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Chapter 1

Introduction

1.1 Introduction

In this dissertation, we study the following system of equations (DCBF'), which describes
double-diffusive convection phenomena of incompressible fluid contained in a porous
medium.

Ou =vAu —au—Vp+gT + hC+ f; (x,t) € Qx][0,5],
(DCEF) 0T +u-VT =AT + fo (x,t) € Qx]0, 5],
Vau=0 (x,t) € Qx]0, 5],

where © is a domain (open connected subset) in N-dimensional Euclidean space RY and
S denotes a length of time interval. Unknown functions of (DCBF) are

u=u(r,t) = (u'(z,t),uv?*(z,t), -, u (1)) . Fluid velocity,

T ="T(x,t) . Temperature of fluid,
C=0C(x,t) . Concentration of solute,
p=p(z,t) : Pressure of fluid.

As for given data in (DCBF), v, a and p are positive constants and g = (g%, ¢%, -+ , gV),
h = (h',h? ---  hY) are constant vectors. The given external forces are denoted by
Ji= f1<$7t) = <f11<x7t)7 f12<x7t)7 U 7f1N(x>t>)u f2 = f2($>t) and fS = f3(x7t)'

The time partial differential operator is designated by 0; and the gradient operator
and the Laplace operator are written by V, := (0, Opy, - -+, Opy) and A, = 25:1 8§H
respectively, where d,, describes the x,-directional spatial partial differential operator
(p=1,2,--- N and = (21,29, -+ ,zy) € RY). We simply write V and A if there is
no ambiguity of the variable. We here note that

N N
w- VT =Y 0, T, u-VC=>» u"d,,C,

u:]_ [J,Z].



that is, the inner product in R is written by z -y := 25:1 z,y, for each z,y € RY in
this thesis.
As the boundary condition, we impose either

(1.1) u=0, T=0 C6=0 (x,t) € 92 x [0, 9]
or
(1.2) u =0, or _ 0 oC _ 0 (x,t) € 00 x [0, 5]

o on
on (DCBF) if the boundary of the domain €2, designated by 052, is not an empty set. Here
JT /On :=n-VT and n denotes the unit outward normal vector on 9€2. Throughout this
thesis, problems with the boundary condition (1.1) is said to be “(homogeneous) Dirich-
let (boundary condition) case” and problems with (1.2) is said to be “(homogeneous)
Neumann (boundary condition) case”.

In this chapter, we introduce a physical background and some previous mathematical
studies for (DCBF). We also state our aims and plans of this dissertation in the end of
this chapter.

1.1.1 Physical Background

In this subsection, we give a brief review of physical background of the system (DCBF).

When the hot fluid saturated by some solute exists over the cold and fresh fluid,
the sedimentation of solute with finger-shaped-like distribution occurs in the fluid. This
phenomenon, called salt fingering, have been observed by the experiment in the field of
oceanography for more than one hundred years. In 1960, the mechanism of this phe-
nomenon was explained by Melvin Stern. According to his paper [54], the salt fingering
is mainly characterized by the buoyancy of the fluid (e.g., heat expansion) and the dif-
ference of two diffusion speeds between the heat and the solute. Subsequently, it was
revealed that his theory also can be applied to some unusual diffusion processes which
arise in the fluid possessing two physical quantities with distinct diffusion speeds and
heterogeneous distributions. Such complex phenomena are generally called “Double-
diffusive convection phenomena” and have been investigated since the pioneer result by
Stern.

Double-diffusive convection phenomenon appears in various situations, not only in
oceanography. In astrophysics, the semiconvection process of massive stars can be ex-
plained within the framework of double-diffusive convection. In geology, the layers of
volcanic rocks can be regarded as a result of double-diffusive convection of magma. In
material engineering, double-diffusive convection of melting stuff causes the freckling of
products (we can find more details or examples of double-diffusive convection in, e.g.,
Radko [51] and Brandt-Fernando [6]). It is well known that double-diffusive convection
also occurs in the fluid contained in a porous medium. For example, we have to consider
the effects of double-diffusive convection in models of the soil pollution, the storage of
heat-generating materials such as grain and coal, the reservoir of radioactive substances



and the chemical reaction in catalysts (see, e.g., Nield-Bejan [40]). Due to these impor-
tant applications, double-diffusive convection in porous medium is one of the significant
subjects in engineering.

The first equation of (DCBF) originates from the following equation, the so-called
Brinkman-Forchheimer equations, which describes the relationship between the fluid
velocity w and the pressure p in some porous medium (see, e.g., Vafai-Tien [61] and
Chapter 1 of Nield-Bejan [40]).

1 1
(1.3) 0 (;&u + Eu : Vu) =—-Vp+ Hopg— By 22

o T KM i

where ¢, p and K are some physical constants and ¢ denotes the density of fluid (if we deal
with incompressible fluid, o is also a constant). Moreover, ¢ is a function of space variable
x €  which designate the porosity, the rate of void space in the medium. The right-hand
side of (1.3) is a modified Darcy’s law and the left-hand side is added on the analogy
of the Navier-Stokes equations. However, some researchers, e.g., Beck [4] and Nield [39]
pointed out that the effect from the convection term ¢ 2w - Vau is much less than those
from other terms. Based on this background, we neglect o ?u-Vu in our system (DCBF)
(we note that dropping ¢ ?u-Vu dose not conflict the momentum conservation principle,
since the momentum of fluid is lost by the collision with the porous medium). We also
omit the quadratic term co/K"'/?|u|u under the assumption that the fluid velocity w is
sufficiently small due to the disturbance by the porous medium (strictly speaking, this
omission of the quadratic term is not necessarily valid from physical viewpoint. The
study for (DCBF) with the term co/K'/?|uju should be an important future problem).
Moreover, we assume that the medium is homogeneous, i.e., the porosity ¢ is a constant.
In order to describe the effects of buoyancy, we add the terms g7" and hC' based on the
Oberbeck-Boussinesq approximation (see, e.g., Joseph [31]). Then, by the normalization
of constants, we obtain the first equation of (DCBF).

According to results of irreversible thermodynamics (see, e.g., Pottier [50], Fgrland—
Forland-Ratkje [23]), the behavior of temperature 7" and concentration of solute C' can
be described by the following equations:

AT +u-VT =V - (DyVT + ppVC),
0,C+u-VC=V-(DcVC + psVT),

where Dy and D¢ are diffusion coefficients. The nonlinear terms u - V1" and u - VC
represent the advection of heat and solute (throughout this thesis, these terms u - VT’
and u - VC' are called nonlinear diffusion terms, advection terms or convection terms)
and the terms V- (ppVC') and V- (psVT') describe interactions between the temperature
and the concentration of solute, which are called Dufour’s effect and Soret’s effect respec-
tively (pp and pg are called Dufour’s coefficient and Soret’s coefficient). In (DCBF), we
only consider the contribution from Soret’s effect, since Dufore’s effect is much smaller
than Soret’s effect, particularly when we deal with liquid (see, e.g., Platten—Legros [49],
Mojtabi-Charrier-Mojtabi [37] and Chapter 3 of Nield-Bejan [40]). To be precise, the



coefficients D7, D¢ and pg depend on 1" and C'. However, we assume that pg is constant
and we set Dr = Do = 1 in (DCBF) for simplicity (our arguments in this thesis can be
applied to the case where diffusion coefficients are arbitrary positive constants).

1.1.2 Previous Results

Here, we exhibit some previous results from mathematical viewpoint.

In Piniewski [48], the initial boundary value problem is considered for the system
where the first equation of (DCBF) is replaced by the Navier-Stokes equations and
Soret’s effect is neglected in 2-dimensional rectangle domains. By the application of
Galerkin’s method, the existence of a unique weak solution is assured in this paper.
Establishing some a priori estimates, Piniewski [48] also showed the existence of global
attractor.

As for the coupling of the Navier-Stokes equations with the second equation of
(DCBF), which is called Boussinesq system or heat convection system, there exist earlier
studies. In Inoue-Otani [29] and [30], for instance, the initial boundary value problem
and the time periodic problem for the heat convection system in bounded domains with
moving boundary are considered respectively. By reducing the system to an abstract
equation in some Hilbert space and using the result given in Otani [41], where the solv-
ability of Cauchy problem for abstract equations governed by subdifferential operators
with non-monotone perturbations is discussed, they showed the global solvability of the
initial boundary value problem with arbitrarily large initial data and external forces for
N = 2 and with sufficiently small data for N = 3 respectively in Inoue-Otani [29].
Similarly, applying the abstract non-monotone perturbation theory by Otani [42], they
assured the solvability of the periodic problem with large external forces for N = 2 and
with small data for N = 3 in Inoue-Otani [30]. In Hishida [28], it is shown that the initial
boundary value problem of Boussinesq system in bounded domains with N > 2 possesses
a global solution in suitable L-space for sufficiently small initial data via the Li-theory
of semigroups generated by the Stokes operator and the Laplace operator. In Taniuchi
[57], the solvability of Boussinesq system for non-decaying initial data is assured by the
semigroup approach in some suitable Bezov spaces. By the application of semigroup the-
ory, the time periodic problem of heat convection system in unbounded domains with the
dimension N > 3 was also showed by Villamizar-Roa—Rodriguez-Bellido-Rojas-Medar
(62].

