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Chapter 1

Introduction

1.1 Introduction

In this dissertation, we study the following system of equations (DCBF), which describes
double-diffusive convection phenomena of incompressible fluid contained in a porous
medium.

(DCBF)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu = νΔu− au−∇p+ gT + hC + f1 (x, t) ∈ Ω×[0, S],

∂tT + u · ∇T = ΔT + f2 (x, t) ∈ Ω×[0, S],

∂tC + u · ∇C = ΔC + ρΔT + f3 (x, t) ∈ Ω×[0, S],

∇·u = 0 (x, t) ∈ Ω×[0, S],

where Ω is a domain (open connected subset) in N -dimensional Euclidean space RN and
S denotes a length of time interval. Unknown functions of (DCBF) are

u = u(x, t) = (u1(x, t), u2(x, t), · · · , uN(x, t)) : Fluid velocity,

T = T (x, t) : Temperature of fluid,

C = C(x, t) : Concentration of solute,

p = p(x, t) : Pressure of fluid.

As for given data in (DCBF), ν, a and ρ are positive constants and g = (g1, g2, · · · , gN),
h = (h1, h2, · · · , hN) are constant vectors. The given external forces are denoted by
f1 = f1(x, t) = (f 1

1 (x, t), f
2
1 (x, t), · · · , fN

1 (x, t)), f2 = f2(x, t) and f3 = f3(x, t).
The time partial differential operator is designated by ∂t and the gradient operator

and the Laplace operator are written by ∇x := (∂x1 , ∂x2 , · · · , ∂xN
) and Δx :=

∑N
μ=1 ∂

2
xμ

respectively, where ∂xμ describes the xμ-directional spatial partial differential operator
(μ = 1, 2, · · · , N and x = (x1, x2, · · · , xN) ∈ RN). We simply write ∇ and Δ if there is
no ambiguity of the variable. We here note that

u · ∇T =
N∑

μ=1

uμ∂xμT, u · ∇C =
N∑

μ=1

uμ∂xμC,
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that is, the inner product in RN is written by x · y :=
∑N

μ=1 xμyμ for each x, y ∈ RN in
this thesis.

As the boundary condition, we impose either

(1.1) u = 0, T = 0, C = 0 (x, t) ∈ ∂Ω× [0, S]

or

(1.2) u = 0,
∂T

∂n
= 0,

∂C

∂n
= 0 (x, t) ∈ ∂Ω× [0, S]

on (DCBF) if the boundary of the domain Ω, designated by ∂Ω, is not an empty set. Here
∂T/∂n := n ·∇T and n denotes the unit outward normal vector on ∂Ω. Throughout this
thesis, problems with the boundary condition (1.1) is said to be “(homogeneous) Dirich-
let (boundary condition) case” and problems with (1.2) is said to be “(homogeneous)
Neumann (boundary condition) case”.

In this chapter, we introduce a physical background and some previous mathematical
studies for (DCBF). We also state our aims and plans of this dissertation in the end of
this chapter.

1.1.1 Physical Background

In this subsection, we give a brief review of physical background of the system (DCBF).
When the hot fluid saturated by some solute exists over the cold and fresh fluid,

the sedimentation of solute with finger-shaped-like distribution occurs in the fluid. This
phenomenon, called salt fingering, have been observed by the experiment in the field of
oceanography for more than one hundred years. In 1960, the mechanism of this phe-
nomenon was explained by Melvin Stern. According to his paper [54], the salt fingering
is mainly characterized by the buoyancy of the fluid (e.g., heat expansion) and the dif-
ference of two diffusion speeds between the heat and the solute. Subsequently, it was
revealed that his theory also can be applied to some unusual diffusion processes which
arise in the fluid possessing two physical quantities with distinct diffusion speeds and
heterogeneous distributions. Such complex phenomena are generally called “Double-
diffusive convection phenomena” and have been investigated since the pioneer result by
Stern.

Double-diffusive convection phenomenon appears in various situations, not only in
oceanography. In astrophysics, the semiconvection process of massive stars can be ex-
plained within the framework of double-diffusive convection. In geology, the layers of
volcanic rocks can be regarded as a result of double-diffusive convection of magma. In
material engineering, double-diffusive convection of melting stuff causes the freckling of
products (we can find more details or examples of double-diffusive convection in, e.g.,
Radko [51] and Brandt-Fernando [6]). It is well known that double-diffusive convection
also occurs in the fluid contained in a porous medium. For example, we have to consider
the effects of double-diffusive convection in models of the soil pollution, the storage of
heat-generating materials such as grain and coal, the reservoir of radioactive substances
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and the chemical reaction in catalysts (see, e.g., Nield–Bejan [40]). Due to these impor-
tant applications, double-diffusive convection in porous medium is one of the significant
subjects in engineering.

The first equation of (DCBF) originates from the following equation, the so-called
Brinkman-Forchheimer equations, which describes the relationship between the fluid
velocity u and the pressure p in some porous medium (see, e.g., Vafai–Tien [61] and
Chapter 1 of Nield–Bejan [40]).

(1.3) �

(
1

ϕ
∂tu+

1

ϕ2
u · ∇u

)
= −∇p+

μ

ϕ�
Δu− μ

K
u− c�

K1/2
|u|u,

where c, μ andK are some physical constants and � denotes the density of fluid (if we deal
with incompressible fluid, � is also a constant). Moreover, ϕ is a function of space variable
x ∈ Ω which designate the porosity, the rate of void space in the medium. The right-hand
side of (1.3) is a modified Darcy’s law and the left-hand side is added on the analogy
of the Navier-Stokes equations. However, some researchers, e.g., Beck [4] and Nield [39]
pointed out that the effect from the convection term ϕ−2u · ∇u is much less than those
from other terms. Based on this background, we neglect ϕ−2u·∇u in our system (DCBF)
(we note that dropping ϕ−2u·∇u dose not conflict the momentum conservation principle,
since the momentum of fluid is lost by the collision with the porous medium). We also
omit the quadratic term c�/K1/2|u|u under the assumption that the fluid velocity u is
sufficiently small due to the disturbance by the porous medium (strictly speaking, this
omission of the quadratic term is not necessarily valid from physical viewpoint. The
study for (DCBF) with the term c�/K1/2|u|u should be an important future problem).
Moreover, we assume that the medium is homogeneous, i.e., the porosity ϕ is a constant.
In order to describe the effects of buoyancy, we add the terms gT and hC based on the
Oberbeck-Boussinesq approximation (see, e.g., Joseph [31]). Then, by the normalization
of constants, we obtain the first equation of (DCBF).

According to results of irreversible thermodynamics (see, e.g., Pottier [50], Førland–
Førland–Ratkje [23]), the behavior of temperature T and concentration of solute C can
be described by the following equations:

∂tT + u · ∇T = ∇ · (DT∇T + ρD∇C),

∂tC + u · ∇C = ∇ · (DC∇C + ρS∇T ),

where DT and DC are diffusion coefficients. The nonlinear terms u · ∇T and u · ∇C
represent the advection of heat and solute (throughout this thesis, these terms u · ∇T
and u · ∇C are called nonlinear diffusion terms, advection terms or convection terms)
and the terms ∇·(ρD∇C) and ∇·(ρS∇T ) describe interactions between the temperature
and the concentration of solute, which are called Dufour’s effect and Soret’s effect respec-
tively (ρD and ρS are called Dufour’s coefficient and Soret’s coefficient). In (DCBF), we
only consider the contribution from Soret’s effect, since Dufore’s effect is much smaller
than Soret’s effect, particularly when we deal with liquid (see, e.g., Platten–Legros [49],
Mojtabi–Charrier-Mojtabi [37] and Chapter 3 of Nield–Bejan [40]). To be precise, the
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coefficients DT , DC and ρS depend on T and C. However, we assume that ρS is constant
and we set DT = DC = 1 in (DCBF) for simplicity (our arguments in this thesis can be
applied to the case where diffusion coefficients are arbitrary positive constants).

1.1.2 Previous Results

Here, we exhibit some previous results from mathematical viewpoint.
In Piniewski [48], the initial boundary value problem is considered for the system

where the first equation of (DCBF) is replaced by the Navier-Stokes equations and
Soret’s effect is neglected in 2-dimensional rectangle domains. By the application of
Galerkin’s method, the existence of a unique weak solution is assured in this paper.
Establishing some a priori estimates, Piniewski [48] also showed the existence of global
attractor.

As for the coupling of the Navier-Stokes equations with the second equation of
(DCBF), which is called Boussinesq system or heat convection system, there exist earlier
studies. In Inoue–Ôtani [29] and [30], for instance, the initial boundary value problem
and the time periodic problem for the heat convection system in bounded domains with
moving boundary are considered respectively. By reducing the system to an abstract
equation in some Hilbert space and using the result given in Ôtani [41], where the solv-
ability of Cauchy problem for abstract equations governed by subdifferential operators
with non-monotone perturbations is discussed, they showed the global solvability of the
initial boundary value problem with arbitrarily large initial data and external forces for
N = 2 and with sufficiently small data for N = 3 respectively in Inoue–Ôtani [29].
Similarly, applying the abstract non-monotone perturbation theory by Ôtani [42], they
assured the solvability of the periodic problem with large external forces for N = 2 and
with small data for N = 3 in Inoue–Ôtani [30]. In Hishida [28], it is shown that the initial
boundary value problem of Boussinesq system in bounded domains with N � 2 possesses
a global solution in suitable Lq-space for sufficiently small initial data via the Lq-theory
of semigroups generated by the Stokes operator and the Laplace operator. In Taniuchi
[57], the solvability of Boussinesq system for non-decaying initial data is assured by the
semigroup approach in some suitable Bezov spaces. By the application of semigroup the-
ory, the time periodic problem of heat convection system in unbounded domains with the
dimension N � 3 was also showed by Villamizar-Roa–Rodŕıguez-Bellido–Rojas-Medar
[62].

The system where the first equation of (DCBF) is replaced by the steady linear
Brinkman-Forchheimer equations (i.e., (DCBF) without the term ∂tu) is considered
in, e.g., Straughan–Hutter [55], Payne–Song [44] and Lin–Payne [34]. In Payne–Song
[44], some a priori estimates are established and a spatial decay estimate of solutions is
obtained for cylindrical domains in R3. By Straughan–Hutter [55] and Lin–Payne [34],
the continuous dependences of solutions on Soret’s coefficient ρ and constant vectors
g, h were studied respectively in 3-dimensional bounded domains (see also Payne–Song
[46], the case where g and h depend on the space variable x ∈ Ω).

To the best our knowledge, it seems that the first result for the solvability of (DCBF)
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itself is given in Terasawa–Ôtani [60]. In Terasawa–Ôtani [60], the initial boundary
value problem in bounded domains with homogeneous Dirichlet boundary condition is
considered. Their main strategy follows that in Inoue–Ôtani [29]. That is to say, re-
ducing (DCBF) to some abstract equation governed by subdifferential operators with
non-monotone perturbations and applying the result of Ôtani [41], they assured the
existence of a unique global solution provided that the space dimension is up to 3.

1.1.3 Main Purpose and Plan

Other than the above, a great number of mathematical studies have been devoted to
investigations of Boussinesq system and the system (DCBF) where the first equation
is replaced by the Navier-Stokes equations. In almost all such researches, the main
strategies and concerns for the problem are to apply mathematical tools developed in
the studies of the Navier-Stokes equations. Since the nonlinear diffusion terms u · ∇T
and u ·∇C quite resemble to the convection term u ·∇u of the Navier-Stokes equations,
applications of techniques in the Navier-Stokes equations were successful in the previous
works. However, under such strategies, the peculiarities of the nonlinear diffusion terms
u · ∇T and u · ∇C are concealed behind the difficulty of the convection term u · ∇u.
That is to say, the terms u · ∇T and u · ∇C are handled with the same argument as
that for u · ∇u and the difference between them is ignored. In fact, as is stated in the
previous subsection, we already know that more advanced analysis can be accomplished
and more precise results can be obtained for the double-diffusive convection system with
the linear Brinkman-Forchheimer equations than known results for the Navier-Stokes
equations. In Terasawa–Ôtani [60], for instance, the global solvability of (DCBF) for
large data with the dimension N = 3 can be obtained, which is not achieved for the
Navier-Stokes equation yet.

Main purpose of this thesis is to reveal the structures and the difficulties of the system
(DCBF), which arise from the the nonlinear diffusion terms u ·∇T , u ·∇C, the buoyancy
terms gT , hC and the term of Soret’s effect ρΔT under the simplification of equations
associated with the fluid.

This dissertation consists of six chapters.
The next chapter is devoted to preparation of notations and mathematical tools. For

example, we introduce the uniform Ck-domain, one of the typical examples of unbounded
domains which allow Sobolev’s embedding theorem and elliptic estimates of Laplace
operator, to be used in Chapter 4. We also state the definition and some properties about
the Helmholtz decomposition of Lebesgue spaces. Moreover, we give the definition and
some examples of subdifferential operator and some known results for evolution equations
governed by subdifferential operators for later use in Chapter 3. In Chapter 2, we define
the dynamical system and its attractors and we prepare some abstract results for the
construction of attractors in Chapter 6.

Chapter 3 deals with the system (DCBF) in bounded domains. Basic strategy in the
third chapter relies on those in Inoue–Ôtani [29], [30] and Terasawa–Ôtani [60], i.e., we
reduce (DCBF) to an abstract equation in some suitable Hilbert space, which is governed
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by the subdifferential operators, and we apply solvability results given by Ôtani [41] and
[42] (see Section 2.3). To begin with, we check that the global solvability of the initial
boundary value problem also holds for the homogeneous Neumann boundary condition
case (1.2). By almost the same procedure as that in Terasawa–Ôtani [60], it is shown
that the initial boundary value problem of (DCBF) with Neumann condition possesses
a unique global solution in Section 3.2. We also consider the solvability of time periodic
problem for (DCBF) in Section 3.3 and 3.4. We here note that the required conditions
in the abstract result Ôtani [42] (periodic problem) are stricter than those in Ôtani [41]
(Cauchy problem) and the direct application of [42] to the time periodic problem of
(DCBF) seems to be difficult (required conditions in [41], [42] will be stated in Section
2.3). To cope with this difficulty, we introduce some approximate equations of (DCBF)
with dissipation terms and cut-off approximations. By using the abstract result in [42],
we first assure the existence of solutions for the approximate problem. Discussing the
convergences of approximate solutions and equations, we shall show the solvability of the
time periodic problem of (DCBF) with Dirichlet condition (1.1) in Section 3.3. As for
Neumann condition case, we need another step of relaxation approximation due to the
lack of coercivity of the Laplace operator. In order to assure the convergence of these
relaxation terms, we assume the following additional condition for the external forces:∫

Ω

f2dx =

∫
Ω

f3dx = 0,

which is also one of the necessary conditions for the existence of periodic solution of
(DCBF) with Neumann condition. Under the above condition, the solvability of time
periodic problem can be derived for Neumann case in Section 3.4.

In Chapter 4, we consider the initial boundary value problem of (DCBF) in un-
bounded domains. We here remark that it is impossible to follow the same procedure
as that in the Chapter 3, since the ϕ-level set compactness is imposed among other
required conditions in [41] (see Section 2.3) and this condition is usually satisfied by
Rellich-Kondrachov’s theorem, which requires the boundedness of Ω. In Chapter 4, we
introduce another strategy which relies on Banach’s contraction mapping principle and
we shall assure the existence of a unique global solution in uniform C2-domains (see
Section 2.1) with the dimension N � 4 for large initial data and external forces. We
note that our result in fourth chapter completely cover those in Terasawa–Ôtani [60] and
Chapter 3.

Chapter 5 is concerned with the time periodic problem of (DCBF) in the whole do-
main RN with the dimension N = 3, 4. Since the solvability can be assured for large
data, i.e., arbitrary large initial data and external forces for the initial boundary value
problem (Chapter 4), we can expect the solvability of time periodic problem without
the smallness condition of external forces. However, there are very few results for the
solvability of time periodic problem in unbounded domains with large data, in partic-
ular, for parabolic equations with non-monotone perturbations, where the uniqueness
of solutions is not obtained. As for the studies for the parabolic equations with non-
monotone perturbations, the time periodic problems in unbounded domains have been
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investigated by, e.g., Maremonti [35], Kozono–Nakao [33] for the Navier-Stokes equations
and Villamizar-Roa–Rodŕıguez-Bellido–Rojas-Medar [62] for Boussinesq system. How-
ever, their procedures do not fit our aim, since the smallness of given data seems to
be essential in order to assure the convergence of iterations in their argument. On the
other hand, as for the solvability of periodic problem with large data, abstract evolution
equations associated with subdifferential operators in Hilbert space have been studied
by, for instance, in Bénilan–Brézis [5], Nagai [38], Yamada [63] and Ôtani [42]. In these
abstract results, some required conditions are guaranteed by the boundedness of space
domains (e.g., the coercivity of subdifferential operators, ϕ-level set compactness) and
the direct application of their argument to the problem in unbounded domains seems
to be impossible (for this reason, we can not use our strategy in Chapter 3). We also
note that the strategy for semi-linear parabolic equations given in, e.g., Pao [43] is not
available, since the term of Soret’s effect ρΔT makes difficult to assure the comparison
theorem. In spite of these difficulties, the existence of time periodic solutions of (DCBF)
in RN with N = 3, 4 will be shown for large data in fifth chapter, via the convergence of
solutions of some approximate equations in bounded domains.

Chapter 6 deals with the study for the large time behavior of solutions whose existence
is assured in Chapter 4 in terms of global attractor and exponential attractor (definition
of attractors will be stated in Section 2.4). We consider the case where Ω is bounded for
both cases with homogeneous Dirichlet and Neumann boundary condition and external
forces do not depend on the time variable t. The construction of global and exponential
attractor of the dynamical system relies on the abstract results, e.g., Babin–Vishik [3],
Chepyzhov–Vishik [16], Robinson [52], Temam [59] for global attractor and Eden–Foais–
Nicolaenko–Temam [18], Efendiev [19], Efendiev–Miranville–Zelik [20] for exponential
attractor (see Section 2.4). In Piniewski [48], the existence of global attractor is already
shown for N = 2. However, we need to establish more precise a priori estimates for
the case N � 3 than those in [48] and previous chapters so that abstract results stated
above can be applied. In order to derive such minute estimates of solutions for higher
regularity, we introduce some abstract result given in Brézis [11] and its modification.
As mentioned in Chapter 6, when the homogeneous Neumann condition is imposed to
(DCBF), there is no global and exponential attractors in the standard sense due to
the so-called mass conservation property. Hence we introduce the restricted dynamical
system by the same way as that in Brochet-Hilhorst [13] and we shall show the existence
of attractors for this dynamical system.





Chapter 2

Preliminary

In this chapter, we define some notations and prepare basic mathematical tools which
will be used in the following chapters of this thesis. Almost all of propositions and
corollaries in this chapter are exhibited without any proof. However, we can find their
demonstrations and more details in the references listed near the statements.

2.1 Lebesgue Space and Sobolev Space

We first recall fundamental facts about the Lebesgue space, the Sobolev space and the
Bochner space in this section.

2.1.1 Notations and Basic Properties

Let Ω be a domain of N -dimensional Euclidean space RN . In this dissertation, Lq(Ω)
and W k,q(Ω) stand for the standard Lebesgue spaces and Sobolev spaces (1 � q � ∞,
k ∈ N) and Hk(Ω) := W k,2(Ω). The usual norm in Lq(Ω), W k,q(Ω) and Hk(Ω) are
designated by | · |Lq(Ω), | · |Wk,q(Ω) and | · |Hk(Ω) (definitions and details can be found in,
e.g., Adams [1], Brézis [12] and Folland [22]). To be precise, for each V ∈ W 1,q(Ω), ∇V
is defined as vector valued functions. However, in this thesis, we simply write

|∇V |qLq(Ω) :=
N∑

μ=1

|∂xμV |qLq(Ω).

Let C∞
0 (Ω) denote the space of infinitely differentiable functions with compact supports

in Ω. Then we define W k,q
0 (Ω) and Hk

0 (Ω) by the closure of C∞
0 (Ω) under the norm in

W k,q(Ω) and Hk(Ω) respectively.

According to, e.g., Adams [1], Brézis [12] and Folland [22], Lebesgue and Sobolev
spaces hold the following basic properties.

13
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Proposition 2.1.1 (Hölder’s inequality). Let q ∈ [1,∞] and define q′ by

q′ :=

⎧⎪⎨⎪⎩
q/(q − 1) ( if 1 < q < ∞),

∞ ( if q = 1),

1 ( if q = ∞)

(henceforth, called the conjugate Hölder exponent of q). Then for any V1 ∈ Lq(Ω) and
V2 ∈ Lq′(Ω), V1V2 ∈ L1(Ω) holds and

|V1V2|L1(Ω) � |V1|Lq(Ω)|V2|Lq′ (Ω).

Proposition 2.1.2 (Duality). Let q ∈ [1,∞) and let q′ be the conjugate Hölder exponent,
i.e., q′ := q/(q− 1) for 1 < q < ∞ and q′ := ∞ for q = 1. Then Lq′(Ω) is the dual space
of Lq(Ω).

Proposition 2.1.3 (Density). For any q ∈ [1,∞), C∞
0 (Ω) is dense in Lq(Ω).

Proposition 2.1.4 (Reflexivity). Let q ∈ (1,∞), then Lq(Ω), W k,q(Ω) and W k,q
0 (Ω) are

reflexive for any k ∈ N.

From Hölder’s inequality, we can derive the following.

Corollary 2.1.1 (Logarithmic convexity of Lq-norms). Let 1 � q1 < q2 < q3 � ∞.
Then Lq1(Ω) ∩ Lq3(Ω) ⊂ Lq2(Ω) is valid. Moreover, for any V ∈ Lq1(Ω) ∩ Lq3(Ω),

|V |Lq2 (Ω) � |V |1−α
Lq1 (Ω)|V |αLq3(Ω)

holds, where α := (1/q1 − 1/q2)/(1/q1 − 1/q3) (if q3 = ∞, α := 1− q1/q2).

2.1.2 Embedding Inequalities

In this subsection, we recall the following important inequality, the so-called Sobolev’s
embedding inequality (see Adams [1], Brézis [12] and Evans [21]).

Proposition 2.1.5 (Sobolev’s embedding theorem). Let 1 � q < N and q∗ := qN/(N−
q). Then the embedding W 1,q(RN) ⊂ Lq∗(RN) holds. Moreover, there exist a constant γ
which depends only on q and N such that

(2.1) |V |Lq∗ (RN ) � γ|∇V |Lq(RN ) ∀V ∈ W 1,q(RN).

If q = N , then the embedding W 1,q(RN) ⊂ Lr(RN) holds for any r ∈ [q,∞). Moreover,
if q > N , then the embedding W 1,q(RN) ⊂ L∞(RN) holds.

By zero-extension of functions, Proposition 2.1.5 immediately yields the following.



15

Corollary 2.1.2 (Sobolev’s embedding theorem). Let 1 � q < N and q∗ := qN/(N−q).
Then the embedding W 1,q

0 (Ω) ⊂ Lq∗(Ω) holds. Moreover, there exist a constant γ which
depends only on q and N such that

(2.2) |V |Lq∗ (Ω) � γ|∇V |Lq(Ω) ∀V ∈ W 1,q
0 (Ω).

If q = N , then the embedding W 1,q
0 (Ω) ⊂ Lr(Ω) holds for any r ∈ [q,∞). Moreover, if

q > N , then the embedding W 1,q
0 (Ω) ⊂ L∞(Ω) holds.

Here we introduce the definition of Ck-class domain.

Definition 2.1.1 (Ck-class domain). The domain Ω ⊂ RN with the boundary ∂Ω is said
to be Ck-class domain, if for any x ∈ ∂Ω, there exist a neighborhood Ox of x in RN and
a Ck-diffeomorphism ψx : Ox → BN := {x ∈ RN ; |x| < 1} such that

ψx(Ox ∩ Ω) = {x = (x1, x2, · · · , xN) ∈ BN ; xN > 0},
ψx(Ox ∩ ∂Ω) = {x = (x1, x2, · · · , xN) ∈ BN ; xN = 0}.

According to, e.g., Adams [1], Brézis [12] and Evans [21], Sobolev’s embedding the-
orem also holds for C1-class domain with bounded boundary.

Proposition 2.1.6. Let Ω be C1-class domain with bounded boundary ∂Ω or the half
space RN

+ := {x = (x1, x2, · · · , xN) ∈ RN ; xN > 0}. Moreover, let 1 � q < N and
q∗ := qN/(N − q). Then the embedding W 1,q(Ω) ⊂ Lq∗(Ω) holds and there exist a
constant γ which depends on Ω, q and N such that

(2.3) |V |Lq∗ (Ω) � γ|V |W 1,q(Ω) ∀V ∈ W 1,q(Ω).

If q = N , then the embedding W 1,q(Ω) ⊂ Lr(Ω) holds for any r ∈ [q,∞). Moreover, if
q > N , then the embedding W 1,q(Ω) ⊂ L∞(Ω) holds.

Here we remark that the coefficient γ appearing in (2.3) depends on the shape or the
radius of Ω, although the coefficient in (2.1) and (2.2) depends only on N and q.

We also recall the following compact embedding theorem which holds for bounded
domain case.

Proposition 2.1.7 (Rellich-Kondrachov’s theorem). Let Ω be a bounded C1-class do-
main and let 1 � q < N and r ∈ [1, q∗), where q∗ := qN/(N − q). Then W 1,q(Ω) is
compactly embedded in Lr(Ω).

From now on, the exponent q∗ := qN/(N − q) is called the critical Sobolev exponent
associated with q.
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2.1.3 Elliptic Estimates

In this subsection, we mention the elliptic estimates of the Laplace operator −Δ. Proofs
of propositions below can be found in, e.g., Brézis [12].

From now on, we write −ΔD and −ΔN in order to represent the Laplace operator
−Δ with the homogeneous Dirichlet or Neumann boundary condition respectively. That
is to say, −ΔD and −ΔN describe the Laplace operator −Δ defined on

D(−ΔD) := H2(Ω) ∩H1
0 (Ω), D(−ΔN) :=

{
V ∈ H2(Ω);

∂V

∂n
= 0 on ∂Ω

}
respectively (D(−ΔD) and D(−ΔN) are called the domain of −ΔD and −ΔN). We here
remark that −ΔD = −ΔN is valid if Ω = RN .

Then −ΔD and −ΔN possess the following properties.

Proposition 2.1.8 (Elliptic estimate for −ΔD). Let Ω be the whole space RN , the half
space RN

+ or C2-domain with bounded boundary ∂Ω and let F ∈ L2(Ω). Moreover, assume
that V ∈ H1

0 (Ω) is a weak solution of −ΔDV + V = F , i.e.,{
−ΔV + V = F in Ω,

V = 0 on ∂Ω.

That is to say, assume that V ∈ H1
0 (Ω) satisfies∫

Ω

∇V · ∇W +

∫
Ω

VW =

∫
Ω

FW ∀W ∈ H1
0 (Ω).

Then, V belongs to D(−ΔD) and becomes a strong solution of −ΔDV + V = F . More-
over, there exist a constant γD which depends only on Ω and N such that |V |H2(Ω) �
γD|F |L2(Ω), i.e.

(2.4) |V |H2(Ω) � γD(|ΔV |L2(Ω) + |V |L2(Ω))

holds.

Proposition 2.1.9 (Elliptic estimate for −ΔN). Let Ω be the whole space RN , the half
space RN

+ or C2-domain with bounded boundary ∂Ω and let F ∈ L2(Ω). Moreover, assume
that V ∈ H1(Ω) is a weak solution of −ΔNV + V = F , i.e.,{

−ΔV + V = F in Ω,
∂V
∂n

= 0 on ∂Ω.

That is to say, assume that V ∈ H1(Ω) satisfies∫
Ω

∇V · ∇W +

∫
Ω

VW =

∫
Ω

FW ∀W ∈ H1(Ω).
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Then, V belongs to D(−ΔN) and becomes a strong solution of −ΔNV + V = F . More-
over, there exist a constant γN which depends only on Ω and N such that |V |H2(Ω) �
γN |F |L2(Ω), i.e.

(2.5) |V |H2(Ω) � γN(|ΔV |L2(Ω) + |V |L2(Ω))

holds.

Propositions 2.1.8 and 2.1.9 imply that if V belongs to D(−ΔD) or D(−ΔN), then
H2-norm of V is bounded only by L2-norm of −ΔV and V . The inequalities (2.4) and
(2.5) are called elliptic estimate of −ΔD or −ΔN respectively.

2.1.4 Uniform Ck-Domain

Here we introduce the concept of uniform Ck-domain.

Definition 2.1.2 (Uniform Ck-Regular Class). The domain Ω ⊂ RN with the boundary
∂Ω is said to be uniformly regular of class Ck (or said to be a uniform Ck-domain), if
there exist a family of coordinate chart (Oj, ψj) (j ∈ N) of Ω (the closure of Ω) which
satisfies the following conditions (called the uniform Ck-regularity condition):

1. Each ψj is a Ck-diffeomorphism from Oj onto BN := {x ∈ RN ; |x| < 1} such that

ψj(Oj ∩ Ω) = {x = (x1, x2, · · · , xN) ∈ BN ; xN > 0},
ψj(Oj ∩ ∂Ω) = {x = (x1, x2, · · · , xN) ∈ BN ; xN = 0}.

2. There exist some constant M independent of j ∈ N such that∑
|α|�k

{
sup
x∈Oj

|Dαψj(x)|+ sup
y∈BN

|Dαψ−1
j (y)|

}
� M,

where α = (α1, α2, · · · , αN) ∈ NN , Dα := ∂α1
x1
∂α2
x2

· · · ∂αN
xN

and |α| :=∑i=1,2,··· ,N αi.

3. There exist some positive constant ε such that ε-neighbourhood of ∂Ω in Ω is con-
tained by

⋃
j∈N ψ

−1
j (1

2
BN), where 1

2
BN := {x/2; x ∈ BN}.

4. There exists some natural number n0 such that any (n0 + 1)-distinct Oj does not
possess intersection.

The simplest examples of uniform Ck-domain are the half space RN
+ and Ck-class

domains with bounded boundary. Moreover, if the boundary of Ω can be represented by
Ck-class bounded function from RN−1 to R, then the domain Ω is uniformly regular of
class Ck.

As is mentioned in Amann [2] and Browder [14], if Ω is a uniform Ck-domain and
satisfies the uniform Ck-regularity condition in Definition 2.1.2, then there exist a parti-
tion of unity on Ω which possesses good properties. Then, we can apply almost the same
argument to the uniform Ck-domain case as those for Ck-class domains with bounded
boundary (see Proposition 2.1.6, 2.1.8 and 2.1.9) and we can assure the following facts.
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Proposition 2.1.10 (Sovolev’s embedding inequality for unbounded domains). Let Ω
be uniformly regular of class C1. Moreover, let 1 � q < N and q∗ := qN/(N − q). Then
the embedding W 1,q(Ω) ⊂ Lq∗(Ω) holds and there exist a constant γ which depends on Ω,
q and N such that

|V |Lq∗ (Ω) � γ|V |W 1,q(Ω) ∀V ∈ W 1,q(Ω).

If q = N , then the embedding W 1,q(Ω) ⊂ Lr(Ω) holds for any r ∈ [q,∞). Moreover, if
q > N , then the embedding W 1,q(Ω) ⊂ L∞(Ω) holds.

Proposition 2.1.11 (Elliptic estimate for −ΔD in unbounded domains). Let Ω be a
uniform C2-domain and let F ∈ L2(Ω). Moreover, assume that V ∈ H1

0 (Ω) is a weak
solution of −ΔDV + V = F . That is to say, assume that V ∈ H1

0 (Ω) satisfies∫
Ω

∇V · ∇W +

∫
Ω

VW =

∫
Ω

FW ∀W ∈ H1
0 (Ω).

Then, V belongs to D(−ΔD) and becomes a strong solution of −ΔDV + V = F . More-
over, there exist a constant γD which depends only on Ω and N such that |V |H2(Ω) �
γD|F |L2(Ω), i.e.

(2.6) |V |H2(Ω) � γD(|ΔV |L2(Ω) + |V |L2(Ω))

holds.

Proposition 2.1.12 (Elliptic estimate for −ΔN in unbounded domains). Let Ω be a
uniform C2-domain and let F ∈ L2(Ω). Moreover, assume that V ∈ H1(Ω) is a weak
solution of −ΔNV + V = F . That is to say, assume that V ∈ H1(Ω) satisfies∫

Ω

∇V · ∇W +

∫
Ω

VW =

∫
Ω

FW ∀W ∈ H1(Ω).

Then, V belongs to D(−ΔN) and becomes a strong solution of −ΔNV + V = F . More-
over, there exist a constant γN which depends only on Ω such that |V |H2(Ω) � γN |F |L2(Ω),
i.e.

(2.7) |V |H2(Ω) � γN(|ΔV |L2(Ω) + |V |L2(Ω))

holds.

2.1.5 Bochner Space

Let X denote a Banach space with the norm ‖ · ‖X . We define the space Lq(0, S;X) by
the set of X-valued functions U : [0, S] → X such that |U |Lq(0,S;X) < ∞, where

|U |Lq(0,S;X) :=

⎧⎪⎨⎪⎩
(∫ S

0

‖U(t)‖qXdt
)1/q

if 1 � q < ∞,

ess supt∈[0,S] ‖U(t)‖X if q = ∞.
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In this subsection, we state some properties of functions belonging to Lq(0, S;X), the
so-called Bochner space (see, e.g., Adams [1] and Yosida [64]).

First, by almost the same argument as that for scalar valued functions, the following
density property of Bochner space Lq(0, S;X) can be guaranteed.

Proposition 2.1.13 (Density). Let 1 � q < ∞. Then C∞
0 ((0, S);X) is dense in

Lq(0, S;X).

Here we consider the special case where X = Lq1(Ω) with q1 ∈ [1,∞). Due to the facts
that C∞

0 (Ω) is dense in Lq1(Ω) (Proposition 2.1.3) and arbitrary function of Lq2(0, S;X)
can be approximated by some step functions with value in X for q2 ∈ [1,∞), we can
show that any function belonging to Lq2(0, S;Lq1(Ω)) (q1, q2 ∈ [1,∞)) is approximated
by some step functions with value in C∞

0 (Ω) (this argument is also valid for the case
where X = W k,q1

0 (Ω)). This argument yields the following density property.

Proposition 2.1.14 (Density). Let q1, q2 ∈ [1,∞). Then C∞
0 ((0, S);C∞

0 (Ω)) is dense in
Lq2(0, S;Lq1(Ω)). Moreover, C∞

0 ((0, S);C∞
0 (Ω)) is dense in Lq2(0, S;W k,q1

0 (Ω)) for any
k ∈ N.

In general, we can not characterize the dual of Bochner space Lq(0, S;X). However,
when X is reflexive, we can obtain almost the same result as those for scalar valued
functions (see, e.g., Phillips [47]).

Proposition 2.1.15 (Duality). Let 1 � q < ∞ and let q′ be the conjugate Hölder
exponent of q. Moreover, assume that X is reflexive. Then the dual space of Lq(0, S;X)
coincides with Lq′(0, S;X∗), where X∗ is the dual of X.

Corollary 2.1.3 (Reflexivity). Let 1 < q < ∞ and assume that X is reflexive. Then
Lq(0, S;X) is reflexive.

Next we consider the space W 1,q(0, S;X) (q ∈ [1,∞]) defined by

W 1,q(0, S;X) :=

⎧⎨⎩U ∈ Lq(0, S;X);

∃G ∈ Lq(0, S;X) such that

U(t) = U(0) +

∫ t

0

G(s)ds ∀t ∈ [0, S]

⎫⎬⎭ .

Generally speaking, the absolutely continuity does not necessarily lead to the existence
of primitive function for X-valued functions. However, when X is reflexive, the following
properties are equivalent:

1. U ∈ W 1,q(0, S;X).

2. U is absolutely continuous on [0, S] and differentiable at a.e. t ∈ [0, S]. Moreover,
the time derivative of U belongs to Lq(0, S;X).

Moreover, we can find the following fact in, e.g., appendix of Brézis [11].
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Proposition 2.1.16. Let X be a reflexive Banach space and let U ∈ Lq(0, S;X) with
1 < q < ∞. Moreover, assume that there exist a constant γ such that∫ T−h

0

‖U(t+ h)− U(t)‖qXdt � γhq ∀h ∈ (0, T )

holds. Then U belongs to W 1,q(0, S;X).

2.2 Helmholtz Decomposition

We here deal with N -component vector valued functions in order to describes the fluid
velocity. In particular, this section is mainly devoted to the definition and the funda-
mental facts of Helmholtz decomposition.

We define the spaces Lq(Ω) := (Lq(Ω))N , Wk,q(Ω) := (W k,q(Ω))N and Hk(Ω) :=
Wk,q(Ω) with the norm

|w|Lq(Ω) :=
N∑

μ=1

|wμ|Lq(Ω), |w|Wk,q(Ω) :=
N∑

μ=1

|wμ|W k,q(Ω),

where w = (w1, w2, · · · , wN). Moreover, we define W
k,q
0 (Ω) and Hk

0(Ω) by the closure of
C∞

0 (Ω) in Wk,q(Ω) and Hk(Ω), where C∞
0 (Ω) := (C∞

0 (Ω))N . Strictly speaking, for each
w ∈ W1,q(Ω), ∇w is defined as tensor valued function. However, we use the following
notation:

|∇w|q
Lq(Ω) :=

N∑
μ=1

|∂xμw|q
Lq(Ω).

Moreover, for any w1,w2 ∈ W1,q(Ω), we write∫
Ω

∇w1 · ∇w2 :=
N∑

μ=1

∫
Ω

∇wμ
1 · ∇wμ

2

throughout this thesis, where wi = (w1
i , w

2
i , · · · , wN

i ) (i = 1, 2).
We remark that the propositions stated in Section 2.1.1, 2.1.2 and 2.1.4 (Hölder’s

inequality, duality, density, reflexivity and Sobolev’s embedding) also holds for Lq(Ω),
Wk,q(Ω) and Hk(Ω).

2.2.1 Helmholtz Decomposition

We first define the following spaces:

C∞
σ (Ω) := {w ∈ C∞

0 (Ω); ∇ ·w(x) = 0 ∀x ∈ Ω},
Lq
σ(Ω) : the closure of C∞

σ (Ω) under the norm of Lq(Ω),

Gq(Ω) := {w ∈ Lq(Ω); ∃p ∈ W 1,q
loc (Ω), s.t., w = ∇p},
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where Ω is the closure of Ω in RN .

It is well known that the following result can be assured for q = 2 (see, e.g., Chapter
III of Galdi [27]).

Proposition 2.2.1 (Helmholtz Decomposition with q = 2). Let Ω be any domain in RN

with N � 2. Then L2
σ(Ω) and G2(Ω) become orthogonal subspaces in L2(Ω). Moreover,

L2(Ω) = L2
σ(Ω)⊕G2(Ω) holds, i.e., any v ∈ L2(Ω) is uniquely decomposed by w1 ∈ L2

σ(Ω)
and w2 ∈ G2(Ω):

v = w1 +w2 w1 ∈ L2
σ(Ω), w2 ∈ G2(Ω).

We here remark that

|w1|L2(Ω) + |w2|L2(Ω) � 2|v|L2(Ω)

also holds for any v ∈ L2(Ω) and its decomposition w1 ∈ L2
σ(Ω) and w2 ∈ G2(Ω) due to

the properties of orthogonal projections in Hilbert space.

For q �= 2, such decomposition does not necessarily hold for arbitrary domain Ω.
However, in special cases, we can obtain the same result as that for q = 2 (see, e.g.,
Chapter III of Galdi [27]).

Proposition 2.2.2 (Helmholtz Decomposition with q �= 2). Let 1 < q < ∞ and let Ω be
either the whole space RN , the half space RN

+ or C2-class domain with bounded boundary
with N � 2. Then Lq(Ω) = Lq

σ(Ω) ⊕ Gq(Ω) holds, i.e., any v ∈ Lq(Ω) is uniquely
decomposed by

v = w1 +w2 w1 ∈ Lq
σ(Ω), w2 ∈ Gq(Ω).

Moreover, there exist some constant γ which depends only on Ω, q and N such that

|w1|Lq(Ω) + |w2|Lq(Ω) � γ|v|Lq(Ω)

holds for any v ∈ Lq(Ω) and its decomposition w1 ∈ Lq
σ(Ω), w2 ∈ Gq(Ω).

According to Fujiwara–Morimoto [26] and Miyakawa [36], we can obtain the following.

Proposition 2.2.3 (Duality of Lq
σ(Ω)). Let 1 < q < ∞ and let Ω be either the whole

space RN , the half space RN
+ or C2-class domain with bounded boundary with N � 2.

Then the dual space of Lq
σ(Ω) coincides with Lq′

σ (Ω), where q′ := q/(q − 1).

Moreover, recalling Proposition 2.1.14 and the fact that C∞
σ (Ω) is dense in Lq1

σ (Ω),
we can see the following.

Proposition 2.2.4 (Density). For each q1 ∈ [1,∞) and q2 ∈ (1,∞), C∞
0 ((0, S);C∞

σ (Ω))
is dense in Lq2(0, S;Lq1

σ (Ω)).
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2.2.2 Stokes Operator

In this subsection, we mention the Stokes operator and its basic properties. Since our
arguments are carried out in L2-framework throughout this thesis, we only deal with the
case where the exponent q = 2, i.e., L2(Ω)-case for simplicity.

Definition 2.2.1 (Stokes Operator). Let PΩ denote the orthogonal projection from L2(Ω)
onto L2

σ(Ω). Then we define the Stokes operator AΩ by

AΩ := −PΩΔ with domain D(AΩ) = H2(Ω) ∩H1
σ(Ω),

where H1
σ(Ω) is the closure of C∞

σ (Ω) under the norm of H1(Ω).

If there is no confusion, the orthogonal projection and the Stokes operator are simply
designated by P and A respectively.

Here, operating the orthogonal projection PΩ to the first equation of (DCBF), we
obtain the following equations:

(2.8)

⎧⎪⎨⎪⎩
∂tu+ νAΩu+ au = PΩgT + PΩhC + PΩf1 (x, t) ∈ Ω×[0, S],

∂tT + u·∇T = ΔT + f2 (x, t) ∈ Ω×[0, S],

∂tC + u·∇C = ΔC + ρΔT + f3 (x, t) ∈ Ω×[0, S].

We remark that the system (2.8) is equivalent to the original system (DCBF). Indeed, if
we can find a solution (u, T, C) of the system (2.8) in L2

σ(Ω)×L2(Ω)×L2(Ω)-framework,
the solution u satisfies the solenoidal condition ∇ · u = 0 and the existence of pressure
p which satisfies the first equation of (DCBF) can be deduced automatically from the
definition and properties of Helmholtz decomposition of L2(Ω) (more detail, see, Sohr
[53] and Temam [58]). Therefore, throughout this dissertation, we treat the system (2.8)
instead of the original system (DCBF) and we consider the solution (u, T, C) of (2.8)
instead of (u, T, C, p) of (DCBF). For this reason, the system (2.8) is also called (DCBF)
henceforth.

As for the fundamental fact of the Stoke operator, the following elliptic estimate
holds for AΩ defined on uniform C2-domain Ω (see Sohr [53]).

Proposition 2.2.5 (Elliptic estimate for AΩ). Let Ω be either the whole space RN or
uniform C2-domain and let F ∈ L2

σ(Ω). Moreover, assume that w ∈ H1
σ(Ω) is a weak

solution of AΩw +w = F . That is to say, assume that w ∈ H1
σ(Ω) satisfies∫

Ω

∇w · ∇v +

∫
Ω

w · v =

∫
Ω

F · v ∀v ∈ H1
σ(Ω).

Then, w belongs to D(AΩ) and becomes a strong solution of AΩw +w = F . Moreover,
there exist a constant γS which depends only on Ω and N such that |w|H2(Ω) � γS|F |L2(Ω),
i.e.

(2.9) |w|H2(Ω) � γS(|AΩw|L2(Ω) + |w|L2(Ω))

holds.
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This Proposition implies that the Stoke operator AΩ becomes a maximal monotone
operator in L2

σ(Ω) (see example of subdifferential operators in Section 2.3).
In the particular case where Ω = RN , we obtain the following (see Constantin-Foais

[17], Sohr [53] and Temam [58]).

Proposition 2.2.6 (Stokes operator in RN). If w belongs to D(ARN ) = H2(RN) ∩
H1

σ(R
N), then Δw belongs to L2

σ(R
N), i.e., ARNw = −Δw holds.

2.3 Maximal Monotone Operator and Subdifferen-

tial Operator

In this section, we introduce the definition of subdifferential operator and some known
results for the abstract equation governed by subdifferential operators defined in the
Hilbert space. Throughout this section, H stands for a real Hilbert space with the inner
product (·, ·)H and the norm ‖ · ‖H . Moreover, · H designates the closure in H.

