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Abstract

Massive stars whose masses are about ten times larger than the sun are thought to
explode and blow up the entire gases at the end of their lives. The explosion is called
core-collapse supernova (CCSN) and it is one of the most energetic phenomena in
the universe. The CCSNe are associated with the history of the universe in terms
of the chemical evolution and the origin of the lives since the heavy elements that
were produced in the star are spread out by the explosion. Furthermore, they emit
neutrinos and gravitational waves as well as the electromagnetic waves, which give
the information on the micro physics under the nuclear density. The next-generation
detectors such as Hyper-Kamiokande and KAGRA hence aim at the CCSNe as one
of the main targets. For such reasons, to understand the explosion mechanism of
CCSNe is one of the significant challenges of modern physics.

In this thesis, we treated the shock dynamics in CCSNe, which is one of the
central issues of the fields of supernovae. We focused on the non-spherical structures
of core-collapse progenitors, which have been reported by a series of paper by Arnett,
and the effects on the shock dynamics at first. We performed a linear analysis
and found that the seed perturbations that arise in the outer layer of a progenitor
grow sufficiently during they fall onto the stagnant shock suwrface in CCSNe. Then
we also performed another linear analysis, in which we studied the effects of such
amplified perturbations on the so-called standing accretion shock instability (SASI).
The results are, however, that the fluctuated upstream flows may not affect the
unstable modes of SASI although we seem to need further investigations in order to
make a robust conclusion.

As the next topic, we treated the shock waves in magnetohydrodynamics (MHD).
Since the magnetic field play a central role in some explosion mechanisms, it is al-
so one of the important ingredients in CCSNe. There is, however, an unresolved
issue in the theory of MHD, which is related to the physical relevance of the so-
called intermediate shocks. We address the problem by studying the solutions of
the MHD Riemann problem, which is one of the initial value problems of hyperbolic
systems. We developed a new MHD Riemann solver that handles all types of in-



termediate shocks and other non-regular waves in order to investigate the solution
space. Applying the code to one of the most famous MHD Riemann problems and
its neighborhood, we obtained uncountably many solutions that include intermediate
shocks. This result cast a new question on the physical relevance of the intermediate
shocks
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Chapter 1

Introduction

1.1 Brief review of core-collapse supernovae

Looking up at the sky, we see thousands of stars and those who were fascinated might
have imagined some stories in old times. The mysteries of the celestial objects are
day by day solved with the inventions and improvements of observational instrument
the theory of physics. Such advances elucidated the wider and deeper landscapes of
the universe as well as the new puzzles, which are associated with not only visible
objects but also the invisible or transient phenomena such as black holes, gamma-ray
bursts, and gravitational waves that will be detected by future experiments.

Supernovae (SNe) are one of the most energetic transients, which are thought to
be related with the explosive deaths of massive stars. Due to the extreme brightness,
which is comparable to that of a galaxy, some Galactic SNe were observed even
with naked eyes and they were written as a ‘new star’ in historical records (Green
& Stephenson, 2003), which include the faithful and well-recorded SNe: SN 1006,
SN 1054 (whose remnant is known as the Crab Nebula), SN 1181, SN 1572 (also
known as Tycho’s SN) and SN 1604 (Kepler’s SN). Since SN 1604 is the last SN that
was observed in our galaxy, they were not distinguished from normal novae, which
are known to be a giant eruption on the surface of a white dwarf, until they were
observed in other galaxies and their larger absolute magnitudes were measured in
1920s (see Lyne & Graham-Smith, 2006; Duerbeck, 2008).

Spectroscopically SNe were divided into two groups, Type I and Type II, after
the discovery of a SN in NGC 4725 that represented emission lines in the region
of Ha and was deficient in other absorption and emission lines (Minkowski, 1940,
1941). Nowadays, the former type is further divided to Type Ia and Type Ib/c.
Type La SNe are different from the others in terms of the strong absorption lines of

7



8 CHAPTER 1. INTRODUCTION

Si II (Filippenko, 1997) and is thought to be the thermonuclear runaway explosion
of a white dwarf (Howell, 2011), which synthesizes lots of nickels, whose radio active
decay is the main energy source of the optical light.

On the other hand, the other supernovae are thought to be related to the col-
lapse of the massive stars, whose masses are larger than about 10 M., and called
core-collapse supernovae (CCSNe).In the widely accepted scenario, the explosion is
triggered by the collapse of the central iron core, which is the final product of nuclear
burnings. As the core collapses, the central density grows and neutrons are produced
via inverse beta decays. The so-called proto-neutron star is formed once the nuclear
density is reached, which endures the collapse by the degenerate pressure of neutrons.
The infalling matter hits the surface and recoils, which produce a shock wave that
proceeds outward. It is known, however, that the shock wave stagnates in the iron
core due to the large mass accretion rate and loss of energy via photodissociations
of nuclei. In fact, searching the way to revive the stagnant shock wave has been the
central issue in the field of CCSN mechanisms (Janka, 2012; Kotake et al., 2012).
One of the milestones for a feasible and detailed mechanism of CCSNe was placed by
Colgate & White (1966), who introduced the idea of the so-called neutrino heating
mechanism. In the scenario, neutrinos that defuse out of a proto-neutron star deposit
the energies with the fluid below the shock wave, which revives the stagnant shock
wave and the shock proceeds outward (Bethe & Wilson, 1985). This neutrino-heating
mechanism has been one of the most hopeful mechanisms as well as other scenarios
such as the acoustic mechanism (Burrows et al., 2006, 2007) and magneto-driven
supernovae (e.g. Kotake et al., 2004; Sawai et al., 2005; Sawai & Yamada, 2014).

It has been commonly accepted that the standing shock wave does not revive in
spherically symmetric simulations if detailed physics are properly considered (e.g.
Rampp & Janka, 2000; Liebendorfer et al., 2005; Suwa et al., 2014). The reason of
the failure is that the neutrino heating becomes insuflicient since the fluid particles
fall rapidly and pass through the gain region, where the fluid particles receive the
energy from neutrinos, in a short time due to the spherically symmetric accretion
flow. On the other hand, in higher dimensional flows, matters can stay in the gain
region longer in principle. In fact, fluid instabilities such as convections produce
complex flow patterns, which prolong the dwelling time.

Standing accretion shock instability (SASI) is one of such fluid instabilities that
enhance the efficiency of the neutrino heating. This instability is also thought to be
a key to revive the stagnant shock wave as well as neutrino-driven convections. We
focus the SASI activity in CCSNe and give a brief review in the next section.
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1.2 Standing accretion shock instability

1.2.1 basic properties

As stated above, the mechanism of CCSNe has been a long-standing problem despite
intensive efforts. One of the central issues is how a shock wave proceeds outward
and breaks out of an iron core. The shock wave that originates from core bounce
does not go through the core directly but stagnates due to heavy accretion and loss
of energy via photodissociations of nuclei. Among proposed mechanisms, neutrino
heating is commonly thought to be the most promising one, in which neutrinos that
diffuse out of a proto-ucutron star deposit cnergy to matter and lead to a revival of
the standing shock and, as a result, to an explosion.

In this scenario, a multi-dimensional fluid instability that is called SASI may play
an important role to enhance the neutrino heating and contribute to shock revival.
This is because the standing shock gets deformed rapidly due to the instability and
makes complex flows below the shock, which detain the fluid in a gain region longer,
even if the standing shock is initially spherically symmetric. A remarkable character
of SASI is that the large scale modes dominate both in linear and non-linear regimes,
which correspond to I = 1,2 modes in term of the index of the usual spherical har-
monics, Y, (6, ¢). In addition to this sloshing motions, the non-axisymmetric spiral
motions, where low m is dominant, can develops in three-dimensional simulations.
Such dynamical motions of a shock wave that are induced by SASI have been wide-
ly observed in multi-dimensional numerical simulations of various progenitors, where
detailed physics is taken into account (Abdikamarov et al., 2014; Bruenn et al., 2013;
Couch & O’Connor, 2014; Hanke et al., 2013; Iwakami et al., 2008, 2009, 2014a,b;
Nakamura et al., 2014; Suwa et al., 2010; Takiwaki et al., 2012, 2014).

From the observational point of view, the existence of SASI may be indirectly
inferred. The proper motions of pulsars, some of which are known to have large ve-
locities, may be a consequence of the recoil in an asymmetric explosion that follows
SAST (Burrows & Hayes, 1995; Nordhaus et al., 2012; Wongwathanarat et al., 2010,
2013). The rotation of neutron stars may be induced by spiral flows in SASI and
redistribution of the angular momentum. Rantsiou et al. (2011); Guilet & Ferndndez
(2014) concluded that the spiral modes of SASI can produce the observed spin pe-
riods even for non-rotating progenitors (but see also Wongwathanarat et al., 2010,
2013). Furthermore SASI activity in CCSNe is expected to be observed as an im-
print in gravitational wave signals, which gives more direct evidence of the instability
(Murphy et al., 2009; Kotake et al., 2009, 2011; Miiller et al., 2012, 2013; Kuroda et
al., 2014).
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The driving force of SASI is thought to be the cyclic productions of waves, which
propagate inward and outward, in the shocked region. Suppose that a small fluctu-
ation arises behind the shock surface. It will travel inward and produce an acoustic
wave that propagates outward when it reaches the region where the background flow
changes sharply (e.g., the region near the proto-neutron star surface). The outgoing
acoustic wave will reach the shock and strike the surface, which makes new waves
that propagate inward. If the amplitudes of waves grow as the procedure is repeat-
ed, this coupling cycle of the ingoing and outgoing waves makes the standing shock
unstable (Guilet & Foglizzo, 2012). There are, however, two different versions in
this basic idea. The difference is that the ingoing wave that produces the outgoing
acoustic wave is a vorticity wave or an acoustic wave; The former cycle is called
the advective-acoustic cycle and the other is referred to as the purely-acoustic cycle.
Both of the cycles can cause an instability in principle and hence it is the mat-
ter of their efficiencies. The difference of the mechanism results in a different time
evolution of the shock surface such as oscillatory frequency and growth rate. Previ-
ous linear analyses support the advective-acoustic cycle since the eigen frequencies
match the crossing timescale of advections and acoustic waves between the shock
radius and proto-neutron star surface (Yamasaki & Yamada, 2007; Foglizzo et al.,
2007; Yamasaki & Foglizzo, 2008; Foglizzo, 2009; Sato et al., 2009; Guilet & Foglizzo,
2010, 2012). Some numerical simulations also confirmed the dominant role of the
advective-acoustic cycle (Ohnishi et al., 2006; Scheck et al., 2008; Miiller et al., 2012;
Takiwaki et al., 2012). On the other hand, however, some author reported that the
purely-acoustic cycle is responsible for the instability (Blondin & Mezzacappa, 2006;
Blondin & Shaw, 2007). Hence, it is not completely understood which mechanism is
really essential for SASI.

As seen from the driving mechanisms, SAST is known to be essentially different
from the convective instability. In fact, SASI occurs even in isentropic flows, where
there is no negative entropy gradient (Blondin et al., 2003). Tt is difficult, however, to
distinguish them in realistic simulations and which instability is important in CCSNe
is still controversial (see Iwakami et al., 2014a,b, and references).

It is worth noting that SASI itself is found not only in CCSNe but also in other
phenomena: e.g. in a disk around a black hole (Nagakura & Yamada, 2008, 2009)
and in a shallow water experiment (Foglizzo et al., 2012). It is also noted that the
relation between SASI and the g-mode instability of a proto-neutron star has been
discussed, which may help the explosions by the acoustic mechanism (Burrows et al.,
2006, 2007), although a linear analysis by Yoshida et al. (2007) and other numerical
simulations did not find such evidence (e.g. Marck & Janka, 2009).
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1.2.2 a new question on SASI

As discussed in the previous section, SASI is an important key to the explosion
mechanism and observable properties as well. Hence, the analytical studies have
been performed to investigate nature of SASI (Yamasaki & Yamada, 2005, 2006,
2007; Foglizzo et al., 2007; Yamasaki & Foglizzo, 2008; Foglizzo, 2009; Sato et al.,
2009; Guilet & Foglizzo, 2010, 2012). They assumed, however, that the matter flow
outside the shock is steady and spherical.

This assumption may not be justified as pointed out by Bazan & Arnett (1998);
Asida & Arnett (2000); Meakin & Arnett (2006, 2007); Arnett & Meakin (2011);
Chatzopoulos et al. (2014). They numerically investigated nuclear burnings in out-
er layers (Si, O, C, and Ne shells) in the pre-collapse stage and found that the
structures of progenitors are substantially deviated from spherical symmetry due to
violent convections. Couch & Ott (2013) reported recently that such non-spherical
fluctuations in the progenitor may yield successful explosions even when no explosion
obtains without the fluctuations. Furthermore, Miiller & Janka (2014) systematical-
ly investigated the effect of such non-spherical perturbations by artificially adding
various perturbations in outer layers. They reported that the large scale (I = 1,2)
perturbations are effective in shock revival.

This non-spherically symmetric nature of the progenitors and its effect on SASI
are the first topic of this thesis. We postpone the details of our scope, however, to
Sec. 1.4.

1.3 Magnetohydrodynamics

1.3.1 magnetohydrodynamics in CCSNe

The magnetic field is also one of the main topics that are related to CCSNe. There
are many observational evidences that neutron stars have a strong magnetic field,
which is about 102 — 10 G (e.g. Lorimer, 2009). Furthermore, there are also some
observations that indicate the existences of so-called magnetars, which have stronger
magnetic fields that are estimated as ~ 10! or even ~ 10' G (Hurley, 2009).
These objects are thought to be a remnant of CCSNe and the way to produce
such a strong field has been discussed by many authors (Sawai et al., 2013). In
addition, there arc some mechanisms in which magnetic ficlds pla (see
e.g. Kotake et al., 2004; Sawai et al., 2005; Sawai & Yamada, 2014, and references).
The magnetic field should be also related to SASI since the number of modes
increase due to the magnetic field, which affect the mechanism of cycle (Guilet &
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Foglizzo, 2010). Moreover, Endeve et al. (2010, 2012) pointed out that SASI strength-
ens the magnetic field and hence contributes to the magnetization of a neutron star.
From the above results, the magnetohydrodynamics (MHD) can be essential in
CCSNe. There remains, however, an unresolved issue in MHD theory indeed. It
is the problem of the physical relevance of a class of MHD shock waves, which are
so-called intermediate shocks. We review the issue in the following section.

1.3.2 an unresolved issue of MHD Riemann problems

The Riemann problem for a system of 1st-order, hyperbolic partial differential equa-
tions is an initial value problem, in which two distinct constant states are separated
by a discontinuity initially. By hyperbolic we mean that all eigenvalues of the Jaco-
bian matrix that characterizes small perturbations are real. It is well known that the
Riemann problem in ideal MHD has in general non-unique solutions for a given ini-
tial condition even if one discards manifestly unphysical ones such as those including
rarefaction shock waves, in which entropy is decreased. This is in sharp contrast to
the hydrodynamical counterparts and is due to the facts that the system of equations
that describes ideal MHD is not strictly hyperbolic, i.e., some of the eigenvalues of
the Jacobian matrix are coincident with each other, and that the characteristic fields
are neither linear nor genuinely non-linear (see § 4.2 and e.g. Lax, 1957; Jeffrey &
Taniuti, 1964; Polovin & Demutskii, 1990). In fact, the MHD Riemann problem
has a far greater variety of solutions including so-called intermediate shock waves.
Although these intermediate shocks are deemed to be unphysical in some text books,
some interplanetary experiments have reported the detections of intermediate shock-
s (Chao, 1995; Feng & Wang, 2008; Feng et al., 2009) and they are actually realized
in almost all numerical solutions. Their reality is hence still an issue of controversy
as will be described below more in detail.

Solutions of the Riemann problem consist of discontinuities and centered self-
similar simple waves in general (see § 4.2 for more details). Various shock waves
appearing in the solutions of Riemann problem are usually characterized by the flow
speeds upstream and downstream in the shock-rest frame: in ideal MHD, for example,
the fast shock has a flow velocity that exceeds the fast-wave velocity (termed super-
fast hereafter) upstream whereas the downstream flow velocity is sub-fast, i.e. lower
than the fast-wave velocity, but super-Alfvénic, i.e., higher than the Alfvén-wave
velocity (see § 4.3 for the definitions of these wave velocities); assigning the numbers
1, 2, 3 and 4 to the super-fast, sub-fast and super-Alfvénic, sub-Alfvénic and super-
slow, and sub-slow states respectively, we designate the fast shock as 1 — 2 shock;
other shocks are referred to just in the same way.
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The intermediate shock waves in ideal MHD have coplanar configurations, i.e.
the upstream transverse magnetic field is anti-parallel to the downstream one and
they are characterized by the flow velocities that are super-Alfvénic upstream and
sub-Alfvénic downstream. They are normally assigned to one of the following four
types: 1 — 3,1 — 4, 2 — 3 or 2 — 4 shock. There are some boundary types as
well: for example, the 2 — 3,4 shock is a boundary type that has a downstream flow
speed that is equal to the slow speed as indicated by its name. As mentioned above,
these intermediate shock waves are considered to be unphysical in some textbooks
(see e.g. Lax, 1957; Jeffrey & Taniuti, 1964; Polovin & Demutskii, 1990) because they
do not satisfy the so-called evolutionary conditions, which require the existence of
perturbed states of the same type; for ordinary shock waves (such as the fast shock
in ideal MHD), one of the characteristics runs into the discontinuity from both sides;
this is not the case for some of the intermediate shocks; for instance, the 1 — 3
intermediate shock is a shock wave whose flow speeds in the shock-rest frame are
super-fast upstream and sub-Alfvénic and super-slow downstream; hence the fast
and Alfvén characteristics go into the shock both upstream and downstream; in the
case of the 2 — 3 shock, only the Alfvén characteristic converges to the shock wave;
however, another evolutionary condition on the linear independence of eigenfunctions
is violated and it is classified as unphysical shock.

In spite of the evolutionary conditions, the intermediate shocks are commonly
observed as a stable constituent wave in numerical solutions of the MHD Riemann
problems (Wu, 1987; Brio & Wu, 1988; Wu, 1988b,a, 1990; Wu & Kennel, 1992).
One of the best known cases is the one discussed by Brio & Wu (1988), in which the
numerical solution contains a so-called compound wave that consists of a 2 — 3,4
shock followed by a slow rarefaction wave. Wu (1987) also showed numerically that
the 2 — 4 shock-like structure could be obtained by steepening of a continuous wave,
an indication that the resultant structure is physical. In addition he demonstrated
that a perturbed states obtained for a slightly different initial condition retains a
similar structure. Moreover, Wu (1988b) computed interactions between the 2 — 4
shock-like structure and an Alfvén wave and found that the structure remains for a
while before it breaks to other waves. These results indicate that the intermediate
shock is stable to the perturbation in a sense. Wu (1988b) found that the shock-like
structures observed in the computations with perturbations are time-dependent and
do not satisfy the Rankine-Hugoniot condition in fact. He claimed that these new
types of shocks are the neighboring states for the intermediate shocks. In yet an-
other simulation Wu (1988a) showed that rotational discontinuities, which are not
intermediate, break into some other waves that include an intermediate shock. This
is a suggestion that it is not intermediate shocks but particular types of evolutionary
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discontinuities that are unstable and unphysical. On the other hand, Wu (1990)
studied the structures inside shock waves by introducing dissipations and found that
they are not uniquely determined by the asymptotic states and there remain extra
degrees of freedom. He concluded that the stability of the intermediate shocks to the
interactions with Alfvén waves is originated from these degrees of freedom. Inciden-
tally, it was also demonstrated that all types of intermediate shocks can be produced
by steepening processes in dissipative MHD.

Completely opposite and equally convincing arguments were made by Falle &
Komissarov (1997, 2001). They pointed out that if perfect planarity or coplanarity
is imposed initially, the solution retains the symmetry and magnetic fields cannot
rotate in the evolutions; then the problem is equivalent to solving the reduced system
of MHD equations, in which it is assumed that magnetic fields are confined in a plane
and, as a consequence, the Alfvén waves do not exist; this changes the number of
characteristics of the system and modifies the evolutionary conditions; in fact, the
180°-rotational discontinuity becomes non-evolutionary whereas 1 — 3 and 2 — 4
shocks become evolutionary for this reduced system. They also demonstrated numer-
ically that the intermediate shock does not emerge if coplanarity of the solution is
broken by ingerting a thin layer within which the magnetic field rotates continuously.
Barmin et al. (1996), on the other hand, found numerically that the compound wave
breaks into a rotational discontinuity and a slow shock if the exact coplanarity is
perturbed. Although Falle & Komissarov (2001) agreed with Wu (1990) that the
temporary survival of 1 — 3, 2 — 4 and 1 — 4 shocks in their interactions with
Alfvén waves is due to the non-unique shock structures, it was claimed that they
should be regarded as transients.

We also note that the evolutionary conditions themselves have been reconsidered
in the mean time (Hada, 1994; Markovskii, 1998; Inoue & Inutsuka, 2007). These
authors took dissipations into account, considering that the waves that emerge in
dissipative MHD should be physical. With dissiptations shocks are no longer discon-
tinuities and the analysis is facilitated. They found new modes that do not exist in
ideal MHD and argued that on account of these modes the intermediate shocks are
indeed evolutionary.

As a result, the existence of intermediate shocks is still controversial. To address
this issue, we developed a new MHD Riemann solver that can handle the intermediate
shocks as mentioned briefly in the next section and Chap 4 in detail. We note here
that previous works that are strongly related to our study are separately reviewed
in Chap. 4.
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1.4 Main topics in the thesis

Considering the above background, this thesis focuss on the following two topics.
The first one is the analysis of SASI in CCSNe with non-spherical stellar structures.
This topic was studied with the two succeeding linear analyses as described in detail
in the following chapters. First, we investigated the evolution of linear perturbations
that are given in the supersonic accretion flows in order to know how the fluctuations
due to the dynamic convections in Si/O shells are amplified during the infall onto the
standing shock. Second, we analyzed the SASI activities that are exposed to such
fluctuated non-spherical flows. Both of them are performed with the use of Laplace
transform, which is suitable for our analysis.

Our studies are based on the linear analysis although the SASI may grow even
into a non-linear phase in reality as seen in numerical simulations. We emphasize,
however, that our analyses are the first challenge to understand the SASI with more
realistic progenitors that have non-spherical structures. We also note that such
analyses are necessary to understand the linear growth phase of the SASI in numerical
simulations, which will eventually take into account the non-spherical upstream flows.

Another is a fundamental problem that is related to the theory of MHD: the non-
uniqueness of the solutions of MHD Riemann problem and their stabilities. We think
that the detailed study of particular solutions of the MHD Riemann problem togeth-
er with their neighboring ones are also helpful to get some more insights into the
reality of intermediate shocks. For this purpose, we coded a program to find all the
solutions for arbitrary initial conditions. We have extended the algorithm proposed
by Torrilhon (2002, 2003b) so that we could handle all combinations of constituent
waves, including all types of intermediate shocks as well as the regular waves. Since
the parameter space of the MHD Riemann problem is vast (15 dimensions indeed)
and exploring the entire space is almost impossible, we need to pay attention to those
initial conditions and their neighborhoods, which appear of particular interest to us.
In this thesis we mainly investigated the initial condition that was first picked up by
Brio & Wu (1988), which is the most famous MHD Riemann problem and includes
a compound wave in one of the solutions as mentioned earlier.

The second topic may seem to have nothing to do with the mechanisms of CCSNe.
To solve the above problem is, however, necessary to take a step to understand the
magnetic phenomena because it is directly related to the physics of MHD and it is
also a basis of MHD numerical simulations. Hence, the topic is associated not only
with the physics of SNe but also with all the phenomena in magnetic fields.

Both of these themes give some important basics to analyze the shock dynamics
in CCSNe, which will continue to be studied by super-computer simulations in the
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future. Hence, we believe that these studies will make much contribution to the
elucidation of the mechanism of CCSNe, which is one of the main problems of the
modern physics.

This thesis is organized as follows. We devote pages to analyses of SASI at first.
In the next chapter, we discuss the analysis of the perturbation growths in supersonic
accretion flows in front of a stagnant shock wave. Then the linear analysis of SASI
under non-spherical flows is presented in Chap. 3. The latter part of the thesis is
mainly devoted to the second topic, which discusses the solutions of MHD Riemann
problems in Chap 4. Finally we give a summary of the conclusions in Chap. 5. We
also note that some additional information is given as appendices in the last few

pages.