The system where the first equation of (DCBF) is replaced by the steady linear
Brinkman-Forchheimer equations (i.e., (DCBF) without the term Jy;u) is considered
in, e.g., Straughan-Hutter [55], Payne-Song [44] and Lin-Payne [34]. In Payne-Song
[44], some a priori estimates are established and a spatial decay estimate of solutions is
obtained for cylindrical domains in R®. By Straughan-Hutter [55] and Lin-Payne [34],
the continuous dependences of solutions on Soret’s coefficient p and constant vectors
g, h were studied respectively in 3-dimensional bounded domains (see also Payne-Song
[46], the case where g and h depend on the space variable x € Q).

To the best our knowledge, it seems that the first result for the solvability of (DCBF)



itself is given in Terasawa Otani [60]. In Terasawa Otani [60], the initial boundary
value problem in bounded domains with homogeneous Dirichlet boundary condition is
considered. Their main strategy follows that in Inoue-Otani [29]. That is to say, re-
ducing (DCBF) to some abstract equation governed by subdifferential operators with
non-monotone perturbations and applying the result of Otani [41], they assured the
existence of a unique global solution provided that the space dimension is up to 3.

1.1.3 Main Purpose and Plan

Other than the above, a great number of mathematical studies have been devoted to
investigations of Boussinesq system and the system (DCBF) where the first equation
is replaced by the Navier-Stokes equations. In almost all such researches, the main
strategies and concerns for the problem are to apply mathematical tools developed in
the studies of the Navier-Stokes equations. Since the nonlinear diffusion terms w - VT
and u - VC' quite resemble to the convection term u - Vu of the Navier-Stokes equations,
applications of techniques in the Navier-Stokes equations were successful in the previous
works. However, under such strategies, the peculiarities of the nonlinear diffusion terms
u - VT and u - VC' are concealed behind the difficulty of the convection term w - Vu.
That is to say, the terms w - VI" and uw - VC' are handled with the same argument as
that for w - Vu and the difference between them is ignored. In fact, as is stated in the
previous subsection, we already know that more advanced analysis can be accomplished
and more precise results can be obtained for the double-diffusive convection system with
the linear Brinkman-Forchheimer equations than known results for the Navier-Stokes
equations. In Terasawa Otani [60], for instance, the global solvability of (DCBF) for
large data with the dimension N = 3 can be obtained, which is not achieved for the
Navier-Stokes equation yet.

Main purpose of this thesis is to reveal the structures and the difficulties of the system
(DCBF), which arise from the the nonlinear diffusion terms w-VT, u-VC, the buoyancy
terms g7, hC and the term of Soret’s effect pAT under the simplification of equations
associated with the fluid.

This dissertation consists of six chapters.

The next chapter is devoted to preparation of notations and mathematical tools. For
example, we introduce the uniform C*-domain, one of the typical examples of unbounded
domains which allow Sobolev’s embedding theorem and elliptic estimates of Laplace
operator, to be used in Chapter 4. We also state the definition and some properties about
the Helmholtz decomposition of Lebesgue spaces. Moreover, we give the definition and
some examples of subdifferential operator and some known results for evolution equations
governed by subdifferential operators for later use in Chapter 3. In Chapter 2, we define
the dynamical system and its attractors and we prepare some abstract results for the
construction of attractors in Chapter 6.

Chapter 3 deals with the system (DCBF) in bounded domains. Basic strategy in the
third chapter relies on those in Inoue-Otani [29], [30] and Terasawa Otani [60], i.e., we
reduce (DCBF) to an abstract equation in some suitable Hilbert space, which is governed
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by the subdifferential operators, and we apply solvability results given by Otani [41] and
[42] (see Section 2.3). To begin with, we check that the global solvability of the initial
boundary value problem also holds for the homogeneous Neumann boundary condition
case (1.2). By almost the same procedure as that in Terasawa Otani [60], it is shown
that the initial boundary value problem of (DCBF) with Neumann condition possesses
a unique global solution in Section 3.2. We also consider the solvability of time periodic
problem for (DCBF) in Section 3.3 and 3.4. We here note that the required conditions
in the abstract result Otani [42] (periodic problem) are stricter than those in Otani [41]
(Cauchy problem) and the direct application of [42] to the time periodic problem of
(DCBF) seems to be difficult (required conditions in [41], [42] will be stated in Section
2.3). To cope with this difficulty, we introduce some approximate equations of (DCBF)
with dissipation terms and cut-off approximations. By using the abstract result in [42],
we first assure the existence of solutions for the approximate problem. Discussing the
convergences of approximate solutions and equations, we shall show the solvability of the
time periodic problem of (DCBF) with Dirichlet condition (1.1) in Section 3.3. As for
Neumann condition case, we need another step of relaxation approximation due to the
lack of coercivity of the Laplace operator. In order to assure the convergence of these
relaxation terms, we assume the following additional condition for the external forces:

Lﬁ@:éﬁmzm

which is also one of the necessary conditions for the existence of periodic solution of
(DCBF) with Neumann condition. Under the above condition, the solvability of time
periodic problem can be derived for Neumann case in Section 3.4.

In Chapter 4, we consider the initial boundary value problem of (DCBF) in un-
bounded domains. We here remark that it is impossible to follow the same procedure
as that in the Chapter 3, since the ¢-level set compactness is imposed among other
required conditions in [41] (see Section 2.3) and this condition is usually satisfied by
Rellich-Kondrachov’s theorem, which requires the boundedness of €. In Chapter 4, we
introduce another strategy which relies on Banach’s contraction mapping principle and
we shall assure the existence of a unique global solution in uniform C*-domains (see
Section 2.1) with the dimension N < 4 for large initial data and external forces. We
note that our result in fourth chapter completely cover those in TerasawaOtani [60] and
Chapter 3.

Chapter 5 is concerned with the time periodic problem of (DCBF) in the whole do-
main RY with the dimension N = 3,4. Since the solvability can be assured for large
data, i.e., arbitrary large initial data and external forces for the initial boundary value
problem (Chapter 4), we can expect the solvability of time periodic problem without
the smallness condition of external forces. However, there are very few results for the
solvability of time periodic problem in unbounded domains with large data, in partic-
ular, for parabolic equations with non-monotone perturbations, where the uniqueness
of solutions is not obtained. As for the studies for the parabolic equations with non-
monotone perturbations, the time periodic problems in unbounded domains have been
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investigated by, e.g., Maremonti [35], Kozono—Nakao [33] for the Navier-Stokes equations
and Villamizar-Roa-Rodriguez-Bellido-Rojas-Medar [62] for Boussinesq system. How-
ever, their procedures do not fit our aim, since the smallness of given data seems to
be essential in order to assure the convergence of iterations in their argument. On the
other hand, as for the solvability of periodic problem with large data, abstract evolution
equations associated with subdifferential operators in Hilbert space have been studied
by, for instance, in Bénilan Brézis [5], Nagai [38], Yamada [63] and Otani [42]. In these
abstract results, some required conditions are guaranteed by the boundedness of space
domains (e.g., the coercivity of subdifferential operators, @-level set compactness) and
the direct application of their argument to the problem in unbounded domains seems
to be impossible (for this reason, we can not use our strategy in Chapter 3). We also
note that the strategy for semi-linear parabolic equations given in, e.g., Pao [43] is not
available, since the term of Soret’s effect pAT makes difficult to assure the comparison
theorem. In spite of these difficulties, the existence of time periodic solutions of (DCBF)
in RN with N = 3,4 will be shown for large data in fifth chapter, via the convergence of
solutions of some approximate equations in bounded domains.

Chapter 6 deals with the study for the large time behavior of solutions whose existence
is assured in Chapter 4 in terms of global attractor and exponential attractor (definition
of attractors will be stated in Section 2.4). We consider the case where (2 is bounded for
both cases with homogeneous Dirichlet and Neumann boundary condition and external
forces do not depend on the time variable . The construction of global and exponential
attractor of the dynamical system relies on the abstract results, e.g., Babin—Vishik [3],
Chepyzhov—Vishik [16], Robinson [52], Temam [59] for global attractor and Eden-Foais—
Nicolaenko-Temam [18], Efendiev [19], Efendiev-Miranville-Zelik [20] for exponential
attractor (see Section 2.4). In Piniewski [48], the existence of global attractor is already
shown for N = 2. However, we need to establish more precise a priori estimates for
the case N > 3 than those in [48] and previous chapters so that abstract results stated
above can be applied. In order to derive such minute estimates of solutions for higher
regularity, we introduce some abstract result given in Brézis [11] and its modification.
As mentioned in Chapter 6, when the homogeneous Neumann condition is imposed to
(DCBF), there is no global and exponential attractors in the standard sense due to
the so-called mass conservation property. Hence we introduce the restricted dynamical
system by the same way as that in Brochet-Hilhorst [13] and we shall show the existence
of attractors for this dynamical system.






