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Two consensus problems of multi-agent systems in

accordance with switching protocol

Abstract

Control theory could be traced back to the eighteenth century when James Watt designed

a centrifugal governor for the speed control of a steam engine. Since then, control theory has

attracted more and more attentions, particularly during the Second World War when control

theory had been vigorously developed and successfully applied to guidance control and all

sorts of electronic equipments. Over the past several decades, modern control theory has

evolved from the booming of spacecraft technologies and the large-scale intelligent systems.

Recently more and more attentions have been paid to the multi-agent systems because of

its extensive application in various areas, such as cooperative control of unmanned air

vehicles, formation control, consensus problems, flocking and tracking, and so on. The

consensus problem of multi-agent systems, as one of the most important issues of multi-agent

systems, has been investigated by various researchers from different disciplines, such as

mathematics, physics, computer sciences and biology, as well as automatic control.

In this dissertation, we study two consensus problems of multi-agent systems in

accordance with switching protocol. In real problems, it is very important to take into account

channel constraints. However, the problem about the communication channel constraint on

signal amplitude has seldom been discussed. One problem discussed in the dissertation is the

consensus problem of multi-agent systems with communication channel constraint on signal

amplitude. We discuss two types of Laplacians of network topologies in multi-agent systems

and give the consensus convergence criterion of system. Some examples and simulations of

three agents are provided to verify the rightness of the theoretics.

For a multi-agent system to achieve common group objectives or collectively react to

unanticipated external changes, some information state (e.g. moving direction) of all the

agents sometimes need to reach a common value, or consensus. The main issue on this topic

is to design and analyze the consensus protocol, which is the update law driving the
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information states to agreement. A fixed consensus value is obtained from a given consensus

protocol and initial state. The resulting consensus value, however, may not be ideal or meet

the quality that we require from the multi-agent system. It is therefore necessary and

significant to investigate whether we can design a protocol to change the consensus value of

the multi-agent system, and the answer to this question will allow application of multi-agent

systems in new fields. Moreover, it seems to be generally complicated and difficult to design

an appropriate protocol such that multi-agent systems can converge to any designated point.

To solve such a protocol design problem we pose a new class of consensus problems,

called interval consensus problem, and search for a protocol ensuring that the system

converges to a point on a specified closed and bounded interval, which is another problem

discussed in the dissertation. By introducing two state-dependent switching parameters into

the consensus protocol, the system given by the proposed protocol can globally

asymptotically converge to a designated point on a special closed and bounded interval. In

other words, the system given by the proposed protocol can achieve globally asymptotically

interval consensus and then the system can also solve a generalized interval average

consensus if the directed graph is balanced. Simulations are presented to demonstrate the

effectiveness of our theoretical results.

Keywords: Consensus problem; multi-agent systems; switching protocol
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1 Introduction

1.1 Research background

Control theory could be traced back to the eighteenth century when James Watt designed

a centrifugal governor for the speed control of a steam engine. Since then, control theory has

attracted more and more attentions, particularly during the Second World War when control

theory had been vigorously developed and successfully applied to guidance control and all

sorts of electronic equipments. The past several decades have witnessed rapid development

success of modern control theory owing to the booming of spacecraft technologies and the

large-scale intelligent systems.

Autonomous vehicle systems are expected to apply potentially in military actions, search

and rescue, environmental monitoring and surveillance, commercial cleaning, material

processing, defense and homeland security, and so on. Although single vehicles performing

solo duties will yield some benefits, a group of vehicles will benefits much greater from their

cooperations. One motivation for the multi-vehicle systems is to derive the same profits for

mechanically controlled systems as has been benefited in the distributed computations. Rather

than having a single gargantuan and cumbersome (and hence valuable and complex) machine

handling affairs, the hope is that many cheap, simple machines, can obtain the same or even

more powerful functionality, through collaborative effort.

Recent technological advances in miniaturizing of computing, automation,

communication, control and compressed sensing, and actuation have made it practicable to

integrate a large number of autonomous agents (air, ground, and water) collaborating with

others to achieve goals. Distributed coordination of multiple autonomous agents has potential

influence on various civilian and homeland security. Potential civilian applications include

monitoring forest fires, oil fields, pipelines, and tracking wildlife. Potential homeland security

applications include border patrol and monitoring the perimeter of nuclear power plants.

Distributed coordination of multiple autonomous agents has become a hotly discussed

research topic due to great benefits could be obtained accordingly, such as robustness,

adaptivity, flexibility, and scalability and the ability to perform challenging tasks such as

environmental monitoring, target localization, which cannot be achieved by a single agent.
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1.2 Previous studies

The research of distributed control of multiple autonomous agents was motivated by the

study in distributed computing [1], physics [2], management science [3, 4], and controls

society [5, 6]. Recent years have witnessed a lot of research efforts in the study of distributed

control of multiple autonomous agents. These research results could be classified as

consensus, distributed formation control, distributed optimization, distributed task assignment,

distributed estimation and control, and intelligent coordination. In the following, we will

briefly introduce them respectively.

As one of the most important issues of multi-agent systems, consensus refers to having

agents come to a global agreement on a state value and has been investigated by various

researchers from different disciplines [7-41]. Consensus problems have a long history in the

field of computer science, particularly in automata theory and distributed computation. The

theoretical framework for posing and solving consensus problems for networked dynamic

systems was introduced by Olfati-Saber and Murray in [13] and [30] building on the earlier

work of Fax and Murray. An interesting topic studied in consensus problem is convergence

speed which is used to characterize how fast or slow consensus can be reached [8-12]. Kim

and Mesbahi studied the problem of maximizing the second smallest eigenvalues of a

state-dependent graph Laplacian and proposed an iterative algorithm for this problem which

employed a semidefinite programming solver at each recursive step [8]. Time-delay often

appears in control systems and, in many cases, delay is source of instability. Consensus with

time delay is also studied in depth [13-22]. Based on the properties of non-negative matrices,

Xiao and Wang investigated the state consensus problem for the discrete-time multi-agent

systems with changing communication topologies and bounded time-varying communication

delays [14]. At the same time, there is an emerging trend to study how an inter-connected

group may incorporate or evolve into different sub-groups called clusters. The cluster

consensus is referred to such multi-agents systems where different consensus states in

different groups are required to be achieved [42-46]. The cluster consensus problem has many

potential applications including space-based interferometers; combat, surveillance and

reconnaissance systems; hazardous material handing; and distributed reconfigurable sensor

networks [43]. It is therefore necessary to study the cluster consensus problem of the
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multi-agent systems in both theory and practical application. Based on Markov chains and

nonnegative matrix analysis, two novel cluster consensus criteria are obtained for multi-agent

systems with several different subgroups and with fixed and switching topology respectively

[44].

Formations appear in a number of biological systems, such as the well-known V-shape,

employed by geese and other large migratory birds that are thought to reduce the drag force

on individual birds while ensuring sufficient inter-agent visibility. Distributed formation

control can be loosely characterized as geometrical patterns to be realized by a multi-agent

team and has been studied in the controls society [47-58]. Pavone and Frazzoli have proposed

a decentralized strategy aimed to achieve symmetric formations and shown that a group of

agents, every one seeking its leading neighbor along the line of sight that was rotated by a

common offset angle, finally converge to a single point, a circle or a logarithmic spiral pattern,

which depended on the value of the angle [47]. Zhang and Leonard proposed a method which

used the relative arc-length between particles instead of phase angle differences to measure

the relative position between agents on a closed curve. Their steering control laws were

proved stable by using a Lyapunov function which converged to its critical point along the

controlled dynamics [49]. Ceccarelli et al. presented a decentralized control law for a group of

nonholonomic vehicles, whose aim was to achieve collective circular motion around a virtual

reference beacon [55]. Mastellone et al. studied the problem of formation control and

trajectory tracking in a singular perturbation framework [57]. By a simple linear

transformation, they could rewrite the dynamics for the group as two coupled systems

represented by dynamics of the center of mass and dynamics of the formation. Furthermore,

by imposing configuration constraints on the shape system, they obtained a locked system

which behaves as a unique rigid body whose center of mass is then driven accordingly to

follow a desired trajectory.

Optimization, whose main objective is to find optimal strategies under some given cost

function, has been paid many attention because of the important roles which plays in both

theoretical studies and practical applications [59-69]. As is known to us, control theory came

into being from such a practical application. One problem studied in distributed optimization

is convergence speed as introduced previously in [8-12]. Another problem is about cost

functions which include individual cost functions and global cost functions. Johansson et al.
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propose a negotiation algorithm that computes an optimal consensus point for agents modeled

as linear control systems subject to convex input constraints and linear state constraints [61].

By employing a formal definition from shape analysis for formation representation and

reposing the motion planning problem to one of changing (or maintaining) the shape of the

formation, Derenick and Spletzer investigated convex optimization strategies for coordinating

a large-scale team of fully actuated mobile robots, and showed that optimal solutions,

minimizing either the total distance or minimax distance the nodes must travel, could be

achieved through second-order cone programming techniques [66]. Scutari et al. proposed a

new decomposition framework for the distributed optimization of general nonconvex

sum-utility functions that arise naturally in the system design of wireless multi-user

interfering systems [67].

In many problems, multiple agents are required to interact through a sequence of

interdependent tasks. For example, in a manufacturing facility perhaps three processing

stations and four material transport systems must be scheduled to process five streams of raw

materials into six intermediate parts and one final product. Typically, such tasks and their

interactions can be described by a timed sequence of activities for each agent that must be

executed according to a prescribed schedule with a prescribed allocation of tasks to resources.

Distributed task assignment is to address of task assignment of a team of agents in the way of

a distributed manner, which could be approximately classified as coverage control, scheduling,

and surveillance [70-81]. Hussein and Stipanovic formulated a coverage control problem that

addresses a wide variety of multi-agent system applications [71]. They proposed a control law

that ensures that the coverage error converges to zero for both communication structures. A

collision avoidance component was appended to the control law and the closed loop system

was shown to achieve full coverage of the mission space safely. Ben-Asher et al. studied a

new distributed algorithm for task assignment, coordination, and communication of multiple

unmanned aerial vehicles that engaged multiple targets and conceived an ad hoc routing

algorithm for synchronization of target lists which utilized a distributed computing topology

[79]. Kim et al. presented the resource welfare based task allocation framework based on

social welfare function for multi-robot systems [80]. They showed that a robot team operating

in dynamic and uncertain environments should keep an appropriate level of preparedness in

order to respond immediately and smoothly to unpredictable dynamic events. The proposed
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algorithm enables a robot team to distribute workload in a balanced way considering resource

welfare and therefore be well-prepared for future events.

Estimation is a rich discipline with a wide range of applications in signal processing and

control. Owing to the absence of global information which could be used for achieving group

coordination, distributed estimation and control has attracted great attentions recently [82-87].

The first problem of the distributed estimation and control is to design distributed local

estimators such that some global information can be estimated in finite/infinite time. Based on

the local estimator, distributed local controllers are designed in order that the closed-loop

system is stable, which is the second problem of the distributed estimation and control.

Nestinger and Demetriou presented a collaborative adaptive system parameter estimation

strategy for multi-agent systems comprised of identical agents with full connectivity [84].

Mourikis and Roumeliotis presented an in-depth study of the localization performance of

heterogeneous robotic teams with arbitrary and potentially dynamic relative position

measurement graph topologies [87]. Their theoretical analysis allowed the prediction of the

magnitude of the cooperative localization position errors when the topology of the relative

position measurement graph changed or when the size of the robot team varied over time (e.g.,

when robots were located out of measurement/communication range or they failed

temporarily or permanently).