Chapter 2

Analysis of the Non-spherical
Supersonic Flows

2.1 Introduction

In this section, we analyze the evolution of the perturbations during infall onto the
stagnant shock wave, whose seed is the dynamically convective flows in outer la
of a progenitor of CCSNe, as mentioned in the previous chapter.

Instead of conducting multi-dimensional simulations, we investigate the growth

-spherical perturbations in accretion flows onto the standing shock wave, based

on linear analysis. In contrast to previous studies (Kovalenko & Eremin, 1998; Lai &
Goldreich, 2000, hereafter LG00), we do not treat the asymptotic behavior (r — 0)
but deal with the growth of perturbations as an initial and boundary value problem
with a use of Laplace transform. This facilitates to see the correspondence between
the seed perturbations and the fluctuations at the shock. We employ some assump-
tions for simplicity: we neglect cooling and heating and use a polytropic equation
of state; we consider only the gravity of the proto-neutron star that is approximat-
ed by a point mass; the background flow is assumed to be a spherically symmetric
supersonic Bondi accretion flow. These assumptions are justified for the current
purpose.

In this chapter we give perturbations initially at a certain radius, possibly cor-
responding to Si/O shells, and see how they evolve as they flow inwards. This is in
sharp contrast to the ordinary linear analysis. In fact, perturbations do not grow
exponentially in time at any fixed point in the current problem. They grow in space.
Our analysis is better suited for such problems. We are interested in the amplifica-
tion factor of perturbations when they reach the shock wave. As shown later in this

17
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chapter, they are oscillating in time and the typical frequencies are similar to those of
SASI. If an analogy with forced oscillations holds true, these amplified perturbations
may enhance the SASI activity in turn. The dependence of the amplification factor
on /[, the index of the spherical harmonics Y},,,(6, ¢), is obtained and is found to be
differeut from those claimed by LG0O0O and Kovalenko & Ercmin (1998), who treated
the asymptotic regime (r — 0).

The chapter is organized as follows. In the next section, we give the basic equa-
tions with the assumptions mentioned above, and we introduce the Laplace transform
method that facilitates the solution of the linearized partial differential equations.
We also set the model-parameters in this section. The results are presented in Sec. 2.3
and discussions are given in Sec. 2.4. Finally, we summarize our findings in Sec. 2.5.

2.2 Method

As stated in the introduction, we study the evolution of the perturbations that are
initially given at a certain radius. Since we have in mind the application to the post-
bounce phase of CCSNe, we focus on the amplification factor and its time-dependence
at a certain radius downstream, corresponding to the shock position. We study it
by linear analysis although the fluctuations may become nonlinear in reality if they
grow sufficiently. For such a purpose, Laplace transform is quite useful as shown in
section 2.2.2. We apply it to the linearized equations that govern the evolution of
perturbations in supersonic accretion flows and are derived in section 2.2.1. At the
end of this section, we introduce models and parameters employed in this paper.

2.2.1 basic equations

We consider supersonic accretion flows, which approximate the matter flows outside
the standing shock wave in the post-bounce phase of CCSNe. We neglect the self-
gravity of the accreting matter and take into account only the gravity of the central
accretor, which mimics a proto-neutron star, and of matter inside the shock wave.
This is not a bad approximation since the accretor mass is indeed dominant. Since
cooling and heating via neutrinos are negligible, we assume that the flows are adi-
abatic and employ a polytropic equation of state. We note that nuclear burnings,
which are also neglected just for simplicity in this study, may actually affect the
dynamics. This issue will be addressed elsewhere.
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Under these assumptions, the governing equations are given as follows.

dp
o T V-(pv) = 0, (2.1)
a : i GM Tr;
a(pvi) + V(pvo’ +d8p) = - T (2.2)
p = Kp, (2.3)

where p, p, v, v, and K are the density, pressure, velocity, ratio of specific heats
and polytropic coefficient, respectively. G and M are the gravitational constant and
mass of the central object, respectively.

As repeatedly mentioned, we consider fluctuations to a spherically symmetric,
transonic Bondi accretion flow, which is a time-independent solution of Eqs. (2.1)-
(2.3). Following LG00, we linearize above equations and express the perturbations
as

Sp(rt) = Op(r,)¥im(0, ). (2.4)

ov(r,t) = ou(r,t)Y(6, )t
FouL(n ) 105 + G ae | T 05 T e ae |

(2.5)

where Y},,,(0, ¢) is the ordinary spherical harmonics and t, é, and <Z; are unit vectors
in spherical coordinates. Then the system of linearized equations is given as

%5/) + i—g%(r%) + %%(pr%v,«) — gl(l + 1)dv, = 0, (2.6)
%(5% + %5% + % <6—;> = 0, (2.7)

%(T(SUJ_) + % = 0, (2.8)

%(T&)M) = 0, (2.9)

§p = yKp'op,  (2.10)

where D/Dt := 9/0t + v,0/0r denotes the Lagrange derivative. We note that E-
q. (2.9) is decoupled from others and can be solved immediately as follows:

R r d,r/ r d,',/
5UTOt<T7 t) - ?57)7'015,1% (ZL - /R m) 6 (t - /R m) 3 (211)
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where R is the radius of the outer boundary and the boundary value v, g(f) is
imposed there. () denotes the step function. The solution means that the pertur-

bation dv,.; is simply advected inwards, increasing its amplitude as oc + .

2.2.2 Laplace transform

We introduce here an idea to solve the linearized partial differential equations by
Laplace transform. Although finite difference methods are more often employed to
solve hyperbolic partial differential equations, we prefer Laplace transform. As will
be seen below, this method is particularly suitable for our interest: by what factor
does the perturbation imposed at a certain point will grow during the advection to
a specified point?

Laplace transform with respective to ¢ is symbolically expressed by an operator
L and defined as follows (e.g. Schiff, 1999):

F1(s) = LUD])(s) = / " pett, (2.12)

where f(¢) is a function of ¢, for which Laplace transform exists for some complex
number, s. The advantage in the use of Laplace transform is that the partial differ-
ential equations are reduced to ordinary differential equations with respective to r
thanks to the relation:

c [%} — SL[f] - 1(0%), (2.13)

in which the second term on the right hand side is the initial values of [ at { = 0.
Note that the r-dependence is omitted in the above equation for notational simplicity.
Laplace transforming the linearized equations (2.6)-(2.8), we obtain the following
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equations:
d [op*(r,s)
dr p
1 sM o d - y—1dp\ dop*
= —InM - ——
1M2{<cs M dr p dr/) p
, 2 v I(l+1) v
oM e (L gy 20y S el DI g gy
Cs dr v, dr Uy r Uy
d [ovi(r,s)
dr Uy
1 5 d - y—1dp\ dp*
L L R er
1— M2 {( Uy ar P d?”) p
i 2 * ’ VAR ]
N (5./\/1 B iln Yo 2M %) dur N I+ 1)0&} | (2.15)
Cs r v, ds Uy T U
d [ovi(r,s) 1 dp* s 1 1dou\ dv}
Ry (KLARCGLIA S (R . 2.1
dr ( v, ) rM? p vy + r + v, dr ) v, (2.16)

where variables with a suffix x* are the quantities that are Laplace transformed with
respect to t; M(:= 4wr?pu,) is the mass accretion rate; ¢,(:= /7y ) is the sound
speed and M(:= , . In deriving
these equations, we assume that the initial perturbations are zero except at the
outer boundary because we suppose that the fluctuations are initially confined in the
convective zone in the outer envelope of the progenitor and will fall onto the stalled
shock wave later.

We emphasize here that Eqs. (2.14)-(2.16) form a system of ordinary differen-
tial equations with respect to r with s being a parameter. The integration of the
equations is then much facilitated by the use of e.g. the Runge-Kutta method. As
mentioned above, perturbations are generated at the outer boundary and given as
the boundary condition there in our formulation. For example, if the perturbation
is given as f(t, R) = sin(wt), then its Laplace transform, Llsin(wt)] = w/(s? + w?),
is used as the boundary value for each s.

Integrating the Laplace transformed equations from the outer boundary to the
inner boundary, which corresponds to the shock radius in the CCSNe context, we
obtain the Laplace transformed quantities at the inner boundary for a given value of
5. Collecting these quantities for a set of s, we can recover the corresponding time
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evolutions of these variables at the inner boundary via the inverse transform formula:

) = L7 (2.17)
1 T+iy
= ylgg% - [ (s)eds, (2.18)

where x and y are the real and imaginary parts of s, respectively.? In these expres-
sions, 7 is a fixed number and the integral path is a line parallel to the imaginary
axis. In fact, x is arbitrary as long as the Laplace transform of f(¢) is defined for
s. Note that the integral on the right hand side is nothing but a Fourier transform
and can be performed efficiently by Fast Fourier Transform. It is also mentioned
that if f(¢) is a real function, the real and imaginary parts of f*(s) are even and odd
functions, respectively. This is indeed the case for our current problem, since we are
dealing with the perturbations of real quantities. We can then reduce the integral
domain by half. In the numerical evaluations, the integral domain is enlarged until
we see a convergence. Other technical details in numerical evaluations are given in
Appendix A.1.

2.2.3 models and parameters

As mentioned repeatedly, we have in mind the application of our models to the post-
bounce phase of CCSNe. We hence employ the transonic, spherical Bondi accretion
flow as an unperturbed state in order to mimic the infall of the outer envelope onto
the stalled shock wave. Only the supersonic portions of the transonic flows are
adopted in our models. We set the inner boundary at 200 — 400 km from the center,
roughly corresponding to the radius of the stagnant shock wave in the post-bounce
core of CCSNe. The outer boundary approximately coincides with the position of
Si/O layer.

The canonical values of model parameters to specify a background flow are as
follows: the density at the sonic point p, = 1 x 107 g cm ®, mass accretion rate
M=1 Mg s71, ratio of specific heats v = 1.6, mass of the accretor M., = 1.4 Mg,
and radius of the inner boundary ry, = 3 x 107 cm. In this model, the radius of
the sonic point is given as r, = 1.39 x 10% cm, and the sound speed at that point is
Cse = 8.20x 10% cm s71, and the Bernoulli constant is £ = 1.12x 10" g cm? s~ 2. The
constant in the polytropic equation of state is given as K = 2.65 x 10'® in CGS units.

3As a matter of fact, we can obtain the time evolution at any point in the same way.
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These parameters are tuned to approximate the collapse of 15 M, progenitor model
by Woosley & Heger (2007) (see also Yamamoto et al., 2013), which is thought to be
a typical progenitor of CCSNe and commonly used in the literature. The profiles of
this model are displayed in Fig. 2.1. Note that the mass of accreting matter is 0.1 M,
which is much smaller than the mass of central accretor, 1.4 M. This justifics the
neglect of self-gravity in our model. In fact, the background flow changes at most 10
per cent if we take fully into account the self-gravity of accreting matter.

In reality, the infall velocities around Si/O layer, the region that produces per-
turbations, will be subsonic. We do not include the subsonic part of the Bondi
accretion flow in this study, however, to avoid numerical complexities in treating the
sonic point. Unless the perturbations are suppressed substantially in this subsonic
portion, which is rather unlikely, the conclusion of this paper is not changed.

As mentioned already, we impose perturbations at the outer boundary as a time-
dependent boundary condition. Since the background flow is supersonic, no bound-
ary condition is needed at the inner boundary. As for the functional form of the
outer boundary condition, we consider a step-function, #(¢), and a sinusoidal func-
tion, sin(wt).

1.4e+08 T T T T -8e+08
1.2e+08
1 -1.2e+09
le+08 |
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Figure 2.1: The background flow (the transonic Bondi accretion flow) for the canon-
ical parameter set. The blue, green, and red lines represent the sound speed (multi-
plied by —1). flow velocity and density, respectively.
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2.3 Results

In this section, we show the time evolutions of the perturbations as well as their
systematics. As mentioned previously, the results are obtained by integrating the
Laplace transformed equations (2.14)-(2.16) numerically from the outer boundary
located near the sonic point to the inner boundary for a set of s and then inverse-
transforming the quantities so obtained into the counterparts in the real-time domain
by Eq. (2.17). In the following we first present the time evolutions for the step-
function type outer boundary condition, for which the causality is demonstrated
most clearly. Then we give a more realistic case, in which we impose a sinusoidal
time-variations in all quantities at the outer boundary.

2.3.1 step-function type perturbations

We present firstly the time evolutions at rg, = 300 km in the canonical model.
The density of perturbations and radial-velocity perturbations are set at the outer
boundary r = R = 1.25x 108 cm as a step function in time. Since the background flow
is spherically symmetric and the perturbations are decomposed with the spherical
harmonics, different l-modes are considered separately.

We begin with spherical modes with [ = 0. In this case, the transverse compo-
nents of velocity vanish everywhere at any time. We present the result in Fig. 2.2,
in which the vertical axis is the perturbations normalized by the values at the outer
boundary whereas the horizontal axis represents the time from the instance when
the perturbation is imposed at » = R. As scen in the figure, the perturbations reach
re, With a delay, which is estimated as

Tsh dr/
f = O 415ms, 2.20
=1, 5 220

where A(r) denotes the velocity of the in-going acoustic wave: v, — ¢g. Since the
background flow is supersonic everywhere, the other two characteristic velocities,
v+ g and v,., are also negative. It is also evident in the figure that the perturbations
become steady after {3 = 783 ms, which corresponds to the time, at which a wave
that has the slowest characteristic velocity, v, + ¢, reaches ry,. The perturbation
increases monotonically in the case of density. It is doubled quickly in less than 200
ms and nearly tripled finally in the steady state. The radial velocity grows much
slowly and the amplification factor reaches ouly ~ 1.25 in the steady state.

Fig. 2.3 represents the results for [ = 1,4,5,10,15, and 20. For [ = 20, for
example, the amplification factor reachies ~ 30 for the density perturbation and it
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goes up to ~ 15 for the radial-velocity perturbation in the steady state established
after {3. For these modes, the transverse components of velocity are also perturbed
as du) v, = Svper /vy < B(L) at the outer boundary. As mentioned in Sec. 2.2.1, §v,.4
is not coupled with other perturbations and is obtained by Eq. (2.11). As a matter
of fact, for the step-function type perturbation assumed in this section, dv,. /v, also
becomes a step function in time with a discontinuity at ¢ = {5 given by

Tsh /
t2:/ dr’ (2.21)

r ()

The time evolutions of other variables, on the other hand, change qualitatively
as [ increases. Firstly, in contrast to the I = 0 case, the density and radial-velocity
perturbations have another transition at ¢5 (see Fig. 2.4 for close-ups). This may seem
strange, since the eigenfunction that corresponds to the eigenvalue, v,, contains only
d0v, and hence dp and dv, appear to have nothing special at t5. This is not true,
however, and these modes are actually mixed because the background flow is non-
uniform spatially and, as a consequence, the eigenvectors vary radially.

Secondly, the perturbations oscillate in time between {; and {3. Although these
oscillations are not harmonic, their frequencies are roughly in the range of 40 — 100
s! for | = 1 — 20 between {; and ¢, and they become higher as ! increases. The
oscillations continue after ¢, but the frequencies get lower as the time passes: the
interval between nodes are 14.19,25,35,51, and 93 ms for [ = 20 while those for
[ = 10 are 32,58, and 128 ms. In general, the number of nodes and the intervals
between them are larger and shorter, respectively, for greater [’s.

Thirdly, as | becomes larger, the amplitudes of the density and radial-velocity
perturbations tend to get larger. It is analytically shown in Appendix A.2 that
for large I’s the saturated amplitudes are proportional to ! for density and radial-
velocity perturbations while those for the transverse velocities are independent of /.
Note that these dependences are different from those claimed by LG00 or Kovalenko
& Eremin (1998) for the asymptotic regime (r — 0). These authors assumed that
the amplitudes obey a power law of r in this asymptotic regime (r — 0) and deduced
the dependence of o /2.

So far we have fixed the inner boundary to » = 300 km. We turn our attention
to the dependence of the amplification factors on this radius. In Fig. 2.5, we plot
the normalized perturbation amplitudes in the steady state at ¢ > {3 as a function
of radius. As is evident, there are nodes in general, whose number becomes larger
as [ increases, and the perturbation growth in space is never described by a simple
power law of radius as assumed in the previous analyses by Kovalenko & Eremin
(1998) and LGOO. The radial variation may be better approximated by a sinusoidal
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wave. Note, however, that we are not dealing with the asymptotic regime (r — 0)
unlike these authors. It is important that the amplitudes of the radial oscillations
are largest for the density perturbation and those for the radial-velocity perturbation
is second largest. More quantitative discussions on the radial oscillations are found
in Appendix A.2.

We also plot the maximum amplification factors, which are not necessarily at-
tained in the steady state, at each radius in Fig. 2.6. The lines for duv,, /v, are
identical in Figs. 2.5 and 2.6 for the reasons mentioned above. The plots for oth-
er variables are rather complicated and radial variations are sometimes rectangular
rather than sinusoidal. For larger I’s, however, Figs. 2.5 and 2.6 become similar to
each other, indicating that the maximum amplification factor is attained after the
steady state is reached in these cases.

We note finally that the above features are not altered both qualitatively and
quantitatively even if only dv, is non-vanishing at the outer boundary, which is
the situation considered in Couch & Ott (2013). This is because the mode mixing
explained earlier produces the density and radial-velocity perturbations.
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Figure 2.2: The time evolutions of the [ = 0 perturbations at the radius of 300
km. The step-function type perturbations are imposed at the outer boundary. The
vertical axis is the amplification factors, i.e. the ratio to the values set at the outer
boundary. The red, green, blue, and purple lines represent the perturbations of
density, radial-velocity, and transverse components of velocity, respectively. Two
horizontal black lines represent +1.
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2.3.2 sinusoidal perturbations

Although it facilitates the interpretation of results, the step-function type boundary
condition adopted in the previous section is admittedly artificial. In this section we
consider the models, in which a sinusoidal variation: dp/p = dv,./v, = dv) /v, =
OUpot /U, o sin(wt), is assumed in the outer boundary condition. Here we set the
angular frequency as w = 2 s~ !, which is approximately the inverse of the sound
crossing time in the Si layer of the 15 My progenitor. The background model is
not changed from the one in the previous section. We have repeated the same
analysis for this model. We present here only the time evolutions of normalized
perturbation amplitudes at ry, = 300 km in Fig. 2.7. Much like in the previous
case, the perturbations oscillate rapidly in the early phase and grow later over the
timescale of ~ w™!. In contrast to the step-function type perturbations, however,
perturbations at a fixed point do not become steady but oscillate in a harmonic
manner after (3.

We now turn our attention to the dependence of the amplification factors on the
radius of the inner boundary. Fig. 2.8 shows the r-dependence of the magnitudes of
amplification factors in the late phase, when the perturbations attain the harmonic
oscillations at the inner boundaries. We again observe the same features as those in
the previous section: the perturbation growth in space is never fitted by a simple
power la lification factors arc largest for density
and those for radial velocity is second largest.

Although we have not investigated them, we believe that these features will be
unchanged for other w.

2.4 Discussions

2.4.1 comparisons with the previous results

LGO00 investigated the linear stability of supersonic accretion flows both analytically
and numerically. In their analytic treatment, they considered only the asymptotic
region, r — 0, assuming a simple power law for the growth of perturbations. It is
stressed that we are not dealing with this regime in this paper. In fact, since we
have in mind the application of the results to the post-bounce phase of CCSNe, the
inner boundary in this paper roughly corresponds to the stagnant shock wave in
the supernova core and is rather distant (~ 100 km) from the center. We should
be aware of this difference in the following comparison. It is also noted that we
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neglect self-gravity whereas it was included in LG00.* As mentioned already, we do
not find the power-law behavior in our model. We observe instead the oscillations
in the spatial profile of the perturbation amplitudes. In the following we show that
the envelopes of these oscillations obey power laws (see also Appendix A.2). Even
in that case, however, the powers we obtain are different from those reported in the
previous papers as demonstrated below.

We first give the result of LGOO shortly. From Eqs. (7), (22)-(25) in their paper,
the perturbation growths are obtained in the asymptotic limit (r — 0) as

% x 21(l+1)5;lo<2l(l+1)7'1/27 (2.22)
§:r o B2, (2.23)
5:J_ ~ T,l/Q’ (2.24)
(ﬁ;m x 12, (2.25)

under the assumption that the flow velocity in the background is v, oc r~1/2.5 Apply-
ing these relations to the entire region, we obtain the amplification factors as 8, 1.8, 2,
and 2 for dp/p, dv,. /v, dv1 Jv,, and dv,/v,, respectively, if we adopt R = 1.25 x 10®
cm, rgp =3 X 107 em, [ =1 and v = 1.6.

Now we use equations (2.11) and (A.19)-(A.21) in Appendix A.2 to obtain the
perturbation amplitudes for large I’s after the steady state is established. Note that
the perturbation amplitudes in this steady state are not very different from the
maximum values. Assuming that the velocity is proportional to r =/ as LG00 did in
the asymptotic limit of r — 0, we obtain M oc r~(®=37/% in the Bondi accretion flow.

4As already mentioned, the mass of accreting matter is less than 10 per cent of the central
accretor in our canonical model. It is hence expected that the following results may be subject to
change as much if self-gravity is taken into account.

>They further imposed the irrotational condition §vy := du,. —d(rdvy )/Or = 0, which is justificd
since the right hand side is proportional to \/r as r — 0 anyway.
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Inserting these relations to Egs. (2.11) and (A.19)-(A.21), we have the following.

5 f
N e (2.26)
p
0y (5-37)/4
o TR, (2.27)
o
6/UJ_
~ const., (2.28)
o
Orot oo pm1/2, (2.29)
Uy

It should be mentioned that Eqgs. (A.19)-(A.21) are obtained under the assumption
that the Mach number is almost constant and hence are not applicable to the present
case with M oc 7~6=39/4 rigorously speaking. However, the r-dependence of M is
rather weak and the local application of Eqs. (A.19)-(A.21) may be justified. As a
matter of fact, the I-dependence obtained this way reproduces the numerical results
fairly well as shown in Fig. 2.9.

It is evident from the comparison with Egs. (2.22)-(2.24) that both the power
and [-dependence are different. In fact, the power for dp/p, —(5 — 37)/4, is larger
than —1/2 expected in LGOO as long as v > 1, which is expected in CCSNe. Taking
into account the difference of the I-dependence, in addition, it turns out that the am-
plification factor at the inner boundary assumed in the paper will be much smaller
than expected by the previous study for large I’s. As for dv, /v, since the power in
Eq. (2.27) is positive for v < 5/3 and larger than that in Eq. (2.23) for v > 1, dv, /v,
will be decreased faster than supposed in LG00. The reason for the decrease in the
perturbation amplitude is just more rapid increases in the background velocity. Note
that this is true only near the inner boundary and dv,. /v, increases at the beginning.
Combined with the [-dependence, the amplification factor can become much larger
than unity as shown in Fig. 2.6. Finally, dv, /v, is not amplified according to E-
q. (2.28), which is in sharp contrast to the prediction in LGOO that it is inversely
proportional to the square root of r. Fig. 2.6 demonstrates that it is indeed smaller
than unity for large I’s.

It is finally mentioned that Kovalenko & Eremin (1998) also investigated the
stability of Bondi accretion flows in the asymptotic regime and obtained év, oc [2,
which is different both from our result and from the 1.G00. On the other hand,
they found the same [-dependence for the density perturbation as LG00 did, which
is different from ours as stated above.
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2.4.2 possible impact on the shock dynamics in CCSNe

The above analysis suggests that the perturbations generated in the outer envelope
of a massive progenitor may be amplified by an order by the time when they reach
the stalled shock wave. This implies that the initial perturbation amplitudes of a
few percent may be sufficient to affect shock revival. Such a number may indeed
obtain in violent convections that Arnett and his company advocated (Bazan & Ar-
nett, 1998; Asida & Arnett, 2000; Meakin & Arnett, 2006, 2007; Arnett & Meakin,
2011). As demonstrated above, since the density and radial-velocity perturbations
are amplified in proportion to [, the spectrum of the initial perturbation is important
to identify the dominant I. It was recently studied by Chatzopoulos et al. (2014) in
their multi-dimensional simulations of oxygen shell burnings of a 15 Mg, progenitor.
They reported that the power spectrum peaks at [ = 8 (5) and then decays expo-
nentially for the two- (three-) dimensional case. It is then expected from our study
that the dominant modes that will affect most the stalled shock wave will be also
those with [ ~ 8(5).