2.3.1 Definition

Let ϕ be a lower semi-continuous convex function from H onto (−∞,+∞]. The function
ϕ : H → (−∞,+∞] is said to be “proper” if the set defined by

D(ϕ) := {U ∈ H;ϕ(U) < +∞} : Effective domain of ϕ

is not empty set. Then we define the subdifferential of a proper lower semi-continuous
convex function ϕ by

∂ϕ(U0) := {h ∈ H; (h, U − U0)H � ϕ(U)− ϕ(U0) ∀U ∈ H}.
The set D(∂ϕ) := {U ∈ H; ∂ϕ(U) �= ∅} is called the domain of subdifferential operator
∂ϕ.

It is well known that the subdifferential operator becomes a maximal monotone op-
erator (see Brézis [10], [11]). Here, the operator A : H → 2H is said to be a maximal
monotone operator if the following conditions are satisfied:

1. (U1 − U2,W1 − W2)H � 0 holds for any U1, U2 ∈ D(A) (domain of A) and W1 ∈
AU1,W2 ∈ AU2.

2. If (U,W ) ∈ H ×H satisfies (U − U1,W −W1)H � 0 for any U1 ∈ D(A) and any
W1 ∈ AU1, then U ∈ D(A) and W ∈ AU hold.

The condition 2, the so-called maximality of A, and the following condition 2′ and
condition 2′′ are equivalent.

2′. There exist a positive constant λ0 such that for any F ∈ H, the equation U +
λ0AU  F possesses a unique solution U ∈ D(A).



24

2′′. For any λ > 0 and for any F ∈ H, the equation U + λAU  F possesses a unique
solution U ∈ D(A).

According to the condition 2′′, for any maximal monotone operator A and positive pa-
rameter λ, we can define the resolvent Jλ : H → D(A) by Jλ := (I + λA)−1, where I

is the identity mapping on H. It is well known that for any U ∈ D(A)
H
, JλU strongly

converges to U as λ → 0 in H.
Based on this fact, by measuring how fast the resolvent JλU converges to U , we can

define a nonlinear interpolation class associated with A between D(A) and D(A)
H

(see
Brézis [7], [8] and [9] ). Let 0 < α < 1, 1 � q � ∞. Then we define the set Bα,q(A),
called Brézis class, by

Bα,q(A) :=
{
U ∈ D(A)

H
; t−α‖U − JtU‖H ∈ Lq

∗(0, 1)
}
,

where

Lq
∗(0, τ) :=

{
g : [0, τ ] → R; |g|Lq

∗(0,τ) :=

(∫ τ

0

|g(t)|q 1
t
dt

)1/q

< ∞
}

( if q ∈ [1,∞)),

L∞
∗ (0, τ) := L∞(0, τ).

We also write

|U |Bα,q(A) := |t−α‖U − JtU‖H |Lq
∗(0,1) =

(∫ 1

0

‖U − JtU‖qH
1

t1+αq
dt

)1/q

.

The nonlinear interpolation class Bα,q(A) covers several known interpolation spaces such
as Lorentz space, Marcinkiewicz space and Besov spaces. We note that Brézis class
Bα,q(A) generally dose not become a linear space, even, a convex set. However, the
following fundamental facts are valid (see Brézis [7], [8] and [9] ):

Bα,q1(A) ⊂ Bα,q1(A) ∀α ∈ (0, 1), 1 � q1 < q2 � ∞,

Bα1,q1(A) ⊂ Bα2,q2(A) ∀q1, ∀q2 ∈ [1,∞], 0 < α2 < α1 < 1.

Moreover, if A = ∂ϕ, we have
B 1

2
,2(∂ϕ) = D(ϕ).

Here we give some examples of subdifferential operators, which will be used in this
thesis.
Example 1. Let H := L2(Ω). We define the function ϕq : L

2(Ω) → R by

ϕq(V ) :=

{
1
q
|V |qLq(Ω) if U ∈ Lq(Ω),

+∞ otherwise,

where q � 2. It is easy to see that ϕq is a proper lower semi-continuous convex function
in H. Here we define a function Θ : R → R by Θ(s) := |s|q−2s (s ∈ R) and we define a
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operator Θ′ : L2(q−1)(Ω) → H by Θ′(V )(x) := Θ(V (x)) (V ∈ L2(q−1)(Ω), x ∈ Ω). Then,
we can see that

ϕq(W )− ϕq(V ) � (Θ′(V ),W − V )H

holds for any W ∈ H and V ∈ L2(q−1)(Ω). Therefore, the monotone operator Θ′ satisfies
Θ′ ⊂ ∂ϕq. Moreover, Θ′ satisfies the maximal condition 2′ with λ0 = 1. Indeed, for
any W ∈ H, we can define the function VW by the solution of the following algebraic
equation:

Θ(VW (x)) + VW (x) = W (x) (∀x ∈ Ω)

(since s �→ Θ(s) + s is bijective function, the equation above possesses a unique solution
VW (x) for each given number W (x)). Then, since

|W (x)|2 = |VW (x)|2 + 2|VW (x)|q + |VW (x)|2(q−1)

and W ∈ H = L2(Ω), we have VW ∈ L2(Ω) ∩ L2(q−1)(Ω). This implies that VW becomes
a unique solution of Θ′(VW )+VW = W in H. Hence, from the maximality of Θ′, we have
Θ′ = ∂ϕq, i.e. ∂ϕq(V (·)) = |V (·)|q−2V (·) with domain D(∂ϕq) = L2(Ω) ∩ L2(q−1)(Ω).
Example 2. Let H := L2(Ω), where Ω is either the whole space or uniform C2-domain.
Define ϕD : L2(Ω) → R by

ϕD(U) :=

{
1
2
|∇V |2L2(Ω) if V ∈ H1

0 (Ω),

+∞ otherwise.

We can easily show that ϕD is a lower semi-continuous function on L2(Ω). Then the
subdifferential operator ∂ϕD coincides with −ΔD. Similarly, define the lower semi-
continuous convex function ϕN : L2(Ω) → R by

ϕN(U) :=

{
1
2
|∇V |2L2(Ω) if V ∈ H1(Ω),

+∞ otherwise.

Then the subdifferential operator ∂ϕN coincides with −ΔN .
Example 3. Let H := L2

σ(Ω), where Ω is either the whole space or uniform C2-domain.
Define the lower semi-continuous convex function ϕS : L2

σ(Ω) → R by

ϕS(w) :=

{
1
2
|∇w|2

L2(Ω) if w ∈ H1
σ(Ω),

+∞ otherwise.

Then the subdifferential operator ∂ϕS coincides with the Stokes operator AΩ.
These facts can be guaranteed by the elliptic estimates of −ΔD, −ΔN and AΩ (recall

Section 2.1 and 2.2).
Example 4. Let H := L2(Ω), where Ω is either the whole space or uniform C2-domain.
Then, ϕ′

D := ϕD + ϕq and ϕ′
N := ϕN + ϕq become proper lower semi-continuous convex

functions. It is easy to see that ∂ϕD + ∂ϕq ⊂ ∂ϕ′
D and ∂ϕN + ∂ϕq ⊂ ∂ϕ′

N . In general,
the sum of maximal monotone operators does not necessarily possess maximality and
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it is not obvious that ∂ϕD + ∂ϕq and ∂ϕN + ∂ϕq coincide with the subdifferential of
ϕD + ϕq and ϕN + ϕq respectively. However, by virtue of the following useful lemma
(see Proposition 2.17 in Brézis [11]), we can assure the maximality of ∂ϕD + ∂ϕq and
∂ϕN + ∂ϕq.

Lemma 2.3.1. Let A be a maximal monotone operator in the real Hilbert space H and
ϕ : H → (−∞,+∞] be a proper lower semi-continuous convex function. Moreover,
assume that there exist some constant γ such that

ϕ(JλU) � ϕ(U) + γλ ∀U ∈ H, λ > 0

holds, where Jλ := (I +λA)−1. Then A+∂ϕ is a maximal monotone operator on H and

D(A+ ∂ϕ)
H
= D(A) ∩D(∂ϕ)

H
= D(A)

H ∩D(∂ϕ)
H

holds.

Recalling mappings Θ : RN → RN and Θ′ : L2(q−1)(Ω) → H in Example 1, we can
assure the existence of V λ

W ∈ L2(q−1)(Ω) such that

λΘ′(V λ
W ) + V λ

W = W in H

for any λ > 0, W ∈ H. Moreover, if W ∈ H1
0 (Ω) or W ∈ H1(Ω), then V λ

W also becomes
H1

0 (Ω) or H
1(Ω)-function respectively, due to the following identity:

∇W (x) = ∇(λΘ′(V λ
W (x)) + V λ

W (x)) = λ(q − 1)|V λ
W (x)|q−2∇V λ

W (x) +∇V λ
W .

This identity also yields |∇W |L2(Ω) � |∇V λ
W |L2(Ω). Using this inequality and recalling

that V λ
W = (I + λ∂ϕq)

−1W , we obtain ϕD((I + λ∂ϕq)
−1W ) � ϕD(W ) and ϕN((I +

λ∂ϕq)
−1W ) � ϕN(W ) for any W ∈ H and any λ > 0. By virtue of Lemma 2.3.1, we can

assure the maximality of ∂ϕD+∂ϕq and ∂ϕN+∂ϕq, i.e., we obtain ∂ϕD+∂ϕq = ∂(ϕD+ϕq)
and ∂ϕN + ∂ϕq = ∂(ϕN + ϕq).

2.3.2 Known Result

We exhibit known results for the abstract evolution equations governed by the subd-
ifferential operators in this subsection. Let ϕ : H → (−∞,+∞] be a proper lower
semi-continuous convex function.

According to Theorem 3.6 in Brézis [11], the following solvability result for the Cauchy
problem is assured.

Proposition 2.3.1 (Solvability of Cauchy problem). Let U0 ∈ D(ϕ)
H

and let f ∈
L1(0, S;H),

√
tf ∈ L2(0, S;H). Then the problem⎧⎨⎩

dU

dt
(t) + ∂ϕ(U(t))  f(t) a.e. t ∈ [0, S],

U(0) = U0
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possesses a unique solution U ∈ C([0, S];H) satisfying

ϕ(U) ∈ L1(0, S),
√
t
dU

dt
,
√
tg ∈ L2(0, S;H),

where g is the function such that g(t) ∈ ∂ϕ(U(t)) and dU
dt
(t) + g(t) = f(t) for a.e.

t ∈ [0, S].
Moreover, if f ∈ L2(0, S;H) and U0 ∈ D(ϕ), then the solution U satisfies

ϕ(U) ∈ W 1,1(0, S),
dU

dt
, g ∈ L2(0, S;H).

In the proof of Proposition 2.3.1 given in Brézis [11], the following lemma is effectively
applied. This lemma is also useful for assuring the continuity of solution in H1-space.

Lemma 2.3.2. Let U ∈ W 1,2(0, S;H) and U(t) ∈ D(∂ϕ) for a.e. t ∈ [0, S]. Moreover,
assume that there exist some g ∈ L2(0, S;H) such that g(t) ∈ ∂ϕ(U(t)) for a.e. t ∈ [0, S].
Then ϕ(U(·)) ∈ W 1,1(0, S) is valid.

As for the periodic problem, Theorem 3.15 and Corollary 3.4 in Brézis [11] assure the
following. Henceforth, the space of periodic continuous X-valued functions is designated
by Cπ([0, S];X), i.e.,

Cπ([0, S];X) := {U ∈ C([0, S];X); U(0) = U(S) in X}.

Proposition 2.3.2 (Solvability of periodic problem). Assume that the subdifferential
operator ∂ϕ is coercive, i.e.,

lim
‖U‖H→∞, U∈D(ϕ)

ϕ(U)

‖U‖H = +∞.

Then for any f ∈ L2(0, S;H), the problem⎧⎨⎩
dU

dt
(t) + ∂ϕ(U(t))  f(t) a.e. t ∈ [0, S],

U(0) = U(S)

possesses a solution U ∈ Cπ([0, S];H) satisfying

ϕ(U) ∈ W 1,1(0, S),
dU

dt
, g ∈ L2(0, S;H).

We next introduce the abstract results given in Ôtani [41] and [42] for some abstract
equations associated with the subdifferential operators ∂ϕ with non-monotone perturba-
tions B in the Hilbert space H. Since we only deal with the single-valued subdifferential
operator ∂ϕ and non-monotone perturbation B in Chapter 3, we restrict ourselves to
consider the following simplified problem (CP) and (AP) (we note that more general case
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where, e.g., ∂ϕ and B are multivalued mappings and ϕ has a t-dependence is investigated
in Ôtani [41] and [42]).

(CP)

⎧⎨⎩
dU

dt
(t) + ∂ϕ(U(t)) + B(U(t)) = F (t) t ∈ [0, S],

U(0) = U0,

(AP)

⎧⎨⎩
dU

dt
(t) + ∂ϕ(U(t)) + B(U(t)) = F (t) t ∈ [0, S],

U(0) = U(S).

To formulate solvability results, we introduce the following conditions:

(A1) For each L ∈ (0,+∞), the set {U ∈ H; ϕ(U) + ‖U‖2H � L} is compact in H.

(A2) B(·) is ϕ-demiclosed in the following sense: if {Un}n∈N strongly converges U in
C([0, S];H), {∂ϕ(Un)}n∈N weakly converges ∂ϕ(U) in L2(0, S;H) and {B(Un)}n∈N
weakly converges to b in L2(0, S;H) as n → ∞, then b(t) = B(U(t)) holds for a.e.
t ∈ [0, S].

(A3)α For a given exponent α ∈ (0, 1/2), there exists a monotone increasing function
(·) such that

‖B(U)‖H � (‖U‖H)
{
ε‖∂ϕ(U)‖H +

1

ε
|ϕ(U)| 1−α

1−2α + 1

}
∀U ∈ D(∂ϕ),

where ε is some positive constant determined by the initial data U0 and the ex-
ternal force F , more precisely, ε is some monotone decreasing function of |U0|H +
|U0|Bα,p(∂ϕ) + |F |L2(0,S;H).

(A4) There exists a monotone increasing function (·) and k ∈ (0, 1) such that

‖B(U)‖2H � k‖∂ϕ(U)‖2H + (ϕ(U) + ‖U‖2H) ∀U ∈ D(∂ϕ).

(A5) There exists a monotone increasing function (·) and a constant k ∈ [0, 1) such
that

‖B(U)‖2H � k‖∂ϕ(U)‖2H + (‖U‖H)(ϕ(U) + 1)2 ∀U ∈ D(∂ϕ).

(A6) There exist positive constants α, K such that

(−∂ϕ(U)−B(U), U)H + αϕ(U) � K ∀U ∈ D(∂ϕ).

Then the following facts can be found in Ôtani [41] and [42].
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Proposition 2.3.3 (Cauchy problem (CP) for Bα,q(∂ϕ) with α ∈ (0, 1/2)). Let U0 ∈
Bα,q(∂ϕ) with q ∈ [1, 2] and F ∈ L2(0, S;H). Moreover, let the conditions (A1), (A2)
and (A3)α be satisfied. Then there exists S0 ∈ (0, S] depending on ‖U0‖H and |U0|Bα,q(∂ϕ)

such that (CP) has a solution U ∈ C([0, S0];H) satisfying

t1/2−αdU

dt
, t1/2−α∂ϕ(U), t1/2−αB(U) ∈ L2(0, S0;H),

t−α‖U(·)− U0‖H , t1/2−α|ϕ(U(·))|1/2 ∈ Lq
∗(0, S0) ∀q ∈ [2,∞].

Proposition 2.3.4 (Cauchy problem (CP) for D(ϕ)). Let F ∈ L2(0, S;H) and U0 ∈
D(ϕ). Moreover, let the conditions (A1), (A2) and (A4) be satisfied. Then there ex-
ists S0 ∈ (0, S] depending on ‖U0‖H and ϕ(U0) such that (CP) has a solution U ∈
C([0, S0];H) satisfying

dU

dt
, ∂ϕ(U), B(U) ∈ L2(0, S0;H),

ϕ(U(·)) ∈ W 1,1(0, S0).

Proposition 2.3.5 (Periodic problem (AP)). Let the conditions (A1), (A2), (A5) and
(A6) be satisfied. Moreover, assume that

• There exist some constant γ0 and q ∈ (1,∞) such that

‖U‖qH � γϕ(U) ∀U ∈ D(ϕ).

• The operator ∂ϕ is strictly monotone, i.e., if (U1 − U2,W1 −W2)H = 0 with Ui ∈
D(∂ϕ) and Wi = ∂ϕ(Ui) (i = 1, 2), then U1 = U2.

Then for every F ∈ L2(0, S;H), (AP) has a solution U ∈ Cπ([0, S];H) such that

dU

dt
, ∂ϕ(U), B(U) ∈ L2(0, S;H),

ϕ(U(·)) ∈ W 1,1(0, S), ϕ(U(0)) = ϕ(U(S)).

2.4 Dynamical System and Attractor

As the preparation for Chapter 6, we here define the dynamical system and its attractors.
We also mention some abstract result for the construction of attractors in this section.

2.4.1 Definition

Let E be a closed subset of Banach space X with the norm ‖ · ‖X . A family of mappings
S (t) : E → E defined with respect to the variables t � 0, which is denoted by {S (t)}t�0,
is said to be semigroup acting on E, if the followings are satisfied:
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1. S (0) is the identity operator on E.

2. S (t1)S (t2) = S (t1 + t2) holds for any t1, t2 � 0.

The pair ({S (t)}t�0, E) is called dynamical system in this thesis. Then, attractors of
dynamical system ({S (t)}t�0, E) are defined as follows.

Definition 2.4.1 (Global Attractor). A nonempty subset A ⊂ E is said to be global
attractor of the dynamical system ({S (t)}t≥0, E), if A satisfies the following properties:

1. A is compact in E.

2. A is strictly invariant under {S (t)}t≥0, i.e., A satisfies S (t)A = A for each
t � 0.

3. A satisfies the following “attracting property”; for any bounded subset B ⊂ E, A
satisfies

lim
t→+∞

distX(S (t)B,A ) = 0,

where distX(X1, X2) := supx1∈X1
infx2∈X2 ‖x1 − x2‖X (X1, X2 ⊂ X).

Definition 2.4.2 (Exponential Attractor). A nonempty subset M ⊂ E is said to be
exponential attractor of the dynamical system ({S (t)}t≥0, E), if M satisfies the following
properties:

1. M is compact in E and M has a finite fractal dimension in X. Here the fractal
dimension of a compact set K ⊂ X is defined by

dimF (K , X) := lim sup
ε→0, ε>0

Hε(K , X)

log2 1/ε
,

where Hε(K , X) := log2 Nε(K , X) and Nε(K , X) is the minimal number of ε-
open balls in X which cover K .

2. M is positively invariant under {S (t)}t≥0, i.e., M satisfies S (t)M ⊂ M for
each t � 0.

3. M satisfies the following “exponential attracting property”; there exist a monotone
function Q(·) and a positive constant α such that M satisfies

distX(S (t)B,M ) � Q(‖B‖X)e−αt

for any bounded subset B ⊂ E, where ‖B‖X := supy∈B ‖y‖X .
We here note that the global attractor of dynamical system is uniquely provided.

Indeed, by Definition 2.4.1, we can see that the global attractor is characterized by the
smallest closed attracting set (a set satisfying attracting property). On the other hand,
the exponential attractor of dynamical system is not necessarily determined uniquely.
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2.4.2 Existence of Attractors

In this thesis, the construction of attractors relies on the following abstract results.

Proposition 2.4.1 (Existence of global attractor). Let ({S (t)}t≥0, E) be a dynamical
system. Assume that S (t) is continuous on E for each t � 0 and ({S (t)}t≥0, E) has a
compact attracting set K. That is to say, we assume that there exist some compact set
K ⊂ E satisfying

lim
t→+∞

distX(S (t)B,K) = 0,

for any bounded subset B ⊂ E. Then the dynamical system ({S (t)}t≥0, E) possesses a
global attractor.

The demonstrations for Proposition 2.4.1 can be found in, e.g., Babin–Vishik [3],
Chepyzhov–Vishik [16], Robinson [52] and Temam [59]. This proposition immediately
leads to the following corollary. Here, the set B ⊂ E is said to be an absorbing set
of ({S (t)}t≥0, E), if for any bounded subset B ⊂ E, there exist tB � 0 such that
S (t)B ⊂ B holds for any t � tB (obviously, the absorbing set satisfies the definition of
attracting set).

Corollary 2.4.1 (Existence of global attractor). Let ({S (t)}t≥0, E) be a dynamical
system. Assume that S (t) is continuous on E for each t � 0 and ({S (t)}t≥0, E) has a
compact absorbing set B. Then the dynamical system ({S (t)}t≥0, E) possesses a global
attractor.

Corollary 2.4.1 is sometimes more convenient than Proposition 2.4.1, since the existence
of absorbing set can be deduced by the standard a priori estimates.

Next we mention the abstract theory for exponential attractor.

Proposition 2.4.2 (Existence of exponential attractor). Let Y be a normed subspace
with the norm ‖·‖Y which is compactly embedded in X. Assume that there exist a compact
absorbing set B0 ⊂ E of the dynamical system ({S (t)}t≥0, E) and B0 is positively
invariant under {S (t)}t≥0, i.e., S (t)B0 ⊂ B0 is valid for any t � 0. Moreover, we
assume that there exist t∗ > 0 and positive constants α1, α2, α3 and β ∈ (0, 1] satisfying
the followings.

1. ‖S (t∗)U1 − S (t∗)U2‖Y � α1‖U1 − U2‖X holds for any U1, U2 ∈ B0.

2. ‖S (t)U1 − S (t)U2‖X � α2‖U1 − U2‖X holds for any U1, U2 ∈ B0, t ∈ [0, t∗].

3. ‖S (t)U1 − S (s)U1‖X � α3|t− s|β holds for any U1 ∈ B0, t, s ∈ [0, t∗].

Then ({S (t)}t≥0, E) possesses an exponential attractor.

By virtue of abstract theory of Efendiev [19] and Efendiev–Miranville–Zelik [20], the
condition 1 yields the existence of exponential attractor M∗ of the discrete dynamical
system ({S n

∗ }n∈N,B0), where S∗ := S (t∗). Moreover, applying the standard argument
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in Eden–Foais–Nicolaenko–Temam [18], and using the condition 2 and 3, we can assure
that the set

M :=
⋃

0�t�t∗

S (t)M∗

becomes an exponential attractor of the dynamical system ({S (t)}t≥0,B0). Since B0

is absorbing set, M also satisfies all the required conditions of exponential attractor of
the original dynamical system ({S (t)}t≥0, E).

2.5 Other Basic Tools

The reminder of this chapter is devoted to list up some fundamental facts other than
above.

We first recall Banach’s fixed point principle (see e.g., Evans [21]).

Proposition 2.5.1 (Banach’s contraction mapping principle). Let X be a complete
metric space with the metric d(·, ·). Moreover, we assume that the mapping Φ : X → X
is a contraction mapping, i.e., there exist some k ∈ [0, 1) satisfying

d(Φ(z1),Φ(z2)) � kd(z1, z2), ∀z1, ∀z2 ∈ X.

Then Φ possesses a unique fixed point z0 ∈ X. That is to say, there exist a unique
z0 ∈ X such that Φ(z0) = z0.

We also recall Shauder–Tychonoff’s fixed point theorem. The original statement and its
proof can be found in, e.g., Browder [15]. For simplicity, we here restrict ourselves to
the particular case.

Proposition 2.5.2 (Schauder–Tychonoff’s fixed point theorem). Let X be a reflexive
Banach space endowed with the weak topology and let C ⊂ X be convex and compact in
the weak topology of X. Moreover, we assume that Φ : C → C is weakly continuous in
X. Then Φ possesses at least one fixed point in C .

Next we introduce the following fact, the so-called Ascoli’s theorem.

Proposition 2.5.3 (Ascoli’s theorem). Let X be a Banach space and G ⊂ C([0, S];X).
Then G is relatively compact in C([0, S];X) if and only if the followings are satisfied.

• For any t ∈ [0, S], the set {g(t); g ∈ G } is relatively compact in X.

• G is equi-continuous, i.e., for any s ∈ [0, S] and any ε > 0, there exist some
δ = δ(s, ε) such that ‖g(t) − g(s)‖X < ε holds for any t ∈ (s − δ, s + δ) and any
g ∈ G .

The demonstration can be carried out by exactly the same procedure as those for Ascoli-
Arzela’s theorem (see Brézis [12] and Yosida [64] )

If the space domain Ω is bounded, we obtain the following inequality (see Brézis [12]
and Evans [21]).
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Proposition 2.5.4 (Poincaré’s inequality). Let Ω be a bounded domain and let q ∈
[1,∞]. Then there exist a constant κ depending on q and Ω such that

|V |Lq(Ω) � κ|∇V |W 1,q(Ω) ∀V ∈ W 1,q
0 (Ω).

Obviously, we can obtain

|w|Lq(Ω) =
N∑

μ=1

|wμ|Lq(Ω) � κ
N∑

μ=1

|∇wμ|Lq(Ω) = κ|∇w|W1,q(Ω)

for any w ∈ W
1,q
0 (Ω). Moreover, since

|∇w|2L2(Ω) =

∫
Ω

AΩw ·wdx

� |AΩw|L2(Ω)|w|L2(Ω) � κ|AΩw|L2(Ω)|∇w|L2(Ω),

|∇V |2L2(Ω) � κ|ΔV |L2(Ω)|∇V |L2(Ω)

hold for any w ∈ D(AΩ) and any V ∈ D(−ΔD), we have

|∇w|L2(Ω) � κ|AΩw|L2(Ω) ∀w ∈ D(AΩ),

|∇V |2L2(Ω) � κ|ΔV |L2(Ω) ∀V ∈ D(−ΔD).

Moreover, using Poincaré’s inequality, we can obtain the following elliptic estimates:

|w|H2(Ω) � γS(|AΩw|L2(Ω) + |w|L2(Ω)) � γS(|AΩw|L2(Ω) + κ|∇w|L2(Ω))

� γ′
S|AΩw|L2(Ω)

for any w ∈ D(AΩ) and

|V |H2(Ω) � γD(|ΔV |L2(Ω) + |V |L2(Ω)) � γD(|ΔV |L2(Ω) + κ|∇V |L2(Ω))

� γ′
D|ΔV |L2(Ω)

for any V ∈ D(−ΔD), namely, H2-norm of w and V are bounded only by the L2-norm
of AΩw and ΔDV . We here note that Poincaré’s inequality holds only for functions
belonging to W 1,q

0 (Ω). More generally, we have the following inequality (see Evans [21]).

Proposition 2.5.5 (Poincaré-Wirtinger’s inequality). Let Ω be a bounded domain and
let q ∈ [1,∞]. Then there exist a constant κ depending on q and Ω such that∣∣∣∣V − 1

|Ω|
∫
Ω

V dx

∣∣∣∣
Lq(Ω)

� κ|∇V |W 1,q(Ω) ∀V ∈ W 1,q(Ω),

where |Ω| stands for the Lebesgue measure of Ω.
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Poincaré-Wirtinger’s inequality also yields

|∇V |2L2(Ω) � κ|ΔV |L2(Ω) ∀V ∈ D(−ΔN),

since

|∇V |2L2(Ω) = |∇V ′|2L2(Ω) =

∫
Ω

V ′(−ΔN)V
′dx

� |V ′|L2(Ω)|ΔV ′|L2(Ω) � κ|∇V ′|L2(Ω)|ΔV ′|L2(Ω)

= κ|∇V |L2(Ω)|ΔV |L2(Ω),

where V ′ := V − 1
|Ω|
∫
Ω
V dx (remark that 1

|Ω|
∫
Ω
V dx is a constant).

We here state some Gronwall’s type inequalities (proofs can be found in Evans [21]
and Brézis [11]).

Lemma 2.5.1. Let η ∈ W 1,1(0, S) and g, φ, ψ ∈ L1(0, S). Moreover, we assume that
η, g, φ, and ψ satisfy the following inequality:

d

dt
η(t) + g(t) � φ(t)η(t) + ψ(t) a.e. t ∈ [0, S].

Then

η(t) +

∫ t

t0

g(s) exp

(∫ t

s

φ(τ)dτ

)
ds

� η(t0) exp

(∫ t

t0

φ(s)ds

)
+

∫ t

t0

ψ(s) exp

(∫ t

s

φ(τ)dτ

)
ds

holds for any t0 ∈ [0, S] and any t ∈ [t0, S].

Lemma 2.5.2. Let η ∈ C([0, S]), let k be a non-negative constant and let φ ∈ L1(0, S)
be a non-negative function. Moreover, we assume that η, φ, and k satisfy the following
inequality:

1

2
η2(t) � 1

2
k2 +

∫ t

0

φ(s)η(s)ds a.e. t ∈ [0, S].

Then

|η(t)| � k +

∫ t

0

φ(s)ds

holds for any t ∈ [0, S].

Finally, we state several comments for the fractional power of AΩ, −ΔD and −ΔN . It
is well known that AΩ, −ΔD and −ΔN become non-negative self-adjoint linear operators
and the fractional power of these operators denoted by Aα

Ω, (−ΔD)
α and (−ΔN)

α with
α ∈ (0, 1) can be defined. The characterization for the domains of the fractional power
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of operators can be found in Fujita–Morimoto [24] and Fujiwara [25]. For example, we
have

D(A1/2
Ω ) = H1

σ(Ω), D((−ΔD)
1/2) = H1

0 (Ω), D((−ΔN)
1/2) = H1(Ω)

and

|A1/2
Ω w|L2(Ω) = |∇w|L2(Ω),

|(−ΔD)
1/2V |L2(Ω) = |(−ΔN)

1/2V |L2(Ω) = |∇V |L2(Ω).

As for the relationship between the fractional power and the Brézis class, we have
D(Aα) = Bα,2(A), where A is either AΩ, −ΔD or −ΔN (see Brézis [7], [8] and [9] ).
Since A = AΩ,−ΔD,−ΔN are linear maximal monotone operators, the resolvent Jλ and
the fractional power Aα are commutative. Then we can show that

U ∈ D(Aα) ⇒ AαJλU = JλA
αU → AαU λ → 0 in H

(see, e.g., Tanabe [56]). From these facts, we can derive the following smoothing approx-
imation, to be used in Chapter 4.

Proposition 2.5.6. Let w belong to C([0, S];H1
σ(Ω))∩L2(0, S;H2(Ω)). Then there exist

a sequence {wn}n∈N such that

• wn ∈ C([0, S];D(A2)) for any n ∈ N,

• {wn}n∈N strongly converges to w in C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)).

Indeed, for example, the sequence {wn}n∈N defined by wn :=
(
ρ1/n ∗ J̃nw

)∣∣∣
[0,S]

satisfies required properties. Here, ρ1/n denotes the Friedrichs mollifier with parameter
1/n and Jn := (I + 1

n
A)−1. The operator ∗ designates the convolution and ·̃ stands for

the extension of functions belonging to C([0, S];L2(Ω)) defined by

ṽ(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v(t) (t ∈ [0, S]),

v(−t) (t ∈ [−S, 0]),

v(2S − t) (t ∈ [S, 2S]),

0 (t ∈ R \ [−S, 2S]).

Moreover, ·|[0,S] is the restriction of functions onto the interval [0, S].
Since w(t) ∈ D(A) (a.e. t ∈ [0, S]) is assumed, Jnw(t) ∈ D(A2) (a.e. t ∈ [0, S]) is

valid, which implies that wn ∈ C([0, S];D(A2)).
Then, by the definition of wn, we have

w(t)−wn(t) = w(t)− Jnw(t) + Jnw(t)−wn(t)

= w(t)− Jnw(t) +

∫ 1/n

−1/n

ρ1/n(s)
(
Jnw(t)− J̃nw(t− s)

)
ds

= w(t)− Jnw(t) +

∫ 1/n

−1/n

ρ1/n(s) (Jnw(t)− Jnw(t− s)) ds
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for t ∈ [1/n, S − 1/n],

w(t)−wn(t) = w(t)− Jnw(t) + Jnw(t)−wn(t)

= w(t)− Jnw(t) +

∫ 1/n

−1/n

ρ1/n(s)
(
Jnw(t)− J̃nw(t− s)

)
ds

= w(t)− Jnw(t) +

∫ t

−1/n

ρ1/n(s) (Jnw(t)− Jnw(t− s)) ds

+

∫ 1/n

t

ρ1/n(s) (Jnw(t)− Jnw(s− t)) ds

for t ∈ [0, 1/n) and

w(t)−wn(t) = w(t)− Jnw(t) + Jnw(t)−wn(t)

= w(t)− Jnw(t) +

∫ 1/n

−1/n

ρ1/n(s)
(
Jnw(t)− J̃nw(t− s)

)
ds

= w(t)− Jnw(t) +

∫ 1/n

t−S

ρ1/n(s) (Jnw(t)− Jnw(t− s)) ds

+

∫ t−S

−1/n

ρ1/n(s) (Jnw(t)− Jnw(2S + s− t)) ds

for t ∈ (S − 1/n, S] (remark 2S + s− t ∈ [−1/n, 1/n]).

Since Jn is a contraction mapping on L2
σ(Ω) and w belongs to C([0, S];L2

σ(Ω)), i.e.,
w is uniformly continuous on [0, S], we can see that wn(t) → w(t) in L2

σ(Ω) as n → ∞
for any t ∈ [0, S] and this convergence is uniform over [0, S], namely, we can assure that
wn → w strongly in C([0, S];L2

σ(Ω)).

Similarly, we get

A1/2w(t)−A1/2wn(t)

=A1/2w(t)− JnA1/2w(t) +

∫ 1/n

−1/n

ρ1/n(s)
(
Jnw(t)− JnA1/2w(t− s)

)
ds

for t ∈ [1/n, S − 1/n],

A1/2w(t)−A1/2wn(t)

=A1/2w(t)− JnA1/2w(t) +

∫ t

−1/n

ρ1/n(s)
(
JnA1/2w(t)− JnA1/2w(t− s)

)
ds

+

∫ 1/n

t

ρ1/n(s)
(
JnA1/2w(t)− JnA1/2w(s− t)

)
ds
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for t ∈ [0, 1/n) and

A1/2w(t)−A1/2wn(t)

=A1/2w(t)− JnA1/2w(t) +

∫ 1/n

t−S

ρ1/n(s)
(
JnA1/2w(t)− JnA1/2w(t− s)

)
ds

+

∫ t−S

−1/n

ρ1/n(s)
(
JnA1/2w(t)− JnA1/2w(2S + s− t)

)
ds

for t ∈ (S−1/n, S]. By the same argument as above, we can assure thatA1/2wn → A1/2w
in C([0, S];L2

σ(Ω)), that is, wn converges to w in C([0, S];H1
σ(Ω)).

Since Ãw ∈ L2(R1;L2
σ(Ω)), we can see that ρ1/n ∗ Ãw|[0,S] → Aw in L2(0, S;L2

σ(Ω))
as n → ∞. We can also derive that∣∣∣ρ1/n ∗ Ãw(t)− ρ1/n ∗ J̃nAw(t)

∣∣∣
L2
σ(Ω)

� ρ1/n ∗
∣∣∣Ãw − J̃nAw

∣∣∣
L2
σ(Ω)

(t).

Therefore, by using Young’s inequality, we have∣∣∣ρ1/n ∗ Ãw − ρ1/n ∗ J̃nAw
∣∣∣
L2(R1;L2

σ(Ω))
� |ρ1/n|L1(R1)

∣∣∣Ãw − J̃nAw
∣∣∣
L2(R1;L2

σ(Ω))

� 3 |Aw − JnAw|L2(0,S;L2
σ(Ω)) .

Since the right hand side converges to zero by virtue of Lebesgue’s dominated convergence

theorem, we can assure that ρ1/n ∗ J̃nAw strongly converges to Aw in L2(0, S;L2
σ(Ω)).





Chapter 3

Global Solvability in Bounded
Domains

3.1 Problems and Main Theorems

In this chapter, we consider the system (DCBF) in bounded domain Ω with sufficiently
smooth boundary ∂Ω.

(DCBF)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ νAΩu+ au = PΩgT + PΩhC + PΩf1 (x, t) ∈ Ω×[0, S],

∂tT + u·∇T = ΔT + f2 (x, t) ∈ Ω×[0, S],

∂tC + u·∇C = ΔC + ρΔT + f3 (x, t) ∈ Ω×[0, S],

u(·, 0) = u0, T (·, 0) = T0, C(·, 0) = C0 (Initial condition),

or

u(·, 0) = u(·, S), T (·, 0) = T (·, S), C(·, 0) = C(·, S) (Periodic condition).

We deal with both Dirichlet boundary condition case:

u = 0, T = 0, C = 0 (x, t) ∈ ∂Ω× [0, S]

and Neumann boundary condition case:

u = 0,
∂T

∂n
= 0,

∂C

∂n
= 0 (x, t) ∈ ∂Ω× [0, S].

We simply writeA and P in order to represent the Stokes operatorAΩ and the orthogonal
projection PΩ. Throughout this chapter, the norms of Lq(Ω), W k,q(Ω), Hk(Ω), Lq(Ω),
Wk,q(Ω) and Hk(Ω) will be simply denoted by | · |Lq , | · |Wk,q , | · |Hk , | · |Lq , | · |Wk,q , and
| · |Hk respectively (in subsequent chapters, we also use these notation if no vagueness
arises)

In Terasawa–Ôtani [60], the following solvability of the initial boundary value problem
with Dirichlet condition is given.

39
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Proposition 3.1.1. Let N = 2, 3 and let f1 = 0, f2, f3 = 0. Then for each initial data
u0 ∈ H1

σ(Ω), T0, C0 ∈ H1
0 (Ω), the initial boundary value problem of (DCBF) with the

homogeneous Dirichlet boundary condition admits a unique solution (u, T, C) satisfying

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ C([0, S];H1
0 (Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω))

for any S > 0.

Motivated by this result, we aim to solve other types of problems in a bounded domain,
i.e., the solvability of the initial boundary value problem with homogeneous Neumann
boundary condition and the time periodic problem with Dirichlet and Neumann bound-
ary conditions in this chapter.

In the next section, we first show the existence of a unique global solution for the
initial boundary value problem with Neumann boundary condition. To this end, we
follow the strategy of Terasawa–Ôtani [60], i.e., we reduce (DCBF) to an abstract prob-
lem in some Hilbert space and we apply Proposition 2.3.3 and Proposition 2.3.4, the
abstract result given in Ôtani [41] to this problem. In this way, the following result will
be demonstrated in Section 3.2 (see Section 2.5 about the fractional power of operators
Aα and (−ΔN)

α).

Theorem 3.1.1 (Initial boundary value problem with Neumann boundary condition).
Let N = 2, 3 and let f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ L2(0, S;L2(Ω)). Then for each initial
data u0 ∈ D(Aα), T0, C0 ∈ D((−ΔN)

α) with α ∈ [1/4, 1/2], the initial boundary value
problem of (DCBF) with the homogeneous Neumann boundary condition admits a unique
solution (u, T, C) satisfying

(#)α

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ C([0, S];L2
σ(Ω)), T, C ∈ C([0, S];L2(Ω)),

t1/2−α∂tu, t1/2−αAu ∈ L2(0, S;L2
σ(Ω)),

t1/2−α|∇u|L2(Ω) ∈ Lq
∗(0, S) ∀q ∈ [2,∞],

t1/2−α∂tT, t1/2−α∂tC, t1/2−αΔT, t1/2−αΔC ∈ L2(0, S;L2(Ω)),

t1/2−α|∇T |L2(Ω), t1/2−α|∇C|L2(Ω) ∈ Lq
∗(0, S) ∀q ∈ [2,∞].

Here we note Lq
∗ = Lq(dt/t), i.e., |g|Lq

∗(0,S) :=
(∫ 1

0
|g(t)|qt−1dt

)1/q
for q ∈ [1,∞) and

L∞
∗ (0, S) = L∞(0, S).

Remarks
(1) If α = 1/2, i.e., if u0 ∈ D(A1/2) = H1

σ(Ω) and T0, C0 ∈ D(A
1/2
N ) = H1(Ω), then

(#)1/2 implies that the solution satisfies

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).
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(2) Even if Neumann boundary condition is replaced by Dirichlet boundary condition,
our argument which will be employed in Section 3.2 can be carried out with obvious
modifications and the following result, which includes that of Terasawa–Ôtani [60], can
be assured.

Corollary 3.1.1 (Initial boundary value problem with Dirichlet boundary condition).
Let N = 2, 3 and let f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ L2(0, S;L2(Ω)). Then for each initial
data u0 ∈ D(Aα), T0, C0 ∈ D((−ΔD)

α) with α ∈ [1/4, 1/2], the initial boundary value
problem of (DCBF) with the homogeneous Dirichlet boundary condition admits a unique
solution (u, T, C) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ C([0, S];L2
σ(Ω)), T, C ∈ C([0, S];L2(Ω)),

t1/2−α∂tu, t1/2−αAu ∈ L2(0, S;L2
σ(Ω)),

t1/2−α|∇u|L2(Ω) ∈ Lq
∗(0, S) ∀q ∈ [2,∞],

t1/2−α∂tT, t1/2−α∂tC, t1/2−αΔT, t1/2−αΔC ∈ L2(0, S;L2(Ω)),

t1/2−α|∇T |L2(Ω), t1/2−α|∇C|L2(Ω) ∈ Lq
∗(0, S) ∀q ∈ [2,∞].

Next we consider the periodic problem of (DCBF) with Dirichlet and Neumann
boundary conditions. Basic strategies is the application of Proposition 2.3.5, i.e., the ab-
stract result given by Ôtani [42]. Here we remark that the required conditions in Proposi-
tion 2.3.5 are stricter than those in Proposition 2.3.3 and Proposition 2.3.4. Then, due to
the presence of convection terms u·∇T , u·∇C and the buoyancy terms gT , hC, it is dif-
ficult to apply Proposition 2.3.5 directly to (DCBF). In order to cope with this difficulty,
we introduce some approximation system involving some dissipation terms and cut-off
functions and we show the solvability of these systems by using Proposition 2.3.5. In
particular, for the Neumann boundary condition case, we need to introduce another step
of approximation and impose some additional condition on the external forces f2 and f3,
since the operator −ΔN does not possess the coercivity. Finally, discussing the conver-
gence of solutions for approximate equations, we shall prove the following results in Sec-
tion 3.3 and 3.4 respectively (recall Cπ([0, S];X) := {U ∈ C([0, S];X);U(0) = U(S)}).
Theorem 3.1.2 (Periodic problem with Dirichlet boundary condition). Let N = 2, 3
and let f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ L2(0, S;L2(Ω)). Then the time periodic problem
of (DCBF) with the homogeneous Dirichlet boundary condition possesses at least one
periodic solution (u, T, C) satisfying

u ∈ Cπ([0, S];H
1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ Cπ([0, S];H
1
0 (Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

Theorem 3.1.3 (Periodic problem with Neumann boundary condition). Let N = 2, 3
and let f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ L2(0, S;L2(Ω)). Moreover, we assume that

(3.1)

∫ S

0

∫
Ω

f2(x, t)dxdt =

∫ S

0

∫
Ω

f3(x, t)dxdt = 0.
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Then the time periodic problem of (DCBF) with the homogeneous Neumann boundary
condition possesses at least one periodic solution (u, T, C) satisfying

u ∈ Cπ([0, S];H
1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ Cπ([0, S];H
1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

Remark We can easily show that (3.1) assumed in Theorem 3.1.3 is also a necessary
condition under the homogeneous Neumann boundary condition. Indeed, let (u, T, C)
be a periodic solution derived from Theorem 3.1.3. From the homogeneous Neumann
boundary condition and the solenoidal condition of u, we have∫

Ω

ΔTdx = 0,

∫
Ω

ΔCdx = 0,∫
Ω

u · ∇Tdx = −
∫
Ω

T∇ · udx = 0,

∫
Ω

u · ∇Cdx = 0.

Therefore, integrating the second and the third equation over Ω, we get

d

dt

∫
Ω

Tdx =

∫
Ω

f2dx,
d

dt

∫
Ω

Cdx =

∫
Ω

f3dx.

Since T and C are time-periodic with period S, integration over [0, S] yields∫ S

0

∫
Ω

f2(x, t)dxdt =

∫ S

0

∫
Ω

f3(x, t)dxdt = 0.

Furthermore, for Dirichlet boundary condition case, we can obtain the following
uniqueness result.

Theorem 3.1.4 (Uniqueness of periodic solution). There exists a constant θ depending
on |g|, |h|, ν, ρ and |f1|L2(0,S;L2

σ(Ω)) satisfying the following: if |f2|L2(0,S;L2(Ω)) � θ and
|f3|L2(0,S;L2(Ω)) � θ, then the periodic solution of (DCBF) given in Theorem 3.1.2 is
unique.