Chapter 2

Preliminary

In this chapter, we define some notations and prepare basic mathematical tools which
will be used in the following chapters of this thesis. Almost all of propositions and
corollaries in this chapter are exhibited without any proof. However, we can find their
demonstrations and more details in the references listed near the statements.

2.1 Lebesgue Space and Sobolev Space

We first recall fundamental facts about the Lebesgue space, the Sobolev space and the
Bochner space in this section.

2.1.1 Notations and Basic Properties

Let © be a domain of N-dimensional Euclidean space RY. In this dissertation, LI(()
and W*4(Q) stand for the standard Lebesgue spaces and Sobolev spaces (1 < ¢ < oo,
k € N) and H*(Q) := W"2(Q). The usual norm in L(Q), W*4(Q) and H*(Q) are
designated by |- [zeq), | - lwra) and | - |gr(q) (definitions and details can be found in,
e.g., Adams [1], Brézis [12] and Folland [22]). To be precise, for each V- € W'4(Q), VV
is defined as vector valued functions. However, in this thesis, we simply write

N
|VV|qu(Q) = Z |8xuv|%q(ﬂ)'
pn=1

Let C5°(€2) denote the space of infinitely differentiable functions with compact supports
in Q. Then we define W)(Q) and H¥(Q) by the closure of C°(Q) under the norm in
WHa(Q) and H*(2) respectively.

According to, e.g., Adams [1], Brézis [12] and Folland [22], Lebesgue and Sobolev
spaces hold the following basic properties.

13



14
Proposition 2.1.1 (Holder’s inequality). Let g € [1,00] and define ¢' by

q/(g—1) (if 1<q<o0),
¢ =q o0 (if q=1),
1 (if q=o0)

(henceforth, called the conjugate Holder exponent of q). Then for any Vi € L1(QQ) and
Vo € LY(Q), ViVy € LX) holds and

|V1V2|L1(Q) < ’V1|LQ(Q)’V2’Lq’(Q)-

Proposition 2.1.2 (Duality). Let g € [1,00) and let ¢ be the conjugate Hélder exponent,
ie., ¢ :=q/(q—1) for1 < q< oo and ¢’ := oo for ¢ = 1. Then L7 () is the dual space
of L1(£2).

Proposition 2.1.3 (Density). For any q € [1,00), C§°(Q2) is dense in LI(S).

Proposition 2.1.4 (Reflexivity). Let ¢ € (1,00), then LU(Q), W*(Q) and WE(Q) are
reflexive for any k € N.

From Holder’s inequality, we can derive the following.

Corollary 2.1.1 (Logarithmic convexity of L%-norms). Let 1 < ¢ < ¢2 < g3 < 00.
Then L% (Q) N L%B(Q) C L=2(Q) is valid. Moreover, for any V € L?(Q) N L®B(Q),

11—«

|V‘Lq2(9) < |V|Lq1(9)’w%qs(ﬂ)

holds, where o := (1/qn — 1/q2)/(1/q1 — 1/q3) (if g3 = 00, av:=1— q1/q2).

2.1.2 Embedding Inequalities

In this subsection, we recall the following important inequality, the so-called Sobolev’s
embedding inequality (see Adams [1], Brézis [12] and Evans [21]).

Proposition 2.1.5 (Sobolev’s embedding theorem). Let 1 < g < N and ¢* := qN/(N —
q). Then the embedding WH4(RN) C LT (RY) holds. Moreover, there exist a constant y
which depends only on q and N such that

(2.1) Ve @vy < YIVV ey YV € WH(RY).

If ¢ = N, then the embedding W 4(RY) C L™(RYN) holds for any r € [q,00). Moreover,
if ¢ > N, then the embedding W4(RN) C L>*(RY) holds.

By zero-extension of functions, Proposition 2.1.5 immediately yields the following.
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Corollary 2.1.2 (Sobolev’s embedding theorem). Let 1 < ¢ < N and ¢* := qN/(N —q).
Then the embedding Wy (Q) C LY (Q) holds. Moreover, there exist a constant v which
depends only on q and N such that

(2.2) Ve @) < 7IVV]Laq) YV e Wy(Q).

If ¢ = N, then the embedding Wy (Q) C L"(Q) holds for any r € [q,00). Moreover, if
q > N, then the embedding W, (Q) C L>(Q) holds.

Here we introduce the definition of C*-class domain.

Definition 2.1.1 (C*-class domain). The domain Q C RY with the boundary 09 is said
to be C*-class domain, if for any x € 0N), there exist a neighborhood O, of x in RN and
a C*-diffeomorphism 1, : O, — BY := {z € RY; |z| < 1} such that

V. (0, NQ) = {2 = (x4, 29, ,zn) € BY; 2 > 0},
(0, NON) = {x = (x1,29,--- ,xy) € BY; 2y = 0}.

According to, e.g., Adams [1], Brézis [12] and Evans [21], Sobolev’s embedding the-
orem also holds for C'-class domain with bounded boundary.

Proposition 2.1.6. Let Q be C'-class domain with bounded boundary O or the half
space RY = {& = (z1,29, -+ ,zy) € RY; zy > 0}. Moreover, let 1 < ¢ < N and
¢ = qN/(N — q). Then the embedding W4(Q2) C L7 (Q) holds and there exist a
constant v which depends on 2, ¢ and N such that

(2.3) Ve @ <7V Iwrae YV e Wha(Q).

If ¢ = N, then the embedding W4(Q) C L"(Q) holds for any r € [q,00). Moreover, if
q > N, then the embedding W4(Q) C L>(Q) holds.

Here we remark that the coefficient v appearing in (2.3) depends on the shape or the
radius of €2, although the coefficient in (2.1) and (2.2) depends only on N and g.

We also recall the following compact embedding theorem which holds for bounded
domain case.

Proposition 2.1.7 (Rellich-Kondrachov’s theorem). Let 2 be a bounded C'-class do-
main and let 1 < g < N and r € [1,q*), where ¢* := ¢N/(N — q). Then W'4(Q) is
compactly embedded in L"(2).

From now on, the exponent ¢* := gN/(N — q) is called the critical Sobolev exponent
associated with q.
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2.1.3 Elliptic Estimates

In this subsection, we mention the elliptic estimates of the Laplace operator —A. Proofs
of propositions below can be found in, e.g., Brézis [12].

From now on, we write —Ap and —Ay in order to represent the Laplace operator
—A with the homogeneous Dirichlet or Neumann boundary condition respectively. That
is to say, —Ap and —Ap describe the Laplace operator —A defined on

D(=Ap) = H(Q) N HA(Q), ZX—AM::{VEIVKD;%%:J)on@Q}

respectively (D(—Ap) and D(—Ay) are called the domain of —Ap and —Ay). We here
remark that —Ap = —Ay is valid if Q = RV,
Then —Ap and —Ay possess the following properties.

Proposition 2.1.8 (Elliptic estimate for —Ap). Let Q be the whole space RY, the half
space ]R_]X or C*-domain with bounded boundary OQ and let F € L*(). Moreover, assume
that V€ H} () is a weak solution of —ApV +V =F, i.e.,

- AV+V=F in €,
V=0 on O0f).

That is to say, assume that V € H}(QY) satisfies
/VVVW+/VW:/FW VIV € HY(Q).
Q Q Q

Then, V belongs to D(—Ap) and becomes a strong solution of —ApV +V = F. More-
over, there exist a constant yp which depends only on € and N such that |V|g2q) <

7D|F|L2(Q); 26
(2.4) V@) < 1p([AV|z2@) + VL2 @)
holds.

Proposition 2.1.9 (Elliptic estimate for —Ay). Let Q be the whole space RY, the half
space ]Rf or C*-domain with bounded boundary OQ and let F € L*(S). Moreover, assume
that V€ HY(Q) is a weak solution of —ANV +V =F, i.e.,

oV — on 0f).

{ “AVHV=F  inQ,
n

That is to say, assume that V € H'(Q) satisfies

/VVVW+/VW:/FW VIV € HY(Q).
Q Q Q
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Then, V' belongs to D(—An) and becomes a strong solution of —ANV +V = F. More-
over, there exist a constant vy which depends only on Q and N such that |V|p2q) <

’}/N‘F‘LQ(Q); i.e.
(2.5) V]2 < w(|AV]2) + [V ]2@)
holds.