In some applications, e.g. interferometry, it is very important for spacecrafts to maintain

relative alignment during formation maneuvers. This requires that the spacecrafts should

reorient about the same axis. Distributed coordination has been investigated because of its

broad applying foreground [88-95]. By proposing a distributed control approach called local

interactions with local coordinate systems, Cao et al. studied the multi-robot hunting tasks in

unknown environments, where a team of mobile robots hunted a target called evader, which

would actively try to escape with a safety strategy [89]. Vrancx et al. study the problem of

learning Markov games with independent agents that only have knowledge of their own

payoff, reward, and the current state. They propose a model based on learning automata and

analyze the setting from different perspectives and show that under common ergodic

assumptions, the proposed model converges to a pure equilibrium point [92]. Mei et al have

studied the issues associated with the distributed coordination for second-order multi-agent

systems using only relative position measurements [95]. For the second-order multi-agent
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systems with intrinsic nonlinear dynamics, they have proposed and analyzed distributed

control algorithms combined with distributed filters for both the leaderless consensus problem

and the coordinated tracking problem with a dynamic leader under an undirected graph. For

multi-agent systems described by double integrators, they have presented a necessary and

sufficient condition on the leaderless consensus under a directed graph using only relative

position measurements between neighboring agents.

1.3 Our contributions and structure

In this dissertation, we study two consensus problems of multi-agent systems in

accordance with switching protocol. This dissertation consists of seven chapters, which are

summarized as follows.

In chapter 1, the background of this study is described. Previous work, related studies are

explained. Outline and contributions of this dissertation are described in more detail.

In chapter 2, first of all, we review certain basic background from algebra and matrix

theory. Relevant concepts and results are given, although we omit proofs. Secondly, we

introduce some basic notions in graph theory that are used in modeling and analysis of the

multi-agent systems in this dissertation. We also introduce the algebraic theory of graphs,

with particular emphasis on the matrix objects associated with graphs, such as the adjacency

and Laplacian matrices. Thirdly, we introduce linear and nonlinear system theory background.

In chapter 3, consensus problem of multi-agent systems is introduced. We overview the

convergence analysis of a consensus protocol for a network of integrators with directed

information flow and fixed topology discussed in previous literature. Some famous theorems

and corollaries are introduced.

In real problems, it is very important to take into account channel constraints. However,

the problem about the communication channel constraint on signal amplitude has seldom been

discussed. In chapter 4, we address consensus problem in multi-agent systems with

communication channel constraint on signal amplitude. We explore conditions for consensus

problem of multi-agent systems with communication channel constraint on signal amplitude.

We discuss two types of Laplacians of network topologies in multi-agent systems and give the

consensus convergence criterion of system. Finally, some examples and simulation of three
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agents are provided to verify the rightness of the theoretics.

For a multi-agent system to achieve common group objectives or collectively react to

unexpected external changes, some information state (e.g. moving direction) of all the agents

sometimes need to reach a common value, or consensus. The main issue on this topic is to

design and analyze the consensus protocol, which is the update law driving the information

states to agreement. A fixed consensus value is obtained from a given consensus protocol and

initial state. The resulting consensus value, however, may not be ideal or meet the quality that

we require from the multi-agent system. It is therefore necessary and significant to investigate

whether we can design a protocol to change the consensus value of the multi-agent system,

and the answer to this question will allow application of multi-agent systems in new fields.

Moreover, it seems to be generally complicated and difficult to design an appropriate protocol

such that multi-agent systems can converge to any designated point.

To solve such a protocol design problem we pose a new class of consensus problems in

chapter 5, called interval consensus problem, and search for a protocol ensuring that the

system converges to a point on a specified closed and bounded interval. By introducing two

state-dependent switching parameters into the consensus protocol, which is motivated by the

results of chapter 4, the system given by the proposed protocol can globally asymptotically

converge to a designated point on a special closed and bounded interval. In other words, the

system given by the proposed protocol can reach globally asymptotically interval consensus

and then the system can also achieve a generalized interval average consensus if the directed

graph is balanced. Simulations are presented to demonstrate the effectiveness of our

theoretical results. It is worth mentioning that the two parameters introduced into the

consensus protocol play an important role in our discussion. One role is to change the

consensus value which is ideal or meets the quality that we require from the multi-agent

system, and the other one is to change the time and speed of convergence of consensus

protocols.

Time-delay often appears in control systems and, in many cases, delay is source of

instability. Time-delays can sometimes be used to model the effect of propagation of state

information between interacting agents, but they are many times neglected to facilitate

analysis. The effect of communication delays in multi-agent consensus protocols is worth

investigating.
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In chapter 6, we discuss interval consensus problem of multi-agent systems with two

types of time-delays, i.e., communication delay and input delay. Our work shows that the

communication delay does not affect the consensus while the input delay does. For

communication delay, the system given by the proposed protocol can reach globally

asymptotically interval consensus with any time delay. As for bounded input delay, the

system given by the proposed protocol can reach globally asymptotically interval consensus

and then the system can also achieve a generalized interval average-consensus if the directed

graph is balanced. Simulations are provided to demonstrate the effectiveness of our

theoretical results.

In chapter 7, the conclusion is summarized and future work is described.

This dissertation solves two consensus problems of multi-agent systems in accordance

with switching protocol. There are several directions and possible related research areas in

which we can carry out future work. The primary aim of future work is to discuss the

convergence towards an interval consensus for second-order multi-agent systems with

directed graphs.
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2 Preliminaries

This chapter introduces a brief review of relevant concepts in the areas of algebra and

matrix theory, graph theory, and linear and nonlinear system theory.

2.2.1 Algebra and matrix theory background

We need the following definitions, lemmas, and theorems from algebra and matrix

theory.

An m nm nF matrix consists of mnmn real numbers arranged in m rows and n columns.

The entry in row i and column j of the matrix A is denoted by ijija . An 1mF matrix is

called a column vector of order m ; similarly, a 1 nF matrix is a row vector of order n . An

m nm nF matrix is called a square matrix if m nm n* . The transpose of the m nm nF matrix A is

denoted by AA or
TA .

A diagonal matrix is a square matrix A such that 0ijija * , i ji jG . The matrix A is

upper triangular if 0ijija * , i ji j+ . The transpose of an upper triangular matrix is lower

triangular.

Let A be an n nn nF matrix. The determinant $ %det A IA I( is a polynomial in the

(complex) variable of degree n and is called the characteristic polynomial of A . The

equation

$ %det 0

is called the characteristic equation of A . By the fundamental theorem of algebra the

equation has n complex roots and these roots are called the eigenvalues of A .

We may factor the characteristic polynomial as

$ % $ % $ %1det nA IA I( * ( ( .

The geometric multiplicity of the eigenvalue of A is defined to be the dimension of

the null space of A IA I( . The geometric multiplicity of an eigenvalue does not exceed its
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algebraic multiplicity.

A square matrix A is called symmetric if A AA AA* . The eigenvalues of a symmetric

matrix are real. Furthermore, if A is a symmetric n nn nF matrix, then according to the

spectral theorem there exists an orthogonal matrix P such that

1

2

0 00 0

0 00 0

0 00 0 n

PAP

P XP X
Q YQ Y
Q YQ YA *
Q YQ Y
Q YQ Y
R ZR Z

.

An n nn nF matrix A is said to be positive definite if it is symmetric and if for any

nonzero vector x , 0x AxA + . A symmetric matrix A is called positive semidefinite if

0x AxA E for any x .

For a vector 1nx F , the Euclidean norm of x is defined to be

(i) $ %
1 21 21 2

2

1

n T
ii

x x x xx x x xx x x xx x x xx x x xx x x x
*O whenever 1nx Rx R FK ,

(ii) $ %
1 21 21 2

2

1

n

ii
x x xxx x xxx x xxx x xxx x xxx x xxx x xxx x xx

*O whenever 1nx Cx C FK .

When 1n * , we denote x xx x* .

2.2.2 Graph theory background

Graphs are frequently used to model a binary relationship between the objects in some

domain, for example, the node set may represent computers in a network, with adjacent nodes

representing pairs of computers that are physically linked.

In this section, we introduce some basic concepts of consensus and notations of algebraic

graph theory that are often used in consensus problems of multi-agent systems and related to

our later discussion. More details can be found in [37], [110].

Graph: A finite, undirected, simple graph $ %,G V E -or graph for short- is built upon

two finite sets, that is, the sets that haveve a finite number of elements. We refer to the first set

as the node set and denote it by $ %V GV G ; each element of $ %V GV G is then a node of the graph.

When the node set $ %V GV G has n elements, it is represented as $ % ? @1 21 2, , , nV G v v v . We
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refer to the second set as the edge set and denote it by $ %E G V VJ F , where an edge is an

unordered pair of distinct nodes of the graph. This set consists of elements of the form

$ %,i ji jv vv v such that , 1,2, ,i j n and i ji jG . We often denote $ %V GV G and $ %E GE G simply by

V and E , respectively, and simplify our notation for an edge $ %,i ji jv vv v by sometimes

denoting it as ijije or i ji jv vv v or even ijij .

Edge: An edge is denoted by $ %,ij i je v v if and only if the node iv receives

information from the node jv . If ijije is an edge, then we say that iv and jv are adjacent or

that jv is a neighbour of iv .

Adjacency matrix: The adjacency matrix of G , denoted $ %A GA G , is the n nn nF matrix

defined as follows. The rows and the columns of $ %A GA G are indexed by V . If i ji jG then

the $ %,i ji j -entry of $ %A GA G , i.e. ijija , is 0 for nodes iv and jv nonadjacent, and the $ %,i ji j

-entry of $ %A GA G , i.e. ijija , is 1 for nodes iv and jv adjacent. The $ %,i ii i -entry of $ %A GA G , i.e.

iiiia , is 0 for 1, ,i ni n* . We often denote $ %A GA G simply by A .

Neighbor: IfIf an edge $ %,i ji jv v E , then the node i is a neighbor of the node j . The set

of neighbors of the node i is denoted as iN .

Undirected graph: A graph $ %, ,, ,G V E A is undirected if and only if for any ,i ji jv v V ,

$ %,i ji jv v E implies $ %,j ij iv v E , i.e., each edge in E is undirected.

Empty graph: A graph with no edges (but at least on node) is called empty.

Null graph: The graph with no nodes and no edges is the null graph.

Path: A directed path in an undirected graph is simply called path. A path from the node

iv toto the node jv (or from jv to iv ) is also called a path between or connecting nodes iv
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and jv .

Complete graph: A graph is called complete if every pair of nodes isis adjacent.

Cycle: A cycle is a directed path that starts and ends at the same node.

Connected undirected graph:h: An undirected graph is connected if there is an undirected

path between every pair of distinct nodes.

Laplacian matrix: The Laplacian matrix of a graph G , denoted by $ % n nn n
ijijL G l R FP XP XR ZR Z ,

is the n nn nF matrix defined as follows,

1
,

,

n

ikikk
ijij

ijij

a j i
l

a j i

*
SV

* T
( GVU

O
.

We often denote $ %L GL G simply by L .

Graphs as we have defined them above are sometimes referred to as simple graph,

because there are some useful generalizations of this definition. For instance, there are many

occasions when we wish to use a graph to model an asymmetric relation. In this situation we

define a directed graph $ %, ,, ,G V E A , where an arc, or directed edge, is an ordered pair of

distinct nodes. In a drawing of a directed graph, the direction of a directed edge is indicated

with an arrow. Most graph-theoretical concepts have intuitive analogues for directed graphs.

Indeed, for many applications a simple graph can equally well be viewed as a directed graph

where $ %,i ji jv vv v is a directed edge whenever $ %,j ij iv vv v is a directed edge.

Directed graph: A directed graph $ %, ,, ,G V E A consists of a node set

? @1 21 2, , , nV v v v , and an edge set E V VJ F , and a weighted adjacency matrix

n nn n
ijijA a R FP XP XR ZR Z with 0iiiia * .

Directed path: A directed path, with length 1n ( , from the node iv to the node jv is a

sequence of directed edges in a directed graph of the form $ %1 21 2,v vv v , $ %2 32 3,v vv v , , $ %2 12 1,n nn nv vv v( (( ( ,

$ %1,n nn nv vv v( , where 2n E and 1v , , nv are distinct.
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Spanning tree: A directed graph is said to have a spanning tree if and only if there exists

a node iv Vv VK , called root, such that there is a directed path from iv to any other node.

Strongly connected graph: A directed graph is strongly connected if there is a directed

path from every node to every other node.

