
calculations is drastically reduced by using linear-scaling method while maintaining
accuracy [7—11]: the cost scales linear. Especially, DC method, originally proposed by
Yang et al [12,13], has a wide applicability to systems with delocalized electrons and/or
spins. A combination of the DC and the excited-state methods based on dynamic
polarizability calculations can deal with large delocalized systems [11,14]. Excited-state
methods based on dynamic polarizability calculations are required to develop an
efficient algorithm because of the large amount of dynamic poralizability calculations.

In this chapter, the author proposes and assesses an algorithm to perform
excited-state calculations with dynamic polarizability calculations. Section 6.2 reviews
the relationship between excited state and dynamic polarizability, and proposes a novel
scheme for searching the poles of dynamic polarizability. Section 6.3 describes the
numerical assessments of the proposed algorithm to determine its accuracy and

efficiency. Section 6.4 concludes the discussion.
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6.2. Theory and implementation

6.2.1. Relation of excited state and dynamic polarizability

This subsection briefly introduces the excited-state method using dynamic
polarizabilities «(w) at frequencies @, which are based on the theory proposed by Roy
et al [6]. The polarizability can be expressed by two formulae. First, as a derivative of
the total dipole moment d with respect to the external electric field E.

) od

ow)= 3 (1

which is obtained by solving the time-dependent Schrodinger equation under the

external perturbation E. Second, as the sum-over-state formula:

wo=y L

)

2
@,

where @ and f» are the excitation energy and oscillator strength from the ground state to
the n-th excited state, respectively, and » runs all excited states. Around the pole

corresponding to the n-th excited state, the dynamic polarizability is approximated as

a’:a))z% ) 3)
o -

n

Thus, the excitation energy @. and oscillator strength f, by two different

polarizabilities from Eq. (1) for frequencies @»+ and an-, sufficiently close to @, are

obtained as:

s N D s NI
a\(q]+/ _a\corl—)
2 2
., —w_
f;q —_ 1n+ n 1 . (5)

oo, oo)

This evaluation is independent of the method of dynamic polarizability calculations for
Eq. (1), such as TDCPHF, TDCPDFT, CC-LR.

85



6.2.2. Pole-search algorithm for dynamic polarizability

In this subsection, the author explains a new algorithm based on the theoretical
design of the excited-state calculation by using dynamic polarizabilities. As Eq. (2)
shows, the dynamic polarizability monotonically increases with respect to frequency,
except when the frequency corresponding to one pole is stepped over. A decrease in
polarizability means that at least one excitation state exists between the two frequencies.
First, the author calculates dynamic polarizabilities at a constant frequency interval @it
from Eq. (1). After detecting the regions showing decrease in a(win), the poles are
searched by the bisection method, which consists of three steps. In Step 1, a» and f» are
obtained from the two frequencies @h+ and @n- corresponding to the decreasing region.
In Step 2, the polarizability at the middle frequency @ between the two polarizabilities
of@wn+) and a(wn-), is calculated from Eq. (1). In Step 3, @ and f are estimated by two
polarizabilities corresponding to a new decreasing region. Steps 2 and 3 are iterated
until @ and f» converge.

When one decreasing region contains multiple poles at a large @i, the bisection
method would pass over one more poles. Herein, the author discusses the case of two
poles in one decreasing region, because the cases of more than two poles can be easily
considered as extensions of the two-pole case. All three cases of decreasing regions
containing two poles are shown in Figs. 1(a)~(c). The middle frequency @ exists
between the two poles corresponding to the smaller excitation energy Fexi and larger
excitation energy Eex2. While the case of Fig. 1(a) detects both Eex1 and Eex2 from the
two decreasing regions, the cases of Figs. 1(b) and (c) detect only Eexi and Eex2,
respectively, from the one decreasing region. A subtracting process, which clarifies the
influence of the undetected poles, is introduced to detect all the poles. Figs. 2(a)—(c)
show the polarizabilities before and after subtracting the contributions for the detected
excitations, corresponding to the cases of Figs. 6.1(a)—(c). In the case of Fig. 6.2(a),
both detected poles disappear. The cases of Figs. 6.2(b) and (c) detect a new decreasing
region for Eexx and FEexi, respectively, by subtracting the contribution for the detected
pole.

The scheme of excited-state calculation using dynamic polarizabilities based on
the above theoretical design is shown as a flow chart in Fig. 6.3. The details of
implementation are as follows. First, the dynamic polarizabilities ¢ @) are calculated
at a constant frequency interval @nt. All decreasing regions for the polarizability are
searched for and detected. Next, a» and f» for a new set of decreasing regions, Nnew, are

evaluated using the bisection method until @ and f» converge for a threshold condition
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A. Finally, the subtracting process is performed to clarify the undetected poles. Nnew is
added to the number of detected excited sates Nstate. Note that Nstate = Nnew in the first
iteration. The contributions of the & @) corresponding to the detected poles are

obtained by the sum-over-state by a set of excitation energies @» and oscillator strengths

fnas:

Nstate f
aw)= L 6
@ Z o - ©)

n

where n signifies the number of all detected poles. The difference of the dynamic
polarizability Ao (w), defined as Aa w, = o @, — & w), is calculated. The initial

decreasing region is searched by using the Aar(w) values. This serial procedure is
repeated until no decreasing regions are detected.
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Fig. 6.3. Algorithm to calculate the excited state using dynamic polarizability.
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6.3. Numerical assessments

In this section, the performance of the present excited-state calculation using
dynamic polarizabilities, based on the simplest treatment such as TDCPHF calculations,
is numerically assessed. The results are then compared to those obtained from
conventional excited-state calculations such as TDHF calculations. All calculations
were performed with the 6-31G** basis set [15,16] by using a modified version of the
GAMESS program [17]. The Davidson algorithm [18] was adopted for diagonalization
of the Hamiltonian matrix in conventional TDHF calculations, and the maximum
number of expansion vector iterations used by the solver was set at 50.

The author first determined the convergence condition A for the bisection
method. Table 6.1 shows the A-dependence of the errors in excitation energies (AEex)
and in oscillator strengths (Af) within the range 0—10 eV for bromobenzene. Excitation
energies and oscillator strengths obtained by the TDHF method are also listed for
reference. The listed excitations were detected with @t = 0.01 eV. No subtracting
processes were performed. All allowed excited states except for the forbidden excited
states A2 corresponding to 7.524, 9.352, 9.563, and 9.995 eV were detected. For all the
allowed excited states, absolute deviations of excitation energies were less than 0.001
eV for 4 < 0.1. Compared with excitation-energy deviations, the deviations of the
oscillator strengths slowly converged to zero. The oscillator-strength deviations had a
tendency to increase with an increase in oscillator strengths. The absolute deviations of
oscillator strengths were less than 0.001 for 4 < 0.001. Therefore, all of the following
calculations were performed with 4= 0.001.