Remark Under the homogeneous Neumann boundary condition, the uniqueness of
periodic solution (given in Theorem 3.1.3) generally does not hold, even if the external
forces are vary small. Indeed, we can see that g = (g1, · · · , gN) and h = (h1, · · · , hN)
possess potential functions, i.e., g = ∇G and h = ∇H are valid, where

G(x) := g1(x1 − x1
0) + · · ·+ gN(xN − xN

0 ),

H(x) := h1(x1 − x1
0) + · · ·+ hN(xN − xN

0 )

(x = (x1, · · · , xN) ∈ RN is the variable and x1
0, · · · , xN

0 are arbitrary fixed numbers).
Since Ω is assume to be bounded, G,H ∈ H1(Ω) holds. This fact implies that g and h
belong to G2(Ω) (the orthogonal complement of L2

σ(Ω)), that is to say, we obtain Pg =
Ph = 0. Therefore, if we can deduce a time-periodic solution (u, T, C) of (DCBF) with
the homogeneous Neumann boundary condition, we can assure that (u, T+MT , C+MC)
also becomes periodic solution under the Neumann boundary condition for any real
number MT and MC .
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3.2 Initial Boundary Value Problem with Neumann

Boundary Condition

3.2.1 Reduction to an Abstract Problem

To begin with, we prove Theorem 3.1.1. To this end, we first reduce the system

(DCBF)

⎧⎪⎨⎪⎩
∂tu+ νAu+ au = PgT + PhC + Pf1,

∂tT −ΔNT + u · ∇T = f2,

∂tC −ΔNC + u · ∇C = ρΔNT + f3

to an abstract equation.
We define the Hilbert space H by

H := L2
σ(Ω)× L2(Ω)× L2(Ω).

Moreover, for each parameter η ∈ (0, 1], Hη designates the Hilbert space H endowed
with the following inner product:

(3.2) (U1, U2)H = (u1,u2)L2 + (T1, T2)L2 +
η2

9ρ2
(C1, C2)L2 ,

where Ui = (ui, Ti, Ci)
t (i = 1, 2) and (·, ·)L2 , (·, ·)L2 describe the inner product in L2(Ω),

L2(Ω) respectively, i.e.,

(w1,w2)L2 :=

∫
Ω

u1 · u2dx, (V1, V2)L2 :=

∫
Ω

V1V2dx

for wi ∈ L2(Ω) and Vi ∈ L2(Ω) (i = 1, 2). The wight η2/9ρ2 in the third component of
the inner product (3.2) is added so that we can deal with the term ρΔT as a sufficiently
small perturbation (see next subsection, Check of (A3)α). For elements belonging to Hη,
we here put

U =

⎛⎜⎝ u

T

C

⎞⎟⎠ ,
dU

dt
=

⎛⎜⎝ ∂tu

∂tT

∂tC

⎞⎟⎠ , F =

⎛⎜⎝ Pf1

f2

f3

⎞⎟⎠ .

Next we define ϕ : Hη → (−∞,+∞] by

(3.3) ϕ(U) =

⎧⎨⎩
ν
2
|∇u|2L2 +

1
2
|∇T |2L2 +

η2

18ρ2
|∇C|2L2 if U ∈ D(ϕ),

+∞ if U ∈ Hη \D(ϕ)

with the effective domain D(ϕ) := H1
σ(Ω) × H1(Ω) × H1(Ω). Then, recalling ϕS and

ϕN defined in Section 2.3, we can show that ϕ is a proper lower semi-continuous convex
function on Hη and its subdifferential ∂ϕ coincides with

∂ϕ(U) =

⎛⎝ νAΔu
−ΔNT
−ΔNC

⎞⎠
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with domain D(∂ϕ) = D(A) ×D(−ΔN) ×D(−ΔN). We note that ∂ϕ is single-valued
operator, although the subdifferential operators could be generally multi-valued opera-
tors. Collecting the other remainder terms, we define the single-valued non-monotone
perturbation B by

B(U) =

⎛⎜⎝ au− PgT − PhC

u · ∇T

u · ∇C − ρΔNT

⎞⎟⎠ .

In this way, we can reduce our problem to the following abstract Cauchy problem (CP)
in the Hilbert space Hη:

(CP)

⎧⎨⎩
dU

dt
+ ∂ϕ(U) + B(U) = F,

U(0) = U0.

3.2.2 Existence of Local Solution

According to Ôtani [41], i.e., Proposition 2.3.3 and Proposition 2.3.4, the existence of
time local solution of (CP) satisfying (#)α is assured, provided that our system (DCBF)
satisfies the conditions (A1), (A2), (A3)α and (A4) (recall and see Section 2.3). In this
subsection, we check these conditions and show the local existence.

We substitute ε, the exponent appearing in the condition (A3)α (see Section 2.3.2),
by η, the parameter of the Hilbert space Hη. If there is no confusion, the Hilbert space
Hη = Hε is simply designated by H henceforth.

• Check of (A1) : For any L ∈ (0,+∞), the set {U ∈ H;ϕ(U) + ‖U‖2H � L} is
compact in H.

Since {U ∈ H;ϕ(U) + ‖U‖2H � L} is a closed and bounded subset in H1
σ(Ω)×H1(Ω)×

H1(Ω), Rellich-Kondrachov’s theorem (Proposition 2.1.7) immediately leads to the com-
pactness of this set in L2

σ(Ω)× L2(Ω)× L2(Ω).

• Check of (A2) : B(·) is ϕ-demiclosed.

Assume that the sequence {Uk}k∈N = {(uk, Tk, Ck)
t}k∈N and its limit U = (u, T, C)t

satisfy ⎧⎪⎪⎨⎪⎪⎩
uk → u strongly in C([0, S];L2

σ(Ω)),

Tk → T strongly in C([0, S];L2(Ω)),

Ck → C strongly in C([0, S];L2(Ω)),⎧⎪⎪⎨⎪⎪⎩
νAuk ⇀ νAu weakly in L2(0, S;L2

σ(Ω)),

−ΔNTk ⇀ −ΔNT weakly in L2(0, S;L2(Ω)),

−ΔNCk ⇀ −ΔNC weakly in L2(0, S;L2(Ω)),



45⎧⎪⎪⎨⎪⎪⎩
auk − PgTk − PhCk ⇀ h1 weakly in L2(0, S;L2

σ(Ω)),

uk · ∇Tk ⇀ h2 weakly in L2(0, S;L2(Ω)),

uk · ∇Ck − ρΔNTk ⇀ h3 weakly in L2(0, S;L2(Ω)).

We can derive u(t) ∈ D(A) and T (t), C(t) ∈ D(−ΔN) for a.e. t ∈ [0, S] from the fact
that ∂ϕ(U) belongs to L2(0, S;H). By the strong convergences of {Uk}k∈N, we can easily
get h1 = au−PgT −PhC. Fix φ ∈ C∞

0 ((0, S);C∞
0 (Ω)). Using the solenoidal condition

and boundary condition of uk and applying the integration by parts, we have∫ S

0

∫
Ω

φuk · ∇Tkdxdt

=

∫ S

0

∫
∂Ω

φukTk · ndSdt−
∫ S

0

∫
Ω

ukTk · ∇φdxdt−
∫ S

0

∫
Ω

φTk∇ · ukdxdt

=−
∫ S

0

∫
Ω

ukTk · ∇φdxdt.

Then taking the limit as k → ∞ and using the integration by parts again (recalling
u ∈ D(A), T ∈ D(−ΔN), which implies that ∇ · (uT ) = u · ∇T is well defined in
L2(Ω)), we obtain ∫ S

0

∫
Ω

h2φdxdt =−
∫ S

0

∫
Ω

uT · ∇φdxdt

=

∫ S

0

∫
Ω

u · ∇Tφdxdt

for any φ ∈ C∞
0 ((0, S);C∞

0 (Ω)). Since C∞
0 ((0, S);C∞

0 (Ω)) is dense in L2(0, S;L2(Ω)),
we can assure that h2 = u · ∇T . By exactly the same reasoning, we can get h3 =
u · ∇C − ρΔNT .

• Check of (A3)α : For each given ε > 0, ∃(·) such that

‖B(U)‖H � (‖U‖H)
{
ε ‖∂ϕ(U)‖H +

1

ε
|ϕ(U)| 1−α

1−2α + 1

}
∀U ∈ D(∂ϕ).

By the definition of B and the inner product of H = Hε, we get

‖B(U)‖H � a|u|L2 + |g||T |L2 + |h||C|L2

+ |u · ∇T |L2 +
ε

3ρ
(|u · ∇C|L2 + ρ|ΔT |L2).

Here applying Hölder’s inequality and using the fact |U |2L3 � |U |L2 |U |L6 (recall Corollary
2.1.1 in Section 2.1), we have

|u · ∇T |L2 =

(∫
Ω

|u|2|∇T |2dx
)1/2

� ||u|2|1/2
L3 ||∇T |2|1/2

L3/2

� |u|L6 |∇T |L3 � |u|L6 |∇T |1/2L2 |∇T |1/2L6 .
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Moreover, from Sobolev’s inequality and elliptic estimate,

|u|L6 |∇T |1/2L2 |∇T |1/2L6 � γ0|u|H1 |∇T |1/2L2 |∇T |1/2H1

� γ0|∇u|L2 |∇T |1/2L2 |ΔT |1/2L2

can be derived for N = 2, 3, where γ0 is some general constant. Here, we use the following
fact:

|∇T |H1 = |∇T ′|H1 � |T ′|H2 � γ0(|ΔT ′|L2 + |T ′|L2)

� γ0(|ΔT ′|L2 + γ0|∇T ′|L2) � γ0|ΔT ′|L2 = γ0|ΔT |L2 ,

where T ′ := T − 1
|Ω|
∫
Ω
Tdx and we apply Poincaré-Wirtinger’s inequality (Proposition

2.5.5 in Section 2.5). Then we can obtain

|u · ∇T |L2 � γ0|∇u|L2 |∇T |1/2L2 |ΔT |1/2L2

� ε

4
|ΔT |L2 +

γ0
ε
|∇u|2L2|∇T |L2 .

Similarly,

|u · ∇C|L2 � ε

4
|ΔC|L2 +

γ0
ε
|∇u|2L2 |∇C|L2

holds for N = 2, 3. From these inequalities above, we can derive

‖B(U)‖H � γ0‖U‖H +
ε

4
|ΔT |L2 +

γ0
ε
|∇u|2L2 |∇T |L2

+
ε

3
|ΔT |L2 +

ε

4

ε

3ρ
|ΔC|L2 +

γ0
ε

ε

3ρ
|∇u|2L2 |∇C|L2

� γ0‖U‖H +
7ε

12
‖∂ϕ(U)‖H +

γ0
ε
ϕ3/2(U),

which guarantees the condition (A3)α with α ∈ [1/4, 1/2).

• Check of (A4) : ∃(·) and ∃k ∈ [0, 1) such that

‖B(U)‖2H � k‖∂ϕ(U)‖2H + (ϕ(U) + ‖U‖2H) ∀U ∈ D(∂ϕ).

Let ε = 1 in the procedure above, Check of (A3)α. Then we can get

‖B(U)‖H � 7

12
‖∂ϕ(U)‖H + γ0

(‖U‖H + ϕ3/2(U)
)

(N = 2, 3),

which obviously assures the condition (A4).

Therefore, if N = 2, 3, (DCBF) satisfies all the required conditions in Proposition
2.3.3 with α ∈ [1/4, 1/2) and in Proposition 2.3.4. That is to say, we can assure the
existence of time local solution (u, T, C)t which satisfies (#)α (1/4 � α < 1/2) for initial
data (u0, T0, C0)

t ∈ Bα,2 = D(Aα) ×D((−ΔN)
α) ×D((−ΔN)

α) and satisfies (#)1/2 for
initial data (u0, T0, C0)

t ∈ D(ϕ) = H1
σ(Ω)×H1(Ω)×H1(Ω).
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3.2.3 Global Existence and Uniqueness

In this subsection, we show that the time local solutions derived in the previous subsec-
tion can be extended to the whole interval [0, S] by establishing some a priori estimates.
We also discuss the uniqueness of solution in the end of this section.

Let S0 ∈ (0, S] and let Q(z1, z2, · · · ) denote a general constant depending on the
variables z1, z2, · · · . Multiplying the second equation of (DCBF) by T and integrating
over Ω, we get

(3.4)
1

2

d

dt
|T |2L2 + |∇T |2L2 =

∫
Ω

f2Tdx � |f2|L2 |T |L2 .

In (3.4), we use the fact that

(3.5)

∫
Ω

(u · ∇T )Tdx =
1

2

∫
Ω

u · ∇ (T 2
)
dx = −1

2

∫
Ω

T 2∇ · udx = 0.

Applying Proposition 2.5.2 (see Section 2.5) to (3.4) with η = |T |L2 , k = |T0|L2 and
φ = |f2|L2 , we have

|T (t)|L2 � |T0|L2 +

∫ t

0

|f2(s)|L2ds � |T0|L2 +

∫ S

0

|f2(s)|L2ds

which yields
sup

0≤t≤S0

|T (t)|L2 � |T0|L2 + |f2|L1(0,S;L2(Ω)).

Integrating (3.4) again, we get∫ S0

0

|∇T (t)|2L2dt � |T0|2L2 +

∫ S0

0

|f2(s)|L2 |T (s)|L2ds

� |T0|2L2 + (|T0|L2 + |f2|L1(0,S;L2(Ω)))

∫ S

0

|f2(s)|L2ds

� Q(|T0|L2 , |f2|L1(0,S;L2(Ω))).

Next, multiplying the third equation of (DCBF) by C and using (3.5) with T replaced
by C, we have

1

2

d

dt
|C|2L2 + |∇C|2L2 = −

∫
Ω

ρ∇T · ∇Cdx+

∫
Ω

f3Cdx

� ρ|∇T |L2 |∇C|L2 + |f3|L2 |C|L2

� 1

2
|∇C|2L2 +

ρ2

2
|∇T |2L2 + |f3|L2 |C|L2 ,

i.e.,

(3.6)
1

2

d

dt
|C|2L2 +

1

2
|∇C|2L2 �

ρ2

2
|∇T |2L2 + |f3|L2 |C|L2 .
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Applying Proposition 2.5.2 to (3.6) with η = |C|L2 , k = |C0|L2 + ρ√
2
|∇T |L2(0,S0;L2(Ω)) and

φ = |f2|L2 , we have

sup
0≤t≤S0

|C(t)|L2 � |C0|L2 +Q(|T0|L2 , |f2|L1(0,S;L2(Ω))) +

∫ S

0

|f3(s)|L2ds.

Moreover, integration of (3.6) also yields∫ S0

0

|∇C(t)|2L2dt � |C0|2L2 +

∫ S0

0

|∇T (s)|2L2ds+

∫ S0

0

|f2(s)|L2 |C(s)|L2ds

� Q(|T0|L2 , |C0|L2 , |f2|L1(0,S;L2(Ω)), |f3|L1(0,S;L2(Ω))).

Multiplying the first equation of (DCBF) by ∂tu and using Hölder’s inequality, we get

|∂tu|2L2 +
ν

2

d

dt
|∇u|2L2 +

a

2

d

dt
|u|2L2

� |∂tu|L2(|g||T |L2 + |h||C|L2 + |f1|L2)

� 1

2
|∂tu|2L2 +

1

2
(|g||T |L2 + |h||C|L2 + |f1|L2)2.

(3.7)

Integrating (3.7) over [0, t], we have

sup
0≤t≤S0

ν|∇u(t)|2L2 + sup
0≤t≤S0

a|u(t)|2L2 +

∫ S0

0

|∂tu(s)|2L2ds

� Q(S, |∇u0|L2 , ‖U0‖H , |F |L2(0,S;H)),

(3.8)

From (3.8) and the first equation of (DCBF), we can derive

(3.9)

∫ S0

0

|Au(s)|2L2ds � Q(S, |∇u0|L2 , ‖U0‖H , |F |L2(0,S;H)).

Multiplying the second equation of (DCBF) by −ΔT and recalling the estimates of
convection term u · ∇T in the previous section (Check of (A3)α), we obtain

1

2

d

dt
|∇T |2L2 + |ΔT |2L2 � |ΔT |L2 |u · ∇T |L2 + |ΔT |L2 |f2|L2

� 1

2
|ΔT |2L2 + |u · ∇T |2L2 + |f2|2L2

� 1

2
|ΔT |2L2 + γ0|∇u|2L2 |∇T |L2 |ΔT |L2 + |f2|2L2 ,

i.e.,

(3.10)
1

2

d

dt
|∇T |2L2 +

1

4
|ΔT |2L2 � γ0|∇u|4L2 |∇T |2L2 + |f2|2L2 .
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By applying Gronwall’s inequality to (3.10) (Proposition 2.5.1 with η = |∇T |2L2) we can
derive

sup
0≤t≤S0

|∇T (t)|2L2 � Q(S, |∇u0|L2 , |∇T0|L2 , ‖U0‖H , |F |L2(0,S;H)).

From (3.10), we also get∫ S0

0

|ΔT (t)|2L2dt � Q(S, |∇u0|L2 , |∇T0|L2 , ‖U0‖H , |F |L2(0,S;H)).

Multiplying the third equation of (DCBF) by −ΔC and using the same argument as for
(3.10), we have

1

2

d

dt
|∇C|2L2 + |ΔC|2L2 � |ΔC|L2 (|u · ∇C|L2 + ρ|ΔT |L2 + |f3|L2)

⇒1

2

d

dt
|∇C|2L2 +

1

4
|ΔC|2L2 � γ0|∇u|4L2 |∇C|2L2 + 3ρ2|ΔT |2L2 + 3|f3|2L2 ,

which leads to

sup
0≤t≤S0

|∇C(t)|2L2 +

∫ S0

0

|ΔC(t)|2L2dt

� Q(S, |∇u0|L2 , |T0|H1 , |C0|H1 , |F |L2(0,S;H)).

(3.11)

Collecting the estimates above, we can assure the following boundedness of solution
(u, T, C)t:

sup
0≤t≤S0

|u(t)|H1 + sup
0≤t≤S0

|T (t)|H1 + sup
0≤t≤S0

|C(t)|H1

� Q(S, |∇u0|L2 , |T0|H1 , |C0|H1 , |F |L2(0,S;H)).
(3.12)

We remark that this a priori bounds (the right hand side of 3.12) is independent of
S0 ∈ (0, S]. Therefore, time local solutions with the initial data U0 ∈ D(ϕ) can be
continued globally up to [0, S]. Moreover, recalling the regularity (#)α, we can assure
that every local solutions with the initial data U0 ∈ D(Aα)×D((−ΔN)

α)×D((−ΔN)
α)

possesses t0 ∈ (0, S0) such that U(t0) ∈ D(ϕ). Then, regarding U(t0) as an initial data
and applying the global existence result for the case where U0 ∈ D(ϕ), we can also
extend time local solutions globally for the general case where α ∈ [1/4, 1/2].

We next show the uniqueness of the solution. Let Ui = (ui, Ti, Ci)
t (i = 1, 2) be

solutions with the same initial data and let δU = (δu, δT, δC)t be the difference of these
two solutions, i.e.,

δu := u1 − u2, δT := T1 − T2, δC := C1 − C2.

From (DCBF), δU satisfies the following equations:

(D)

⎧⎪⎨⎪⎩
∂tδu+ νAδu+ aδu = PgδT + PhδC,

∂tδT −ΔδT = −u1 · ∇δT + δu · ∇T2,

∂tδC −ΔδC = ρΔδT − u1 · ∇δC + δu · ∇C2.
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Multiplying the first equation of (D) by δu, we get

1

2

d

dt
|δu|2L2 + ν|∇δu|2L2 � |g||δT |L2 |δu|L2 + |h||δC|L2 |δu|L2

� 1

2
(|g|2 + |h|2)|δu|2L2 +

|g|2
2

|δT |2L2 +
|h|2
2

|δC|2L2 .

(3.13)

Noting that∫
Ω

(u1 · ∇δT )δTdx = −1

2

∫
Ω

δT 2∇ · u1dx = 0,∫
Ω

(δu · ∇T2)δTdx = −
∫
Ω

T2(δu · ∇δT + δT∇ · δu)dx = −
∫
Ω

(δu · ∇δT )T2dx

and multiplying the second equation of (D) by δT , we have

1

2

d

dt
|δT |2L2 + |∇δT |2L2 � |δuT2|L2 |∇δT |L2 � |δu|L3 |T2|L6 |∇δT |L2

� 1

2
|∇δT |2L2 + γ1|δu|L2 |∇δu|L2 |T2|2H1

� 1

2
|∇δT |2L2 +

ν

4
|∇δu|2L2 + γ1|δu|2L2 |T2|4H1 ,

(3.14)

where γ1 is some suitable general constant. Similarly, multiplying the third equation of
(D) by δC, we obtain

1

2

d

dt
|δC|2L2 + |∇δC|2L2 � γ1|δu|1/2L2 |∇δu|1/2

L2 |C2|H1 |∇δC|L2

+ ρ|∇δT |L2 |∇δC|L2

� 1

2
|∇δC|2L2 + ρ2|∇δT |L2

+
νρ2

4
|∇δu|2L2 + γ1|δu|2L2 |C2|4H1 .

(3.15)

Let y(t) = |δu(t)|2
L2 + |δT (t)|2L2 +

1
2ρ2

|δC(t)|2L2 . Then, summing up (3.13), (3.14) and
1

2ρ2
× (3.15), we obtain

d

dt
y(t) � γ1

(
1 + |T2(t)|4H1 + |C2(t)|4H1

)
y(t).

Here we note that (#)α with α ∈ [1/4, 1/2] implies that

t1/2−α|∇T2|L2 , t1/2−α|∇C2|L2 ∈ L4
∗(0, S) ⇒ |∇T2|L2 , |∇C2|L2 ∈ L4(0, S).

Hence, the uniqueness follows from Gronwall’s inequality.
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3.3 Time Periodic Problem with Dirichlet Boundary

Condition

In this section, we consider the solvability of time periodic problem with homogeneous
Dirichlet boundary condition (Theorem 3.1.2). Comparing the required condition (A5)
in Proposition 2.3.5 (see section 2.3)

‖B(U)‖2H � k‖∂ϕ(U)‖2H + (‖U‖H)(ϕ(U) + 1)2,

with the estimate of non-monotone perturbation term B(U) derived in Check of (A3)α

‖B(U)‖2H � ε2‖∂ϕ(U)‖2H +
γ

ε2
(ϕ(U)3 + ‖U‖2H),

we realize that it is difficult to apply Proposition 2.3.5 directly to (DCBF). We also face
some difficulties in checking the condition (A6).

3.3.1 Approximate Equations

To cope with the difficulties above, we first introduce the following approximate equations
with parameter ε > 0.

(DCBF)ε

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ νAu+ au = Pg[T ]ε + Ph[C]ε + Pf1,

∂tT −ΔDT + ε|T |q−2T + u · ∇T = f2,

∂tC −ΔDC + ε|C|q−2C + u · ∇C = ρΔDT + f3,

where the cut-off function [·]ε is defined by

[T ]ε(x, t) :=

⎧⎨⎩ T (x, t) if |T (x, t)| � 1/ε,

(Sgn T (x, t))× 1/ε if |T (x, t)| � 1/ε

(SgnT := T/|T | : the sign of T ) and q is a large exponent to be fixed later on.
Next we reduce (DCBF)ε to an abstract equation. Here, we choose η = 1 in (3.2),

definition of the inner product of H = L2
σ(Ω)× L2(Ω)× L2(Ω). We define proper lower

semi-continuous convex functions ϕ′ and ψε by

ϕ′(U) =

⎧⎨⎩
ν
2
|∇u|2L2 +

1
2
|∇T |2L2 +

1
18ρ2

|∇C|2L2 if U ∈ D(ϕ′),

+∞ if U ∈ Hη \D(ϕ′),

ψε(U) =

⎧⎨⎩
ε
q
|T |qLq + ε

9ρ2q
|C|qLq if U ∈ D(ψε),

+∞ if U ∈ H \D(ψε),
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where D(ϕ′) := H1
σ(Ω)×H1

0 (Ω)×H1
0 (Ω) and D(ψε) := L2

σ(Ω)× Lq(Ω)× Lq(Ω). Then,
recalling ϕS, ϕD and ϕq defined in Example 1, 2 and 3 (Section 2.3), we have

∂ϕ′(U) =

⎛⎜⎝ νAu

−ΔDT

−ΔDC

⎞⎟⎠ , ∂ψε(U) =

⎛⎜⎝ 0

ε|T |q−2T

ε|C|q−2C

⎞⎟⎠
with domain D(∂ϕ′) = D(A)×D(−ΔD)×D(−ΔD) and D(∂ψε) = L2

σ(Ω)×L2(q−1)(Ω)×
L2(q−1)(Ω). Moreover, by the same reasoning as that explained in Example 4 of Section
2.3, we can assure that ∂(ϕ′ + ψε) = ∂ϕ′ + ∂ψε and D(∂(ϕ′ + ψε)) = D(∂ϕ′) ∩D(∂ψε),
since we get

(∂ϕ′(U), ∂ψε(U))H = (−ΔT, ε|T |q−2T )L2 + (−ΔC, ε|C|q−2C)L2

= ε(p− 1)

∫
Ω

|T |q−2|∇T |2dx+ ε(q − 1)

∫
Ω

|C|q−2|∇C|2dx � 0.
(3.16)

Then putting

Bε(U) =

⎛⎜⎝ au− Pg[T ]ε − Ph[C]ε

u · ∇T

u · ∇C − ρΔDT

⎞⎟⎠ ,

we can reduce approximate problems (DCBF)ε to the following abstract problem.

(AP)ε

⎧⎨⎩
dU(t)

dt
+ ∂ϕε(U(t)) +Bε(U(t)) = F (t) t ∈ [0, S],

U(0) = U(S),

where ϕε := ϕ′ + ψε.

3.3.2 Existence of Approximate Solutions

In this subsection, we check that the conditions (A1), (A2), (A5) and (A6) in Propo-
sition 2.3.5 (section 2.3) are satisfied for (DCBF)ε (we note that Poincaré’s inequality
guarantees the condition

• ‖U‖2H � γϕε(U) holds for any U ∈ D(ϕε) and ∂ϕε is strictly monotone,

which is also required in Proposition 2.3.5).

• Check of (A1) : For any L ∈ (0,+∞), the set {U ∈ H;ϕε(U) + ‖U‖2H � L} is
compact in H.

Since {U ∈ H;ϕε(U) + ‖U‖2H � L} is closed and bounded in H1
σ(Ω)×H1(Ω)×H1(Ω),

this set becomes compact by virtue of Rellich-Kondrachov’s theorem (Proposition 2.1.7)
in H.
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• Check of (A2) : Bε(·) is ϕε-demiclosed.

Assume that ⎧⎪⎪⎨⎪⎪⎩
uk → u strongly in C([0, S];L2

σ(Ω)),

Tk → T strongly in C([0, S];L2(Ω)),

Ck → C strongly in C([0, S];L2(Ω)),⎧⎪⎪⎨⎪⎪⎩
νAuk ⇀ νAu weakly in L2(0, S;L2

σ(Ω)),

−ΔDTk + ε|Tk|q−2Tk ⇀ −ΔDT + ε|T |q−2T weakly in L2(0, S;L2(Ω)),

−ΔDCk + ε|Ck|q−2Ck ⇀ −ΔDC + ε|C|q−2C weakly in L2(0, S;L2(Ω)),⎧⎪⎪⎨⎪⎪⎩
auk − Pg[Tk]ε − Ph[Ck]ε ⇀ h′

1 weakly in L2(0, S;L2
σ(Ω)),

uk · ∇Tk ⇀ h′
2 weakly in L2(0, S;L2(Ω)),

uk · ∇Ck − ρΔDTk ⇀ h′
3 weakly in L2(0, S;L2(Ω)).

From the strong convergences, we can easily derive h′
1 = au−Pg[T ]ε−Ph[C]ε. Using the

angular condition (3.16), the strong convergence of {Uk}k∈N and the weak convergences
of {∂ϕε(Uk)}k∈N, we obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ΔDTk ⇀ −ΔDT weakly in L2(0, S;L2(Ω)),

ε|Tk|q−2Tk ⇀ ε|T |q−2T weakly in L2(0, S;L2(Ω)),

−ΔDCk ⇀ −ΔDC weakly in L2(0, S;L2(Ω)),

ε|Ck|q−2Ck ⇀ ε|T |q−2T weakly in L2(0, S;L2(Ω)).

Therefore, we can repeat exactly the same argument that in Check of (A2), Section 3.2
and we can assure that h′

2 = u · ∇T and h′
3 = u · ∇C − ρΔDT .

• Check of (A5) : There exists a monotone increasing function (·) and a constant
k ∈ [0, 1) such that

‖Bε(U)‖2H � k‖∂ϕε(U)‖2H + (‖U‖H)(ϕε(U) + 1)2 ∀U ∈ D(∂ϕε).

By the definition of the inner product in H and Bε(U), we get

‖Bε(U)‖2H � γ2‖U‖2H +
2

9
|ΔT |2L2 + |u · ∇T |2L2 +

2

9ρ2
|u · ∇C|2L2 ,

where γ2 is a suitable general constant and we use the fact that

|[T ]ε|L2 � |T |L2 , |[C]ε|L2 � |C|L2 .
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Using the integration by parts, the condition ∇·u = 0 and applying Hölder’s inequality,
we obtain

|u · ∇T |2L2 =

∫
Ω

∇T · u(u · ∇T )dx

= −
∫
Ω

Tu∇(u · ∇T )dx−
∫
Ω

T (u · ∇T )∇ · udx

�
∫
Ω

|T ||u||∇(u · ∇T )|dx

�
∫
Ω

|T ||u|
N∑

μ=1

|∇uμ|
N∑

μ=1

|∂xμT |dx+

∫
Ω

|T ||u|
N∑

μ=1

|uμ|
N∑

μ=1

|∇∂xμT |dx

� |T |L12 |u|L6 |∇u|L4 |∇T |L2 + |T |L12 |u|L6 |u|L4

N∑
μ=1

|∂xμ∇T |L2 .

By Sobolev’s inequality, elliptic estimates and the fact that |U |4L4 � |U |L2 |U |3L6 (see
Corollary 2.1.1 in Section 2.1), we have

|T |L12 |u|L6 |∇u|L4|∇T |L2 � γ2|T |L12 |∇u|L2 |∇u|1/4
L2 |∇u|3/4

L6 |∇T |L2

� γ2|T |L12 |∇u|5/4
L2 |Au|3/4

L2 |∇T |L2

� ν

12
|Au|2L2 + γ2|T |8/5L12 |∇u|2L2 |∇T |8/5L2

� ν

12
|Au|2L2 + γ2|∇u|4L2 + γ2|T |16/5L12 |∇T |16/5L2

� ν

12
|Au|2L2 + γ2(|∇u|4L2 + |∇T |4L2 + |T |16L12),

|T |L12 |u|L6 |u|L4

N∑
μ=1

|∂xμ∇T |L2 � |T |L12 |u|7/4
L6 |u|1/4L2 |T |H2

� γ2|T |L12 |∇u|7/4
L2 |u|1/4L2 |ΔT |L2

� 1

9
|ΔT |2L2 + γ2|T |2L12 |∇u|7/2

L2 |u|1/2L2

� 1

9
|ΔT |2L2 + γ2(|∇u|4L2 + |T |16L12 |u|4L2).

Therefore, we can deduce

|u · ∇T |2L2 �
ν

12
|Au|2L2 +

1

9
|ΔT |2L2

+ γ2(|∇u|4L2 + |∇T |4L2 + |T |16L12(1 + |u|4L2)).

Similarly,

|u · ∇C|2L2 �
ν

12

9ρ2

2
|Au|2L2 +

1

9
|ΔC|2L2

+ γ2(|∇u|4L2 + |∇C|4L2 + |C|16L12(1 + ‖U‖4H)).
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Therefore, by taking q � 12 in ψε, we can derive

‖Bε(U)‖2H � γ2‖U‖2H + γ2(ϕ
2
ε(U) + 1)(1 + ‖U‖4H)

+
ν

6
|Au|2L2 +

1

3
|ΔT |2L2 +

1

9

2

9ρ2
|ΔC|2L2

� γ2‖U‖2H + γ2(ϕ
2
ε(U) + 1)(1 + ‖U‖4H) +

1

3
‖∂ϕε(U)‖2H ,

whence follows (A5) with k = 1/3, provided that q � 12 in ψε.

• Check of (A6) : There exist positive constants α, K such that

(−∂ϕε(U)−Bε(U), U)H + αϕε(U) � K ∀U ∈ D(∂ϕε).

The definition of the inner product of H yields

(∂ϕε(U), U)H = ν|∇u|2L2 + |∇T |2L2 +
1

9ρ2
|∇C|2L2 + ε|T |qLq +

ε

9ρ2
|C|qLq

� 2ϕε(U).

Noting that (u · ∇T, T )L2 = (u · ∇C,C)L2 = 0 (see (3.5)) and |[T ]ε(x, t)| � 1/ε,
|[C]ε(x, t)| � 1/ε, we have

(Bε(U), U)H

�a|u|2L2 − |g||u|L2 |[T ]ε|L2 − |h||u|L2 |[C]ε|L2 − 1

9ρ
|∇T |L2 |∇C|L2

�a|u|2L2 − |Ω|1/2
ε

|u|L2(|g|+ |h|)− 1

2
|∇T |2L2 − 1

18ρ2
|∇C|2L2

�a

2
|u|2L2 − |Ω|

2aε2
(|g|+ |h|)2 − ϕε(U).

Hence we obtain

(−∂ϕε(U)−Bε(U), U)H � −ϕε(U) +
|Ω|
2aε2

(|g|+ |h|)2,

i.e., (A6) is satisfied with α = 1 and K = |Ω|
2aε2

(|g|+ |h|)2.
Thus, for any parameter ε, the existence of a periodic solution (uε, Tε, Cε)

t of approx-
imate equations (DCBF)ε can be assured by Proposition 2.3.5.

3.3.3 Convergence

In this subsection, discussing the convergence of {(uε, Tε, Cε)
t}ε>0 as ε → 0, we conclude

the solvability of the original system (DCBF).
To this end, we establish some a priori estimates of (uε, Tε, Cε)

t. Throughout this
subsection, γ3 denotes the general constant independent of ε. Multiplying the second
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equation of (DCBF)ε by Tε, integrating over Ω and using the fact that (uε ·∇Tε, Tε)L2 = 0
(recall (3.5)), we get

1

2

d

dt
|Tε|2L2 + |∇Tε|2L2 + ε|Tε|qLq =

∫
Ω

f2Tεdx.

Applying Poincaré’s inequality, we have∫
Ω

f2Tεdx � κ1/2|f2|L2 |∇Tε|L2 � 1

2
|∇Tε|2L2 +

κ

2
|f2|2L2

(here, κ is a constant satisfying |V |2L2 � κ|∇V |L2 for any V ∈ H1
0 (Ω)). Then we obtain

(3.17)
d

dt
|Tε|2L2 + |∇Tε|2L2 + 2ε|Tε|qLq � κ|f2|2L2 .

We here note that ∫ S

0

d

ds
|Tε(s)|2L2ds = |Tε(S)|2L2 − |Tε(0)|2L2 = 0,

since Tε satisfies the periodic condition. Therefore, integrating (3.17) over [0, S], we have∫ S

0

|∇Tε(s)|2L2ds+ ε

∫ S

0

|Tε(s)|qLqds � κ|f2|2L2(0,S;L2(Ω)).

Moreover, Poincaré’s inequality yields∫ S

0

|Tε(s)|2L2ds � κ2|f2|2L2(0,S;L2(Ω)).

Here, since Tε belongs to C([0, S];L2(Ω)), there exist tε1 ∈ [0, S] such that |Tε(·)|L2 attains
its minimum at tε1, i.e.,

|Tε(t
ε
1)|L2 = min

0�t�S
|Tε(t)|L2 .

Then, we get

|Tε(t
ε
1)|L2 � 1

S

∫ S

0

|Tε(s)|2L2ds �
κ2

S
|f2|2L2(0,S;L2(Ω)),

namely, |Tε(t
ε
1)|L2 is bounded independently of ε. Then integrating (3.17) over [tε1, t] with

t ∈ [tε1, t
ε
1 + S] and recalling the time periodicity of Tε, we can obtain

sup
0≤t≤S

|Tε(t)|2L2 �
(
κ2

S
+ κ

)
|f2|2L2(0,S;L2(Ω)).

Hence multiplication of the second equation of (DCBF)ε by Tε yields

(3.18) sup
0≤t≤S

|Tε(t)|2L2 +

∫ S

0

|∇Tε(s)|2L2ds+ ε

∫ S

0

|Tε(s)|qLqds � γ3.
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Next, multiplying the third equation of (DCBF)ε by Cε, we get

1

2

d

dt
|Cε|2L2 + |∇Cε|2L2 + ε|Cε|qLq � ρ|∇Tε|L2 |∇Cε|L2 + κ1/2|f3|L2 |∇Cε|L2

� 1

2
|∇Cε|2L2 + ρ2|∇Tε|2L2 + κ|f3|2L2 ,

i.e.,

d

dt
|Cε|2L2 + |∇Cε|2L2 + 2ε|Cε|qLq � 2ρ2|∇Tε|2L2 + 2κ|f3|2L2 .(3.19)

Using |∇Tε|2L2(0,S;L2(Ω)) � γ3 and repeating the same procedure as above, we can obtain

(3.20) sup
0≤t≤S

|Cε(t)|2L2 +

∫ S

0

|∇Cε(s)|2L2ds+ ε

∫ S

0

|Cε(s)|qLqds � γ3.

Multiplying the first equation of (DCBF)ε by uε and noting that |[Tε]ε(x, t)| �
|Tε(x, t)| and |[Cε]ε(x, t)| � |Cε(x, t)|, we get

1

2

d

dt
|uε|2L2 + ν|∇uε|2L2 + a|uε|2L2 � |uε|L2(|g||Tε|L2 + |h||Cε|L2 + |f1|L2)

� ν

2
|∇uε|2L2 +

κ

2ν
(|g||Tε|L2 + |h||Cε|L2 + |f1|L2)2.

Recalling sup0≤t≤S |Tε(t)|2L2 + sup0≤t≤S |Cε(t)|2L2 � γ3, we obtain

d

dt
|uε|2L2 + ν|∇uε|2L2 + 2a|uε|2L2 � γ3(1 + |f1|2L2),

which yields

(3.21) sup
0≤t≤S

|uε(t)|2L2 +

∫ S

0

|∇uε(s)|2L2ds � γ3.

Multiplying the first equation of (DCBF)ε by ∂tuε, we get

1

2
|∂tuε|2L2 +

ν

2

d

dt
|∇uε|2L2 +

a

2

d

dt
|uε|2L2 � γ3(1 + |f1|2L2).(3.22)

In view of (3.18), (3.20) and (3.21), we obtain∫ S

0

ϕε(Uε(s))ds � γ3.

Recalling the regularities in Proposition 2.3.5, i.e., ϕε(Uε(·)) ∈ C([0, S]), we can assure
the existence of tε2 ∈ [0, S] where ϕε(Uε(·)) attains its minimum. From these facts, we
can derive ϕε(Uε(t

ε
2)) � γ3, i.e.,

(3.23) |∇uε(t
ε
2)|2L2 + |∇Tε(t

ε
2)|2L2 + |∇Cε(t

ε
2)|2L2 + ε|Tε(t

ε
2)|qLq + ε|Cε(t

ε
2)|qLq � γ3.
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Using (3.23) and integrating (3.22) over [tε2, t] (t ∈ [tε2, t
ε
2 + S]). we have

(3.24) sup
0≤t≤S

|∇uε(t)|L2 +

∫ S

0

|∂tuε(s)|2L2ds � γ3.

From the first equation of (DCBF)ε, we can also obtain

(3.25)

∫ S

0

|Auε(s)|2L2ds � γ3.

Multiplying the second equation of (DCBF)ε by −ΔTε and using∫
Ω

−ΔTεε|Tε|q−2Tεdx = ε(q − 1)

∫
Ω

|∇Tε|2|Tε|q−2dx,

|uε · ∇Tε|2L2 � |uε|L6 |∇Tε|2L3 � γ3|∇uε|2L2 |∇Tε|L2 |ΔTε|L2

(see (3.16) and the estimate for the convection terms given in Check of (A3)α in Section
3.2), we obtain

1

2

d

dt
|∇Tε|2L2 +

1

2
|ΔTε|2L2 � γ3|∇uε|4L2 |∇Tε|2L2 + 2|f2|2L2 .

By applying Gronwall’s inequality and integrating over [tε2, t] with t ∈ [tε2, t
ε
2 + S] (see

(3.23)), we get

(3.26) sup
0≤t≤S

|∇Tε(t)|2L2 +

∫ S

0

|ΔTε(s)|2L2ds � γ3.

Moreover, multiplying the second equation of (DCBF)ε by ∂tTε, we have

1

2
|∂tTε|2L2 +

1

2

d

dt
|∇Tε|2L2 +

ε

q

d

dt
|Tε|qLq � |uε · ∇Tε|2L2 + |f2|2L2

� γ3|∇uε|2L2 |∇Tε|L2 |ΔTε|L2 + |f2|2L2 .

In view of (3.24), integration over [t2, t] with t ∈ [t2, t2 + S] gives

(3.27) sup
0≤t≤S

ε|Tε(t)|qLq +

∫ S

0

|∂tTε(s)|2L2ds � γ3.

Similarly, multiplying the third equation of (DCBF)ε by −ΔCε and ∂tCε, we obtain

1

2

d

dt
|∇Cε|2L2 +

1

4
|ΔCε|2L2 � γ3|∇uε|4L2 |∇Cε|2L2 + ρ2|∇Tε|2L2 + |f3|2L2

and

1

4
|∂tCε|2L2 +

1

2

d

dt
|∇Cε|2L2 +

ε

q

d

dt
|Cε|qLq

� γ3|∇uε|2L2 |∇Cε|L2 |ΔCε|L2 + ρ2|ΔTε|2L2 + |f3|2L2 ,
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which yield

sup
0≤t≤S

|∇Cε(t)|2L2 + sup
0≤t≤S

ε|Cε(t)|qLq � γ3,∫ S

0

|ΔCε(s)|2L2ds+

∫ S

0

|∂tCε(s)|2L2ds � γ3.
(3.28)

Furthermore, from the second and the third equation, we can derive∫ S

0

|ε|Tε|q−2Tε(s)|2L2ds+

∫ S

0

|ε|Cε|q−2Cε(s)|2L2ds � γ3.(3.29)

Making use of a priori estimates (3.18), (3.20), (3.21), (3.24), (3.25), (3.26), (3.27),
(3.28) and (3.29), we can discuss the convergence of solutions {Uε}ε>0 = {(uε, Tε, Cε)

t}ε>0.
We obtain

(3.30) sup
0�t�S

(‖Uε(t)‖H + ϕε(Uε(t))) � γ3,

which implies that the sequence {Uε(t)}ε>0 is pre-compact inH for arbitrary t ∈ [0, S], by
virtue of Rellich-Kondrachov’s compactness theorem. Moreover, by using the estimates
for ∂tuε, ∂tTε and ∂tCε, we get

|uε(t)− uε(s)|L2 �
∫ t

s

|∂tuε(τ)|L2dτ � γ3|t− s|1/2,
|Tε(t)− Tε(s)|L2 � γ3|t− s|1/2, |Cε(t)− Cε(s)|L2 � γ3|t− s|1/2

for any t, s ∈ [0, S], which imply the equi-continuity of {Uε(t)}ε>0 in H. Hence, by virtue
of Ascoli’s theorem (Proposition 2.5.3), there exists a subsequence {Uεn}n∈N, simply
denoted by {Un}n∈N, with εn → 0 as n → ∞ such that

(3.31) Un → U strongly in Cπ([0, S];H) as n → ∞.

From (3.29), there exist subsequences of {εn|Tεn|q−2Tεn}n∈N and {εn|Cεn|q−2Cεn}n∈N which
weakly converge in L2(0, S;L2(Ω)). Moreover, since

|ε|Tε|q−2Tε(t)|q′Lq′ = εp
′ |Tε(t)|qLq = εp

′−1(ε|Tε(t)|qLq) � εq
′−1γ3 → 0

as ε → 0 for any t ∈ [0, S] (q′ := q/(q − 1)), we can see that the weak limits of
{εn|Tεn |q−2Tεn}n∈N and {εn|Cεn|q−2Cεn}n∈N coincide with 0 (recall that C∞

0 ((0, S);C∞
0 (Ω))

is dense in L2(0, S;L2(Ω))). We can also show that [Tεn ]εn → T , [Cεn ]εn → C strongly
in L2(0, S;L2(Ω)), since |[Tεn ]εn(x, t)| � |Tεn(x, t)|, |[Cεn ]εn(x, t)| � |Cεn(x, t)| and strong
convergence (3.31) holds.