Balanced graph: A graph is balanced if
1 11 1

n nn n

ij jij jj j
a aa a

* *
*O OO O , for all i . For an undirected

graph, A is symmetrical, and thus every undirected graph is balanced.

2.2.3 Linear and nonlinear system theory background

In the following we introduce some definitions, lemmas and theorems from linear and

nonlinear system theory.

Consider a linear time-invariant system given by

x Ax Bu (2.1)

where nx Rx RK is the state vector, mu Ru RK is the control input, n nn nA RA R FK , and n mn mB RB R FK . The

solution to (2.1) is given by

$ % $ % $ % $ % $ %0

0
0

tA t t A tA t

t
x t e x t e Bu dW .

Letting 0t kT and $ %1t k T , where k is the discrete-time index and T is the

sampling period; we can obtain the exact discrete-time model as

$ % $ % $ % $ %
kT T A kT TATAT

kTkT
x kT T e x kT e Bu dW .

With zero-order hold, the control input becomes $ % $ %u t u kT , $ %1kT t k T . It then

follows that

. / . / $ % . /
0

1
T

AT Ax k e x k e d Bu kW ,

where . / $ %x k x kT and . / $ %u k u kT .

Definition 2.1. A function : n mn mf R R is locally Lipschitz if for each 0x Ax AK , there exist

constants 0M + and 0 0+ , such that
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$ % $ %0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 0x x f x f x M x xx x f x f x M x xx x f x f x M x xx x f x f x M x xx x f x f x M x xx x f x f x M x xx x f x f x M x xx x f x f x M x xx x f x f x M x x .

Theorem 2.1 [100]. Consider the autonomous system

$ %x f x , (2.2)

where : nf D R is a locally Lipschitz map from a domain nD RD RI into nR . Then thehe

equilibrium point 0x * ofof (2.2) is

(i) Stable if, for any 0+ , there exists $ % 0* + such that

$ %0x ) N) N $ %x tx t ) , 0t# E# E .

(ii) Unstable if it is not stable.

(iii) Asymptotically stable if it is stable and 0+ can be chosen such that

$ %0x ) N) N $ %lim 0 .
tDCDC

Theorem 2.2 [100].]. Let 0x * be an equilibrium point for (2.2) and nD RD RI be a domain

containing 0x * . Let :V D RD be a continuously differentiable function such that

$ %0 00 0V * and $ % 0V xV x + inin ? @0D ( , and $ % 0V xV x B inin D ,

Then, 0x * is stable. Moreover, if

$ % 0V xV x ) inin ? @0D ( ,

then 0x * is asymptotically stable.

Lemma 2.1 [100]. Let 0x * be an equilibrium point for (2.2). Let : nV R RD be a

continuously differentiable function such that

(i) $ %0 00 0V * and $ % 0V xV x + , 0x# G# G ,

(ii) $ %x V xx V xx V xD C N D C ,

(iii) $ % 0V xV x ) , 0x# G# G .

Then 0x * is globally asymptotically stable.

Theorem 2.3 [100]. Consider the nonautonomous system

$ %,x f t x , (2.3)
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3 Consensus problem of multi-agent systems

In this chapter, we introduce consensus problem of multi-agent systems and overview

fundamental consensus algorithms and present some famous results discussed in previous

literature.

3.1 Introduction

Recent technological advances in miniaturizing of computing, automation,

communication, control and compressed sensing, and actuation have made it practicable to

integrate a large number of autonomous agents (air, ground, and water) collaborating with

others to achieve goals. Cooperative control of multiple agent systems has potential influence

on various civilian, homeland security, and military actions. Potential civilian applications

include monitoring forest fires, oil fields, pipelines, and tracking wildlife. Potential homeland

security applications include border patrol and monitoring the perimeter of nuclear power

plants. For the military, applications include surveillance, reconnaissance, and battle damage

assessment. These applications are difficult or impossible for an individual agent to solve.

Recently more and more attentions have been paid to the multi-agent systems because of

its extensive application in various areas, such as cooperative control of unmanned air

vehicles, formation control, consensus problems, flocking and tracking, and so on. The

consensus problem of multi-agent systems, as one of the most important issues of multi-agent

systems, has been investigated by various researchers from different disciplines, such as

mathematics, physics, computer sciences and biology, as well as automatic control.

Consensus problem is such a problem of information consensus, where a team of agents

must communicate with its neighbors to agree on important pieces of information that makes

them work cooperatively in a coordinated way. This problem is more challenging because

communication channels have limited range and experience fading and dropout. The research

of information flow and information sharing among multiple agents in a group plays a major

role in understanding and analyzing the coordinated activities of these agents. Consequently,

it is essential for cooperative control is to design an appropriate distributed algorithm such

that the group of agents could achieve consensus on the shared information even though there
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exist limited and unreliable information exchange and dynamically changing interaction

topologies.

In the following, we give a classic example coming from a famous book [35] to illustrate

what consensus is. Consider such a meet-for-dinner problem: a team of friends intend to meet

for dinner at a special hotel but they cannot specify an accurate time to meet. On the afternoon

of the dinner of the appointment, everyone finds that he or she is unsure about the time when

they will meet. The coordination variable in this example is the time when the team will meet

to have dinner. A distributed solution to this problem would be for each person to call, one at

a time, a subset of the team. Given his or her current estimate of the meeting time, i.e., his or

her instantiation of the coordination variable, the person might update his or her own estimate

of the time of the meeting to be a weighted average of his or her current meeting time and that

of the person with whom he or she is conversing. The question is to determine under what

conditions this strategy will make the entire team to converge to a consistent meeting time.

To illustrate this meet-for-dinner example better, we assume that ten persons compose

the team who communicate with exactly one other person who is chosen randomly from the

team, for a random length of time. After the communication has come to a close, the process

is repeated. The evolution of the dinner times is shown in Fig. 3.1 in the distributed approach

mentioned above, where the initial state of each person is uniformly assigned. From Fig. 3.1

we note that the entire team converges to a consistent meeting time under switching

communication topologies.

Fig. 3.1. The simulation of discrete-time meet-for-dinner.
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3.2 Consensus problem of multi-agent systems

Suppose that there are n agentL�BG�MA>�M>: F��1A>�M>: FaL�<HFFNGB<: MBHG topology can

be represented by a directed graph ( , , )G V E A , where ? @1 21 2, , , nV v v v is the node set

and E V VJ F is the edge set, and a weighted adjacency matrix n nn n
ijijA a R FP XP XR ZR Z with

nonnegative adjacency elements ijija . The node indexes belong to a finite index set

? @1,2, ,I nI n* . An edge of G is denoted by $ %,ij i je v v . The adjacency elements

associated with the edges of the graph are positive, i.e., 0ij ije E aK M + . Moreover, we

assume 0iiiia * for all i Ii IK (see 2.2 for graph theory notations). The set of neighbors of the

node iv is denoted by $ %? @: ,: ,i j i jN v V v v E .

For convenience, we also let ? @1,2, ,I nI n* represent a set of cooperative agents with

the total number n . Assume that the communications among these agents are directed. So we

define as $ %,G V E a directed graph where the n nodes represent n agents labeled as

1,2, ,n . The agent i receives the information of its neighbor agent j , ifif there is an edge

$ %,i ji j connecting the two nodes.

Throughout this dissertation, the following simplest sisingle-integrator dynamics is used to

express the dynamics of the agent i ,

i ii ix ux u* 1,2, ,i ni n* , (3.1)

where ix Rx RK denotes the information state of the i thth vehicle which might represent

physical quantities including attitude, position, temperature, voltage, and so on, and iu Ru RK is

the information control input of the i thth vehicle. We should note that (3.1) is standard

dynamics form for each agent in this dissertation.

It is said that the node iv and the node jv achieve a consensus in a network ifif i ji jx xx x* .

It is said that the network achieve a consensus ifif i ji jx xx x* for all ,i j I , i ji jG . Whenever
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the states of the network are all in a consensus, the common value of information states is

called as the group decision value or the consensus value.

Definition 3.3.1 [10707]. The set of agents I is said to reach global consensus asymptotically if

for any $ %0ix , 1,2, ,i ni n* , $ % $ % 0i ji jx t x t( D as t D CD C for each $ %,i ji j , , 1,2, ,i j n .

In what follows we illustrate consensus problem of the multi-agent system by

formulating the velocity consensus problem of the multi-vehicle system.

Velocity Consensus Problem of Multi-Vehicle System

Suppose that there are n vehicles in a team running in the same direction. Let iz

denote the position of the i th vehicle and satisfy the following dynamics,

total( , )i i i i i i i im z z F z z U , (3.2)

where im is the total mass(including passengers) of the vehicle i , i ii iz is the frictional

force generated by the contact of the wheels with the road, i is the friction coefficient,

( , )i i iF z z is the other applied force on the vehicle i and totaliU is the control input. Next we

consider the velocity consensus problem of all vehicles by designing the control input totaliU ,

that is, for all $ %0iz and all , 1, , ,i j n $ % $ % 0i ji jz t z t( D as t DCDC . In order to solve

this problem, we first decompose totaliU into the sum of local feedback control of the control

input and control giving consideration to other vehicles} information, which is described as

follows,

total FBi i iU U U . (3.3)

We choose ( , )i i i i iz F z z as local feedback control FBFBiU , i.e.,

FBFB ( , )i i i i i iU z F z z , (3.4)
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and then (3.2) can be re-written as follows,

i i im z U , (3.5)

oror

1
.i ii i

i

z Uz U
m

* (3.6)

Here, we take iz , the velocity of the i thth vehicle, as the information state of the i thth vehicle,

and set i ii ix zx z* . By substituting
1

i ii i

i

U uU u
m

* into (3.6), we obtain (3.1) i.e., the standard

dynamics form in this dissertation. Furthermore, the velocity consensus $ % $ % 0i ji jz t z t( D

turns into the information consensus $ % $ % 0i ji jx t x t( D . By this means, the standard

consensus problem of multi-agent system discussed in this dissertation can be formulated by

way of illustration of the velocity consensus problem of multi-vehicle system.

A well-known consensus protocol to reach a consensus with respect to the states of n

integrator agents (3.1) can be expressed as

$ % $ %$ %
i

i ij i jj Nj N
u a x t x t

KO , $ %0ix Rx RK , (3.7)

where ijija is the $ %,i ji j th entry of the adjacency matrix of the associated communication

graph at time t , and iN isis the set of agents whose information is available to the agent i at

time t , and $ %0ix denote the initial state of the agent i .

By applying the protocol (3.7), we can rewrite (3.1) into a single-integrator linear system

onon a graph,

$ % $ %x t Lx t , (3.8)

where $ %1 21 2, , ,
T

nx x x x and n nn n
ijijL l R FP XP XR ZR Z is the graph Laplacian of the network, whose

eigenvalues location determines the stability properties of system (3.3.8) and its elements are

defined as follows:

1
,

,

n

ikikk
ijij

ijij

a j i
l

a j i

*
SV

* T
( GVU

O .
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The -consensus problem in a dynamic graph is a distributed way to calculate

$ %$ %0x by applying inputs iu that only depend on the information state of the i thth agent

and its neighbors. It is said that protocol (3.7) asymptotically solves the -consensus

problem if and only if there exists an asymptotically stable equilibrium x& satisfying

$ %$ %0ix xx x& * for all i Ii IK . The special cases with $ % $ %$ % $ %$ %1
Ave 0 1 0Ave 0 1 0

n

ii
x x n x

*O ,

$ % $ % $ % $ %? @1max 0 max 0 , , 0i i nx x x x , and $ % $ % $ % $ %? @1min 0 min 0 , , 0i i nx x x x

are called average-consensus, max-consensus, and min-consensus, respectively, which are

widely applied to distributed decision-making for the multi-agent systems.

In the following we introduce some famous lemmas and theorems.

Theorem 3.3.1 [13] (Spectral Localization). Let $ %, ,, ,G V E A be a digraph with the

Laplacian L . Denote the maximum node out-degree of the digraph G by

$ % $ %max max degi out id G v . Then, all the eigenvalues of $ %L L G are located in the

following disk:

$ % $ % $ %? @max maxmax max:D G z z d G d GD G z z d G d GD G z z d G d G

centered at $ %max 0z d G j in the complex plane (see Fig. 3.3.2).).