It is also intriguing to point out that the perturbations will oscillate in time at
the shock wave with frequencies of 10 — 10 s !, which are rather close to the typical
frequencies of SASI (e.g. Iwakami et al., 2014a). This similarity might play some role
in reviving the stagnated shock wave in Couch & Ott (2013). Further investigations
are certainly warranted.

2.5 Summary

We have studied the linear growth of the perturbations that are generated at a large
radius and propagate inward in a spherically symmetric supersonic accretion flow,
having in mind the application to the investigation of shock revival in CCSNe. In
contrast to the previous studies, we have solved the linearized equations as an initial
and boundary value problem, employing Laplace transform, which enables us to
obtain the amplification factor at a specified point easily.

The background flow is chosen to be a supersonic portion of a transonic Bondi
accretion flow whose parameters are set to mimic the collapse of a supposedly typical
supernova progenitor: the 15 M, star of Woosley & Heger (2007). We have consid-
ered two seed perturbations: a step-function type perturbation and a sinusoidal one.
The former is more experimental and meant to elucidate the systematics.

We have found that the density and radial-velocity perturbations grow as they
propagate inward. In fact, the amplification factors can be more than 10 when
applied to the perturbations generated in the Si/O layer of the massive progenitor and
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accreted on the stalled shock wave in the CCSN core. They are actually oscillatory in
both time and space, which is in sharp contrast to the previous studies that predicted
power-law behavior in the asymptotic limit (+ — 0). We have shown analytically that
the envelopes of the oscillatory amplification factors may obey power la large
I’s. We have obscerved, however, that the powers are still different from the previous
results. We have also demonstrated both analytically and numerically for large I’s
that the amplification factors for the density and radial-velocity perturbations are
proportional to I, which is again at odds with the previous expectations. These
discrepancies are most likely due to the difference in the regimes of supersonic flows,
however. The previous works investigated the innermost part of the Bondi flow
(r = 0), in which the Mach number becomes high and varies rapidly. In this paper,
on the other hand, we have studied the outer part of the same flow, at which the
Mach number is close to unity and changes rather slowly. The latter regime is more
appropriate for the post-bounce phase of CCSNe.

We have found that the typical oscillation frequencies of perturbations at the
stalled shock wave in the CCSN core are not much different from the canonical
frequencies of SASI. This may have an important implication for shock revival and
will be our next target. The results of linear analysis will be reported in the next
chapter.
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Figure 2.3: The same as Fig. 2.2 but for different I’s.
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Chapter 3

Analysis of the Standing Accretion
Shock Instability under
Non-spherical Accretion Flows

3.1 Introduction

As shown in ther previous chapter, the seed perturbations that arise in the dynamical
convective la

It is also found that the amplification factors
are larger as the scale of fluctuations becomes smaller. In addition to the large
amplitudes, they oscillate at the shock radius with frequencies that are observed in
SASI simulations. These results may suggest the possibility that the fluctuations in
upstream flows can affect the SAST activity. The previous studies assumed, however,
that the accretion flow is a spherically symmetric steady flow (Yamasaki & Yamada,
2005, 2006, 2007; Foglizzo et al., 2007; Yamasaki & Foglizzo, 2008; Foglizzo, 2009;
Sato et al., 2009; Guilet & Foglizzo, 2010, 2012). Hence we need a new analysis of
SAST under non-spherical perturbed flows.

In this chapter, we perform a linear analysis to investigate the effects of such ex-
ternal perturbations on the shock dynamics. The problem is reduced to an eigenvalue
problem as discussed below in detail. Unlike the previous studies, non-spherical time-
dependent outer boundary conditions are employed. We apply Laplace transform to
solve the eigenvalue problem, which turns out to work well as in the previous chap-
ter. We perform the analysis for two different background flows and inner boundary
conditions in order to study the effects of them.

This chapter is organized as follows. In Sec. 3.2, we introduce the method of our

39
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analysis, including the basic equations and model parameters. Then we show the
results in Sec. 3.3 and in Sec. 3.4. Finally we summarize our findings in Sec. 3.5.

3.2 Method

As stated in the introduction, we investigate the linear stability analysis of the stand-
ing accretion shock against the upstream perturbations. Since the SASI is a global
instability, we solve the eigenvalue problem of the fluid state between the shock sur-
face and neutrino sphere, which correspond to outer and inner boundary respectively.
The linearized equations are solved with the use of the Laplace transform, which is
turned out to be useful as illustrated in the previous paper.

In this section, we introduce the system of the basic equations and Laplace trans-
formed counterpart to study the SASI. The main idea to analyze the SASI with
Laplace transform is also presented.

3.2.1 basic equations

We give the basic equations that govern shocked flows as follows.

0
a_/t) + V.- (pv) =0, (3.1)
P o

2 () + Vv + lp) = V.6 (3.2)

de d /1
T + Py (;) =4q, (3.3)
O (V) 4V (nYev) =\ (3.4
A¢p = 4nGp, (3.5)

as well as an equation of state (EoS). In the above expression, p, p, n, Y., ¢ and v
are density, pressure, number density, electron fraction, specific internal energy and
velocity, respectively. The gravitational potential ¢ is given by the Poisson equation
(3.5) with GG being the gravitational constant. We include the reactions between the
electron-type neutrinos and fluid particles, which are symbolically denoted by ¢ and
A: the former denotes the net heating rate and the latter is the net reaction rate of
electrons and positrons. We use the light-bulb approximation with corrections by
a geometric factor instead of solving the neutrino transport (Scheck et al., 2006).
In this prescription, neutrino luminosities (L,, and L;,_ ), neutrino temperatures (7,
and 7},) and neutrino spheres (r,, and 75, ) are arbitrary parameters.
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We employ an EoS that takes into account the contributions from nucleons, nuclei,
photons, electron and positrons. The baryons are treated as ideal Boltzmann gases
and we assume that the composition is obtained by the nuclear statistical equilibrium
with 28 nuclei that includes p, n, D, T, 3He, *He and 12 « particles as well as their
neutron-rich isotopes, which are described in Yamamoto et al. (2013). Electron and
positrons are treated as ideal Fermi gases with arbitrary degeneracy and relativistic
parameters (Blinnikov et al., 1996). Photons are assumed to be ideal Bose gases.

Following Lai & Goldreich (2000) and the previous chapter, we linearize these
equations by giving the perturbations as follows.

0X(r,t) = 0X(r,t)Yin(6,90), (3.6)
ov(r,t) = du.(r,t)Yin(0,9)r
Vim | & WVim

00 sinf d¢

20 sng 9o |
(3.7)

+ovy (1, 1) + Vot (7, 1)

where X denotes the scalar variables. Y,,(,) is the spherical harmonics of the
indices [, m. 1,6, and ¢ are unit vectors in spherical coordinates. Assuming that the
background flow is spherically symmetric, the system of linearized equations is given
symbolically as follows.*
0
g

Ay
— P— p— .
a1 + o + Qy =0, (3.8)

where y = y(r,t) denotes the vector of perturbations that is given as

§p v, vy 0T 0Ye vy
(o) = (22,2, 28 S0 T )

(3.9)

and the coefficient matrices, M = M (r), P = P(r) and Q = Q(r), whose components
are made of the background quantities, are given in Appendix B.2.

We solve the linearized equations in the region between the standing shock and the
surface of a proto-neutron star. The outer boundary condition imposed at the shock
radius is given by the perturbed flows in front of the shock through the lincarized
Rankine-Hugoniot relations:

Y(Tsh, t) = %ms}l

+ Rz (g, 1), (3.10)
T'sh

'We assume that the perturbation of the gravitational potential is negligible. We believe that
this assumption will not affect seriously the following results qualitatively nor quantitatively.
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where dr,, is the perturbed shock radius. R and c are some matrix and vector,
whose components are described only by background quantities, and z"® denotes
perturbed variables in front of the shock; The explicit forms are given in Appendix
B.2.

The inner boundary is set at a proto-neutron star surface. We note here that we
can impose only one condition, corresponding to a degree of freedom at the outer
boundary, where the fluctuation of the shock radius remains as a free parameter once
the upstream flow is given. Otherwise there is generally no solution that satisfies the
inner and outer conditions at the same time. Hence the inner boundary condition is
symbolically represented as

S(wi(rens; 1), t) =0, (3.11)

where y; is some component of y.

Summarizing the above setups, we solve the eigenvalue problem described by
(3.8), (3.10) and (3.11) with the time-dependent shock radius, drg,, being the eigen-
value.

3.2.2 mode analysis

We solve this eigenvalue problem with the use of the Laplace transform with respect
to time. Assuming that any perturbation does not exist initially (¢ = 0) in the
shocked region because the seed of perturbations is supposed to be the upstream
fluctuations that fall onto the standing shock, we obtain the Laplace transformed
equations:

dy*

i —(sP'M + P 'Q)y", (3.12)
.
5 *
Y (rsn, 8) = s%c—kRz*(rsh,s), (3.13)
sh
f*(yi (rens, 8),8) = 0, (3.14)

where the superscript, x, means Laplace-transformed functions. We here emphasize
again that this is the system of ordinary differential equations with s being a param-
eter. We find the eigenvalue, 47, such that both of the inner and outer boundary
conditions are satisfied for each s. We note here that the eigenvalue is easily found
by integrating (3.12) twice as discussed in Appendix B.1.

By solving the eigenvalue problem for a series of s and performing the inverse
Laplace transform, we obtain the time evolution of the shock radius for given bound-
ary conditions. The inverse transform should be performed by an integral along such
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a path that is parallel to the imaginary axis and all singularities lie in the left of
the line. If improper path is chosen, an incorrect time evolution is obtained. We
note that singularities in the complex plane correspond to stable or unstable modes,
which follows the fact:

n!

L[t" exp(sot)] = (5 Zsg)ri’

(3.15)
where sq is a constant, whose real and imaginary parts correspond to the growth
rate and frequency of the mode respectively. See also the left panel of Fig. 3.1. The
poles can be found by observing the change of eigenvalues in the complex plane as
shown in Fig. 3.2, where we gave an example of the behavior of eigenvalues near a
pole.

Since the modes of SASI are not a priori known, a proper value for the real part
of the integral path (z in Eq. (2.19)) is also not a priori known. In our research,
an appropriate path is found by trying several integral paths, which keep a finite
distance from each other. We illustrated the search paths in the right panel of
Fig. 3.1. Empirically speaking, the resolution of Az = 10 is sufficient not to miss the
poles. Note that searching positive x is enough to identify unstable modes, which are
more intriguing for the shock dynamics. Hence we start the search from the path near
the imaginary axis (7 = 79 < 0) and then move to the path with z¢ +nAx (n € N).2
If the path passes through a pole, i.e., there is a pole between n-th and (n + 1)-th
paths, then the residue of a pole is added to the integral on the (n + 1)-th line.

In this way, we can at least reach an upper limit of the maximum growth rate since
the time evolution of the shock radius is correctly obtained only for an appropriate
integral path. With such a correct path, the shock radius remains stationary at
t < 0, which follows from the initial condition, in which no perturbation exists in the
shocked region. If some poles exist in thee right of the integral line (i.e., this is an
inappropriate path), there remain residuals that should be included and as a result
the shock moves even at ¢ < 0, which violates our setting obviously.

3.2.3 models and parameters

We investigate realistic flows in CCSNe with the following two steady background
models. One has a rather short distance between the shock and neutrino sphere,
~ 50 km, and the other has a larger shocked region where the distance is about 100
km.

2Here, we avoid the imaginary axis because the origin of the complex plane is a singular point
in the sense that the eigenvalue is indeterminate, which follows from (3.13).
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Figure 3.1: (Left) A schematic picture of the poles of the eigenvalue in the complex
plane of s, which correspond to the stable/unstable modes of SASI. (Right) The
chosen path to find the poles, which are also the same as the integral path for
inverse transform. If there is no pole in the right hand side of the rightmost path,
we see the convergence of the inverse transform for the path.

Figure 3.2: An example of the behavior of eigenvalues near a pole at (x, y) =
(47.5, 288), where x := Re s and y := Im s. Left and right panel show the real
and imaginary part of eigenvalues respectively. The resolutions are Az = 10 and
Ay = 10, which are sufficient to find poles in our models that are mentioned in the

next section as shown in this figure.
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Figure 3.3: The schematic picture of the characteristics. The vertical lines represent
shock radius and its oscillation. The right-hand side of the shock line corresponds to
the upstream whereas the other side is the downstream. The zigzag arrows represent
the waves, which also show the traveling direction. The top arrows correspond
to the acoustic mode that propagates inward. Those in the bottom stand for the
other acoustic mode that travels outward. Those in the middle line show the other
advective modes.

The first one has the following parameter set: M = 1 My, L, = L, =1Ly =
2 x 1052 erg s, T, = 5.33 MeV, T, = 6.33 MeV, r,, = 47.7 km, rp, = 43.4 km
and Mg, = 1.5 M., (the total mass in the shocked region). Here, the inner boundary
is assumed to coincide with the neutrino sphere, r,_, where the density is fixed to
10" g em 3. For the quantities in upstream flows, we used those obtained from a
supersonic Bondi accretion flow, which is given by the mass accretion rate and mass
of the central region, a fixed ratio of specific heats, v := 1.36, and density at the
sonic point, which is set to 10° g cm ™3, in addition to a fixed nuclei, °Ni. Solving
the steady spherically symmetric equations for the above parameter, we obtained
the resultant shock radius of r, ~ 99.8 km, which gives the distance to the proto-
neutron surface as about 52.2 km. This model has rather large mass accretion rate
and small neutrino luminosities, which result in the short distance between the shock
and the proto-neutron star. Since the distance defines the timescale of SASI provided
the advective-acoustic or purely-acoustic cycle is responsible for the instability, the
SASI activity is expected to be prominent in this model.

For the other model, we choose a set of parameters as M =02 My, L,=1,, =



46 CHAPTER 3. SASI UNDER NON-SPHERICAL ACCRETION FLOWS

Ly, =3x 102 ergs™t, T, =13 MeV, T, = 15 MeV, r,, = 33 km, r;, = 30 km and
Mg, = 1.5 M. Other parameters that are necessary to obtain the steady state are
the same as for the previous model. As a result, the resultant shock radius is ~ 129
km, which is apart from the proto-neutron star surface by 96.3 km. We note that
this latter model resembles the numerical result of Marek & Janka (2009), where
they simulated the collapse of a 15 M. progenitor (Woosley & Weaver, 1995) in 2D
and obtained an explosion induced by SASI.

For these steady background flows, we apply the followin%‘ perturbations at the
shock surface. One is the delta-function type perturbation: z\"? o 4(t) for any i-th
component. This is a baseline model, where a seed of fluctuation is added to the
shocked region only once initially (¢ = 0). Noting that no fluctuation is assumed in
front of the shock at ¢ > 0, we can interpret the results of this model as the intrinsic
nature of SASI, where the upstream flow is spherically symmetric as assumed in the
previous works.

On the other hand, we consider a simple toy model for the other case, where the
perturbation changes sinusoidally in time: zi(up ) sin(wt), where w is some constant
frequency. Comparing the results with those of the baseline model, we can extract
the effects of the perturbations in front of the shock.

Finally we mention the inner boundary condition. We employ the inner boundary
condition that is given by

y - lluteeine) — g qt p =y, for "t (3.16)

where 1(°ut2°28) denotes the left eigenvector of the outgoing characteristic. This inner
boundary condition hence means that there is no reflective wave at the proto-neutron
star surface. Although this may appear to be artificial, it is a natural choice for the
initial condition, where no fluctuation exists initially, as discussed below.

Recalling the degrees of freedom at the shock surface, we notice that there remain
n — 1 degrees of freedom, where n denotes the number of the linearized equations,
that are associated with the characteristics that emanate from the shock and another
degree of freedom that corresponds to the shock oscillation (see also Fig. 3.3). We
note here that the emanating characteristics exist only in the downstream because
the upstream flow is supersonic and that there is an acoustic wave that comes into
the shock in downstream due to the subsonic flow. Usually, all of the incoming waves
are interpreted as imposed conditions whereas the outgoing waves and the oscillation
amplitude of the shock are the resultant waves and motion respectively. Without
the inner boundary condition that we impose at the proto-neutron star surface, the
number of imposed conditions and the resultant degree of freedom match (both of
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them are n).? This is not the case for our setup, however, due to the extra condition
that is imposed at the inner boundary. Therefore, there is generally no resultant
solution if we take all the incoming waves into the given conditions.

Nevertheless, we can solve the eigenvalue problem as a matter of fact. That is,
we obtain the evolution of shock radius that satisfy the outer and inner boundary
conditions at the same time unless they are too strange conditions. What happened?
We found that the incoming wave in downstream violates the initial condition that
there is no wave initially in the shocked region. In other words, we see the existence of
the fluctuations in the shocked region even for ¢ < 0. This outcome is quite natural,
however, from another point of view: Since the degree of freedom related to the
shock evolution is used to satisfy the inner boundary condition, one of the incoming
waves is forced to turn out to be a ‘resultant’ wave. Recalling that the incoming
waves in upstream are given as the outer boundary condition, the only possibility is
the incoming acoustic mode. In other words, the outcome assumes such a evolution
of the incoming acoustic wave that the shock evolution, which is determined by the
outer and inner boundary conditions, and the evolution of the downstream, which is
necessarily determined by the shock evolution due to the Rankine-Hugoniot relations,
become consistent. This makes a contradiction, however, since we presumed that the
shocked region is initially steady and the condition is included in the basic equation
thanks to (2.13).

Hence we tried some inner boundary conditions to avoid such a contradictory
outcome and the condition (3.16) is found to satisfy the initial condition consistently.
This is the reason why we apply the inner boundary. We note, however, that although
another condition that is given by dv, = 0 for ¥¢, which is the same condition as in
Yamasaki & Yamada (2007), violates the initial condition, the amplitude of the
fluctuation that exists in £ < 0 is much smaller than the perturbations that fall onto
the shock surface.* Since it is negligible and hence thought to be approximately
consistent, we also briefly mention the results that are obtained by applying this
inner boundary condition in the following sections.

3.3 Analytical results

Before going to the results where the eigenvalue problem is solved numerically, we
note that some important results for our setup are analytically deduced. Suppose

3Strictly speaking, the former statement holds because the shock wave in hydrodynamics is
evolutionary. See also Chap. 4.
41t is 10~ times as large as the infalling perturbations.
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that G(t) is the Green function for the eigenvalue problem: that is,
LG(t) = o(1), (3.17)

where L is a linear operator and (/(¢) describes the evolution of the shock radius,
5rn/7sn, for the impulsive input, z*? oc §(¢). Then, the evolution of the shock
radius for an arbitrary input, h(t), is given by

(STSh

= / G(t —7)h(r)dr = (G = h)(1), (3.18)
T'sh 0
where (G * h)(L) denotes the convolution of G and h. Recalling that the Laplace
transform of any convolution, (f % ¢)(t), is the product of the Laplace transforms,
L[f]L[g] (c.g. Schiff, 1999). we obtain the following relation from (3.18):

L {5”’1} = L[GILC[h). (3.19)

Tsh

From this equation, the effects of the upstream input on the modes of SASI are
discussed as follows. We note again that the left-hand side is the Laplace-transformed
eigenvalue and the modes of SASI is emerged as poles of this function as stated in
Sec. 3.2.2. On the other hand, L[G] is the Laplace-transformed solution of the
baseline model and hence the poles of L[G] represent the modes of the intrinsic
nature of SASI as mentioned in the previous section. And L[h] is a priori known
since it is calculated once an input is given and, as a result, the poles of the function
is also a priori obtained. Therefore, if the poles of L][G] are given, the modes of
SASI under an upstream input A(t) is immediately obtained by the right-hand side
of (3.19).

If the poles of L£[G] and L[] overlap, then a resonant occurs, which follows from
(3.15). Otherwise, the upstream perturbations do not change the unstable modes of
SASI. That is, they do not change the growth rates nor frequencies.

3.4 Numerical results

Here, we show the results that are obtained by solving the eigenvalue problem (3.12)-
(3.14) numerically. Since we discussed the effects of the fluctuations that fall onto
the standing shock in the previous section, we focus here the intrinsic modes of SASI
that are obtained by the impulsive input for our backgrounds.
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We calculated the cases of I = 1,2, which are the dominant modes of SASI. The
integral region ranges —40 < Re s < a and —10240 < Im s < 10240, where « is an
upper bound, which is known in the calculation as stated in Sec. 3.2.2.°

We listed up the peaks that we found for the inner boundary condition (3.16) in
Table 3.1, 3.2, 3.3 and 3.4. In the tables, x and y denote the real and imaginary
parts of the parameter, s, respectively, and represent the coordinate where the peak
is found. 7 and 7' are the corresponding growth timescale on the exponent and the
period of oscillation respectively. We numbered the peaks in rank order of growth
rates in the rightmost column. We also present here the characteristic timescales
for the two models, ¢y, t5 and {3, which are defined as the crossing time of the
acoustic wave that travels to the central region, advection, and the other acoustic
wave respectively: £; = 1.622 ms, {5, = 17.09 ms, t3 = 2.286 ms for the longer distance
model and #; = 2.811 ms, {5 = 23.93 ms, t3 = 4.031 ms for the longer distance model.

We infer that there are infinite modes, which have shorter periods. Although
the growth timescales of such modes become gradually smaller, we did not see such
indications.

If we pick up the most dominant modes, which has smaller growth time scales,
from the tables, the growth rate and periods are given as follows. For the shorter
distance model, we see that 7 = 11.7 ms and 7' = 3.15 ms for [ = 1 (the 7th peak)
and 7 = 8.66 ms and 7" = 2.76 ms for [ = 2 (the 8th peak) whereas we obtain that
7 =9.52ms and T = 5.96 ms for / = 1 (the 6th peak) and 7 = 7.84 ms and T' ~ 1.54
ms for [ = 2 (the 19th peak) for the other model.

Comparing the [ = 1,2 modes, we notice that the growth timescale of [ = 2 is
smaller than that of [ = 1 and correspondingly the periods become shorter for both
models, which indicates that the shorter timescale between each cycle results in the
increase of cycles in a unit time and, as a result, SASI grows faster.

We see also some differences between the two models for the same [ as follows.
For the I = 1 mode, the period of the larger distance model is longer than that of the
other, which is a natural result since the periods represent a crossing timescale. On
the other hand, the growth timescale is smaller when the distance between the inner
and outer boundaries is larger, which may indicate the model creates the acoustic
wave that travels to shock surface more efficiently and it should be related to the
background configurations. For the | = 2 mode, on the other hand, the period
for the longer distance model becomes shorter, which is interpreted as the outgoing
acoustic wave is produced at a different radius. In fact, this is possible since the

5As a matter of fact, we do not need to calculate the region with the negative imaginary part
because the function before the Laplace transform is a real function and the property mentioned
in the last part of Sec. 2.2.2 holds.
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most dominant peak is changed from [ = 1.

Comparing also the frequencies with the inverse of characteristic timescales, we
realize that the dominant modes appears to be driven by the purely-acoustic cycles
and the modes induced by the advective-acoustic cycles are sub-dominant in our
models. We note that this is in sharp contrast to the previous analytical studies
that support the advective-acoustic cycle (Yamasaki & Yamada, 2007; Foglizzo et
al., 2007; Yamasaki & Foglizzo, 2008; Foglizzo, 2009; Sato et al., 2009; Guilet &
Foglizzo, 2010, 2012). Moreover, the period of the [ = 2 mode in the larger distance
model seems to be shorter than the purely-acoustic timescale. We also note that the
property that the purely-acoustic cycle seems to be dominant does not changes if we
employ the other inner boundary condition.

We also realized that there is no convective modes, which are thought to grow
exponentially without oscillations. In previous works, such modes are found in Ya-
masaki & Yamada (2007)

Finally we mention that there is no mode that oscillate without exponential
growth or decay. Hence the upstream perturbations do not affect the stable nor
unstable modes of SAST in these models as long as the fluctuation is represented by
the sum of the sinusoidal functions without exponential growth.

3.5 Summary

We have studied the effects of non-spherical linear perturbations in upstream flows
on SASI activity in CCSNe, which is reduced to an eigenvalue problem. It was
solved with Laplace transform, which works well to identify the unstable modes as
demonstrated in our analysis.

We investigated two different background flows, both of which employed a realistic
EoS and model parameters. One model has a rather short distance between the
shock and proto-neutron star surface whereas the other has a longer distance. We
also employed two different inner boundary conditions.