Table 6.2 shows the aini-dependence of excited states within the range 0-10 eV
for bromobenzene with aint = 1.0, 0.5, 0.1, 0.05, and 0.01 eV. No subtracting processes
were performed. At @t = 1.0 and 0.5 eV, only four excited states 2A1, 4A1, 2B1, and
3B1 were detected; excited states with small oscillator strengths and quasi-degenerate
excited states tend to be passed over, such as 3A1, 1B1, 4B1, 1B2, 2Bz, 3B2, 4B2, and 5B..
The number of detected excited states increases with the decrease of @mnt. New four
excited states 3A1, 4B1, 2B2, and 4B2 were detected at it = 0.1 eV. The excited state
2B was passed over, because the pattern of polarizability for middle-point converted
the patterns of Fig. 6.1(b) into those of Fig. 6.1(c). All excited states were detected for
ot = 0.01 eV. The errors in excitation energies and in oscillator strengths (less than

0.001 in either case) were independent of @int.
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Table 6.1. Convergence-condition A dependence of the absolute errors of excitation

energies AFex (in eV) and oscillator strengths Af" within the range 0-10 eV for

bromobenzene.
This work
TDHF
state A=0.1 A=0.01 A=0.001
ECX AECX AECX AECX

v L e Y e Y e Y

2A, 5.383 0.172 0.000 0.000 0.000 0.000 0.000 0.001
1B, 5.460 0.020 0.000 0.002 0.000 0.002 0.000 0.001
2B, 7264 0.424 0.000 0.008 0.000 0.003 0.000 0.000
3A; 7275 0.765 0.000 0.075 0.000 0.003 0.000 0.000
1A, 7.524 0.000 - - - - - -
1B, 7.959 0.004 0.000 0.000 0.000 0.000 0.000 0.000
2B, 8.722 0.002 0.000 0.000 0.000 0.000 0.000 0.000
3B, 9.156 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2A, 9.352 0.000 - - - - - -
4A, 9.555 0.018 0.000 0.000 0.000 0.000 0.000 0.000
3A; 9.563 0.000 - - - - - -
3B 9.738 0.095 0.000 0.002 0.000 0.002 0.000 0.000
4B, 9.848 0.030 0.000 0.001 0.000 0.001 0.000 0.000
4B, 9.966 0.013 0.000 0.000 0.000 0.000 0.000 0.000
5B, 9.994 0.001 0.000 0.000 0.000 0.000 0.000 0.000
4A, 9.995 0.000 - - - - - -
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To demonstrate the efficiency of the subtracting process, the author plotted the
data of the polarizability (w) for @mnt = 0.1 eV within the range 0-10 eV in Figs.
6.4(a)—(c). The black line and red dashed lines represent the dynamic polarizabilities
obtained by TDCPHF and the allowed excitation energies obtained by TDHF,
respectively. The author obtained only seven excited states 2A1, 3A1, 4A1, 3B1, 4B1, 2B2,
and 4B without the subtracting process in Fig. 6.4(a). In the first subtracting process,
four new excited states 1B1, 2B1, 5B1, and 1B2 were obtained, as shown in Fig. 6.4(b).
By subtracting the contribution of the other excited states twice, all the allowed excited
states were obtained and are shown in Fig. 6.4(c).
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Fig. 6.4. Dynamic polarizability calculated (a) in preprocessing, (b) in the first

subtracting, (c) in the second subtracting.
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A proper @it should be determined in order to obtain all the allowed excited
states efficiently. Table 6.3 shows the numbers of frequencies Nieq and detected excited
states Nswte obtained by the present algorithm within the range 0-10 eV for
bromobenzene with @t = 1.0, 0.5, 0.1, 0.05, and 0.01 eV. The number of all the allowed
excited states within the range 0—-10 eV was 12. Subtracting processes were performed
until no new decreasing regions appeared. The errors of @t = 1.0, 0.5, 0.1, 0.05, and
0.01 eV are shown in the supporting information. At @it = 1.0 and 0.5 eV, three excited
states 2B2, 3B2, and 5B: with oscillator strengths less than 0.002 were still passed over
after more than one subtraction process, while at @it = 0.1 and 0.05 eV all the allowed
excited states were obtained by using the subtracting process. Although all the allowed
excited states were detected without the subtracting process at @t = 0.01 eV, a large
amount of polarizability calculations (565 plots) were needed. The author concludes that
a proper value for @ntis 0.1 eV because of the minimum plot. All of the following

calculation were performed with @it = 0.1 eV.

Table 6.3. Numbers of frequencies Ni.q and detected excited states N Obtained by the
present algorithm within the range 0—10 eV for bromobenzene with @t = 1.0, 0.5, 0.1,
0.05, and 0.01 eV.

Wne= 1.0 Wnt = 0.5 Wne = 0.1 @Wnt = 0.05 @Wnt = 0.01
N freq N, state N freq N, state N freq N, state N freq N, state N freq N, state
No subtraction 53 4 55 4 109 7 175 10 565 12

1% subtraction 20 3 20 3 30 4 16 2 - -
2" subtraction 19 2 19 2 12 1 - - - -
Total 92 9 94 9 151 12 191 12 565 12
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Finally, the author verified the combination of the present algorithm and the
DC method on the push-pull polymer, NH2>—(C2H2)1s—COOH. Table 6.4 shows the
errors from the TDHF calculations of excitation energies and oscillator strengths
obtained by conventional and DC-TDCPHF calculations within the range 05 eV. In the
DC calculation, a unit consisting of two C atoms in the main chain and the residues
bonded to the C atoms was adopted as a central region; six units each to the left and
right of these 2 C atoms were treated as the corresponding buffer region. Both
conventional and DC-TDCPHF methods detected all the allowed excited state. 2A' was
the charge-transfer excitation from HOMO to LUMO, as shown Fig. 6.5. DC as well as
conventional methods could reproduce the spread charge-transfer excitation. The
excitation-energy and oscillator-strength errors of the DC approximation were less than
0.03 and 0.05, respectively.

(a)

R N N N e

(b)

555556 00000000000065;

Fig. 6.5. (a) LUMO and (b) HOMO of push-pull polymer, NH>—(C2H2)1s—~COOH by the
HF/6-31G** calculation.

Table 6.4. The errors from the TDHF calculations of excitation energies AEex (in eV)
and oscillator strengths Af obtained by conventional and DC-TDCPHF calculations.

state TDHF TDCPHF DC-TDCPHF

ECX AECX AECX
vl L v Y ey Y

2A° 3.052 9.992 0.000 0.001 0.021 0.047
3A° 3.530 0.001 0.000 0.000 0.013 0.000
4A° 4.056 0.798 0.000 0.001 -0.018 0.012
SA” 4.568 0.001 0.000 0.000 0.014 0.000
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6.4. Conclusion

This paper presents the development and the numerical assessments of a
pole-search algorithm for dynamic polarizability in order to obtain excited states. The
key idea of the algorithm is that at least one pole exists in the region of descending
dynamic polarizability with respect to increasing frequency. Once the descending region
is detected, the pole is searched by the bisection method. Another key idea is that the
influence of the undetected poles in multiple-pole systems is clarified by subtracting the
influence of the detected poles. Thus, the algorithm involves iterative operations after
the initial search by using a constant frequency interval. The numerical assessments
investigated the dependence of excitation energies and oscillator strengths on the
convergence condition 4 and the constant frequency interval @i By using the proper
threshold 4 and constant interval @, the present algorithm effectively detects all the
poles. The algorithm combined with DC as well as conventional TDCPHF methods

could reproduce the large charge-transfer excitations.
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Chapter 7
Divide-and-Conquer Method with Approximate Fermi Level
for Parallel Computations

7.1. Introduction

Parallel computation has become a main stream to deal with large systems by
quantum chemical methods. The parallel computations are categorized into shared,
distributed, and hybrid memory models. The shared memory models are typified as
OpenMP [1], GA [2], and DDI [3]. While each node shares the data within the same node
on OpenMP, it shares the data among all nodes through network communications on GA,
DDI, and the other global memory array models. The distributed memory model is
typified as MPI [4]. Because each CPU core allocates each memory array on MPI, the
available memory size per CPU core becomes small. One of the solutions is the hybrid
model, in which internode and intranode parallel treatments are performed by MPI and
OpenMP, respectively.