From the strong convergence (3.31) and uniform a priori bounds for L2(0, S;H)-norm,
we can assure that

dUn

dt
⇀

dU

dt
= (∂tu, ∂tT, ∂tC)t,(3.32)

∂ϕεn(Un) ⇀ ∂ϕ′(U) = (Au,−ΔDT,−ΔDC)t(3.33)
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weakly in L2(0, S;H) as n → ∞. Then, we obtain the limit satisfies U ∈ W 1,2(0, S;H)
and ∂ϕ′(U) ∈ L2(0, S;H). By virtue of Lemma 2.3.2, we can deduce ϕ′(U(·)) ∈
W 1,1(0, S), namely, the absolute continuity of ϕ′(U(·)). Moreover, sup0�t�S ϕε(Uε(t)) �
γ3 and strong convergence (3.31) yield

∂xμun ⇀ ∂xμu ∗ -weakly in L∞(0, S;L2(Ω)),

∂xμTn ⇀ ∂xμT ∗ -weakly in L∞(0, S;L2(Ω)),

∂xμCn ⇀ ∂xμC ∗ -weakly in L∞(0, S;L2(Ω))

for all μ = 1, 2, · · · , N , which imply the weak continuity of ∂xμu(·) in L2(Ω) and
∂xμT (·), ∂xμC(·) in L2(Ω) on [0, S]. Since we have the norm-continuity and weak con-
tinuity of ∂xμu(·), ∂xμT (·) and ∂xμC(·), we can deduce ∂xμu ∈ C([0, S];L2(Ω)) and
∂xμT, ∂xμC ∈ C([0, S];L2(Ω)) for each μ = 1, 2, · · · , N . Furthermore, the periodicity of
U in H immediately leads to

u ∈ Cπ([0, S];H
1
σ(Ω)), T, C ∈ Cπ([0, S];H

1
0 (Ω)).

Hence the limit (u, T, C)t satisfies all the regularities required in Theorem 3.1.2.
Finally, since the weak convergences of convection terms {uεn · ∇Tεn}n∈N and {uεn ·

∇Cεn}n∈N can be assured by exactly the same argument as given above (see Check of
(A2) in Section 3.2),

(3.34) Bεn(Uεn) ⇀ B(U) weakly in L2(0, S;L2(Ω)) as n → ∞
is valid.

Thus, it follows from (3.31), (3.33), (3.32) and (3.34) that solutions of approxi-
mate system (DCBF)ε weakly converge to the solution of the original system (DCBF)
(u, T, C)t in L2(0, S;H).

3.3.4 Uniqueness

In this subsection, we show the uniqueness of the periodic solution (Theorem 3.1.4).
Let Ui = (ui, Ti, Ci)

t (i = 1, 2) be periodic solutions and let

δu := u1 − u2, δT := T1 − T2, δC := C1 − C2.

Recall that δU satisfies the following (Section 3.2):

(D)

⎧⎪⎨⎪⎩
∂tδu+ νAδu+ aδu = PgδT + PhδC,

∂tδT −ΔδT = −u1 · ∇δT + δu · ∇T2,

∂tδC −ΔδC = ρΔδT − u1 · ∇δC + δu · ∇C2.

Multiplying each equation of (D) by Aδu, δT and δC respectively, we get

d

dt
|δT |2L2 + |∇δT |2L2 � γ4|∇δu|2L2 |∇T2|2L2 ,

d

dt
|δC|2L2 + |∇δC|2L2 � 2γ4|∇δu|2L2|∇C2|2L2 + 2ρ2|∇δT |L2 ,

d

dt
|∇δu|2L2 + ν|Aδu|2L2 �

2κ|g|2
ν

|∇δT |2L2 +
2κ|h|2

ν
|∇δC|2L2



61

(recall (3.13), (3.14) and (3.15) in Section 3.2 and use Poncaré’s inequality |V |2L2 �
κ|∇V |2L2). Here, γ4 is the constant appearing in

|Vw|L2 � |V |L4 |w|L4 � γ4|V |H1 |w|H1

� γ4|∇V |L2 |∇w|L2 ∀V ∈ H1
0 (Ω), ∀w ∈ H1

0(Ω).

Then, putting η(t) := |δT |2L2 +
1

4ρ2
|δC|2L2 +

νβ
8χκ

|∇δu|2
L2 , where χ := max{|g|, |h|} and

β := min{1, 1/2ρ2}, we can see that η(t) satisfies

(3.35)
d

dt
η(t) +

σ

κ
η(t) � γ′

4

(
|∇T1|2L2 +

1

2ρ2
|∇C1|2L2

)
η(t),

where σ := min{1/4, ν}, γ′
4 := max{γ4, 8χκνβ

γ4}. Therefore, if

(3.36) sup
0≤t≤S

|∇T1(t)|2L2 + sup
0≤t≤S

1

2ρ2
|∇C1(t)|2L2 <

σ

κγ′
4

,

then we have
∫ S

0
y(t)dt � 0, which implies the uniqueness.

In order to show (3.36), we establish a priori estimates. Multiplying each equation
(DCBF) byAu, T , C and repeating almost the same calculations as those in the previous
section (see (3.17), (3.19) and (3.22)), we have

d

dt
|T |2L2 + |∇T |2L2 � κ|f2|L2 ,

d

dt
|C|2L2 + |∇C|2L2 � 2ρ2|∇T |2L2 + 2κ|f3|2L2 ,

d

dt
|∇u|2L2 + ν|Au|2L2 �

3κ|g|2
ν

|∇T |2L2 +
3κ|h|2

ν
|∇C|2L2 +

3

ν
|f1|2L2 .

(3.37)

Integrating each inequality of (3.37) and using the periodicity of solution T,C,∇u, we
have ∫ S

0

|∇T (s)|2L2ds � κ|f2|2L2(0,S;L2(Ω)) =: Q1,∫ S

0

|∇C(s)|2L2ds � 2ρ2
∫ S

0

|∇T (s)|2L2ds+ 2κ|f3|2L2(0,S;L2(Ω))

� 2ρ2κ|f2|2L2(0,S;L2(Ω)) + 2κ|f3|2L2(0,S;L2(Ω)) =: Q2

(3.38)

and ∫ S

0

|Au(s)|2L2ds

�3κ|g|2
ν2

∫ S

0

|∇T (s)|2L2ds+
3κ|h|2
ν2

∫ S

0

|∇C(s)|2L2ds+
3

ν2
|f1|2L2(0,S;L2(Ω))

�3κ2

ν2

(|g|2 + 2ρ2|h|2) |f2|2L2(0,S;L2(Ω))

+
6κ2|h|2

ν2
|f3|2L2(0,S;L2(Ω)) +

3

ν2
|f1|2L2(0,S;L2(Ω)) =: Q3.

(3.39)
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By the continuity of solution and Poincaré’s inequality, (3.38) and (3.39) imply that
there exist some t3, t4, t5 ∈ [0, S] such that

(3.40) |∇T (t3)|2L2 �
Q1

S
, |∇C(t4)|2L2 �

Q2

S
,

1

κ
|∇u(t5)|2L2 �

Q3

S
.

Then integrating the third inequality of (3.37) over [t5, t], we have

sup
0≤t≤S

|∇u(t)|2L2 �
κQ3

S
+Q3 =: Q4.

Multiplying the second and the third equations by −ΔT and −ΔC respectively, we get

1

4
|ΔT |2L2 +

1

2

d

dt
|∇T |2L2 � γ2

5 |∇w|4L2 |∇T |2L2 + |f2|2L2

� γ2
5Q

2
4|∇T |2L2 + |f2|2L2 ,

1

4
|ΔC|2L2 +

1

2

d

dt
|∇C|2L2 �

9

4
γ2
5 |∇u|4L2 |∇C|2L2 +

3ρ2

2
|ΔT |2L2 +

3

2
|f3|2L2

� 9

4
γ2
5Q

2
4|∇C|2L2 +

3ρ2

2
|ΔT |2L2 +

3

2
|f3|2L2 ,

(3.41)

where γ5 is a constant appearing in

|w · ∇V |2L2 � γ5|∇w|2L2 |∇V |L2 |ΔV |L2

for any w ∈ H1
0(Ω) and V ∈ D(−ΔD) (see Check of (A3)α in Section 3.2). Integrating

(3.41) over [0, S], we have∫ S

0

|ΔT (s)|2L2ds � 4γ2
5Q

2
4Q1 + 4|f2|2L2(0,S;L2(Ω)) =: Q5,∫ S

0

|ΔC(s)|2L2ds � 9γ2
5Q

2
4Q2 + 6ρ2Q5 + 6|f3|2L2(0,S;L2(Ω)) =: Q6.

Then applying Gronwall’s inequality to (3.41) and recalling (3.40), we have

|∇T (t)|2L2 � exp(2γ2
5Q

2
4(t− t3))|∇T (t3)|2L2

+ 2

∫ t

t3

|f2(s)|2L2 exp(2γ2
5Q

2
4(t− s))ds

for any t ∈ [t3, t3 + S] and

|∇C(t)|2L2 � exp

(
9

2
γ2
5Q

2
4(t− t4)

)
|∇C(t4)|2L2

+ 3

∫ t

t4

(
ρ2|ΔT |2L2 + |f3|2L2

)
exp

(
9

2
γ2
5Q

2
4(t− s)

)
ds
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for any t ∈ [t4, t4 + S]. Therefore, we can obtain

sup
0≤t≤S

|∇T (t)|2L2 �
(
Q1

S
+ 2|f2|2L2(0,S;L2(Ω))

)
exp(2γ2

5Q
2
4S),

sup
0≤t≤S

|∇C(t)|2L2 � 3

(
Q2

3S
+ ρ2Q5 + |f3|2L2(0,S;L2(Ω))

)
exp

(
9

2
γ2
5Q

2
4S

)
.

(3.42)

SinceQ1, Q2, Q5 is monotone decreasing to 0 andQ4 does not increase as |f2|L2(0,S;L2(Ω)) →
0 and |f3|L2(0,S;L2(Ω)) → 0, inequalities (3.42) imply that for each fixed ν, ρ, g,h, ρ and
f1, there exist some sufficiently small f2 and f3 satisfying (3.36), whence follows the
uniqueness of time periodic solution.

3.4 Time Periodic Problem with Neumann Bound-

ary Condition

In this section, we consider the solvability of time periodic problem of (DCBF) with the
homogeneous Neumann boundary condition.

The replacement of the boundary condition does not make it difficult to construct
approximate solutions. That is to say, we can guarantee the existence of a time periodic
solution of the following equations by exactly the same argument as those in the previous
section, Dirichlet boundary condition case.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ νAu+ au = Pg[T ]ε + Ph[C]ε + Pf1,

∂tT −ΔNT + ε|T |q−2T + u · ∇T = f2,

∂tC −ΔNC + ε|C|q−2C + u · ∇C = ρΔNT + f3,

where the cut-off function [·]ε is defined by

[T ]ε(x, t) :=

⎧⎨⎩ T (x, t) if |T (x, t)| � 1/ε,

Sgn T (x, t)/ε = T (x, t)/ε|T (x, t)| if |T (x, t)| � 1/ε.

and q is a sufficiently large exponent (see Check of (A5) in section 2.3.2). However, since
Poincaré’s inequality plays essential role in a priori estimates for Dirichlet boundary
condition case, it is difficult to deduce the uniform boundedness of approximate solutions
and discuss the convergence for Neumann boundary condition case.

In order to manage this difficulty, we introduce another approximation step.
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3.4.1 Approximate Equations

We consider the following system with two approximation parameters ε, λ > 0.

(DCBF)ε,λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ νAu+ au = Pg[T ]ε + Ph[C]ε + Pf1,

∂tT −ΔNT + λT + ε|T |q−2T + u · ∇T = f2,

∂tC −ΔNC + λC + ε|C|q−2C + u · ∇C = ρΔNT + f3.

By the same way as that in the previous section, we can reduce (DCBF)ε,λ to the following
abstract problem (AP)ε,λ:

(AP)ε,λ

⎧⎨⎩
dU(t)

dt
+ ∂ϕε,λ(U(t)) +Bε(U(t)) = F (t) t ∈ [0, S],

U(0) = U(S)

in the Hilbert space H = L2
σ(Ω)× L2(Ω)× L2(Ω) with the inner product

(U1, U2)H := (u1,u2)L2 + (T1, T2)L2 +
1

9ρ2
(C1, C2)L2 .

Here,

U =

⎛⎝ u
T
C

⎞⎠ ,
dU

dt
=

⎛⎝ ∂tu
∂tT
∂tC

⎞⎠ , F =

⎛⎝ Pf1

f2
f3

⎞⎠
and

∂ϕε,λ(U) =

⎛⎝ νAu

−ΔNT + ε|T |q−2T + λT
−ΔNC + ε|C|q−2C + λC

⎞⎠ ,

Bε(U) =

⎛⎝ au− Pg[T ]ε − Ph[C]ε
u·∇T

u·∇C − ρΔT

⎞⎠ ,

where

ϕ(U) =

{
ν
2
|∇u|2

L2 +
1
2
|∇T |2L2 +

1
18ρ2

|∇C|2L2 if U ∈ D(ϕ),

+∞ if U ∈ H\D(ϕ)

with domain D(ϕ) := H1
σ(Ω)×H1(Ω)×H1(Ω),

ψε,λ(U) =

{
ε
q
|T |qLq + ε

9ρ2q
|C|qLq + λ

2
|T |2L2 +

λ
18ρ2

|C|2L2 if U ∈ D(ψε,λ),

+∞ if U ∈ H\D(ψε,λ)

with domain D(ψε,λ) := L2
σ(Ω)× Lq(Ω)× Lq(Ω),

ϕε,λ = ϕ+ ψε,λ.
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Since the presence of the relaxation terms λT and λC does not prevent us from re-
peating arguments in Section 3.3, we can assure the existence of a periodic solution
(uε,λ, Tε,λ, Cε,λ)

t of (DCBF)ε,λ by applying Proposition 2.3.5. Moreover, in a priori esti-
mates, the coercive approximation terms λT and λC can shoulder the role of Poincaré’s
inequality. Therefore, due to the terms λT and λC, we can deduce the following esti-
mates by almost the same procedure in the previous section.

sup
0≤t≤S

‖Uε,λ(t)‖H + sup
0≤t≤S

ϕε,λ(Uε,λ(t)) � γ6,∣∣∣∣dUε,λ

dt

∣∣∣∣
L2(0,S;H)

+ |∂ϕε,λ(Uε,λ)|L2(0,S;H) � γ6,

where γ6 is a constant independent of the parameter ε (which may depend on λ). These
uniform boundedness guarantee the convergence of solutions of (DCBF)ε,λ as the param-
eter ε tends to 0. Therefore, by repeating the same argument as those carried out in
Dirichlet boundary condition case (Section 3.3), we can assure that the following system
(DCBF)λ possesses a periodic solution (uλ, Tλ, Cλ)

t.

(DCBF)λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tuλ + νAuλ + auλ = PgTλ + PhCλ + Pf1,

∂tTλ −ΔNTλ + λTλ + uλ · ∇Tλ = f2,

∂tCλ −ΔNCλ + λCλ + uλ · ∇Cλ = ρΔNTλ + f3,

where (uλ, Tλ, Cλ)
t satisfies the following regularities:

uλ ∈ Cπ([0, S];H
1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

Tλ, Cλ ∈ Cπ([0, S];H
1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

3.4.2 Convergence

To complete our proof, we establish some appropriate a priori estimates independent of
λ and we discuss the convergence of Uλ = (uλ, Tλ, Cλ)

t. In this subsection, γ7 denotes a
general constant independent of the approximation parameter λ.

Integrating the second and the third equations of (DCBF)λ over Ω, we get

d

dt

∫
Ω

Tλ(x, t)dx+ λ

∫
Ω

Tλ(x, t)dx =

∫
Ω

f2(x, t)dx,

d

dt

∫
Ω

Cλ(x, t)dx+ λ

∫
Ω

Cλ(x, t)dx =

∫
Ω

f3(x, t)dx.

(3.43)

Here we used the following facts:∫
Ω

ΔNTλdx =

∫
∂Ω

∂Tλ

∂n
dS = 0,∫

Ω

uλ · ∇Tλdx =

∫
Ω

∇ · (uλTλ)dx−
∫
Ω

Tλ∇ · uλdx =

∫
∂Ω

uλTλdS = 0.
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Integrating (3.43) with respect to t over [0, S] and using the periodic condition and (3.1),
we find that

λ

∫ S

0

∫
Ω

Tλ(x, t)dxdt = 0, λ

∫ S

0

∫
Ω

Cλ(x, t)dxdt = 0.

Then, by the continuity of Tλ, Cλ and the intermediate value theorem, there exist some
tλ6 , t

λ
7 ∈ [0, S] such that ∫

Ω

Tλ(x, t
λ
6)dx = 0,

∫
Ω

Cλ(x, t
λ
7)dx = 0.

Applying Gronwall’s inequality to (3.43), we have

(3.44)

∫
Ω

Tλ(x, t)dx =

∫ t

tλ6

e−λ(t−s)

∫
Ω

f2(x, s)dxds ∀t ∈ [tλ6 , t
λ
6 + S].

From Poincaré-Wirtinger’s inequality (Proposition 2.5.5):∣∣∣∣V − 1

|Ω|
∫
Ω

V dx

∣∣∣∣
L2

� κW |∇V |L2 ∀V ∈ H1(Ω),

we obtain

|Tλ(t)|L2 � κW |∇Tλ(t)|L2 +

∣∣∣∣ 1|Ω|
∫
Ω

Tλ(t)dx

∣∣∣∣
L2

= κW |∇Tλ(t)|L2 +
1

|Ω|1/2
∣∣∣∣∫

Ω

Tλ(t)dx

∣∣∣∣
= κW |∇Tλ(t)|L2 +

1

|Ω|1/2
∣∣∣∣∣
∫ t

tλ6

e−λ(t−s)

∫
Ω

f2(s)dxds

∣∣∣∣∣
� κW |∇Tλ(t)|L2 + S1/2|f2|L2(0,S;L2(Ω))

(3.45)

for any t ∈ [tλ6 , t
λ
6 + S]. Similarly, we get

(3.46) |Cλ(t)|L2 � κW |∇Cλ(t)|L2 + S1/2|f3|L2(0,S;L2(Ω))

for any t ∈ [tλ7 , t
λ
7 + S].

Replacing Poincaré’s inequality by the inequalities (3.45) and (3.46) in our argument
of Section 3.3, we can derive uniform a priori bounds. Multiplying the second equation
of (DCBF)λ by Tλ, we get

1

2

d

dt
|Tλ|2L2 + |∇Tλ|2L2 + λ|Tλ|2L2

=

∫
Ω

f2Tλdx � |f2|L2 |Tλ|L2

�κW |∇Tλ|L2 |f2|L2 + S1/2|f2|L2(0,S;L2(Ω))|f2|L2 ,
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i.e.,

(3.47)
d

dt
|Tλ|2L2 + |∇Tλ|2L2 + λ|Tλ|2L2 � κ2

W |f2|2L2 + 2S1/2|f2|L2(0,S;L2(Ω))|f2|L2 .

Integrating (3.47) over [0, S], we have

(3.48)

∫ S

0

|∇Tλ(s)|2L2ds+ λ

∫ S

0

|Tλ(s)|2L2ds � (κ2
W + 2S)|f2|2L2(0,S;L2(Ω)),

which immediately yields, together with (3.45),∫ S

0

|Tλ(s)|2L2ds �
∫ S

0

2κ2
W |∇Tλ(s)|2L2 + 2S|f2(s)|2L2ds

� 2
(
κ2
W (κ2

W + 2S) + S
) |f2|2L2(0,S;L2(Ω)).

(3.49)

Combining the continuity of Tλ with (3.49), we can assure that there exist a tλ8 ∈ [0, S]
such that

|Tλ(t
λ
8)|2L2 �

2

S

(
κ2
W (κ2

W + 2S) + S
) |f2|2L2(0,S;L2(Ω)).

Then integrating (3.47) over [tλ8 , t] with t ∈ [tλ8 , t
λ
8 + S], we obtain

(3.50) sup
0≤t≤S

|Tλ(t)|2L2 �
(
2κ4

W

S
+ 5κ2

W + 2S + 2

)
|f2|2L2(0,S;L2(Ω)).

Similarly, multiplication of the third equation of (DCBF)λ by Cλ gives

d

dt
|Cλ|2L2 + |∇Cλ|2L2 + 2λ|C|2L2

� 2ρ2|∇Tλ|2L2 + 2κ2
W |f3|L2 + 2S1/2|f2|L2(0,S;L2(Ω))|f3|L2 ,

which implies

(3.51) sup
0≤t≤S

|Cλ(t)|L2 +

∫ S

0

|∇Cλ(s)|2L2ds+ λ

∫ S

0

|Cλ(s)|2L2ds � γ7.

Moreover, multiplying the first equation of (DCBF)λ by Auλ and ∂tuλ, we have

1

2

d

dt
|∇uλ|2L2 +

ν

2
|Auλ|2L2 + a|∇uλ|2L2 �

1

2ν
(|g||Tλ|L2 + |h||Cλ|L2 + |f1|L2)2

� 1

2ν
(γ7 + |f1|L2)2 ,

1

2
|∂tuλ|2L2 +

ν

2

d

dt
|∇uλ|2L2 +

a

2

d

dt
|uλ|2L2 �

1

2
(|g||Tλ|L2 + |h||Cλ|L2 + |f1|L2)2

� 1

2
(γ7 + |f1|L2)2 .
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From these inequality, we obtain

(3.52) sup
0≤t≤S

|uλ(t)|H1 +

∫ S

0

|Auλ(s)|2L2ds+

∫ S

0

|∂tuλ(s)|2L2ds � γ7.

Recalling our calculations in Section 3.2 and 3.3, (see (3.10) or procedures for (3.27),
(3.28)), we can derive the followings from the multiplication of the second and the third
equation of (DCBF)λ by −ΔTλ, ∂tTλ and −ΔCλ, ∂tCλ.

1

2

d

dt
|∇Tλ|2L2 +

1

4
|ΔTλ|2L2 + λ|∇Tλ|2L2 � γ7|∇uλ|4L2 |∇Tλ|2L2 + |f2|2L2 ,

1

2
|∂tTλ|2L2 +

1

2

d

dt
|∇Tλ|2L2 + λ

d

dt
|Tλ|2L2 � γ7|∇uλ|2L2 |∇Tλ|L2 |ΔTλ|L2 + |f2|2L2 ,

1

2

d

dt
|∇Cλ|2L2 +

1

4
|ΔCλ|2L2 + λ|∇Cλ|2L2 � γ7|∇uλ|4L2 |∇Cλ|2L2 + 3ρ2|ΔTλ|2L2 + 3|f3|2L2 ,

1

4
|∂tCλ|2L2 +

1

2

d

dt
|∇Cλ|2L2 +

λ

2

d

dt
|Cλ|2L2 � γ7|∇uλ|2L2 |∇Cλ|L2 |ΔCλ|L2 + ρ2|ΔTλ|2L2 + |f3|2L2 ,

which yield

sup
0≤t≤S

|∇Tλ(t)|L2 + sup
0≤t≤S

|∇Cλ(t)|L2 � γ7,∫ S

0

|ΔTλ(s)|2L2ds+

∫ S

0

|ΔCλ(s)|2L2ds � γ7,∫ S

0

|∂tTλ(s)|2L2ds+

∫ S

0

|∂tCλ(s)|2L2ds � γ7.

(3.53)

From the uniform bounds (3.48), (3.50), (3.51), (3.52) and (3.53), we can accom-
plish the convergence argument and we can assure the existence of the original system
(DCBF). Indeed, by (3.48) and (3.51), we can show that λTλ → 0, λCλ → 0 strongly in
L2(0, S;L2(Ω)) as λ → 0, since

|λTλ|2L2(0,S;L2(Ω)) = λ

∫ S

0

λ|Tλ(s)|2L2ds � λγ7.

Moreover, (3.48), (3.50), (3.51), (3.52) and (3.53) imply that Uλ = (uλ, Tλ, Cλ)
t satisfies

sup
0≤t≤S

‖Uλ(t)‖H + sup
0≤t≤S

ϕ(Uλ(t)) � γ7,∣∣∣∣dUλ

dt

∣∣∣∣
L2(0,S;H)

+ |∂ϕ(Uλ)|L2(0,S;H) � γ7.

Thus, we can employ the same convergence argument as that in Section 3.3.3 and we
can assure the existence of a time periodic solution for Neumann boundary condition
case.



Chapter 4

Initial Boundary Value Problem in
Unbounded Domains

4.1 Problems and Main Theorems

In this chapter, we deal with the initial boundary value problem of (DCBF) in general
domains.

(DCBF)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ νAu+ au = PgT + PhC + Pf1 (x, t) ∈ Ω×[0, S],

∂tT + u·∇T = ΔT + f2 (x, t) ∈ Ω×[0, S],

∂tC + u·∇C = ΔC + ρΔT + f3 (x, t) ∈ Ω×[0, S],

u(·, 0) = u0, T (·, 0) = T0, C(·, 0) = C0.

We mainly deal with the Neumann boundary condition case in this chapter (in the end of
this chapter, we shall show that the same solvability result holds for Dirichlet condition
case as that for Neumann case).

In addition to the notations fixed in Chapter 2, we use the followings in order to
state our result.

WS := C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)),

XS := {f ∈ L1(0, S;L2(Ω));
√
tf ∈ L2(0, S;L2(Ω))},

YS :=
{
U ∈ C([0, S];L2(Ω)) ∩ L2(0, S;H1(Ω));

√
tΔU,

√
t∂tU ∈ L2(0, S;L2(Ω))

}
,

ZS :=

⎧⎨⎩
⎛⎝ u

T
C

⎞⎠ ∈ C([0, S];L2
σ(Ω)× L2(Ω)× L2(Ω));

u ∈ WS, T, C ∈ YS,
∂tu ∈ L2(0, S;L2

σ(Ω))

⎫⎬⎭ .
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The norm of WS, XS and YS are defined by

‖u‖WS
:= sup

0�t�S
|u(t)|H1

σ(Ω) +

(∫ S

0

|Au(t)|2L2(Ω)dt

)1/2

,

‖f‖XS
:= |f |L1(0,S;L2(Ω)) +

(∫ S

0

t|f(t)|2L2(Ω)dt

)1/2

,

‖U‖YS
:= sup

0�t�S
|U(t)|L2(Ω) + |∇U |L2(0,S;L2(Ω))

+

(∫ S

0

t|ΔU(t)|2L2(Ω)dt

)1/2

+

(∫ S

0

t|∂tU(t)|2L2(Ω)dt

)1/2

.

The main purpose of this chapter is to show the following solvability result for
(DCBF).

Theorem 4.1.1. Let N � 4 and let the space domain Ω be either the whole space RN or
uniform C2-domain. Moreover, assume that the initial data satisfy u0 ∈ H1

σ(Ω), T0, C0 ∈
L2(Ω) and the external forces satisfy f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ XS. Then the initial
boundary value problem of (DCBF) with the homogeneous Neumann boundary condition
admits a unique solution (u, T, C)t ∈ ZS.

Our proof in this chapter consists of the following four steps.

Step 1: Fix u ∈ WS. Then we find a unique solution (T ,C) of the following problem
in YS × YS:

(4.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tT −ΔT + u · ∇T = f2,

∂tC −ΔC + u · ∇C = ρΔT + f3,
∂T
∂n
|∂Ω = 0, ∂C

∂n
|∂Ω = 0,

T (·, 0) = T0, C(·, 0) = C0.

We define the mapping ΦT0,C0 : WS → YS × YS by the relationship ΦT0,C0(u) := (T ,C)
based on the solvability of (4.1).

Step 2: Replacing T,C in the first equation of (DCBF) by the unique solution T , C
derived in Step 1, we consider the following problem:

(4.2)

{
∂tu+ νAu+ au = PgT + PhC + Pf1,

u|∂Ω = 0, u(·, 0) = u0,

and we show that (4.2) possesses a unique global solution u in WS. Then we define
Ψu0 : YS × YS → WS by the correspondence Ψu0((T ,C)) := u.

Step 3: We check that the mapping Ψu0 ◦ ΦT0,C0 becomes a contraction mapping in
WS0 for a sufficiently small S0 ∈ (0, S]. Then we can show the existence of time-local
solution for (DCBF) belonging to ZS0 .

Step 4: Establishing some a priori estimates, we assure that local solutions can be
extended up to the prescribed interval [0, S].
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4.2 Construction of Solutions for Steps 1 and 2

In this section, we check Steps 1 and 2. That is to say, we assure the solvability of (4.1)
and (4.2).

4.2.1 Well-Definedness of ΦT0,C0

We first consider (4.1) in this subsection.

Lemma 4.2.1. Let N � 4 and let the space domain Ω be either the whole space RN

or uniform C2-domain. Then for any T0 ∈ L2(Ω), u ∈ WS and f2 ∈ XS, the following
initial boundary value problem (4.3) possesses a unique global solution T belonging to YS.

(4.3)

{
∂tT −ΔT + u · ∇T = f2 in Ω×[0, S],
∂T
∂n
|∂Ω = 0, T (·, 0) = T0.

Proof. To begin with, we consider the case where T0 ∈ H1(Ω) and f2 ∈ L2(0, S;L2(Ω)).
According to Proposition 2.3.1 (solvability of evolution equation governed by subdiffer-
ential operators), Proposition 2.1.12 and Example 2 in Section 2.3.1 (maximal mono-
tonicity of −ΔN), there exists a unique global solution T of the following problem (4.4)
with T0 ∈ H1(Ω) and f2 ∈ L2(0, S;L2(Ω)):

(4.4)

{
∂tT −ΔNT = f2 in Ω×[0, S],

T (·, 0) = T0,

where T satisfies

T ∈ C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

Here we define a Banach space Y ′
S by

Y ′
S := C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω))

with the norm

‖U‖2Y ′
S
:= sup

0≤t≤S
|U(t)|2H1 +

∫ S

0

|ΔU(s)|2L2ds.

Let w ∈ C([0, S];D(A)) and U ∈ Y ′
S. Then w · ∇U belongs to L2(0, S;L2(Ω)), since

|w · ∇U |2L2 � |w|2L8 |∇U |2L8/3 � γ|w|2
W1,8/3 |∇U |2L8/3

� γ|w|H1 |w|W1,4 |∇U |L2 |∇U |L4

� γ|w|H1 |w|H2 |∇U |L2 |U |H2

� γ|w|H1 |w|H2 |∇U |L2 (|ΔU |L2 + |U |L2)

(4.5)

holds with N � 4, where γ is some suitable general constant and we use Hölder’s
inequality, Sobolev’s inequality and the elliptic estimate (recall properties in Section
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2.1) in (4.5). Therefore, for any U ∈ Y ′
S and w ∈ C([0, S];D(A)), the following problem

(4.6) also admits a unique global solution:

(4.6)

{
∂tT −ΔNT +w · ∇U = f2 in Ω×[0, S],

T (·, 0) = T0,

where T belongs to C([0, S];H1(Ω))∩L2(0, S;H2(Ω))∩W 1,2(0, S;L2(Ω)). Based on this
fact, we define a mapping Σw

S,T0
: Y ′

S → Y ′
S by the relationship Σw

S,T0
(U) := T .

Let Σw
S,T0

(Ui) := Ti (i = 1, 2) and δU := U1 − U2, δT := T1 − T2. Obviously, δU and
δT satisfy the following problem:

(4.7)

{
∂tδT −ΔNδT +w · ∇δU = 0 in Ω×[0, S],

δT (·, 0) = 0.

Multiplying (4.7) by δT , we get

1

2

d

dt
|δT |2L2 + |∇δT |2L2 = −

∫
δTw∇δUdx = −

∫
δUw∇δTdx

� |wδU |L2 |∇δT |L2 � 1

2
|∇δT |2L2 +

1

2
|w|2L4 |δU |2L4

� 1

2
|∇δT |2L2 + γ|w|2H1 |δU |2H1 ,

i.e.,

(4.8)
d

dt
|δT |2L2 + |∇δT |2L2 � γ|δU |2H1

(recall w ∈ C([0, S];D(A)) ⊂ L∞(0, S;H2(Ω))). Hence, integrating (4.8) over [0, t] for
each t ∈ [0, S], we obtain

(4.9) sup
0�t�S

|δT (t)|2L2 � γS sup
0�t�S

|δU(t)|2H1 .

Next, multiplying (4.7) by −ΔδT and using (4.5), we get

1

2

d

dt
|∇δT |2L2 + |ΔδT |2L2 � |w · ∇δU |L2 |ΔδT |L2

� 1

2
|ΔδT |2L2 + γ|w|2H2 |∇δU |L2 (|ΔδU |L2 + |δU |L2) ,

i.e.,

d

dt
|∇δT |2L2 + |ΔδT |2L2 � γ|∇δU |L2 (|ΔδU |L2 + |δU |L2) ,
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which yields

sup
0�t�S

|∇δT (t)|2L2 + |ΔδT |2L2(0,S;L2(Ω))

� γS1/2 sup
0�t�S

|∇δU(t)|L2

(
|ΔδU |L2(0,S;L2(Ω)) + S1/2 sup

0�t�S
|δU(t)|L2

)
� γ(S1/2 + S)

(
|ΔδU |2L2(0,S;L2(Ω)) + sup

0�t�S
|δU(t)|2H1

)
.

(4.10)

From (4.9) and (4.10), we can derive

‖δT‖2Y ′
S
� γ(S1/2 + S)‖δU‖2Y ′

S
,

which implies that Σw
S0,T0

becomes a contraction mapping in Y ′
S0

for sufficiently small
S0 ∈ (0, S], namely, we can assure that the following problem has a unique local solution
T ∈ Y ′

S0
for any w ∈ C([0, S];D(A)).

(4.11)

{
∂tT −ΔNT +w · ∇T = f2 in Ω×[0, S0],

T (·, 0) = T0.

Furthermore, multiplications of (4.11) by T and −ΔT yield

1

2

d

dt
|T |2L2 + |∇T |2L2 � |f2|L2 |T |L2

and

1

2

d

dt
|∇T |2L2 + |ΔT |2L2 � |w · ∇T |L2 |ΔT |L2 + |f2|L2 |ΔT |L2

� 1

2
|ΔT |2L2 + γ|∇T |L2(|ΔT |L2 + |T |L2) + |f2|2L2

� 3

4
|ΔT |2L2 + γ|∇T |2L2 + |T |2L2 + |f2|2L2 .

Integrating them over [0, t] (t ∈ [0, S0]) and [0, S0], we obtain

sup
0�t�S0

|T (t)|2H1 +

∫ S0

0

|ΔT (s)|2L2ds � (1 + S)Q(γ, |T0|H1 , |f2|L2(0,S;L2(Ω)))

(Q(z1, z2, · · · ) denotes a monotone increasing function of z1, z2, · · · ) for any S0 ∈ [0, S],
which implies that the local solution of (4.11) can be extended globally up to S.

Let u ∈ WS. Then, recalling Proposition 2.5.6 in Chapter 2, we can assure the
existence of a sequence {un}n∈N satisfying un ∈ C([0, S];D(A)) and un → u strongly in
C([0, S];H1

σ(Ω)) ∩ L2(0, S;H2(Ω)). Therefore, for each n ∈ N and f2 ∈ L2(0, S;L2(Ω)),
the following problem possesses a unique global solution Tn.

(4.12)

{
∂tTn −ΔTn + un · ∇Tn = f2 in Ω×[0, S],
∂Tn

∂n
|∂Ω = 0, Tn(·, 0) = T0 ∈ H1(Ω),
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where
Tn ∈ C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

Multiplying (4.12) by Tn, we have

(4.13)
1

2

d

dt
|Tn|2L2 + |∇Tn|2L2 � |f2|L2 |Tn|L2 ,

since
∫
Ω
Tnun · ∇Tndx = 0. Hence, we obtain

(4.14) sup
0�t�S

|Tn(t)|L2 + |∇Tn|L2(0,S;L2(Ω)) � γ1,

where γ1 denotes a general constant independent of n. Next, multiplying (4.12) by
−ΔTn, we get

1

2

d

dt
|∇Tn|2L2 +

1

4
|ΔTn|2L2 � |un · ∇Tn|2L2 +

1

2
|f2|2L2 ,

which, together with (4.5) and the fact that sup0≤t≤S |un(t)|H1 � γ1, leads to

1

2

d

dt
|∇Tn|2L2 +

1

8
|ΔTn|2L2

� γ1|un|2H2 |∇Tn|2L2 +
1

2
|f2|2L2 +

1

2
|Tn|2L2 .

(4.15)

Applying Gronwall’s inequality to (4.15), we have

|∇Tn(t)|2L2

�
(
|∇T0|2L2 +

∫ S

0

(|f2(s)|2L2 + |Tn(s)|2L2

)
ds

)
exp

(
γ1

∫ S

0

|un(s)|2H2ds

)
.

From (4.14) and the fact that
∫ S

0
|un(s)|2H2ds � γ1, we can derive

(4.16) sup
0�t�S

|∇Tn(t)|2L2 � γ1.

Integrating (4.15) over [0, S] and using (4.16), we get

(4.17)

∫ S

0

|ΔTn(s)|2L2ds � γ1.

Similarly, multiplication of (4.12) by ∂tTn gives

(4.18)
1

2
|∂tTn|2L2 +

d

dt

1

2
|∇Tn|2L2 � γ1|un|H2 |∇Tn|L2 (|ΔTn|L2 + |Tn|L2) + |f2|2L2 ,

which yields

(4.19)

∫ S

0

|∂tTn(s)|2L2ds � γ1.
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By using these estimates, we are going to show that {Tn}n∈N becomes a Cauchy
sequence in Banach space

Y ′′
S := C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω))

with the norm

‖U‖2Y ′′
S
:= sup

0≤t≤S
|U(t)|2H1 +

∫ S

0

|ΔU(s)|2L2ds+

∫ S

0

|∂tU(s)|2L2ds.

Let δu := um − un, δT := Tm − Tn. Then δu and δT satisfy the following equation:

(4.20)

{
∂tδT −ΔδT + δu · ∇Tm + un · ∇δT = 0 in Ω×[0, S],
∂δT
∂n

|∂Ω = 0, δT (·, 0) = 0.

Multiplication of (4.20) by δT yields

1

2

d

dt
|δT |2L2 + |∇δT |2L2

=−
∫
Ω

δTδu · ∇Tmdx =

∫
Ω

Tmδu · ∇δTdx

�1

2
|∇δT |2L2 +

1

2
|Tmδu|2L2 �

1

2
|∇δT |2L2 + γ1|Tm|2H1 |δu|2H1 ,

i.e.,

(4.21)
d

dt
|δT |2L2 + |∇δT |2L2 � γ1|Tm|2H1 |δu|2H1 .

Integrating (4.21) over [0, t], we have

(4.22) sup
0�t�S

|δT (t)|2L2 +

∫ S

0

|∇δT (s)|2L2ds � γ1 sup
0�t�S

|δu(t)|2H1 .

Next, multiplying (4.20) by −ΔδT , we get

1

2

d

dt
|∇δT |2L2 +

1

8
|ΔδT |2L2

�γ1|un|2H2 |∇δT |2L2 +
1

2
|δT |2L2

+ γ1|δu|H1 |δu|H2 |∇Tm|L2 (|ΔTm|L2 + |Tm|L2) ,

�γ1|un|2H2 |∇δT |2L2 +
1

2
|δT |2L2

+ γ1|δu|H1 |δu|H2 (|ΔTm|L2 + 1) ,

(4.23)
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where we used (4.14), (4.16) and the following estimates of convection terms which can
be given by almost the same procedures as that for (4.5):

|δu · ∇Tm|2L2

� γ1|δu|H1 |δu|H2 |∇Tm|L2 (|ΔTm|L2 + |Tm|L2) ,

|un · ∇δT |2L2

� γ1|un|H1 |un|H2|∇δT |L2 (|ΔδT |L2 + |δT |L2) .

(4.24)

Then using uniform bounds

sup
0�t�S

|un(t)|H1 +

∫ S

0

|un(s)|2H2ds � γ1

and applying Gronwall’s inequality, we have

|∇δT (t)|2L2

�γ1

∫ S

0

{|δu(s)|H1 |δu(s)|H2 (|ΔTm(s)|L2 + 1) + |δT (s)|2L2

}
ds

× exp

(
γ1

∫ S

0

|un(s)|2H2ds

)
�γ1

∫ S

0

{|δu(s)|H1 |δu(s)|H2 (|ΔTm(s)|L2 + 1) + |δT (s)|2L2

}
ds.

Moreover, by using the uniform boundedness
∫ S

0
|ΔTm(t)|2L2dt � γ1 and (4.22), we obtain

(4.25) sup
0�t�S

|∇δT (t)|2L2 � γ1

(
sup
0�t�S

|δu(t)|2H1 + |δu|2L2(0,S;H2(Ω))

)
.

Similarly, multiplying (4.20) by ∂tδT , we get

1

2
|∂tδT |2L2 +

1

2

d

dt
|∇δT |2L2

�1

2
|δu · ∇Tm|2L2 + |un · ∇δT |2L2

�γ1|δu|H1 |δu|H2|∇Tm|L2

+ γ1|un|H1 |un|H2 |∇δT |L2 (|ΔδT |L2 + |δT |L2) ,

which implies

(4.26)

∫ S

0

|∂tδT (t)|2L2dt � γ1

(
sup
0�t�S

|δu(t)|2H1 + |δu|2L2(0,S;H2(Ω))

)
.

Therefore, from (4.22), (4.25) and (4.26), we can assure that

‖δT‖2Y ′′
S
� γ1

(
sup
0�t�S

|δu(t)|2H1 + |δu|2L2(0,S;H2(Ω))

)
,
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i.e., {Tn}n∈N is a Cauchy sequence in Y ′′
S . Hence (4.3) has a unique global solution in Y ′′

S

for any T0 ∈ H1(Ω) and f2 ∈ L2(0, S;L2(Ω)).
Next we consider the solvability of (4.3) with L2-initial data. Let T0 ∈ L2(Ω) and let

{T0m}m∈N ⊂ H1(Ω) satisfy T0m → T0 in L2(Ω) as m → ∞. Then for each m ∈ N and for
any f2 ∈ L2(0, S;L2(Ω)), the following problem possesses a unique solution Tm ∈ Y ′′

S :

(4.27)

{
∂tTm −ΔNTm + u · ∇Tm = f2 in Ω×[0, S],

T (·, 0) = T0m.

Then {Tm}m∈N becomes a Cauchy sequence in YS. Indeed, for any m1,m2 ∈ N, δT :=
Tm1 − Tm2 satisfies

(4.28)

{
∂tδT −ΔNδT + u · ∇δT = 0 in Ω×[0, S],

δT (·, 0) = T0m1 − T0m2 .

Multiplying (4.28) by δT , −tΔδT and t∂tδT , we get (see (4.23) and use (4.5))

1

2

d

dt
|δT |2L2 + |∇δT |2L2 = 0,

1

2

d

dt
t|∇δT |2L2 − 1

2
|∇δT |2L2 + t|ΔδT |2L2

� γ|u|2H1|u|2H2t|∇δT |2L2 +
t

2
|ΔδT |2L2 + t|δT |2L2 ,

t|∂tδT |2L2 +
1

2

d

dt
t|∇δT |2L2 − 1

2
|∇δT |2L2

� t

2
|∂tδT |2L2 + tγ|u|H1 |u|H2 |∇δT |L2(|ΔδT |L2 + |δT |L2),

(4.29)

which yield

(4.30) ‖δT‖2YS
� γ|T0m1 − T0m2 |2L2

with some suitable constant γ. Therefore, we can assure that (4.3) possesses a unique
global solution T ∈ YS for any initial data T0 belonging to L

2(Ω) and f2 ∈ L2(0, S;L2(Ω)).
Finally, we consider the case where f2 ∈ XS. Here, we define

(4.31) χε(t) :=

{
0 ( if 0 � t < ε ),

1 ( if ε � t � S ).

Since it is easy to see that f ε
2 := χεf2 belongs to L2(0, S;L2(Ω)), the following problem

(4.32) possesses a unique global solution Tε ∈ YS for each ε > 0 and T0 ∈ L2(Ω).

(4.32)

{
∂tTε −ΔNTε + u · ∇Tε = f ε

2 in Ω×[0, S],

T (·, 0) = T0.
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Then, for each ε1, ε2 > 0, δT := Tε1 − Tε2 and δf2 := f ε1
2 − f ε2

2 satisfy

(4.33)

{
∂tδT −ΔNδT + u · ∇δT = δf2 in Ω×[0, S],

δT (·, 0) = 0.

Multiplying (4.33) by δT , we get

1

2

d

dt
|δT |2L2 + |∇δT |2L2 � |δT |L2 |δf2|L2 .

By Gronwall’s inequality, we have

sup
0�t�S

|δT (t)|L2 � |δf2|L1(0,S;L2(Ω)),

which also yields ∫ S

0

|∇δT (s)|2L2ds � |δf2|2L1(0,S;L2(Ω)).

By almost the same argument as those for (4.29) and (4.30), we obtain

1

2

d

dt
t|∇δT |2L2 − |∇δT |2L2 + t|ΔδT |2L2

� γ|u|2H1 |u|2H2t|∇δT |2L2 +
t

2
|ΔδT |2L2 + t|δT |2L2 + t|δf2|2L2 ,

t|∂tδT |2L2 +
1

2

d

dt
t|∇δT |2L2 − 1

2
|∇δT |2L2

� t

2
|∂tδT |2L2 + tγ|u|H1 |u|H2 |∇δT |L2(|ΔδT |L2 + |δT |L2) + t|δf2|2L2 .