As a result, we can concluded that upstream perturbations do not change stable
nor unstable modes of SASI in general case. This is because the modes in SASI
accompany with an exponential growth or decay. Hence the analogue to a spring
under external forces does not holds and resonant motions never occur in SASI. This
is, however, in contrast to the recent numerical results by Miiller & Janka (2014);
Couch & Ott (2013, 2014), who reported that the perturbations that are added in
the outer regions of a progenitor lead to shock revival even for a model that fails
to explode without them. This discrepancy may be interpreted as the importance
of the non-lincar cffects of sufficiently amplified infalling perturbations as mentioned



3.5. SUMMARY 51

in Miiller & Janka (2014). Since our analysis can treat only the linear regime, we
cannot mention the non-linear effect directly, however.

We also found that the dominant modes in our models seem to be driven by the
purely-acoustic cycle for any model that we carried out. This is inferred from the fact
that the oscillatory frequencies match the sound-crossing timescale. This result is
opposite to those of previous linear analysis, which reported the dominant role of the
advective-acoustic cycle (Yamasaki & Yamada, 2007; Foglizzo et al., 2007; Yamasaki
& Foglizzo, 2008; Foglizzo, 2009; Sato et al., 2009; Guilet & Foglizzo, 2010, 2012).
We also realized that convective modes are absent in our search although they are
found for large neutrino luminosities in the previous studies. The latter may be the
consequences of lower luminosities in our models. The former result needs obviously
further investigations since we have only the information of timescales and could
not make strong conclusions on the driving mechanism. For example, the radial
distribution of the modes must be clarified to identify the driving cycle. Otherwise
more systematic study for the background flow may help the interpretation.

Anyway, we feel that we need further studies to make more robust conclusions.
Further investigations are going to be performed in the future
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Table 3.1: The shorter distance model, [ = 1

peak x [sec’!] y[sec’!] 7 [ms] T [ms| rank

1 0 0 0.00 0.00 29

2 47.5 288 21.06  21.82 10

3 -13.5 628 -74.07  10.01 32

4 -10.5 981 -95.24 6.40 31

5 -8.5 1331 -117.65 4.72 30

6 21.5 1685 46.51 3.73 27

7 85 1992 11.76 3.15 1

8 67 2243 14.93 2.80 2

9 22.5 2575 44.44 2.44 26
10 12.5 2928 80.00 2.15 28
11 25.5 3270 39.22 1.92 25
12 54.5 3596 18.35 1.75 4
13 63.5 3890 15.75 1.62 3
14 41 4205 24.39 1.49 17
15 30.5 4540 32.79 1.38 24
16 36.5 4878 27.40 1.29 23
17 20.5 5198 19.80 1.21 6
18 52.5 5510 19.05 1.14 5
19 42.5 5830 23.53 1.08 15
20 37.5 6160 26.67 1.02 22
21 42.5 6490 23.53 0.97 15
22 50 6810 20.00 0.92 7
23 47.5 7125 21.05 0.88 10
24 40.5 7450 24.69 0.84 18
25 39 7780 25.64 0.81 21
26 45 8105 22.22 0.78 13
27 49.5 8425 20.20 0.75 8
28 45.5 8742 21.98 0.72 12
29 39.5 9068 25.32 0.69 19
30 39.5 9338 25.32 0.67 19
31 45 9725 22.22 0.65 13

32 48.5 10045 20.62 0.63 9
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Table 3.2: The shorter distance model, [ = 2

peak x [sec '] y[sec!] 7 [ms] T [ms| rank
1 0 0 0.00 0.00 29
2 6.5 310  153.85  20.27 28
3 -12.5 651  -80.00 9.65 32
4 -8.5 1000 -117.65 6.28 31
5 -7.5 1348  -133.33 4.66 30
6 14.5 1700 68.97 3.70 27
7 73.5 2042 13.61 3.08 8
8 115.5 2279 8.66 2.76 1
9 48.5 2584 20.62 2.43 24
10 29.5 2936 33.90 2.14 26
11 36.5 3286 27.40 1.91 25
12 66.5 3622 15.04 1.73 15
13 91.5 3916 10.93 1.60 2
14 69.5 4218 14.39 1.49 11
15 52.5 4550 19.05 1.38 23
16 55.5 4890 18.02 1.28 22
17 71.5 5218 13.99 1.20 10
18 79.5 5528 12.58 1.14 3
19 68.5 5842 14.60 1.08 13
20 60.5 6172 16.53 1.02 21
21 65 6505 15.38 0.97 18
22 74.5 6825 13.42 0.92 6
23 74.5 7139 13.42 0.88 6
24 66.5 7461 15.04 0.84 15
25 62.5 7792 16.00 0.81 20
26 68.5 8121 14.60 0.77 13
27 75.5 8441 13.25 0.74 4
28 73.5 8757 13.61 0.72 8
29 65.5 9080 15.27 0.69 17
30 63.5 9410 15.75 0.67 19
31 69.5 9739 14.39 0.65 11
32 75.5 10058 13.25 0.62 4
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Table 3.3: The longer distance model, | =1

peak x [sec™!] y[sec!] 7 [ms] T [ms] rank

1 0 0 0.00 0.00 46

2 2.5 200 400.00  31.42 45

3 44.5 457 2247 13.75 33

4 44.5 750 2247 8.38 33

5 5.5 1000 181.82 6.28 44

6 103 1058 9.71 5.94 1

7 46.5 1315 21.51 4.78 31

8 39.5 1590  25.32 3.95 41

9 52.5 1855  19.05 3.39 28
10 93.5 2039  10.70 3.08 3
11 42.5 2225  23.53 2.82 37
12 27.5 2475  36.36 2.54 43
13 43.5 2730 22.99 2.30 36
14 94.5 2950  10.58 2.13 2
15 66 3125 15.15 2.01 18
16 34.5 3370  28.99 1.86 42
17 40.5 3625  24.69 1.73 40
18 84.5 3855  11.83 1.63 9
19 79.5 4025  12.58 1.56 11
20 41.5 4265  24.10 1.47 39
21 42.5 4518  23.53 1.39 37
22 77.5 4755 1290 1.32 12
23 86.5 4930  11.56 1.27 7
24 48.5 5158  20.62 1.22 30
25 44.5 5408  22.47 1.16 33
26 70.5 5650  14.18 1.11 15
27 91.5 5838  10.93 1.08 4
28 56.5 6053  17.70 1.04 25
29 46.5 6300 21.51 1.00 31
30 66.5 6545  15.04 0.96 17
31 91.5 6742  10.93 0.93 4
32 62.5 6950  16.00 0.90 20
33 49.5 7195  20.20 0.87 29
34 63.5 7438  15.75 0.84 19
35 89.5 7645  11.17 0.82 6
36 69.5 7848  14.39 0.80 16
37 53.5 8088  18.69 0.78 27
38 62.5 8330  16.00 0.75 20
39 85.5 8545  11.70 0.74 8
40 74.5 8748  13.42 0.72 14
41 56.5 8981  17.70 0.70 25
42 61.5 9222 16.26 0.68 22
43 82.5 9445  12.12 0.67 10
44 77.5 9648  12.90 0.65 12
45 99.5 9875  16.81 0.64 24

46 61.5 10118  16.26 0.62 22




3.5. SUMMARY

Table 3.4: The longer distance model, | = 2

peak x [sec”!] gy [sec™!] 7 [ms] T [ms] rank
1 0 0 0.00 0.00 44
2 -34 240 -29.41  26.18 46
3 21.5 475 46.51 13.23 42
4 21.5 761  46.51 8.26 42
) -15 997 -66.67 6.30 45
6 110.5 1170 9.05 5.37 11
7 86.5 1319 11.56 4.76 20
8 49.5 1600  20.20 3.93 38
9 43.5 1865  22.99 3.37 41
10 83.5 2110  11.98 2.98 25
11 100.5 2240 9.95 2.80 14
12 49.5 2480  20.20 2.53 38
13 49.5 2740 20.20 2.29 38
14 84.5 2995 11.83 2.10 23
15 121 3160 8.26 1.99 4
16 62.5 3375 16.00 1.86 35
17 53.5 3632 18.69 1.73 37
18 81.5 3885  12.27 1.62 28
19 127.5 4069 7.84 1.54 1
20 75.5 4270 13.25 1.47 32
21 60.5 4524 16.53 1.39 36
22 81.5 4778 12.27 1.32 28
23 126.5 4972 7.91 1.26 2
24 86.5 5166  11.56 1.22 20
25 66.5 5419  15.04 1.16 34
26 81.5 5667  12.27 1.11 28
27 124.5 5880 8.03 1.07 3
28 96.5 6065 10.36 1.04 15
29 72.5 6310 13.79 1.00 33
30 82.5 6560 12.12 0.96 27
31 120.5 6780 8.30 0.93 )
32 104.5 6965 9.57 0.90 13
33 78.5 7205 12.74 0.87 31
34 83.5 7452  11.98 0.84 25
35 115.5 7680 8.66 0.82 8
36 112 7865 8.93 0.80 10
37 84.5 8100  11.83 0.78 23
38 85.5 8345 11.70 0.75 22
39 112.5 8578 8.89 0.73 9
40 116.5 8768 8.58 0.72 7
41 90.5 8992  11.05 0.70 17
42 87.5 9240 11.43 0.68 19
43 109.5 9475 9.13 0.66 12
44 118.5 9670 8.44 0.65 6
45 95.5 9890  10.47 0.64 16
46 90.5 10130  11.05 0.62 17
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Chapter 4

Exact MHD Riemann Solver

4.1 Introduction

The Riemann problem is a kind of initial value problems for hyperbolic systems such
as the system of equations of ideal hydrodynamics or ideal MHD, in which the initial
condition is given by two constant states separated by a discontinuity. Not only
do the solutions of Riemann problems have mathematical interest, but also solving
Riemann problems is one of the main tasks in numerical schemes for fluid dynamics
because the solutions are used to obtain numerical fluxes. Although the theory of
partial differential equations underlies that of Riemann problems, solving Riemann
problems in one-dimensional space turns to be equivalent to solving the algebraic
equations and hence the solution is obtained by the Newton-Raphson method in
principle. This facilitation does not necessarily mean that Riemann problems can
be easily solved, however. In ideal MHD, for example, the system of algebraic equa-
tions is highly non-linear and complex in addition to the five-dimension parameter
space, which reflect the non-linearity and largeness of the original system of partial
differential equations.

Moreover, there exists an outstanding problem in MHD Riemann problems that
there is no convincing criterion for physically relevant solutions. It is well-known that
the solution of Riemann problems is generally not unique in the sense of the weak
solution and some conditions should be imposed to single out the physically relevant
one (Jeffrey & Taniuti, 1964). A famous and obviously acceptable condition is the
so-called entropy condition, which admits only the shocks across which the entropy
increases. The entropy condition discards manifestly unphysical solutions such as
those including expanding shocks, across which the entropy is decreased, and the
condition works well indeed in ordinary hydrodynamics to uniquely choose a solution.

a7
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In ideal MHD, however, the entropy condition is insufficient to uniquely choose a
solution. In fact, some initial conditions have more than one solutions that satisfy the
entropy condition (Torrilhon, 2002, 2003b,a). Therefore the so-called evolutionary
conditions are introduced, which require that physically relevant shocks should be
structurally stable. We must note here that the structural stability is totally different
from the more familiar stability that discusses the exponentially growth. Structurally
stable shocks just remain close to the initial discontinuity when they are perturbed,
while structurally unstable ones will instantaneously split into other waves (Landau
et al., 1984). The evolutionary conditions discard the so-called intermediate shocks,
across which the transverse magnetic field is reversed (the definition and detailed
classification of the shocks are given in Sec. 4.3), and the uniqueness of the solution
seems to be recovered. Indeed, the intermediate shocks had been considered to be
unphysical in the literatures (e.g. Jeffrey & Taniuti, 1964; Kantrowitz & Petschek,
1966).

However, the relevance of the intermediate shocks is still under debate. In fact,
the intermediate shocks are commonly observed as stable shocks in numerical simu-
lations in spite of the evolutionary conditions (Wu, 1987, 1988b,a, 1990; Brio & W,
1988; Wu & Kennel, 1992). The evolutionary conditions are also reconsidered in the
context of dissipative MHD (Hada, 1994; Markovskii, 1998; Inoue & Inutsuka, 2007).
They found that the new modes that do not exist in ideal MHD are responsible for
the evolutionary conditions and the intermediate shocks become evolutionary in the
dissipative system. We also note that some interplanetary experiments have report-
ed the detection of the intermediate shocks (Chao, 1995; Feng & Wang, 2008; Feng
et al., 2009). These results cast doubt on the classical theory of MHD and support the
relevance of the intermediate shocks. On the other hand, there also exist completely
opposite arguments, defending the classical theory. Falle & Komissarov (1997, 2001)
pointed out that the intermediate shocks are observed in numerical simulations only
because the initial conditions have a special symmetry, where the initial transverse
magnetic fields and velocities are confined in a plane. Since there is no reason to break
the symmetry, Alfvén waves, which rotate the fields, do not emerge and the absence
of the waves affects the evolutionary conditions. In fact, some authors demonstrated
numerically that some intermediate shocks break into other waves once the symme-
try is broken by adding another component of the field (Barmin et al., 1996; Falle
& Komissarov, 1997, 2001). Although Falle & Komissarov (2001) agreed with Wu
(1990) that the temporary survival of some intermediate shocks in their interaction
with Alfvén waves is due to non-unique dissipative structures, they claimed that the
shocks should be regarded as transients. Kulikovskii et al. (2001) also came to the
same conclusion.
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Since the intermediate shocks are poorly understood, it is desirable for MHD Rie-
mann solvers to treat these shocks as well as ordinary shocks. This is the reason why
we will present a Riemann solver that can handle all types of the intermediate shock-
s. Furthermore, our solver can also treat the switch-on/off shocks and switch-on/off
rarefactions (see Sec. 4.3 for the details of these waves), which are required because
there are some initial conditions that have only a solution in which these non-regular
shocks and switch-off rarefactions exist and do not have any other solutions without
them as displayed in this chapter. Our solver can handle any initial condition: It
does not matter whether a normal or transverse magnetic field is absent. Although
Andreev et al. (2008) released an exact MHD Riemann solver online, their solver
does not consider either of these waves and requires the initial conditions where both
the normal and transverse magnetic field exist. We also note that Torrilhon (2002)
proposed an idea of treating the intermediate shocks although they neglected some
types. While our solver is partly based on the idea of Torrilhon (2002), we exten-
sively modified it to handle all types of intermediate shocks. Furthermore, details of
the main techniques are presented for the first time since Torrilhon (2002) did not
show the details of their method, which must be rather complicated as described in
Sec. 4.4 to Sec. 4.6.

Our solver has potential to solve an outstanding problem associated with the
uniqueness and existence of the solution of MHD Riemann problems. In fact, even
the local existence and uniqueness are no longer guaranteed by the Lax’s theorem
(Lax, 1957; Jeffrey & Taniuti, 1964; Serre, 1999) because the system of ideal MHD
is not strictly hyperbolic and the characteristic fields are neither linear nor genuinely
non-linear (Falle & Komissarov, 2001). It is worth mentioning that there are some
analytical studies on the existence and uniqueness of solutions of ideal MHD Rie-
mann problems: Gogosov (1961, 1962) investigated the wave-pattern of solutions
in MHD Riemann problems, considering only the evolutionary waves and switch-off
waves. Taking the intermediate shocks into account, Torrilhon (2003b) investigat-
ed the uniqueness of the solution although they assumed that a particular type of
intermediate shock emerges on only one side. On the other hand, our solver can
find all the solutions for a given Riemann problem and hence it is possible to study
the structure of the solution space without any restriction. Therefore the solver is a
powerful instrument to examine the non-uniqueness and existence of solutions. The
solver may also be applicable to numerical MHD, where the Riemann solver provides
numerical fluxes. Actually, there are several works on numerical MHD codes with
Riemann solvers (e.g. Dai & Woodward, 1994; Sano et al., 1999; Iwasaki & Inutsuka,
2011). Moreover, using the exact solutions, our solver enables one to investigate
which solutions are produced by a given approximate MHD Riemann solver, which
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has never been studied. It will give one of the essential criteria for appropriate
schemes if the physically relevant conditions for Riemann solutions are revealed in
the future.

This chapter is organized as follows. At first, we review the theory of Riemann
problems in the next section. In Sec. 4.3, we give a brief review of the shock waves and
simple waves in ideal MHD, which are constituents of the solution of the Riemann
problems. In Secs. 4.4 and 4.5, the main procedure to solve the Riemann problems is
given. Other technical details are given in Sec. 4.6. In Sec. 4.7, we demonstrate the
capability of our solver by showing the solutions of some MHD Riemann problems.
We summarize the features of our solver in Sec. 4.9.

4.2 Theory of Riemann problems

4.2.1 hyperbolic equations and weak solutions

In this section we consider general conservation equations in one spatial dimension.

This is sufficient since Riemann problems assume plane-symmetry. Then the coupled

equations are expressed as
ou 0
nof o

ot Ox

where u is a vector of conserved variables and f(u) is a flux vector. The system

(4.1) is called hyperbolic if the Jacobian matrix, which is defined as

A O

I 8Uj’

(4.1)

(4.2)

has N real eigenvalues \g(u) (k = 1,2,..., N) and corresponding N linealy inde-
pendent right eigenvectors, r(u) (e.g. Falle & Komissarov, 2001). In particular, the
system is called strictly hyperbolic if all eigenvalues are different from each other for
any u.

The k-th characteristic field is called genuinely non-linear if the following condi-
tion is satisfied for any wu:

TL * VuAk 7é 0. (43)

Here V,, denotes the operator, *(0/duy, ...,0/duy), where *(...) stands for trans-
position. On the other hand, The k-th characteristic field is called linear if

T - Vu)\k =0 (44)
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for all w. Note that the characteristic field may be neither linear nor genuinely
non-linear.

In the system described by Eq. (4.1), discontinuities are ubiquitous. Indeed
they may be spontaneously produced from a continuous initial condition by wave-
steepening. Since Eq. (4.1) is differential equations, these discontinuities cannot be
treated as they are and some extensions are needed. The weak solutions of Eq. (4.1)
are defined as the functions that satisfy the following equations instead of Eq. (4.1)
in a finite domain D(z,t) (e.g. Jeffrey & Taniuti, 1964):

/Oow(x,O)-¢(x)dx+/Ooodt/zdx(%—?-U+%-f>:O, (4.5)

— 0

where ¢(x) is an initial condition and w(x, () is a vector of test functions, which are
differentiable with respect to  and ¢ as many times as is required and are identically
zero outside D(z,t). This equation is derived by multiplying the original equations
by w and integrating the product by parts. Note that the differentiability of weak
solutions is not required. If the solution is differentiable and satisfies Eq. (4.1), then
Eq. (4.5) is also satisfied. Hence ordinary solutions are indeed weak solutions. It
should be remarked that the uniqueness of weak solution for a given initial condition
is no longer guaranteed.

4.2.2 waves in the solutions of Riemann problems

The Riemann problem is an initial value problem for a system of conservation equa-
tions, in which two constant states are separated initially by a discontinuity, which
is located, e.g., at x = 0:

u(LO):{ UR E$>O

~— —

We seek weak solutions to this problem. As remarked at the end of the previous
section, the weak solutions are not unique in general and it is one of the important
issues of Riemann problems to determine which solution is physically meaningful.
Since there is no typical time and length scales in the problem, the solution should be
self-similar. It is well known that solutions of Riemann problems consist of a couple of
centered simple waves and discontinuities. The latter satisfies the Rankine-Hugoniot
relations (e.g. Jeffrey & Taniuti, 1964).

The simple waves are defined as waves, in which there is only one independent
component in w and all the other components are its functions. They are related
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with the eigenvalues of the Jacobian matrix (4.2) in such a way that all quantities
in the simple wave are constant along each characteristic given by

T = At + constant. (4.7)

The simple wave that corresponds to eigenvalue Ay is referred to as the k-th simple
wave.

Associated with the k-th simple wave are so-called the k-th Riemann invariants
denoted by JF(I=1,2,...,N — 1), which are constant across the k-th simple wave.
They are defined to be the quantities that satisfy the following relation with the k-th
right eigenvector, ry:

T Vo =0. (4.8)

The k-th Riemann invariants define N — 1 hypersurfaces in phase space and their
intersection is a line, to which the k-th right eigenvector, r, is tangential, and is
called the locus of the k-th simple wave. See a schematic picture drawn in Fig. 4.1.

The Rankine-Hugoniot relations, which are satisfied by the quantities on both
sides of a discontinuity, are expressed as

s[u] - [£] = 0, (4.9)

where s is the velocity of the discontinuity and [X] := X; — X denotes a jump
in quantity X across the discontinuity and Xy and X; are the values ahead of and
behind the discontinuity respectively. Since this is a system of N equations, we obtain
a one-parameter family of solutions for a state given on one side of the discontinuity.
Not all solutions are physical as mentioned repeatedly: Rarefaction shock waves
for hydrodynamical equations are well known examples. Since entropy decreases
across such shock waves, they are certainly unphysical and rejected. This entropy
condition is not sufficient to climinate all unphysical solutions in general and the
so-called evolutionary conditions are introduced.

4.2.3 evolutionary conditions

Intuitively put, the evolutionary conditions require that physical solutions should be
stable against splitting into other waves (see e.g. Falle & Komissarov, 2001; Polovin
& Demutskii, 1990; Landau et al., 1984; Jeffrey & Taniuti, 1964; Lax, 1957). T
be more precise, when a small-amplitude wave is injected to the discontinuity, the
resultant state, which should be determined uniquely, is required to still consist of
l-amplitude waves. This is satisfied
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the locus of the k-th simple wave
Ui

Figure 4.1: A schematic picture of the k-th Riemann invariants and corresponding
locus of the k-th simple wave in the case of N = 3. There are two k-th Riemann
invariants: J¥ and J§. The red surface is defined by JF = const. and the blue one
is given by J§ = const. The intersection is a line called the locus of the k-th simple
wave, to which the k-th right eigenvector, r(u), is tangential.

if the number of characteristics emanating from the discontinuity is N + 1 and if the
initial jump, [u], is linearly independent of the eigenvectors that correspond to the
outgoing characteristics.
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4.3 Ideal MHD

In plane symmetry, the ideal MHD equations are given by

dp 0 B
P4 2wy =0, (4.10)
o) ) ) B}\
E(pvn)+% (pvn+p+7> =0, (4.11)
Q(UHQ(;U—BB)—O (4.12)
afpt am/ﬂnt ntt) — Y .
oB;, 0
— (v — B = .
ot + 8:L‘On-Bt nvt) 07 (4 13)
de 0 B?
§+%Kc+p+7> un—BnB-v]—a (4.14)

where p, p, v and B are density, pressure, flow velocity and magnetic field respectively
(Landau et al., 1984). The subscripts n and ¢ indicate the normal component, i.e.
x-component, and transverse component, i.e. y or z-component respectively. The
total energy density is denoted by e = p/(v—1) + pv?/2 + B? /2, where the equation
of state for ideal gas is assumed and ~ is the ratio of specific heats. The normal
component of magnetic field, B, is constant owing to the divergence-free condition.

4.3.1 simple waves
The eigenvalues of the Jacobian matrix for the system of Eqgs. (4.10)-(4.14) are
Up FCp, UpFCa, Up FCs Uy, (4.15)

where ¢y, c4 and ¢, are called the fast, Alfvén and slow speeds respectively. They
are expressed as

1/2
1 /B2 1 /B> 2 B2
Cf75 = 5 <7 —|— a2> :i: \/Z (7 —|— CL2> — a’27n y (416)

B2
Cp ‘= —. (417)
\/ P

In the above expressions, a = /vp/p is the acoustic speed. In Eq. (4.15), the minus
(plus) sign is applied to the left-going (right-going) waves. The simple waves corre-
sponding to these cigenvalues are referred to as the fast, Alfvén, slow and cntropy
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waves respectively. The right eigenvectors for fast and slow waves are given as

i B ]
—7p
:I:Cﬁs
rie=%ms| L s B, (4.18)

1— (Cf7S/CA)2 Bn

in which the new variables, £ and &, are introduced as follows:

a2 — Cg C?c — CL2
gf = m, fs = 02 — C2. (419)
f s f s

These factors are necessary to ensure that the eigenvectors do not vanish for any
u. In deriving the above expressions of right eigenvectors we assume that w =
(p, p, Un, vy, By). Since we do not use the right eigenvectors for the Alfvén and entropy
waves in solving MHD Riemann problems, we do not give their explicit forms here.
Note that the Alfvén and entropy waves are lincar whercas the fast and slow waves
are neither linear nor genuinely non-linear.