Fig. 3.3.2. Demonstration of Gersgorin Theorem applied to graph Laplacian.

Lemma 3.1 [13]. Consider a network of integrators i ii ix ux u* where each node applies protocol

(3.3.7). Assume G is a strongly connected digraph. Then, protocol (3.3.7) globally

asymptotically solves a consensus problem.
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Denote the right and left eigenvectors of the Laplacian matrix L associated with

1 0* by rw andnd lw , respectively.

Theorem 3.2 [13]. Assume G is a strongly connected digraph with Laplacian L satisfying

0rLwLw * , 0T
lw Lw L * , and 1T

l rl rw ww w * . Then

$ %lim exp T
r l n

t
R Lt w w M

D'C
.

Theorem 3.3.3 [13]. Consider a network of integrators with a fixed topology $ %, ,, ,G V E A

that is a strongly connected digraph. Then, protocol (3.3.7) globally asymptotically solves the

average consensus problem if and only if G is balanced.

Theorem 3.3.4 [13]. Consider a network of integrator agents with a fixed topology

$ %, ,, ,G V E A that is a strongly connected digraph. Then, protocol (3.3.7) globally

asymptotically solves the average-consensus problem if and only if 1 01 0T L * .

The following lemma gives the consensus value for arbitrary digraphs including

unbalanced digraphs.

Lemma 3.2 [13]. Assume all the conditions in Theorem 3.3.4 hold. Suppose L has a

nonnegative left eigenvector $ %1, ,, ,
T

n* associated with 0* that satisfies 0ii
+O .

Then, after reaching a consensus, the group decision value is

$ %0i ii ii

ii

x
*

O
O

i.e., the decision value belongs to the convex hull of the initial values.

3.3 Consensus problem of multi-agent systems with time delays

WeWe note that the consensus protocol (3.3.7) assumes that each agent can get the states of

its neighbors without any time delay. This assumption gives birth to an obvious limitation

because time delay often appears in every practical system and, therefore, deserves

consideration in the consensus problem of the multi-agent systems. In particular, two types of

time delays, i.e., communication delay and input delay, have been considered in the existing
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literature.

When there exists communication delay, the protocol (3.3.7) becomes

$ % $ %
i

i ij i jj Nj N
u a x t x t

K
P XP X* ( ( (R ZR ZO , $ %0ix Rx RK , (3.9)

where is the communication delay from the j thth agent to the i th agent.

When there exists input delay, the protocol (3.3.7) becomes

$ % $ %
i

i ij i jj Nj N
u a x t x t

K
P XP X* ( ( ( (R ZR ZO , $ %0ix Rx RK , (3.1010)

where is the input delay for information communicated from the j thth agent to the i th

agent.

The following theorems are about communication delay and input delay, respectively.

Definition 3.2 [111]. A real n nn nF matrix M is a Metzler matrix if 0ijijm E for all i ji jG .

In other words, M is a Metzler matrix if all nondiagonal elements are nonnegative.

Definition 3.3 [2828]. Consider an n nn nF Metzler matrix M with zero row sums. The

-digraph $ %0E associated to M is a digraph with the node set ? @1,2, , n and with an

arc from l to k $ %l kl kG if and only if the element of M on the k th row and the l th

column is strictly greater than .

Theorem 3.3.5 [2828]. Consider the linear system

$ % $ % $ % $ % $ %$ %$ % $ %diag ( ) diagx t K t x t K t K t x t* ' ( (

with 0+ . Assume that the system matrix ( )( )K tK t is a bounded and piecewise continuous

function of time. Assume that, for every time t , the system matrix is Metzler with zero row

sums. If there is ? @1, ,k nk nK , 0+ and 0T + such that for all t Rt RK the -digraph

associated to

$ %
t Tt T

t
K s ds

'

W

has the property that all nodes may be reached from the node k , then the equilibrium set of

consensus states is uniformly exponentially stable. In particular, all components of any

solution $ %x tx t of this linear system converge to a common value as t D CD C . Here $ %diag ( )
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is the obvious notation for the diagonal matrix obtained from
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4 Consensus problem in multi-agent systems with

communication channel constraint on signal amplitude

In recent years, as a new field of research, consensus problems of multi-agent systems

have drawn substantial attention from various fields such as vehicle formations, attitude

alignment, rendezvous problem, flocking, and so on. In real problems, it is very important to

take into account channel constraints. As a result, research on time-delay systems and their

control has been active in the last decade. However, the problem about the communication

channel constraint on signal amplitude has seldom been discussed.

The purpose of this chapter is to explore conditions for consensus problem of

multi-agent systems with communication channel constraint on signal amplitude. We discuss

two types of Laplacians of network topologies in multi-agent systems. Then the consensus

convergence criterion of system is proposed. Finally, some examples and simulation of three

agents verify the rightness of the theoretics.

The Laplacian introduced in this chapter defines a graph with specific network

topologies that may change as the agent states proceed. From the state dependence of network

MHIHEH@R��P>�<: G�L: R�MA: M�MA>�@K: IA�BL�: �LI><B: E�MRI>�H?�@>G>K: E�^ =RG: FB<�@K: IA�_ �% HP>O>K��MH�

MA>� ;>LM� H?� MA>� : NMAHKLa� DGHPEedge, the proposed type of dynamic graph has not been

discussed so far; in the literature on dynamic graphs (see, e.g., Mesbahi and Egerstedt [37],

and the references therein), most research considers the case where network topology depends

on relative states, whereas the network topologies in this chapter depend on absolute states

coming from the control parameter of the consensus value on the absolute value of the

transmitted state signal.

4.1 Preliminaries

It is said that the node of a digraph
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Lemma 4.4.1 [3535]. Suppose that n nn n
ijijL l R FP XP XR ZR Z satisfies that 0ijijl B , i ji jG ,

1

0
n

ijij
j

l
*

*O ,

1,2, ,i ni n* , and denote $ %1 1, ,1
T n

n R* K . Then the following five conditions are equivalent,

(i) L has a simple zero eigenvalue with an associated 1n
and all other eigenvalues have

positive real parts;

(iiii) 0LxLx * , $ %1 21 2, , ,
T

nx x x x implies 1 nx xx x* ** * ;

(iii) Global consensus is reached asymptotically for the system (3.8);

(iviv) The directed graph with L as the Laplacian has a directed spanning tree;

(v) $ % 1Rank L n* ( .

Theorem 4.4.1 [104]. Suppose G is a strongly connected digraph. Then,

(i) Global consensus is asymptotically reached for the system (3.8);

(iiii) If the digraph is balanced, an average-consensus is asymptotically reached.

Theorem 4.4.2 [2828]. Consider the linear system

$ % $ % $ %x t L t x t . (4.4.1)

Assume that the system matrix is a bounded and piecewise continuous function of time.

Assume that, for every time t , the system matrix is Metzler with zero row sums. If there is an

index ? @1, ,k nk nK , a threshold value 0+ and an interval length 0T + such that for all

t Rt RK the - digraph associated to

( )( )
t Tt T

t
L s ds

'

(W ,

has the property that all nodes may be reached from the node k , then the equilibrium set of

consensus states is uniformly exponentially stable. In particular, all components of any

solution $ %x tx t of (4.4.1) converge to a common value as t DCDC .

Remark 4.4.1. In the proof of Theorem 4.4.2 in [2828], we have the following results on the

condition of Theorem 4.4.2: $ % $ % $ %? @max 1max , , nx t x t x t is a non-increasing function, and

$ % $ % $ %? @min 1min , , nx t x t x t is a non-decreasing function. These two results are the

foundation of our proofs later.
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Lemma 4.4.2 [3737].]. Let
ijijM mM mP XP X* R ZR Z be an n nn nF real matrix. Then all eigenvalues of M are

located in
1, , ;

C ii ijii ijii ij
j n j ii

z z m mz z m mz z m mz z m mz z m m
S [S [V VV V

K ( BK ( BK ( BK ( BT \T \
V VV VU ]U ]

O .

4.4.2 Consensus with communication channel constraint on signal amplitude

In this section, we introduce some concepts about the communication channel constraint

in multi-agent systems.

The information states with sisingle-integrator dynamics are given by

i ii ix ux u* , $ %0ix Rx RK , 1,2, ,i ni n* , (4.2)

where ix Rx RK denotes the information state of the i thth agent and iu Ru RK isis the information

control input of the i th agent.

As to the information acquisition system for each agent, we assume that the agent i has

a sensor system to identify its own information state
ix , and receives output signals ijijy

from the agent j through communication channel with constraints on signal amplitude

which are described as follows:

,

,

j j ijj j ijj j ij

ijij

j ijj ij

x x bx x bx x b
y

x bx b

SV
* T

+VU

, , 1,2, ,i j n , (4.4.3)

where denotes the agent i receives no information from the agent j , and ijijb is the

amplitude constraint parameter of the communication channel from the agent j to the agent

i . OfOf course, those constraints are caused by physical conditions of communication channels.

If
jx denotes the velocity of the motion of the agent j , the channel constraint (4.4.3) implies

that the agent i cannot measure the velocity
jx faster than

ijijb .

A consensus protocol to reach a consensus with respect to the states of n integrator

agents (4.4.2) can be expressed as

$ %$ %
i

i ij ij i ijj Nj N
u a y x y

KO , $ %0ix Rx RK , (4.4.4)
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where
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(4.4.5) and the protocol (4.4.6). If the agent 1 receives the information 12 2y xy x* and 13 3y xy x*

(i.e., 2 122 12x bx bB and 3 133 13x bx bB ), the protocol (4.4.5) and the protocol (4.4.6) provides the same

control $ % $ %1 12 1 2 13 1 3u a x x a x x ; if the agent 1 receives only the information 12 2y xy x*

(i.e., 2 122 12x bx bB and 3 133 13x bx b+ ), the protocol (4.4.5) provides the control input

$ %1 12 1 2 13 1u a x x a x and the protocol (4.4.6) provides the control input $ %1 12 1 2u a x x ;

if the agent does not receives any information from other agents (i.e., 2 122 12x bx b+ and

3 133 13x bx b+ ), the protocol (4.4.5) provides $ %1 12 13 1u a a x* ( ' and the protocol (4.4.6) provides

1 0u * .

Remark 4.4.3. If for all ,i ji j , ijijb * C* C , it is obvious that for all ,i ji j , 1ijij * and at this time

the consensus protocol (4.4.4) falls into the form of the consensus protocol (3.7). Then it

follows form Theorem 4.4.1 that the consensus protocol (4.4.4) can be asymptotically reached for

all initial states.

By applying the protocol (4.4.5) oror (4.4.6), we can rewrite (4.4.2) into

$ % $ % $ %tx t L x t , (4.4.7)

where L is defined as the following 1L and 2L , for the consensus protocol (4.4.5) and

(4.4.6) respectively.

1 12 12 1 1

21 21 2 2 2

1

1 1 2 2

j n n
j

j n n
j

ijij

n n n n nj
j

a a a

a a a
L lL l

a a a

P XP X
Q YQ Y
Q YQ Y( (
Q YQ Y

P XP X* ** * Q YQ YR ZR Z
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

,
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1 1 12 12 1 1

21 21 2 2 2 2

2

1 1 2 2

j j n n
j

j j n n
j

ijij

n n n n nj nj
j

a a a

a a a
L lL l

a a a

P XP X
Q YQ Y
Q YQ Y( (
Q YQ Y

P XP X* ** * Q YQ YR ZR Z
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

,

where 0ijija + for all ,i ji j .

Next are the main results that we present in this section.

Lemma 4.4.3. The Laplacian matrix is assumed to be L ,

1 12 12 1 1

21 21 2 2 2

1 1 2 2

j n n
j

j n n
j

ijij

n n n n nj
j

a a a

a a a
L lL l

a a a

P XP X
Q YQ Y
Q YQ Y( (
Q YQ Y

P XP X* ** * Q YQ YR ZR Z
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

,

where 0ijij
j

a +O for all i . The Laplacian matrix L has the following properties:

(i) If for all ,i ji j , 1ijij * , then 1 01 0nL * ;

(ii) If for all i , there exists j such that 0ijij * and 0ijija + , then all eigenvalues of L(

have negative real parts.