From these inequalities, we can derive

sup
0�t�S

t|∇δT (t)|2L2 +

∫ S

0

s|ΔδT (s)|2L2ds+

∫ S

0

s|∂tδT (s)|2L2ds � γ′
∫ S

0

t|δf2(s)|2L2ds

with some general constant γ′ independent of ε1, ε2. Hence,

‖δT‖2YS
� γ′‖δf2‖2XS

holds. Since f ε
2 → f2 in XS as ε → 0, we can assure that {Tε}ε>0 becomes a Cauchy

sequence in YS.

Consequently, we can assure that (4.3) possesses a unique global solution T ∈ YS for
any initial data T0 belonging to L2(Ω) and f2 ∈ XS.

Next, we consider the third equation.
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Lemma 4.2.2. Let N � 4 and let the space domain Ω be either the whole space RN or
uniform C2-domain. Moreover, assume that C0 ∈ L2(Ω), u ∈ WS, T ∈ YS and f3 ∈ XS.
Then the following problem (4.34) has a unique global solution C ∈ YS.

(4.34)

{
∂tC −ΔC + u · ∇C = ρΔT + f3 in Ω×[0, S],
∂C
∂n

|∂Ω = 0, C(·, 0) = C0.

This problem is quite similar to the previous problem (4.3). However, we can not
apply Lemma 4.2.1 directly, since it is not known whether ΔT ∈ XS.

Proof of Lemma 4.2.2. Let χε : [0, S] → R be the cut-off function defined by

χε(t) :=

{
0 ( if 0 � t < ε ),

1 ( if ε � t � S ).

Since T ∈ YS implies that ρχεΔT ∈ XS, we can show that the following problem admits
a unique global solution Cε ∈ YS for each parameter ε > 0 by applying Lemma 4.2.1.

(4.35)

{
∂tCε −ΔCε + u·∇Cε = ρχεΔT + f3 in Ω×[0, S],
∂Cε

∂n
|∂Ω = 0, Cε(·, 0) = C0.

Then, by assuring that the sequence {Cε}ε>0 is a Cauchy sequence in YS, we conclude
the existence of solution for (4.34). Let χε̃ := χε1 − χε2 , i.e.,

χε̃(t) :=

{
1 (ε1 � t < ε2),

0 ( otherwise ).

Then, δC := Cε1 − Cε2 satisfies the following problem in YS:

(4.36)

{
∂tδC −ΔδC + u·∇δC = ρχε̃ΔT in Ω×[0, S],
∂δC
∂n

|∂Ω = 0, δC(·, 0) = 0.

Multiplying (4.36) by δC, we have

1

2

d

dt
|δC|2L2 + |∇δC|2L2 � ρχε̃|∇δC|L2|∇T |L2

� 1

2
|∇δC|2L2 +

ρ2

2
χ2
ε̃|∇T |2L2 .

(4.37)

Integrating (4.37) over [0, t] and [0, S], we obtain

(4.38) sup
0�t�S

|δC(t)|2L2 + |∇δC|2L2(0,S;L2(Ω)) � ρ2
∫ ε2

ε1

|∇T |2L2ds.
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Moreover multiplication of (4.36) by −tΔδC and (4.24), estimates for the convection
terms, yield

1

2

d

dt
t|∇δC|2L2 +

t

8
|ΔδC|2L2

� γ2|u|2H2t|∇δC|2L2 +
tρ2χ2

ε̃

2
|ΔT |2L2 +

t

2
|δC|2L2 +

1

2
|∇δC|2L2 ,

(4.39)

where the coefficient γ2 is a general constant independent of ε1, ε2. Applying Gronwall’s
inequality to (4.39), we obtain

t|∇δC(t)|2L2 �
∫ S

0

{
sρ2χ2

ε̃|ΔT (s)|2L2 + s|δC(s)|2L2 + |∇δC(s)|2L2

}
ds

× exp

(
2γ2

∫ S

0

|u(s)|2H2ds

)
.

(4.40)

Hence from (4.38), we can derive

sup
0�t�S

t|∇δC(t)|2L2 � γ2

∫ ε2

ε1

{
s|ΔT (s)|2L2 + |∇T (s)|2L2

}
ds.

Moreover, integrating (4.39) over [0, S], we have

(4.41)

∫ S

0

t|ΔδC(t)|2L2dt � γ2

∫ ε2

ε1

{
s|ΔT (s)|2L2 + |∇T (s)|2L2

}
ds.

Multiplying (4.36) by t∂tδC, we can obtain (see our arguments for (4.26))

(4.42)

∫ S

0

t|∂tδC(t)|2L2dt � γ2

∫ ε2

ε1

{
s|ΔT (s)|2L2 + |∇T (s)|2L2

}
ds.

Thus, we can assure that {Cε}ε>0 forms a Cauchy sequence in YS since T ∈ YS. Hence,
the problem (4.34) possesses a unique global solution.

Hence it follows that we can obtain a unique global solution T ,C of (4.1) and we can
guarantee the well-definedness of ΦT0,C0 .

4.2.2 Well-Definedness of Ψu0

The Step 2 can be immediately accomplished by virtue of Proposition 2.5.6 in Chapter
2. In fact, applying Proposition 2.5.6 with

ϕ′
S(w) :=

{
ν
2
|∇w|2

L2(Ω) +
a
2
|w|2

L2(Ω) if w ∈ H1
σ(Ω),

+∞ otherwise,

we can assure that the following.
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Lemma 4.2.3. Let N ∈ N and assume that u0 ∈ H1
σ(Ω) and F ∈ L2(0, S;L2

σ(Ω)).
Then the following problem (4.43) admits a unique global solution u ∈ WS satisfying
∂tu ∈ L2(0, S;L2

σ(Ω)).

(4.43)

{
∂tu+ νAu+ au = F in Ω×[0, S],

u|∂Ω = 0, u(·, 0) = u0.

Then, taking F := PgT + PhC + Pf1 in (4.43), we can show the existence of a
unique global solution u of (4.2) and the well-definedness of Ψu0 .

4.3 Application of Contraction Mapping Principle

In this section, we assure the local existence of a unique solution by using Banach’s
contraction mapping principle.

Let ui ∈ WS (i = 1, 2), (T i, C i) := ΦT0,C0(ui) and ui := Ψu0((T i, C i)), namely,

(4.44)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tui + νAui + aui = PgT i + PhCi + Pf1,

∂tT i −ΔT i + ui · ∇T i = f2,

∂tC i −ΔCi + ui · ∇Ci = ρΔT i + f3,

δui|∂Ω = 0,
∂T i

∂n

∣∣∣∣
∂Ω

= 0,
∂C i

∂n

∣∣∣∣
∂Ω

= 0,

ui(·, 0) = u0, T i(·, 0) = T0, C i(·, 0) = C0.

Moreover, let δu := u1 − u2, δT := T 1 − T 2, δC := C1 − C2 and δu := u1 − u2. Then
δu, δT , δC and δu satisfy the following equations:

(4.45)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tδu+ νAδu+ aδu = PΩgδT + PΩhδC,

∂tδT −ΔδT + u1·∇δT + δu·∇T 2 = 0,

∂tδC −ΔδC + u1·∇δC + δu·∇C2 = ρΔδT,

δu|∂Ω = 0,
∂δT

∂n

∣∣∣∣
∂Ω

= 0,
∂δC

∂n

∣∣∣∣
∂Ω

= 0,

δu(·, 0) = 0, δT (·, 0) = 0, δC(·, 0) = 0.

Multiplying the first equation of (4.45) by δu and Aδu, we get

1

2

d

dt
|δu|2L2 + ν|∇δu|2L2 + a|δu|2L2

� (|g||δT |L2 + |h||δC|L2) |δu|L2 ,

1

2

d

dt
|∇δu|2L2 +

ν

4
|Aδu|2L2 + a|∇δu|2L2

� |g|2
2ν

|δT |2L2 +
|h|2
ν

|δC|2L2 .

(4.46)
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Applying Gronwall’s inequality (Proposition 2.5.2) to (4.46), we have

sup
0�t�S

|δu(t)|L2 � |g|
∫ S

0

|δT (s)|L2ds+ |h|
∫ S

0

|δC(s)|L2ds

� S

(
|g| sup

0�t�S
|δT (t)|L2 + |h| sup

0�t�S
|δC(t)|L2

)
.

(4.47)

Moreover, integrating (4.46) over [0, S], we obtain

sup
0�t�S

|∇δu(t)|2L2 +
ν

2

∫ S

0

|Aδu(s)|2L2ds

� S

ν

(
|g|2 sup

0�t�S
|δT (t)|2L2 + 2|h|2 sup

0�t�S
|δC(t)|2L2

)
.

(4.48)

Next, from the facts that∫
Ω

δTδu·∇T2dx = −
∫
Ω

T2δu·∇δTdx,∫
Ω

δTu1·∇δTdx = 0

and from the multiplication of the second equation by δT , we can derive

d

dt
|δT |2L2 + |∇δT |2L2 � |T2δu|2L2 � |T2|2L4 |δu|2L4

� γ3|T2|2H1 |δu|2H1 ,
(4.49)

where γ3 is a constant depending only on Sobolev’s embedding constant. Similarly,
multiplying the third equation of (4.45) by δC, we have

(4.50)
d

dt
|δC|2L2 +

1

2
|∇δC|2L2 � ρ2|∇δT |2L2 + 2γ3|C2|2H1 |δu|2H1 .

Then (4.49) and (4.50) yield

sup
0�t�S

|δT (t)|2L2 +

∫ S

0

|∇δT (s)|2L2ds

� γ3 sup
0�t�S

|δu(t)|2H1

∫ S

0

|T2(s)|2H1ds,

sup
0�t�S

|δC(t)|2L2

� γ3 sup
0�t�S

|δu(t)|2H1

{
ρ2
∫ S

0

|T2(s)|2H1ds+ 2

∫ S

0

|C2(s)|2H1ds

}
.

(4.51)
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Hence, combining (4.47) and (4.48) with (4.51), we can derive

sup
0�t�S

|δu(t)|2H1 +

∫ S

0

|Aδu(s)|2L2ds

� γ4S(1 + S) sup
0�t�S

|δu(t)|2H1

{∫ S

0

|T2(s)|2H1ds+

∫ S

0

|C2(s)|2H1ds

}
,

(4.52)

where γ4 is a constant depending only on ν, |g|, |h|, ρ and γ3. Here, multiplying the
second and the third equation of (4.44) with i = 2 by T2 and C2, we get

1

2

d

dt
|T2|2L2 + |∇T2|2L2 � |T2|L2 |f2|L2 ,

1

2

d

dt
|C2|2L2 + |∇C2|2L2 � ρ|∇T2|L2 |∇C2|L2 + |C2|L2 |f3|L2 ,

which implies

sup
0≤t≤S

|T2(t)|L2 � |T0|L2 + |f2|L1(0,S;L2(Ω)),∫ S

0

|∇T2(s)|2L2ds � |T0|2L2 +
(|T0|L2 + |f2|L1(0,S;L2(Ω))

) |f2|L1(0,S;L2(Ω)),

sup
0≤t≤S

|C2(t)|L2 � |C0|L2 + ρ|∇T2|L2(0,S;L2(Ω)) + |f3|L1(0,S;L2(Ω)),∫ S

0

|∇C2(s)|2L2ds � |C0|2L2 + ρ2
∫ S

0

|∇T2(s)|2L2ds+ sup
0≤t≤S

|C2(t)|L2 |f3|L1(0,S;L2(Ω)).

Hence
∫ S

0
|T2(s)|2H1ds and

∫ S

0
|C2(s)|2H1ds are bounded only by L2-norm of the initial data

and L1(0, S;L2(Ω))-norm of the external forces. Thus, we can assure that Ψu0 ◦ ΦT0,C0

becomes a contraction mapping onWS0 for a sufficiently small S0 ∈ (0, S], whence follows
the existence of a unique local solution of (DCBF).

4.4 Global Existence

In this section, we shall show that the unique time-local solution constructed in the
previous section can be extended up to S by establishing some a priori estimates.

Multiplying the second and the third equations of (DCBF) by T and C (and repeating
exactly the same calculations as above), we get

1

2

d

dt
|T |2L2 + |∇T |2L2 � |T |L2 |f2|L2 ,

1

2

d

dt
|C|2L2 + |∇C|2L2 � ρ|∇T |L2|∇C|L2 + |C|L2 |f3|L2 ,
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which yield

sup
0≤t≤S

|T (t)|L2 +

∫ S

0

|∇T (s)|2L2ds � Q(|T0|L2 , |f2|L1(0,S;L2(Ω))),

sup
0≤t≤S

|C(t)|L2 +

∫ S

0

|∇C(s)|2L2ds

� Q(|T0|L2 , |C0|L2 , |f2|L1(0,S;L2(Ω)), |f3|L1(0,S;L2(Ω))),

where Q(z1, z2, · · · ) is some monotone increasing function of z1, z2, · · · . Multiplying the
first equation of (DCBF) by u and Au, we obtain

1

2

d

dt
|u|2L2 + ν|∇u|2L2 + a|u|2L2

� (|g||T |L2 + |h||C|L2 + |f1|L2) |u|L2 ,

1

2

d

dt
|∇u|2L2 +

ν

2
|Au|2L2 + a|∇u|2L2

� 3|g|2
2ν

|T |2L2 +
3|h|2
2ν

|C|2L2 +
3

2ν
|f1|L2 ,

i.e.,

sup
0�t�S

|u(t)|H1 +

∫ S

0

|Au(s)|2L2ds � γ5(1 + S),

where γ5 is a general constant which depends on ν, |g|, |h|, |T0|L2 , |C0|L2 , |f2|L1(0,S;L2(Ω)),
|f3|L1(0,S;L2(Ω)), |f1|L2(0,S;L2(Ω)), |u0|H1 and independent of S. Therefore, for any S0 ∈
(0, S), we can assure that

sup
0�t�S0

{|T (t)|L2 + |C(t)|L2 + |u(t)|H1} � γ5(1 + S).

This uniform bound independent of S0 implies that the local solution constructed in the
previous section can be extended onto the whole of the prescribed interval [0, S], whence
follows our result.

4.5 Remarks

4.5.1 For H1-Initial Data

If the initial data belong to H1
σ(Ω)×H1(Ω)×H1(Ω), we can derive the following result.

Corollary 4.5.1. Let N � 4 and let the space domain Ω be either the whole space
RN or uniform C2-domain. Then for any u0 ∈ H1

σ(Ω) , T0, C0 ∈ H1(Ω) and for any
f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ L2(0, S;L2(Ω)), (DCBF) with the homogeneous Neumann
boundary condition admits a unique solution (u, T, C) satisfying the following regulari-
ties:

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).
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In our proof for Lemma 4.2.1, we already saw that the following lemma is valid.

Lemma 4.5.1. Let N � 4 and let the space domain Ω be either the whole space RN or
uniform C2-domain. Assume that T0 ∈ H1(Ω), u ∈ WS and f2 ∈ L2(0, S;L2(Ω)). Then
the following problem (4.53) has a unique global solution T in Y ′′

S .

(4.53)

{
∂tT −ΔT + u·∇T = f2 in Ω×[0, S],
∂T
∂n
|∂Ω = 0, T (·, 0) = T0.

Here we recall that

Y ′′
S := C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

Lemma 4.5.1 immediately assure the solvability of the third equation:{
∂tC −ΔC + u · ∇C = ρΔT + f3 in Ω×[0, S],
∂C
∂n

|∂Ω = 0, C(·, 0) = C0,

since T ∈ Y ′′
S implies ΔT ∈ L2(0, S;L2(Ω)).

Therefore, we can show the existence of local solution of (DCBF) for H1-initial data
by almost the same argument as above.

Finally, we check the uniform boundedness of solution. Recall that

sup
0�t�S0

{|T (t)|L2 + |C(t)|L2 + |u(t)|H1} � γ6,∫ S0

0

|∇T (s)|2L2ds+

∫ S0

0

|∇C(s)|2L2ds+

∫ S0

0

|Au(s)|2L2ds � γ6

hold for any S0 ∈ [0, S], where γ6 is a general constant independent of S0. Moreover,
multiplying the second and the third equation of (DCBF) by −ΔT , −ΔC respectively
and repeating our procedures for (4.15), we obtain

1

2

d

dt
|∇T |2L2 +

1

8
|ΔT |2L2 � γ6|u|2H2 |∇T |2L2 +

1

2
|f2|2L2 +

1

2
|T |2L2 ,

1

2

d

dt
|∇C|2L2 +

1

16
|ΔC|2L2 � γ6|u|2H2 |∇C|2L2 +

1

2
|f3|2L2 +

1

2
|C|2L2 + 4ρ2|ΔT |2L2 .

By applying Granwall’s inequality to these inequalities, we have

sup
0�t�S0

{|∇T (t)|L2 + |∇C(t)|L2} � γ6,

which implies the time-local solution can be extended up to S.
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4.5.2 Dirichlet Boundary Condition Case

Evidently, our argument in this chapter can be carried out for the initial boundary
value problem with Dirichlet boundary condition without any changing and modification.
Namely, we can assure the following.

Corollary 4.5.2. Let N � 4 and let the space domain Ω be either the whole space
RN or uniform C2-domain. Then for any u0 ∈ H1

σ(Ω), T0, C0 ∈ L2(Ω) and any f1 ∈
L2(0, S;L2(Ω)), f2, f3 ∈ XS, (DCBF) with the homogeneous Dirichlet boundary condition
admits a unique solution (u, T, C)t ∈ Z ′

S, where

Y ′′′
S :=

{
U ∈ C([0, S];L2(Ω)) ∩ L2(0, S;H1

0 (Ω));
√
tΔU,

√
t∂tU ∈ L2(0, S;L2(Ω))

}
,

Z ′
S :=

⎧⎨⎩
⎛⎝ u

T
C

⎞⎠ ∈ C([0, S];L2
σ(Ω)× L2(Ω)× L2(Ω));

u ∈ WS, T, C ∈ Y ′′′
S ,

∂tu ∈ L2(0, S;L2
σ(Ω))

⎫⎬⎭
with the norm ‖U‖Y ′′′

S
:= ‖U‖YS

.
Moreover, if f1 ∈ L2(0, S;L2(Ω)), f2, f3 ∈ L2(0, S;L2(Ω)) and u0 ∈ H1

σ(Ω), T0, C0 ∈
H1

0 (Ω) , Then the solution satisfies the following regularities:

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ C([0, S];H1
0 (Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).



Chapter 5

Time Periodic Problem in the
Whole Space

5.1 Problems and Main Theorems

We here consider the following time periodic problem of (DCBF) in the whole space RN .

(DCBF)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu = νΔu− au−∇p+ gT + hC + f1 (x, t) ∈ RN×[0, S],

∂tT + u·∇T = ΔT + f2 (x, t) ∈ RN×[0, S],

∂tC + u·∇C = ΔC + ρΔT + f3 (x, t) ∈ RN×[0, S],

∇·u = 0 (x, t) ∈ RN×[0, S],

u(·, 0) = u(·, S), T (·, 0) = T (·, S), C(·, 0) = C(·, S).

The main purpose of this chapter is to show the existence of solution in the following sense
(recall that the conjugate Hölder exponent and the critical Sobolev exponent associated
with q are designated by q′ := q/(q − 1) and q∗ := qN/(N − q) respectively).

Definition 5.1.1 (Periodic solution of (DCBF)). Let N = 3 or 4. Then (u, T, C) is
said to be a periodic solution of (DCBF), if

1. (u, T, C) satisfies the following regularities:

u ∈ Cπ([0, S];L
2∗
σ (RN)), T, C ∈ Cπ([0, S];L

2∗(RN)),

∂xμu ∈ Cπ([0, S];L
2(RN)), ∂xμT, ∂xμC ∈ Cπ([0, S];L

2(RN)),

∂tu ∈ L2(0, S;L2
σ(R

N)), ∂tT, ∂tC ∈ L2(0, S;L2(RN)),

∂xι∂xμu ∈ L2(0, S;L2(RN)), ∂xι∂xμT, ∂xι∂xμC ∈ L2(0, S;L2(RN)),

Δu ∈ L2(0, S;L2
σ(R

N))

for all ι, μ = 1, 2, · · · , N .

2. (u, T, C) satisfies the second and the third equation of (DCBF) in L2(0, S;L2(RN)).
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3. For all φ ∈ L2(0, S;L2
σ(R

N)) ∩ L2(0, S;L
(2∗)′
σ (RN)), (u, T, C) satisfies

(5.1)

∫ S

0

∫
RN

(∂tu−Δu+ au− gT − hC − f1) · φ dxdt = 0.

Our argument in this chapter is divided into the following three steps:

Step 1: We show the solvability of the following problem with two approximation
parameters n ∈ N and λ > 0.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu+ νAΩnu+ au = PΩngT + PΩnhC + PΩnf1|Ωn (x, t) ∈ Ωn×[0, S],

∂tT + u·∇T + λT = ΔT + f2|Ωn (x, t) ∈ Ωn×[0, S],

∂tC + u·∇C + λC = ΔC + ρΔT + f3|Ωn (x, t) ∈ Ωn×[0, S],

u = 0, T = 0, C = 0 (x, t) ∈ ∂Ωn × [0, S],

u(·, 0) = u(·, S), T (·, 0) = T (·, S), C(·, 0) = C(·, S).

Throughout this chapter, ΩR denotes the open ball centered at the origin with radius
R > 0, i.e., ΩR := {x ∈ RN ; |x| < R} and ·|ω designates the restriction of function onto
ω ⊂ RN .

Step 2: We discuss the convergence of solutions given in Step 1 as n → ∞ and we
assure that the following problem possesses a solution for each parameter λ > 0.⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu+ νARNu+ au = PRNgT + PRNhC + PRNf1 (x, t) ∈ RN×[0, S],

∂tT + u·∇T + λT = ΔT + f2 (x, t) ∈ RN×[0, S],

∂tC + u·∇C + λC = ΔC + ρΔT + f3 (x, t) ∈ RN×[0, S],

u(·, 0) = u(·, S), T (·, 0) = T (·, S), C(·, 0) = C(·, S).

Step 3: We show that the solutions of Step 2 converge to a periodic solution of the
original problem (DCBF) by letting the relaxation parameter λ tend to 0.

In this way, we demonstrate the following main theorem in this chapter.

Theorem 5.1.1. Let N = 3 or 4 and a > 0. Moreover, assume that

f1 ∈ W 1,2(0, S;L2(RN)), f1(0) = f1(S),

f2, f3 ∈ L2(0, S;L2(RN)) ∩ L2(0, S;L(2∗)′(RN)).

Then (DCBF) possesses at least one periodic solution (u, T, C).

Remark. We can show that the identity (5.1) is equivalent to the first equation of
(DCBF). Since T,C ∈ Cπ([0, S];L

2∗(RN)) and f1 ∈ Cπ([0, S];L
2(RN)), then gT (t),hC(t)

and f1(t) can be decomposed as follows:

gT (t) = vT (t) +wT (t), hC(t) = vC(t) +wC(t), f1(t) = vf1(t) +wf1(t)
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for any t ∈ [0, S], where

vT (t),vC(t) ∈ L2∗
σ (RN), wT (t),wC(t) ∈ G2∗(R

N),

vf1(t) ∈ L2
σ(R

N), wf1(t) ∈ G2(R
N).

Here we recall that

|vT (t)− vT (s)|L2∗ (RN ) + |wT (t)−wT (s)|L2∗ (RN ) � α |gT (t)− gT (s)|L2∗ (RN )

holds for any t, s ∈ [0, S], where α is some suitable constant independent of t and
s. This inequality implies that vT ,wT ∈ Cπ([0, S];L

2∗(RN)). By exactly the same
reasoning, vC ,wC ∈ Cπ([0, S];L

2∗(RN)) and vf1 ,wf1 ∈ Cπ([0, S];L
2(RN)) are also valid.

Then, since L2(0, S;L2
σ(R

N))∩L2(0, S;L
(2∗)′
σ (RN)) is the dual space of L2(0, S;L2

σ(R
N))+

L2(0, S;L2∗
σ (RN)), (5.1) yields

∂tu−Δu+ au− vT − vC − vf1 = 0

⇔ ∂tu−Δu+ au+wT +wC +wf1 = gT + hC + f1

(5.2)

in L2(0, S;L2(RN)) +L2(0, S;L2∗(RN)). By the definition of Gq(R
N), there exist p1 and

p2 such that

p1(·, t) ∈ W 1,2∗
loc (RN), p2(·, t) ∈ W 1,2

loc (R
N) ∀t ∈ [0, S],

∇p1 = wT +wC ∈ Cπ([0, S];L
2∗(RN)),

∇p2 = wf1 ∈ Cπ([0, S];L
2(RN)).

Therefore (5.2) is equivalent to the first equation of (DCBF) with p = p1 + p2.

5.2 Bounded Domain Case

We first consider Step 1, i.e., the solvability of the following equations in bounded do-
mains with large data.

Lemma 5.2.1. Let Ω ⊂ RN be a bounded domain with sufficiently smooth boundary ∂Ω
with N � 4. Moreover, assume that F1 ∈ L2(0, S;L2(Ω)) and F2, F3 ∈ L2(0, S;L2(Ω)).
Then for any non-negative constants a and λ, the following system (5.3) possesses at
least one periodic solution (u, T, C).

(5.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+ νAΩu+ au = PΩgT + PΩhC + PΩF1 (x, t) ∈ Ω×[0, S],

∂tT + u·∇T + λT = ΔT + F2 (x, t) ∈ Ω×[0, S],

∂tC + u·∇C + λC = ΔC + ρΔT + F3 (x, t) ∈ Ω×[0, S],

u = 0, T = 0, C = 0 (x, t) ∈ ∂Ω× [0, S].

Here (u, T, C) is said to be a periodic solution of (5.3), if
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1. (u, T, C) satisfies

u ∈ Cπ([0, S];H
1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ Cπ([0, S];H
1
0 (Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

(5.4)

2. (u, T, C) satisfies the second and the third equation of (5.3) in L2(0, S;L2(Ω)).

3. (u, T, C) satisfies the first equation of (5.3) in L2(0, S;L2
σ(Ω)).

Solvability of (5.3) has been already proved in Chapter 3 for N � 3. By using almost
the same procedures, we can also guarantee the solvability of (5.3) with N = 4 (for
instance, we first consider the following approximate system:⎧⎪⎨⎪⎩

∂tu+ νAΩu+ au = PΩgT + PΩhC + PΩF1

∂tT + εΔ2T −ΔDT + u · ∇T = F2

∂tC + εΔ2C −ΔDC + u · ∇C = ρΔDT + F3,

where Δ2 := (−ΔD)
2. After we show the solvability of these approximate equations by

Proposition 2.3.5, we discuss the convergence of approximate solutions as the parameter
ε tends to 0).

However, we here give another way to prove this fact.

Proof. Fix T ,C ∈ L2(0, S;L2(Ω)) arbitrarily. Then by virtue of Proposition 2.3.2, the
following problem (5.5) possesses a periodic solution u belonging to Cπ([0, S];H

1
σ(Ω)) ∩

L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2
σ(Ω)).

(5.5)

⎧⎪⎨⎪⎩
∂tu+ νAΩu+ au = PΩgT + PΩhC + PΩF1 (x, t) ∈ Ω×[0, S],

u = 0 (x, t) ∈ ∂Ω× [0, S],

u(0) = u(S).

It is easy to see that the solution of (5.5) is unique. Indeed, let u1 and u2 be solutions
of (5.5). Then u1 − u2 satisfies

∂t(u1 − u2) + νAΩ(u1 − u2) + a(u1 − u2) = 0

⇒1

2

d

dt
|u1 − u2|2L2(Ω) +

(ν
κ
+ a
)
|u1 − u2|2L2(Ω) � 0,

(5.6)

where κ is a constant appearing in Poincaré’s inequality:

|U |2L2(Ω) � κ|∇U |2L2(Ω), |v|2L2(Ω) � κ|∇v|2L2(Ω),

|∇U |2L2(Ω) � κ|ΔU |2L2(Ω), |∇v|2L2(Ω) � κ|AΩv|2L2(Ω)

for any v ∈ D(AΩ) and U ∈ D(−ΔD). Integrating (5.6) over [0, S] and using the
periodicity of u1 and u2, we obtain∫ S

0

|u1(s)− u2(s)|2L2(Ω)ds � 0,
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which implies u1 = u2. Let u be the unique periodic solution of (5.5). Then we can
define Φ : XS → YS by the relationship Φ((T ,C)) := u, where

XS := L2(0, S;L2(Ω))× L2(0, S;L2(Ω)),

YS := C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)).

Fix u ∈ YS arbitrarily. Then we next consider the following system:

(5.7)

⎧⎪⎨⎪⎩
∂tT + u·∇T + λT = ΔT + F2 (x, t) ∈ Ω×[0, S],

∂tC + u·∇C + λC = ΔC + ρΔT + F3 (x, t) ∈ Ω×[0, S],

T = 0, C = 0 (x, t) ∈ ∂Ω× [0, S].

According to Chapter 4, the initial boundary value problem of (5.7) has a unique solution
for any initial data T (0) ∈ L2(Ω) and C(0) ∈ L2(Ω). Moreover, this solution satisfies
the following regularities:

T,C ∈ C([0, S];L2(Ω)) ∩ L2(0, S;H1
0 (Ω)),√

tΔT,
√
t∂tT,

√
tΔC,

√
t∂tC ∈ L2(0, S;L2(Ω)).

(5.8)

Let (T1, C1) and (T2, C2) be two solutions of the initial boundary value problem for (5.7).
Then δT := T1 − T2 and δC := C1 − C2 satisfy{

∂tδT + u·∇δT + λδT = ΔδT,

∂tδC + u·∇δC + λδC = ΔδC + ρΔδT.

Multiplying each equation by δT and δC respectively, we get

(5.9)
1

2

d

dt
|δT |2L2(Ω) + |∇δT |2L2(Ω) + λ|δT |2L2(Ω) = 0

and

1

2

d

dt
|δC|2L2(Ω) + |∇δC|2L2(Ω) + λ|δC|2L2(Ω)

=− ρ

∫
Ω

∇δT · ∇δC

�ρ|∇δT |L2(Ω)|∇δC|L2(Ω) �
1

2
|∇δC|2L2(Ω) +

ρ2

2
|∇δT |2L2(Ω).

(5.10)

Then (5.9) and (5.10) yield

d

dt

(
|δT |2L2(Ω) +

1

ρ2
|δC|2L2(Ω)

)
+

(
|∇δT |2L2(Ω) +

1

ρ2
|∇δC|2L2(Ω)

)
� 0.

Therefore, by applying Poincaré’s inequality and Gronwall’s inequality, we have(
|δT (S)|2L2(Ω) +

1

ρ2
|δC(S)|2L2(Ω)

)
�
(
|δT (0)|2L2(Ω) +

1

ρ2
|δC(0)|2L2(Ω)

)
e−

S
κ .
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Therefore, we can derive the existence of a unique periodic solution of (5.7) from the
application of Banach’s contraction mapping principle in L2(Ω)× L2(Ω).

Let (T ,C) be the periodic solution of (5.7) and define Ψ : YS → XS by the corre-
spondence Ψ(u) := (T , C). Since T (0), C(0) ∈ H1

0 (Ω) hold by the periodicity and (5.8),
the following regularities of Ψ(u) = (T , C) can be obtained for any given u ∈ YS (recall
Lemma 4.5.1 and Corollary 4.5.2 in Chapter 4).

T ,C ∈ Cπ([0, S];H
1
0 (Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω)).

Moreover, multiplying each equation of (5.7) by T and C respectively, we get

1

2

d

dt
|T |2L2(Ω) + |∇T |2L2(Ω) � |F2|L2(Ω)|T |L2(Ω) �

√
κ|F2|L2(Ω)|∇T |L2(Ω)

⇒ d

dt
|T |2L2(Ω) + |∇T |2L2(Ω) � κ|F2|2L2(Ω)

⇒
∫ S

0

|∇T (s)|2L2(Ω)ds � κ

∫ S

0

|F2(s)|2L2(Ω)ds

(5.11)

and

1

2

d

dt
|C|2L2(Ω) + |∇C|2L2(Ω) � ρ|∇T |L2(Ω)|∇C|L2(Ω) + |F3|L2(Ω)|C|L2(Ω)

⇒ d

dt
|C|2L2(Ω) + |∇C|2L2(Ω) � 2ρ2|∇T |2L2(Ω) + 2κ|F3|2L2(Ω)

⇒
∫ S

0

|∇C(s)|2L2(Ω)ds � 2ρ2
∫ S

0

|∇T (s)|2L2(Ω)ds+ 2κ

∫ S

0

|F3(s)|2L2(Ω)ds

(5.12)

for arbitrary u ∈ YS.
Define the set K ⊂ XS by

K :=

{
(U1, U2) ∈ XS;

|U1|2L2(0,S;L2(Ω)) � κ2|F2|2L2(0,S;L2(Ω))

|U2|2L2(0,S;L2(Ω)) � 2ρ2κ2|F2|2L2(0,S;L2(Ω)) + 2κ2|F3|2L2(0,S;L2(Ω))

}
.

Then (5.11) and (5.12) imply that K satisfies Ψ ◦ Φ(K) ⊂ K. Obviously, K is convex
and compact with respect to the weak topology of XS.

Let {T k}k∈N and {Ck}k∈N be sequences which weakly converge in L2(0, S;L2(Ω)) and
let T and C denote their limits respectively. Furthermore, we define uk := Φ((T k, Ck)),
u := Φ((T ,C)), (T k, Ck) := Ψ(uk) and (T ,C) := Ψ(u). Multiplying

∂tuk + νAΩuk + auk = PΩgT k + PΩhCk + PΩF1

by uk, AΩuk and ∂tuk, we have

1

2

d

dt
|uk|2L2(Ω) +

ν

2
|∇uk|2L2(Ω) + a|uk|2L2(Ω)

� 3|g|2κ
2ν

|T k|2L2(Ω) +
3|h|2κ
2ν

|Ck|2L2(Ω) +
3κ

2ν
|F1|2L2(Ω),

(5.13)
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1

2

d

dt
|∇uk|2L2(Ω) +

ν

2
|AΩuk|2L2(Ω)

� 3|g|2
2ν

|T k|2L2(Ω) +
3|h|2
2ν

|Ck|2L2(Ω) +
3

2ν
|F1|2L2(Ω),

(5.14)

1

2
|∂tuk|2L2(Ω) +

ν

2

d

dt
|∇uk|2L2(Ω) +

a

2

d

dt
|uk|2L2(Ω)

� 3|g|2
2

|T k|2L2(Ω) +
3|h|2
2

|Ck|2L2(Ω) +
3

2
|F1|2L2(Ω).

(5.15)

Here we remark that |T k|2L2(0,S;L2(Ω)) and |Ck|2L2(0,S;L2(Ω)) possess uniform bounds inde-

pendent of k ∈ N. Then, by integrating inequalities (5.13), (5.14) and (5.15) over [0, S],
we obtain the following estimates for uk:

(5.16)

∫ S

0

|uk(s)|2H1(Ω) ds+

∫ S

0

|AΩuk(s)|2L2(Ω) ds+

∫ S

0

|∂tuk(s)|2L2(Ω)ds � γ1.

Here and henceforth, γ1 designates some general constant independent of k ∈ N. Since
uk ∈ C([0, S];H1

σ(Ω)), there exists tk0 ∈ [0, S] where |uk(·)|H1(Ω) attains its minimum.
From (5.16), we can immediately derive

∣∣uk(t
k
0)
∣∣2
H1(Ω)

� 1

S

∫ S

0

|uk(s)|2H1(Ω) ds � γ1.

Integrating (5.13) and (5.14) over [tk0, t] with t ∈ [tk0, t
k
0 + S], we obtain

(5.17) sup
0�t�S

|uk(t)|2H1(Ω) � γ1.

By virtue of (5.16), (5.17) and Ascoli’s theorem (Proposition 2.5.3), we can extract a
subsequence {ukj

}j∈N which converges strongly in Cπ([0, S];L
2
σ(Ω)). Let u

′ designate its
limit. From (5.16) again, we can derive

AΩukj
⇀ AΩu

′ weakly in L2(0, S;L2
σ(Ω)),

∂tukj
⇀ ∂tu

′ weakly in L2(0, S;L2
σ(Ω)).

Recalling that ukj
is a solution of

∂tukj
= −νAΩukj

− aukj
+ PΩgT kj

+ PΩhCkj
+ PΩF1

and taking the limit as j → ∞, we can show that u′ becomes a periodic solution of the
following equation:

∂tu
′ = −νAΩu

′ − au′ + PΩgT + PΩhC + PΩF1.

Due to the uniqueness of periodic solution of (5.5), u′ coincides with u. Since arguments
above do not depend on the choice of subsequences, we can assure that uk → u strongly
in Cπ([0, S];L

2
σ(Ω)).
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Multiplying

(5.18) ∂tT k −ΔT k + uk·∇T k + λT k = F2

by T k, we get

d

dt
|T k|2L2(Ω) + |∇T k|2L2(Ω) � κ|F2|2L2(Ω)

⇒
∫ S

0

|T k(s)|2H1(Ω)ds � γ1.

(5.19)

Since T k ∈ C([0, S];H1
0 (Ω)), there exists tk1 ∈ [0, S] such that |T k(t

k
1)|H1(Ω) � γ1. Then,

from (5.19), we obtain

sup
0�t�S

∣∣T k(t)
∣∣2
L2(Ω)

� γ1.

Next multiplying (5.18) by −ΔT k and ∂tT k, we have

1

2

d

dt
|∇T k|2L2(Ω) +

1

2
|ΔT k|2L2(Ω) � |uk·∇T k|2L2(Ω) + |F2|2L2(Ω),

1

2
|∂tT k|2L2(Ω) +

1

2

d

dt
|∇T k|2L2(Ω) +

λ

2

d

dt
|T k|2L2(Ω) � |uk·∇T k|2L2(Ω) + |F2|2L2(Ω).

We here recall the following estimates (see (4.5) in Section 4.2 and use Poincaré’s in-
equality).

|w · ∇U |2L2(Ω) � |w|2L8(Ω)|∇U |2L8/3(Ω) � η|w|2
W1,8/3(Ω)|∇U |2L8/3(Ω)

� η|w|W1,2(Ω)|w|W1,4(Ω)|∇U |L2(Ω)|∇U |L4(Ω)

� η|w|H1(Ω)|w|H2(Ω)|∇U |L2(Ω)|U |H2(Ω)

� η|∇w|L2(Ω)|AΩw|L2(Ω)|∇U |L2(Ω)|ΔU |L2(Ω),

(5.20)

where w ∈ D(AΩ), U ∈ D(−ΔD) and η is some suitable constant. From this inequality,
we can derive

1

2

d

dt
|∇T k|2L2(Ω) +

1

4
|ΔT k|2L2(Ω)

� γ1|∇uk|2L2(Ω)|AΩuk|2L2(Ω)|∇T k|2L2(Ω) + |F2|2L2(Ω),

1

4
|∂tT k|2L2(Ω) +

1

2

d

dt
|∇T k|2L2(Ω) +

λ

2

d

dt
|T k|2L2(Ω)

� γ1|∇uk|L2(Ω)|AΩuk|L2(Ω)|∇T k|L2(Ω)|ΔT k|L2(Ω) + |F2|2L2(Ω),

which, together with (5.16) and (5.17), yield

(5.21) sup
0�t�S

∣∣T k(t)
∣∣2
H1(Ω)

+

∫ S

0

∣∣ΔT k(s)
∣∣2
L2(Ω)

ds+

∫ S

0

|∂tT k(s)|2L2(Ω)ds � γ1.
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Similarly, multiplications of

∂tCk −ΔCk + uk·∇Ck + λCk = ρΔT k + F3

by Ck, −ΔCk and ∂tCk give

d

dt
|Ck|2L2(Ω) + |∇Ck|2L2(Ω) � 2κ|F3|2L2(Ω) + 2ρ2|∇T k|2L2(Ω),

1

2

d

dt
|∇Ck|2L2(Ω) +

1

4
|ΔCk|2L2(Ω)

� γ1|∇uk|2L2(Ω)|AΩuk|2L2(Ω)|∇Ck|2L2(Ω) +
3ρ2

2
|ΔT k|2L2(Ω) +

3

2
|F3|2L2(Ω),

1

4
|∂tCk|2L2(Ω) +

1

2

d

dt
|∇Ck|2L2(Ω) +

λ

2

d

dt
|Ck|2L2(Ω)

� γ1|∇uk|L2(Ω)|AΩuk|L2(Ω)|∇Ck|L2(Ω)|ΔCk|L2(Ω) +
3ρ2

2
|ΔT k|L2(Ω) +

3

2
|F3|2L2(Ω),

which yield

(5.22) sup
0�t�S

∣∣Ck(t)
∣∣2
H1(Ω)

+

∫ S

0

∣∣ΔCk(s)
∣∣2
L2(Ω)

ds+

∫ S

0

|∂tCk(s)|2L2(Ω)ds � γ1.

From (5.21) and (5.22), there exist subsequences {T kj}j∈N and {Ckj}j∈N which converge
strongly in Cπ([0, S];L

2(Ω)). Let T ′ and C ′ designate their limits as j → ∞ respectively.
Furthermore (5.21) and (5.22) yield

ΔT kj ⇀ ΔT ′, ∂tT kj ⇀ ∂tT
′ weakly in L2(0, S;L2(Ω)),

ΔCkj ⇀ ΔC ′, ∂tCkj ⇀ ∂tC
′ weakly in L2(0, S;L2(Ω)).

We can also assure that {ukj
·∇T kj}j∈N and {ukj

·∇Ckj}j∈N weakly converge to u ·∇T ′

and u · ∇C ′ in L2(0, S;L2(Ω)) respectively. Indeed, for any φ ∈ C∞
0 (Ω× (0, S)),∫

Ω

φukj
· ∇T kjdx = −

∫
Ω

T kjukj
· ∇φdx −−−→

j→∞
−
∫
Ω

T ′u · ∇φdx = −
∫
Ω

φu · ∇T ′dx

holds by virtue of the strong convergences of {ukj
}j∈N and {T kj}j∈N (recall our argument

for Check of (A2), in Chapter 3). Hence, taking the limit as j → ∞ in

∂tT kj −ΔT kj + ukj
·∇T kj + λT kj = F2,

∂tCkj −ΔCkj + ukj
·∇Ckj + λCkj = ρΔT kj + F3,

we can see that (T ′, C ′) becomes a periodic solution of the following equations:

∂tT
′ −ΔT ′ + u·∇T ′ + λT ′ = F2,

∂tC
′ −ΔC ′ + u·∇C ′ + λC ′ = ρΔT ′ + F3.
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Since the periodic solution of (5.7) is unique, we can show that T ′ = T and C ′ = C, i.e.,
{T k}k∈N and {Ck}k∈N strongly converge to T and C in Cπ([0, S];L

2(Ω)) respectively.
This implies the continuity of the mapping Ψ ◦ Φ under the weak topology of XS.

Thus, applying Schauder–Tychonoff’s fixed point theorem (Proposition 2.5.2) to the
mapping Ψ◦Φ onK endowed with the weak topology of L2(0, S;L2(Ω))×L2(0, S;L2(Ω)),
we can guarantee the existence of a periodic solution of (5.3).

5.3 Relaxation Problem in RN

Next we consider the following periodic problems in RN with relaxation terms λT and
λC.

Lemma 5.3.1. Let N = 3 or 4 and assume that f1 ∈ L2(0, S;L2(RN)) and f2, f3 ∈
L2(0, S;L2(RN)). Then for any positive constants a and λ, the following system (5.23)
possesses at least one periodic solution (u, T, C).

(5.23)

⎧⎪⎨⎪⎩
∂tu+ νARNu+ au = PRNgT + PRNhC + PRNf1 (x, t) ∈ RN×[0, S],

∂tT + u·∇T + λT = ΔT + f2 (x, t) ∈ RN×[0, S],

∂tC + u·∇C + λC = ΔC + ρΔT + f3 (x, t) ∈ RN×[0, S].

Here (u, T, C) is called periodic solution of (5.23), if

1. (u, T, C) satisfies

u ∈ Cπ([0, S];H
1
σ(R

N)) ∩ L2(0, S;H2(RN)) ∩W 1,2(0, S;L2
σ(R

N)),

T, C ∈ Cπ([0, S];H
1(RN)) ∩ L2(0, S;H2(RN)) ∩W 1,2(0, S;L2(RN)).

(5.24)

2. (u, T, C) satisfies the second and the third equation of (5.23) in L2(0, S;L2(RN)).

3. (u, T, C) satisfies the first equation of (5.23) in L2(0, S;L2
σ(R

N)).