The eigenvalues are degenerate in the following two cases:

B2
B,=0 : cp = a2+ =L cy=c4 =0, (4.20)
p

B,#0, B,=0 : ¢ =max(a,ca), ¢, =min(a,cq). (4.21)

In the latter case the limits of the right eigenvectors for fast and slow waves as
B; — 0 depend on the magnitudes of the acoustic and Alfvén speeds. For a > ¢y
we obtain

=P 0
ri— | *a |, ri—a 0 : (4.22)
0 +sgn(B,) e

0 \/ﬁet

where e; is a unit vector that has the same direction as the transverse magnetic field.
Note that rjf is reduced to the eigenvectors for the rarefaction waves in the ordinary
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hydrodynamics. In the opposite case, i.e. a < ¢4, we get

0 —p
0 =P
i —a 0 , T = | ta |, (4.23)
Fsgn(B,)e; 0

— \/ﬁet 0

in which 7} is reduced to the eigenvectors for the ordinary rarefaction waves in
hydrodynamics. Finally in the case of « = ¢4, we find

=P =7
—P 1 —P
rf — — +a . ori > — | fa |. (4.24)
f ’ s
V2 Fae; V2 +ae,
—a/pe: a./pe

As mentioned earlier, the right eigenvectors are chosen in our code so that these
degenerate cases could be properly handled as the limits of non-degenerate cases.
In the fast rarefaction wave the magnitude of transverse magnetic field is de-
creased and, as a limiting case, it vanishes behind the so-called switch-off rarefaction
wave. Since the fast rarefaction wave cannot reverse the direction of the transverse
magnetic field, the switch-off rarefaction is the end point of the fast rarefaction locus.

4.3.2 discontinuities

As mentioned earlier, discontinuities are another important element in the solutions
of Riemann problem. The quantities on both sides of a discontinuity satisfy the
Rankine-Hugoniot relations, which in ideal MHD are expressed as

m = const., (4.25)
m?[v] + |:{p + BT?H =0, (4.26)
mfv] — B,[B:] =0, (4.27
mlvB;] — B,[v] = 0, (4.2
(

4.27)
4.28)
4.29)

o ([ 25] + wnt + s —o

v—1

in the rest frame of the discontinuity. In the above expressions, m = povng = pP1Un1
is the mass flux, v := 1/p is the specific volume and (X) := (Xo + X;)/2 stands
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for the arithmetic mean of upstream and downstream quantities. The solutions can
be classified into the fast, slow or intermediate shock or into the rotational, contact
or tangential discontinnity. Details of the classification are found in the literature
(e.g. Jeffrey & Taniuti, 1964; Polovin & Demutskii, 1990; Torrilhon, 2002, 2003b). In
what follows, we summarize only those features that are needed for later discussions.

Following Torrilhon (2002, 2003b), we normalize all quantities with those up-
stream as

U1 ~ N r By,
_ p e p—

0= : , B;:= ) 4.30
vy’ Po o (4.30)
B )
a=Bo p_ Bt (4.31)

\/p—07 \/29_0’ ao )

and employ in the following the dimensionless MHD Rankine-Hugoniot relations,
which are obtained by substituting Eqs. (4.30)-(4.31) and eliminating [v] in E-
gs. (4.25)-(4.29):

1 .
p—1+yM2(5—1)+ 5(B,i2 — A% =0, (4.32)
vM2(tB; — A) — BB, — A) =0, (4.33)

ot 1, . 1 .
M, - 1(;;@ —1)+ 5(1) —D(p+1)+ Zl(v —1)(B; — A)?*| =0. (4.34)

Fixing the upstream quantities, A, B and M,, we solve Eqs. (4.32)-(4.34) and use
Egs. (4.30)-(4.31) to obtain vy, p; and By;. The other downstream quantities can be
calculated as

U1 = VUpg, (4.35)
apB
vy = vy £ 73\/ T [B] (4.36)

In Eq. (4.36), the plus and minus signs correspond to the left- and right-going dis-
continuities respectively.

4.3.3 contact, tangential and rotational discontinuities

The solutions of Eqs. (4.32)-(4.34) that have a vanishing mass flux, A, = 0, but

a non-vanishing normal component of magnetic field, B # 0, are called contact
discontinuities and satisfy the following relations:

& = arbitrary, p=1 B,=A, (4.37)

[v] = 0. (4.38)
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The solutions with My = 0 and B = 0, on the other hand, are named tangential
discontinuities, for which the following relations hold:

1 -
© = arbitrary, p—1+ §(Bt2 — A% =0, (4.39)

[vn] =0, [v:] = arbitrary. (4.40)

The last equation in Eq. (4.39) means that the total pressures are equal on both
sides of the discontinuity:.

The solution with My # 0 and B # 0 is either a linear wave (0 = 1) or a shock
wave (0 > 1). The former is referred to as a rotational discontinuity, since the
transverse component of magnetic field rotates, not varying its magnitude during its
passage. The rotational discontinuities meet the following conditions:

~ B2
=1, p=1, B =A> M=" (4.41)
Y

[0 =0, [vi] = i%[{Bt]], (4.42)

where the plus and minus signs correspond to the left- and right-going waves respec-
tively. These relations imply that the upstream and downstream Mach numbers are
equal to the ratio of the Alfvén velocity to the acoustic speed there.

All the above discontinuities satisfy the evolutionary conditions except for the
rotational discontinuity in which the transverse magnetic ficld rotates by 180°. The
latter is sometimes called weakly evolutionary in the literature (Jeffrey & Taniuti,
1964), since the neighboring rotational discontinuities are all evolutionary. Following
this point of view, we treat the solutions with weakly evolutionary discontinuities as
regular solutions in this thesis.

4.3.4 shock waves

The solutions of Eqs. (4.32)-(4.34), for which My # 0 and © > 1, i.e., the matter is
compressed as it passes through the discontinuities, are called shock waves. Their
notable feature is that magnetic fields are either planar or coplanar. This is apparent
from Eq. (4.33). Indeed, recalling ¢ > 1, we obtain

A MZ — B?
Bt == —’} OA .
yM3o — B?

I'This may need reconsideration, however, and will be addressed elsewhere.

(4.43)
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Substituting v,,; = vv, in order to eliminate ¢, we also obtain the following relation:

5 Un% - CA(Q)

which shows immediately that transverse magnetic fields are coplanar if and only
if the upstream flow velocity is super-Alfvénic whereas the downstream speed is
sub-Alfvénic.

The shocks with planar transverse magnetic fields are either fast or slow shocks,
the former of which amplifies the magnitude of transverse magnetic fields whereas the
latter reduces it. The shocks that change the direction of trausverse maguetic ficlds
are referred to as intermediate shocks. The fast and slow shocks are evolutionary
whereas the intermediate ones are non-evolutionary as pointed out below.

Recalling ¢y > ¢4 > c,, we assign 1 to the states with super-fast velocities, 2 to
those with sub-fast and super-Alfvénic velocities, 3 to those with sub-Alfvénic and
super-slow velocities and 4 to those with sub-slow velocities in the shock-rest frame.
With this allocation, the fast shock is denoted by 1 — 2 shock, since the upstream
velocity is super-fast (state 1) whereas the downstream speed is sub-fast and super-
Alfvénic (state 2) (e.g. De Sterck, 1999). Similarly the slow shock is designated as
3 — 4 shocks. The intermediate shocks normally belong to one of the following four
types: 1 =+ 3,1 — 4, 2 — 3 and 2 — 4 shocks. The 1 — 3 and 2 — 4 intermediate
shocks are called over-compressive shocks and 9 out of 14(= 7 x 2) characteristics
run into these shock waves. To the 1 — 3 and 2 — 4 shocks converge the fast
and Alfvén characteristics and the Alfvén and slow characteristics respectively. The
1 — 4 intermediate shock is doubly over-compressive and 10 characteristics of all
types go into the shock. In the case of 2 — 3 shock, only the Alfvénic characteristic
converges to the shock wave and the numbers of in- and out-going waves are right.
However, the other condition on the linear independence of eigenfunctions is violated
and the shock is hence classified as non-evolutionary.

In some cases, the flow velocity coincides with one of the characteristic velocities.
We employ a pair of numbers to specify those states; 71,2 7, 72,3” and ”3,4” rep-
resent those states whose flow speed are equal to the fast, Alfvén and slow speeds
respectively. The shock wave with the upstream velocity being super-Alfvénic and
the downstream speed being equal to the slow velocity, for example, is designated
as 2 — 3,4 shocks. Of our special concern among these intermediate shocks are the
so-called switch-on (1 — 2,3) and switch-off (2,3 — 4) shocks, the details of which
will be given shortly. Note that none of the intermediate shocks and switch-on/off
shocks satisfies the evolutionary conditions.
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fast and slow loci

We regard the shock solutions of (4.32)-(4.34) as functions of the upstream Mach
number (Mp), normal (B) and transverse (B; or A) components of magnetic field.
Then we divide them into two families and look into their loci in some detail. Since
magnetic fields in shock waves are either planar or coplanar as pointed out earlier, we
assume without loss of generality that magnetic fields are confined in the (z, y)-plane
and treat B, and A (> 0) as scalar variables in the following.
Eliminating p and B, from (4.32)-(4.34), we obtain the following cubic equation
for the specific volume, ©:
2 v—1

MZo)? — | —— +
(1Ms?) L/—i—l S

M2+ 2B% + 7—42} (v M20)?
0 v + 1 0

2y 1 2 —
+ [282 (7 : Tt hqz\.@) + B* - A/T%M(?AQ + AQBQ} YMED (4.45)

2y oL Y1
- |B* Mg MGA*B?| =0
{ (~/+1+7+17 0>+w+17 ’

where we used the assumption of ¢ # 1 in deriving the equation. Or, alternatively,
we obtain the following quadratic equation for the specific volume by eliminating
17\/‘[02

B, [ 4~ X 1 R 1 . .
{—t{ ’ +(Bt—A)2+—7+ (AQ—BE)}——7+1BQ(Bt—A)}62

2 |v-1 v -1 v -
2y A 2 2(F / > A
+- 1 E(Bt — A%+ BBy — A) = (By+ A)| 0 (4.46)
Y —
2vA

- (A2 4+ B (B, — A) =0.
v -

The family of fast shocks is the solutions characterized by the feature that the
matter is compressed and the transverse magnetic field is amplified by the passage.
It is then found that this branch of solutions satisfies the inequality 0, < ¢ < 1,
where the minimum is given by

B2 ~4—1
i = max | —— ] (4.47)
’)’]\’[0 ’)/ + 1

The loci of the solutions are shown in Fig. 4.2 as a function of the upstream Mach
number (M) for some combinations of the upstream normal (B) and transverse
(A) components of magnetic fields. As scen in the figure, the fast shocks can be
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parameterized by the upstream Mach number if one fixes the other parameters (A
and B), which are given by the upstream variables. The only case where some special
treatment is required is seen in the right panel of Fig. 4.2, where the fast locus is
divided into two branches for the special case of A = 0 with Mach numbers satisfying
the following inequalities:

182 2
bro< Mo < 41220 2 (4.48)
y—1~v -1

where ¢ 1= ¢fo/ap is a normalized fast velocity. One of the branches that generates
non-vanishing transverse magnetic fields by the shock passage ig called the switch-
on shock branch and the other is referred to as the Euler shock branch, in which
the transverse components of magnetic fields remain zero. The post-shock specific
volume and transverse magnetic field are given by

24 (y—1MZ B
= : 4.49
° (y+DM§ T Mg (449

. ME — B2 +1
B, = 0, \/—V " {(7— 1) <7+1B2— /A/[g) —27/], (4.50)

v —
respectively. In the above expressions, the first options correspond to the Euler
shocks and the second ones to the switch-on shocks. The requirement that the
quantity in the square root be non-negative gives the inequality (4.48).

It is noted that the flow speed behind switch-on shocks is equal to an Alfvén speed.
They are hence designated as 1 — 2,3 shocks and are non-regular. We also note that
Euler shocks are essentially hydrodynamical shock waves and the locus is extended
to My < ¢y, where it is smoothly connected to the slow-shock counterpart. They
are evolutionary except the range within which the switch-on shock branch appears,
i.e., the range satisfying the inequality (4.48).

The slow family is characterized by the feature that the matter is compressed
but the transverse magnetic field is reduced and in some cases reversed by the shock
passage. The slow loci are shown in Fig. 4.3 as a function of the upstream Mach
number (M) for a number of combinations of the upstream normal (B) and trans-
verse (A) components of magnetic fields. It is evident that some loci are two-valued
as a function of Mj. In the figure, the intermediate shocks are those that give a neg-
ative downstream transverse magnetic field. The shocks that nullify the transverse
magnetic field are called switch-off shocks (2,3 — 4 shocks). They are located at the
boundary between the regular slow shocks and the intermediate shocks. Each locus
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is terminated at the point that corresponds to a rotational discontinuity, which is
incompressible and rotates magnetic field by 180°, i.e., B, = —A.

The minimum value of the downstream transverse magnetic field, By min, is given
as

. B 4(B% — 7)? + 42 A% + 44%(B? 4+ +?)
P00 AB? £ 4 (2 — y) A2+ A?) + 4B\ /(7 — VA(A, B)
v —27+2)
v—1

(4.51)

A(A, B) = (B — )2 + 422 ( + A2(2B2 + 4%), (4.52)

which satisfies the condition that the discriminant of (4.46) becomes zero (Torrilhon,
2002). Note that l%t,min < — A as seen in the figure. We shall divide a locus by this
minimum point. The part from the maximum in (M, ét)—plane, i.e., corresponding
to B; = A, to the minimum is called the ’plus-branch’, named after a fact that the
branch gives a larger ¢ in (4.46) (Torrilhon, 2002). The other part, from the minimum
to the end point, is called the 'minus-branch’, which gives a smaller ©. Note that the
minus-branch does not always exist as seen in the figure. In the limit of B — 0 or
A — 0, the whole slow branch vanishes. That is, there is no solution that satisfies
(4.45) and the inequalities: ¢59 < My < ¢p9 and 0 < © < 1, except when A = 0 and
the upstream Alfvén speed is larger than the acoustic speed, i.e., é40(:= cao/ag) > 1,
in which case the Euler shock branch takes its place. This Euler branch is extended
to the regime of My > ¢y and connected smoothly to the fast-shock counterpart as
mentioned earlier.

4.3.5 shock waves with no normal magnetic fields

Without normal magnetic fields, the structure of the shock solutions becomes much
simpler because the slow shock loci disappear. In fact, (4.45) becomes a quadrat-
ic equation with the assumption of ¢ # 0 and one obtains a unique solution by
discarding the solutions that satisfy ¢ < 0:

. (453
2(y + 1) MZ 2(y + 1)MZ v(y + 1) M2 (4.53)

(- )M2+ A2 42 ﬂ(y— M2+ A2+ 2]% (2 4)A2
U=
The solution belongs to the family of fast shocks because the transverse magnetic
field behind the shock is amplified, which follows from (4.33). Otherwise the shock
is an Euler shock provided there is no transverse magnetic field. It is noteworthy
here that switch-on shocks are never realized when no normal magnetic fields exist.
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Figure 4.2: The fast loci for different combinations of the normal (B) and transverse
(A) component of magnetic field. The left panels: B = 1 and A = 2 (red), 1.5
(green), 1 (blue), 0.5 (purple) and 0 (light blue). The right panels: B =3 and A =1
(red), 0.5 (green), 0.05 (blue), 0 (purple, switch-on shock) and 0 (light blue, Euler
shock). The switch-on shock does not exist for B = 1. See the text for details.
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Figure 4.3: The slow loci for different combinations of the normal (B) and transverse (A4) compo-
nent of magnetic field. The left panels: B =1 and A = 3 (red), 2 (green) and 1 (blue). The vertical
black dashes indicate the points, at which My = ¢4 and switch-off shocks (2,3 — 4 shocks) occur.
Since ¢4 is independent of A, the Mach numbers, My’s, at the points for all loci coincide with
one another. These points mark the boundary between the regular slow shocks and non-regular
intermediate shocks. The characters, R, CT and A, attached to each locus stand for the regular
slow (3 — 4), 2 — 4 intermediate and 2 — 3 intermediate shocks, respectively. The horizontal dash
on each locus shows the point, at which the Mach number reaches its maximum on the locus and a
2 — 3,4 shock occurs. This is the boundary between the 2 — 4 (C*) and 2 — 3 (A) intermediate
shocks. The right panels: B =3 and A = 3 (red), 2 (green), 1 (blue) and 0 (purple, Euler shocks).
The vertical black dashes again give the boundary between the regular and non-regular shocks, at
which switch-off shocks (2,3 — 4 shocks) occur. The characters, R, C* and A, have the same
meaning as in the left panels whereas C*+ and C*, which emerge only for small A’s, represent the
1 — 4 and 1 — 3 intermediate shocks, respectively. The horizontal dash on each locus marks again
the point, at which the maximum Mach number is reached. On the other hand, the two vertical
blue dashes on each blue locus indicate the points, at which My = éfo. A 1,2 — 4 shock occurs at
the point closer to the vertical black dashes whereas a 1,2 — 3 shock emerges at the other point.
A 1 — 3,4 shock occurs at the point indicated by the horizontal blue dash. Note in passing that
the locus vanishes at B = 0.
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4.4 How to solve MHD Riemann problems I: the
regular solutions without switch-off rarefac-
tions

4.4.1 structure of the regular solutions without switch-off
rarefactions

We review here the way to find regular solutions, in which no non-regular shock
exists, in the case that neither normal nor transverse magnetic field vanishes in
order to show the basic idea to solve Riemann problems. Then we propose a new
strategy to obtain non-regular solutions, which can also handle vanishing magnetic
fields, in the next sub-section.

Assuming that both normal and transverse magnetic fields have some finite val-
ues initially on both sides and ignoring intermediate shocks and switch-off waves, the
structure of the solutions is known a priori: fast, Alfvén, and slow waves fanning
out in this order on both sides of a contact discontinuity. Since each wave forms a
one-parameter family and seven waves exist in the solutions, the structure of a solu-
tion is determined by fixing the seven paramecters. Oune of degrees of freedom is the
magnitude of a jump of density at the contact discontinuity, where other six quanti-
ties, i.e., pressure, three components of the velocity field and two components of the
transverse magnetic field, should be continuous. Therefore solving the MHD Rie-
mann problems reduces to finding the six parameters that satisfy a requirement that
the six quantities other than density are continuous across the contact discontinuity.
Then remaining parameter associated with the contact discontinuity is necessarily
determined. Furthermore, we can omit another degree of freedom that parameterizes
a rotational discontinuity in either side as pointed out by Torrilhon (2002). Thanks
to the fact that only the rotational discontinuities can rotate magnetic fields, if an
angle of the rotation is fixed on either side, then another angle on the other side is
necessarily determined to adjust the angle of the transverse magnetic field. Eventu-
ally, there remain five parameters that should be determined to satisfy the conditions
of continuity at the contact discontinuity.

The five parameters can be found, e.g., by the Newton-Raphson method and the
system of equations to be solved is schematically given as

Fi (b s ul (s up (Vysur)) = Frd s wh(vr up(y):ur) = 0, (4.54)

where ’l/)}F, ¥ and ¢, are the parameters of the left/right fast wave, left/right s-
low wave and rotational discontinuity respectively. wr g is a given initial state on
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Figure 4.4: A schematic picture of the regular solution of the MHD Riemann problem
in (z,t)-plane. There are generally seven waves, i.e., a contact discontinuity and fast
waves, rotational discontinuities and slow waves running in both sides, provided the
solution is restricted to a regular one. The letters with suffices, s, attached to each
wave stand for the parameters of each wave. The other characters with suffices, us
and F's, represent vectors of the conserved quantities in each states and vectors of the
quantities which should be continuous across the contact discontinuity respectively.

left /right side, i.e., ur r = "(pL.r, PL.R, VLR, BiLR). ué,R is the left/right fast-wave
function, which represents the downstream state of the fast wave and is a function
of upstream variables, uy r, and a parameter of the fast wave, uf Similarly, u}, p is
the left /right rotational discontinuity function and F'7 p is the left/right slow-wave
function. Here, the slow-wave function represents the five downstream variables of
the slow wave that have to be continuous across the contact discontinuity, i.e., p, v
and |By|. See also a schematic picture of regular solutions presented in Fig. 4.4.

4.4.2 parameterization of the regular waves

Although each wave forms a one-parameter family as mentioned earlier, it is not
a simple task to find the variables that are convenicnt to control cach wave. For
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instance, the slow shock family seems to have no convenient variables to param-
eterize the Hugoniot loci that include the non-regular branch. We review here a
parameterizations to handle the regular waves by neglecting intermediate shocks
and switch-on/off waves (see also Torrilhon, 2002).

The problem is how to map the parameters of the waves, which are directly
improved by the Newton-Raphson method, to physical quantities, which have some
appropriate ranges. For example, the fast waves with the shock- and rarefaction-wave
branches form a one-parameter family and let 1y denote the parameter of the waves.
1y is improved by the Newton-Raphson method as well as the other parameters, s,
which are associated with the other waves (we here omit the plus and minus signs for
notational simplicity) and the domain of the parameters is R. On the other hand,
fast shocks can be parameterized by the Mach number, M € [¢f9, 00), as mentioned
earlier and fast rarefactions can be parameterized by the length of a fast rarefaction
locus in phase space, s.2 That is, the state behind a rarefaction wave, Tpeping, can
be described as

rbehind:/ rs(s)ds’. (4.55)
0

Note that s € [0, Syax), Where syax corresponds to the maximum strength of the fast
rarefaction wave, i.e., the strength of a switch-off rarefaction. Now, our concern is
to construct a function that maps ¢ into A or s.

Ignoring switch-off rarefactions and switch-on shocks, one can define the fast-wave
function as (Torrilhon, 2002)

{ My = ¢po+ 1)y (y > 0) (Shock),

$ = Smax tanh(—vy) (v <0) (Rarefaction). (4.56)

By this parameterization, the fast wave is given as the fast shock whose strength is
determined by the upper part of (4.56) for positive 1)y while it is the fast rarefaction
whose strength is given by the lower part of (4.56) for non-positive yr; and it is
never a switch-off rarefaction. The fast-shock solution is obtained from the cubic
equation (4.45) by substituting the M. Although there are three roots in general
(Delmont & Keppens, 2011), we can easily pick up the correct root that corresponds
to a fast shock as described in Sec. 4.6.6. In the above expression, we omitted the
case of My = ¢y because both s = 0 and My = ¢y mean that there is no fast

2The rarefaction locus in phase space connects the points that correspond to the state in front of
the rarefaction wave and a state behind it. The locus is constructed by integrating the eigenvector,
r¢. Hence, the behind state is uniquely given by the length of the locus, s, once the front state is
given.
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wave. Note also that (4.56) is applicable to both left-going and right-going fast
waves while we omitted plus and minus signs from the variables, My, ¢s, ¢, s and
Smax, for notational simplicity.

Similarly, discarding the non-regular branch, the slow family can be constructed
as

{ B, = A(1 — tanh(1),)) (1, > 0) (Shock), (4.57)

s = —1q (s <0) (Rarefaction).

Here, s is the length of a slow rarefaction locus in phase space. The ranges of this
transformation are B3, € (0, A) and s € [0, 00). Therefore only regular slow shocks
are possible and neither switch-off nor intermediate shocks are realized. We omitted
the case of B; = A here in order to prevent from doubly counting the situation that
there is no slow wave, which is also described as s = 0. Note that (4.57) is applicable
to both left-going and right-going slow waves.

With respect to rotational discontinuities, the degree of freedom is the rotational
angle of the transverse magnetic field. Hence the parameter, ¢, can be transformed
into the rotational angle, ¢, as

© =1, (mod 27). (4.58)

This relation is used only for a rotational discontinuity on either side because the
rotational angle on the other side is necessarily fixed as mentioned in Sec. 4.4.1; The
angle is automatically adjusted to 0y, — 0r + ¢, where 0 r are the initial rotational
angles of the magnetic fields on the left and right sides respectively. 1If 1, is the
parameter of the right rotational discontinuity, then the rotational angle on left side
should be (JR - HL + .