Proof: (i) It is obvious from the definition of L and Lemma 4.4.1.

(ii) Based on Lemma 4.4.2, all the eigenvalues of
ijijL lL lP XP X* R ZR Z are located in the union of the

following disks:

1, , ;

Ci ii iji ii iji ii iji ii iji ii ij
j n j i

D z z l lD z z l lD z z l lD z z l lD z z l l
S [S [V VV V
T \T \
V VV VU ]U ]

O ,

ii ij
j

l al a* O , ij ij ijl al a* (* ( . If for all i , there exists j such that 0ijija + and 0ijij * , then we

will have
1, , ; 1, , ;

0 ii ij ii ijii ij ii ijii ij ii ijii ij ii ij
j n j i j n j i

l l z l ll l z l ll l z l ll l z l l) ( B B 'O OO O . From this we know all eigenvalues of

L( have negative real parts.

Theorem 4.4.3. Consider a network of integrators with a fixed topology $ %, ,, ,G V E A that is




 
 �

a digraph and satisfies
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The case (i), however, does not occur, since, in the case (i), it follows that $ % 1ijij t * for all

,i ji j , but this contradicts the fact that the time t is in . %0,0, ct . Thus, the case (iiii) is possible,

and in the case (iiii), 1L( is a stable matrix, that is, $ % ? @
1S

t K , which is shown by

observing that , if we take 1i * for example, 1L is expressed as

$ %

1 12 1

1

1 1

0

0

j nj n
j

n

a a a

L
L

(

P XP X
Q YQ Y
Q YQ Y

* Q Y
Q YQ Y
Q YQ Y
Q YQ YR ZR Z

O

,

where the sub-matrix $ %1 1n
L

(
with $ % $ %1 11 1n nn n( F ( dimension is given by

$ %

2 23 23 2 2

32 32 3 3 3

1 1

2 2 3 3

j n n
j

j n n
j

n

n n n n nj
j

a a a

a a a
L

a a a

(

P XP X
Q YQ Y
Q YQ Y( (Q YQ Y

* Q YQ Y
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

,

and using the assumption 1 0j
j

a +O and the fact that $ %1 1n
L

(
( is a stable matrix. The

stability of $ %1 1n
L

(
( is shown just by modifying the proof for (iiii) of Lemma 4.4.3. To sum up

the above arguments, at each moment . %0,0, ct tt tK , $ % ? @
1S

t K holds, that is, 1L( is always

a stable matrix along the trajectory of the system (4.4.7) with the protocol (4.4.5) and the given

initial state.

Lemma 4.4.4. The Laplacian matrix is assumed to be 2L . The Laplacian matrix 2L has the

following properties:

(i) If for all ,i ji j , 1ijij * , then 2 1 01 0nL * ;

(iiii) If there exists j , such that for all i , 1ijij * , then 2L( has a simple zero eigenvalue and
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all non-zero eigenvalues of 2L( have negative real parts.

Proof: (i) It is obvious from Lemma 4.4.1.

(iiii) If there exists j , such that for all i , 1ijij * , then it follows from 0ijija + for all ,i ji j

that, for thehe digraph G with 2L as its Laplacian, there should be always an edge from the

node i $ %i ji jG to the node j . Then we can get a directed spanning tree with the root node

j . According to Lemma 4.4.1, 2L( has a simple zero eigenvalue and all non-zero eigenvalues

of 2L( have negative real parts.

Now we can state the main results: Theorem 4.4 for the protocol (4.4.5) and Theorem 4.5.5

for the protocol (4.4.6).

Theorem 4.4.4. Consider a network of integrators with a fixed topology $ %, ,, ,G V E A that is

a complete digraph and satisfies 0ijij
j

a +O for all i ; constraint parameters ijijbP XP XR ZR Z of the

communication channels in the network are identical one such as ijijb bb b* for all ,i ji j . Then,

(i) There exists a time 0ct + , such that $ % 1ij ct * , , 1,2, ,i j n , and the system (4.4.7)

given by the protocol (4.4.5) can solve the global consensus problem asymptotically.

(iiii) Thehe protocol (4.4.5) globally asymptotically achieves the following average-consensus:

$ % $ %
1

i ci c
i

x t x tx t x t
n

D O asas t D CD C , if G is balanced.

Proof: Let the set 1I denote the subset of the cooperative agents set I PAHL>�>E>F>GMLa�

initial states are less than or equal to the identical communication channel constraint b . The

set 2I is the complementary set of the set 1I in I ��MA: M�BL��MA>�>E>F>GMLa�BGBMB: E�LM: M>L�H?�MA>�

set 2I are greater than the identical communication channel constraint b . It is known that if

the agent j belongs to 1I , there exists c such that jx c bx c b and 1ijij * for all i .

We suppose that the agent i belongs to 2I , i.e., i jii jix b bx b b and 0jiji * for all j .
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$ %
i

i ij i ij jj Nj N
x a x x

KO

1 21 2i
ij i ij ij j ij ij jj N j I j I

a x a x a x* ( ' L L ' L LO O O ( 1ijij * for 1j Ij IK )

1 21 2

1 01 0
i

ij i ij j ij jj N j I j I
a x a x a x* ( ' L L ' L LO O O ( 0ijij * for 2j Ij IK )

1 21 2

1 11 1
i

ij i ij ijj N j I j I
a x a c a cB ( ' L L ' L LO O O ( 0ijija + and 0c + )

$ %
i

ij ij Nj N
a x c

K
* ( (O .

Then we also have

$ % $ %
i

i ij ij Nj N

d
x c a x c

dtdt K
( B ( (O .

By the $KHGP: EEaL�BG>JN: EBMR��P>�A: O>

$ % $ %$ %
$ %0

0

ijijj Nj Ni
a t t

i ii ix t c x t c e K
( (O

( B ( ,

$ % $ %$ %
$ %0

0

ijijj Nj Ni
a t t

i ii ix t c x t c e K
( (O

B ' ( . (4.4.8)

The above evaluation of (4.4.8) assures the existence of a finite time 1t ( 1 01 0t tt tE ), such that

$ %1ix t bx t b . Since then, we know 2i Ii IK and $ %1ix tx t ( $ %1ix t bx t b ) becomes a new initial state

of the agent i . Further, using again the evaluation of (4.8), we have that at the time 1t '

( is a small enough positive number), $ %1ix t bx t b holds, because on the closed interval

. /0 10 1,t tt t ' , there is no agent moving from 1I to 2I in accordance with Remark 4.4.1.

Similarly, for other elements in 2I , there also exists 2 32 3, ,, ,t tt t , such that all other

elements in 2I fall into 1I . Eventually, there must exists a time ct such that for any time

ct tt tE , all agents belong to 1I and $ % 1ij ct * for all ,i ji j . At that time, 1L turns into L

asas inin the usual case, that is, the system (4.4.7) is reduced to the system (3.8); at this time, $ %cx tx t

as a new initial state and the protocol (4.4.5) globally asymptotically solves the consensus
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problem according to Theorem 4.1. Thus, the proof of (i) is obtained. Because the directed

complete graph



&+&+

( )( )j a jj a jx t bx t b for all in (0, ](0, ] , where

( ) ( ) ( ) [ ( ) ( )]
a

a

t

j a j a k jk j k
t

k

x t x t a x x d
'

OW (4.4.9)

then the identity (4.4.9) enables us to find a subscript k where k jk jG and a small number

$ %0 ) B) B such that ( ) 1k ak a for all in (0, ](0, ] ; thus, in this case, Lemma 4.4

again assures that 2( ) { }a Sa S for all in (0, ](0, ] . (Contrary, if ( )( )j a jj a jx t bx t b for all

0+ , it is a matter of course that 2( ) { }a Sa S for all 0+ .) Repeating the above

argument, we can conclude that 2( ) { }S for all 0t E along all the trajectory satisfying

the assumption on the initial state (0)j jj jx bx bB .

(Step 2) From Step 1, for the system (4.4.7) given by the consensus protocol (4.4.6), we

know that the Laplacian $ %
2

t
L is Metzler with zero row sums and the digraph with $ %

2

t
L as

its Laplacian always has a directed spanning tree.

From what is stated above, the conditions of Theorem 4.4.2 are satisfied and then

following from this theorem the global consensus can be reached asymptotically.

Remark 4.4.5. In Theorem 4.5.5, assume that ijij takes 0 or c (instead of 1), , 1,2, ,i j n ,

the consensus can be more quickly reached asymptotically if 1c + (see Example 4.4.3), or be

more slowly reached asymptotically if 0 10 1c) )) ) .

4.4.4 Examples and simulation results

This section presents some illustrative examples to describe the theoretical results in this

chapter. The following directed graphs with different weights are needed in the analysis of

this section.

Example 4.4.1. Figure 4.4.1 is a complete digraph with order 3n * . ? @1,2,3I * represents

cooperative agents at the nodes. By simulation studying, we investigate the consensus

convergence character of the multi-agent systems and verify the proposed Theorem 4.4 in this
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example.

Fig. 4.1. The communication topology of three agents.

We suppose the initial states of three agents are
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Fig. 4.3. The usual consensus of these three agents.

Example 4.2. We consider the system which is the same as that stated in Example 4.1 except

for having a balanced complete digraph with
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Fig. 4.4. The usual average consensus of three agents.

Fig. 4.5. The generalized average consensus of three agents.
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Fig. 4.6. The consensus of three agents based on Theorem 4.5.

Fig. 4.7. The usual consensus of three agents in Example 4.3.

Example 4.4. In Example 4.3, we took
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Fig. 4.8. The consensus of three agents based on Remark 4.5.

Example 4.5. In this example, we consider the case that the multi-agent systems have

different communication channel constraints for different agents. For example, the constraint

of communication channel is
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Fig. 4.9. The consensus of three agents in Example 4.5.

4.5. Chapter summary

In this chapter, the consensus problem in the multi-agent systems with the

communication channel constraint has been investigated by providing special Laplacians

representing the topological structure of the multi-agent systems. We introduce the two types

of the protocols using state-dependent switching parameters. Our work shows that those two

protocols obtain the global consensus as long as some conditions on the graph topology and

the channel constraint are satisfied. Examples have been proposed to illustrate the

effectiveness of the methods.
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5 Interval consensus problem of multi-agent systems in

accordance with switching protocol

5.1 Introduction

Multi-agent systems have recently received increased attention due to their broad

applications in various fields, including computer science [1-2]; vehicle systems, unmanned

aerial vehicles, and vehicle formations [33, 36, 38, 112-114]; flocking and tracking [39, 115,

116, 117]; and others [13, 28, 29, 30, 31, 32, 40, 41, 103-109, 118, 120, 121, 123-130].

As one of the most important issues in the coordinated control of multi-agent systems,

the consensus problem requires that the output of several spatially distributed agents reach a

common value which depends on the state of all agents. A fixed consensus value is obtained

from a given consensus protocol and initial state. The resulting consensus value, however,

may not be ideal or meet the quality that we require from the multi-agent system. It is

therefore necessary and significant to investigate whether we can design a protocol to change

the consensus value of the multi-agent system, and the answer to this question will allow

application of multi-agent systems in new fields. Moreover, it seems to be generally

complicated and difficult to design an appropriate protocol such that multi-agent systems can

converge to any designated point.

To solve such a protocol design problem we pose a new class of consensus problems,

called interval consensus problem, and search for a protocol ensuring that the system

converges to a point on a specified closed and bounded interval. By introducing two

state-dependent switching parameters into the consensus protocol, which is motivated by the

results of chapter 4, the system given by the proposed protocol can globally asymptotically

converge to a designated point on a special closed and bounded interval. In other words, the

system given by the proposed protocol can reach globally asymptotically interval consensus

and then the system can also achieve a generalized interval average consensus if the directed

graph is balanced. Simulations are presented to demonstrate the effectiveness of our

theoretical results. It is worth mentioning that the two parameters introduced into the

consensus protocol play an important role in our discussion. One role is to change the
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consensus value which is ideal or meets the quality that we require from the multi-agent

system, and the other one is to change the time and speed of convergence of consensus

protocols.