Propositions 2.1.8 and 2.1.9 imply that if V' belongs to D(—Ap) or D(—Ay), then
H?-norm of V is bounded only by L?-norm of —AV and V. The inequalities (2.4) and
(2.5) are called elliptic estimate of —Ap or —Apy respectively.

2.1.4 Uniform C*-Domain

Here we introduce the concept of uniform C*-domain.

Definition 2.1.2 (Uniform C*-Regular Class). The domain Q C RN with the boundary
0Q is said to be uniformly regular of class C* (or said to be a uniform C*-domain), if
there exist a family of coordinate chart (O;,1;) (j € N) of Q (the closure of ) which
satisfies the following conditions (called the uniform C*-regularity condition):

1. Each v; is a C*-diffeomorphism from O; onto BY := {x € R; |z| < 1} such that
;i (0;NQ) = {x = (21,29, ,xy5) € BY; 2y > 0},
Vi (0;NON) = {x = (11,29, ,2n) € BY; x5y =0}.

2. There exist some constant M independent of 7 € N such that

> {sup | D%;(2)] + sup !D“%‘l(y)\} <M,
o<k yeBN

CEGOJ‘

where o = (o, g, -+ ,ay) € NN, D= 091092 --- 09 and |a| =31, . y .

3. There exist some positive constant € such that e-neighbourhood of O in  is con-
tained by ;e ;' (3BY), where 3BY = {x/2; x € BV},

4. There exists some natural number ng such that any (ng + 1)-distinct O; does not
possess intersection.

The simplest examples of uniform C*-domain are the half space Rf and C*-class
domains with bounded boundary. Moreover, if the boundary of {2 can be represented by
Ck-class bounded function from RY¥~! to R, then the domain € is uniformly regular of
class C*.

As is mentioned in Amann [2] and Browder [14], if Q is a uniform C*-domain and
satisfies the uniform C*-regularity condition in Definition 2.1.2, then there exist a parti-
tion of unity on €2 which possesses good properties. Then, we can apply almost the same
argument to the uniform C*-domain case as those for C*-class domains with bounded
boundary (see Proposition 2.1.6, 2.1.8 and 2.1.9) and we can assure the following facts.
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Proposition 2.1.10 (Sovolev’s embedding inequality for unbounded domains). Let
be uniformly reqular of class C*. Moreover, let 1 < ¢ < N and ¢* := qN/(N —q). Then
the embedding WH4(Q) C LT (Q) holds and there exist a constant vy which depends on (2,
q and N such that

|V|Lq* (Q) < ”7|V’W1,q(Q) VV E Wl’q(Q).

If ¢ = N, then the embedding W'4(Q) C L"(Q) holds for any r € [q,00). Moreover, if
q > N, then the embedding W4(Q) C L>*(Q) holds.

Proposition 2.1.11 (Elliptic estimate for —Ap in unbounded domains). Let € be a
uniform C*-domain and let F € L*(Q2). Moreover, assume that V € H}(Q) is a weak
solution of —ApV +V = F. That is to say, assume that V € H}(Q) satisfies

/VVVW+/VW:/FW VIV € HL(Q).
Q Q Q

Then, V' belongs to D(—Ap) and becomes a strong solution of —ApV +V = F. More-
over, there exist a constant yp which depends only on Q and N such that |V|p2q) <

7D|F|L2(Q); Z@
(2.6) Vg2 < AV 2@ + V@)
holds.

Proposition 2.1.12 (Elliptic estimate for —Ay in unbounded domains). Let Q be a
uniform C*-domain and let F € L*(Q2). Moreover, assume that V € H'(Q) is a weak
solution of —ANV +V = F. That is to say, assume that V € HY(Q) satisfies

/VVVW+/VW:/FW VIV € HY(Q).
Q Q Q

Then, V' belongs to D(—Ap) and becomes a strong solution of —ANV +V = F. More-
over, there exist a constant vy which depends only on Q such that |V|p2) < Y| F |20,
i.e.

(2.7) Vg2 < WAV 20) + [VIE2@)
holds.

2.1.5 Bochner Space

Let X denote a Banach space with the norm || - || x. We define the space L%(0, S; X) by
the set of X-valued functions U : [0, S] — X such that |U|Lq(,s,x) < 00, where

s 1/q
Ut)||%dt if1<q< oo,
|U|LQ(0,S;X) = (/0 H ( )HX ) 1 q < o0

€8S SUD;e(0,5] WU ()] x if ¢ = co.
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In this subsection, we state some properties of functions belonging to L%(0,S; X), the
so-called Bochner space (see, e.g., Adams [1] and Yosida [64]).

First, by almost the same argument as that for scalar valued functions, the following
density property of Bochner space L?(0, S; X) can be guaranteed.

Proposition 2.1.13 (Density). Let 1 < ¢ < oco. Then C§((0,S5); X) is dense in
L0, 5; X).

Here we consider the special case where X = L% () with ¢; € [1,00). Due to the facts
that C°(Q) is dense in L7 (Q2) (Proposition 2.1.3) and arbitrary function of L%(0,.S; X)
can be approximated by some step functions with value in X for ¢, € [1,00), we can
show that any function belonging to L%(0,.S; L9 (2)) (g1, 92 € [1,00)) is approximated
by some step functions with value in C§°(€2) (this argument is also valid for the case
where X = VV(;€ (Q)). This argument yields the following density property.

Proposition 2.1.14 (Density). Let ¢1,q2 € [1,00). Then C$°((0,.5); C§°(£2)) is dense in
L(0,8; L™(Q)). Moreover, C3°((0,5); C3°(Q)) is dense in L®(0,S; W (Q)) for any
ke N.

In general, we can not characterize the dual of Bochner space L9(0,S; X). However,
when X is reflexive, we can obtain almost the same result as those for scalar valued
functions (see, e.g., Phillips [47]).

Proposition 2.1.15 (Duality). Let 1 < ¢ < oo and let ¢’ be the conjugate Hélder
exponent of q. Moreover, assume that X is reflexive. Then the dual space of L%(0,S; X)
coincides with L9 (0, S; X*), where X* is the dual of X.

Corollary 2.1.3 (Reflexivity). Let 1 < ¢ < oo and assume that X is reflexive. Then
L9(0, S; X) is reflexive.

Next we consider the space W(0,5; X) (g € [1, 00]) defined by
4G € L9(0, S; X) such that

WHO$X) = YU LHO.8 X0 0 v+ / Gls)ds V[0,

Generally speaking, the absolutely continuity does not necessarily lead to the existence
of primitive function for X-valued functions. However, when X is reflexive, the following
properties are equivalent:

1. U e w0, S; X).

2. U is absolutely continuous on [0, S] and differentiable at a.e. ¢ € [0, S]. Moreover,
the time derivative of U belongs to L%(0, S; X).

Moreover, we can find the following fact in, e.g., appendix of Brézis [11].
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Proposition 2.1.16. Let X be a reflexive Banach space and let U € L(0,5; X) with
1 < g < o0. Moreover, assume that there exist a constant v such that

T—h
| wesn-velkd <o vhe 1)
0

holds. Then U belongs to Wh%(0, S; X).

2.2 Helmholtz Decomposition

We here deal with N-component vector valued functions in order to describes the fluid
velocity. In particular, this section is mainly devoted to the definition and the funda-
mental facts of Helmholtz decomposition.

We define the spaces LI(Q) := (L9(Q))N, Wka(Q) = (Wr(Q))N and H*(Q) :=
WH4(Q) with the norm

N N
[wlLa(o) = Z (W L), |wlwra) = Z W wra ),
p=1 w=1
where w = (w',w?,--- ,w"). Moreover, we define Wy ?(Q) and HE(Q) by the closure of

Cee () in Wh4(Q) and HF(Q), where C°(Q) := (C5°(2))V. Strictly speaking, for each
w € Wh(Q), Vw is defined as tensor valued function. However, we use the following
notation:

N
IVwll, ) =Y |0s,w|,q).
pn=1

Moreover, for any wy, w, € W4(Q), we write

N
/V’w1 -Vw, = Z/ Vwl - Vwy
0 = Ja

throughout this thesis, where w; = (w}, w?,--- ,w]) (i = 1,2).

We remark that the propositions stated in Section 2.1.1, 2.1.2 and 2.1.4 (Holder’s
inequality, duality, density, reflexivity and Sobolev’s embedding) also holds for L?(€2),
Wka(Q) and HF(Q).