4.5 How to solve MHD Riemann problems II: the
solutions with intermediate shocks, switch-on /off
shocks or switch-on /off rarefactions

In this section, we discuss the solutions of MHD Riemann problems, including inter-
mediate shocks, switch-on/off shocks and switch-on/off rarefactions. Furthermore,
we take into account the initial conditions with vanishing magnetic fields. There
are mainly two differences from the previous section. Firstly, the parameterizations
of waves should be modified to cover all the branches. Secondly, the structure of
non-regular solutions cannot be known a priori because some waves prohibit the
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emergence of other waves: If a left-going 2 — 4 intermediate shock exists, for ex-
ample, then the left-going rotational discontinuity and slow wave do not appear in
the solution because 2 — 4 intermediate shocks skip the Alfvén and slow speeds.
Therefore all the possible combinations of waves should be tried to find the solution
and the procedure to construct the solution should arrange the waves in appropri-
ate order. We discuss the parameterizations of the waves at first. Then we discuss
the arrangement of the waves, which is associated with the parameterization, in the
latter part.

4.5.1 parameterization of the non-regular shocks and switch-
on/off rarefactions

Including switch-off rarefactions, we modify the fast-wave function (4.56) as follows.

Mo = ¢ro+ty (0<y) (Shock),
. =15 (—Smax < ¥y < 0) (Rarefaction), (4.59)
T Smax (U < —Simax) (Switch-off rarefaction),

where we omitted plus and minus signs for notational simplicity as in the previous
section. This function gives a switch-off rarefaction if ¢y < —s,,... Note, however,
that (4.59) is no longer injective since ¢y < —sp.x always gives a certain value,
Smax- 1Lhis property may cause a trouble in the Newton-Raphson iteration, where
the derivative of the function is required, and the issue is discussed in Sec. 4.6.1.
Note also that the shock’s part of (4.59) may not determine the downstream state
uniquely because the two branches, the switch-on branch and ordinary Euler one,
exist for a given Mach number provided the upstream transverse magnetic field is
absent and the upstream Mach number satisfies the inequality (4.48). We need hence
other rules to choose a branch to determine the downstream state uniquely. In our
code, this degree of freedom remains as a setting parameter, i.e., we select a branch
before running the program. If one chooses the switch-on shock branch, one should
set the direction of the downstream transverse magnetic field as well because the
shock can produce the field in an arbitrary direction. There is a good way, however,
to adjust the direction automatically for the initial conditions where the transverse
magnetic filed is absent on only one side. For such conditions, one does not have to
mind the direction beforehand and the way is presented later.

For slow waves, the intermediate shock branches and switch-on rarefactions should
be included. No special modification is necessary for the rarefactions while the pa-
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rameterization of slow shocks becomes rather complicated, which is given as

B = (A, Bimmin,¥s) (45 >0) (Discontinuity), (4.60)
s = —1hq (¢s <0) (Rarefaction), ’

where E}t,min is the minimum value of the transverse magnetic field in the slow Hugo-
niot locus given by (4.51). The function g is defined for A > 0 by

R A—¢s R (0<¢Y§S A+|ét,min|)7A
9(147 Bt,mina ws) = Us —A- 2‘Bt,min’ (fl —J_ ‘Bt,min’ < 1/’5 é 2’Bt,min’): (461)
—A (2| Bt.min| < v5).

The range of the top equation in (4.61) is [E}nmm, A)> B, while that of the middle one
is (Bt,min., —A] > B,. Note that the post-shock state may not be determined uniquely
by (4.61) because two branches can exist for a given B, as mentioned in Sec. 4.3.4.
Hence we divide the slow Hugoniot loci into 'plus-branches’ and 'minus-branches’ as
mentioned earlier. We take the quantities from the plus-branch, which includes reg-
ular slow shocks, a switch-off shock and a portion of the intermediate shock branch.
for s, € (0,4 + \Btmn\], i.e., corresponding to the top equation in (4.61). Other-
wise, we use the minus-branch, which includes a part of intermediate shocks and the
rotational discontinuity located at the end point, for ¢ € (A + |I§t7min|, o0), corre-
sponding to the middle and bottom equations. In case that there is no minus-branch,
ie., Enmm = —A, the domain for the middle equation becomes the empty set. An-
other noteworthy property is that the function gives 180° rotational discontinuities,
ie., By = —A and & = 1, provided v, € (2|§t7min|7oo)7 reflecting the fact that the
terminating points of slow Hugoniot loci give 180° rotational discontinuities. The
advantage that stems from this property is discussed in Sec. 4.6.4. For A = 0, i.e.,
when the upstream transverse magnetic field is absent, the Fuler shock branch may
traverse the slow and fast Hugoniot locus plane. The Euler shocks that belong to a
slow branch can be parameterized as follows:

My =1+ (¢50 — 1) tanh(y) (125 > 0). (4.62)

This function maps v into the upstream Mach number of the Euler shock, M, €
(1,¢50). And we use this function instead of g in order to treat the slow shock.
With respect to rotational discontinuities, we use the same function (4.58) for
determining a rotational angle provided neither intermediate shock nor switch-off
wave exists in the solution. Once intermediate shocks or switch-off waves emerge.
however, the degree of freedom associated with a rotational discontinuity disappears
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as discussed below. We begin from the case that an intermediate shock or a switch-
on/off wave exists only in one side: (i) If an intermediate shock exists, the rotational
discontinuity is skipped by the shock and the transverse magnetic field is reversed
in the side. As a result, the rotational angle on the other side is necessarily fixed
to O g — Op, + 7 for the right/left side to adjust the direction of the field. (ii) If a
switch-off shock (2,3 — 4 shock) or switch-off rarefaction exists, the wave quenches
the transverse magnetic field and, as a consequence, the rotational discontinuity
vanishes. And no wave produces the magnetic field in the side since only an ordinary
rarefaction or ordinary Euler shock can exist behind the switch-off waves. This
situation requires that any switch-off wave also appears on the other side and, as a
result, the rotational discontinuity disappears. When such waves that prohibit the
rotational discontinuity emerge in both sides, no rotational discontinuity exists in
the solution, of course. In this way, if non-regular shocks or switch-off rarefactions
emerge in one side, we do not need consider the rotational angle of the rotational
discontinuity in the other side, if any. The problem associated with the disappearance
of the degree of freedom is discussed in Sec. 4.6.1.

4.5.2 structure of the non-regular solutions and how to ar-
range the waves

We discuss here the structure of non-regular solutions and propose a process to
arrange the waves in the appropriate order, which is associated with the parame-
terization that was discussed in the previous sub-section. As mentioned repeatedly,
the structure of the solution is not known a priori when the non-regular shocks and
switch-on/off rarcfactions are included and all possible combinations of waves should
be tried to find the solution. Our method realizes this requirement: It searches all
the patterns and finds the solution automatically in the Newton-Raphson iterations.

The outline of the process to arrange the waves is as follows. At first, we treat the
waves that run in a side, say right, of the contact/tangential discontinuity, based on
a given initial guess that controls the right-going waves. After arranging the right-
going waves, we obtain the right state of the contact/tangential discontinuity. Then
we treat the other side similarly and we will obtain the left state of the discontinuity,
where the left and right states should satisfy the Rankine-Hugoniot conditions. Until
the conditions are satisfied, the process is iterated by the Newton-Raphson method.
Hereafter, we explain the process to arrange waves on the left side. The procedure
on the other side is almost the same.
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The case that both the transverse and normal magnetic fields exist in the
left initial condition

We discuss the way to arrange the left-going waves in the case both the transverse
and normal magnetic fields exist in the left initial condition. In this case, the first
wave running in the left side is a fast-family wave, i.e., a fast rarefaction or fast
shock, or an intermediate shock whose upstream speed in the rest frame is super-fast
or equal to the fast speed, ie., a’l - 3,1 —-4",'1,2 —-3,"'1,2 —-4",’'1 - 3,4 or
'1,2 — 3,4’ shock.?

If the parameter that controls the left-going slow wave is positive, i.e., 17 > 0,
we consider the pattern that includes such an intermediate shock at first and we
try inserting an intermediate shock which is given by v, and its upstream state
through the slow-shock function (4.60). Note that the 'trial intermediate shock’ may
not satisfy the assumption that the upstream flow speed is not slower than the fast
speed, My > ¢y, or the trial shock may not be even an intermediate shock since the
function (4.60) includes regular slow shocks. Moreover, it is also possible that the
slow shock branch does not include the intermediate shock that is appropriate now,
as seen in the left panels in Fig. 4.3. In such cases, we reject the assumption that the
leftmost wave is an intermediate shock and then we alternatively insert a fast wave
as the leftmost wave, whose strength is given by ¢, through the fast-wave function
(4.59). Ouly if the shock satisfies My > ¢g9, we accept the trial intermediate shock.

If ¥; < 0, on the other hand, we need not consider any intermediate shock
because ', < 0 gives only slow rarefactions and hence the first wave is necessarily a
fast wave, which is given by 1, through (4.59). We discuss below the case that the
leftmost wave is (a) a fast wave or (b) an intermediate shock.*

(a): We further divide the situation into the four cases as follows. (a-i) ¥, <0
and the fast wave is not a switch-off rarefaction. (a-ii) ¢, < 0 and the fast wave is a
switch-off rarefaction. (a-iii) ¢»; > 0 and the fast wave is not a switch-off rarefaction.
(a-iv) 1o, > 0 and the fast wave is a switch-off rarcfaction. Note that (a-i) and (a-ii)
are the simplest cases, where no intermediate shock follows.

(a-1): In this case, the fast wave is followed by a rotational discontinuity and a
slow rarefaction in this order. The slow rarefaction is controlled by ;" through the
slow-wave function (4.60). The treatment of a rotational discontinuity is different

3Tt is shown that the shocks designated as ’1,2 — 2,3’ do not exist.

4We should note that the intermediate shocks whose upstream flow speed is super-f
be discarded in some cases because a class of solutions may be missed as mentioned in Sec. 4.6.3.
Due to this problem, we designed our code so that we choose whether we neglect such intermediate
shocks or not before running the program. In the case that we discard such shocks, the path starts
always at (a).
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on the right and left sides. On the right side, where we assumed that the waves are
arranged before the left side, the rotation angle is given by 1, through (4.58) while
the counterpart on the left side is necessarily determined by the waves on the right
side as mentioned in the previous sections.

(a-ii): Since the transverse magnetic field vanishes behind switch-off rarefactions,
rotational discontinuities do not appear and only an ordinary rarefaction or ordinary
Euler shock follows. We note here that behind switch-off rarefactions, a; < ca1
is always satisfied, i.e., the fast speed and Alfvén speed always degenerate and the
acoustic speed and slow speed coincide with each other. Therefore the ordinary wave
belongs to the slow family and, hence, we here control it by v; < 0 through the slow-
wave function (4.60). Since 1, < 0 gives rarefactions, the third wave is necessarily
an ordinary rarefaction wave.

(a-iii): When 17 > 0, we need consider the possibility of intermediate shocks for
the second wave. Since the downstream state of the fast wave is designated as ’2’ or
’1,2’ for the shocks and rarefactions respectively, the fast shock can be followed by
a’2 — * or switch-off (2,3 — 4) shock, where "+’ stands for ’3’, ’4’ or ’3,4’, and the
fast rarefaction can be also followed by one of these non-regular shocks or a ’1,2 — %’
shock.> Therefore a trial intermediate shock is given again by 1, through (4.60).
Note that the upstream quantities are now given by the downstream state of the
fast wave. As before, the trial intermediate shock may not be an intermediate shock
that is appropriate here and we should confirm that the shock does not overtake the
preceding fast wave.% If the trial shock does not satisfy such conditions, we discard it
and, as consequences, the following waves are a rotational discontinuity and a regular
slow shock, which are handled in the same manner as in (a-i). If the trial shock is
acceptable as the second wave, on the other hand, then the downstream state is
designated as '3’, '4’ or '3,4’, i.e., ¢s1 < My < a1, My < é51 or My = ¢4 respectively.
For the second case, including the case of switch-off shocks, no wave follows and the
non-regular shock is the last wave. For the third case, only a slow rarefaction can
follow while the possible wave for the first case is either a slow rarefaction or regular
slow shock whose shock speed is smaller than the preceding intermediate shock.
Note, however, that there remains no parameter associated with the left slow wave
because we have already used i, for the intermediate shock. Hence we control the
slow wave behind the intermediate shock by introducing an extra parameter, ¢

ex’

51t is shown that the shocks designated as 2,3 — 3,4’ do not exist.

6Note that the slow-shock function (4.60) contains a rotational discontinuity as mentioned earlier
and rotational discontinuities can also be inserted behind the fast waves. We hence accept the
rotational discontinuity that emerges as a trial ’shock’ in this moment. The advantage of this
treatment is discussed in Sec. 4.6.
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which gives the strength of the slow wave through the regular-slow-wave function
(4.57). This parameter is also iteratively improved by the Newton-Raphson method,
which is discussed in Sec. 4.6.1.

(a-iv): As mentioned in (a-ii), the switch-off rarefaction is followed only by an
ordinary wave. Since i/, > 0, the following wave is an ordinary Euler shock whose
strength is given by ¥ through the Euler-shock function (4.62).

(b): If the first wave is an intermediate shock, which is controlled by the slow
function (4.60), then the downstream state is either ’3’, ’4” or ’3,4’. Therefore the
patterns of the following waves are the same as that discussed in the latter part of
(a-iii); That is, no wave or an extra slow wave follows. Here, we also introduce the
extra parameter 1_, for the slow wave.

Note that the number of the waves and, as consequences, the number of the free
parameters are different for each case. The issue is associated with the way to treat
the parameters in the Newton-Raphson method, which is discussed in Sec. 4.6.1.

The procedure to arrange the waves discussed above are summarized in Fig. 4.5
as a flow chart. In the figure, the functions entitled 'trial IS’ give a trial intermediate
shock whose strength is determined by s through (4.60). The 'Fast’ functions
give a fast wave, controlled by vy through (4.59), including switch-off rarefactions.
The ’Euler’ function gives an ordinary Euler shock, controlled by s through (4.62).
The 'Ordinary RW’ function gives an ordinary rarefaction, controlled by 1, through
(4.60). The 'Rot.” functions give a rotational discontinuity whose rotational angle
is determined by 1, unless other rules determine the angle due to the waves on the
other side. The 'Regular Slow’ function gives a regular slow wave, controlled by ¢,
through (4.57). The ’Slow RW’ function gives a slow rarefaction, controlled by 5 or
the, through (4.60). The ’Slow SW’ function gives a regular slow shock, controlled
by 15 through (4.57).

The case that the initial transverse magnetic field is absent in the left side

If the transverse magnetic field exists on the other side, then we arrange the waves
from the right side. This is because some switch-on wave may emerge on the left
side. Because the magnetic ficld should coincide at the contact discontinuity, the
direction of the transverse magnetic field that is produced by the switch-on wave is
necessarily determined by arranging the waves on the right side. In this sub-section,
we suppose that we have already arranged the waves on the right side.

Without a transverse magnetic field, the fast and slow speeds degenerate into an
Alfvén or acoustic speed, depending on the magnitudes of those speeds. Accordingly.
we separately discuss the two situations: (p) ¢4 < 1 and (q) ¢a0 > 1, where ¢4 is
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Figure 4.5: The flow chart for arranging the waves on one side where there are both
the transverse and normal magnetic fields. The squares with double lines on each
side represent the subroutines that insert a wave with the use of the corresponding
function and parameter. The letters, s, that are attached to these functions are
the parameters that are used in the subroutines. The designations, (a-i)-(a-iv) and
(b), that are attached to the branches correspond to the paths that are mentioned in
Sec. 4.5.2. The letters, s, in the terminals are the free parameters that are used in
the path and improved by the Newton-Raphson method in the succeeding process.
Note that a parameter given in square brackets mean that it is not a free parameter
if the path passes through (b) as discussed in Sec. 4.6.1. Similarly, the letter in curly
parentheses means that the parameter is not a free parameter only if the accepted
trial 'shock’ is a rotational discontinuity. The parameters given in round brackets
mean that the parameter is not always used in the path.
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the Alfvén speed of the given state normalized by the acoustic speed.

(p): As shown in Sec. 4.6.5, there is no chance for switch-on shocks to emerge
in this case and, hence, only an Euler shock is allowed if any shock runs. Recalling
Cro = 1 > a0 = C5 and the fact that the flow speed changes from super-acoustic
to sub-acoustic across the Euler shocks, the flow speed in front of the FEuler shock is
super-fast. Therefore the Euler shock belongs to the fast branch in this case and is
controlled by U; > 0 through (4.59). Similarly, the ordinary rarefaction is controlled
by /q)}? < 0 since the ordinary rarcfactions flow with an acoustic speed. After the
ordinary wave, a switch-on slow rarefaction can follow if ¢4; < 1, where ¢4 stands
for the Alfvén speed behind the first wave normalized by the acoustic speed. Since
we control the switch-on rarefactions through (4.60), the wave follows only if ¥ is
negative. Otherwise, no wave follows and only the ordinary wave runs on the side.

(q): In this case both Euler shocks and switch-on shocks are allowed. Recalling
Cpo = Cao > 1 = ¢4, the Euler shock lies in both the fast and slow branches. Note
here that we need select either of the switch-on-shock branch or Euler-shock one that
is used for the Mach numbers in the overlap region before running the program as
mentioned in Sec. 4.5.1. And two wave-patterns are possible as explained below:
(g-1) an Euler shock or ordinary rarefaction that is possibly followed by a switch-on
rarefaction and (g-ii) a switch-on shock followed by a slow shock or rarefaction wave.

The wave-pattern is determined as follows. If 1//’; > (), the first wave is either a
switch-on or Euler shock, which is given by vy through (4.59). In the case of the
Euler shock, there is a chance for a following switch-on rarefaction like the case of
(p). Hence, the pattern (q-i) where the flow speed is super-fast in front of the shock
is realized. In the case of the switch-on shocks, on the other hand, the pattern (g-ii)
is realized. The following slow wave is given by v, through (4.60).

If vy <0, on the other hand, the parameter has no corresponding rarefaction
waves now. Hence the first wave is controlled by ¢, through (4.60). ¢, < 0 gives an
ordinary rarefaction and the wave pattern is (g-i). Note that switch-on rarefactions
never follow in this case because ¢4 increases across rarefaction waves and é,4; 1S
necessarily larger than unity. On the other hand, 7, > 0 gives an Euler shock
whosge flow speed is super-slow and sub-fast. The shock is followed by a switch-on
rarefaction if ¢4; < 1. Since we have already used 1, , we control the switch-on
rarefaction by introducing ¢_,. Then the pattern (g-i) where the flow speed is sub-
fast and super-slow in front of the shock is realized. Note that the number of the
waves is one or two in these cases. Sce also the flow chart preseuted in Fig. 4.6,
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Figure 4.6: The flow chart for arranging the waves when there is no transverse mag-
netic field initially while the normal magnetic field exists. The function entitled
"Euler/Sw.-on SW’ is controlled by 1y through (4.59) and gives an ordinary rar-
efaction wave if ¢y < 0 or Euler or Switch-on shock otherwise. Note here that the
switch-on branch is used only when the branch is selected beforehand. The 'Regular
Slow’ function gives a regular slow shock, controlled by vs through (4.57). The "Sw.-
on RW’ function handles a switch-on slow rarefaction which is given through (4.60).
The 'Ordinary’ function gives an ordinary rarefaction or Euler shock. Here, the
function with ¢ is controlled through (4.59) while that with ¢/, is handled through
(4.60) and (4.62) for rarefactions and shocks respectively.
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The case without normal magnetic fields

In this case, the structure of solutions is a prior: known: two fast waves fanning
out on both sides of a tangential discontinuity. The fast waves are controlled by
@Z)}F through (4.59) on the left and right sides respectively. Note that switch-off
rarefaction waves do not exist and s, = oo. The Rankine-Hugoniot conditions
for tangential discontinuities require the continuity of the total pressure and normal
velocity. Hence, there are always two fast waves and two matching conditions.

4.6 Other technical details

4.6.1 modified Newton-Raphson method

We discuss how to modify the Newton-Raphson method in order to handle the case
that the number of the parameters changes in the iteration process. This modifica-
tion is necessary because the number of the waves in the solution changes due to the
intermediate shocks, switch-on/off waves or extra waves as mentioned in the preced-
ing section. Furthermore, since the mappings (4.59) and (4.60) are not injective for
switch-off rarefactions and the rotational discontinuities respectively, the differential
values of the quantities at the contact discontinuity with respect to ¢¢ or ¢ are zero
for such waves and, as a result, the Jacobi matrix becomes singular. Therefore, in
order to avoid the singularity, the parameters associated with those waves should
be omitted in the Newton-Raphson procedure, i.e., the parameters are not improved
but hold their values.

On the other hand, there are always five conditions that should be satisfied at
the contact discontinuity provided normal magnetic fields exist. Hence, we need
ignore some equations and find the solution of the reduced system and then, as a
post process, we check whether the other conditions are satisfied. There seems to be
no special strategy for selecting the equations that are omitted although the code is
designed so that the cquations for the magnitude of the transverse magnetic field,
2,1, x-components of the velocity and pressure are omitted in this order when the
number of equations is adjusted.

We also note that the number of equations may be reduced when the initial
condition is confined in the (z, y)-plane due to the non-existence of the z-components
of the velocity and magnetic fields. If none of the waves arranged on both sides cannot
produce the z-components, for example, such a case that two fast waves and two slow
waves fan out on both sides of the contact discontinuity and a 2 — 3 intermediate
shock runs in the right side, then the differential values of the differences of v, and
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B, at the contact discontinuity with respect to any parameter become zero since
v, and B, are absent throughout the space for any combination of the parameters
unless the wave-pattern changes and the rotational discontinuities appear. Therefore
these equations associated with z-component should be neglected, otherwise the
corresponding rows of the Jacobi matrix lead to the singularity. Accordingly, we
also reduce the number of the parameters to three, corresponding to that of the
equations, provided there remain more than three parameters. Since there seems to
be no general prescription for choosing the parameters that are discarded, our code
treats it as a setting parameter, i.e., we should plan which parameters are neglected
before running the program.

If the normal magnetic field is absent, on the other hand, these modifications
are never necessary because there are always two fast waves, which are not switch-
off rarefactions, running in both sides of the tangential discontinuity, where there
are just two matching conditions: the continuity of the total pressure and normal
velocity. That is, the Jacobian is always a 2 x 2 matrix and does not become singular.

4.6.2 how to obtain the maximum strength of fast rarefac-
tions

As mentioned repeatedly, the fast rarefaction branches terminate at switch-off rar-
efactions and there is the maximum strength of the fast rarefaction for the given
upstream state provided the normal magnetic field exists. Once the initial condition
is given, the maximum strength is known since the state in front of the switch-off
rarefaction is the given state. The strength, sn.y, is given by solving the equation
below.

- 1(s = o B.(5)
Bt,behlnd(* max) /0 (CA(S/)/Cf(S/))2 -1

where we integrate the fast eigenfunction, r¢, and pick up the component of the
transverse magnetic field. The equation is solved by numerically integrating the in-
tegrand and finding the value of s such that the transverse magnetic field is quenched.
Then the sp.x is used throughout the calculation. Note that the values of sy, on
the right and left sides are generally different.

ds' =0, (4.63)

4.6.3 remark on the class of solutions that eludes the search

As mentioned in the footnote in Sec. 4.5.2, there is the class of solutions that the
algorithm cannot find unless we discard the intermediate shocks whose upstream flow
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speed is greater than the fast speed. More specifically, we may miss the solutions
that include 2 — % intermediate shocks, where %’ stands for '3’, ’4’ or ’3,4’, if the
initial condition allows the 1 — % intermediate shocks. For example, suppose that
an initial condition whose left state allows the emergence of the 1 — * intermediate
shocks has a solution that includes a left-going 2 — 4 intermediate shock whose
strength is given by 1, = ¢y > 0 through (4.60). And suppose also that we know all
the other values of the i)s that parametrize each wave in the solution as well. Then,
if we give the parameters as the initial guess and follow naively the flow chart (Fig.
4.5), can we obtain the solution? The answer might be no because, following the
flow chart, the first step is inserting a trial intermediate shock with a hope that the
fastest wave is a 1 — * intermediate shock. If the ¥y gives a 1 — % shock in this first
step, then we follow the path (b) and there is no chance for the 2 — 4 intermediate
shock to be considered. To produce the solution that includes the 2 — 4 shock, we
should reject the first trial intermediate shock. Hence we designed our code so that
we can find such hidden solutions by always discarding the first trial intermediate
shock. Tt is a setting parameter whether the first trial intermediate shock is always
neglected or not. Trying both the settings, we can find all the solutions.