The quantum chemical computations with the global memory array and hybrid
models can deal with large systems by allocating the large memory size through the
network communications. Indeed, several quantum chemical program packages have
been developed by global memory array [2,3,5,6] and hybrid models [7—12]. The network
communications among multi nodes become the bottlenecks on the parallelization
because of the slower internode than intranode communications. The decrease of the
network communications is required on the multi-node parallelization. Fragmentation
techniques, which divide an entire system into several fragments, could reduce the
network communications by separately solving the local equation in each fragment [13—
15]. Therefore, the fragmentation techniques have higher affinity with the multi-node
parallelization than conventional quantum chemical calculations.

Nakai research group developed the fragmentation techniques based on the DC-
SCF method originally proposed by Yang and coworkers [16,17]. The DC-SCF method
has a high applicability to delocalized electron and/or spin systems due to the adoption of
the common Fermi level for the entire system [18-21]. While the CPU time for
determining the common Fermi level is less expensive, it requires a large amount of the
network communications among multi nodes due to collecting the information of all
fragments. In consequence, the computation of the Fermi level reduces the parallel
efficiency compared with the other fragmentation techniques.

This Chapter proposes approximate techniques to estimate the Fermi level
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without loss of accuracy to achieve high parallel efficiency. The rest of this chapter is
organized as follows. Section 7.2 explains theory and implementation of the proposed
techniques. In Section 7.3, numerical assessments are given. Finally, the concluding

remarks are described.
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7.2. Theory and implementation

7.2.1. DC-SCF with the common Fermi level

This subsection briefly describes the conventional DC-SCF method, which
adopts the common Fermi level in every SCF iteration. In the DC-SCF method, the
density matrix of the entire system, D, is constructed from local density matrices for
subsystems {s}, D*, as follows:

C K
D, ~DD ZPﬂVDﬂV’ (7.1)

where s runs all subsystems. In Eq. (7.1), P’ represents the partition matrix with

elements of

1 [ s s ]
2 [ B s ][ s B ]
!LO otherwise. (7.2)

P’ avoids the double counting for the electron numbers of the buffer region. D* is
obtained by the subsystem MO coefficients, C*, subsystem orbital energies, &€, and
common Fermi level, &,:

:Z fﬁ(g _g»{\ﬁ; o (7.3)

where p runs all MOs of the subsystem s, i.e., L(s). C' and & are determined by
solving the following Roothaan—Hall or Kohn—Sham equation for the subsystem s:

FSCS — SS‘SSCS . (7'4)

Here, §° and F® represent the local overlap and Fock matrices for subsystem s, i.e.,
submatrices of the entire overlap and Fock matrices in the basis of L(s). After solving

the local equations, the common Fermi level can be determined via constraint of the total

number of electrons, Ne:

N, =T D*S]. (7.5)
Similarly, the electron numbers of the subsystems {s}, n  are determined by,
n, =Tt D’S"]. (7.6)

Note that N is not equal to the sum of the electron numbers of subsystems, ».:
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N, # an (7.7)

The total density matrix D" is required in order to construct the Coulomb and

exchange parts, i.e., J° and K° oflocal Fock matrices, F°:

T =2, 22 uvAG P (7.8)
Ao " Ao

K= 2D MO AVIPLDL (7.9)
Ao " Ao

Note that {#,v} belong to the basis of L(s). Although {4,0} in Egs. (7.8) and (7.9) run
all AOs of the entire system, the non-zero parts of D)< are limited in the basis of L(s")

for each subsystem due to the property of P”. As a result, the computational costs to
construct J* and K* scale as O(#?) in the DC-SCF method, where » means the number
of basis functions of the total system.

FMM, which divides the Coulomb interaction into near- and far-field
contributions, reduces the computational costs for the construction of J* In the FMM,
the far-field contribution is evaluated by the multipole expansion using atomic charges.
On the contrary, the explicit computations of the ERIs are required for the near field. The
author here adopts the localization region L(s) as the near field.

J, = > (v 20\ D+ (far-field term) (7.10)

A.oeL(s)

D’ corresponds to the submatrix of the total density matrix D"C in the basis of L(s).
Fig. 7.1 schematically illustrates the procedure of constructing this submatrix D" .
Although the total density matrix D¢ is constructed from local density matrices of all
subsystems, submatrices D' could be constructed from local density matrices of the
subsystem s and its adjacent subsystems.

The exchange integral of local Fock matrix is also divided into near- and far-

field contributions:
Ki, = Y (uolv)D;,+ (far-field term) (7.11)
A,0eL(s)

The exchange interaction is known to decay exponentially, at least, for insulators.
Furthermore, our previous studies [18,19] clarified that the errors for neglecting the far-
field exchange interaction can be reduced up to the chemical accuracy when adopting an
adequate buffer region. Therefore, the author here neglects the far-field exchange
contribution in the calculation of local exchange integral K*  In consequence, the

combination with the FMM and the approximation of the exchange interaction lead to the
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linear-scaling computational cost to evaluate the local Fock matrix F*

The extension of the DC-SCF method to the unrestricted treatment for open-shell
systems is straightforward. Note that for the unrestricted treatment, the common Fermi
levels for up- and down-spins are individually determined via constraint of the total

numbers of up- and down-spin electrons, respectively [21].

B(s) S(s) B(s)

0 [I2 0 | B(s)
D:N P’ 12B812] s(s)
0 12 o | B(s)

l l Multiply D* by P*
£. D, . = =
l l l Conquer

DDC

Fig. 7.1. Schematic illustration of construction of D°
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7.2.2. Procedure of divide-and-conquer method for parallel computation

The DC-SCF method as well as other fragmentation techniques has higher
affinity with the parallel computation than the conventional SCF calculations. Fig. 7.2
shows the schematic illustration of the DC-SCF procedure for parallel computations. In
this case, one node is assigned to one subsystem. Note that the node assigned to subsystem
#1 becomes a master node. The DC-SCF procedure consists of six steps. Step 1 constructs
the local density matrix in Eq. (7.4) on each node. Step 2 constructs submatrix D’ on
each node. The communication cost on each node is approximately constant, because
each node communicates the local density matrix D° to several nodes assigned to its
adjacent subsystems, not all subsystems. Step 3 independently constructs and
diagonalizes the local Fock matrix on each node. In Step 4, all nodes communicate the
subsystem MO coefficients C° and subsystem orbital energies &£° to the master node.
Step 5 determines the common Fermi level &, by Eq. (7.6) on the master node. In Step
6, the master node communicates ¢, to all nodes. The communication costs of Steps 4
and 6 increase with respect to the number of nodes because of communications among
all nodes. The procedure is iterated until the total energy and local density matrices are
converged.

Each step has a different parallel efficiency. Steps 1, 2, and 3 are expected to
have high parallel efficiencies, because the operations are approximately local on each
node as shown in Fig. 7.2. On the contrary, Steps 4, 5, and 6 might show low parallel
efficiencies, because the master node must perform all computational tasks. In
consequence, the determination of the common Fermi level in Steps 4, 5, and 6 might
become one of the bottlenecks on the parallelization.
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Master
Subsystem #1 #4

>

[Step 1] -
Construction of
local density matrix

[Step 2]

Communication of
T local density matrix _ %
and constructionof J)*

[Step 3]
Construction and £
diagonalization of
local Fock matrix

[Step 4]
Communication of roIy
MOs and orbital

energies J

[Step 5]
Determination of B
common Fermi level

[Step 6]

Communication of L ¢
i 6

common Fermi level

Fig. 7.2. Schematic illustration of the DC-SCF procedure for parallel computations.
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7.2.3. Approximate determination of Fermi level

This subsection examines to improve the parallel efficiency of the DC-SCF
calculations. As described in the previous subsection, the determination of the common
Fermi level requires a large amount of network communications between the master and
all the other nodes, which lead to reduction of the parallel efficiency. Thus, the author
here proposes two approximations for the determination of Fermi level, which need no
communications.