2.2.1 Helmholtz Decomposition

We first define the following spaces:

Cx(Q2):={w e Cr); V-w(x)=0 Vze Q},
LZ(2) : the closure of C°(€2) under the norm of L7(€2),
Gy(Q) := {w € LYQ); TIp € WSIQ), st., w=Vp},

loc
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where Q is the closure of € in RV,

It is well known that the following result can be assured for ¢ = 2 (see, e.g., Chapter
1T of Galdi [27]).

Proposition 2.2.1 (Helmholtz Decomposition with ¢ = 2). Let Q be any domain in RY
with N > 2. Then L2(Q) and G5(2) become orthogonal subspaces in 1L?(Q). Moreover,
L2(Q) = L2(Q)®G2(Q) holds, i.e., any v € 1L*(Q) is uniquely decomposed by w, € L2()
and wo € GQ(Q)

V=W + W w1 ELg(Q), wo EGQ(Q)

We here remark that
w1 |12(0) + [wali2) < 2|v|L2@)

also holds for any v € L?(Q2) and its decomposition w; € L2(Q) and w, € G5(2) due to
the properties of orthogonal projections in Hilbert space.
For ¢ # 2, such decomposition does not necessarily hold for arbitrary domain €.

However, in special cases, we can obtain the same result as that for ¢ = 2 (see, e.g.,
Chapter III of Galdi [27]).

Proposition 2.2.2 (Helmholtz Decomposition with g # 2). Let 1 < g < oo and let € be
either the whole space RY, the half space Rﬂ\r] or C?-class domain with bounded boundary

with N > 2. Then LI(Q) = LL(Q) & G,(Q) holds, i.e., any v € LY(Q) is uniquely
decomposed by

v =w; + Wy w; € LI(Q), wy € G4(Q).
Moreover, there exist some constant v which depends only on €, ¢ and N such that
[wi|La@) + |walLa@) < Y|v|Lio)
holds for any v € LY(Q2) and its decomposition wy € LI(Q), wy € G,(Q).
According to Fujiwara—Morimoto [26] and Miyakawa [36], we can obtain the following.

Proposition 2.2.3 (Duality of L2(Q2)). Let 1 < ¢ < oo and let Q be either the whole
space RY | the half space RY or C*-class domain with bounded boundary with N > 2.
Then the dual space of LL(Q) coincides with 1LZ (), where ¢’ := q/(q — 1).

Moreover, recalling Proposition 2.1.14 and the fact that C2°(€2) is dense in L% (£2),
we can see the following.

Proposition 2.2.4 (Density). For each g1 € [1,00) and ¢ € (1,00), C§°((0,5); CX(Q2))
is dense in L®(0,S; L2 ().
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2.2.2 Stokes Operator

In this subsection, we mention the Stokes operator and its basic properties. Since our
arguments are carried out in L?-framework throughout this thesis, we only deal with the
case where the exponent ¢ = 2, i.e., L?(Q2)-case for simplicity.

Definition 2.2.1 (Stokes Operator). Let Pq denote the orthogonal projection from 1L%(Q)
onto L2(Q). Then we define the Stokes operator Ag by

Ag = —PaoA with domain D(Agq) = H?(Q) N HL(Q),
where HL(Q) is the closure of C°(Q) under the norm of H ().

If there is no confusion, the orthogonal projection and the Stokes operator are simply
designated by P and A respectively.

Here, operating the orthogonal projection Pg to the first equation of (DCBF), we
obtain the following equations:

O + vAqu + au = PagT + PohC + Pofi  (z,t) € 2x]0, 5],
(2.8) OT +uwVT = AT + f, (z,1) € Qx[0, 5],
0C +u-VC = AC + pAT + f3 (x,t) € Qx][0, S].

We remark that the system (2.8) is equivalent to the original system (DCBF). Indeed, if
we can find a solution (u, T, C) of the system (2.8) in L2(Q) x L*(Q2) x L*(Q)-framework,
the solution u satisfies the solenoidal condition V - 4 = 0 and the existence of pressure
p which satisfies the first equation of (DCBF) can be deduced automatically from the
definition and properties of Helmholtz decomposition of 1L2(£2) (more detail, see, Sohr
[53] and Temam [58]). Therefore, throughout this dissertation, we treat the system (2.8)
instead of the original system (DCBF) and we consider the solution (u,T,C) of (2.8)
instead of (u, T, C, p) of (DCBF). For this reason, the system (2.8) is also called (DCBF)
henceforth.

As for the fundamental fact of the Stoke operator, the following elliptic estimate
holds for Ag defined on uniform C?-domain Q (see Sohr [53]).

Proposition 2.2.5 (Elliptic estimate for Agq). Let 2 be either the whole space RN or
uniform C*-domain and let F € 1.2(Q2). Moreover, assume that w € HL(Q) is a weak
solution of Aqw +w = F. That is to say, assume that w € HL(Q) satisfies

/Vw-V'v—f—/'w-v:/F-v Yo € HL(Q).
0 0 Q

Then, w belongs to D(Aq) and becomes a strong solution of Aqw + w = F. Moreover,
there exist a constant vs which depends only on 2 and N such that |w|uz20) < vs|FlL2q).
i.e.

(2.9) [wlg2) < ys([Aew|Lz @) + w2 )

holds.
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This Proposition implies that the Stoke operator Ay becomes a maximal monotone
operator in L2(€) (see example of subdifferential operators in Section 2.3).

In the particular case where Q = RY we obtain the following (see Constantin-Foais
[17], Sohr [53] and Temam [58]).

Proposition 2.2.6 (Stokes operator in RY). If w belongs to D(Ar~) = H2(RY) N
H!(RY), then Aw belongs to L2(RY), i.e., Agnw = —Aw holds.

2.3 Maximal Monotone Operator and Subdifferen-
tial Operator

In this section, we introduce the definition of subdifferential operator and some known
results for the abstract equation governed by subdifferential operators defined in the
Hilbert space. Throughout this section, H stands for a real Hilbert space with the inner
product (-,-)y and the norm || - ||z. Moreover, - designates the closure in H.

2.3.1 Definition

Let ¢ be a lower semi-continuous convex function from H onto (—oo, +o0]. The function
¢ H — (—00,+00] is said to be “proper” if the set defined by

D(p):={U € H;p(U) < +o0} . Effective domain of ¢

is not empty set. Then we define the subdifferential of a proper lower semi-continuous
convex function ¢ by

Op(Uy) = {h € H; (h,U —Up)y < o(U) — p(Uy) YU € HY}.

The set D(0yp) :={U € H;0p(U) # @} is called the domain of subdifferential operator
0.

It is well known that the subdifferential operator becomes a maximal monotone op-
erator (see Brézis [10], [11]). Here, the operator A : H — 2/ is said to be a maximal
monotone operator if the following conditions are satisfied:

1. (Uy — Uy, Wy — Wa)g > 0 holds for any Uy, U; € D(A) (domain of A) and W, €
AUy, Wy € AUs,.

2. If (U,W) € H x H satisties (U — Uy, W —Wy)g > 0 for any U; € D(A) and any
Wy € AUy, then U € D(A) and W € AU hold.

The condition 2, the so-called maximality of A, and the following condition 2" and
condition 2" are equivalent.

2'. There exist a positive constant A\g such that for any F' € H, the equation U +
MAU > F possesses a unique solution U € D(A).
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2", For any A > 0 and for any F' € H, the equation U + NAU > F possesses a unique
solution U € D(A).

According to the condition 2", for any maximal monotone operator A and positive pa-
rameter \, we can define the resolvent Jy : H — D(A) by Jy := (I + AA)~!, where I

is the identity mapping on H. It is well known that for any U € D(A) , J\U strongly
converges to U as A — 0 in H.
Based on this fact, by measuring how fast the resolvent J,U converges to U, we can

define a nonlinear interpolation class associated with A between D(A) and D(A)  (see
Brézis [7], [8] and [9] ). Let 0 < o < 1, 1 < ¢ < 0o. Then we define the set B, 4(A),
called Brézis class, by

—H
Bay(4) = {U € DA +°U = JiUl|u € LEO. 1)},

where

™ 1/q
14(0,7) = {g 1071 B lluzon o= ([ lotorgar) < oo} (it g€ [1.50)).
LF(0,7) := L>(0, 7).

We also write

1 1 1/q
o = ([ 10 301 rt)

The nonlinear interpolation class B, 4(A) covers several known interpolation spaces such
as Lorentz space, Marcinkiewicz space and Besov spaces. We note that Brézis class
Bo,,(A) generally dose not become a linear space, even, a convex set. However, the
following fundamental facts are valid (see Brézis [7], [8] and [9] ):

\U|Ba gty = U = LU ||

Ba:‘h (A) C BOMH(A) VO( € (O) 1)7 1 < q1 < q2 < 0,
Bal,ql (A) C Ba2,QQ<A) VQbVQQ S [17 OO], 0 < ) < aq < 1.