4.6.4 advantage of including the rotational discontinuity in
the slow-shock function

The non-regular-slow-shock function (4.60) includes the rotational discontinuity, as
mentioned earlier, which lies at the end point of the slow Hugoniot locus. Owing to
this feature, a rotational discontinuity followed by a slow wave can be realized with
two ways: the combination of v, and w,, where the parameters give the rotational
discontinuity and slow wave through the function of rotational discontinuities (4.58)
and the slow-wave function (4.57) respectively, or the pair of v; and v, where the
s now gives the rotational discontinuity through (4.60) while the 1), gives the slow
wave through (4.57). Since the degeneracy violates the one-to-one correspondence
between the wave parameters and the structure of the solution, this parameterization
may seem to be awkward. Thanks to this parameterization, however, the non-regular
solutions and regular solution can form a one-parameter family as the 2 — 3 interme-
diate shocks continuously change to the rotational discontinuity. In fact, some initial
conditions have uncountably infinite solutions that form a one-parameter family of
1, whose end point is the regular solution and smoothly connected to the non-regular
solutions that include a 2 — 3 intermediate shock instead of the rotational disconti-
nuity. Such examples are shown in the following sections.
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4.6.5 the valid range of switch-on shocks

As mentioned in Sec. 4.3.4, switch-on shocks are possible only when the Mach number
satisfies the inequality (4.48). Such Mach numbers exist only if éa40 = cao/ap =

/B?/v > 1 as shown below.
(i) In the case of /B2?/vy > 1. Recalling the degeneracy (4.21), the fast speed

cquals to the Alfvén speed, ie., ép9 = ¢a0 = v/ B?/v. Then,
+1B? 2 . 2 B?
<7 B ) 2= (_ 1) >0, (4.64)
y—1y -1 -1\
and, since v > 1, the value in the square root is positive. Therefore there is a finite
range in (4.48) where the switch-on shocks are possible.

(i) v/ B?/v < 1. In this case, the fast speed degenerates into the acoustic speed,
i.e., ¢pp = 1. Then
2 ‘ 2
<7—“5—L)—6§0:”+1(5—1>§0. (4.65)
y—1\ 7
Therefore there is no Mach number that satisfies the inequality (4.48) and switch-on
shocks are never possible.

4.6.6 the correct root in the cubic equation

We use the cubic equation for © (4.45) to obtain the fast shock solution. This equation
has three roots in general and hence we should find the correct root. Here, we discuss
how to pick it up, which turns out to be easy as shown below.

The point is that we use (4.45) only for fast shocks. Then, since the state in
front of the shock is super-fast, the parameter M, in (4.45) is always larger than
¢yo when we solve it. Therefore all the roots correspond to some super-fast solution;
One is a fast shock and the others, if any, are intermediate shocks whose upstream
flow speed is super-fast. We note here that o is larger than B?/(yM2) if we assume
that the shock is super-Alfvénic and the transverse magnetic field is not reversed. It
is also shown that ¢ is smaller than B?/(yM¢g) for intermediate shocks. Therefore,
the correct root is always larger than the others. Then, we can easily get the fast
shock solution by giving an initial guess as © = 1.0 in the Newton-Raphson method.

4.7 Examples of the exact solutions

In this section, we show some examples of the exact solutions of MHD Riemann
problems in order to demonstrate the capability of our code.
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Firstly, we present the solutions for a Riemann problem whose initial condition
satisfies the Rankine-Hugoniot conditions of a 1 — 4 intermediate shock:

(PL: Pr, VzL, UyL, VzL, ByLn BZL) = (17 17 07 07 07 17 O) (466)
(PR, PRy VxR, Vyrs Vzr, Byr, B:r)
= (2.622826, 8.930218, —2.196843, —1.571584, 0, —0.8600000, 0), (4.67)

with B, = 3 and 7 = 5/3. The discontinuity is initially located at = = 0. Some of
the solutions at ¢t = 0.1 are shown in Fig. 4.7, where we showed the profiles of the
density and transverse magnetic field. Note that the transverse magnetic fields are
confined in (z, y)-plane in these solutions.

As shown in the figure, the initial condition can be connected not only by a
1 — 4 shock (the bottom panels) but also by other wave patterns. The top panels
are the regular solution, which consists of a fast shock, 180°-rotational discontinuity
and slow shock that run into the left side of the contact discontinuity and a fast and
slow rarefaction waves that run on the other side. The second and third rows show
some non-regular solutions that contain a 2 — 3 intermediate shock instead of the
rotational discontinuity, which is responsible for reversing the transverse magnetic
ficld. Although these two solutions resemble cach other, the close-ups reveal the
difference that the three shock waves change their strengths as well as the fast and
slow rarefactions. In fact, we discovered a series of uncountably many solutions that
contain a 2 — 3 intermediate shock whose strength is different from each other.

The sequence of the infinite solutions is parameterized by the strength of the
left-going 2 — 3 intermediate shock, i.e., 1, , and is obtained by gradually changing
1, that is fixed in the modified Newton-Raphson method. Note that the rotation-
al discontinuity in the regular solution is represented by the terminal point of the
slow Hugoniot locus as mentioned in Sec. 4.6.4. As 1, approaches a certain finite
value, the speeds of the left-going fast, slow and 2 — 3 shocks come closer to each
other while the right-going fast and slow rarefactions weaken their strength. The
solution that includes only a 1 — 4 intermediate shock corresponds to the limit of
the coincidence of the three shock speeds.

The reason why there are uncountably infinite solutions is explained as follows;
Since the fields are confined in (z, y)-plane, there are only four non-trivial Rankine-
Hugoniot conditions, continuity of p,v,, vy, By: On the other hand, there are five
waves in the solutions as long as a rotational discontinuity or 2 — 3 intermediate
shock exists; That is, the system is under-determined and hence there remains an
extra degree of freedom, which brings the existence of the uncountably many solu-
tions.
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As the second example, we present the solutions for an initial condition that is
connected by a 1 — 3 intermediate shock. The initial discontinuity located at x =0
is given as

(/)L7 PL, UzL, VyL, UzL, ByLJ BZL) = (17 17 07 07 07 17 0)7 (468)
(PR, PR, VzR, UyR, Uzr, Byr, B:R)
= (2.272607, 7.696652, —2.106806, —2.280515, 0, —1.8600000, 0), (4.69)

with B, = 3 and v = 5/3. Some of the solutions at ¢ = 0.1 are shown in Fig. 4.8,
displaying the profiles of the density and transverse magnetic field. We note that the
transverse magnetic fields are confined in (z, y)-plane in these solutions.

We again obtained a sequence of the solutions composed by various waves. The
top panels show the regular solution that consists of a 180° rotational discontinuity
and fast and slow shocks fanning out on the left side of the contact discontinuity and
fast and slow rarefactions on the other side. The second and third rows show some
non-regular solutions that include a 2 — 3 intermediate shock, which reverses the
transverse magnetic field instead of the rotational discontinuity. The bottom panels
show a non-regular solution that consists of only a 1 — 3 intermediate shock. The
close-ups reveal the difference of these solutions while we note that the strengths of
the rarefactions also differ from each other.

Like the previous example, these solutions form a one-parameter family that is
parameterized by 1, , which controls the left-going slow-family wave. Asymptotically,
the fast shock and 2 — 3 intermediate shock appear to merge at first while all the
three shock speeds are coming closer to each other as v, reduces. Although this
asymptotic behavior infers the existence of the solutions that include a left-going
1 — 3 intermediate shock and slow shock, such a solution is not found. Hence,
the solution that includes three shocks jumps to one that is composed of only a
1 — 3 shock before the two shocks merge. Considering the reason why there are
uncountably infinite solutions, we can interpret this feature naturally. Oncea 1 — 3
intermediate shock is formed, the under-determination of the system is lost and the
system becomes determined. Therefore there is only one solution that includes a
1 — 3 intermediate shock (the bottom panels).

As the third example, we pick up an initial condition that is connected by a 2 — 4
intermediate shock:

(pL7 PL, VYzL, VUyL, UzL, ByLa BZL) = (1, 13 07 07 07 13 0)7 (470)
(pR7 PR, UzR, vva V2R ByR7 BZR)
— (2.593746, 7.352303, —1.897120, —1.068836, 0, —0.1000000, 0). (4.71)



94 CHAPTER 4. EXACT MHD RIEMANN SOLVER

with B, = 3 and v = 5/3. Some of the solutions at ¢ = 0 for the initial discontinuity
located at # = 0 are presented in Fig. 4.9. Note that the transverse magnetic fields
are confined in (x, y)-plane in these solutions.

The top panels show the regular solution that consists of a fast shock, 180°
rotational discontinuity and slow shock running in the left side of the contact dis-
continuity and a fast rarefaction and slow shock running on the other side. The
second and third panels present some non-regular solutions that include a 2 — 3
intermediate shock, which is responsible for reversing the transverse magnetic field.
The solution including a 2 — 4 intermediate shock is shown in the bottom panels.

There are algo uncountably infinite solutions like the previous examples since
these solutions form a one-parameter family parameterized by 1. Although all the
left-going shocks come closer asymptotically, the 2 — 3 shock and slow shock appear
to merge before the fast shock and 2 — 3 shock converge, which infers the asymptotic
solution that includes a fast shock and 2 — 4 intermediate shock. However, like the
previous example, such a solution is not found. Hence, the solution including three
shocks jumps to one that includes only a 2 — 4 intermediate shock.

Finally, we give the solutions for an initial condition that is connected by a 2 — 3
intermediate shock:

(PL; bL, VzL, VyL. V2L, ByL: BZL) = (17 17 01 07 07 17 O)/ (472)

(pRu PR, UzR, /Uva UzR, ByR7 BZR)
— (1.159467, 1.479053, —0.4315320, —2.541677, 0, —1.658269, 0), (4.73)

with B, = 3 and v = 5/3. Some of the solutions at ¢ = 0.1 for the discontinuity
located at x = 0 are shown in Fig. 4.10. Note that the transverse magnetic fields
arc coufined in (&, y)-plane in these solutions.

The top panels are the regular solution that consists of a 180° rotational discon-
tinuity and fast and slow shocks on the left side of the contact discontinuity and
a fast and slow rarefactions on the other side. The second panels present a non-
regular solution that includes a 2 — 3 intermediate shock instead of the rotational
discontinuity, which reverses the transverse magnetic field. The third panels present
the non-regular solution that is composed of only a 2 — 3 intermediate shock. The
bottom ones show a non-regular solution that consists of a fast rarefaction, 2 — 3
intermediate shock and slow rarefaction fanning out on the left side of the contact
discontinuity and a fast and slow shock on the other side.

Different from the previous examples, these solutions cannot be parameterized
by ¢, . Instead, they are parameterized by «7 that controls the right-going slow
wave. As ¢ increases, the left-going fast shock in the solutions becomes weaker
and changes into a rarefaction wave across the solution that includes only a 2 — 3
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intermediate shock. As ¢} increases further, the tail of the fast rarefaction and the
2 — 3 intermediate shock come closer to each other, and the fast rarefaction becomes
stronger. Therefore we concluded that the solution will reach one that includes a
compound wave formed by a left-going 1,2 — 3 intermediate shock attached to a
fast rarefaction wave. The solution that includes a compound wave must be an end
point of the sequence because the value of 1] asymptotically approaches a finite
value and appears to converge in the limit and we can find no solution for ¢} larger
than the asymptotic value.

4.8 Analysis of the Brio & Wu problem

In this section, we apply our new code to two specific initial conditions and their
neighbors. One of them is first picked up by Brio & Wu (1988) and is known to have
a non-regular solution with a compound wave. This is one of the initial conditions
in the MHD Riemann problem that are best known to developers of numerical MHD
codes. As demonstrated by Andreev et al. (2008) there is also a regular solution
to this problem. The puzzle in the literatures is why the former is almost always
obtained in the numerical solutions. After confirming the above regular and non-
regular solutions by our code, we show that there are actually uncountably many non-
regular solutions to this problem. By studying the properties of these solutions as
well as exploring the neighboring solutions, we obtain new insights into the problem.

In the second application, we present an initial condition, for which there seems
to be no regular solution. In fact the non-regular solution we found is a limit of a
sequence of regular solutions and include a switch-off shock wave. We investigate the
neighboring solutions in detail and reveal how the solution is approached by various
sequences of solutions. The result forces us to rethink the interpretations of the
regular waves and switch-off shocks.

4.8.1 Brio & Wu problem

We present here the solutions for the initial condition in the MHD Riemann problem
solved numerically by Brio & Wu (1988). The left and right states in the initial
condition are given by
(pL7 PrL, UzL, UyLa UL, ByL; BZL) = (17 17 07 07 0; 17 O)/ (474)
(pRa PR, VzR, UyR, UzR, ByR7 BZR) = (01257 017 07 07 07 —17 O) (475)

The normal component of magnetic field is B, = 0.75 and we take for the adiabatic
index v = 5/3 instead of v = 2, the value adopted by Brio & Wu (1988). This
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Figure 4.7: The regular solution and some non-regular solutions for an initial condi-
tion which can be connected by a 1 — 4 intermediate shock. The waves in the red
and blue portions that are separated by the contact discontinuity are left- and right-
going respectively. The designations F'S, SS, R, FR, SR, C and IS represent the fast
shock, slow shock, rotational discontinuity, fast rarefaction, slow rarefaction, contact

discontinuity and intermediate shock respectively.
indicated regions.

The insets are the close-ups of
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Figure 4.8: The regular solution and some non-regular solutions for an initial condi-
tion which can be connected by a 1 — 3 intermediate shock. The notations are the
same as in Fig. 4.7.
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Figure 4.10: The regular solution and some non-regular solutions for an initial con-
dition which can be connected by a 2 — 3 intermediate shock. The notations are the
same as in Fig. 4.7. In this sequence, the left-going fast shock becomes rarefaction
across the solution that consists of only a 2 — 3 intermediate shock. The tail of
the left-going fast rarefaction and 2 — 3 intermediate shock are gradually coming
closer, which infers that the end point of this sequence is the solution that includes
a left-going 1,2 — 3 intermediate shock attached to a fast rarefaction.



100 CHAPTER 4. EXACT MHD RIEMANN SOLVER

is because the Riemann invariants are singular at v = 2 and cannot be used for
check. Note, however, that there is no problem to search solutions by our code even
in this case. In fact, we confirmed that the solutions are not different qualitatively
between v = 5/3 and v = 2. This is a coplanar problem, for which both regular and
non-regular solutions are expected. It is also noted that this can be regarded as a
Riemann problem of the reduced MHD system.

We begin with the regular solution. In Fig. 4.11 we show various quantities in
the solution at £ = 0.1. v, and B, are identically zero and omitted in the figure. The
solution consists of a fast rarefaction wave, rotational discontinuity and slow shock
going leftwards and a fast rarefaction wave, slow shock and contact discontinuity
running in the right direction in addition to the contact discontinuity. No right-going
rotational discontinuity exists because the left-going one has rotated the magnetic
field by 7 radian already. This is the same solution as the one obtained by Andreev
et al. (2008).

Next we present a non-regular solution, various quantities in which are displayed
at t = 0.1 in Fig. 4.12. As is evident, this solution contains a compound wave
(denoted by 2 — 3,4 IS and SR in the figure) and is exactly the solution Brio
& Wu (1988) obtained in their numerical simulations. The compound wave is a
2 — 3,4 intermediate shock, to which a slow rarefaction wave is attached. Other
waves that constitute the solution are a left-going fast rarefaction wave and a contact
discontinuity, slow shock and fast rarefaction wave going rightward. Note that the
compound wave is responsible for changing the direction of magnetic field. It should
be also pointed out that the strengths of the waves other than the compound wave
are different between the regular and non-regular solutions.

In addition to these solutions, we found that other non-regular solutions exist,
which involve various 2 — 3 intermediate shocks. Some of such solutions are shown
at £ = 0.1 in Fig. 4.13. The solution given in the top panel resembles the non-regular
solution with the compound wave presented above. A closer look (see the inset),
however, reveals a difference: a 2 — 3 intermediate shock is closely followed by a
slow rarefaction wave but they are detached. The separation of the two waves are
more apparent in the middle panel, in which the strengths of the intermediate shock
and rarefaction wave are also weaker than in the top panel. In the bottom panel,
the solution does not include a slow rarefaction wave but a slow shock instead. The
2 — 3 intermediate shock is even weaker in this case. It is noted that the strengths
of other waves than the intermediate shock do not change very much. It should be
emphasized here that these are solutions to the same initial condition, the Brio &
Wu problem.

As a matter of fact, these solutions form a one-parameter family, with the Brio
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& Wu solution with the compound wave at one end and the regular solution with
a rotational discontinuity at the other end point of the sequence. The parameter
that characterizes the solution family is a magnitude of jump in the transverse mag-
netic field across the 2 — 3 intermediate shock. Since the sequence of solutions
is obtained by gradually changing this parameter, we can deduce that there are
uncountably many solutions like the examples shown in the previous section. As
already mentioned, of these non-regular solutions and the unique regular solution
it is the Brio & Wu non-regular solution that numerical simulations almost always
obtain. From the point of view of the evolutionary conditions, the regular solution is
the only solution that contains evolutionary shocks alone. Both 2 — 3.4 and 2 — 3
shocks are non-evolutionary. Hence numerical simulations seem to prefer the non-
evolutionary solution to the evolutionary solution. This is the original controversy.
Now we have added another question: why is the Brio & Wu solution is singled out
from the uncountably many non-regular solutions with non-evolutionary shocks?

Since the evolutionary conditions are related with the neighboring solutions, we
consider the initial conditions that are close to the original one. Both non-coplanar
and coplanar perturbations are discussed in turn separately. As a non-coplanar initial
configuration we take the following:

(ﬂL, Pr. Uz, Vyr, VzL, ByL; BZL) = (17 17 07 07 07 17 0)7 (476)

(pR7 PR, UzR, vyRu U2R; ByR7 BZR)
— (0125, 0.1, 0, 0, 0, cos3.0, sin3.0).  (4.77)

The transverse magnetic field in the right state is rotated slightly with other quan-
tities being unchanged. In accord to the evolutionary condition, we found only a
regular solution, which is shown in Fig. 4.14. The solution includes left- and right-
going rotational discontinuities, which are responsible for the rotation of magnetic
fields. As is evident from the comparison (see Fig. 4.11), this solution is indeed
close to the regular solution to the original problem and can be regarded as the per-
turbed solution. On the other hand, no neighboring non-regular solution exists in
this case. Wu (1988b,a) observed in his dissipative MHD simulations, however, a new
type of non-coplanar shock-like structures that do not satisfy the Rankine-Hugoniot
relations. They concluded that this time-dependent “intermediate shocks” are the
neighboring states to the ordinary intermediate shocks. It is noted, however, that the
time-dependent non-coplanar structures of these new “intermediate shocks” depend
upon the dissipation coefficients as shown in Wu (1988b,a) and his succeeding paper
(Wu, 1990) and may not be realized in ideal MHD.

It is of great interest to investigate coplanar perturbations, since the coplanari-
ty is maintained even in numerical simulations unless it is broken explicitly. If the
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symmetry is retained indeed, we are essentially dealing with the reduced MHD sys-
tem, in which the Alfvén characteristics do not exist. It should be noted then that
the evolutionary conditions will be modified as pointed out by Falle & Komissarov
(2001). For example, the 1 — 3 and 2 — 4 shocks become evolutionary and the
rotational discontinuities become non-evolutionary. On the other hand, the 2 — 3
shock remains non-evolutionary with no converging characteristic. It is noteworthy
that the 2 — 3,4 shock is evolutionary, since the slow characteristics are marginally
converging and the linear independence of the eigenfunctions of outgoing waves and
the initial jumps is recovered. As a consequence of these changes the Brio & Wu
solution should be regarded as a regular solution in the reduced system whereas the
other solutions with 2 — 3 shocks are still non-regular even in this system. Falle &
Komissarov (1997, 2001) claimed that this is the reason why numerical simulations
almost always obtain the Brio & Wu solution. The problem may be a bit more
complicated, however, as will be demonstrated shortly.

In Fig. 4.15 we present the solutions we found with our code for the following
initial condition:

(PL, PrL, VUzL, YyL, VzL, ByLu BZL) = (17 17 01 07 07 17 0)7 (478)
(PR: PR» VR, Yy, V:r, Byr, B.r) = (0.125, 0.1, 0, 0, 0, —0.95, 0).(4.79)

This time we reduced the transverse magnetic field in the right state slightly, retaining
the coplanarity. We then found essentially the same types of solutions as in the
original problem: (1) the solution with a rotational discontinuity”, (2) the solution
with the compound wave consisting of a 2 — 3,4 shock and slow rarefaction wave,
and (3) the solutions with a 2 — 3 shock. As mentioned, the second solution is
regular and the first and third are now non-regular in the reduced MHD system.
The three types of solutions actually form a one-parameter solution family with the
first and second solutions being the end points. As shown in Fig. 4.16 this is also
the case for the following initial condition:

(pLJ PL, UzL, YyL, UzL; ByLa BZL) = (17 17 07 07 07 17 0)~ (480)
(pRJ PR, UzR, UyR, VzR, ByRa BZR) = (01253 01 07 07 03 _1O5J 0)7(481)
in which the transverse magnetic field in the right state is slightly amplificed.

These results show clearly that the Brio & Wu solution, or the ‘regular’ solu-
tion with the compound wave, has a unique neighboring solution of the same type

"The rotational discontinuity may be an inappropriate term in the reduced system, in which the
Alfvén characteristic ccases to exist. We usc it, however, to make clear the correspondence to the
full system.
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as expected from the evolutionary conditions in the reduced system. In the case
of the ‘non-regular’ solutions either with the 2 — 3 shock or with the rotational
discontinuity, however, the perturbed solutions are not uniquely determined, since
there are too many outgoing characteristics. And the existence of uncountably many
non-regular solutions is a manifestation of this under-determination. Unlike the over-
determination and, as a consequence, the non-existence of neighboring solution, the
meaning of the non-uniqueness of perturbed solutions is rather obscure. The re-
sults of numerical simulations indicate, however, the evolutionary conditions in the
reduced system appear to work in selecting the solution.

4.8.2 an initial condition with no regular solution

In the continuous modifications of the Brio & Wu problem, we ran into an interest-
ing initial condition, for which there seems to be no regular solution. This initial
condition is truly a special point unlike the Brio & Wu problem. In fact, the regular
and non-regular solutions of the Brio & Wu problem are shared by the neighbor-
ing coplanar initial conditions as demonstrated above. This is not the case for the
problem considered here.

The initial condition is given by the following:

(pL7 PL, UzL, VyL, UzL, ByLa BZL) = (1, 13 07 07 07 13 0)7 (482)
(pR7 PR, UzR, vva V2R ByR7 BZR)

= (0.125, 0.1, 0, 0, 0, —0.329875, 0),  (4.83)

in addition to B, = 0.75 and v = 5/3. This differs from the Brio & Wu problem
only on the magnitude of the transverse magnetic field (- Byr = By = 0.329875) of
the right state®. This is again a coplanar configuration. The only solution our code
obtained is a non-regular solution, which is presented in Fig. 4.17 at ¢ = 0.1. Note
that v, and B, are identically zero in this solution.

As can be seen, the solution consists of a fast rarefaction wave and switch-off
shock, both of which go leftward, and a switch-off rarefaction wave and Euler shock,
which proceed rightward, as well as a contact discontinuity. Although it may seem
that the shocks and rarefaction waves form compound waves on both sides of the
contact discontinuity, they are actually detached. As a matter of fact, it is theoreti-
cally shown that the switch-off waves, irrespective of shock or rarcfaction, never form
compound waves. As mentioned earlier, the switch-off shock is a 2,3 — 4 shock, with

8The ratio of the specific heats is not sct to 2, the value adopted by Brio & Wu (1988), but to
5/3 for the same reason as given for the first case.
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the Alfvén speed being equal to the upstream flow speed. Preceded by the switch-off
rarefaction, which is actually one of the fast rarefaction waves, the fast speed and
Alfvén speed are degenerate ahead of the Euler shock, which is itself an evolutionary
shock not only in the full system but also in the reduced MHD system in this case
although it is possible to be non-evolutionary in principle as mentioned in Sec. 4.3.4.
It is normally impossible to prove the non-existence of particular solutions by nu-
merical computations. We think, however, that no regular solution exists indeed to
the current problem. In order to demonstrate why we think so and elucidate the
special place that the current initial condition occupies, we study the neighborhood
of this problem in detail.