In general, the common Fermi level asymptotically approaches to the converged
value during the DC-SCF iterations. Thus, the simplest way to approximate the common
Fermi level is to adopt a quasi-converged value. The author calls this procedure as an
AFL treatment. The quasi-converged Fermi level is determined by using a threshold, darL,

for the Fermi level variation,
‘ASF‘ :‘EF(Niter)_gF(Niter _1)‘ Sé‘AFL' (7-12)

Once adopting the quasi-converged value, the common Fermi level is fixed. Since the
density matrix is determined by using the quasi-converged Fermi level, Eq. (7.5) is not
satisfied exactly; namely, the total number of electrons is not kept in the DC-SCF
calculations. However, the choice of the adequate threshold, darL, would reduce the error.
The electron number of each subsystem is also determined by using the quasi-converged
Fermi level.

During the DC-SCF iteration, the electron numbers of individual subsystems
approach asymptotically to converged values, respectively. Thus, the second
approximation is the adoption of the quasi-converged electron numbers of individual
subsystems. The author calls it an AEN treatment. The SCF iteration to firstly achieve the
quasi-convergence is determined by using the threshold, daen, for the maximum variation

of the subsystem electron numbers,

max‘An‘;

=max

n;(Niter)_ng(Niter _1)‘S5AEN . (713)

Once satisfying the condition in Eq. (7.13), the subsystem electron numbers are fixed to
the quasi-converged values, respectively. To keep this condition, the Fermi level is
relaxed and determined individually for each subsystem by Eq. (7.6). Namely, the Fermi
level of each subsystem is no longer common value. Furthermore, Eq. (7.5) is not satisfied
exactly, although the electron number of each subsystem is kept. The choice of the

adequate threshold, daen, would reduce the error.
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7.2.4. Implementations of AFL and AEN methods

The author implemented the AFL and AEN treatments for parallel computations.
Fig. 7.3 presents the pseudocode for the AFL and AEN treatments, which consist of six
steps similar to the conventional DC-SCF method. The wall-clock times for the individual
steps are defined as #1, 2, t3, t4, t5, and . The convergence of the common Fermi level
g, or the subsystem electron numbers »' is checked after Step 6 in the AFL and AEN

methods, respectively. After the convergence, the AFL and AEN methods skip Steps 4, 5,
and 6. The AEN method determines individual Fermi levels & via the constraint by Eq.
(7.6), of which the wall-clock time is included in #5s. The procedure is iterated until the
energy and local density matrices are converged.

The author developed a two-level hierarchical parallelization scheme for DC-
SCF calculations as well as DC-MP2 calculations [22]. The combination of coarse-grain
and fine-grain parallel treatments is realized using the GDDI [23]. The coarse-grain and
fine-grain parallel treatments are accomplished by assigning one subsystem to one node
and distributing the computational task of each subsystem in the same node, respectively.
Parallel implementations by GDDI are straightforward using the MPI communicator.
When the number of subsystems is larger than that of nodes, the subsystems are cyclically
assigned to each node in descending order of the computational cost estimated by the
number of basis functions of L(s), m, namely dynamic load balancing. The estimated
cost of each subsystem is obtained by construction costs of the local Fock matrix as the

largest computational cost of each subsystem, that is, O(m*).
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Loop Niter
Loop subsystem s
Construction of D~ - Step 1:

End Loop subsystem s J

Loop subsystem s
Communication of D~

- - Step 2:
Construction of D~
End Loop subsystem s .
Loop subsystem s
Construction and diagonalization of F* Step 3:
End Loop subsystem s
If (8, <|Ag,| or &, <max(|Arn])) then
Communication of C* and &° Step 4:
Determination of &, } Step 5:
End if
Communication of &, } Step 6:

Check convergence for £ and D~
Check convergence for & or 7

If (AEN method and &, < max (|An]

Loop subsystem s
Determination of &

)

End Loop subsystem s
End if
End Loop Niter

Fig. 7.3. Pseudocode of the AFL and AEN algorithms.
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7.3. Numerical assessment

This section assesses the performances of the proposed AFL and AEN methods
by comparing to the standard DC-SCF method. The 6-31G** basis sets [24] were adopted.
The DC-SCF calculations were performed at the HF level. All calculations were
performed by using the modified version of the GAMESS program package [25] and
employing 16 nodes of an octa-core processor personal computer cluster connected with
gigabit Ethernet, where each node has 2.9 GHz processor (Intel Xeon E5-2690).

First of all, the convergences of the common Fermi level &, and electron
numbers of individual subsystem 7, were verified in the standard DC-SCF calculation.
The adopted system was a push-pull conjugated polymer,
(CN)2C=C—(CH=CH)1s—CsHsNH2, as depicted in Fig. 7.4. This molecule has a
delocalized electronic structure. Furthermore, the electronic structures of the subsystems
are expected to be heterogeneous, because the electron-accepting and -donating groups
exist at the left- and right-hand sides, respectively. In general, the delocalized and
heterogeneous electronic structures are difficult to treat by the fragmentation technique.
In the DC-SCF calculations, a unit consisting of two C atoms in the main chain and
residues bonding to the C atoms was adopted as a central region; the left-and-right seven
units were treated as the corresponding buffer region. Subsystems were numbered from
the left edge as shown in Fig. 7.4.

9
® . T T B o 1 1o i E & " I D - ‘
O fa ta o do da da da bty By by s b s ks b B ds W90,
@ U0 9 9

0o g g b s 3o 4 3o 43 o8 0 43 0 0 0 29,

¢ IR B B A B B B B J: -

] ] ] ] ] ] 1 ] ] ] ] ] ] ] ] ] 1 ] .
SUbS}'Sti‘II] #1 #2 #3 #4 #5 #6 #7T #8 #9 #10 #11 #12 #13 #14 #15 #16 #17#18 #19 #20

Fig. 7.4. Structure of push-pull polyene, (CN).C=C—(CH=CH)1s—CsHsNHo.
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Figs. 7.5 (a) and (b) show the absolute variations of the common Fermi level
‘ASF‘ and electron numbers |Anf| for subsystems #1, #10, and #20. The absolute
variations of the total energy |AE|= ‘E (N.)—E(N,, —1)‘ are plotted in Figs. 7.5 (a)
and (b). The total energy and density matrix were converged at Nier = 22. The convergence
processes of ‘Aeﬁ‘ and ‘Ane“ are comparable to that of ‘AE‘ The convergence
processes of ‘Anj

depended on the site of the polymer. |An§(#2°)| was rapidly
converged because of smaller charge for subsystem #20 than subsystems #1 and #10; the
charges for subsystems #1, #10, and #20 are +0.0259, +0.0070, and 0.0000, respectively.
|An‘eg for the other subsystems were smaller than ‘Aneg for subsystem #1. While ‘AEF‘
that became less than 102, 10, and 10™* hartree were at Nier = 5, 9, and 14, |An’| that
became less than 102, 10, and 10 hartree were at Nier = 9, 11, and 16, respectively.