Moreover, if A = 0y, we have
B1,(0¢) = D(p).

Here we give some examples of subdifferential operators, which will be used in this
thesis.
Example 1. Let H := L*(Q). We define the function ¢, : L*(Q) — R by

QOq(V) = {é‘v‘%q(ﬂ) if U e Lq(Q)a

400 otherwise,

where ¢ > 2. It is easy to see that ¢, is a proper lower semi-continuous convex function
in H. Here we define a function © : R — R by O(s) :=|s|?7?s (s € R) and we define a
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operator O : L2=1(Q) — H by ©'(V)(z) := 0(V(x)) (V € L24=D(Q), 2 € Q). Then,
we can see that
pg(W) = o(V) 2 (O'(V), W = V)u

holds for any W € H and V € L?>@~Y(Q). Therefore, the monotone operator © satisfies
©" C Jyp,. Moreover, © satisfies the maximal condition 2" with A\g = 1. Indeed, for
any W € H, we can define the function Vjr by the solution of the following algebraic
equation:

(since s — O(s) + s is bijective function, the equation above possesses a unique solution
Viy (z) for each given number W (zx)). Then, since

(W (2)]* = |[Vig(2)|* + 2| Vir (2)|? + [Vi ()7

and W € H = L*(Q), we have Vi € L2(Q) N L2@=Y(Q). This implies that Vi becomes
a unique solution of ©'(Viy )+ Vi = W in H. Hence, from the maximality of ©, we have
O = 0, ie. O, (V(+) = |V()]72V(+) with domain D(9g,) = L*(2) N L2a~1(Q).
Example 2. Let H := L*(Q2), where  is either the whole space or uniform C?-domain.
Define ¢p : L*(Q) — R by

on(U) = {%yvv@m) it Ve Hy(%),

+00 otherwise.

We can easily show that ¢p is a lower semi-continuous function on L?(2). Then the
subdifferential operator dpp coincides with —Ap. Similarly, define the lower semi-
continuous convex function ¢y : L2(2) — R by

o (U) = 3IVVIZ 0 if Ve H'(Q),
' +00 otherwise.

Then the subdifferential operator dypy coincides with —A .
Example 3. Let H := L%(Q), where (2 is either the whole space or uniform C*-domain.
Define the lower semi-continuous convex function pg : L2(Q) — R by

o5(w) = %|Vw|12h2(ﬂ) if we HL(Q),
+00 otherwise.

Then the subdifferential operator dyg coincides with the Stokes operator Ag,.

These facts can be guaranteed by the elliptic estimates of —Ap, —Ay and Ag (recall
Section 2.1 and 2.2).
Example 4. Let H := L*(Q2), where Q is either the whole space or uniform C?-domain.
Then, ¢, := ¢p + ¢, and ¢y = N + @, become proper lower semi-continuous convex
functions. It is easy to see that dgp + dp, C 0y, and Opn + dp, C 0¢y. In general,
the sum of maximal monotone operators does not necessarily possess maximality and
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it is not obvious that dpp + dy, and dpy + Oy, coincide with the subdifferential of
wp + pg and on + @, respectively. However, by virtue of the following useful lemma
(see Proposition 2.17 in Brézis [11]), we can assure the maximality of dgp + dp, and
dpn + 8g0q.

Lemma 2.3.1. Let A be a maximal monotone operator in the real Hilbert space H and
¢ H — (—o0,+00] be a proper lower semi-continuous convex function. Moreover,
assume that there exist some constant v such that

o(LLU)<pU)+~yA YU€H, A>0

holds, where Jy := (I +XA)~'. Then A+ 0y is a mazimal monotone operator on H and

DA+ 0p) =DA) ND@p) =D(A) ND@g)

holds.

Recalling mappings © : RN — RY and ©' : L% V(Q) — H in Example 1, we can
assure the existence of Vi3 € L2@~Y(Q) such that

N (Vi) +Vip =W  inH

for any A > 0, W € H. Moreover, if W € H}(Q2) or W € H(Q), then Vj3 also becomes
H}(Q) or H'(Q2)-function respectively, due to the following identity:

VW (z) = VA (Viy () + Vip () = g — DIVig(2) "> VVip(2) + VVip.

This identity also yields [VW|2@q) = |VVi)|r2(q). Using this inequality and recalling
that Viy = (I + \dyp,) 'W, we obtain pp((I + Np,) W) < op(W) and on((I +
Np,)TW) < on (W) for any W € H and any A > 0. By virtue of Lemma 2.3.1, we can
assure the maximality of dpp+0p, and dpn+0¢,, i.e., we obtain dpp+0dp, = 0(pp+¢,)
and dpn + 0pg = 0(on + ¢q)-

2.3.2 Known Result

We exhibit known results for the abstract evolution equations governed by the subd-
ifferential operators in this subsection. Let ¢ : H — (—o00,+0oc] be a proper lower
semi-continuous convex function.

According to Theorem 3.6 in Brézis [11], the following solvability result for the Cauchy
problem is assured.

Proposition 2.3.1 (Solvability of Cauchy problem). Let U, € D(cp)H and let f €

LY(0,S; H), Vtf € L*(0,S; H). Then the problem
C;—g(t) FOpUM) 5 f()  ae te0,S],
U0) =0
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possesses a unique solution U € C([0,S]; H) satisfying
1 du 2
V) € L'0.S), VIS Vige 120,51,

where g is the function such that g(t) € dp(U(t)) and L (t) + g(t) = f(t) for a.e.
te0,5].
Moreover, if f € L*(0,S; H) and Uy € D(p), then the solution U satisfies

dU
o(U) € W0, 9), i 9€ L*(0,S; H).

In the proof of Proposition 2.3.1 given in Brézis [11], the following lemma is effectively
applied. This lemma is also useful for assuring the continuity of solution in H!-space.

Lemma 2.3.2. Let U € W'2(0,5; H) and U(t) € D(0y) for a.e. t € [0,S]. Moreover,
assume that there exist some g € L*(0,S; H) such that g(t) € 0p(U(t)) for a.e. t € [0, 5].
Then p(U(+)) € WH1(0,5) is valid.

As for the periodic problem, Theorem 3.15 and Corollary 3.4 in Brézis [11] assure the
following. Henceforth, the space of periodic continuous X-valued functions is designated
by Cx([0,5T; X), ie.,

Cx(]0,5]; X) :={U € C(]0,5]; X); U(0) =U(S) in X}.

Proposition 2.3.2 (Solvability of periodic problem). Assume that the subdifferential
operator Oy is coercive, i.e.,

90<(/) '
Ul zr—00, UED(p) HU HH

Then for any f € L*(0,S; H), the problem

%(t) LOp(UM) 3 f(t)  ae te0,S],

U(0) = U(9)

possesses a solution U € Cr([0,S]; H) satisfying

e(U) e W0, 9), %, g € L*(0,S; H).

We next introduce the abstract results given in Otani [41] and [42] for some abstract
equations associated with the subdifferential operators dp with non-monotone perturba-
tions B in the Hilbert space H. Since we only deal with the single-valued subdifferential
operator dy and non-monotone perturbation B in Chapter 3, we restrict ourselves to
consider the following simplified problem (CP) and (AP) (we note that more general case
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where, e.g., dp and B are multivalued mappings and ¢ has a {-dependence is investigated
in Otani [41] and [42]).

Wiy +00U®) + BUW) = Ft)  te0,S],

(CP)< dt
U(0) = U,
v 0p(U BU(t)) =F 0.9
(Ap) 4 GO+ 0U) +BUM) =F(t)  te.s]
U(0) =U(S).

To formulate solvability results, we introduce the following conditions:
(A1) For each L € (0,+00), the set {U € H; p(U) + ||U||3; < L} is compact in H.

(A2) B(-) is ¢-demiclosed in the following sense: if {U, },en strongly converges U in
C([0,S]; H), {0¢(U,) }nen weakly converges dp(U) in L*(0,S; H) and {B(U,,) }nen
weakly converges to b in L*(0,S; H) as n — oo, then b(t) = B(U(t)) holds for a.e.
t €10,95].

(A3), For a given exponent a € (0,1/2), there exists a monotone increasing function
¢(-) such that

Bl < 101 {100 + Lo +1} W0 € Do),

where ¢ is some positive constant determined by the initial data U, and the ex-
ternal force F', more precisely, ¢ is some monotone decreasing function of |Up|gy +

U084 p00) + | Fl22(0,5:m)-

(A4) There exists a monotone increasing function ¢(-) and k € (0, 1) such that

IBU)IIE < kllow@)Il + LeU) +IUNE) YU € D(0y).

(A5)  There exists a monotone increasing function ¢(-) and a constant k € [0, 1) such
that

1B < ko) + LIUNm)(e(U) +1)* VU € D(0y).