Proof. According to Lemma 5.2.1, for each natural number n ∈ N and positive number
λ, the following equations (DCBF)n,λ possess a periodic solution (un, Tn, Cn):

(DCBF)n,λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tun + νAΩnun + aun = PΩngTn + PΩnhCn + PΩnf1|Ωn (x, t) ∈ Ωn×[0, S],

∂tTn + un·∇Tn + λTn = ΔTn + f2|Ωn (x, t) ∈ Ωn×[0, S],

∂tCn + un·∇Cn + λCn = ΔCn + ρΔTn + f3|Ωn (x, t) ∈ Ωn×[0, S],

un = 0, Tn = 0, Cn = 0 (x, t) ∈ ∂Ωn×[0, S],

where (un, Tn, Cn) satisfies

un ∈ Cπ([0, S];H
1
σ(Ωn)) ∩ L2(0, S;H2(Ωn)) ∩W 1,2(0, S;L2

σ(Ωn)),

Tn, Cn ∈ Cπ([0, S];H
1
0 (Ωn)) ∩ L2(0, S;H2(Ωn)) ∩W 1,2(0, S;L2(Ωn)).

(5.25)
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To begin with, we establish some a priori estimates for (un, Tn, Cn) independent of n.
Throughout this section, γ2 stands for a general constant independent of n. Multiplying
the second equation of (DCBF)n,λ by Tn, we have

1

2

d

dt
|Tn|2L2(Ωn)

+ |∇Tn|2L2(Ωn)
+ λ|Tn|2L2(Ωn)

� 1

2λ
|f2|Ωn |2L2(Ωn)

+
λ

2
|Tn|2L2(Ωn)

,

namely,

(5.26)
d

dt
|Tn|2L2(Ωn)

+ 2|∇Tn|2L2(Ωn)
+ λ|Tn|2L2(Ωn)

� 1

λ
|f2|Ωn|2L2(Ωn)

� 1

λ
|f2|2L2(RN ).

Integrating (5.26) over [0, S] and recalling T (·, 0) = T (·, S), we get

(5.27)

∫ S

0

|Tn(s)|2H1(Ωn)
ds � γ2.

Then, by the continuity of Tn, there exists tn2 ∈ [0, S] satisfying

|Tn(t
n
2 )|2H1(Ωn)

= min
0�t�S

|Tn(t)|2H1(Ωn)
.

From (5.27) again, we can derive

(5.28) |Tn(t
n
2 )|2H1(Ωn)

� 1

S

∫ S

0

|Tn(s)|2H1(Ωn)
ds � γ2.

Then integrating (5.26) over [tn2 , t] (t ∈ [tn2 , t
n
2 + S]) and using the boundedness (5.28),

we obtain

(5.29) sup
0�t�S

|Tn(t)|2L2(Ωn)
� γ2.

Multiplying the third equation of (DCBF)n,λ by Cn and repeating almost the same
procedure as above, we have

d

dt
|Cn|2L2(Ωn)

+ |∇Cn|2L2(Ωn)
+ λ|Cn|2L2(Ωn)

� ρ2|∇Tn|2L2(Ωn)
+

1

λ
|f3|2L2(RN ),

which yields ∫ S

0

|Cn(s)|2H1(Ωn)
ds � γ2

and

(5.30) sup
0�t�S

|Cn(t)|2L2(Ωn)
� γ2.
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Moreover, multiplying the first equation of (DCBF)n,λ by un, AΩnun and ∂tun (see
(5.13), (5.14) and (5.15)), we have

d

dt
|un|2L2(Ωn)

+ 2ν|∇un|2L2(Ωn)
+ a|un|2L2(Ωn)

� 3|g|2
a

|Tn|2L2(Ωn)
+

3|h|2
a

|Cn|2L2(Ωn)
+

3

a
|f1|2L2(RN ),

d

dt
|∇un|2L2(Ωn)

+ ν|AΩnun|2L2(Ωn)

� 3|g|2
ν

|Tn|2L2(Ωn)
+

3|h|2
ν

|Cn|2L2(Ωn)
+

3

ν
|f1|2L2(RN ),

|∂tun|2L2(Ωn)
+ ν

d

dt
|∇un|2L2(Ωn)

+ a
d

dt
|un|2L2(Ωn)

� 3|g|2|Tn|2L2(Ωn)
+ 3|h|2|Cn|2L2(Ωn)

+ 3|f1|2L2(RN ),

which immediately lead to

(5.31)

∫ S

0

|un(s)|2H1(Ωn)
ds+

∫ S

0

|AΩnun(s)|2L2(Ωn)
ds+

∫ S

0

|∂tun(s)|2L2(Ωn)
ds � γ2

and

(5.32) sup
0�t�S

|un(t)|2H1(Ωn)
� γ2.

We here prepare the following lemma concerning the elliptic estimate and the estimate
for convection terms so that we can accomplish second energy estimates of Tn and Cn.

Lemma 5.3.2. Let R > 0 and let w ∈ H2(ΩR) ∩ H1
σ(ΩR) and U ∈ H2(ΩR) ∩H1

0 (ΩR).
Then there exist some constant β which is independent of R such that the following
inequalities hold:

(5.33) |w · ∇U |2L2(ΩR) � β|∇w|2L2(ΩR)|∇U |L2(ΩR)|ΔU |L2(ΩR),

if N = 3.

(5.34) |w · ∇U |2L2(ΩR) � β|∇w|L2(ΩR)|AΩR
w|L2(ΩR)|∇U |L2(ΩR)|ΔU |L2(ΩR),

if N = 4.

(5.35)
∣∣∂xι∂xμU

∣∣
L2(ΩR)

� β |ΔU |L2(ΩR) ,
∣∣∂xι∂xμw

∣∣
L2(ΩR)

� β |AΩR
w|L2(ΩR)

for N = 3, 4 and for all ι, μ = 1, 2, · · · , N .

Proof of Lemma 5.3.2. Let N = 3, then Hölder’s inequality yields

|w · ∇U |2L2(ΩR) � |w|2L6(ΩR)|∇U |L2(ΩR)|∇U |L6(ΩR).
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By Sobolev’s inequality, w ∈ H1
σ(ΩR) satisfies |w|2

L6(ΩR) � γ|∇w|2
L2(ΩR) with some con-

stant γ independent of R. Moreover, by using Sobolev’s inequality, elliptic estimate and
Poincaré’s inequality, we have

(5.36) |∇U |L6(ΩR) � βΩR
|U |H2(ΩR) � βΩR

|ΔU |L2(ΩR)

for U ∈ H2(ΩR) ∩H1
0 (ΩR), where βΩR

is a suitable constant which may depend on the
radius R. Therefore, we can assure that (5.33) holds with β = γβΩR

and we only have
to show that the coefficient β can be taken independently of R.

For any U ∈ H2(ΩR)∩H1
0 (ΩR), we define UR ∈ H2(Ω1)∩H1

0 (Ω1) by UR(y) := U(Ry),
where y ∈ Ω1. We here remark that,

∂xμU(x) =
1

R
∂yμUR(y) (μ = 1, 2, 3)

holds under the change of variable y = x/R (x ∈ ΩR, y ∈ Ω1). Therefore, we get

|∇xU |6L6(ΩR) =

∫
Ω1

3∑
μ=1

∣∣∣∣ 1R∂yμUR(y)

∣∣∣∣6R3dy = R−3|∇yUR|6L6(Ω1)
,

|ΔxU |2L2(ΩR) =

∫
Ω1

∣∣∣∣∣
3∑

μ=1

1

R2
∂2
yμU(x)

∣∣∣∣∣
2

R3dy = R−1|ΔyUR|2L2(Ω1)
.

Then using (5.36) again with R = 1, we obtain

|∇xU |L6(ΩR) = R−1/2|∇yUR|L6(Ω1)

� R−1/2βΩ1 |ΔyUR|L2(Ω1) = R−1/2βΩ1R
1/2|ΔxU |L2(ΩR),

(5.37)

which implies that (5.33) is valid for any R > 0 with the coefficient β = γβΩ1 , which is
independent of R.

Let N = 4 and U ∈ H2(ΩR) ∩H1
0 (ΩR), w ∈ H2(ΩR) ∩H1

σ(ΩR). Then we have

|w · ∇U |2L2(ΩR) � |w|2L8(ΩR)|∇U |2L8/3(ΩR)

� |w|2L8(ΩR)|∇U |L2(ΩR)|∇U |L4(ΩR).
(5.38)

Moreover, since

(5.39) |∇U |L4(ΩR) � βΩR
|U |H2(ΩR) � βΩR

|ΔU |L2(ΩR)

and

|w|2L8(ΩR) � β′
ΩR

|w|2
W1,8/3(ΩR) � β′

ΩR
|w|W1,2(ΩR)|w|W1,4(ΩR)

� β′
ΩR

|w|H1(ΩR)|w|H2(ΩR) � β′
ΩR

|∇w|L2(ΩR)|AΩR
w|L2(ΩR)

(5.40)

hold with some general constant βΩR
and β′

ΩR
, then (5.34) is valid for each R > 0 with

β = βΩR
β′
ΩR

(see (5.20)).
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Here we define UR ∈ H2(Ω1)∩H1
0 (Ω1) and wR ∈ H2(Ω1)∩H1

σ(Ω1) by UR(y) := U(Ry)
and wR(y) := w(Ry) (y ∈ Ω1) respectively. Then, by the same reasoning as that for
(5.37), i.e., from (5.39) and identities

|∇xU |4L4(ΩR) =

∫
Ω1

4∑
μ=1

∣∣∣∣ 1R∂yμUR(y)

∣∣∣∣4 R4dy = |∇yUR|4L4(Ω1)
,

|ΔxU |2L2(ΩR) =

∫
Ω1

∣∣∣∣∣
4∑

μ=1

1

R2
∂2
yμU(x)

∣∣∣∣∣
2

R4dy = |ΔyUR|2L2(Ω1)
,

we can derive

|∇xU |L4(ΩR) = |∇yUR|L4(Ω1)

� βΩ1 |ΔyUR|L2(Ω1) = βΩ1 |ΔxU |L2(ΩR),
(5.41)

where x ∈ ΩR and y ∈ Ω1. Under the change of variable y = x/R, the following identities
also hold:

|w|8L8(ΩR) =

∫
Ω1

|wR(y)|8R4dy = R4|wR|8L8(Ω1)
,

|∇xw|2L2(ΩR) =

∫
Ω1

4∑
μ=1

∣∣∣∣ 1R∂yμwR(x)

∣∣∣∣2 R4dy = R2|∇ywR|2L2(Ω1)
.

(5.42)

We here remark that the following identity also can be verified:

(5.43) PΩR
Δxw(x) =

1

R2
PΩ1ΔywR(y).

Indeed, since w ∈ H2(ΩR), the Helmholtz decomposition Δxw = v1 + v2 holds, where
v1 ∈ L2

σ(ΩR) and v2 ∈ G2(ΩR). We recall that the definition of G2(ΩR) implies that
there exists P ∈ W 1,2(ΩR) such that v2 = ∇xP . Let v1

R(y) := v1(Ry), v2
R(y) := v2(Ry)

and PR(y) := P (Ry) with y ∈ Ω1. Then, v1
R ∈ L2

σ(Ω1) is clear by the definition of
L2
σ(ΩR) and v2

R ∈ G2(Ω1) is also evident by PR ∈ W 1,2(Ω1). These facts yield the
decomposition 1

R2ΔywR = v1
R + v2

R under the change of variable y = x/R. Therefore,
since the decomposition is unique, we can assure the identity (5.43).

Then, (5.43) gives us

|AΩR
w|2L2(ΩR) =

∫
ΩR

|PΩR
Δxw(x)|2dx

=

∫
Ω1

∣∣∣∣ 1R2
PΩ1ΔywR(y)

∣∣∣∣2R4dy = |AΩ1wR|2L2(Ω1)
.

(5.44)

Recalling (5.40), together with (5.42) and (5.44), we obtain

|w|2L8(ΩR) = R|wR|2L8(Ω1)
� Rβ′

Ω1
|∇ywR|L2(Ω1)|AΩ1wR|L2(Ω1)

= Rβ′
Ω1
R−1|∇xw|L2(ΩR)|AΩR

w|L2(ΩR).
(5.45)
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Hence, by (5.38), (5.41) and (5.45), we can assure that the coefficient in (5.34) can be
taken as β = βΩ1β

′
Ω1

for any R.
Let w ∈ H2(ΩR) ∩ H1

σ(ΩR) and U ∈ H2(ΩR) ∩ H1
0 (ΩR). Combining the elliptic

estimates with Poincaré’s inequality, we get∣∣∂xι∂xμU
∣∣
L2(ΩR)

� βΩR
|ΔU |L2(ΩR) ,

∣∣∂xι∂xμw
∣∣
L2(ΩR)

� βΩR
|AΩR

w|L2(ΩR)

for any ι, μ = 1, 2, · · · , N . Then we can immediately assure that (5.35) holds with
β = βΩ1 for arbitrary R, since the identities∣∣∂xι∂xμU

∣∣
L2(ΩR)

= R
N−4

2

∣∣∂yι∂yμUR

∣∣
L2(Ω1)

, |ΔxU |L2(ΩR) = R
N−4

2 |ΔyUR|L2(Ω1)
,∣∣∂xι∂xμw

∣∣
L2(ΩR)

= R
N−4

2

∣∣∂yι∂yμwR

∣∣
L2(Ω1)

, |AΩR
w|L2(ΩR) = R

N−4
2 |AΩ1wR|L2(Ω1)

are valid (use (5.43) again).

Proof of Lemma 5.3.1 (continued). Multiplying the second equation of (DCBF)n,λ by
−ΔTn and using (5.33) and (5.34), we get

1

2

d

dt
|∇Tn|2L2(Ωn)

+ |ΔTn|2L2(Ωn)

� |un · ∇Tn|L2(Ωn)|ΔTn|L2(Ωn) + |f2|Ωn|L2(Ωn)|ΔTn|L2(Ωn)

� γ2|∇un|L2(Ωn)|∇Tn|1/2L2(Ωn)
|ΔTn|3/2L2(Ωn)

+ |f2|Ωn|L2(Ωn)|ΔTn|L2(Ωn)

� 1

2
|ΔTn|2L2(Ωn)

+ γ2|∇un|4L2(Ωn)
|∇Tn|2L2(Ωn)

+ |f2|2L2(RN )

⇒ d

dt
|∇Tn|2L2(Ωn)

+ |ΔTn|2L2(Ωn)
� γ2|∇un|4L2(Ωn)

|∇Tn|2L2(Ωn)
+ 2|f2|2L2(RN )

(5.46)

for N = 3 and

1

2

d

dt
|∇Tn|2L2(Ωn)

+ |ΔTn|2L2(Ωn)

� γ2|∇un|1/2L2(Ωn)
|AΩnun|1/2L2(Ωn)

|∇Tn|1/2L2(Ωn)
|ΔTn|3/2L2(Ωn)

+ |f2|L2(RN )|ΔTn|L2(Ωn)

� 1

2
|ΔTn|2L2(Ωn)

+ γ2|∇un|2L2(Ωn)
|AΩnun|2L2(Ωn)

|∇Tn|2L2(Ωn)
+ |f2|2L2(RN )

⇒ d

dt
|∇Tn|2L2(Ωn)

+ |ΔTn|2L2(Ωn)

� γ2|∇un|2L2(Ωn)
|AΩnun|2L2(Ωn)

|∇Tn|2L2(Ωn)
+ 2|f2|2L2(RN )

(5.47)

for N = 4. We here recall that there exist some tn2 ∈ [0, S] such that |Tn(t
n
2 )|2H1(Ωn)

� γ2
(see (5.28)). Applying Gronwall’s inequality to (5.46) and (5.47) over [tn2 , t] with t ∈
[tn2 , t

n
2 + S] and using the uniform boundedness of un ((5.31) and (5.32)), we obtain

(5.48) sup
0�t�S

|∇Tn(t)|2L2(Ωn)
� γ2.
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Integrating (5.46) and (5.47) over [0, S] and using (5.48), we have

(5.49)

∫ S

0

|ΔTn(s)|2L2(Ωn)
ds � γ2.

From (5.35) and (5.49), we can derive

(5.50)

∫ S

0

|∂xι∂xμTn(s)|2L2(Ωn)
ds � γ2 ∀ι, ∀μ = 1, 2, · · · , N.

Multiplying the second equation of (DCBF)n,λ by ∂tTn, we get

|∂tTn|2L2(Ωn)
+

1

2

d

dt
|∇Tn|2L2(Ωn)

+
λ

2

d

dt
|Tn|2L2(Ωn)

� 1

2
|∂tTn|2L2(Ωn)

+ |un · ∇Tn|2L2(Ωn)
+ |f2|2L2(RN )

� 1

2
|∂tTn|2L2(Ωn)

+ γ2|∇un|2L2(Ωn)
|∇Tn|L2(Ωn)|ΔTn|L2(Ωn) + |f2|2L2(RN )

⇒|∂tTn|2L2(Ωn)
+

d

dt
|∇Tn|2L2(Ωn)

+ λ
d

dt
|Tn|2L2(Ωn)

� γ2|∇un|2L2(Ωn)
|∇Tn|L2(Ωn)|ΔTn|L2(Ωn) + 2|f2|2L2(RN )

(5.51)

for N = 3 and

|∂tTn|2L2(Ωn)
+

1

2

d

dt
|∇Tn|2L2(Ωn)

+
λ

2

d

dt
|Tn|2L2(Ωn)

� 1

2
|∂tTn|2L2(Ωn)

+ |f2|2L2(RN )

+ γ2|∇un|L2(Ωn)|AΩnun|L2(Ωn)|∇Tn|L2(Ωn)|ΔTn|L2(Ωn)

⇒|∂tTn|2L2(Ωn)
+

d

dt
|∇Tn|2L2(Ωn)

+ λ
d

dt
|Tn|2L2(Ωn)

� γ2|∇un|L2(Ωn)|AΩnun|L2(Ωn)|∇Tn|L2(Ωn)|ΔTn|L2(Ωn) + 2|f2|2L2(RN )

(5.52)

for N = 4, which yield

(5.53)

∫ S

0

|∂tTn(s)|2L2(Ωn)
ds � γ2.

By almost the same calculations as above, multiplication of the third equation by −ΔCn

and ∂tCn give

d

dt
|∇Cn|2L2(Ωn)

+ |ΔCn|2L2(Ωn)

� γ2|∇un|4L2(Ωn)
|∇Cn|2L2(Ωn)

+ 3ρ2|ΔTn|2L2(Ωn)
+ 3|f3|2L2(RN ),

|∂tCn|2L2(Ωn)
+

d

dt
|∇Cn|2L2(Ωn)

+ λ
d

dt
|Cn|2L2(Ωn)

� γ2|∇un|2L2(Ωn)
|∇Cn|L2(Ωn)|ΔCn|L2(Ωn) + 3ρ2|ΔTn|2L2(Ωn)

+ 3|f3|2L2(RN )



103

for N = 3 and

d

dt
|∇Cn|2L2(Ωn)

+ |ΔCn|2L2(Ωn)

� γ2|∇un|2L2(Ωn)
|AΩnun|2L2(Ωn)

|∇Cn|2L2(Ωn)
+ 3ρ2|ΔTn|2L2(Ωn)

+ 3|f3|2L2(RN ),

|∂tCn|2L2(Ωn)
+

d

dt
|∇Cn|2L2(Ωn)

+ λ
d

dt
|Cn|2L2(Ωn)

� γ2|∇un|L2(Ωn)|AΩnun|L2(Ωn)|∇Cn|L2(Ωn)|ΔCn|L2(Ωn) + 3ρ2|ΔTn|2L2(Ωn)
+ 3|f3|2L2(RN )

for N = 4. From (5.31), (5.32), (5.49) and (5.35), we can derive

sup
0�t�S

|∇Cn|2L2(Ωn)
+

∫ S

0

|ΔCn(s)|2L2(Ωn)
ds+

∫ S

0

|∂xι∂xμCn(s)|2L2(Ωn)
ds � γ2,∫ S

0

|∂tCn(s)|2L2(Ωn)
ds � γ2

(5.54)

for any ι, μ = 1, 2, · · · , N .
Let ·̂ and [·]∧ designate the zero-extension of function to RN , i.e.,

T̂n(x, t) = [Tn]
∧(x, t) :=

{
Tn(x, t) ( if x ∈ Ωn),

0 ( otherwise ).

We remark that

∂t[un]
∧ = [∂tun]

∧, ∂t[Tn]
∧ = [∂tTn]

∧, ∂t[Cn]
∧ = [∂tCn]

∧.

We also have

∇[un]
∧ = [∇un]

∧, ∇[Tn]
∧ = [∇Tn]

∧, ∇[Cn]
∧ = [∇Cn]

∧,

since un(t) ∈ H1
σ(Ωn) and Tn(t), Cn(t) ∈ H1

0 (Ωn) for any t ∈ [0, S]. Then, from (5.29),
(5.30), (5.31), (5.32), (5.48), (5.49), (5.50), (5.53) and (5.54), we can derive

sup
0�t�S

∣∣∣T̂n(t)
∣∣∣2
H1(RN )

+

∫ S

0

|[ΔTn]
∧(s)|2L2(RN ) ds+

∫ S

0

∣∣∣∂tT̂n(s)
∣∣∣2
L2(RN )

ds � γ2,

sup
0�t�S

∣∣∣Ĉn(t)
∣∣∣2
H1(RN )

+

∫ S

0

|[ΔCn]
∧(s)|2L2(RN ) ds+

∫ S

0

∣∣∣∂tĈn(s)
∣∣∣2
L2(RN )

ds � γ2,

sup
0�t�S

|ûn(t)|2H1(RN ) +

∫ S

0

|[AΩnun]
∧(s)|2L2(RN ) ds+

∫ S

0

|∂tûn(s)|2L2(RN )ds � γ2

(5.55)

and ∫ S

0

∣∣[∂xι∂xμTn]
∧(s)
∣∣2
L2(RN )

ds � γ2,

∫ S

0

∣∣[∂xι∂xμCn]
∧(s)
∣∣2
L2(RN )

ds � γ2,∫ S

0

∣∣[∂xι∂xμun]
∧(s)
∣∣2
L2(RN )

ds � γ2

(5.56)
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for any ι, μ = 1, 2, · · · , N . By (5.33) and (5.34), we also have

(5.57)

∫ S

0

|[un · ∇Tn]
∧(s)|2L2(RN ) ds+

∫ S

0

|[un · ∇Cn]
∧(s)|2L2(RN ) ds � γ2.

We here remark that

v ∈ L2
σ(Ω) ⇒ v̂ ∈ L2

σ(R
N), v ∈ H1

σ(Ω) ⇒ v̂ ∈ H1
σ(R

N)

hold for any Ω ⊂ RN , due to the definition of L2
σ(Ω) and H1

σ(Ω). Therefore we obtain
ûn ∈ Cπ([0, S];H

1
σ(R

N)) and ∂tûn, [AΩnun]
∧ ∈ L2(0, S;L2

σ(R
N)) for each n ∈ N.

By using (5.55), (5.56) and (5.57), we can assure that there exists a subsequence

{(ûni
, T̂ni

, Ĉni
)}i∈N of {(ûn, T̂n, Ĉn)}n∈N, which is simply denoted by {Ui}i∈N :=

{(ûi, T̂i, Ĉi)}i∈N, such that

T̂i ⇀ T∗ ∗ -weakly in L∞(0, S;H1(RN)),

∂tT̂i ⇀ T∗∗ weakly in L2(0, S;L2(RN)),

[∂xι∂xμTi]
∧ ⇀ T ι,μ

∗∗∗ weakly in L2(0, S;L2(RN)) (∀ι, ∀μ = 1, 2, · · ·N),

[ΔTi]
∧ ⇀ T∗∗∗∗ weakly in L2(0, S;L2(RN)),

(5.58)

Ĉi ⇀ C∗ ∗ -weakly in L∞(0, S;H1(RN)),

∂tĈi ⇀ C∗∗ weakly in L2(0, S;L2(RN)),

[∂xι∂xμCi]
∧ ⇀ Cι,μ

∗∗∗ weakly in L2(0, S;L2(RN)) (∀ι, ∀μ = 1, 2, · · ·N),

[ΔCi]
∧ ⇀ C∗∗∗∗ weakly in L2(0, S;L2(RN)),

(5.59)

ûi ⇀ u∗ ∗ -weakly in L∞(0, S;H1
σ(R

N)),

∂tûi ⇀ u∗∗ weakly in L2(0, S;L2
σ(R

N)),

[∂xι∂xμui]
∧ ⇀ uι,μ

∗∗∗ weakly in L2(0, S;L2(RN)) (∀ι, ∀μ = 1, 2, · · ·N),

[AΩni
ui]

∧ ⇀ u∗∗∗∗ weakly in L2(0, S;L2
σ(R

N)),

(5.60)

[ui · ∇Ti]
∧ ⇀ χ1 weakly in L2(0, S;L2(RN)),

[ui · ∇Ci]
∧ ⇀ χ2 weakly in L2(0, S;L2(RN)).

(5.61)

Let φ1 ∈ C1
0((0, S);L

2(RN)). Then∫ S

0

∫
RN

∂tT̂iφ1dxdt = −
∫ S

0

∫
RN

T̂i∂tφ1dxdt.

Since T̂i weakly converges to T∗ in L2(0, S;L2(RN)), taking the limit as i → ∞, we get∫ S

0

∫
RN

T∗∗φ1dxdt = −
∫ S

0

∫
RN

T∗∂tφ1dxdt

for any φ1 ∈ C1
0 ((0, S);L

2(RN)), which implies that T∗∗ = ∂tT∗ holds in L2(0, S;L2(RN)).
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Next we assume that φ2 ∈ C∞
0 (RN × (0, S)). Since φ2 possesses a compact support

in RN × (0, S), there exist some natural number M ∈ N such that suppφ2 ⊂ ΩM × (0, S)
holds, where suppφ2 denotes the support of φ2. Then we have∫ S

0

∫
RN

φ2[∂xι∂xμTi]
∧ =

∫ S

0

∫
Ωni

φ2|Ωni
∂xι∂xμTidxdt = −

∫ S

0

∫
Ωni

∂xι

(
φ2|Ωni

)
∂xμTidxdt

= −
∫ S

0

∫
Ωni

(∂xιφ2)|Ωni
∂xμTidxdt = −

∫ S

0

∫
RN

∂xιφ2∂xμT̂idxdt

for any i such that ni � M . Taking the limit as i → ∞, we obtain∫ S

0

∫
RN

T ι,μ
∗∗∗φ2dxdt = −

∫ S

0

∫
RN

∂xμT∗∂xιφ2dxdt.

Therefore T ι,μ
∗∗∗ = ∂xι∂xμT∗ and ∂xι∂xμT∗ ∈ L2(0, S;L2(RN)) are valid for any ι, μ =

1, 2, · · · , N . Moreover, for ni � M , we obtain∫ S

0

∫
RN

φ2[ΔTi]
∧dxdt =

∫ S

0

∫
Ωni

φ2|Ωni
ΔTidxdt = −

∫ S

0

∫
RN

∇φ2 · ∇T̂idxdt,

which yields∫ S

0

∫
RN

φ2T∗∗∗∗dxdt = −
∫ S

0

∫
RN

∇φ2 · ∇T∗dxdt =
∫ S

0

∫
RN

φ2ΔT∗dxdt.

Hence T∗∗∗∗ = ΔT∗ in L2(0, S;L2(RN)).
By exactly the same argument as above, we have

C∗∗ = ∂tC∗, Cι,μ
∗∗∗ = ∂ι∂μC∗, C∗∗∗∗ = ΔC∗, u∗∗ = ∂tu∗, uι,μ

∗∗∗ = ∂ι∂μu∗.

Fix φ3 ∈ C∞
0 ((0, S);C∞

σ (RN)) arbitrarily and let a natural number M ∈ N satisfy
suppφ3 ⊂ ΩM × (0, S). Since φ3|Ωni

∈ C∞
0 ((0, S);C∞

σ (Ωni
)) for ni � M , we get∫ S

0

∫
RN

φ3 · [AΩni
ui]

∧dxdt =
∫ S

0

∫
Ωni

φ3|Ωni
· AΩi

uidxdt = −
∫ S

0

∫
Ωni

φ3|Ωni
·Δuidxdt

=

∫ S

0

∫
Ωni

(∇φ3) |Ωni
· ∇uidxdt =

∫ S

0

∫
RN

∇φ3 · ∇ûidxdt.

Taking the limit as i → ∞ and using the fact that u∗(t) ∈ D(ARN ) for a.e. t ∈ [0, S],
we obtain ∫ S

0

∫
RN

φ3 · u∗∗∗∗dxdt =
∫ S

0

∫
RN

φ3 · ARNu∗dxdt.

Since C∞
0 ((0, S);C∞

σ (RN)) is dense in L2(0, S;L2
σ(R

N)), we can show that u∗∗∗∗ = ARNu∗
holds.
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Moreover, using the fact that u∗ ∈ W 1,2(0, S;L2
σ(R

N)) andARNu∗ ∈ L2(0, S;L2
σ(R

N))
and applying Lemma 2.3.2, we can assure the absolute continuity of |∇u∗(·)|2L2(RN ). Com-

bining the continuity of |∇u∗(·)|2L2(RN ) with the fact that u∗ ∈ L∞(0, S;H1
σ(R

N)), we

obtain u∗ ∈ C([0, S];H1
σ(R

N)). Likewise, we have T∗, C∗ ∈ C([0, S];H1(RN)). Hence
u∗, T∗ and C∗ satisfy required regularities (5.24) except their periodicity.

From (5.55), it is obvious that

sup
0�t�S

∣∣∣∣ T̂i

∣∣∣
Ωn

(t)

∣∣∣∣2
H1(Ωn)

+

∫ S

0

∣∣∣∣∂tT̂i

∣∣∣
Ωn

(s)

∣∣∣∣2
L2(Ωn)

ds � γ2,

sup
0�t�S

∣∣∣∣Ĉi

∣∣∣
Ωn

(t)

∣∣∣∣2
H1(Ωn)

+

∫ S

0

∣∣∣∣∂tĈi

∣∣∣
Ωn

(s)

∣∣∣∣2
L2(Ωn)

ds � γ2,

sup
0�t�S

∣∣ûi|Ωn
(t)
∣∣2
H1(Ωn)

+

∫ S

0

∣∣∂tûi|Ωn
(s)
∣∣2
L2(Ωn)

ds � γ2

for any i ∈ N and n ∈ N. These inequalities imply that we can apply Ascoli’s theorem
to the {Ui}i∈N and its subsequence on Ωn for any n ∈ N.

Therefore, by applying Ascoli’s theorem on Ω1, we can extract a subsequence of
{Ui}i∈N = {(ûi, T̂i, Ĉi)}i∈N, which is denoted by {Ui1j

}j∈N := {(ûi1j
, T̂i1j

, Ĉi1j
)}j∈N,

satisfying the following convergences:

T̂i1j
|Ω1 → T 1 strongly in C([0, S];L2(Ω1)),

Ĉi1j
|Ω1 → C1 strongly in C([0, S];L2(Ω1)),

ûi1j
|Ω1 → u1 strongly in C([0, S];L2(Ω1)).

Let U1 := (u1, T 1, C1). Here we remark that since Ui possesses the time-periodicity for
each i ∈ N, U1 is also time-periodic function, i.e.,

U1 ∈ Cπ([0, S];L
2(Ω1)× L2(Ω1)× L2(Ω1)).

Next, applying Ascoli’s theorem again with n = 2, we obtain the existence of a subse-
quence {Ui2j

}j∈N of {Ui1j
}j∈N which satisfies

Ui2j
→ U2 strongly in Cπ([0, S];L

2(Ω2)× L2(Ω2)× L2(Ω2)).

As for the relationship between U1 and U2, we can easily show that

U1(x, t) = U2(x, t) ∀t ∈ [0, S], for a.e. x ∈ Ω1.

Repeating the same procedure as above inductively and applying the diagonal argument,
i.e., along the diagonal subsequence {Uill

}l∈N, simply denoted by {Ul}l∈N (i.e., {ill} is

denoted by {l} for simplicity), we obtain the following convergences:

T̂l|Ωn → T n strongly in C([0, S];L2(Ωn)),

Ĉl|Ωn → Cn strongly in C([0, S];L2(Ωn)),

ûl|Ωn → un strongly in C([0, S];L2(Ωn))
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for any n ∈ N, where Un := (un, T n, Cn) belongs to Cπ([0, S];L
2(Ωn)×L2(Ωn)×L2(Ωn)).

Moreover,
Un1(x, t) = Un2(x, t) ∀t ∈ [0, S], for a.e. x ∈ Ωn1

holds for n2 � n1. We note that {Ul}l∈N still satisfies (5.58), (5.59), (5.60) and (5.61).
Define U := (u, T, C) by

U(x, t) := Un(x, t) if x ∈ Ωn.

Let φ4 ∈ C∞
0 (RN × (0, S)) and assume that suppφ4 ⊂ ΩM × (0, S) for some M ∈ N.

From (5.58), we have ∫ S

0

∫
RN

T̂lφ4dxdt =

∫ S

0

∫
ΩM

T̂l|ΩM
φ4|ΩM

dxdt

−−−→
l→∞

∫ S

0

∫
RN

T∗φ4dxdt =

∫ S

0

∫
ΩM

TMφ4|ΩM
dxdt,

which implies that T coincides with T∗. Similarly, we obtain C = C∗ and u = u∗.
From the periodicity of T,C and u, we can derive T∗, C∗ ∈ Cπ([0, S];H

1(RN)) and
u∗ ∈ Cπ([0, S];H

1
σ(R

N)). Moreover,∫ S

0

∫
RN

[ul · ∇Tl]
∧φ4dxdt

=

∫ S

0

∫
Ωnl

ul · ∇Tlφ4|Ωnl
dxdt = −

∫ S

0

∫
Ωnl

ulTl · ∇φ4|Ωnl
dxdt

=−
∫ S

0

∫
ΩM

ul|ΩM
Tl|ΩM

· ∇φ4|ΩM
dxdt (∀l s.t. nl � M)

−−−→
l→∞

∫ S

0

∫
RN

χ1φ4dxdt = −
∫ S

0

∫
ΩM

uMTM · ∇φ4|ΩM
dxdt

=−
∫ S

0

∫
RN

uT · ∇φ4dxdt.

Since T = T∗, u = u∗ and u∗ · ∇T∗ belongs to L2(0, S;L2(RN)), χ1 = u · ∇T is valid in
L2(0, S;L2(RN)). By exactly the same procedure as above, we can show that χ2 = u·∇C
in L2(0, S;L2(RN)).

Thus, we can assure that (u∗, T∗, C∗) becomes a periodic solution of (5.23).

5.4 Convergence as λ → 0

Let (uλ, Tλ, Cλ) designate the periodic solution of (5.23) with parameter λ > 0. In this
section, we discuss the convergences of solutions {(uλ, Tλ, Cλ)}λ>0 as λ → 0 and we
complete our proof.
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We first introduce the uniform boundedness of {(uλ, Tλ, Cλ)}λ>0 independent of λ by
establishing some a priori estimates. To this end, we here prepare the following lemma
for convection terms and elliptic estimates.

Lemma 5.4.1. Let w ∈ H2(RN) and U ∈ H2(RN). Then there exists a constant β
satisfying the following inequalities:

(5.62) |w · ∇U |2L2(RN ) � β|∇w|2L2(RN )|∇U |L2(RN )|ΔU |L2(RN ),

if N = 3.

(5.63) |w · ∇U |2L2(RN ) � β|∇w|L2(RN )|Δw|L2(RN )|∇U |L2(RN )|ΔU |L2(RN ),

if N = 4.

(5.64)
∣∣∂xι∂xμU

∣∣
L2(RN )

� β |ΔU |L2(RN ) ,
∣∣∂xι∂xμw

∣∣
L2(RN )

� β |Δw|L2(RN )

for N = 3, 4 and for all ι, μ = 1, 2, · · · , N .

Proof. Let w ∈ H2(RN), U ∈ H2(RN) and let {wk}k∈N ⊂ C∞
0 (RN) and {Uk}k∈N ⊂

C∞
0 (RN) be sequences satisfying wk → w in H2(RN) and Uk → U in H2(RN) as k → ∞

respectively. Since wk and Uk possess compact supports, we can apply almost the same
procedures as those for Lemma 5.3.2 and we can assure that (5.62), (5.63) and (5.64)
are valid with wk, Uk and suitable coefficient β independent of k. Then immediately,
(5.62), (5.63) and (5.64) can be verified for all w ∈ H2(RN) and U ∈ H2(RN) by letting
k → ∞.

From now on, we write simply | · |Lp and | · |Hk in order to designate the norm of
Lp(RN) and Hk(RN) respectively, if no confusion arises. Multiplying the second equation
of (5.23) by Tλ, we get

1

2

d

dt
|Tλ|2L2 + |∇Tλ|2L2 + λ|Tλ|2L2 =

∫
RN

f2Tλdx � γ3|f2|L(2∗)′ |∇Tλ|L2 ,

where we use Hölder’s inequality and Sobolev’s inequality. Here and henceforth, γ3
stands for a general constant independent of λ. Then we obtain

1

2

d

dt
|Tλ|2L2 +

1

2
|∇Tλ|2L2 + λ|Tλ|2L2 � γ3|f2|2L(2∗)′ ,

which yields

(5.65)

∫ S

0

|∇Tλ(s)|2L2ds+ λ

∫ S

0

|Tλ(s)|2L2ds � γ3,

since f2 belongs to L2(0, S;L(2∗)′(RN)). Multiplying the third equation of (5.23) by Cλ,
we have

1

2

d

dt
|Cλ|2L2 + |∇Cλ|2L2 + λ|Cλ|2L2 = ρ

∫
RN

CλΔTλdx+

∫
RN

f3Cλdx

� ρ|∇Cλ|L2|∇Tλ|L2 + γ3|f3|L(2∗)′ |∇Cλ|L2 ,
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i.e.,
1

2

d

dt
|Cλ|2L2 +

1

2
|∇Cλ|2L2 + λ|Cλ|2L2 � ρ2|∇Tλ|2L2 + γ3|f3|2L(2∗)′ .

Integrating this over [0, S] and using (5.65), we obtain

(5.66)

∫ S

0

|∇Cλ(s)|2L2ds+ λ

∫ S

0

|Cλ(s)|2L2ds � γ3,

since f3 ∈ L2(0, S;L(2∗)′(RN)). Multiplying the first equation of (5.23) by −Δuλ, we
have

1

2

d

dt
|∇uλ|2L2 + ν|Δuλ|2L2 + a|∇uλ|2L2

= −
∫
RN

Δuλ · PRNgTλdx−
∫
RN

Δuλ · PRNhCλdx−
∫
RN

PRNf1 ·Δuλdx.

Here we recall (5.24), i.e., Δuλ(t) ∈ L2
σ(R

N) for a.e. t ∈ [0, S]. Then by integration by
parts, we obtain∫

RN

Δuλ · PRNgTλdx

=

∫
RN

Δuλ · gTλdx =
N∑

μ=1

∫
RN

Δuμ
λg

μTλdx = −
N∑

μ=1

∫
RN

∇uμ
λ · gμ∇Tλdx

�
N∑

μ=1

|∇uμ
λ|L2 |gμ||∇Tλ|L2 �

N∑
μ=1

(
a

4
|∇uμ

λ|2L2 +
|gμ|2
a

|∇Tλ|2L2

)
=
a

4
|∇uλ|2L2 +

|g|2
a

|∇Tλ|2L2 .

Similarly, ∫
RN

Δuλ · PRNgTλdx � a

4
|∇uλ|2L2 +

|h|2
a

|∇Cλ|2L2

holds. Therefore, multiplication of the first equation by −Δuλ yields

(5.67)
1

2

d

dt
|∇uλ|2L2 +

ν

2
|Δuλ|2L2 +

a

2
|∇uλ|2L2 �

|g|2
a

|∇Tλ|2L2 +
|h|2
a

|∇Cλ|2L2 +
1

2ν
|f1|2L2 .

Integrating (5.67) over [0, S] and using the elliptic estimate (5.64), we have

(5.68)

∫ S

0

|Δuλ(s)|2L2ds+

∫ S

0

|∇uλ(s)|2L2ds+

∫ S

0

|∂xι∂xμuλ(s)|2L2ds � γ3

for ι, μ = 1, 2, · · · , N . From the fact that uλ ∈ Cπ([0, S];H
1
σ(R

N)) and (5.68), there
exists tλ3 ∈ [0, S] where |∇u(tλ3)|L2 � γ3 holds. Therefore integrating (5.67) over [tλ3 , t]
with t ∈ [tλ3 , t

λ
3 + S], we obtain

(5.69) sup
0�t�S

|∇uλ(t)|L2ds � γ3.
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Moreover, Sobolev’s inequality and (5.69) lead to the fact that uλ ∈ C([0, S];L2∗
σ (RN))

and

(5.70) sup
0�t�S

|uλ(t)|L2∗ds � γ3.

Multiplying the second equation of (5.23) by −ΔTλ and ∂tTλ (by exactly the same
procedures as those for (5.46), (5.47), (5.51), (5.52) and by using (5.62), (5.63)), we get

d

dt
|∇Tλ|2L2 + |ΔTλ|2L2 � γ3|∇uλ|4L2 |∇Tλ|2L2 + 2|f2|2L2 ,

|∂tTλ|2L2 +
d

dt
|∇Tλ|2L2 + λ

d

dt
|Tλ|2L2 � γ3|∇uλ|2L2 |∇Tλ|L2|ΔTλ|L2 + 2|f2|2L2

(5.71)

for N = 3 and

d

dt
|∇Tλ|2L2 + |ΔTλ|2L2 � γ3|∇uλ|2L2 |Δuλ|2L2 |∇Tλ|2L2 + 2|f2|2L2 ,

|∂tTλ|2L2 +
d

dt
|∇Tλ|2L2 + λ

d

dt
|Tλ|2L2 � γ3|∇uλ|L2 |Δuλ|L2 |∇Tn|L2 |ΔTλ|L2 + 2|f2|2L2

(5.72)

for N = 4. From the fact that Tλ ∈ C([0, S];H1(RN)) and (5.65) holds, there exists
tλ4 ∈ [0, S] such that

|∇Tλ(t
λ
4)|2L2 + λ|Tλ(t

λ
4)|2L2 = min

0�t�S

(|∇Tλ(t)|2L2 + λ|Tλ(t)|2L2

)
� γ3.

Therefore, integrating (5.71) and (5.72) over [tλ4 , t] and applying Gronwall’s inequality,
we obtain

(5.73) sup
0�t�S

|Tλ(t)|2L2∗ + sup
0�t�S

|∇Tλ(t)|2L2 +

∫ S

0

|ΔTλ(s)|2L2ds+

∫ S

0

|∂tTλ(s)|2L2ds � γ3.

Similarly, we get the followings from the third equation of (5.23).

d

dt
|∇Cλ|2L2 + |ΔCλ|2L2 � γ3|∇uλ|4L2 |∇Cλ|2L2 + 3ρ2|ΔTλ|2L2 + 3|f3|2L2 ,

|∂tCλ|2L2 +
d

dt
|∇Cλ|2L2 + λ

d

dt
|Cλ|2L2

� γ3|∇uλ|2L2 |∇Cλ|L2 |ΔCλ|L2 + 3ρ2|ΔTλ|2L2 + 3|f3|2L2

for N = 3 and

d

dt
|∇Cλ|2L2 + |ΔCλ|2L2 � γ3|∇uλ|2L2 |Δuλ|2L2 |∇Cλ|2L2 + 3ρ2|ΔTλ|2L2 + 3|f3|2L2 ,

|∂tCλ|2L2 +
d

dt
|∇Cλ|2L2 + λ

d

dt
|Cλ|2L2

� γ3|∇uλ|L2 |Δuλ|L2 |∇Cλ|L2 |ΔCλ|L2 + 3ρ2|ΔTλ|2L2 + 3|f2|2L2
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for N = 4. Then we can obtain

(5.74) sup
0�t�S

|Cλ(t)|2L2∗ + sup
0�t�S

|∇Cλ(t)|2L2 +

∫ S

0

|ΔCλ(s)|2L2ds+

∫ S

0

|∂tCλ(s)|2L2ds � γ3.

By virtue of the elliptic estimates (5.64), (5.73) and (5.74) yield

(5.75)

∫ S

0

|∂xι∂xμTλ(s)|2L2ds+

∫ S

0

|∂xι∂xμCλ(s)|2L2ds � γ3

for any ι, μ = 1, 2, · · · , N .
Let Dhuλ(t) := uλ(t+ h)− uλ(t), DhTλ(t) := Tλ(t+ h)− Tλ(t), DhCλ(t) := Cλ(t+

h) − Cλ(t) and Dhf1(t) := f1(t + h) − f1(t) (h > 0). Then from the first equation of
(5.23), we get

(5.76) ∂tDhuλ − νΔDhuλ + aDhuλ = PRNgDhTλ + PRNhDhCλ + PRNDhf1.

Multiplying (5.76) by Dhuλ, we have

d

dt
|Dhuλ|2L2 + 2ν|∇Dhuλ|2L2 + a|Dhuλ|2L2 �

3|g|2
a

|DhTλ|2L2 +
3|h|2
a

|DhCλ|2L2 +
3

a
|Dhf1|2L2 .