107! 107!
R |
W

102 -
g 107 107
g 10¢ XX £ 104
S
S L -5
j‘é 10 A AR 2 10
é;‘ 100 -~V Ag 100+
107} 107+
108 ! ! ! ! 108
0 5 10 15 20 25
N. N.

iter iter

Fig. 7.5. Absolute variations (in atomic unit) of the total energy |AE ‘ (in hartree), (a)
common Fermi level ‘Agﬁ‘ (in hartree) and (b) electron numbers ‘Ang
#1, #10, and #20 from the converged values in the DC calculation.

for subsystems

Next, the author examined the performance of the AFL method using the push-
pull conjugated polymer, (CN)2C=C—(CH=CH)1s—CsHsNH:. Fig. 7.6 shows the changes
of the common Fermi level &, with respect to the SCF iteration in the standard DC-SCF
calculation and the AFL treatments with dar. = 102, 107, and 10 hartree. In the standard
DC-SCF calculation, the common Fermi level changes at every SCF iteration. On the
contrary, the common Fermi levels were fixed after Nier = 5, 9, and 14 in the AFL
calculations with dar. = 102, 107, and 10 hartree, respectively. In this scale, the result
for darL = 10 hartree overlap with that of the standard calculation. Note that in the three
AFL calculations, the SCF iterations to converge the total energy and density matrix were
the same as the standard DC-SCF calculation: i.e., Niter = 22.
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Fig. 7.6. Common Fermi level &, (in hartree) with respect to the SCF iteration in the
standard DC-SCF calculation and the AFL treatments with dar. = 102, 107, and 10
hartree.

Fig. 7.7 shows the changes of the electron numbers 7. for subsystems #1, #10,
and #20 in the standard DC-SCF calculation and the AFL method with darL = 1072, 1073,
and 10*. As expected, the errors of the quasi-converged electron numbers of the
subsystems increase as larger darL; For example, namely, at subsystem #1, the errors are
-0.0243, +0.0061, and +0.0001 for dar. = 1072, 10, and 10™* hartree, respectively.
Furthermore, the errors become smaller in the order of the subsystems #1, #10, and #20,
which is the same order of the subsystem charges as mentioned above. A careful
observation clarifies that the underestimated ¢, with darL = 107 hartree led to the
underestimation of the subsystem electron number, while the slightly overestimated &,
with darL = 107 hartree led to the slight overestimation. The adoption of & using darL
= 10 hartree ensured high accuracy of the subsystem electron numbers.
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Fig. 7.7. Electron numbers 7. for subsystems #1, #10, and #20 in the standard DC-SCF
calculation and the AFL method with dar. = 102, 10, and 10" hartree.
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The author further investigated the performance of the AEN method adopting
(CN)2C=C—(CH=CH)1s—CsHsNHaz. Fig. 7.8 shows the changes of the electron numbers
n. for subsystems #1, #10, and #20 in the standard DC-SCF calculation and the AEN
treatments with daexn = 1072, 10, and 10*. In the standard DC-SCF calculation, the
subsystem electron numbers changed at every SCF iteration due to the variation of the
common Fermi level. On the contrary, the subsystem electron numbers were fixed after
Niter = 9, 11, and 16 in the three AEN calculations, respectively. The SCF iterations to
converge the total energy and density matrix were different: i.e., Nier = 27, 23, and 22 for
daen = 102, 107, and 10, respectively. In consequence, the results for daex = 10
overlapped with those of the standard calculation.
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Fig. 7.8. Electron numbers #. for subsystems #1, #10, and #20 in the standard DC-SCF
calculation and the AEN treatments with daen = 1072, 1073, and 10
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Fig. 7.9 shows the changes of the common Fermi level £. with respect to the
SCF iteration in the standard DC-SCF calculation and the AEN treatments with daen =
102, 107, and 10*. In the standard DC-SCF method as well as the AFL treatment, the
Fermi level was common to all the subsystem. On the other hand, the AEN treatment
determined the individual Fermi level for each subsystem to conserve the subsystem
electron number. Therefore, Figs. 7.9(a), (b), and (c) demonstrated different behaviors of
the Fermi levels for the subsystems #1, #10, and #20, respectively. The crude threshold
daen = 107 led to large gaps among the converged Fermi levels for #1, #10, and #20. The
gaps became smaller for daen = 107. For dapx = 10, three Fermi levels agree well with
the result of the standard DC-SCF calculation.
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Fig. 7.9. Common Fermi level &, (in hartree) with respect to the SCF iteration in the
standard DC-SCF calculation and the AEN treatments with daen = 102, 10, and 10,
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Table 7.1 summarizes the deviations of the total energy, Fermi level, and electron
numbers of the subsystem #1, #10, and #20 obtained by the AFL and AEN calculations
with respect to the standard DC-SCF results. As observed in Figs. 7.6-7.9, the deviations
decreased as the smaller threshold, darL and daen. It should be noted that even for the
crude threshold of darLaen = 1072 (hartree/-), the deviations of total energies were less
than 1 mhartree.

The applicability of the AFL and AEN treatments was verified for a series of
benchmarks: namely, hydrogen fluoride clusters (HF). (n = 20, 30, and 40), water clusters
(H20)» (n =100, 125, and 150), polyglycine (gly). (n = 10, 20, and 30), and polyene chain
system C.Hnr2 (n = 40, 60, and 80). In the DC-SCF calculations, each monomer was
adopted as the central region. The buffer regions were defined as the atoms in the union
of spheres centered at the atoms of central regions within radius of 5.0, 5.0, 8.0 and 9.0
(A) for (HF)», (H20)n, (gly)s, and CrHa+2, respectively.

Table 7.2 summarizes the deviations of the total energies (in mhartree) obtained
by the AFL and AEN calculations with respect to the standard DC-SCF results. The
thresholds were changed: daraen = 1072, 1072, and 10*. The energy errors for the
molecular cluster systems, i.e. (HF), and (H20)., were less than 1 phartree even for
darLaeN = 1072 (hartree/-) because of the nature of the local electronic structure. On the
other hand, the energy errors for the covalent bond systems, i.e. (gly)» and C»Hn+2, became
larger, but were still less than 1 mhartree.

Table 7.2 lists the SCF iteration to begin the AFL/AEN treatment as well as that
to achieve the convergence; They are represented by Nvgn and Nenv, respectively. Nenv of
the AFL and AEN calculations were the same as those of the standard DC-SCF
calculations, except for (gly)so by the AEN method. Nogn was more sensitive to the
threshold in the AFL treatment than that in the AEN one. In fact, Npgn in the AFL treatment
increased as the smaller threshold.

Finally, the parallel efficiencies of the AFL and AEN methods were examined.
Table 7.3 shows wall-clock times of individual steps in the standard DC-SCF, AFL, and
AEN calculations of (HF)i2s. Step 1 corresponds to the construction of local density
matrices, Step 2 to the communication of local density matrices and construction of D,
Step 3 to the construction and diagonalization of local Fock matrices, Step 4 to the
communication of MOs and orbital energies, Step 5 to the determination of the common
Fermi level, and Step 6 to the communication for the common Fermi level. The time to
determinate individual Fermi levels in the AEN method was included in #5. The
calculations were performed by darL/aen = 10 (hartree/-).

Table 7.3 also lists the parallel scalability (S) of total wall time (#0t) with respect
to the eight-core case (Necore = 8), which is defined as,
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5= 8h(®) (7.14)
NCOre * tlol (NCOI'C )

where Neore 1s the number of processor cores. All calculations were converged at 11 SCF
iteration: Nenv = 11. The SCF iteration to begin the AFL/AEN treatments were two: Nbgn
=2.