(A6) There exist positive constants o, K such that

(—0p(U) — B(U),U)g +ap(U) < K VYU € D(9y).

Then the following facts can be found in Otani [41] and [42)].
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Proposition 2.3.3 (Cauchy problem (CP) for B, ,(0¢) with o € (0,1/2)). Let Uy €
B..,(0p) with ¢ € [1,2] and F € L*(0,S; H). Moreover, let the conditions (A1), (A2)
and (A3)q be satisfied. Then there exists Sy € (0, S] depending on |Us|| g and |Up|g, (o)
such that (CP) has a solution U € C([0,Sy]; H) satisfying

d
e o), 12 BU) € 120, 5o H),
tU() = Uollar, £ (U (-))[Y* € L1(0,S0) Vg € [2,0].
Proposition 2.3.4 (Cauchy problem (CP) for D(p)). Let F € L*(0,S;H) and Uy €
D(p). Moreover, let the conditions (A1), (A2) and (A4) be satisfied. Then there ex-

ists Sy € (0,5] depending on ||Up||g and ¢(Uy) such that (CP) has a solution U €
C([0, So; H) satisfying

. p(U), B(U) € 20,5 H),

p(U() € WH(0, Sp).

Proposition 2.3.5 (Periodic problem (AP)). Let the conditions (A1), (A2), (A5) and
(AG) be satisfied. Moreover, assume that

e There ezist some constant vy and q € (1,00) such that
1Ul% < ve(U) VU € D(e).
e The operator Oy is strictly monotone, i.e., if (U — Uy, Wy — Wa)y = 0 with U; €
D(0p) and W; = 0p(U;) (i =1,2), then Uy = Us.
Then for every F' € L*(0,5; H), (AP) has a solution U € C,([0,S]; H) such that

du
%7
p(U(-) € WH(0,9), «(U(0) =¢(U(S)).

0p(U), B(U) € L*(0,S; H),

2.4 Dynamical System and Attractor

As the preparation for Chapter 6, we here define the dynamical system and its attractors.
We also mention some abstract result for the construction of attractors in this section.

2.4.1 Definition

Let E be a closed subset of Banach space X with the norm || - ||x. A family of mappings
S (t) : E — E defined with respect to the variables ¢ > 0, which is denoted by {.%(¢) }+>0,
is said to be semigroup acting on FE, if the followings are satisfied:
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1. (0) is the identity operator on E.
2. (1)L (ty) = L (t1 + t2) holds for any 1,15 > 0.

The pair ({7 (t)}+=0, F) is called dynamical system in this thesis. Then, attractors of
dynamical system ({.7(t)}s>0, F) are defined as follows.

Definition 2.4.1 (Global Attractor). A nonempty subset &/ C E is said to be global
attractor of the dynamical system ({7 (t) }i>0, E), if &7 satisfies the following properties:

1. o is compact in E.

2. s strictly invariant under {Z(t) }i>o, i.e., o satisfies S (t)o/ = o for each
t>0.

3. o satisfies the following “attracting property”; for any bounded subset B C F, o/
satisfies

lim distx (S (t)B,</) =0,

t——+o00
where distx (X1, Xz) 1= sup,, cx, infg,ex, |21 — 22| x (X1, X2 C X).
Definition 2.4.2 (Exponential Attractor). A nonempty subset .# C E is said to be

exponential attractor of the dynamical system ({7 (t) }+>0, E), if A satisfies the following
properties:

1. A is compact in E and # has a finite fractal dimension in X. Here the fractal
dimension of a compact set & C X is defined by

dimp (2, X) := limsup He( A, X)

cs0, e>0 logy1/e

where Ho (', X)) := logy N.(# ', X) and N.(#, X) is the minimal number of e-
open balls in X which cover & .

2. M s positively invariant under {(t) }i>o, i.e., M satisfies S (t)M C M for
each t > 0.

3. M satisfies the following “exponential attracting property”; there exist a monotone
function Q(-) and a positive constant o such that A satisfies

distx (S (t)B, #) < Q(|| Bl x)e ™
for any bounded subset B C E, where ||B|x = sup,cp ||ly|/x-

We here note that the global attractor of dynamical system is uniquely provided.
Indeed, by Definition 2.4.1, we can see that the global attractor is characterized by the
smallest closed attracting set (a set satisfying attracting property). On the other hand,
the exponential attractor of dynamical system is not necessarily determined uniquely.
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2.4.2 Existence of Attractors

In this thesis, the construction of attractors relies on the following abstract results.

Proposition 2.4.1 (Existence of global attractor). Let ({-(t)}i>0, E) be a dynamical
system. Assume that 7 (t) is continuous on E for each t > 0 and ({-7(t) }i>0, F) has a
compact attracting set K. That is to say, we assume that there exist some compact set
K C E satisfying

lim distx (< (t)B,K) =0,

t—+o00
for any bounded subset B C E. Then the dynamical system ({7 (t)}i>0, E) possesses a
global attractor.

The demonstrations for Proposition 2.4.1 can be found in, e.g., Babin—Vishik [3],
Chepyzhov—Vishik [16], Robinson [52] and Temam [59]. This proposition immediately
leads to the following corollary. Here, the set &4 C FE is said to be an absorbing set
of ({Z(t)}1>0, E), if for any bounded subset B C E, there exist tg > 0 such that
S (t)B C £ holds for any t > tg (obviously, the absorbing set satisfies the definition of
attracting set).

Corollary 2.4.1 (Existence of global attractor). Let ({-(t)}i>0, E) be a dynamical
system. Assume that . (t) is continuous on E for each t = 0 and ({7 (t)}i>0, E) has a
compact absorbing set B. Then the dynamical system ({7 (t) }i>0, E) possesses a global
attractor.

Corollary 2.4.1 is sometimes more convenient than Proposition 2.4.1, since the existence
of absorbing set can be deduced by the standard a priori estimates.
Next we mention the abstract theory for exponential attractor.

Proposition 2.4.2 (Existence of exponential attractor). Let Y be a normed subspace
with the norm ||-||y which is compactly embedded in X . Assume that there exist a compact
absorbing set By C E of the dynamical system ({7 (t)}i>0, E) and By is positively
invariant under {&(t)}+>0, i.e., L (t)Bo C Py is valid for any t > 0. Moreover, we
assume that there exist t, > 0 and positive constants oy, s, az and 5 € (0,1] satisfying
the followings.

1. || (t)U — L (t)Us|ly < au||Ur — Usl|x holds for any Uy, Us € B,.

2. ||L () U — L (t)Us||x < aol|Uy — Us||x holds for any Uy, Uy € By, t € [0, t.].

8. L) U, — L (s)U||x < az|t — s|? holds for any Uy € By, t,s € [0,t.].
Then ({7 (t) }i>0, E) possesses an exponential attractor.

By virtue of abstract theory of Efendiev [19] and Efendiev—Miranville-Zelik [20], the
condition I yields the existence of exponential attractor ., of the discrete dynamical
system ({7 }nen, Bo), where .7, := . (t,). Moreover, applying the standard argument
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in Eden-Foais-Nicolaenko-Temam [18], and using the condition 2 and 3, we can assure
that the set
M= | ) 7).,
0<t<ts
becomes an exponential attractor of the dynamical system ({.%(¢)}i>0, %Bo). Since %y
is absorbing set, .# also satisfies all the required conditions of exponential attractor of
the original dynamical system ({7 (¢)}i>0, E).

2.5 Other Basic Tools

The reminder of this chapter is devoted to list up some fundamental facts other than
above.
We first recall Banach’s fixed point principle (see e.g., Evans [21]).

Proposition 2.5.1 (Banach’s contraction mapping principle). Let X be a complete
metric space with the metric d(-,-). Moreover, we assume that the mapping ® : X — X
is a contraction mapping, i.e., there exist some k € [0,1) satisfying

d(P(21), P(22)) < kd(z1, 29), Vz1,V2 € X.

Then ® possesses a unique fixed point zog € X. That is to say, there exist a unique
20 € X such that ®(zy) = 2.

We also recall Shauder—Tychonoft’s fixed point theorem. The original statement and its
proof can be found in, e.g., Browder [15]. For simplicity, we here restrict ourselves to
the particular case.

Proposition 2.5.2 (Schauder—Tychonoff’s fixed point theorem). Let X be a reflexive
Banach space endowed with the weak topology and let € C X be convex and compact in
the weak topology of X. Moreover, we assume that ® : € — € is weakly continuous in
X. Then ® possesses at least one fixed point in € .

Next we introduce the following fact, the so-called Ascoli’s theorem.