SinceDhuλ ∈ Cπ([0, S];L
2
σ(R

N)), f1 ∈ W 1,2(0, S;L2(RN)) and we already have estimates
for ∂tTλ and ∂tCλ in (5.73) and (5.74), integration of this inequality over [0, S] gives us∫ S

0

|Dhuλ(s)|2L2ds � γ3h
2

for any h > 0. Hence we get (by virtue of Proposition 2.1.16)

(5.77)

∫ S

0

|∂tuλ(s)|2L2ds � γ3.

Moreover, from (5.62) and (5.63), we can also derive

(5.78)

∫ S

0

|uλ · ∇Tλ(s)|2L2 ds+

∫ S

0

|uλ · ∇Cλ(s)|2L2 ds � γ3.

By using the uniform boundedness (5.68), (5.69), (5.70), (5.73), (5.74), (5.75), (5.77),
(5.78) and the standard arguments of convex analysis, we can extract a subsequence of
{(uλ, Tλ, Cλ)}λ>0, denoted by {Vi}i∈N := {(ui, Ti, Ci)}i∈N, which satisfies the following
convergences:

Ti ⇀ T� ∗ -weakly in L∞(0, S;L2∗(RN)),

∂xμTi ⇀ T μ
�� ∗ -weakly in L∞(0, S;L2(RN)) (∀μ = 1, 2, · · ·N),

∂tTi ⇀ T��� weakly in L2(0, S;L2(RN)),

∂xι∂xμTi ⇀ T ι,μ
���� weakly in L2(0, S;L2(RN)) (∀ι, ∀μ = 1, 2, · · ·N),

ΔTi ⇀ T����� weakly in L2(0, S;L2(RN)),

(5.79)



112

Ci ⇀ C� ∗ -weakly in L∞(0, S;L2∗(RN)),

∂xμCi ⇀ Cμ
�� ∗ -weakly in L∞(0, S;L2(RN)) (∀μ = 1, 2, · · ·N),

∂tCi ⇀ C��� weakly in L2(0, S;L2(RN)),

∂xι∂xμCi ⇀ Cι,μ
���� weakly in L2(0, S;L2(RN)) (∀ι, ∀μ = 1, 2, · · ·N),

ΔCi ⇀ C����� weakly in L2(0, S;L2(RN)),

(5.80)

ui ⇀ u� ∗ -weakly in L∞(0, S;L2∗
σ (RN)),

∂xμui ⇀ uμ
�� ∗ -weakly in L∞(0, S;L2(RN)) (∀μ = 1, 2, · · ·N),

∂tui ⇀ u��� weakly in L2(0, S;L2
σ(R

N)),

∂xι∂xμui ⇀ uι,μ
���� weakly in L2(0, S;L2(RN)) (∀ι, ∀μ = 1, 2, · · ·N),

Δui ⇀ u����� weakly in L2(0, S;L2
σ(R

N)),

(5.81)

ui · ∇Ti ⇀ χ3 weakly in L2(0, S;L2(RN)),

ui · ∇Ci ⇀ χ4 weakly in L2(0, S;L2(RN)).
(5.82)

Moreover, λTλ and λCλ strongly converge to zero in L2(0, S;L2(RN)) as λ → 0, since,
from (5.65) and (5.66), ∫ S

0

|λTλ|2L2dt = λ

∫ S

0

λ|Tλ|2L2dt � λγ3.

For each n ∈ N, Vi satisfies

sup
0�t�S

∣∣∇Ti|Ωn
(t)
∣∣2
L2(Ωn)

+

∫ S

0

∣∣∂tTi|Ωn
(t)
∣∣2
L2(Ωn)

ds � γ3,

sup
0�t�S

∣∣∇Ci|Ωn
(t)
∣∣2
L2(Ωn)

+

∫ S

0

∣∣∂tCi|Ωn
(t)
∣∣2
L2(Ωn)

ds � γ3,

sup
0�t�S

∣∣∇ui|Ωn
(t)
∣∣2
L2(Ωn)

+

∫ S

0

∣∣∂tui|Ωn
(t)
∣∣2
L2(Ωn)

ds � γ3.

(5.83)

Moreover, using (5.70), (5.73), (5.74) and Hölder’s inequality, we get

sup
0�t�S

∣∣Ti|Ωn
(t)
∣∣2
L2(Ωn)

+ sup
0�t�S

∣∣Ci|Ωn
(t)
∣∣2
L2(Ωn)

+ sup
0�t�S

∣∣ui|Ωn
(t)
∣∣2
L2(Ωn)

� γ3 |Ωn|
2∗−2
2∗ · 1

2 .

Therefore, we can repeat exactly the same argument as that in Section 5.3 and we can
assure that there exists a subsequence of {Vi}i∈N, which is simply denoted by {Vl}l∈N,
and there exists {V n}n∈N := {(un, T n, Cn)}n∈N such that

Tl|Ωn → T n strongly in Cπ([0, S];L
2(Ωn)),

Cl|Ωn → Cn strongly in Cπ([0, S];L
2(Ωn)),

ul|Ωn → un strongly in Cπ([0, S];L
2(Ωn))
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hold for each n ∈ N and V n1(x, t) = V n2(x, t) holds for any t ∈ [0, S] and for a.e. x ∈ Ωn1

with n2 � n1.
As in Section 5.3, we here define V := (u, T, C) by

V (x, t) := V n(x, t) if x ∈ Ωn.

Then we can show that ∇T, ∂tT ∈ L2(0, S;L2
loc(R

N)). Indeed, the uniform boundedness
(5.83) implies that, for each fixed n ∈ N, there exists a subsequence of {Tl}l∈N, which is
denoted by {Tlnm}m∈N satisfying the following convergences:

∂xμTlnm

∣∣
Ωn

⇀ T μ,n
# weakly in L2(0, S;L2(Ωn)),

∂tTlnm

∣∣
Ωn

⇀ T n
## weakly in L2(0, S;L2(Ωn))

for μ = 1, 2, · · · , N . Since T |Ωn
= T n belongs to L2(0, S;L2(Ωn)), we can assure that

T μ,n
# = ∂xμT

∣∣
Ωn

and T n
## = ∂tT |Ωn

in L2(0, S;L2(Ωn)). This guarantees the well-

definedness of∇T and ∂tT as functions belonging to L2(0, S;L2
loc(R

N)). By the same rea-
soning, we can show that∇C, ∂tC ∈ L2(0, S;L2

loc(R
N)) and∇u, ∂tu ∈ L2(0, S;L2

loc(R
N)).

Let φ5 ∈ C∞
0 (RN × (0, S)) and let M ∈ N satisfy suppφ5 ⊂ ΩM × [0, S]. Then,∫ S

0

∫
RN

Tlφ5dxdt =

∫ S

0

∫
ΩM

Tl|ΩM
φ5|ΩM

dxdt

−−−→
l→∞

∫ S

0

∫
RN

T�φ5dxdt =

∫ S

0

∫
ΩM

TMφ5|ΩM
dxdt,

which yields T� = T and T ∈ L∞(0, S;L2∗(RN)). Likewise, C� = C in L∞(0, S;L2∗(RN))
and u� = u in L∞(0, S;L2∗

σ (RN)) are verified. Moreover, we can see that∫ S

0

∫
RN

∂xμTiφ5dxdt = −
∫ S

0

∫
RN

Ti∂xμφ5dxdt = −
∫ S

0

∫
ΩM

Ti|ΩM
∂xμφ5|ΩM

dxdt

−−−→
l→∞

∫ S

0

∫
RN

T μ
��φ5dxdt = −

∫ S

0

∫
RN

T∂xμφ5dxdt

and ∫ S

0

∫
RN

∂tTlφ5dxdt = −
∫ S

0

∫
RN

Tl∂tφ5dxdt = −
∫ S

0

∫
ΩM

Tl|ΩM
∂tφ5|ΩM

dxdt

−−−→
l→∞

∫ S

0

∫
RN

T���φ5dxdt = −
∫ S

0

∫
RN

T∂tφ5dxdt,

which imply that T��� = ∂tT and T μ
�� = ∂xμT hold in the distribution sense. Since∇T and

∂tT are well defined in L2(0, S;L2
loc(R

N)), we can assure that ∂tT ∈ L2(0, S;L2(RN)) and
∂xμT ∈ L∞(0, S;L2(RN)) for μ = 1, 2, · · · , N . Moreover, for any φ6 ∈ L2(0, S;H1(RN)),
we have ∫ S

0

∫
RN

∂xι∂xμTlφ6dxdt = −
∫ S

0

∫
RN

∂xμTl∂xιφ6dxdt

−−−→
l→∞

∫ S

0

∫
RN

T ι,μ
����φ6dxdt = −

∫ S

0

∫
RN

∂xμT∂xιφ6dxdt.
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Therefore T ι,μ
���� = ∂xι∂xμT holds in L2(0, S;H−1(RN)). Hence ∂xι∂xμT ∈ L2(0, S;L2(RN))

for each ι, μ = 1, 2, · · · , N , which immediately leads to T����� = ΔT in L2(0, S;L2(RN)).
By exactly the same argument, we can derive the followings:

C� = C, Cμ
�� = ∂xμC, C��� = ∂tC, Cι,μ

���� = ∂xι∂xμC, C����� = ΔC,

u� = u, uμ
�� = ∂xμu, u��� = ∂tu, uι,μ

���� = ∂xι∂xμu, u����� = Δu

for all ι, μ = 1, 2, · · ·N . Moreover, we can also show that χ3 = u · ∇T and χ4 = u · ∇C
in L2(0, S;L2(RN)) by exactly the same argument as that in previous section.

Finally, we check the continuity of ∇u, ∇T and ∇C. We here remark that the
standard argument via the abstract result Lemma 2.3.2 can not be applied, since it is
difficult to check whether u ∈ L2(0, S;L2

σ(R
N)) and T,C ∈ L2(0, S;L2(RN)).

Recalling (5.69) and (5.77), the uniform boundedness of uλ, we obtain

(5.84) |ul(t)− ul(s)|L2 �
∫ t

s

|∂tul(τ)|L2 dτ � γ3|t− s|1/2

and
|∇ul(t)−∇ul(s)|L2 � γ3,

which implies that {ul(t) − ul(s)}l∈N has a subsequence which weakly converges in
H1

σ(R
N) for each fixed s, t ∈ [0, S]. Moreover, from the space-local strong convergences

of {ul}l∈N, i.e., from the fact that

ul|Ωn → un strongly in Cπ([0, S];L
2(Ωn))

for any n ∈ N, it is easy to see that the weak limit of {ul(t) − ul(s)}l∈N coincides with
u(t)− u(s) (use the density of C∞

0 ((0, S);C∞
0 (RN)) in L2(0, S;L2(RN))), in particular,

it can be shown that

u(t)− u(s) ∈ H1
σ(R

N) ∀t, ∀s ∈ [0, S].

Moreover, (5.84) yields

(5.85) |u(t)− u(s)|L2 � lim inf
l→∞

|ul(t)− ul(s)|L2 � γ3|t− s|1/2,

which implies that u(·)−u(s) belongs to C([0, S];L2
σ(R

N)) for arbitrary fixed s ∈ [0, S].
Recalling the regularities of u derived above, we can fix t5 ∈ [0, S] such that

∂tu(t5) ∈ L2
σ(R

N), ∇u(t5), ∂xι∂xμu(t5) ∈ L2(RN) (∀ι, ∀μ = 1, 2, · · · , N).

Therefore, the time t5 ∈ [0, S] also satisfies

u(·)− u(t5) ∈ W 1,2(0, S;L2
σ(R

N)),

u(t)− u(t5) ∈ D(ARN ) for a.e. t ∈ [0, S],

ARN (u(·)− u(t5)) = Δ(u(·)− u(t5)) ∈ L2(0, S;L2
σ(R

N)).
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These imply that we can apply the standard argument via Lemma 2.3.2 to u(·)−u(t5),
i.e., we can assure ∇u(·) −∇u(t5) ∈ C([0, S];L2(RN)). This fact immediately leads to
∇u ∈ C([0, S];L2(RN)) since ∇u(t5) ∈ L2(RN).

Moreover, since u(t) − u(s) ∈ H1
σ(R

N), we can apply the Sobolev’s inequality and
we have

|u(t)− u(s)|L2∗ � γ3 |∇u(t)−∇u(s)|L2 .

Together with the fact that ∇u ∈ C([0, S];L2(RN)), we obtain u ∈ C([0, S];L2∗
σ (RN)).

By almost the same arguments above, we can show that T,C ∈ C([0, S];L2∗(RN)) and
∇T,∇C ∈ C([0, S];L2(RN)).

Thus, we can assure that (u, T, C), constructed above, becomes a periodic solution
of the original system (DCBF), whence follows our result.





Chapter 6

Existence of Attractors

6.1 Problems and Main Theorems

We consider the existence of global and exponential attractor for solutions of (DCBF).

(DCBF)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu+Au+ au = PgT + PhC + Pf1 (x, t) ∈ Ω×[0, S],

∂tT −ΔT + u·∇T = f2 (x, t) ∈ Ω×[0, S],

∂tC −ΔC + u·∇C = ρΔT + f3 (x, t) ∈ Ω×[0, S],

u(·, 0) = u0, T (·, 0) = T0, C(·, 0) = C0.

In this chapter, we deal with the case where Ω is bounded domain with sufficiently
smooth boundary ∂Ω and the autonomous case, i.e., the external forces f1, f2 and f3
depend only on the space variable x. As for the boundary condition for (DCBF), we
impose either Dirichlet boundary condition:

u = 0, T = 0, C = 0, (x, t) ∈ ∂Ω×[0, S],

or Neumann boundary condition:

u = 0,
∂T

∂n
= 0,

∂C

∂n
= 0, (x, t) ∈ ∂Ω×[0, S].

Throughout this chapter, We use the following notations:

H := H1
σ(Ω)× L2(Ω)× L2(Ω),

H1
D := H1

σ(Ω)×H1
0 (Ω)×H1

0 (Ω),

H1
N := H1

σ(Ω)×H1(Ω)×H1(Ω),

H2,1 := (H2(Ω) ∩H1
σ(Ω))×H1(Ω)×H1(Ω),

H2 = H2,2 := (H2(Ω) ∩H1
σ(Ω))×H2(Ω)×H2(Ω),

117
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where each spaces are endowed with the norm defined by

‖U‖2H := |∇u|2L2 + |T |2L2 + |C|2L2 ,

‖U‖2H1
D
= ‖U‖2H1

N
:= |∇u|2L2 + |T |2H1 + |C|2H1 ,

‖U‖2H2,1 := |Au|2L2 + |T |2H1 + |C|2H1 ,

‖U‖2H2 := |Au|2L2 + |T |2H2 + |C|2H2 .

According to our results in Chapter 4, we can assure the following solvability.

Proposition 6.1.1 (Dirichlet case). Let N � 4 and let Dirichlet boundary condition
be imposed. Moreover, we assume that f1 ∈ L2(Ω) and f2, f3 ∈ L2(Ω). Then, for any
initial data (u0, T0, C0) belonging to H, (DCBF) possesses a unique solution (u, T, C)
which satisfies the following regularities:

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)),

∂tu ∈ L2(0, S;L2
σ(Ω)),

T, C ∈ C([0, S];L2(Ω)) ∩ L2(0, S;H1
0 (Ω)),√

tΔT,
√
t∂tT,

√
tΔC,

√
t∂tC ∈ L2(0, S;L2(Ω))

for any time interval S > 0. Furthermore, if the initial data (u0, T0, C0) belongs to H1
D,

(DCBF) possesses a unique solution (u, T, C) which satisfies the following regularities:

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ C([0, S];H1
0 (Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω))

for any S > 0.

Proposition 6.1.2 (Neumann case). Let N � 4 and let Neumann boundary condition
be imposed. Moreover, we assume that f1 ∈ L2(Ω) and f2, f3 ∈ L2(Ω). Then, for any
initial data (u0, T0, C0) belonging to H, (DCBF) possesses a unique solution (u, T, C)
which satisfies the following regularities:

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)),

∂tu ∈ L2(0, S;L2
σ(Ω)),

T, C ∈ C([0, S];L2(Ω)) ∩ L2(0, S;H1(Ω)),√
tΔT,

√
t∂tT,

√
tΔC,

√
t∂tC ∈ L2(0, S;L2(Ω))

for any time interval S > 0. Furthermore, if the initial data (u0, T0, C0) belongs to H1
N ,

(DCBF) possesses a unique solution (u, T, C) which satisfies the following regularities:

u ∈ C([0, S];H1
σ(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2

σ(Ω)),

T, C ∈ C([0, S];H1(Ω)) ∩ L2(0, S;H2(Ω)) ∩W 1,2(0, S;L2(Ω))

for any S > 0.
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On the basis of Proposition 6.1.1, we can define the semigroup {SD(t)}t≥0 acting on H
and H1

D by the correspondence SD(t)(u0, T0, C0) := (u(t), T (t), C(t)), where (u, T, C) is
the unique solution of (DCBF) given in Proposition 6.1.1 with the initial data (u0, T0, C0).
In the same manner, we define the semigroup {SN(t)}t≥0 acting on H and H1

N , based
on Proposition 6.1.2.

We first show the following results for the Dirichlet boundary condition case.

Theorem 6.1.1. The dynamical system ({SD(t)}t≥0,H) possesses a global attractor
AD.

Theorem 6.1.2. The dynamical system ({SD(t)}t≥0,H) possesses an exponential at-
tractor MD.

Theorem 6.1.3. The dynamical system ({SD(t)}t≥0,H1
D) possesses a global attractor

A 1
D and an exponential attractor M 1

D.

In order to apply the abstract results stated in Section 2 (Proposition 2.4.1, Corollary
2.4.1 and Proposition 2.4.2), we establish some minute a priori estimates in the next sec-
tion. From almost the same procedures as those in the previous chapters, we can derive
the second energy estimates for solutions of (DCBF). However, in order to assure the
existence of compact absorbing set for the dynamical system ({SD(t)}t≥0,H1

D), we have
to establish the pointwise estimates for |u(t)|H2 , |T (t)|H2 and |C(t)|H2 . In order to cope
with this difficulty, we introduce the abstract result given in Brézis [11] (Proposition
6.2.1) and we prepare Lemma 6.2.1 and Corollary 6.2.1, which can be proved by some
argument similar to that for Proposition 6.2.1. In section 6.3, we discuss the estimate for
differences of two distinct solutions so that we can guarantee some continuity required
in Proposition 2.4.1, Corollary 2.4.1 and Proposition 2.4.2 and we demonstrate the ex-
istence of global and exponential attractors for Dirichlet boundary condition case. In
this argument, Proposition 6.2.1, Lemma 6.2.1 and Corollary 6.2.1 play an essential role
again.

When we consider the Neumann boundary condition case, it is easy to see that
attractors can not exist in the usual sense. Indeed, integrating the second equation of
(DCBF) over Ω and [0, t], we have∫

Ω

T (t)dx =

∫
Ω

T0dx+ t

∫
Ω

f2dx,

which yields the following inequality:∣∣∣∣∫
Ω

T0dx+ t

∫
Ω

f2dx

∣∣∣∣ � ∫
Ω

|T (t)|dx � |Ω|1/2|T (t)|L2 ,

where |Ω| is the measure of Ω. Therefore, if
∫
Ω
f2dx �= 0, then |T (t)|L2 strictly increases

as t → ∞. Moreover, even if
∫
Ω
f2dx = 0, |T (t)|L2 is always bounded from below by the

mean value of initial data T0. This implies that there is no bounded subset in H which
attracts all orbit of solution.
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Based on this fact, we assume∫
Ω

f2dx =

∫
Ω

f3dx = 0

for the Neumann boundary condition case. Then we can define the dynamical systems
({SN(t)}t≥0,HmT ,mC

) and ({SN(t)}t≥0,H1
N,mT ,mC

), where

L2
m(Ω) :=

{
U ∈ L2(Ω);

∣∣∣∣ 1|Ω|
∫
Ω

Udx

∣∣∣∣ � m

}
,

HmT ,mC
:= H1

σ(Ω)× L2
mT

(Ω)× L2
mC

(Ω),

H1
N,mT ,mC

:= HmT ,mC
∩H1

N .

We can show the existence of attractors for these dynamical systems in the last section
of this chapter.

Theorem 6.1.4. Assume that ∫
Ω

f2dx =

∫
Ω

f3dx = 0.

Then, for any positive numbers mT and mC, the dynamical system ({SN(t)}t≥0,HmT ,mC
)

possesses a global attractor AN,mT ,mC
and an exponential attractor MN,mT ,mC

. Further-
more, for arbitrary mT ,mC > 0, the dynamical system ({SN(t)}t≥0,H1

N,mT ,mC
) admits

a global attractor A 1
N,mT ,mC

and an exponential attractor M 1
N,mT ,mC

.

Remarks.
(1) To be precise, AD = A 1

D holds true. In fact, since A 1
D is bounded in H, A 1

D is
attracted to AD by the semigroup {SD(t)}t≥0. Moreover, from the strict invariance, i.e.,
S (t)A 1

D = A 1
D, we can derive

distH(A 1
D,AD) = lim

t→∞
distH(S (t)A 1

D,AD) = 0.

This identity and the compactness of AD in H implies that A 1
D ⊂ AD. Conversely,

we can obtain the fact that AD is bounded in H1
D, since AD ⊂ B0, where B0 will be

defined the end of Section 6.2 (recall that AD is the smallest compact absorbing set of
({SD(t)}t≥0,H)). Then, together with the strict invariance of AD and the compactness
of A 1

D, we can assure that distH1
D
(AD,A 1

D) = 0, which yields AD ⊂ A 1
D. By the same

reasoning, AN,mT ,mC
= A 1

N,mT ,mC
holds for arbitrary mT ,mC > 0.

(2) If |f2|L2 and |f3|L2 are sufficiently small (the smallness will be given concretely by
(6.61) in Section 6.3), then we can show that the global attractor AD consists only one
element and AD satisfies all the definitions of exponential attractor (see estimates (6.60)
in Section 6.3).

(3) Let

AN :=
⋃

mT ,mC�0

AN,mT ,mC
.
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Then we can assure that AN is strictly invariant and satisfies attracting property for the
dynamical system ({SN(t)}t≥0,H). Similarly,

A 1
N :=

⋃
mT ,mC�0

A 1
N,mT ,mC

becomes a strictly invariant attracting set of ({SN(t)}t≥0,H1
N). Immediately, AN = A 1

N

is valid (see remark (1)).

6.2 A priori Estimates

We first establish some a priori estimates in this section so that we can construct a com-
pact absorbing set. Throughout this chapter, κ is the coefficient appearing in Poincaré’s
inequality:

|U |2L2 � κ|∇U |2L2 , |∇U |2L2 � κ|ΔU |2L2 , ∀U ∈ H2(Ω) ∩H1
0 (Ω),

|u|2L2 � κ|∇u|2L2 , |∇u|2L2 � κ|Au|2L2 ∀u ∈ H2(Ω) ∩H1
σ(Ω)

and the constant b is defined by

b :=
1

2
min

{
1

κ
,
ν

κ

}
.

Fix a positive number μ > 0 arbitrary. Let the initial data (u0, T0, C0) belong to

(6.1) Bμ := {(u0, T0, C0) ∈ H; |u0|2H1 + |T0|2L2 + |C0|2L2 � μ}.
Multiplying the second equation of (DCBF) by T , we get

1

2

d

dt
|T |2L2 + |∇T |2L2 � |f2|L2 |T |L2 �

√
κ|f2|L2 |∇T |L2

⇒ d

dt
|T |2L2 + |∇T |2L2 � κ|f2|2L2

⇒ d

dt
|T |2L2 + b|T |2L2 + (1− bκ)|∇T |2L2 � κ|f2|2L2 .

(6.2)

Using Gronwall’s inequality, we have

(6.3) |T (t)|2L2 + (1− bκ)

∫ t

0

e−b(t−s)|∇T (s)|2L2ds � |T0|2L2e−bt + κ|f2|2L2

∫ t

0

e−b(t−s)ds.

Here define

t1μ := max

{
0,−1

b
log

(
κ

bμ
|f2|2L2

)}
and let t � t1μ. Then, since

μe−bt � μe−bt1μ � κ|f2|2L2

b
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holds for t � t1μ, we obtain

(6.4) |T (t)|2L2 + (1− bκ)

∫ t

0

e−b(t−s)|∇T (s)|2L2ds �
2κ

b
|f2|2L2 =: M1.

Integration of (6.2) over [t, t+ 1] yields

(6.5)

∫ t+1

t

|∇T (s)|2L2ds � |T (t)|2L2 + κ|f2|2L2 � M1 + κ|f2|2L2 =: M2.

Similarly, multiplication of the third equation by C and Gronwall’s inequality give

d

dt
|C|2L2 + |∇C|2L2 � 2κ|f3|2L2 + 2ρ2|∇T |2L2

⇒ d

dt
|C|2L2 + b|C|2L2 + (1− bκ)|∇C|2L2 � 2κ|f3|2L2 + 2ρ2|∇T |2L2

⇒ |C(t)|2L2 + (1− bκ)

∫ t

0

e−b(t−s)|∇C(s)|2L2ds

� |C0|2L2e−bt + 2κ|f3|2L2

∫ t

0

e−b(t−s)ds+ 2ρ2
∫ t

0

e−b(t−s)|∇T (s)|2L2ds.

(6.6)

Here we define t2μ := max
{
t1μ,−1

b
log
(

κ
bμ
|f3|2L2

)}
. Then, the estimates (6.1), (6.4), (6.5)

and (6.6) yield

(6.7) |C(t)|2L2 + (1− bκ)

∫ t

0

e−b(t−s)|∇C(s)|2L2ds �
3κ

b
|f3|2L2 +

2ρ2

1− bκ
M1 =: M3

and ∫ t+1

t

|∇C(s)|2L2ds � |C(t)|2L2 + 2κ|f3|2L2 + 2ρ2
∫ t+1

t

|∇T (s)|2L2ds

� M3 + 2κ|f3|2L2 + 2ρ2M2 =: M4

(6.8)

for any t � t2μ. Multiplying the first equation of (DCBF) by Au, we get

d

dt
|∇u|2L2 + ν|Au|2L2 �

3|g|2
ν

|T |2L2 +
3|h|2
ν

|C|2L2 +
3

ν
|f1|2L2

⇒ d

dt
|∇u|2L2 + b|∇u|2L2 �

3κ|g|2
ν

|∇T |2L2 +
3κ|h|2

ν
|∇C|2L2 +

3

ν
|f1|2L2

⇒ |∇u(t)|2L2 � |∇u0|2L2e−bt +
3

bν
|f1|2L2

+
3κ|g|2

ν

∫ t

0

e−b(t−s)|∇T (s)|2L2ds+
3κ|h|2

ν

∫ t

0

e−b(t−s)|∇C(s)|2L2ds.

(6.9)

Here we define

t0μ := max

{
t2μ,−

1

b
log

( |f1|2L2

bνμ

)}
.
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Then, by virtue of (6.1), (6.4), (6.7) and (6.9), we obtain

(6.10) |∇u(t)|2L2 �
4

bν
|f1|2L2 +

3κ|g|2
ν(1− bκ)

M1 +
3κ|h|2

ν(1− bκ)
M3 =: M5

and in view of (6.5), (6.8), (6.9) and (6.10), we have

(6.11)

∫ t+1

t

|Au(s)|2L2ds �
1

ν

(
M5 +

3κ|g|2
ν

M2 +
3κ|h|2

ν
M4 +

3

ν
|f1|2L2

)
=: M6

for t � t0μ. Multiplying the first equation of (DCBF) by ∂tu, we get

(6.12) |∂tu|2L2 + ν
d

dt
|∇u|2L2 + a

d

dt
|u|2L2 � 3κ|g|2|∇T |2L2 + 3κ|h|2|∇C|2L2 + 3|f1|2L2 .

From (6.5), (6.8) and (6.10), we can derive

(6.13)

∫ t+1

t

|∂tu(s)|2L2ds � νM5 + aκM5 + 3κ|g|2M2 + 3κ|h|2M4 + 3|f1|2L2 =: M7

for any t � t0μ. Next multiplying the second equation of (DCBF) by −tΔT , we have

(6.14)
d

dt
t|∇T |2L2 + t|ΔT |2L2 � |∇T |2L2 +

27

2
tγ2

0 |∇u|2L2 |Au|2L2 |∇T |2L2 + 2t|f2|2L2 .

Here γ0 is a constant satisfying the following inequality (see estimates for the convection
terms in Chapter 4 and Chapter 5):

(6.15) |w · ∇V |2L2 � γ0|∇w|L2 |Aw|L2 |∇V |L2 |ΔV |L2 ∀w ∈ D(A), ∀V ∈ D(−ΔD).

Integrate (6.14) over [s, t + 1] with s ∈ [t, t + 1] and t � t0μ. Then applying Gronwall’s
inequality, we obtain

(t+ 1)|∇T (t+ 1)|2L2

�
(
s|∇T (s)|2L2 +

∫ t+1

s

|∇T |2L2dτ + 2|f2|2L2

∫ t+1

s

τdτ

)
× exp

(∫ t+1

s

27

2
γ2
0 |∇u|2L2 |Au|2L2dτ

)
�
(
(t+ 1)|∇T (s)|2L2 +M2 + 2|f2|2L2(t+ 1)

)
exp

(
27

2
γ2
0M5M6

)
.

(6.16)

Integrating (6.16) over [t, t + 1] with respect to the s-variable and using (6.5), we can
deduce

(t+ 1)|∇T (t+ 1)|2L2 �
(
(t+ 1)M2 +M2 + 2|f2|2L2(t+ 1)

)
exp

(
27

2
γ2
0M5M6

)
.
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Hence,

(6.17) |∇T (t)|2L2 �
(
2M2 + 2|f2|2L2

)
exp

(
27

2
γ2
0M5M6

)
=: M8

holds for t � t0μ + 1. Moreover, integration (6.14) over [t, t+ 1] (t � t0μ + 1) gives

t

∫ t+1

t

|ΔT (s)|2L2ds

�
∫ t+1

t

s|ΔT (s)|2L2ds

�t|∇T (t)|2L2 +

∫ t+1

t

|∇T (s)|2L2ds

+
27

2
γ2
0

∫ t+1

t

s|∇u|2L2 |Au|2L2 |∇T |2L2ds+ 2|f2|2L2

∫ t+1

t

sds,

which implies that

(6.18)

∫ t+1

t

|ΔT (s)|2L2ds � M8 +M2 + 27γ2
0M5M6M8 + 4|f2|2L2 =: M9

is valid for any t � t0μ + 1. Multiplying the second equation of (DCBF) by t∂tT and
using (6.15), we get

t|∂tT |2L2 +
d

dt
t|∇T |2L2

� |∇T |2L2 + 2tγ0|∇u|L2 |Au|L2 |∇T |L2 |ΔT |L2 + 2t|f2|2L2 .
(6.19)

Integration of (6.19) over [t, t+ 1] (t � t0μ + 1) with respect to the variable s yields

t

∫ t+1

t

|∂tT (s)|2L2ds

� tM8 +M2 + 2(t+ 1)γ0M
1/2
5 M

1/2
6 M

1/2
8 M

1/2
9 + 2|f2|2L2(t+ 1),

namely,

(6.20)

∫ t+1

t

|∂tT (s)|2L2ds � M8 +M2 + 4γ0M
1/2
5 M

1/2
6 M

1/2
8 M

1/2
9 + 4|f2|2L2 =: M10.

By almost the same procedures as above, the following inequalities can be derived from
the third equation of (DCBF):

d

dt
t|∇C|2L2 + t|ΔC|2L2

� |∇C|2L2 +
27

2
tγ2

0 |∇u|2L2 |Au|2L2 |∇C|2L2 + 4ρ2t|ΔT |2L2 + 4t|f3|2L2 ,

t|∂tC|2L2 +
d

dt
t|∇C|2L2

� |∇C|2L2 + 3tγ0|∇u|L2 |Au|L2 |∇C|L2 |ΔC|L2 + 3ρ2t|ΔT |2L2 + 3t|f3|2L2 .

(6.21)
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Then we can assure that

|∇C(t+ 1)|2L2 �
(
2

∫ t+1

t

|∇C(s)|2L2ds+ 4|f3|2L2 + 4ρ2
∫ t+1

t

|ΔT (s)|2L2ds

)
× exp

(∫ t+1

t

27

2
γ2
0 |∇u(s)|2L2 |Au(s)|2L2ds

)
�
(
2M4 + 4|f3|2L2 + 4ρ2M9

)
exp

(
27

2
γ2
0M5M6

)
=: M11

(6.22)

for any t � t0μ + 1 and∫ t+1

t

|ΔC(s)|2L2ds

� M11 +M4 + 27γ2
0M5M6M11 + 8ρ2M9 + 8|f3|2L2 =: M12,(6.23) ∫ t+1

t

|∂tC(s)|2L2ds

� M11 +M4 + 6γ0M
1/2
5 M

1/2
6 M

1/2
11 M

1/2
12 + 6ρ2M9 + 6|f3|2L2 =: M13(6.24)

for any t � t0μ + 2.
Here we define

(6.25) Dhu(t) := u(t+h)−u(t), DhT (t) := T (t+h)−T (t), DhC(t) := C(t+h)−C(t)

for each fixed h ∈ (0, 1). Then, we get

(6.26) ∂tDhu(t) + νADhu(t) + aDhu(t) = PΩgDhT (t) + PΩhDhC(t)

from the first equation of (DCBF). Multiplying (6.26) by Dhu, we have

(6.27)
d

dt
|Dhu(t)|2L2 + ν|∇Dhu(t)|2L2 �

2κ|g|2
ν

|DhT (t)|2L2 +
2κ|h|2

ν
|DhC(t)|2L2 .

Let t � t0μ + 2 and s ∈ [t, t+ 1]. Integrating (6.27) over [s, t+ 1], we obtain

|Dhu(t+ 1)|2L2

� |Dhu(s)|2L2 +
2κ|g|2

ν

∫ t+1

s

|DhT (τ)|2L2dτ +
2κ|h|2

ν

∫ t+1

s

|DhC(τ)|2L2dτ.
(6.28)

We here note that ∫ t+1

t

|Dhu(s)|2L2ds � 2h2M7,∫ t+1

t

|DhT (s)|2L2ds � 2h2M10,∫ t+1

t

|DhC(s)|2L2ds � 2h2M13
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are valid for t � t0μ + 2, since estimates (6.13), (6.20) and (6.24) hold. Using these
inequalities, we have

(6.29)

∣∣∣∣u(t+ h)− u(t)

h

∣∣∣∣2
L2

�
(
2M7 +

4κ|g|2M10

ν
+

4κ|h|2M13

ν

)
=: M14

for any t � t0μ + 3. Here we introduce the following abstract result given in Brézis [11]
so that the estimate of |u(t)|H2 can be derived form (6.29).

Proposition 6.2.1. Let H be a Hilbert space and A be a (single-valued) maximal mono-
tone operator in H. Moreover, assume that U ∈ C([0, S];H) is a solution of the equation

dU

dt
+ AU = F in H,

where F ∈ C([0, S];H). Then for each fixed t0 ∈ [0, S), the following conditions are
equivalent:

1. U(t0) ∈ D(A) (where D(A) is the domain of A).

2. lim infh→0, h>0

∣∣∣U(t0+h)−U(t0)
h

∣∣∣
H
< ∞.

3. U is right differentiable at t0 and the right derivative of U at t0, denoted by d+U
dt

(t0),
satisfies

d+U

dt
(t0) = −AU(t0) + F (t0).

Proof. See Theorem 3.5 of Brézis [11] or see our proof of Lemma 6.2.1 and Corollary
6.2.1 given later on.

From (6.29), we can assure that the first equation of (DCBF) satisfies the condition
2 of Proposition 6.2.1 for t � t0μ + 3 with H = L2

σ(Ω), A = νA + aI and F = PgT +
PhC + Pf1. Therefore, the condition 3 of Proposition 6.2.1 yields

(6.30)

∣∣∣∣d+udt (t)

∣∣∣∣
L2

� M
1/2
14

for t � t0μ + 3. Moreover, the condition 3 of Proposition 6.2.1 also give us

|Au(t)|2L2 �
1

ν2

(
aκ1/2M

1/2
5 + |g|M1/2

1 + |h|M1/2
3 + |f1|L2 +M

1/2
14

)2
=: M15,

(6.31)

where t � t0μ + 3.
Integrating (6.27) over [t, t+ 1] with t � t0μ + 3 again and using (6.29), we get∫ t+1

t

|∇Dhu(s)|2L2ds �
1

ν

(
M14 +

4κ|g|2M10

ν
+

4κ|h|2M13

ν

)
h2.
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According to Proposition 2.1.16 in Section 2.1, this inequality implies that

∇u ∈ W 1,2(t, t+ 1;L2(Ω))

and

(6.32)

∫ t+1

t

|∂t∇u(s)|2L2ds �
1

ν

(
M14 +

4κ|g|2M10

ν
+

4κ|h|2M13

ν

)
=: M16

for any t � t0μ + 3.
Here we introduce the following lemma in order to establish estimates for |T (t)|H2

and |C(t)|H2 .

Lemma 6.2.1. Let N � 4 and w ∈ C([0, S];H1
σ(Ω)). Moreover, assume that V ∈

C([0, S];L2(Ω)) is a solution of the following equation:

∂tV −ΔDV +w·∇V = F (x, t) ∈ Ω× (0, S),

where F ∈ C([0, S];L2
w(Ω)) and L2

w(Ω) designates the space L
2(Ω) endowed with the weak

topology. Then, for any t0 ∈ [0, S), the following conditions are equivalent:

1. V (t0) ∈ D(−ΔD) = H2(Ω) ∩H1
0 (Ω).

2. lim infh→0, h>0

∣∣∣V (t0+h)−V (t0)
h

∣∣∣
L2

< ∞.

3. V is weakly right differentiable at t0 and the weak right derivative at t0, denoted by
w-d

+V
dt

(t0), satisfies

w-
d+V

dt
(t0) = −w(t0) · ∇V (t0)− (−ΔDV (t0)) + F (t0).

Proof. It is obvious that the condition 3 implies the condition 2.

Assume the condition 2. Then we can extract a subsequence of
{

V (t0+h)−V (t0)
h

}
h>0

which weakly converges in L2(Ω). Let this subsequence be denoted by
{

V (t0+hn)−V (t0)
hn

}
n∈N

and its weak limit be designated by χ. Fix an arbitrary W ∈ D(−ΔD). Then

∂t(V −W )−ΔD(V −W ) +w · ∇V = f − (−ΔD)W

holds. Multiplying this equation by V (t) −W and using the monotonicity of −ΔD, we
get

(6.33)
1

2

d

dt
|V (t)−W |2L2 � (−w(t) · ∇V (t) + F (t)− (−ΔD)W, V (t)−W )L2 ,

where (·, ·)L2 stands for the usual inner product of L2(Ω). Here we note that

(w(t) · ∇V (t), V (t)−W )L2 = (w(t) · ∇W, V (t)−W )L2
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holds by the solenoidal condition of w. Then integration of (6.33) over [t0, t0 + hn], we
have

(V (t0 + hn)− V (t0), V (t0)−W )L2

�
∫ t0+hn

t0

(−w(t′) · ∇W + F (t′)− (−ΔD)W, V (t′)−W )L2 dt
′,

(6.34)

where we use the fact that

1

2
|V (t)−W |2L2 − 1

2
|V (s)−W |2L2 � (V (t)− V (s), V (s)−W )L2

for any t, s ∈ [0, S]. Here, we remark that the integrand on the right hand side
(−w(·) · ∇W + F (·)− (−ΔD)W, V (·)−W )L2 is continuous on [0, S] for N � 4, since
we assume that w ∈ C([0, S];H1

σ(Ω)), V ∈ C([0, S];L2(Ω)) and F ∈ C([0, S];L2
w(Ω)).

Hence, dividing (6.34) by hn and taking the limit as n → ∞, we can obtain

(χ, V (t0)−W )L2

� (−w(t0) · ∇W + F (t0)− (−ΔD)W, V (t0)−W )L2

=(−w(t0) · ∇V (t0) + F (t0)− (−ΔD)W, V (t0)−W )L2 ,

that is to say,

0 � (−χ−w(t0) · ∇V (t0) + F (t0)− (−ΔD)W, V (t0)−W )L2

for any W ∈ D(−ΔD). By the maximal monotonicity of −ΔD in L2(Ω) (recall the
definition in Section 2.3.1), we can assure that V (t0) ∈ D(−ΔD) and

w- lim
hn→+0

V (t0 + hn)− V (t0)

hn

−ΔDV (t0) +w(t0) · ∇V (t0) = F (t0).

Since this argument does not depend on the choice of subsequence {hn}, we conclude

that the original sequence
{

V (t0+h)−V (t0)
h

}
h>0

also weakly converges to χ as h → +0.

Finally, assume that V (t0) ∈ D(−ΔD). Repeating almost the same procedures as
those for (6.33) and integrating over [t0, t0 + h], we get

|V (t0 + h)− V (t0)|L2 �
∫ t0+h

t0

| −w(t′) · ∇V (t0) + F (t′) + ΔV (t0)|L2dt′

for any h > 0. Since w ∈ C([0, S];H1
σ(Ω)) and F ∈ C([0, S];L2

w(Ω)) ⊂ L∞(0, S;L2(Ω)),
there exist some suitable constant M0 independent of t ∈ [0, S] such that

| −w(t) · ∇V (t0) + F (t) + ΔV (t0)|L2 � M0

for a.e. t ∈ [0, S] with N � 4, which yields∣∣∣∣V (t0 + h)− V (t0)

h

∣∣∣∣
L2

� M0.

Hence, we can repeat our argument in the previous step and assure the existence of a weak

limit of
{

V (t0+h)−V (t0)
h

}
h>0

which coincides with −w(t0) · ∇V (t0) + F (t0) +ΔV (t0).
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If F is strongly continuous, we can assure the strong right-differentiability of V :

Corollary 6.2.1. In addition to assumptions in Lemma 6.2.1, we assume that F belongs
to C([0, S];L2(Ω)). Then, for any t0 ∈ [0, S), the following conditions are equivalent:

1. V (t0) ∈ D(−ΔD) = H2(Ω) ∩H1
0 (Ω).

2. lim infh→0, h>0

∣∣∣V (t0+h)−V (t0)
h

∣∣∣
L2

< ∞.

3’. V is strongly right differentiable at t0 and the right derivative at t0, denoted by
d+V
dt

(t0), satisfies

d+V

dt
(t0) = −w(t0) · ∇V (t0)− (−ΔDV (t0)) + F (t0).

Proof. According to our argument in the proof of Lemma 6.2.1, we only have to prove
that the condition 1 leads to the condition 3’, in particular, to the fact that the sequence{

V (t0+h)−V (t0)
h

}
h>0

strongly converges in L2(Ω).

Let V (t0) ∈ D(−ΔD) (condition 1). Recalling our proof of Lemma 6.2.1, we get

|V (t0 + h)− V (t0)|L2

�
∫ t0+h

t0

| −w(t′) · ∇V (t0) + F (t′)− (−ΔDV (t0))|L2dt′.

If F belongs to C([0, S];L2(Ω)), then the integrand on the right hand side becomes
continuous due to w ∈ C([0, S];H1

σ(Ω)). Therefore, dividing this inequality by h > 0
and taking the limit as h → 0, we obtain

lim sup
h→+0

∣∣∣∣V (t0 + h)− V (t0)

h

∣∣∣∣
L2

� | −w(t0) · ∇V (t0) + F (t0)− (−ΔDV (t0))|L2 .

We here recall that
{

V (t0+h)−V (t0)
h

}
h>0

converges weakly to χ := −w(t0) · ∇V (t0) +

F (t0) + ΔV (t0) (arguments for Lemma 6.2.1). Hence we obtain

|χ|L2 � lim inf
h→+0

∣∣∣∣V (t0 + h)− V (t0)

h

∣∣∣∣
L2

� lim sup
h→+0

∣∣∣∣V (t0 + h)− V (t0)

h

∣∣∣∣
L2

� |χ|L2 ,

which implies that
{

V (t0+h)−V (t0)
h

}
h>0

strongly converges to χ as h → +0. Thus, we

assure the strong right-differentiability of V at t0.
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Remark.
In Lemma 6.2.1 and Corollary 6.2.1, the homogeneous Dirichlet boundary condition can
be replaced by any boundary condition which guarantees the maximal monotonicity of
the operator −Δ, e.g., the homogeneous Neumann boundary condition.

From the second equation of (DCBF),

∂tDhT (t)−ΔDhT (t) + u(t+ h) · ∇DhT (t) +Dhu(t) · ∇T (t) = 0

holds, where DhT (t) := T (t + h) − T (t) and Dhu(t) := u(t + h) − u(t) (0 < h < 1).
Multiplication of this equation by DhT gives us

1

2

d

dt
|DhT (t)|2L2 + |∇DhT (t)|2L2

=−
∫
Ω

DhT (t)u(t+ h) · ∇DhT (t)dx−
∫
Ω

DhT (t)Dhu(t) · ∇T (t)dx

=0 +

∫
Ω

T (t)Dhu(t) · ∇DhT (t)dx

�1

2
|∇DhT (t)|2L2 +

1

2
|T (t)Dhu(t)|2L2 .