In all cases, the wall clock times of Step 3 were the longest among all steps.
However, #3, as well as #1 and £, approximately decreased in inverse proportion to Neore.
This means that Steps 1, 2, and 3 had high parallel efficiencies. It is reasonable since
Steps 1 and 3 performed independent operations to treat local Fock and density matrices.
Although Step 2 communicated local density matrices among several cores that treated
adjacent subsystems, the communications were not global.

Although 14, #5, and t6 were small, the times were almost constant even when
Neore increased. Because Steps 4 and 6 performed communications with all nodes and Step
5 used the master node. These processes would become one of the bottlenecks of the DC-
SCF method on the parallel computations. Indeed, the parallel scalability S became
smaller as Ncore increased. On the other hand, the AFL and AEN methods could skip the
processes partially and, therefore, reduce their wall clock times. In consequence, the

decrease of the parallel scalability S were considerably smaller than the standard case.
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7.4. Conclusion

This Chapter proposed two efficient algorithms of the linear-scaling DC-SCF
method for parallel computations. The algorithms could reduce the network
communications in determining the common Fermi level. The AFL and AEN methods
adopted approximate techniques to estimate the Fermi level in the latter part of SCF
procedure. The numerical assessments of the methods clarified that the AFL and AEN
methods were confirmed to display a higher parallel efficiency than the standard DC-SCF
calculations.

The proposed algorithms can be directly applied to the DFT calculations.
Furthermore, they are important for the post-HF calculations. In many cases, DC-HF
calculations are more expensive than DC-MP2 ones [26,27]. Nakai research group
previously developed the efficient parallelization algorithm for the DC-MP2 method [22].
The combination of the DC-SCF code with the previous DC-MP2 code would enable to
extend the applicability of MP2 calculations using the parallel computers.
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Chapter 8

Divide-and-Conquer Self-Consistent Field Calculation Using
Resolution-of-Identity Approximation on Graphical
Processing Units

8.1. Introduction

Nvidia GPUs and Intel Xeon Phi coprocessors obtain higher performance for four
arithmetic operations than CPUs by using CUDA and OpenMP, respectively. Since 2008,
GPUs have been utilized in two-electron integral computations [1-7], the HF method [8—
12], DFT [13-18], MP2 theory [19,20], CC theory [21-25], and the semiempirical
method [26,27]. Pioneering works by Yasuda [1,13] presented accelerated computations
of the exchange-correlation term in DFT and evaluated two-electron integrals on GPUs.
In the innovative works by Martinez and coworkers [2,4,6,9,12,16], fundamental
computations in quantum chemistry such as two-electron integral evaluations, direct
SCFs, analytical energy gradients, and TDDFT were implemented on GPUs. In those
studies, the GPU memory layout, data flow, and computation mapping were intensively
discussed for the efficient coding on GPUs. As a result, sophisticated and tuned
implementations were achieved by adopting advanced programing techniques for
parallelization.

Accelerated math libraries are being developed such as the cuBLAS [28§],
cuSPARSE [28], CULA [29], MAGMA [30], and VSIPL [31]. The use of math libraries
could minimize the task of developing efficient GPU codes and guarantee compatibility
with future development of GPU hardware. It is important to assess how suitable the
combinations of the math libraries and quantum chemistry codes are on a practical
platform. In fact, recent studies regarding GPU implementations adopted math libraries
[8,13,16-23]. As such, performance assessments using math libraries become
increasingly important. A recent paper by Gordon and coworkers [32] assessed DGEMM
operations, a frequently used math library, and data transfer on Nvidia GPUs and Intel
Xeon Phi coprocessors.

Although the hardware and software including the math libraries of GPUs have
advanced, the slow CPU-GPU memory access as well as small GPU main memoryhinder
further progress. Conventional ab initio codes on GPUs might be influenced by such
drawbacks upon application to large systems. For instance, HF/DFT calculations for large
systems that include construction and diagonalization of the enormous Fock matrix

require communication between the GPU and CPU. Therefore, theoretical developments
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to reduce such communication are essential to achieve high performance GPU
implementations. Linear-scaling HF/DFT methods [33—45], which divide an entire
system into several fragments, could avoid the slow memory access and other shortfalls
of GPU memory by separately constructing and diagonalizing the local Fock matrix in
each fragment. In addition, the GPU memory could effectively be utilized by the
combination of the linear-scaling method with other methods, such as the RI and density
fitting approximations [46—51], to reduce construction costs. The RI method is one of the
most effective methods in massive parallel calculations, as exemplified by several
successful attempts using the MP2 theory achieved by the high parallel efficiency of the
RI method [52,53] and the compatibility with linear-scaling methods [54-56].

In this Chapter, the author implemented CPU and GPU codes for RI-HF based on
the linear-scaling DC method [35-38]. An advantage in adopting the DC method is the
wide applicability to systems with delocalized electrons and/or spins, for example. In the
implementations of the RI-HF and DC-RI-HF codes on GPUs, the author adopted math
libraries, namely, cuBLAS and MAGMA, in order to maintain compatibility with future
developments of the GPU hardware.
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8.2. Theory and Implementation

8.2.1. Theory of DC-RI-HF
In the DC-RI-HF method, calculations of the Fock matrix are evaluated by
adopting the RI approximation of ERIs:

(wvao =% wv 7 A0) @1
where( ,uv‘l) and ([ ‘m) are the three-center and two-center AO ERISs, respectively.

-1

Since the (l ‘m) matrix is positive, definite calculations of (1| m) can be efficiently

performed by the Cholesky decomposition of the (l | m)

(Ilm)=>L,L, . (8.2)
followed by the efficient inversion of the triangular matrix L, such that

(I|lm) = L,7L) - (8.3)
Insertion of Eq. (8.3) in Eq. (8.1) leads to Coulomb J and exchange K terms:

T =i =3 3 v Ao)Di;
A0 Lm,n
o (8.4)
=2 2.(av, , Ao)D
Aok
K,=Ki"=3 2 (k= vo)bg
Ao lm,n

=SS o

where the transformed integrals ( ,u/l]k) are used. The Coulomb portion can be

(8.5)

formulated as two scalar products: namely, the products between the three-center

integrals and density matrix and between the intermediate result Wi and integrals:

W, => (k|ic) Dy (8.6)
I = (uvlk)w, (8.7)

k

The exchange contribution is evaluated by performing the matrix multiplication twice and

summing over the results:

T,=> (k'va) D)X (8.8)
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W, =3 (WA I, (8.9)

K:{DVC_RI — ZVV;{V (8 . 10)

k

Although the above discussion is for closed-shell systems, the DC-RI-HF method can

easily be extended to open-shell calculations using an unrestricted spin-orbital treatment.

8.2.2. Implementation of DC-RI-HF

The author implemented four Fortran codes in total: RI-HF/CPU, RI-HF/GPU,
DC-RI-HF/CPU, and DC-RI-HF/GPU. To begin, the author explains the difference
between the RI-HF and DC-RI-HF methods for diagonalization and construction of the
Fock matrix. The DC method solves the local Roothaan—Hall equation corresponding to
each subsystem §(s5) . By separately solving the local Roothaan-Hall equation, the
parallel efficiency for diagonalizing the DC calculations is higher than that for the
standard method, even though the construction scheme for the DC calculations is the same
as that for the standard calculations. However, construction costs of the DC calculations
will be smaller than those for the standard calculations as the system size increases,
because the sparse density matrix in the DC calculations makes screening more efficient
as compared to standard HF calculations.