The Laplacian introduced in this chapter defines a graph with specific network

topologies that may change as the agent states proceed. From the state dependence of network

topology, we can say that the graph is a special type of @>G>K: E�^ =RG: FB<�@K: IA�_ �% HP>O>K��MH�

MA>� ;>LM� H?� MA>� : NMAHKLa� DGHPE>=@>�� MA>� IKHIHL>=� MRI>� H?� =RG: FB<� @K: IA� A: L� GHM� ;>>G�

discussed so far; in the literature on dynamic graphs (see, e.g., Mesbahi and Egerstedt [3737],

and the references therein), most research considers the case where network topology depends

on relative states, whereas the network topologies in this chapter depend on absolute states

coming from the control parameter of the consensus value on the absolute value of the

transmitted state signal.

5.2 The consensus protocol

The information states with sisingle-integrator dynamics are given by

i ii ix ux u* , $ %0ix Rx RK , 1,2, ,i ni n* , (5.5.1)

where ix Rx RK denotes the information state of the i thth agent and iu Ru RK is the information

control input of the i th agent.

Let d in the interval $ % $ %min 0 ,max 0i i i iP XP XR ZR Z be the control parameter of the

consensus value of the multi-agent system that prompts the system to converge to the desired

consensus value on the closed and bounded interval $ % $ %min 0 ,max 0i i i iP XP XR ZR Z . By

introducing into the consensus protocol two state-dependent switching parameters ijij and

ijij , which are defined by d , the multi-agent system given by the proposed protocol can

globally asymptotically converge to a point on the closed and bounded interval

$ % $ %min 0 ,max 0i i i iP XP XR ZR Z , which is what we call the interval consensus problem of

multi-agent systems in accordance with the switching protocol. Denote by d & in the interval
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the consensus value of the multi-agent system and d is inin the interval $ %min 0 ,i i midx xP XP XR ZR Z ,

whose role is to prompt the multi-agent system to converge to the desired consensus value in

the interval $ %min 0 ,i i midx xP XP XR ZR Z .

By applying the protocol (5.5.2), we can rewrite (3.8) as

$ % $ %x t L x t , (5.5.4)

where L is defined as 2L in Lemma 4.4 asas follows,

1 1 12 12 1 1

21 21 2 2 2 2

1 1 2 2

j j n n
j

j j n n
j

ijij

n n n n nj nj
j

a a a

a a a
L lL l

a a a

P XP X
Q YQ Y
Q YQ Y( (Q YQ Y

P XP X* ** * Q YQ YR ZR Z
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

.

Remark 5.1. If $ %max 0i ii id x* , it is obvious that 1ijij * for all ,i ji j , and the consensus

protocol (5.5.2) falls into the form of the consensus protocol (3.7). Then it follows from

Theorem 4.1 that the consensus protocol (5.5.2) can be asymptotically reached for all initial

states.

Next is Theorem 5.5.1 for the protocol (5.5.2) discussed in chapter 4. From a different

perspective, it is an essential theoretical foundation related to the problem we are addressing

in this chapter.

Theorem 5.1. Consider a network of integrators with a fixed topology $ %,G V E that is a

complete digraph; the control parameter of the consensus value is d . Then,

(i) There exists a time 0ct + , such that $ % 1ij ct * , , 1,2, ,i j n , and the system (5.5.4)

given by the consensus protocol (5.5.2) reaches consensus asymptotically for any initial state

(0)x that has at least one element, say (0)jx , satisfying (0)jx dx dB ; and

(ii) The protocol (5.5.2) globally asymptotically achieves the following average consensus:

$ % $ %
1

i ci c
i

x t x tx t x t
n

D O asas t DCDC , if the digraph G is balanced.

Proof: See the proofs of the Theorem 4.4 and Theorem 4.5.5 in chapter 4.
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As seen from Theorem 5.1, the multi-agent system can converge to

$ % $ % $ %? @1min 0 min 0 , , 0i i n if the control parameter of the consensus value is taken

as $ % $ %? @1min 0 , , 0nd x x , which we call the min-consensus. In other words, consensus

protocol (5.5.2) can asymptotically solve the min-consensus problem.

It can be seen from Theorem 5.1 that the consensus value of the multi-agent system

varies with the control parameter of the consensus value d . In more specific terms, the

consensus value of the multi-agent system decreases with the decrease of the control

parameter of the consensus value d .

5.2.2 The second consensus protocol

Next we present the second consensus protocol that solves the interval consensus

problem of the multi-agent system in the interval $ %,max 0mid i ix xP XP XR ZR Z as

$ %
i

i ij ij i jj Nj N
u a x x

KO , $ %0ijija + , $ %0ix Rx RK . (5.5.5)

Here, ijija is the $ %,i ji j th entry of the adjacency matrix of the associated communication

graph, iN represents the set of agents whose information is available to agent i , and ijij is

defined as

1

0
j

ijij
j

x dx d

x dx d

ES
* T

)U
, (5.5.6)

where jx denotes the information state of the j thth agent, and d is the control parameter of

the consensus value of the multi-agent system and d is in the interval $ %,max 0mid i ix xP XP XR ZR Z ,

whose role is to prompt the multi-agent system to converge to the desired consensus value in

the interval $ %,max 0mid i ix xP XP XR ZR Z .

By applying the protocol (5.5.5), we can rewrite (3.8) as

$ % $ % $ %tx t L x t , (5.5.7)
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where L is similar to 2L in Lemma 4.4 in definition asas follows and of course has the same

properties as 2L ,

1 1 12 12 1 1

21 21 2 2 2 2

1 1 2 2

j j n n
j

j j n n
j

ijij

n n n n nj nj
j

a a a

a a a
L lL l

a a a

P XP X
Q YQ Y
Q YQ Y( (Q YQ Y

P XP X* ** * Q YQ YR ZR Z
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

.

Remark 5.2. If $ %min 0i ii id x* , it is obvious that 1ijij * for all ,i ji j , and the consensus

protocol (5.5.5) falls into the form of the consensus protocol (3.7). Then it follows from

Theorem 4.1 that the consensus protocol (5.5.5) can be asymptotically reached for all initial

states.

Theorem 5.2. Consider a network of integrators with a fixed topology $ %,G V E that is a

complete digraph; the control parameter of the consensus value is d . Then,

(i) There exists a time 0at + , such that $ % 1ij at * , , 1,2, ,i j n , and the system (5.5.7)

given by the consensus protocol (5.5.5) reaches consensus asymptotically for any initial state

(0)x that has at least one element, say (0)jx , satisfying (0)jx dx dE ; and

(ii) The protocol (5.5.5) globally asymptotically achieves the following average consensus:

$ % $ %
1

i ai a
i

x t x tx t x t
n

D O , as t DCDC , if the digraph G is balanced.

Proof: Let ? @ be the set of all 2n nn nF matrices n nn n
ijij R FP XP X* K* KR ZR Z where ? @0,1ijij K . Denote

by ? @
S

the subset of ? @ whose element makes L( have a simple zero eigenvalue

and negative real-part eigenvalues. Let ( )( )x tx t , 0t E be a trajectory of the system (5.5.7) with

the protocol (5.5.5) and any given initial state (0)x satisfying (0)jx dx dE . We first show that

( ) { }S for each t along the trajectory (Step 1), and prove that the system (5.5.7) with this

switching parameter ( )( )t achieves asymptotic consensus (Step 2). In the following, we use a

simplified notation ij j* for all i , which is justified by d for all i .
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(Step 1) First note that ( )( )jx t d implies ( ) 1j at each time 0t E . Hence, (0) { }S

follows from the assumption (0)jx dx dE and Lemma 4.4, and further it follows from Lemma

4.4 that ( ) { }S for any time 0t + as long as ( )( )jx t d holds. If there exists a time

0at E and a small number 0+ such that ( )( )j aj ax t d and ( )( )j aj ax t d for all in

(0, ](0, ] , where

( ) ( ) ( ) [ ( ) ( )]
a

a

t

j a j a k jk j kt
k

x t x t a x x d
'

OW , (5.5.8)

then identity (5.5.8) enables us to find a subscript k where k jk jG and a small number

$ %0 ) B) B such that ( ) 1k ak a for all in (0, ](0, ] . Thus, in this case, Lemma 4.4

assures that ( ) { }a Sa S for all in (0, ](0, ] . (Contrarily, if ( )( )j aj ax t d for all

0+ , then ( ) { }a Sa S for all 0+ ). Repeating the above argument, we can conclude

that ( ) { }S for all 0t E along all the trajectory satisfying the assumption on the initial

state (0)jx dx dE .

(Step 2) From Step 1, for the system (5.5.7) given by the consensus protocol (5.5.5), we know

that the Laplacian $ %t
L is Metzler with zero row sums and the digraph with $ %t

L as its

Laplacian always has a directed spanning tree.

(Step 3) Next we prove that there exists a time 0at + , such that $ % 1ij at * , , 1,2, ,i j n .

If (0)jx dx d* for 1,2, ,j nj n* , then 1ijij * , , 1,2, ,i j n . It is obvious that there exists a

time 0at + , such that $ % 1ij at * , , 1,2, ,i j n . In the following, we assume that all of

the initial states of the agents are not equal to d .

Let the set 1I denote the subset of the cooperative agents set I PAHL>�>E>F>GMLa�BGBMB: E�

states are larger than or equal to d . The set 2I is the complementary set of the set 1I in I ,

MA: M�BL��MA>�>E>F>GMLa�BGBMB: E�LM: M>L�H?�MA>�L>M� 2I are less than d . It is known that if the agent
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j belongs to 1I , there exists c such that jx c d and 1ijij * for all i .

We suppose that the agent i belongs to 2I , i.e., ix dx d) and 0jiji * for all j .

$ %
i

i ij ij i jj Nj N
x a x x

KO

1 21 2i
ij ij i ij ij j ij ij jj N j I j I

a x a x a x* ( ' L L ' L LO O O ( 1ijij * for 1j Ij IK )

1 11 1
ij i ij jj I j I

a x a xE ( 'O OO O ( 0ijij * for 2j Ij IK )

$ %
1

ij i jj Ij I
a x x

K
* ( (O ( 0ijija + and jx c d )

$ %
1

ij ij Ij I
a x c

K
E ( (O .

Then we also have

$ % $ %
1

i ij ij Ij I

d
c x a c x

dtdt K
( B ( (O .

� R�MA>�$KHGP: EEaL�BG>JN: EBMR��P>�A: O>

$ % $ %$ %
$ %0

1

0

ijijj Ij I
a t t

i ii ic x t c x t e K
( (O

( B ( ,

$ % $ %$ %
$ %0

0

ijijj Nj Ni
a t t

i ii ix t c c x t e K
( (O

E ( ( . (5.9)

The above evaluation of (5.9) assures the existence of a finite time 1t ( 1 01 0t tt tE ), such that

$ %1ix t d . Since then, we know 2i Ii IK and $ %1ix tx t ( $ %1ix t d ) becomes a new initial state

of the agent i . Further, using again the evaluation of (5.9), we have that at the time 1t '

( is a small enough positive number), $ %1ix t d holds, because on the closed interval

. /0 10 1,t tt t ' , there is no agent moving from 2I to 1I in accordance with Remark 4.4.1.

Similarly, for other elements in 2I , there also exists 2 32 3, ,, ,t tt t , such that all other

elements in 2I fall into 1I . Eventually, there must exists a time at such that for any time

at tt tE , all agents belong to 1I and $ % 1ij at * for all ,i ji j . At that time, $ %atL turns into L
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asas inin the usual case, that is, the system (5.7.7) is reduced to the system (3.8); at this time, $ %ax tx t

as a new initial state and the protocol (5.5) globally asymptotically solves the consensus

problem according to Theorem 4.4.1.