Therefore

(6.35)
d

dt
|DhT (t)|2L2 + |∇DhT (t)|2L2 � γ1|∇T (t)|2L2 |∇Dhu(t)|2L2 .

Here and henceforth, γ1 denotes the coefficient of the following inequality:

|Uw|2L2 � |U |2L4 |w|2L4 � γ1|∇U |2L2 |∇w|2L2 ∀w ∈ H1
σ(Ω), ∀U ∈ H1

0 (Ω)

for N � 4. Integration of (6.35) over [s, t + 1] and again over [t, t + 1] with respect to
the variable s yields

|DhT (t+ 1)|2L2 �
∫ t+1

t

|DhT (s)|2L2ds+ 2γ1M8M16h
2

� 2(M10 + γ1M8M16)h
2

(6.36)

for t � t0μ+3. Then, the second equation of (DCBF) satisfies all requirements in Corollary
6.2.1 with V = T , w = u and F ≡ f2 and condition 2 for t � t0μ + 4. Hence condition
3’ yields ∣∣∣∣d+Tdt (t)

∣∣∣∣2
L2

� 2(M10 + γ1M8M16) =: M17.
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for t � t0μ + 4. Since

|ΔT (t)|L2

�
∣∣∣∣d+Tdt (t)

∣∣∣∣
L2

+ |u(t) · ∇T (t)|L2 + |f2|L2

�
∣∣∣∣d+Tdt (t)

∣∣∣∣
L2

+ γ
1/2
0 |∇u(t)|1/2

L2 |Au(t)|1/2
L2 |∇T (t)|1/2L2 |ΔT (t)|1/2L2 + |f2|L2

�
∣∣∣∣d+Tdt (t)

∣∣∣∣
L2

+
1

2
|ΔT (t)|L2 +

γ0
2
|∇u(t)|L2 |Au(t)|L2 |∇T (t)|L2 + |f2|L2 ,

condition 3’ also guarantees the following estimates:

|ΔT (t)|L2 � 2M
1/2
17 + 2|f2|L2 + γ0|∇u(t)|L2 |Au(t)|L2 |∇T (t)|L2

� 2M
1/2
17 + 2|f2|L2 + γ0M

1/2
5 M

1/2
15 M

1/2
8 =: M

1/2
18

(6.37)

for t � t0μ + 4. Integrating (6.35) over [t, t + 1] with t � t0μ + 4 again, using estimates
(6.36) and applying Proposition 2.1.16, we can deduce

∂t∇T ∈ L2(t, t+ 1;L2(Ω))

and

(6.38)

∫ t+1

t

|∂t∇T (s)|2L2ds � (M17 + 2γ1M8M16) =: M19

for t � t0μ + 4.
Similarly, from the third equation,

∂tDhC(t)−ΔDhC(t) + u(t+ h) · ∇DhC(t) +Dhu(t) · ∇C(t) = ρΔDhT (t)

is valid, where

DhT (t) := T (t+ h)− T (t), DhC(t) := C(t+ h)− C(t), Dhu(t) := u(t+ h)− u(t).

Multiplying this equation by DhC(t), we get

d

dt
|DhC(t)|2L2 + |∇DhC(t)|2L2

� 2γ1|∇C(t)|2L2 |∇Dhu(t)|2L2 + 2ρ2|∇DhT (t)|2L2

(6.39)

By almost the same argument as that for (6.36), we have

(6.40) |DhC(t+ 1)|2L2 � (2M13 + 4γ1M11M16 + 2ρ2M19)h
2

for t � t0μ + 4. Here we note that the third equation of (DCBF) satisfies all hypotheses
in Lemma 6.2.1 with V = C, w = u and F = f3 + ρΔT , since T ∈ C([0,+∞);H1(Ω))
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and (6.37) yield the weak continuity of ΔT (·) in L2(Ω) on [t0μ + 4,∞). Moreover, (6.40)
implies that condition 2 of Lemma 6.2.1 is satisfied for any t ∈ [t0μ + 5,∞). Therefore,
for any t � t0μ + 5, we can assure that C(t) ∈ D(−ΔD) and

lim inf
h→+0

∣∣∣∣C(t+ h)− C(t)

h

∣∣∣∣2
L2

� 2M13 + 4γ1M11M16 + 2ρ2M19 =: M20,

w- lim
h→+0

C(t+ h)− C(t)

h
−ΔC(t) + u(t) · ∇C(t) = ρΔT (t) + f3.

These immediately lead to

|ΔC(t)|L2 � 2M
1/2
20 + 2ρ|ΔT (t)|L2 + 2|f3|L2

+ γ0|∇u(t)|L2 |Au(t)|L2 |∇C(t)|L2

� 2M
1/2
20 + 2ρM

1/2
18 + 2|f3|L2 + γ0M

1/2
5 M

1/2
15 M

1/2
11

=: M
1/2
21

(6.41)

for t � t0μ + 5. Moreover, the third equation of (DCBF) and the estimate (6.41) give us

|∂tC(t)|L2

�|ΔC(t)|L2 + γ
1/2
0 |∇u(t)|1/2

L2 |Au(t)|1/2
L2 |∇C(t)|1/2L2 |ΔC(t)|1/2L2

+ ρ|ΔT (t)|L2 + |f3|L2

�M
1/2
21 + γ

1/2
0 M

1/4
5 M

1/4
15 M

1/4
11 M

1/4
21 + ρM

1/2
18 + |f3|L2

=:M
1/2
22

for a.e. t � t0μ + 5. Integrating (6.39) over [t, t+ 1] again, we can obtain∫ t+1

t

|∇DhC(s)|2L2ds � (M20 + 4γ1M11M16 + 4ρ2M19)h
2

and by the same reasoning as for (6.32), we obtain

(6.42)

∫ t+1

t

|∂t∇C(s)|2L2ds � M20 + 4γ1M11M16 + 4ρ2M19 =: M23.

Thus, estimates (6.3), (6.7), (6.10), (6.17), (6.22) and (6.31) imply that the set B0

defined by

B0 :=

⎧⎪⎪⎨⎪⎪⎩(u0, T0, C0) ∈ H;

|∇u0|2L2 � M5, |Au0|2L2 � M15

|T0|2L2 � M1, |∇T0|2L2 � M8

|C0|2L2 � M3, |∇C0|2L2 � M11

⎫⎪⎪⎬⎪⎪⎭



133

becomes an absorbing set of ({SD(t)}t≥0,H). Obviously, B0 is compact in H by virtue
of Rellich-Kondrachov’s compactness theorem. Moreover, from (6.37) and (6.41), we can
assure the set B1

0 defined by

B1
0 :=

⎧⎪⎪⎨⎪⎪⎩(u0, T0, C0) ∈ H1
D;

|∇u0|2L2 � M5, |Au0|2L2 � M15

|T0|2L2 � M1, |∇T0|2L2 � M8, |ΔT0|2L2 � M18

|C0|2L2 � M3, |∇C0|2L2 � M11, |ΔC0|2L2 � M21

⎫⎪⎪⎬⎪⎪⎭
becomes an compact absorbing set of ({SD(t)}t≥0,H1

D).
Estimates derived above are not sufficient to show the continuity of SD(t) on H1

D

and to construct an exponential attractor, since our estimates are established for ade-
quately large t. Therefore we have to prepare some additional estimates of solutions on
time interval [0, t], namely, we show the dependence on initial data and t by applying
techniques employed above. Let U = (u, T, C) be a solution of (DCBF) with the initial
data U0 = (u0, T0, C0). Integrating or applying Gronwall’s inequality to (6.2), (6.6),
(6.9), (6.12) over [0, t], we can assure

sup
0�s�t

|T (s)|2L2 +

∫ t

0

|∇T (s)|2L2ds � Q(t, |T0|2L2),

sup
0�s�t

|C(s)|2L2 +

∫ t

0

|∇C(s)|2L2ds � Q(t, |T0|2L2 , |C0|2L2),

sup
0�s�t

|∇u(s)|2L2 +

∫ t

0

|Au(s)|2L2ds � Q(t, |∇u0|2L2 , |T0|2L2 , |C0|2L2),∫ t

0

|∂tu(s)|2L2ds � Q(t, |∇u0|2L2 , |T0|2L2 , |C0|2L2).

(6.43)

From now on, let Q(z1, z2, · · · ) stand for some general monotone increasing function of
variables z1, z2, · · · . Moreover, by almost the same ways as those for (6.14), (6.19) and
(6.21) (repeating the same calculations without the weight t), we obtain

d

dt
|∇T |2L2 + |ΔT |2L2 �

27

2
γ2
0 |∇u|2L2 |Au|2L2 |∇T |2L2 + 2|f2|2L2 ,

|∂tT |2L2 +
d

dt
|∇T |2L2 � 2γ0|∇u|L2 |Au|L2 |∇T |L2 |ΔT |L2 + 2|f2|2L2 ,

(6.44)

d

dt
|∇C|2L2 + |ΔC|2L2

� 27

2
γ2
0 |∇u|2L2 |Au|2L2 |∇C|2L2 + 4ρ2|ΔT |2L2 + 4|f3|2L2 ,

|∂tC|2L2 +
d

dt
|∇C|2L2

� 3γ0|∇u|L2 |Au|L2 |∇C|L2 |ΔC|L2 + 3ρ2|ΔT |2L2 + 3|f3|2L2 .

(6.45)
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Integrating each inequality of (6.44) and (6.45) over [0, t], we have

sup
0�s�t

|∇T (s)|2L2 � Q(t, |∇u0|2L2 , |T0|2H1 , |C0|2L2),∫ t

0

|ΔT (s)|2L2ds+

∫ t

0

|∂tT (s)|2L2ds � Q(t, |∇u0|2L2 , |T0|2H1 , |C0|2L2),

sup
0�s�t

|∇C(s)|2L2 � Q(t, |∇u0|2L2 , |T0|2H1 , |C0|2H1),∫ t

0

|ΔC(s)|2L2ds+

∫ t

0

|∂tC(s)|2L2ds � Q(t, |∇u0|2L2 , |T0|2H1 , |C0|2H1).

(6.46)

Repeating the same procedures as those for (6.28), we obtain

|Dhu(t)|2L2 + ν

∫ t

0

|∇Dhu(s)|2L2ds

� |Dhu(0)|2L2 + h2Q(t, |∇u0|2L2 , |T0|2H1 , |C0|2H1),

(6.47)

where Dhu(t) := u(t + h) − u(t) with h > 0. Therefore, if u0 belongs to D(A), then
u(t) ∈ D(A) also holds for any t > 0 and

|Au(t)|2L2 �
∣∣∣∣d+udt (0)

∣∣∣∣2
L2

+Q(t, |∇u0|2L2 , |T0|2H1 , |C0|2H1)

� Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H1 , |C0|2H1)

(6.48)

is valid by virtue of Proposition 6.2.1. Immediately, we get

(6.49) |∂tu(t)|2L2 � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H1 , |C0|2H1)

for a.e. t � 0. Moreover, (6.47) also gives us ∇u ∈ W 1,2(0, t;L2(Ω)) and

(6.50)

∫ t

0

|∂t∇u(s)|2L2ds � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H1 , |C0|2H1)

for any t � 0. Integrating (6.35) over [0, t] and using (6.43), (6.46) and (6.50), we get

|DhT (t)|2L2 +

∫ t

0

|∇DhT (s)|2L2ds

� |DhT (0)|2L2 + h2Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H1 , |C0|2H1).

Therefore, under the assumption of T0 ∈ D(−ΔD), taking the limit as h → 0, applying
Corollary 6.2.1 and Proposition 2.1.16, we can deduce

|ΔT (t)|2L2 �
∣∣∣∣d+Tdt (0)

∣∣∣∣2
L2

+Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H1 , |C0|2H1)

� Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H1),∫ t

0

|∂t∇T (s)|2L2ds � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H1)

(6.51)
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for t � 0. Obviously,

(6.52) |∂tT (t)|2L2 � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H1)

holds for a.e. t � 0. Integrating (6.39) over [0, t] and using (6.43), (6.46), (6.50) and
(6.51), we get

|DhC(t)|2L2 +

∫ t

0

|∇DhC(s)|2L2ds

� |DhC(0)|2L2 + h2Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H1).

(6.53)

Let C0 ∈ D(−ΔD). Since the equation

∂t(C − C0)−Δ(C − C0) + u · ∇(C − C0) = ρΔT +ΔC0 + u · ∇C0 + f3

is valid, multiplication of the above equation by C − C0 yields

|C(h)− C(0)|L2 �
∫ h

0

|ρΔT (s) + ΔC0 + u(s) · ∇C0 + f3|L2ds

� hQ(h, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H2).

(6.54)

Therefore applying Lemma 6.2.1 to the third equation of (DCBF), together with (6.53)
and (6.54), we obtain

(6.55) |ΔC(t)|2L2 � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H2).

Moreover, we have (see (6.51) and (6.52))∫ t

0

|∂t∇C(s)|2L2ds � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H2),

|∂tC(t)|2L2 � Q(t, |∇u0|2L2 , |Au0|2L2 , |T0|2H2 , |C0|2H2).

(6.56)

Let τ0 be a time such that the absorbing set B0 is absorbed in B0 itself by the
semigroup {SD(t)}t≥0, i.e., SD(t)B0 ⊂ B0 for any t � τ0. Then we define B00 by

B00 :=
⋃

0�t�τ0

SD(t)B0.

By using (6.43), (6.46) and (6.48), we can assure that there exist a constant M24 de-
pending only on M1, M3, M5, M8, M11, M15 and τ0 such that

(6.57) ‖SD(t)U0‖H2,1 � M24

for any U0 ∈ B0 and any t ∈ [0, τ0]. This fact guarantees the compactness of the set B00

in H. It easy to see that B00 is positively invariant under the semigroup {SD(t)}t≥0

and B00 is also an absorbing set.
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Similarly, we define

B1
00 :=

⋃
0�t�τ10

SD(t)B
1
0 ,

where τ 10 is a time such that SD(t)B0 ⊂ B0 for any t � τ 10 . Owing to (6.43), (6.46),
(6.48), (6.51) and (6.55), there exist some constant M25 which depends only on M1, M3,
M5, M8, M11, M15, M18, M21 and τ0 such that

(6.58) ‖SD(t)U0‖H2 � M25

for any U0 ∈ B1
0 and any t ∈ [0, τ 10 ]. Therefore, the set B1

00 is compact and positively
invariant absorbing set in H1

D.

6.3 Continuity of Semigroup

Since we can assure the existence of compact absorbing sets B0, B1
0 , B00 and B1

00, we
only have to show some continuity of solutions in order to apply Corollary 2.4.1 and
Proposition 2.4.2 so that we complete our proof of Theorem 6.1.1, 6.1.2 and 6.1.3, exis-
tence of attractors for Dirichlet boundary condition case. Throughout this section, Ui =
(ui, Ti, Ci) denote the unique solutions of (DCBF) (with Dirichlet boundary condition)
with the initial data Ui0 = (ui0, Ti0, Ci0) (i = 1, 2). Then δu := u1 − u2, δT := T1 − T2

and δC := C1 − C2 satisfy the following equations:

(D)

⎧⎪⎨⎪⎩
∂tδu+ νAδu+ aδu = PgδT + PhδC,

∂tδT −ΔδT + δu·∇T1 + u2·∇δT = 0,

∂tδC −ΔδC + δu·∇C1 + u2·∇δC = ρΔδT.

Multiplying each equation of (D) by Aδu, δT and δC respectively, we get

d

dt
|δT |2L2 + |∇δT |2L2 � γ1|∇T1|2L2|∇δu|2L2 ,

d

dt
|δC|2L2 + |∇δC|2L2 � 2γ1|∇C1|2L2|∇δu|2L2 + 2ρ2|∇δT |2L2 ,

d

dt
|∇δu|2L2 + ν|Aδu|2L2 �

2|g|2κ
ν

|∇δT |2L2 +
2|h|2κ

ν
|∇δC|2L2

(6.59)

(recall that κ denotes the coefficient of Poincaré’s inequality and γ1 is a coefficient ap-
pearing in

|Uw|2L2 � γ1|∇U |2L2 |∇w|2L2 ,

where w ∈ H1
σ(Ω) and U ∈ H1

0 (Ω)). We here define

η(t) := |δT (t)|2L2 +
1

4ρ2
|δC(t)|2L2 +

νβ

8χκ
|∇δu(t)|2L2 ,
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where χ := max{|g|2, |h|2} and β := min{1, 1
2ρ2

}. From (6.59), we have

d

dt
η(t) +

ϑ

κ
y(t) � γ′

1

(
|∇T1|2L2 +

1

2ρ2
|∇C1|2L2

)
η(t),

where ϑ := min{1
4
, ν} and γ′

1 := max{γ1, 8χκνβ
γ1}. Hence applying Gronwall’s inequality,

we can obtain

η(t) � η(0) exp

(
γ′
1

∫ t

0

|∇T1(s)|2L2ds+
γ′
1

2ρ2

∫ t

0

|∇C1(s)|2L2ds− ϑ

κ
t

)
� η(0) exp

(
2γ′

1|T10|2L2 +
γ′
1

2ρ2
|C10|2L2 + 2γ′

1κt|f2|2L2 +
γ′
1κt

ρ2
|f3|2L2 − ϑ

κ
t

)
,

(6.60)

where we use the following a priori estimates derived from the second and third equations
of (DCBF) (integrate (6.2) and (6.6) over [0, t]):∫ t

0

|∇T1(s)|2L2ds � |T1(0)|2L2 + κt|f2|2L2 ,∫ t

0

|∇C1(s)|2L2ds � |C1(0)|2L2 + 2ρ2
∫ t

0

|∇T1(s)|2L2ds+ 2κt|f2|2L2 .

Then (6.60) guarantees the continuity of mappings SD(t) on H for each fixed t � 0.
Hence we can assure Theorem 6.1.1, i.e., the existence of global attractor AD of the

dynamical system ({SD(t)}t≥0,H) by the existence of compact absorbing set B0, the
continuity of SD(t) and the application of Corollary 2.4.1. In addition, if

(6.61) 2γ′
1κ|f2|2L2 +

γ′
1κ

ρ2
|f3|2L2 <

ϑ

κ
,

then (6.60) implies that η(t) → as t → +∞. Hence, when (6.61) is satisfied, we can
assure that AD consists only one element and AD satisfies the definition of exponential
attractor (recall remark (2) in Section 6.1).

According to (6.60),

(6.62) ‖δU(t)‖H � Q(t, |T10|2L2 , |C10|2L2)‖δU(0)‖H
holds (Q is some suitable monotone increasing function). Integrating inequalities of
(6.59), we have ∫ t

0

|Aδu(s)|2L2ds � Q(t, |T10|2L2 , |C10|2L2)‖δU(0)‖2H,∫ t

0

|∇δT (s)|2L2ds � Q(t, |T10|2L2 , |C10|2L2)‖δU(0)‖2H,∫ t

0

|∇δC(s)|2L2ds � Q(t, |T10|2L2 , |C10|2L2)‖δU(0)‖2H.

(6.63)
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Multiplying the second and third equation of (D) by −ΔδT and −ΔδC respectively,
we have (see (6.14), (6.19), (6.21), (6.44) and (6.45))

d

dt
|∇δT |2L2 + |ΔδT |2L2

� 27

2
γ2
0 |∇u2|2L2 |Au2|2L2 |∇δT |2L2 + 2γ0|∇δu|L2 |Aδu|L2 |∇T1|L2 |ΔT1|L2 ,

d

dt
|∇δC|2L2 + |ΔδC|2L2

� 27

2
γ2
0 |∇u2|2L2 |Au2|2L2 |∇δC|2L2

+ 4γ0|∇δu|L2 |Aδu|L2 |∇C1|L2 |ΔC1|L2 + 4ρ2|ΔδT |2L2 .

(6.64)

Applying Gronwall’s inequality to (6.64), we obtain

|∇δT (t)|2L2 + |∇δC(t)|2L2

� Q(t, |T10|2H1 , |C10|2H1|∇u10|2L2 , |∇u20|2L2 , |T20|2L2 , |C20|2L2)‖δU(0)‖2H1
D
.

(6.65)

From (6.62) and (6.65), we can derive the following estimate which implies the continuity
of mappings SD(t) on H1

D for each fixed t � 0.

‖δU(t)‖2H1
D

� Q(t, |T10|2H1 , |C10|2H1|∇u10|2L2 , |∇u20|2L2 , |T20|2L2 , |C20|2L2)‖δU(0)‖2H1
D
.

(6.66)

Hence the existence of global attractor A 1
D of the dynamical system ({SD(t)}t≥0,H1

D)
(Theorem 6.1.3) can be assured by the existence of B1

0 and (6.66).
Next we consider the existence of exponential attractor. Recall the compact positively

invariant absorbing set B00 defined by

B00 :=
⋃

0�t�τ0

SD(t)B0.

From (6.57) and positive invariance of B00, we can derive the following boundedness for
any t � 0 and for any U0 belonging to B00.

(6.67) ‖SD(t)U0‖H2,1 � M24.

According to Proposition 2.4.2, it is sufficient that we show the following lemma to assure
the existence of exponential attractor of ({SD(t)}t≥0,H).

Lemma 6.3.1. There exist constants M26 and M27 satisfying

‖SD(1)U10 − SD(1)U20‖H2,1 � M26‖U10 − U20‖H,(6.68)

‖SD(t)U10 − SD(s)U10‖H � M27|t− s|1/2(6.69)

for any Ui0 ∈ B00 (i = 1, 2) and any t, s ∈ [0, 1].
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Proof. By (6.46), we have∫ t

0

|ΔTi(s)|2L2ds+

∫ t

0

|∂tTi(s)|2L2ds � Q(t, ‖Ui0‖H1
D
),∫ t

0

|ΔCi(s)|2L2ds+

∫ t

0

|∂tCi(s)|2L2ds � Q(t, ‖Ui0‖H1
D
).

(6.70)

for any t � 0. Moreover, from (6.49) and (6.50), we can derive

(6.71) |∂tui(t)|2L2 � Q(t, ‖Ui0‖H2,1)

for a.e. t � 0 and

(6.72)

∫ t

0

|∂t∇ui(s)|2L2ds � Q(t, ‖Ui0‖H2,1)

for any t � 0 respectively. Therefore, we can obtain

‖SD(t)U10 − SD(s)U10‖H
�
∫ t

s

|∂tT1(τ)|L2dτ +

∫ t

s

|∂tC1(τ)|L2dτ +

∫ t

s

|∂t∇u1(τ)|L2dτ

�Q(‖U10‖H2,1)|t− s|1/2 � Q(M24)|t− s|1/2

for any t, s ∈ [0, 1], which implies (6.69).

We recall (6.62) and (6.63), i.e.,

‖δU(t)‖H � Q(t, ‖U10‖H)‖δU(0)‖H

and ∫ t

0

|Aδu(s)|2L2ds � Q(t, ‖U10‖H)‖δU(0)‖2H,∫ t

0

|∇δT (s)|2L2ds � Q(t, ‖U10‖H)‖δU(0)‖2H,∫ t

0

|∇δC(s)|2L2ds � Q(t, ‖U10‖H)‖δU(0)‖2H.

Moreover, multiplying the first equation of (D) by ∂tδu and integrating over [0, t], we
get

(6.73)

∫ t

0

|∂tδu(s)|2L2ds � Q(t, ‖U10‖H)‖δU(0)‖2H.
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Multiplying the second equation of (D) by −tΔδT and t∂tδT , we have (see (6.14)
and (6.19))

d

dt
t|∇δT |2L2 + t|ΔδT |2L2 � |∇δT |2L2 + 2tγ0|∇δu|L2 |Aδu|L2 |∇T1|L2|ΔT1|L2

+
27

2
tγ2

0 |∇u2|2L2 |Au2|2L2 |∇δT |2L2 ,

t|∂tδT |2L2 +
d

dt
t|∇δT |2L2 � |∇δT |2L2 + 2tγ0|∇δu|L2|Aδu|L2 |∇T1|L2 |ΔT1|L2

+ 2tγ0|∇u2|L2 |Au2|L2 |∇δT |L2 |ΔδT |L2 .

(6.74)

Therefore, together with (6.43), (6.46), (6.62) and (6.63), we obtain

t|∇δT (t)|2L2

�
(∫ t

0

|∇δT (s)|2L2ds+ 2γ0

∫ t

0

s|∇δu|L2 |Aδu|L2 |∇T1|L2|ΔT1|L2ds

)
× exp

(∫ t

0

27

2
γ2
0 |∇u2|2L2 |Au2|2L2ds

)
� Q(t, ‖U10‖H1

D
, ‖U20‖H)‖δU(0)‖2H

(6.75)

and ∫ t

0

s|ΔδT (s)|2L2ds � Q(t, ‖U10‖H1
D
, ‖U20‖H)‖δU(0)‖2H,∫ t

0

s|∂tδT (s)|2L2ds � Q(t, ‖U10‖H1
D
, ‖U20‖H)‖δU(0)‖2H.

(6.76)

Similarly, from the third equation of (D), we have (see (6.21))

d

dt
t|∇δC|2L2 + t|ΔδC|2L2

� |∇δC|2L2 + 4tγ0|∇δu|L2 |Aδu|L2 |∇C1|L2 |ΔC1|L2

+
27

2
tγ2

0 |∇u2|2L2 |Au2|2L2 |∇δC|2L2 + 4ρ2t|ΔδT |2L2 ,

d

dt
t|∇δC|2L2 + t|∂tδC|2L2

� |∇δC|2L2 + 3tγ0|∇δu|L2|Aδu|L2 |∇C1|L2 |ΔC1|L2

+ 3tγ0|∇u2|L2 |Au2|L2 |∇δC|L2 |ΔδC|L2 + 3ρ2t|ΔδT |2L2 ,

(6.77)

which yield

t|∇δC(t)|2L2 +

∫ t

0

s|ΔδC(s)|2L2ds+

∫ t

0

s|∂tδC(s)|2L2ds

� Q(t, ‖U10‖H1
D
, ‖U20‖H)‖δU(0)‖2H

(6.78)
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for any t � 0.
Let h > 0. Then Dhδu(t) := δu(t + h) − δu(t), DhδT (t) := δT (t + h) − δT (t) and

DhδC(t) := δC(t+ h)− δC(t) satisfy

∂tDhδu(t) + νADhδu(t) + aDhδu(t) = PΩgDhδT (t) + PΩhDhδC(t),

which yields (see (6.27))

(6.79)
d

dt
|Dhδu(t)|2L2 + ν|∇Dhδu(t)|2L2 �

2κ|g|2
ν

|DhδT (t)|2L2 +
2κ|h|2

ν
|DhδC(t)|2L2 .

Integrating (6.79) over [s, t] with t > 0 and using estimates for ∂tδT and ∂tδC ((6.76)
and (6.78)) we have (see (6.28))

|Dhδu(t)|2L2

� |Dhδu(s)|2L2 +
2κ|g|2

ν

∫ t

s

|DhδT (τ)|2L2dτ +
2κ|h|2

ν

∫ t

s

|DhδC(τ)|2L2dτ

� |Dhδu(s)|2L2 +
h2

s
Q(t, ‖U10‖H1

D
, ‖U20‖H)‖δU(0)‖2H.

(6.80)

Integrating (6.80) again over [1/2, t] with s-variable and using (6.73), we obtain,(
t− 1

2

) ∣∣∣∣δu(t+ h)− δu(t)

h

∣∣∣∣2
L2

� Q(t, ‖U10‖H1
D
, ‖U20‖H)

(
log t− log

1

2

)
‖δU(0)‖2H

i.e.,

(6.81)

∣∣∣∣δu(t+ h)− δu(t)

h

∣∣∣∣2
L2

� Q(t, ‖U10‖H1
D
, ‖U20‖H) log t+ log 2

t− 1
2

‖δU(0)‖2H.

for t > 1/2. Especially, at t = 1,

(6.82)

∣∣∣∣δu(1 + h)− δu(1)

h

∣∣∣∣2
L2

� (2 log 2)Q(‖U10‖H1
D
, ‖U20‖H)‖δU(0)‖2H

can be acquired. Hence applying Proposition 6.2.1 to the first equation of (D), we can
assure

|Aδu(1)|L2

�1

ν

(
a|δu(1)|L2 + |g||δT (1)|L2 + |h||δC(1)|L2 +

∣∣∣∣d+δudt
(1)

∣∣∣∣
L2

)
�Q(‖U10‖H1

D
, ‖U20‖H)‖δU(0)‖2H.

(6.83)

Consequently, from (6.62), (6.75), (6.78) and (6.83), we can derive

(6.84) ‖δU(1)‖H2,1 � Q(‖U10‖H1
D
, ‖U20‖H)‖δU(0)‖H � Q(M24)‖δU(0)‖H,

(recall (6.57)), which implies (6.68).
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Thus, by applying Proposition 2.4.2, we can assure Theorem 6.1.2, namely, the existence
of exponential attractor MD of ({SD(t)}t≥0,H).

Finally, we demonstrate the reminder of Theorem 6.1.3, i.e., the existence of expo-
nential attractor M 1

D of ({SD(t)}t≥0,H1
D) via the abstract result Proposition 2.4.2.

We here recall that the existence of compact positively invariant absorbing set B1
00

in H1
D. It is easy to see that

(6.85) ‖SD(t)U0‖H2,2 � M25

holds for any U0 ∈ B1
00 and any t � 0 (see (6.58)). In order to apply Proposition 2.4.2,

we need to check the following estimates.

Lemma 6.3.2. There exist constants M28,M29 and M30 satisfying

‖SD(t)U10 − SD(t)U20‖H1
D
� M28‖U10 − U20‖H1

D
,(6.86)

‖SD(1)U10 − SD(1)U20‖H2,2 � M29‖U10 − U20‖H1
D
,(6.87)

‖SD(t)U10 − SD(s)U10‖H1
D
� M30|t− s|1/2(6.88)

for any Ui0 ∈ B1
00 (i = 1, 2) and any t, s ∈ [0, 1].

Proof. The inequality (6.86) is obvious from (6.66).
From (6.85) and each equation of (DCBF), we have

(6.89) |∂tui(t)|2L2 + |∂tTi(t)|2L2 + |∂tCi(t)|2L2 � Q(‖Ui0‖H2,2) � Q(M25)

for a.e. t � 0. Moreover, from (6.50), (6.51) and (6.56) we have

(6.90)

∫ t

0

|∂t∇ui(s)|2L2ds+

∫ t

0

|∂t∇Ti(s)|2L2ds+

∫ t

0

|∂t∇Ci(s)|2L2ds � Q(t),

which immediately yields (6.88). Here and henceforth, Q(t, ‖U10‖H2,2 , ‖U20‖H2,2) and
Q(t,M25) will be simply denoted by Q(t).

Here, we recall (6.63) and (6.66), i.e.,

‖δU(t)‖2H1
D
� Q(t)‖δU(0)‖2H1

D
,∫ t

0

|Aδu(s)|2L2ds+

∫ t

0

|∇δT (s)|2L2ds+

∫ t

0

|∇δC(s)|2L2ds � Q(t)‖δU(0)‖2H.
(6.91)

Moreover, integrating (6.64) over [0, t], we have

(6.92)

∫ t

0

|ΔδT (s)|2L2ds+

∫ t

0

|ΔδC(s)|2L2ds � Q(t)‖δU(0)‖2H1
D
.

Multiplying each equation of (D) by ∂tδu, ∂tδT , ∂tδC respectively and integrating over
[0, t], we obtain (see (6.74) and (6.77))

(6.93)

∫ t

0

|∂tδu(s)|2L2ds+

∫ t

0

|∂tδT (s)|2L2 +

∫ t

0

|∂tδC(s)|2L2 � Q(t)‖δU(0)‖2H1
D
.
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Then integration of (6.79) over [s, t] and over [0, t] with respect to s-variable again,
together with (6.93), yields

(6.94) t |δu(t+ h)− δu(t)|2L2 � h2Q(t)‖δU(0)‖2H1
D

for any t � 0 and h > 0. Applying Proposition 6.2.1 and taking the limit as h → +0,
we obtain

(6.95) |Aδu(t)|2L2 �
1

t
Q(t)‖δU(0)‖2H1

D

for any t > 0. Integrating (6.79) again over [1/4, t], we have

(6.96)

∫ t

1/4

|∂t∇δu(s)|2L2 ds � Q(t)‖δU(0)‖2H

for any t � 1/4.
From the second equation of (D),

∂tDhδT (t)−ΔδDhT (t) +Dhδu(t)·∇T1(t+ h) + δu(t)·∇DhT1(t)

+ u2(t+ h) · ∇DhδT (t) +Dhu2(t) · ∇δT (t) = 0
(6.97)

is satisfied by DhδT (t) := δT (t + h) − δT (t) and Dhδu(t) := δu(t + h) − δu(t) with
h > 0. Multiplying (6.97) by DhδT (t), we obtain

d

dt
|DhδT (t)|2L2 + |∇δDhT (t)|2L2

� 3|Dhδu(t)T1(t+ h)|2L2 + 3|δu(t)DhT1(t)|2L2 + 3|Dhu2(t)δT (t)|2L2

� 3γ1|∇Dhδu(t)|2L2|∇T1(t+ h)|2L2

+ 3γ1|∇δu(t)|2L2 |∇DhT1(t)|2L2 + 3γ1|∇Dhu2(t)|2L2 |∇δT (t)|2L2 .

(6.98)

Let s ∈ [1/4, t]. Integrating (6.98) over [s, t] and using (6.66), (6.85), (6.90) and (6.96),
we have

|DhδT (t)|2L2 � |DhδT (s)|2L2 + h2Q(t)‖δU(0)‖2H1
D

(6.99)

for any t � s � 1/4. Integrating (6.99) over [1/4, t] with respect to the variable s, we
obtain, by (6.93), (

t− 1

4

)
|DhδT (t)|2L2 � h2Q(t)‖δU(0)‖2H1

D
.(6.100)

We here mention that the second equation of (D) satisfies all requirements in Lemma
6.2.1 with U = δT , w = u2 and F = −δu · ∇T1, since δu ∈ C([0,∞);H1

σ(Ω)), T1 ∈
C([0,∞);H1(Ω)) and |δu · ∇T1|L2 ∈ L∞(0, t) are varied. Moreover, (6.100) implies that
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condition 2 of Lemma 6.2.1 is satisfied by the second equation of (D) for t > 1/4. Hence
condition 3 of Lemma 6.2.1 and (6.100) yield

|ΔδT (t)|L2

�
∣∣∣∣w- limh→0

δT (t+ h)− δT (t)

h

∣∣∣∣
L2

+ |δu(t) · ∇T1(t)|L2 + |u2(t) · ∇δT (t)|L2

� lim inf
h→+0

∣∣∣∣δT (t+ h)− δT (t)

h

∣∣∣∣
L2

+ γ1|∇δu(t)|L2 |T1(t)|H2

+ γ
1/2
0 |∇u2(t)|1/2L2 |Au2(t)|1/2L2 |∇δT (t)|1/2L2 |ΔδT (t)|1/2L2

� 1√
t− 1

4

Q(t)‖δU(0)‖H1
D
+Q(t)‖δU(0)‖H +Q(t)‖δU(0)‖1/2H1

D
|ΔδT (t)|1/2L2 .

Hence

(6.101) |ΔδT (t)|2L2 �
1

t− 1
4

Q(t)‖δU(0)‖2H1
D
.

holds for any t > 1/4 Moreover, from (6.98) and (6.100), we can derive the following for
any t � 1/2: ∫ t

1/2

|Dh∇δT (s)|2L2ds � h2Q(t)‖δU(0)‖2H1
D
,

which implies

(6.102)

∫ t

1/2

|∂t∇δT (s)|2L2ds � Q(t)‖δU(0)‖2H1
D

for t � 1/2. Similarly, multiplying

∂tDhδC(t)−ΔδDhC(t) +Dhδu(t)·∇C1(t+ h) + δu(t)·∇DhC1(t)

+ u2(t+ h) · ∇DhδC(t) +Dhu2(t) · ∇δC(t) = ρΔDhδT (t)

by DhδC(t), we obtain

d

dt
|DhδC(t)|2L2 � 4ρ2|∇DhδT (t)|2L2 + 4γ1|∇Dhδu(t)|2L2 |∇C1(t+ h)|2L2

+ 4γ1|∇δu(t)|2L2 |∇DhC1(t)|2L2 + 4γ1|∇Dhu2(t)|2L2|∇δC(t)|2L2 .
(6.103)

From (6.66), (6.85), (6.90), (6.93), (6.96) and (6.102), integration of (6.103) over [s, t]
and over [1/2, t] with respect to s-variable again gives us

(6.104)

(
t− 1

2

)
|DhδT (t)|2L2 � h2Q(t)‖δU(0)‖2H1

D
.
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We can easily check that the third equation of (D) satisfies requirements in Lemma 6.2.1
with U = δC, w = u2 and F = −δu · ∇C1 + ρΔδT and we can obtain

|ΔδC(t)|L2

�
∣∣∣∣w- limh→0

δC(t+ h)− δC(t)

h

∣∣∣∣
L2

+ |δu(t) · ∇C1(t)|L2

+ |u2(t) · ∇δC(t)|L2 + |ρΔδT (t)|L2

� 1√
t− 1

2

Q(t)‖δU(0)‖H1
D
+Q(t)‖δU(0)‖H1

D
+Q(t)‖δU(0)‖1/2H1

D
|ΔδC(t)|1/2L2 ,

that is to say,

(6.105) |ΔδC(t)|2L2 �
1

t− 1
2

Q(t)‖δU(0)‖2H1
D

for any t > 1/2. Hence we can derive (6.87) from (6.95), (6.101) and (6.105).

6.4 Neumann Boundary Condition Case

In this section, we consider Neumann boundary condition case (Theorem 6.1.4). Let
(u, T, C) be a solution of (DCBF) (with homogeneous Neumann boundary condition)
with the initial data (u0, T0, C0). We here recall that∫

Ω

f2dx =

∫
Ω

f3dx = 0.

is assumed in Theorem 6.1.4. Under this assumption, we obtain the following mass
conservation properties:

(6.106)

∫
Ω

T (t)dx =

∫
Ω

T0dx,

∫
Ω

C(t)dx =

∫
Ω

C0dx

for any t � 0, by integrating the second and the third equation over Ω, [0, t] and using
the following facts:∫

Ω

ΔNTdx = 0,

∫
Ω

ΔNCdx = 0,∫
Ω

u · ∇Tdx = −
∫
Ω

T∇ · udx = 0,

∫
Ω

u · ∇Cdx = 0,

which can be assured by homogeneous Neumann boundary condition and solenoidal
condition. Therefore the semigroup {SN(t)}t�0 acts on the restricted space HmT ,mC

and
H1

N,mT ,mC
for arbitrary positive number mT and mC , namely, the dynamical systems

({SN(t)}t�0,HmT ,mC
) and ({SN(t)}t�0,H1

N,mT ,mC
) are well defined for any mT ,mC > 0.
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Here we define

T ′(t) := T (t)− 1

|Ω|
∫
Ω

T0dx, C ′(t) := C(t)− 1

|Ω|
∫
Ω

C0dx.

Then combining the mass conservation law (6.106) with Poincaré-Wirtinger’s inequality:∣∣∣∣U − 1

|Ω|
∫
Ω

Udx

∣∣∣∣2
L2

� κ′|∇U |2L2 ∀U ∈ H1(Ω)

(κ′ is a suitable constant), we can assure that T ′ and C ′ satisfy

(6.107) |T ′|2L2 � λ′|∇T ′|2L2 , |C ′|2L2 � λ′|∇C ′|2L2 .

Obviously, T ′, C ′ and u satisfies the following equations:

∂tu+ νAu− au = PgT ′ + Pg
1

|Ω|
∫
Ω

T0dx+ PhC ′ + Ph
1

|Ω|
∫
Ω

C0dx+ Pf1,

∂tT
′ −ΔT ′ + u·∇T ′ = f2,

∂tC
′ −ΔC ′ + u·∇C ′ = ρΔT ′ + f3.

(6.108)

Then, under assumptions
∫
Ω
f2dx =

∫
Ω
f3dx = 0, we can assure the existence of

global attractor and exponential attractor by repeating the same arguments as those for
Dirichlet boundary condition case with substitution of (6.107) for Poincaré’s inequality.
Actually, calculations for the second and the third equation can be established by exactly
the same procedures as those in previous sections, with T and C replaced by T ′ and C ′

respectively (we here note that the replacement of boundary conditions dose not affect
our argument for Lemma 6.2.1 and Corollary 6.2.1). As for the first equation of (6.108),
we remark∣∣∣∣PΩg

1

|Ω|
∫
Ω

T0dx

∣∣∣∣2
L2

= |g|2
∫
Ω

(
1

|Ω|
∫
Ω

T0dx

)2

dx � |g|2|Ω|m2
T ,∣∣∣∣PΩh

1

|Ω|
∫
Ω

C0dx

∣∣∣∣2
L2

� |h|2|Ω|m2
C ,∣∣∣∣PΩg

1

|Ω|
∫
Ω

T10dx− PΩg
1

|Ω|
∫
Ω

T20dx

∣∣∣∣2
L2

=

∣∣∣∣PΩg
1

|Ω|
∫
Ω

T10 − T20dx

∣∣∣∣2
L2

� |g|2 1

|Ω|
(∫

Ω

δT10 − T20dx

)2

� |g|2|T10 − T20|2L2 ,∣∣∣∣PΩh
1

|Ω|
∫
Ω

C10dx− PΩh
1

|Ω|
∫
Ω

C20dx

∣∣∣∣2
L2

� |h|2|C10 − C20|2L2 ,

which allow us to accomplish almost the same procedure for the first equation as those
above (obviously, the terms PΩg

1
|Ω|
∫
Ω
T0dx and PΩh

1
|Ω|
∫
Ω
C0dx do not hinder us applying
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Proposition 6.2.1). Moreover, since

|T (t)|L2 � |T ′(t)|L2 +

∣∣∣∣ 1|Ω|
∫
Ω

T0dx

∣∣∣∣
L2

� |T ′(t)|L2 + |T0|L2 � |T ′(t)|L2 +mT ,

|C(t)|L2 � |C ′(t)|L2 +

∣∣∣∣ 1|Ω|
∫
Ω

C0dx

∣∣∣∣
L2

� |C ′(t)|L2 + |C0|L2 � |C ′(t)|L2 +mC ,

|T ′
1(t)− T ′

2(t)|L2 � |T1(t)− T2(t)|L2 + |T10 − T20|L2 ,

|C ′
1(t)− C ′

2(t)|L2 � |C1(t)− C2(t)|L2 + |C10 − C20|L2 ,

∇T ′ = ∇T, ΔT ′ = ΔT, ∂tT
′ = ∂tT,

∇C ′ = ∇C, ΔC ′ = ΔC, ∂tC
′ = ∂tC,

estimates for T ′ and C ′ immediately lead to those for T and C.
Hence, for each mT and mC , we can assure the existence of a global attractor and

an exponential attractor by almost the same reasoning stated in Sections 6.2 and 6.3,
whence it follows our results.
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[11] H. Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contractions dans
un Espace de Hilbert, North Holland, Amsterdam, 1973.
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[30] H. Inoue and M. Ôtani, Periodic problems for heat convection equations in non-
cylindrical domains, Funkcial. Ekvac. Vol. 40 No. 1 (1997), 19–39.

[31] D. Joseph, Stability of Fluid Motion I and II, Springer, Berlin 1976.

[32] P. N. Kaloni and J. Guo, Steady nonlinear double-diffusive convection in a porous
medium based upon the Brinkman-Forchheimer model, J. Math. Anal. Appl. Vol.
204 No. 1 (1996), 138–155.

[33] H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in
unbounded domains, Tohoku Math. J. Vol. 48 (1996), 33–50.

[34] C. Lin and L. E. Payne, Structural stability for the Brinkman equations of flow in
double diffusive convection, J. Math. Anal. Appl. Vol. 325 No. 2 (2007), 1479–
1490.

[35] P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes
equations in the whole space, Nonlinearity Vol. 4 (1991), 503–529.

[36] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an ex-
terior domain, Hiroshima Math. J. Vol. 12 (1982), 115–140.

[37] A. Mojtabi and M. C. Charrier-Mojtabi, Double-diffusive convection in porous me-
dia, Handbook of Porous Media (K. Vafai, ed.), Marcel Dekker, New York (2000),
559–603.

[38] T. Nagai, Periodic solutions for certain time-dependent parabolic variational in-
equalities, Hiroshima Math. J. Vol. 5 (1975), 537–549.

[39] D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling
flow in a saturated porous medium and at an interface, Int. J. Heat and Fluid Flow
Vol. 12 No. 3 (1991), 269–272.

[40] D. A. Nield and A. Bejan, Convection in Porous Medium, Third Edition, Springer,
New York, 2006.



152
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