In the RI-HF and DC-RI-HF methods with the GPU code, both diagonalization
and construction of the Fock matrix are designed to run on GPU architectures. In the GPU
code, the diagonalization time is reduced with MAGMA libraries, which are linear
algebra algorithms and frameworks for hybrid many-core and GPU systems. Fig. 8.1
presents the pseudocode for the construction of RI-HF and DC-RI-HF algorithms. The
construction consists of three steps: (1) generation of the two-center ERIs, (2) generation
and transformation of the three-center ERIs, and (3) evaluation of the Coulomb and
exchange contributions. The transformation of the three-center integrals ( ,u/l:k) and
evaluation of the Coulomb and exchange contributions in Egs. (8.6)—(8.10), which could
be performed effectively on a GPU, are implemented using cuBLAS, especially
cuBLASDGEMM, cuBLASDDOT, and cuBLASDAXPY. An alternative choice might
be mixed precision matrix libraries [20,57], which effectively separate the double-
precision and single-precision operations. The transformation and evaluation on CPU are
implemented using Intel MKL. After Steps 1 and 2 are performed in the first SCF iteration,
the transformed three-center ERIs are stored separately in the CPU main memory of each
node by MPI. Because all of the transformed three-center ERIs cannot be stored in the
small GPU memory, the three-center ERIs should be copied from CPU to GPU, as shown
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in parentheses in Fig. 8.1. SIMD processing of GPU could perform the matrix operations
on GPU and communicate between the CPU and GPU simultaneously. For example, the
transformation of the three-center ERIs in Step 2 and evaluation of the Coulomb and
exchange contribution in Step 3 could occur concurrently. Furthermore, the
communication cost could be reduced because of the sparse density matrix of the DC-HF
calculation. The author also implemented a multi-GPU code. For Fock constructions,
multiple GPUs in parallel handle cyclically different rows of basis sets at Step 2 and
auxiliary basis sets at Step 3.
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[Step 1]
Evaluate (l‘m)

n"nm

Cholesky decomposition of (l‘m):ZL r

Evaluate (l|m)_I

[Step 2]
Evaluate (,uv’l)
Do loop u
(Copy (,uv|l) from CPU to GPU)

Index transformation (,uv’n) = z(,uv|l)L""

nl
!

(Copy (,uv’n) from GPU to CPU)
End loop

[Step 3]
Do loop k&

(Copy (,uv]n) from CPU to GPU)

Coulomb part:

Index transformation W, =Z(k‘/10')Dm
Ac

Evaluate J,, = Z(,uv|k)Wk
k

Exchange part:
Index transformation 7} = Z(k‘vcr)Dl

o

Index transformation W! =Z(,uﬂ«|k)71vi
)

uv
RI __ k
Evaluate K = ZW;V
k

End loop
(Copy J,, and K from GPU to CPU)

Fig. 8.1. Pseudocode of the Fock construction algorithm in the RI-HF method. The

parts in parentheses are performed using only the GPU code.
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8.3. Numerical assessment

In this section, the performances of RI-HF and DC-RI-HF calculations with the
GPU codes are numerically assessed by comparison to CPU results. All calculations were
performed using a modified version of the GAMESS program package [58]. In the DC-
HF and DC-RI-HF calculations, the inverse temperature parameter of the Fermi function
p in Eq. (4) was fixed to 200 a.u. unless otherwise noted. Two Intel Xeon E5-2643 (3.30
GHz) processors and Nvidia K20 were used on eight CPU cores and 2496 CUDA cores
per node, respectively. All calculations adopted two-electron integral screening with the
threshold of 10 hartree and C1 symmetry.

First, the author examined the efficiency of the RI-HF method using CPU and
GPU for small molecules: benzene, naphthalene, anthracene, tetracene, and pentacene.
The cc-pVTZ basis set and corresponding auxiliary basis set were adopted [59,60]. Table
8.1 shows the wall-clock times and total energies of the standard HF and RI-HF
calculations. The speedups from the standard HF cases are shown in parentheses. For both
CPU and GPU, the RI technique reduced the wall-clock times. For CPU, the speedups of
RI-HF as compared to the standard HF changed slightly, i.e., 3.23-3.89, while those of
RI-HF for GPU increased remarkably. This was because the performance of the cuBLAS
libraries on GPU increases with respect to matrix size.

Table 8.2 shows the wall-clock times of individual steps in the RI-HF calculations
for the small molecules with respect to the number of basis sets, Nss. Namely, Step 1
corresponds to the generation of the two-center ERIs, Step 2 to the generation and
transformation of the three-center ERIs, and Step 3 to the evaluation of the Coulomb and
exchange contributions. Because the computational costs of Step 1 are small and not
accelerated well on GPU, Step 1 was examined on CPU for CPU and GPU cases, as
discussed in Section 2. In Steps 2 and 3, the GPU code reduced the wall-clock times, with
the exception of Step 2 for benzene and naphthalene. Step 3 performs better than Step 2
because there is less communication between CPU and GPU in Step 3 than in Step 2. The
energy errors of the RI-HF results as compared those of the standard HF for benzene,
naphthalene, anthracene, tetracene, and pentacene were less than 1 mhartree. Table 8.2
also shows the required memory sizes of the RI-HF on GPU for benzene, naphthalene,

anthracene, tetracene, and pentacene. The GPU required small memory size scales O(n?).
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Next, the author examined the efficiency of the DC-RI-HF method using GPU for
polyacene, CasHz6, which is a delocalized system. The 6-311G** basis set and
corresponding auxiliary basis set were adopted [61,62]. Table 8.3 shows the wall-clock
times of the standard HF, DC-HF, RI-HF, and DC-RI-HF methods. In the DC calculations,
C4H2 (or C¢Hz for the center and C4H4 for the edges) was adopted as the central region
and the adjacent three units on either side were treated as the corresponding buffer region.
The standard HF and DC-HF calculations were examined on CPU, while the RI-HF and
DC-RI-HF calculations were examined on CPU and GPU. The speedups from standard
HF are shown in parentheses. The DC method accelerated the diagonalization step by
solving the local Roothaan—Hall equation corresponding to each subsystem. Moreover,
the computational cost for the Fock construction could be reduced because of the sparse
density matrix of the DC-HF calculation. The DC-HF method brought about a 1.4-fold
speedup, although the numbers of SCF iterations were 15 and 18 in the standard and DC
method, respectively. The combination of GPU and RI reduced the construction time
drastically, providing a 4.2-fold speedup. The MAGMA libraries also decreased the
diagonalization time. DC-RI-HF with the GPU code achieved a 4.6-fold speedup for the
total time by combining the three technologies: namely, the DC method, RI
approximation, and GPU implementation. The error in energy from the standard HF
method was less than 1 kcal/mol. The author further investigated the possibility of using
multiple GPUs in parallel. The 4-GPU system demonstrated a speedup of 17.5-fold,
which was comparable and slightly faster than that with four independent single GPUs,
which achieved a 3.7-time acceleration on each single GPU, namely, 14.8-fold.