From the above, the conditions of Theorem 4.2 are satisfied and the global consensus can

be reached asymptotically. Thus, the proof of (i) is obtained. Because the directed complete

graph G is a strongly connected and balanced graph, the proof of (ii) can be easily obtained

from Theorem 4.1.

As seen from Theorem 5.2, the multi-agent system can converge to

$ % $ % $ %? @1max 0 max 0 , , 0i i n if the control parameter of the consensus value is taken

as $ % $ %? @1max 0 , , 0nd x x , which we call the max-consensus. In other words, the

consensus protocol (5.5.5) can asymptotically solve the max-consensus problem.

It can be seen from Theorem 5.2 that the consensus value of the multi-agent system

varies with the control parameter of the consensus value d . In more specific terms, the

consensus value of the multi-agent system increases with the increase of the control parameter

of the consensus value d .

5.2.3 The combined protocol

By the above arguments, we obtain the following result.

Let midx bebe the usual consensus value of the multi-agent system without the control

parameter of the consensus value or the usual average consensus value without the control

parameter of the consensus value, if the digraph G is balanced.

Theorem 5.3. Assume that the multi-agent system has a complete digraph as its network

topology. Then the following are equivalent:

(i) For all x& on the closed and bounded interval $ % $ %min 0 ,max 0i i i iP XP XR ZR Z , there exists one

control parameter of the consensus value d & in $ % $ %min 0 ,max 0i i i iP XP XR ZR Z such that the

system with the protocol (5.5.2) or (5.5.5) converges to x& ;

(ii) The system with the protocol (5.5.2) or (5.5.5) can converge to a point x& in the interval
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In either case we have generated a sub-interval . / . /1 1 0 0a b a b such that

1 0 1a x b& , 1 11 1a x b& and 0 00 0
1 11 1

2

b ab a
b ab a

(
( *( * .

Let 1 11 1
1

2

a ba b
c

'
* be the middle point of the interval . /1 11 1,a ba b and let 1 11 1d cd c& * be a new control

parameter of the consensus value. It also follows from Theorem 5.2 that the system converges

toto 1x& . Likewise, there are three possibilities for 1x& . If 1x xx x& && &* , 1c is d & and the proof

ends. If 1x xx x& && &+ , we set 2 12 1a aa a* and 2 12 1b cb c* , to consider the left half of the original interval.

IfIf 1x xx x& && &) , let 2 12 1a ca c* , 2 12 1b bb b* , take the right half of . /1 11 1,a ba b this time. In either case we have

generated a sub-interval . / . /2 2 1 1a b a b such that

2 1 2a x b& , 2 22 2a x b& and 0 00 0
2 22 2 22

b ab a
b ab a

(
( *( * .

Let 2 22 2
2

2

a ba b
c

'
* be the middle point of the interval . /2 22 2,a ba b and let 2 22 2d cd c& * be a new

control parameter of the consensus value. It also follows from Theorem 5.2 that the system

converges to 2x& ��\ ��

Repeating this procedure we either reach x& after a finite number of steps, or we build a

sequence of nested intervals . /,n nn na ba b satisfying

. / . / . / . /0 0 1 1 2 2, , , ,n nn na b a b a b a bH H H H H ,

1 ,n n n n na x b a x b& && & and 1 11 1
1

2
n nn n

n

a ba b
c ( (( (

(

'
* , 0 00 0

2
n nn n n

b ab a
b ab a

(
( *( * .

In the first situation, 1 11 1
1

2
n nn n

n

a ba b
c ( (( (

(

'
* coming into being from Theorem 5.2 is d & , the

consensus parameter of the consensus value that makes the system converge to x& , and the

proof ends.

In this second situation, we claim that there is a point belonging to every interval of the

sequence, and this point is x& . For this, observe that the sequences ? @na and ? @nb satisfy

0 1 1 0a a a b b b ,
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1 0 1 1 1a x b a x b& && & , 2 1 2 2 2, ,a x b a x b& && & , 1 , ,, ,n n n n na x b a x b& && & .

Therefore ? @na is monotone increasing and bounded, while ? @nb is monotone decreasing

and bounded. Clearly, as n DCDC , the left endpoints na , the right endpoints nb and the

sequences ? @nx& must approach the same limit, say to x& . What makes the system converge

to x& is the consensus parameter of the consensus value d & . In other words, the system can

converge to a point x& in the interval $ % $ %min 0 ,max 0i i i iP XP XR ZR Z asas long as d & , the control

parameter of the consensus value, is taken in the interval $ % $ %min 0 ,max 0i i i iP XP XR ZR Z .

It follows from Theorem 5.3 that the system with the protocol (5.5.2) or (5.5.5) converges to

a consensus value on a closed and bounded interval by choosing the control parameter in the

corresponding closed and bounded interval, but this result does not directly supply a design

method of the control parameter that assures the convergence to a specified consensus value.

Nonetheless, the specified consensus value can be approximately achieved by the

concatenation of choices of the control parameter, which is based on the repeated use of the

result of Theorem 5.3.

In the proof of Theorem 5.3 we constructed a sequence ? @,n nn nd xd x& && & , and showed that ? @nx&

converges to the specified consensus value x& as n DCDC . In the approximated computing

process, we would rather solve this problem in a finite number of steps than complete the

infinite procedure. By constructing ? @nd & , as in the proof of Theorem 5.3, we have ? @nx&

such that

$ % $ %0 00 0
1 11 1

max 0 min 0

2 2 2
i i i in nn n

n n nn n

b a b a
x xx x& && &

' '' '
( B * *( B * *( B * *( B * * ,

as long as n is large enough, then

nx xx x& && &( )( ) ,

where is the desired computational accuracy. It will be validated by exemplification in

great detail later in this chapter. It is worth noting that in the approximated computing process

we do not have to do exactly what we stated in the proof of Theorem 5.3, for we note that the
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consensus value of the multi-agent system increases with the increase of the control parameter

of the consensus value, which will be explained in Example 5.3.

Remark 5.5.3. In this chapter, we assume that the network topology is a complete digraph to

ensure that at each time for the digraph at any switching state there is a spanning tree so that

the system can achieve consensus. Extension of our method to the general digraph is our next

challenge.

5.2.4 Improvement of consensus speed

Convergence speed is an interesting topic in the study of the consensus problem.

Convergence speed is used for characterizing how fast or slow consensus can be achieved.

As we stated earlier, two parameters introduced into the consensus protocol play an

important role in our discussion. The first role, to change the consensus value, has been

discussed. Next we continue to explain the second role, to change the time and speed of

convergence of the consensus protocols.

The second smallest eigenvalue of graph Laplacians matrix, called the algebraic

connectivity, quantifies the speed of convergence of consensus protocols. It follows from this

that for a given graph Laplacian, the second smallest eigenvalue of graph Laplacians is kept

constant, this is to say, the speed of convergence of consensus protocols will not vary. In

Theorem 5.1, however, assume that ijij takes 0 or c (instead of 1), , 1,2, ,i j n , the

consensus can be more quickly reached asymptotically if 1c + , or more slowly reached

asymptotically if 0 10 1c) )) ) . This is to say that ijij can change the time and speed of

convergence of consensus protocols in the multi-agent system, and ijij is inversely

proportional to the time of convergence and is directly proportional to the speed of

convergence.

Similarly, in Theorem 5.2 assume that ijij takes 0 or c (instead of 1), , 1,2, ,i j n ,

the consensus can be more quickly reached asymptotically if 1c + , or more slowly reached

asymptotically if 0 10 1c) )) ) . This is to say that ijij can change the time and speed of
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convergence of consensus protocols of the multi-agent system, and
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Figig. 5.5.2. Consensus of four agents based on Theorem 5.1.

From Theorem 5.1, we know that the multi-agent systems can solve the min-consensus if

the control parameter of the consensus value is taken as $ % $ %? @1min 0 , , 0nd x x , which is

shown in Fig. 5.3 where we take 1d * as the control parameter of the consensus value.

Figig. 5.5.3. Minin-consensus of four agents based on Theorem 5.1.
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Example 5.2. We continue to consider the multi-agent system described in Example 5.1. We

suppose the initial states of four agents under the consensus protocol (5.5.5) are again

$ % $ %0 4,3,1,2
T

x . From Theorem 4.1, the multi-agent system again reaches the usual

consensus, as shown in Fig. 5.5.1. The control parameter of the consensus value is 3d * .

Based on Theorem 5.2, the consensus can be reached and the simulation of these four agents

is shown in Fig. 5.4. It can be also seen from Fig. 5.5.1 and Fig. 5.4 that the consensus value in

Fig. 5.5.1 is different from that in Fig. 5.4. Moreover, in the example the protocol (5.5.5) is

adopted, so the system converges to a point in the subinterval . /2.5 4I .

Figig. 5.4. Consensus of four agents based on Theorem 5.2.

From Theorem 5.2, we know that the multi-agent systems can solve the maxax-consensus

if the control parameter of the consensus value is taken as $ % $ %? @1max 0 , , 0nd x x , which

is shown in Fig. 5.5 where we take 4d * as the control parameter of the consensus value.
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Fig. 5.5. Max-consensus of four agents based on Theorem 5.2.

The above two examples address the case in which for a given consensus parameter of

the consensus value
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point
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According to Theorem 5.3, by repeating the above procedure we can find a new
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Fig. 5.8. Fast consensus of four agents based on Section 5.2.4.

Fig. 5.9. Slow consensus of four agents based on Section 5.2.4.

5.4 Chapter summary

This chapter discussed the interval consensus problem of multi-agent systems by

providing a special Laplacian of directed graphs. Generally, for the given consensus protocol

and initial states, a fixed consensus value is obtained. The resulting consensus value, however,
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may not be ideal or meet the quality that we require from the multi-agent system. By

introducing two state-dependent switching parameters into the consensus protocol and taking

algebraic graph theory, matrix theory, and control theory as bases, the system given by the

proposed protocol can reach globally asymptotically interval consensus and can also achieve a

generalized interval average consensus if the directed graph is balanced. Simulations were

provided to demonstrate the effectiveness of our theoretical results.




 
 �
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6 Interval consensus problem of multi-agent systems with

time delays

6.1 Introduction

Many benefits can be obtained such as robustness, adaptivity, flexibility, and scalability

when replacing a solo complicated system with several simple systems. It is because of this

that the control of multiple interconnected systems has received too many attentions [7].

Recently multi-agent systems have received increasing attentions due to its broad applications

in various fields, such as computer science, vehicle systems and unmanned air vehicles

vehicle formations, flocking and tracking, and so on.

As one type of critical problems for cooperative control of multiple agents, consensus

problems concern such case that agents in a network converge to consistent states by

designing appropriate protocols and algorithms. Various researchers from different disciplines,

such as mathematics, physics, computer sciences and biology, have paid great attention to the

consensus of multi-agent systems over the past decade.

In practice, the speeds in transmission between the individual information are limited

and it is inevitable that there exist communication delays in the system, so the effort of delay

on the collective behavior of the system can not be ignored [131]. In recent years, the

multi-agent system with time delay has been widely studied and made lots of achievements.

By a linear matrix inequality method, Sun et al. provided an appropriate upper bound for

communication delays and proved that all the nodes in the network could solve average

consensus asymptotically [17]. By using a new approach based on the tree-type

transformation, Sun and Wang not only established necessary and sufficient conditions for

consensus in directed networks with dynamically changing topology and nonuniform

time-varying delays, but also presented some feasible conditions in terms of linear matrix

inequalities to determine the allowable upper bounds of delays [119]. Papachristodoulou et al.

considered what effect multiple, non-commensurate (heterogeneous) communication delays

can have on the consensus properties of large-scale multi-agent systems endowed with

nonlinear dynamics [132].
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Generally speaking, for the given consensus protocol and initial states, a fixed consensus

value is obtained. The resulting consensus value, however, may not be ideal or meet the

quality that we require from the multi-agent systems. To solve such a protocol design problem,

we pose a new class of consensus problem, called interval consensus problem, and we try to

find a protocol ensuring that the system converges to a point on a specified closed and

bounded interval in chapter 5. In this chapter, we address interval consensus problem of

multi-agent systems with time delay, i.e., communication delay and input delay, based on the

results in chapter 5. Our work shows that the communication delay does not affect the

consensus while the input delay does. For communication delay, the system given by the

proposed protocol can reach globally asymptotically interval consensus with any time delay.