Presented in Fig. 4.18 are the solutions to coplanar neighboring problems. More
specifically, we vary the strength of the transverse magnetic field of the right state,
Byr. The critical value By is approached both from above and below. We are
concerned here only with the regular solutions. As shown in the figures, in the case of
| Byr| > Bait the solutions consist of a fast rarefaction wave, rotational discontinuity
and slow shock going leftward and a fast rarefaction wave and slow shock going
to the right in addition to a contact discontinuity. As the initial strength of the
transverse magnetic field in the right state becomes smaller, the left-going rotational
discontinuity and slow shock come closer to each other. Among the right-going waves,
the fast rarefaction wave approaches the slow shock. At the critical point the left-
going rotational discontinuity and slow shock merge into the switch-off shock and the
right-going fast rarefaction wave and slow shock become the switch-off rarefaction
wave and the Euler shock respectively.

As the initial strength of the transverse magnetic field becomes even smaller
and |Byr| < Be is satisfied, the right-going rotational discontinuity emerges and
is responsible for the inversion of the transverse magnetic field. The Euler shock
is replaced by the rotational discontinuity and a slow shock whereas the switch-off
rarefaction is modified to an ordinary fast rarefaction wave again at first as long
as |Byg| is not very different from Be. A fast shock appears instead of the fast
rarefaction wave when |B,r| becomes smaller than a certain value. On the left side
of the contact discontinuity, on the other hand, the switch-off shock is changed to
an ordinary slow shock and no rotational discontinuity exists. It is stressed that
the unique non-regular solution at the critical point is connected continuously to
the sequences of the regular solutions obtained for |Bygr| > B and |Byr| < Berit
respectively.

Next we turn to non-coplanar neighboring problems. This time we change the di-
rection of the initial transverse magnetic field in the right state, keeping its strength
at the critical value Bygr = Bi. In this case we always found regular solutions alone,
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The regular solution for the Brio & Wu (1988) problem. The designa-
tions are the same as in Fig. 4.7.
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Figure 4.14: A non-coplanar neighboring solutions to the Brio & Wu problem. The
initial magnitude of the transverse magnetic field of the right state is the same as
the original value. The notation is the same as in Fig. 4.7.
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Figure 4.15: Some coplanar neighboring solutions to the Brio & Wu problem. The
initial magnitude of the transverse magnetic field of the right state is reduced from
the original value. The notation is the same as in Fig. 4.7. The insets are the
close-ups of indicated regions.
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Figure 4.16: Some coplanar neighboring solutions to the Brio & Wu problem. The
initial magnitude of the transverse magnetic field of the right state is increased from
the original value. The notation is the same as in Fig. 4.7. The insets are the
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Figure 4.17: The non-regular solution with both a switch-off shock and switch-off
rarefaction wave. The notation is the same as in Fig. 4.12 except for the designation
ES, which stands for the Euler shock. The initial condition is the same as for the
Brio & Wu problem except for the strength of the transverse magnetic field of the
right state. See §4.8.2 of the main body for the precise value.
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Figure 4.18: Coplanar neighboring solutions to the solution presented in Fig. 4.17.
The red line represents the transverse magnetic field whereas the green line displa

varied. See §4.8.2 of the main body for details.
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Figure 4.19: Non-coplanar neighboring solutions to the solution presented in Fig. 4.17
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which are displayed in Fig. 4.19. As is evident, there appear left- and right-going
rotational discontinuities when the transverse magnetic fields are misaligned initially.
They are preceded by a fast rarefaction wave and followed by a slow shock running in
each direction. As the misalignment gets smaller, or the critical point is approached,
the amplitudes of the transverse magnetic ficlds rotated by these rotational disconti-
nuities become smaller. And they disappear at the critical point and we recover the
solution including the switch-off shock and rarefaction wave presented above. Again
this clearly demonstrates that the non-regular solution at the critical point is a limit
of the sequence of the regular solutions. Put another way, there are only regular
solutions in the sufficiently close vicinity of the non-regular solution at the critical
point. This is the main reason why we think that there is no regular solution at the
critical point. Note, however, that there might be another regular solution that are
not included in the neighborhood and eluded our search.

It is interesting to see how a coplanar neighboring solution is approached by non-
coplanar solutions. Note that they are both regular solutions. As observed above,
the left- and right-going rotational discontinuities cooperate to rotate the transverse
magnetic field by the angle imposed by the initial condition. It is found that it is
always the right-going rotational discontinuity that rotates the transverse magnet-
ic field by a larger angle if 0 < B;r < Bui and vice versa. As the misalignment
becomes smaller and the coplanar configuration is approached, one of the rotation-
al discontinuities that gives a smaller rotation gets weaker and disappears for the
coplanar configuration. For a non-vanishing but very small misalignment, the rela-
tive amplitude of the two rotational discontinuities as a function of B;r changes very
rapidly near B;r = Bgi;. In this sense the non-coplanar solutions shown in Fig. 4.19
for B;r = Be: are rather special themselves.

4.9 Summary

In this chapter, we presented an exact Riemann solver that can handle the interme-
diate shocks and switch-on/off waves. Our solver can treat any initial condition even
when the normal or transverse magnetic field is absent. These features are realized
for the first time since previous studies discarded these non-regular shocks or initial
conditions with vanishing magnetic field. Referring the strategy that is proposed
by Torrilhon (2002), we drastically improved it to handle all types of non-regular
shocks and switch-on/off rarefactions and the details of the techniques are released
for the first time. Since the types of waves generated and their order are not known
a priori in MHD Riemann problems once such non-regular waves are considered, we
developed the method that can arrange the waves in all possible patterns and search
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the structure of the solution automatically. Due to the variability of the number of
the generated waves, we modified the Newton-Raphson method to adjust the num-
ber of the independent variables and equations. Thanks to these techniques, all the
solutions are found for a given initial condition, which has never been achieved by
other authors (e.g. Andreev et al., 2008). Our method works well indeed as shown
in Secs. 4.7 and 4.8, where we presented some examples of the exact solutions, which
include the regular and non-regular ones. As demonstrated, our solver can investi-
gate the structure of the solution space in detail. The code will be useful not only for
the study of various solutions as demonstrated but also for numerical simulations,
in which our solver will provide the exact solutions to be compared with and may
be implemented to evaluate numerical fluxes. We also note that since our method
is based on the Newton-Raphson method, there might be a solution that exists far
away from the sequence of the solutions and hence eludes our search. Hence some
strategy that finds such a particular solution may be desired.

We have applied the new code to the Brio & Wu problem, which we believe is
useful for the consideration of which weak solutions are really physical, the problem
with a long history of controversy. The problem is one of the best known problems for
developers of MHD codes. This particular problem has been frequently utilized for
the validation of newly developed numerical codes partly because it has a coplanar
configuration and 2-dimensional codes can be applied. It has been also known for
a long time that numerical solutions always involve the compound wave, which is a
2 — 3,4 intermediate shock, to which a slow rarefaction wave is attached. This is a
non-regular solutions, in which the compound wave does not satisfy the evolutionary
condition and its reality has been a subject of debate. There are two competing ar-
guments so far. Wu and his collaborators (Wu, 1987; Brio & Wu, 1988; Wu, 1988b,a,
1990; Wu & Kennel, 1992) insist that the intermediate shocks are stable and it is
the evolutionary conditions to blame. On the other hand, Falle & Komissarov (Falle
& Komissarov, 1997, 2001) claim that the existence of intermediate shocks in nu-
merical solutions are due to the coplanarity, which is inherent in the intermediate
shocks. Unless the symmetry is broken somehow, the solution will retain the symme-
try (coplanarity or planarity) and, as a consequence, we are dealing with the reduced
MHD system. Then the point is that the 2 — 3,4 intermediate shock that comprises
the compound wave in the numerical solution of the Brio & Wu problem becomes
regular whereas the regular solution that contains rotational discontinuities, which
was shown to exist by Andreev et al. (2008) and has been also confirmed in this
paper, is now non-regular in the reduced MHD system.

It seems that the existence of the uncountably many other solutions that are
non-regular both in the full and reduced systems supports the claim by Falle &
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Komissarov (Falle & Komissarov, 1997, 2001), since they have never been realized in
numerical simulations. It is intriguing to point out, however, that these solutions do
not satisfy the evolutionary conditions not because the number of outgoing charac-
teristics is wrong but because the requirement on the linear independence is not met.
This implies that there exit too many neighboring solutions to these non-regular so-
lutions and we cannot single out a physically relevant one. This under-determinacy
is certainly different from the over-determinacy that we commonly find for non-
evolutionary shocks and needs further investigations. It should be also mentioned
that some authors (Hada, 1994; Markovskii, 1998; Inoue & Inutsuka, 2007) insist that
eventually all intermediate shocks satisfy the evolutionary conditions if dissipations
are taken into account. Although this may explain the realization of the compound
wave in the solution of the Brio & Wu problem, it remains to be addressed why
other non-regular solutions that are also evolutionary in their analyses but are not
produced numerically. They may be linearly unstable. Further investigations are
certainly needed.

In the second application we have picked up the initial condition, which appears
to possess no regular solution. This initial condition was found by continuously mod-
ifying the original Brio & Wu problem in various ways. In fact, the initial magnetic
field has a coplanar configuration and is obtained from that in the Brio & Wu prob-
lem by reducing the strength of the transverse magnetic field in the right state. We
have obtained two sequences of regular solutions as we approach this initial condition
from both directions, keeping the coplanarity. They are continuously connected at
this point by the non-regular solution, which includes both the switch-off shock and
rarefaction waves. The switch-off shock is non-regular and is located at the bound-
ary between the regular slow shocks and intermediate shocks on the slow locus. It is
true that we cannot prove the non-existence of regular solutions by these numerical
calculations but the fact that all the neighboring regular solutions, coplanar or non-
coplanar, are terminated at this non-regular solution suggests strongly that regular
solution is unlikely to exist. We are certainly interested in if this non-regular solu-
tion is what is realized indeed for this initial condition. This will be a difficult task
for numerical simulations, however, since the initial condition has to be prepared
precisely.

This initial condition is singular also in the following sense. As the coplanar con-
figurations with |Byg| > B approach this critical initial condition, the rotational
discontinuity is always left-going whereas the right-going one emerges in the opposite
case, |Byr| < Beit, and at the critical condition these rotational discontinuities dis-
appear and the switch-off shock and rarefaction wave occur; if the initial transverse
magnetic fields are misaligned slightly, then the sequence of the regular solutions
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exhibits a rapid and drastic change of the configuration in the vicinity of the critical
initial condition: the left- and right-going rotational discontinuities exchange their
roles. Such sudden changes of configuration may have a ramification for the stability
of the regular solution for the non-coplanar initial configurations with B;g =~ Beit.
After all, it seems that the stability of various intermediate shocks needs major
reanalysis. The conventional evolutionary conditions are certainly unsatisfactory.
Maybe the introduction of dissipations and its zero limits should be scrutinized. In
so doing our new code will be useful to generate all possible solutions. We believe
that the survey and investigation of other initial conditions and the corresponding
solutions, which manifest some singularities, will provide us with new insights and
eventually a clue to the understanding of which solutions are physically relevant.






Chapter 5

Summary and Conclusion

In this thesis, we treated the shock dynamics in CCSNe, which is one of the central
issues in the field of supernovae. We focused on the two topics: The first topic is
the non-spherical structures of progenitors of CCSNe, which have been reported by
a series of paper by Arnett, and their effects on the shock dynamics; The other is
the physical relevance of the so-called intermediate shocks in MHD.

In the first topic, we performed two linear analyses step by step. At first, we start-
ed from the analysis of the evolution of the perturbations that arise in the convective
outer layer of a progenitor. As a result, we found that they grow sufficiently during
the infall onto the stagnant shock wave. We also found the amplification factors are
larger as the scale of fluctuations become smaller. Moreover, we showed that they
oscillate at the shock radius with frequencies that are observed in SASI simulations.
These results may suggest the possibility that the fluctuations in upstream flows can
affect the SASI activity.

As the second step, we performed another linear analysis, in which we studied the
effects of such amplified perturbations on the SASI activity. The problem is reduced
to an eigenvalue problem and it is solved with the use of the Laplace transform as in
the first analysis. Employing some different background flows and inner boundary
conditions, we discuss the effect of external perturbations. The results show, however,
that the fluctuated upstream flows do not affect the unstable modes of SASI in
general. The sharp contrast to the results of the previous numerical simulations by
Miiller & Janka (2014); Couch & Ott (2013, 2014), who reported that the fluctuations
facilitate shock revival, may suggest that the importance of non-linear effects of
sufficiently amplified non-spherical perturbations in front of the shock. We also
argued that the most unstable modes of SASI that we found seem to be driven by the
purely-acoustic cycle, which is opposite to the results of the previous linear analysis.
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We do not conclude, however, that the purely-acoustic cycle is the mechanism of
SASI because we have not investigated the radial distributions of the modes and we
might miss something important. Further investigations must be performed in order
to make a robust conclusion in the future.

As the second topic, we treated the physics of MHD shock waves. Especially, we
considered the physical relevance of the intermediate shocks, which are commonly
observed in MHD simulations. We tackled the problem by studying the solutions of
MHD Riemann problems, which are one of the fundamental problems of hyperbolic
systems. For this purpose, we developed a new MHD Riemann solver that handles all
types of intermediate shocks and other non-regular waves. Applying the code to Brio
& Wu problems and its neighboring initial conditions, we obtained uncountably many
solutions that include intermediate shocks. This result casts a new question on the
relevance of the intermediate shocks: how can we single out the physical solution from
uncountably many candidates. We also found an initial condition, where no regular
solution exists without switch-on/off waves and the neighboring solutions suddenly
change their configurations, which may have a ramification for the stability of the
solutions. Anyway, the conventional arguments about evolutionary conditions are
certainly unsatisfactory and some new insights seem to be necessary to understand
MHD shock waves.

Both of the results are important since they are strongly coupled with the physics
in CCSNe. We also note that these findings become a basis when we interpret the
outcomes of numerical simulations. We believe that these studies will make much
contribution to the elucidation of the mechanism of CCSNe, which is one of the main
challenges in the field of physics.
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Appendix A

A.1 The integration path in the inverse Laplace
transform

Here we consider the integral path in the inverse Laplace transform, that is, how
to choose z in Eq. (2.18) (see also Sec. 2.2.2). The value of x should be chosen so
that the entire path would lie in the region, in which f*(s) exists, i.e., the right-half
(Re[s] > s¢ for a certain real number sy) of the complex s-plane.

We discuss the value of sqg at first. The Laplace transformed basic equations
(2.14)-(2.16) can be expressed as follows:

dy* .
db; = [sA(r) + B(r)ly", (A.1)
where y* = y*(r.s) is a vector whose components are the Laplace transformed
variables: y* := (0p*/p, v} /v, 6v% /v.). The matrices A(r) and B(r) are defined
as
M M 0
1
1 -— M 0
14 / —
DL | M e
0 0
M
d 1d d 2 dv M2(L+1)
2 - ] _p 2 { 2 a4t N
M o In M o ar M <dr In M o ) .
1 d - y—1dp d . 2M?do, I(1+1)
B = ——InM+ —— ——1InM
(r) 1 - M2 ar 2+ p dr . + v, dr r
M= -1 9 1de, 1
A el -
rM? 0 (M ) <Ur dr 7
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Note that dln M /dr = 0 in steady accretions. Equation (A.1) is solved formally:

y'( V=P exp /Td'< (h+ () y( ) (A1)

R

where P is an operator that takes a path-ordered product (Peskin & Schroeder,
1995). The norm of the solution is then estimated as follows.

() || o | [ araw) e se]]| [yl )

< S [

XHP[(sA( 1)+ B(r) -+ (sAGry) + B Iy (R, 5)[|(A.6)

Since the background flow is non-singular and we are concerned with a finite interval
of r, the norm of the matrix sA(r) + B(r) is bounded as

lsA(r) + Bl < lsA)I| + 1B, (A7)
< |s|Ca+ C5, (A.8)

where C'4 and Cp are some positive constants. And |R — r| is also bounded by a
constant, say, L. We hence obtain the following:

) 1 (7 T )
ly*(rs)ll < ZH/ / jdrt |- [dr | (Is1Ca + C)Flly* (R, 5], (A.9)
k=0 VR R
L LR(|s|Ca+CB)F
<y o 5y (R, 5)I, (A.10)
k=0 ’
= exp[L(]s Ce) ly* (R, s)l. (A.11)

Since exp [L(|s|Ca + Cp)] is finite for any complex s, the singularity of the Laplace
transformed solution, if any, should originate from the boundary function, y*(R, s).
From this fact, we know a priori where the singularities exist and hence how to
choose z. For example, if a sinusoidal perturbation, sin(wt), is imposed at the out-
er boundary, the Laplace transformed solution has two poles at s = +iw, since
Lsin(wt)] = w/(s* + w?). In this case, we can choose any positive real x, i.e. x> 0.

We could not choose so large an z, however. Recalling the formula (2.19) and
the fact that the inverse Laplace transform is independent of z, we know that

/ [z, y)e¥dy < e ", (A.12)
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since the prefactor exp[tz] in Eq. (2.19) should be canceled out. In addition to the
requirement that these factors should not overflow or underflow, we need to ensure
the cancellation numerically, which would be difficult for large values of .

On the other hand, we had better not choose so small an z, either. In fact, as
becomes smaller, the integral path moves closer to the singularities and the vicinities
of the singularities contribute more to the integral. Then, we need to deploy a finer
grid for the integral, Ay, which would be numerically costly.

A.2 Perturbation growths in steady states

Here we derive time-independent solutions of Eqs. (2.14)-(2.16) in some limits, which
would be useful in understanding the systematics of perturbation growths. They are
obtained formally by taking the { — oo limit, which in turn corresponds to the limit
of s — 0 in the Laplace transformed quantities. We assume that [ is sufficiently large
and consider only its leading terms. Unlike the previous works we do not take the
limit of » — 0 here. Instead the inner boundary is rather distant from the center. As
a result, the Mach number is not very high and changes slowly. We further assume
that y(r,t) = (dp/p, dv,./v,, dv) /v,) grows with I at most as o [, which is actually
observed in the numerical results and will be also justified a posteriori. Then the
equations that govern steady states yo, = y(r,t = oo) are

dys.
Yo = By, (A13)
in which the matrix is given as
2
l
0 0 M+ 1)
(1—M2?)r
I(1+1)
B = 7 : A.14
(r) 0 0 (1 - M2)r ( )
1 1dv, 1

M2 0 v dr 1

From the above equations, we can write down the equation for Y. 1(= dp/pli=co);
the first component of y., as

d*y | d ) r?v,(M? = 1)] dy (1+1)
—_— JE— n _— [ES— _—

drz  dr M? dr = r2(M2-1)

In this equation and hereafter we omit the subscript oo for notational simplicity.
Suppose that v, is described by a power law of 7 and M is constant (= M,). Then
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the first factor of the second term is proportion to 1/r, and the equation is rewritten
with some constant, a, as follows:

ady
dr? r2 (M2 -1)

r dr

y = 0. (A.16)

Since r = 0 is a regular singularity, Eq. (A.16) can be solved by the Frobenius method
as follows.

[ le N e SM2Z — T
yi(r) y1(ro) cos lln(r2/r0) 40 M 1% sin Hn(r/ro)
g ] I B T NN ) v
(A.17)
i i (rfro) | M2(U+1) o [lin(r/ro)
y1(ro) cos A1 M 1y3(70) sin m , (A.18)
2
~ Ayg(ro)sm 1o (r/ro) 7 (A.19)
M3 -1 M3E -1

where ry is some reference radius and we used the approximation ! — oco. From

(A.19), we find that the amplitude of density perturbation is proportional to I and

its radial profile is approximated by a sinusoidal function of Inr. Note that the

argument is also proportional to [ and inversely proportional to My if My > 1.
Employing the same assumptions and approximations, we obtain

In (r/ro)
y3(r) ~ y3(ro) cos [\/m] .
In contrast to the density perturbation, the perturbation of transverse velocity is
independent of /. Its radial distribution is again a sinusoidal function of In » although
the phase is shifted by /2 radian with respect to that of the density perturbation,
which is indeed observed in Fig. 2.5.
For the radial-velocity perturbation, the following relation is obtained by inte-
grating Eq. (A.13),

(r) ~ — 00 | () |

(A.20)

(A.21)

Hence the radial-velocity perturbation is simply proportional to the density pertur-
bation but the amplitude is smaller by a square of the Mach number and the phase
is also shifted by 7 radian. These features are again discernible in Fig. 2.5.
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B.1 How to solve the eigenvalue problem

We show here that the eigenvalue problem (3.12)-(3.14) is easily solved provided the
evaluation function of the inner boundary condition (3.14), f*, is linearly dependent
on the inner boundary value of y*, which is natural requirement since we consider a
linearized system. In fact, we obtain the eigenvalue for a given s by integrating the
ordinary differential equation (3.12) twice as discussed below.

The philosophy is quite simple, which is a special case of the Newton-Raphson
prescription. The next guess in the Newton-Raphson method is usually given by the
approximated equation,

F(x 4+ éx) ~ F(x) + Jéx = 0. (B.1)

where F' = F(z) is an evaluation function for a guess = and .J is the Jacobi matrix.
In our setup, F' and x correspond to f* and drgy, /g, respectively. If we assume that
I’ < x, the above equation becomes an identity and hence the solution is obtained
by Te = ¥+ dx = x — J'F. In the following, we show that this linearity holds and
the Jacobi matrix is easily obtained.

Recall here that the linearized equation (3.12) with the outer boundary condi-
tion (3.13) can be schematically solved with the use of the path-ordered product
(see Appendix A.1). Applying the formula to the perturbed quantities at the inner
boundary, it is schematically given as follows:

v (rpns,s) — 'P{exp {— / TPNSdr’(sPlM—i—PlQ)H *(rams ), (B.2)

y
Tsh
TPNS
= P {exp {—/ dr'(sP™*M + P*IQ H [ Shc + Rz"(ran, 5)
Tsh
(B.3)
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From the above equations, y* at the inner boundary radius is proportional to d7, /7.
Since we assume that f* is a linear function with respect to y*(r = rpyg), f*
Orgn /15, Tollows.

The Jacobi matrix is given by

jo A _seor o

A(d7rn/7sn) Dy; (0raron)’ (B.4)

J
where the factor, 9f*/ dy;, in the last equation is known once the evaluation function
is given and the derivatives, dy;/0(0rsn/7sh), is obtained with the use of (B.3):
dy*
(‘)((5'rsh/7"sh)

The right-hand side can be calculated by integrating the ordinary differential equa-
tion with an outer boundary condition that is modified as:

v (rsn,8) = sc. (B.6)

As a result, we can obtain the eigenvalue for a given s by integrating the or-
dinary differential equation (3.12) twice: One is a trial integration for the outer
boundary condition (3.13), which is given by an arbitrary guess, and the other is for
the modified boundary (B.6).

= sP {exp {— /TPNS dr'(sP "M + PlQ)H c. (B.5)

T=TPNS Tsh
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where
wo - EE-eE
o = 5 (var) - Farar —wor) 11

Note here that we take p, T" and Y, as independent thermodynamic quantities in the
above cxpression and we did not note the fixed variables for notational simplicity
when we take the derivatives of them.

The matrix R in the linearized Rankine-Hugoniot relations have the following
form:

U(down)'lv(up) 0 0
2
pu
o’ —r 0
R = pu? + [p] ) ) (B.13)
OT O o
poi + [p]

where [X] := X — x(down) denotes a jump of a quantity X across the shock
and the 4 x 4 matrices U4 and V(") whose components are composed of the
background quantities below and above the shock respectively, are given by

1 1 0 0
n 1 dp 5 T Jp Y. dp
Uy 5 Uy g p
yieem B oo B Ty T
s DR p (L, )y () |
p " Op dp p ar — poT aYe  poYe
1 1 0 1
(B.14)
1 1 0 0
Uy 2u, P 0
7(u pPUr
Vi — F n de  F 4+ /)7,'3 +p 1 n e Oe ) (B.15)
PR, p P\o o ‘oY,
1 1 0 1

where the quantities in the above equations are understood as those below and above
the shock for /(@™ and V(") respectively. We also note that we take p, 7 and Y, as
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independent thermodynamic quantities for the downstream whereas we choose p, p
and Y, for the upstream. We did not note the fixed variables for notational simplicity
when we take the derivatives in the above expressions. The vectors ¢ and z"P are
given as

c = (—U@OW“)‘IQ % 0>T, (B.16)

ezt [p
T
Tshp renE]  renlp
C = ( pLH‘ZQ]]J OJ p£2 ]]J p£2ﬂ> 7 (B17)
Zp) (O_p7 OU’"7 O_p M,/e. OUL, Ovm) , (B.18)
P Uy P ‘ Ye U Up

where the quantities other than U/(4°"® and jumps across the shock are evaluated in
front of the shock.
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