Table 8.3 also shows the total energies of the standard HF, DC-HF, RI-HF, and
DC-RI-HF methods. The energy differences from the standard HF result are given in
parentheses. The differences introduced by the DC and RI methods were 0.207 and 0.856
mhartree, respectively. The summation of the differences by the DC-HF and RI-HF
methods was comparable with the difference by DC-RI-HF method; 0.970 mhartree

achieves so-called chemical accuracy (< 1 kcal/mol).
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The wall-clock times for water clusters (H20)» (n = 75—-125) were measured using
the 6-311G** and corresponding auxiliary basis sets. Fig. 8.2 shows the wall-clock times
per SCF iteration of the standard-HF, DC-HF, and DC-RI-HF calculations with respect
to the number of water molecules, ». In the DC calculations, a single H20 molecule was
adopted as the central region while atoms lying within 5.0 A of each central region were
treated as the corresponding buffer regions. The standard HF and DC-HF calculations
were examined on CPU, while the DC-RI-HF calculations were performed on GPU. In
these calculations, the FMM implemented in the GAMESS program was activated. The
DC-HF method reduced the order of the SCF calculation, so that the times scale with
O(n*'3) and O(n'-*") for standard HF and DC-HF calculations was estimated by a double-
logarithmic plot, respectively. As expected, the DC-RI-HF calculations with the GPU
code achieved 4.1-5.0 fold speedups of the SCF calculations as compared to DC-HF; the
times scaled with O(n'). Unlike with the small molecules, the scalings were close to
those using CPU because acceleration of the product of the double precision matrices by

the cuBLAS libraries saturated at matrices larger than 3000x3000 in size.

800

-A- HF/CPU
-~ DC-HF/CPU
600 F -3~ DC-RI-HF/GPU

Wall time [s]
S

O 1 1 1 'l
70 80 90 100 110 120 130

n

Fig. 8.2. System-size dependence of the wall-clock times (in s) of the standard HF,
DC-HF, and DC-RI-HF per SCF iteration of water clusters (H20), at the 6-311G**
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Finally, a series of benchmark HF calculations on polyglycine (C32N16016Hs0),
phenol in 120 explicit water molecules (CeHsOH + 120 H20), olestra (CissH278019), and
protein (IFSV in the Protein Data Bank [63], Ci158N4sO43H2s57) were performed, as
depicted in Fig. 8.3. The DC conditions are summarized in Table 8.4. The buffer regions

were considered as the atoms contained within a radius 7 of each central region. The

number of basis sets of the total system Niwot and the maximum number of basis sets of the

subsystem Nsub are shown in Table 8.4.
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Table 8.5 shows the numbers of SCF iterations Nier, wall-clock times per SCF
iteration, and total energies in the standard HF and DC-RI-HF calculations using the 6-
311G** and corresponding auxiliary basis sets. The standard HF and DC-RI-HF
calculations were examined on CPU and four GPUs, respectively. The speedups and
energy errors from the standard HF results are presented in parentheses. Except for olestra,
the SCF convergences of the DC method were the same as the standard ones. In all of the
calculations, the DC-RI-HF method with the GPU code showed high efficiency and
chemical accuracy. The speedups of DC-RI-HF on GPU compared with standard HF
increased with increasing molecular size because of the sparse density matrix and local
diagonalization by the DC-HF method. The errors in the energy of polyglycine, phenol
in 120 explicit water molecules, olestra, and 1FSV from the standard HF method were
0.74, 0.89, 0.87, and 0.93 mhartree, respectively.
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8.4. Conclusion

In this Chapter, the author performed GPU implementations for accelerating HF
calculations by combining the linear-scaling DC method with the effective RI technique.
Math libraries, i.e. cuBLAS and MAGMA, for GPU were adopted in order to reduce the
implementation task as well as guarantee the compatibility with future development of
the GPU architecture. For comparison, four different codes, namely, RI-HF/CPU, RI-
HF/GPU, DC-RI-HF/CPU, and DC-RI-HF/GPU were implemented. Numerical
assessments of the present methods, DC-RI-HF/GPU, displayed higher efficiency than
the others as well as standard HF/CPU. Speedups from standard HF calculations
increased with increasing molecular size. This was because the performance of the
cuBLAS libraries on GPU increases with respect to matrix size, while the total density
matrix of DC-HF calculations became sparse in larger systems. Furthermore, the wall-
clock times for DC-RI-HF calculations scaled linearly with respect to the system size.
Therefore, the DC-RI-HF/GPU code is promising in large systems, even if GPU

architectures are modified in the future.
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General Conclusion

In this thesis, the author reported theoretical extension and high parallelization
of the DC method. In Part I of this thesis, the author performed the theoretical extension
for open-shell calculation of the DC method. In Chapter 2, the DC-SCF method was
extended to spin-unrestricted open-shell calculations. Numerical assessments revealed
that the accuracy of the DC-UHF method was comparable to that of the closed-shell DC-
HF method: the energy and spin-density errors reduced along with the buffer size. Non-
integer charge and spin densities in each subsystem were also confirmed. Furthermore,
the CPU time for the DC-UHF calculation scaled linearly with respect to the system size
by combining with the FMM. In Chapter 3, the author enabled the correlated open-shell
treatment in the framework of the DC-based correlation method. The present DC-UMP2
method was assessed in calculations of the spin- and charge-delocalized polyene cation
systems. Numerical assessments revealed that the DC-UMP2 method: has the
advantageous features of the closed-shell DC-MP2 method: the correlation energy errors
are generally small achieving the chemical accuracy and are controllable with the buffer
size, the CPU time scales quasi-linearly with respect to the system size, and the required
memory size becomes constant.

In Part II of this thesis, the author performed the theoretical extension for
excited-state calculations of the DC method. In Chapter 4, the author has developed the
DC-based SAC method as a good starting point to excited-state calculations. In the
numerical assessments of the present method, the local orbitals constructed in the DC
method improve the performance of the configuration selection in the SAC calculations,
as well as that the computational time scales quasi-linearly with respect to the system size.
In Chapter 5, the author has developed a DC-based SACCI theory in conjunction with the
DC-CIS theory and DC-TDDFT. The excitation energy errors are generally small,
indicating that high chemical accuracy is achieved. It was confirmed that the present
scheme enabled efficient excited-state calculations of large systems. Chapter 6 presented
the development and numerical assessments of excited-state calculations using dynamic
polarizabilities as alternative excited-state calculations for large systems. Chapter 6
proposed an algorithm that searches the pole of the polarizability at regular intervals,
obtains accurate excitation energies and oscillator strengths with the bisection method,
and subtracts contributions of detected excited states. The numerical assessments
investigated the convergence condition and regular interval dependence of excitation
energies and oscillator strengths. By using the proper threshold and regular interval, the

present algorithm effectively detects all poles without loss of accuracy. The algorithm
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with DC as well as conventional TDCPHF methods could reproduce the large-charge-
transfer excitation.

In Part III of this thesis, the author accelerated the DC method by using parallel
computations. Chapter 7 proposed two efficient algorithms of the linear-scaling DC-SCF
method for parallel computations. The present algorithms could reduce the network
communications in determining the common Fermi level. The AFL and AEN methods
adopted approximate techniques to estimate the Fermi level in the latter part of SCF
procedure. The numerical assessments of the present methods clarified that the AFL and
AEN methods were confirmed to display a higher parallel efficiency than the standard
DC-SCF calculations. In Chapter 8, the author performed GPU implementations for
accelerating HF calculations by combining the linear-scaling DC method with the
effective RI technique. Math libraries for GPU were adopted in order to reduce the
implementation task as well as guarantee the compatibility with future development of
the GPU architecture. Numerical assessments of the present methods, DC-RI-HF/GPU,
displayed higher efficiency than the others as well as standard HF/CPU. Furthermore, the
wall-clock times for DC-RI-HF calculations scaled linearly with respect to the system

size.
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