As for bounded input delay, the system given by the proposed protocol can reach globally

asymptotically interval consensus and then the system can also achieve a generalized interval

average-consensus if the directed graph is balanced. Examples and simulations are provided

to demonstrate the effectiveness of our theoretical results.

6.2 Interval consensus problem of multi-agent systems with time delays

It is well-known that, in general, unmodelled delay effects in a feedback mechanism may

destabilize an otherwise stable system. This destabilizing effect of delay has been well

documented in the literature. In the present context delay effects may arise naturally, for

example, because of the finite transmission speed due to the physical characteristics of the

medium transmitting the information (e.g. acoustic wave communication between underwater

vehicles).

We note that the consensus protocol (5.2) assumes that each agent can get the states of

its neighbors without any time delay. This assumption gives birth to an obvious limitation

because time delay often appears in every practical system and, therefore, deserves

consideration in the consensus problem of the multi-agent systems. In this section we will

consider two types of time delays, i.e., communication delay and input delay, and then give

the main results.

When there exists communication delay, the protocol (5.2) becomes
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where is the communication delay from the j thth agent to the i th agent.

We first consider a simple network structure with one single coupling. If we assume that

the delay affects only the variable that is actually being transmitted from one system to

another then it makes sense to assume that an edge from the agent l to the agent k

contributes to the dynamics as follows

$ % $ % $ %$ %k kl kl k lx t a x t x t* ( ( ( ,

which makes the real variable kx evolve towards the delayed variable lx with a rate of

change proportional to difference $ % $ %k lk lx t x t( ( . More generally, we consider the delay

differential equation

$ % $ % $ %
i

i ij ij i jj Nj N
x t a x t x t

K
P XP X* ( ( (R ZR ZO ,

oror

$ % $ % $ % $ %$ % $ %diag diagx t L x t L L x t* ( ' ( ( ( ( , (6.2)

where $ %diag L( is the diagonal matrix obtained from L( by setting all off-diagonal

entries equal to zero and L is defined in (5.5.4) or as 2L in Lemma 4.4 asas follows,

1 1 12 12 1 1

21 21 2 2 2 2

1 1 2 2

j j n n
j

j j n n
j

ijij

n n n n nj nj
j

a a a

a a a
L lL l

a a a

P XP X
Q YQ Y
Q YQ Y( (Q YQ Y

P XP X* ** * Q YQ YR ZR Z
Q YQ Y
Q YQ Y( (Q YQ Y
R ZR Z

O

O

O

.

Next we present Theorem 6.6.1 for the first time-delayed protocol about communication

delay.

Theorem 6.1. Consider a network of integrators with a fixed topology $ %,G V E that is a

complete digraph; control parameters of the consensus value is d in the interval

$ %min 0 ,i i midx xP XP XR ZR Z . Then, the system (6.2) given by the time-delayed protocol (6.6.1) globally

asymptotically solves the consensus problem with any time delay in the interval

$ %min 0 ,i i midx xP XP XR ZR Z .
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Proof: First of all, the system (5.4) without communication time can reach consensus by

Theorem 5.1. Let $ %itL( be the i thth switching matrix of the system (6.2), and let 0t , 1t , ...

be the time sequence corresponding to the times at which $ %itL( switches. From that the

digraph G is a complete and has, of course, has a spanning tree, and from the definition of

Laplacian matrix, we know that $ %itL( of every network topology is bounded and piecewise

function of time by Lemma 4.1 and Theorem 4.1. Secondly, $ %itL( are row-zero-sum

sub-blocks and all nondiagonal elements are nonnegative, which can also be seen from the

definition of Laplacian matrix. Therefore, $ %itL( the system matrix is Metzler with zero row

sums. Thirdly, it follows from that the sub-graph associate with $ %itL( has a spanning tree,

all nodes can be reached from a node, say the node k , so the equilibrium set of consensus

states is uniformly exponentially stable according to Lemma 4.1. From Theorem 3.5, we

know all components of any solution $ %x tx t of each $ %itL( converges to a common value as

t goes to the infinity. This is to say, the system (6.2) given by the time-delayed protocol (6.6.1)

is robust with respect to an arbitrary delay in the interval $ %min 0 ,i i midx xP XP XR ZR Z .

In the following, we present the time-delayed protocol with input delay.

When there exists input delay, the protocol (5.2) becomes

$ % $ %
i

i ij ij i jj Nj N
u a x t x t

K
P XP XR ZR ZO , $ %0ix Rx RK , (6.3)

where is the input delay for information communicated from the j thth agent to the i th

agent.

The collective dynamics of the network can be expressed asas

$ % $ %x t L x t* ( ( , (6.4)

where L isis the same as in (6.2).

Next we put forward the main result for the second time-delayed protocol about

input delay.

Theorem 6.2. Consider a network of integrators with a fixed topology $ %,G V E that is a

complete digraph; control parameters of the consensus value is d . Then, the system (6.6.4)

given by the time-delayed protocol (6.6.3) with equal input time-delay globally
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asymptotically solves the consensus problem in the interval $ %min 0 ,i i midx xP XP XR ZR Z if and only if

$ %0,0, &K with $ %$ % $ %$ % $ %$ %? @31 21 2

max max maxmax max maxmax max maxmin 2 , 2 , 2 ,min 2 , 2 , 2 ,min 2 , 2 , 2 ,min 2 , 2 , 2 ,
tt tt t& , and here

$ %$ %max
itL denotes the largest eigenvalue of the i thth switching Laplacian matrix. And the

system (6.4) given by the proposed protocol (6.3) can also achieve a generalized interval

ave-consensus if the directed graph is balanced.

Proof: First of all, the system (5.4) without input time can reach consensus by Theorem 5.1.

Let $ %itL be the i th switching Laplacian matrix of the system, and let 0t , 1t , ... be the time

sequence corresponding to the times at which $ %itL switches. From that the digraph G is a

complete and has, of course, has a spanning tree, it follows that every network topology of

with $ %itL as its Laplacian matrix is fixed and strongly connected by Lemma 4.1 and

Theorem 4.1. For each $ %itL , the system with equal communication time-delay 0+ in all

edges with time-delay solves the consensus problem in the interval $ %min 0 ,i i midx xP XP XR ZR Z if

and only if time-delay $ %0,0, iK with $ %$ %max2 it

i L by Theorem 3.3.6, here

$ %$ %max
itL denotes the largest eigenvalue of the i th switching Laplacian matrix. Therefore,

according to Theorem 3.3.6 and Theorem 5.1, the system (6.6.4) given by the time-delayed

protocol (6.6.3) with equal input time-delay globally asymptotically solves the consensus

problem if and only if $ %0,0, &K with

$ %$ % $ %$ % $ %$ %? @31 21 2

max max maxmax max maxmax max maxmin 2 , 2 , 2 ,min 2 , 2 , 2 ,min 2 , 2 , 2 ,min 2 , 2 , 2 ,
tt tt t& . From Theorem 4.1, if the

directed graph is balanced, the system (6.6.4) given by the time-delayed protocol (6.6.3) can also

achieve a generalized interval average-consensus.

6.3 Example and simulation

This section presents some illustrative examples to describe the theoretical results in this

chapter.

Example 6.1.1. We consider the multi-agent systems involving four agents that are under the
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time-delayed consensus protocol (6.1). By simulation studying, we investigate the consensus

convergence character of the multi-agent systems and verify the proposed Theorem 6.1.

We suppose the initial states of four agents are
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Fig. 6.2. The consensus of four agents under the protocol (5.2).

Example 6.2. In this example, we continue to discuss the multi-agent systems stated in

Example 6.1. The usual consensus of these four agents is also shown in Fig. 6.1. The

consensus of these four agents under the consensus protocol (5.2) is also shown in Fig. 6.2.

Based on Theorem 6.2, the consensus under the time-delayed consensus protocol (6.3) can be

reached and the simulations of these four agents with
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Fig. 6.4. The consensus of four agents with time-delay
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Fig. 6.6. Consensus of four agents with time-delay
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Furthermore, as stated similarly in [103] or according to Theorem 4.1, the average

interval consensus of the multi-agent systems can be reached if the digraph of the network

topology is strongly connected and balanced. Of course, the protocol (6.3) with time-delay

globally asymptotically solves the average consensus problem in this example, which can be

seen from Fig. 6.6 and Fig. 6.7 clearly.

6.4 Chapter summary

This chapter discussed interval consensus problem of multi-agent systems with two types

of time-delays, i.e., communication delay and input delay. Our work showed that the

communication delay does not affect the consensus while the input delay does. For

communication delay, the system given by the proposed protocol can reach globally

asymptotically interval consensus with any time delay. As for bounded input delay, the

system given by the proposed protocol can reach globally asymptotically interval consensus

and then the system can also achieve a generalized interval average-consensus if the directed

graph is balanced. Simulations have been given to show the effectiveness of our theoretical

results.
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7 Conclusions and Future Works

7.1 Summary of main contributions

This dissertation solves two consensus problems of multi-agent systems in accordance

with switching protocol. One is the problem about the communication channel constraint on

signal amplitude. We explore conditions for consensus problem of multi-agent systems with

communication channel constraint on signal amplitude and propose the consensus

convergence criterion of system. By simulation study, we verify the rightness of the

theoretics.

The other is the interval consensus problem of multi-agent systems. Interval consensus

problem of multi-agent systems is a new class of consensus problems. For the given

consensus protocol and initial states, a fixed consensus value is obtained. The resulting

consensus value, however, may not be ideal or meet the quality that we require from the

multi-agent system. It is therefore necessary and significant to investigate whether we can

design a protocol to change the consensus value of the multi-agent system, and the answer to

this question will allow application of multi-agent systems in new fields. Moreover, it seems

to be generally complicated and difficult to design an appropriate protocol such that

multi-agent systems can converge to any designated point. By introducing two

state-dependent switching parameters into the consensus protocol, we make the system given

by the proposed protocol globally asymptotically converge to a designated point on a special

closed and bounded interval. In other words, the system given by the proposed protocol can

reach globally asymptotically interval consensus and then the system can also achieve a

generalized interval average consensus if the directed graph is balanced. The effectiveness of

our theoretical results is also demonstrated by simulations.

In addition, we also discuss interval consensus problem of multi-agent systems with two

types of time-delays, i.e., communication delay and input delay. Our work shows that the

communication delay does not affect the consensus while the input delay does. For

communication delay, the system given by the proposed protocol can reach globally

asymptotically interval consensus with any time delay. As for bounded input delay, the

system given by the proposed protocol can reach globally asymptotically interval consensus
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and then the system can also achieve a generalized interval average-consensus if the directed

graph is balanced. Examples and simulations are given to demonstrate the effectiveness of our

theoretical results.

7.2 Future directions and possible extensions

There are several directions and possible related research areas in which we can carry out

future work.

The primary aim of future work is to discuss the convergence towards an interval

consensus for second-order multi-agent systems with directed graphs,

, , 1, .i i i ix v v u i n

A possible extension is about communication graphs. In this dissertation, we addressed

the multi-agent system with a complete digraph, whose every pair of nodes isis adjacent, as its

communication topology. In future work, we will enlarge the multi-agent system to more

ecumenical form system, for instance, to a multi-agent system with a strongly connected

graph. In the formulation of the dissertation, we should consider the possibility that all the

channels are switched off, so that we assume that the communication topology of the

multi-agent system is a complete digraph. In light of this, to relax the assumption of the

complete graph, we may generalize the definition of the consensus protocol.

Another interesting problem is studying robust control for interval consensus problem of

multi-agent systems consisting of n identical agents with the i th one modeled by the

following linear coupling dynamic system subject to external disturbances

$ % $ % $ % $ %1 21 2 , 1, .i i i ix t Ax t B w t B u t i n
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