Proposition 2.5.3 (Ascoli’s theorem). Let X be a Banach space and ¢ C C([0, S]; X).
Then & is relatively compact in C([0,S]; X) if and only if the followings are satisfied.

e For anyt € [0,5], the set {g(t);g € 4} is relatively compact in X .

e 4 is equi-continuous, i.e., for any s € [0,S] and any € > 0, there exist some
d = 0(s,e) such that ||g(t) — g(s)||x < € holds for any t € (s — 6,5+ ) and any
geY.

The demonstration can be carried out by exactly the same procedure as those for Ascoli-
Arzela’s theorem (see Brézis [12] and Yosida [64] )

If the space domain (2 is bounded, we obtain the following inequality (see Brézis [12]
and Evans [21]).
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Proposition 2.5.4 (Poincaré’s inequality). Let 2 be a bounded domain and let q €
[1,00]. Then there exist a constant k depending on q and § such that

V4@ < 5|VV|wra@ YV e W, 9(Q).

Obviously, we can obtain
N N
[wlLa) = Z [w*| L) < /{Z |Vw"|pa) = K|Vw|wiag)
pn=1 pn=1

for any w € Wy?(Q). Moreover, since

Q

< JAow |z | wliz ) < klAow|i2 )| Vw|izq),
IVV‘LQ < /€|AV’L2(Q)IVV‘L2(Q)
hold for any w € D(Aq) and any V € D(—Ap), we have

Vwliz) < klAqwli2@)  Yw € D(Ag),
IVV 7o) < KAV |2) ¥V € D(=Ap).

Moreover, using Poincaré’s inequality, we can obtain the following elliptic estimates:

[wlrz(0) < Vs([Aawlrz) + [wliz @) < vs([AqwlLz) + & Vwliz o)

<
< Vsl AqwlLz o)
for any w € D(Agq) and

‘Vle D(’AvlLQ(Q) + ’V’LZ(Q)) (lAV‘LQ +/‘€|VV‘L2 )

<
< VplAV 2@

for any V € D(—Ap), namely, H?-norm of w and V are bounded only by the L*norm
of Aqw and ApV. We here note that Poincaré’s inequality holds only for functions
belonging to W, %(Q). More generally, we have the following inequality (see Evans [21]).

Proposition 2.5.5 (Poincaré-Wirtinger’s inequality). Let €2 be a bounded domain and
let g € [1,00]. Then there exist a constant k depending on q and 2 such that

1
‘V——/Vd:x
’Q’ Q La()

where || stands for the Lebesque measure of Q.

<EIVV e YV € WH(Q),




34

Poincaré-Wirtinger’s inequality also yields
|VV|%2(Q) < KJ’AV|L2(Q) vV c D(—AN),
since

< |V/|L2(Q)|AV/|L2(Q) < /1|VV’|L2(Q)|AV'\L2(Q)
= H‘VV’[Q(Q)’AV'LQ(Q)

where V' :=V — ﬁ Jo Vdx (remark that 1‘ Jo Vdz is a constant).

We here state some Gronwall’s type mequahtles (proofs can be found in Evans [21]
and Brézis [11]).

Lemma 2.5.1. Let n € WH(0,5) and g,¢,¢ € L'(0,S). Moreover, we assume that
1,9, ¢, and 1 satisfy the following inequality:

() +g(t) <o) +v(t)  ae te[0,8).

n(t)+/t exp(/¢ dT)ds
n(t) exp (/ o(s ) + /t W(s) exp </:¢(T)d7> ds

holds for any ty € [0,S] and any t € [ty, S].

Then

Lemma 2.5.2. Let n € C([0,S5]), let k be a non-negative constant and let ¢ € L'(0,.5)
be a non-negative function. Moreover, we assume that n, ¢, and k satisfy the following
imequality:

1o t) < %k;z + /tgb(s)n(s)ds a.e. t€0,5].
0

) <k+/0t¢<s>ds

Finally, we state several comments for the fractional power of Ag, —Ap and —Ay. It
is well known that Aq, —Ap and —Ax become non-negative self-adjoint linear operators
and the fractional power of these operators denoted by A8, (—Ap)® and (—Ay)* with
a € (0,1) can be defined. The characterization for the domains of the fractional power

Then

holds for any t € [0, S].
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of operators can be found in Fujita-Morimoto [24] and Fujiwara [25]. For example, we

have
D(AJ?) = HL(Q), D((—-Ap)"?) = Hy(Q), D((—Ax)"?) = H'(Q)

and
A wlia@) = [Vwli),
[(=Ap) V@) = [(=AN)*Vr2@) = [VV] 2.

As for the relationship between the fractional power and the Brézis class, we have
D(A%) = B,2(A), where A is either Aq, —Ap or —Ay (see Brézis [7], [8] and [9] ).
Since A = Aq, —Ap, —Ay are linear maximal monotone operators, the resolvent .J, and
the fractional power A® are commutative. Then we can show that

Ue D(AY) = A*J\U = JZA°U — A°U A\ —0 in H

(see, e.g., Tanabe [56]). From these facts, we can derive the following smoothing approx-
imation, to be used in Chapter 4.

Proposition 2.5.6. Let w belong to C([0, S]; HL(2))NL*(0, S;HA(Y)). Then there exist
a sequence {wy }nen such that

e w, € C([0,S]; D(A?)) for anyn € N,
o {w, }nen strongly converges to w in C([0,S]; HL(Q2)) N L2(0, S;H?(Q)).

Indeed, for example, the sequence {w,}nen defined by w, := (Pl/n * jn\q/v> 08
07

satisfies required properties. Here, p;/, denotes the Friedrichs mollifier with parameter
1/n and J, := (I + £ A)~. The operator * designates the convolution and ~ stands for
the extension of functions belonging to C'([0, S]; L?(£2)) defined by

v(t) (t € [0,5]),

’l?(t) — ’U(—t) (t S [_57 0])7
(25 — 1) (t € [S,28)),
0 (t € R\ [-S,25)).

Moreover, -|jo,g] is the restriction of functions onto the interval [0, S].

Since w(t) € D(A) (a.e. t € [0,95]) is assumed, J,w(t) € D(A?) (a.e. t € [0,9]) is
valid, which implies that w,, € C([0,S]; D(.A?%)).

Then, by the definition of w,,, we have

w(t) — w,(t) = w(t) — J,w(t) + Jyw(t) — w,(t)

1/n
=w(t) — Jw(t) + /

—1/n
1/n

=w(t) — Jyw(t) + / p1/n(s) (Jnw(t) — Jyw(t — s))ds

—1/n

pinls) (Jw(t) = Jyw(t — 5)) ds
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fort € [1/n,S —1/n],
w(t) —w,(t) = w(t) — Jy,w(t) + Jyw(t) — w,(t)

1/n
=w(t) — Jyw(t) + /1/

=w(t) — Jyw(t) + / p1/n(8) (Jpw(t) — Jyw(t — s))ds

—1/n

1/n
+/t p1n(s) (Juw(t) — Jyw(s — 1)) ds

for t € [0,1/n) and

w(t) —w,(t) = w(t) — J,w(t) + Jyw(t) — w,(t)

1/n _

—w(t) — Jyw(t) + / ) (Faw(t) — Tyw(t — ) ds
1/n

=w(t) — Jw(t) + /t—S p1/n(s) (Jpw(t) — J,w(t — s))ds

t—S
+/ p1/n(8) (Jpw(t) — J,w(2S + s —t))ds
—1/n

fort € (S —1/n, S| (remark 25 + s —t € [-1/n,1/n]).

Since J, is a contraction mapping on L2(€) and w belongs to C([0, S]; L2(f2)), i.e.,
w is uniformly continuous on [0, S], we can see that w, (t) — w(t) in LZ(Q) as n — oo
for any ¢ € [0, S] and this convergence is uniform over [0, S], namely, we can assure that
w,, — w strongly in C([0, S]; L2(£2)).

Similarly, we get

AV (t) — AV, (t)

1/n

fort € [1/n,S —1/n],

APaw(t) — AV, (1)
¢
:Al/Qw(t) _ JnA1/2w(t) _|_/ P1/n(8) (JnA1/2w(t) — Jn.Al/Q’w(t — 3)) ds

—1/n

1/n
+/ P1/n(S) (JnAl/Qw(t) — J, AV w (s — t)) ds
t
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for t € [0,1/n) and

Al/Qw(t> _Al/an(t)
1/n
— AV 2qp(t) — JnAl/Q’w(t) + / p1/n(8) (JnA1/2w(t) — J, AY?w(t — S)) ds
t—8

t—S
+ / pl/n(s) (Jn-Al/2w(t> - JnAl/Qw(ZS + s — t)) ds

—1/n

fort € (S—1/n, S]. By the same argument as above, we can assure that A'/?w,, — AY?w
in C([0, S];L2(Q)), that is, w,, converges to w in C([0, S]; HL(Q)).

Since Aw € L*(RY;L2(1)), we can see that P1/n * Z{v\[O,S] — Aw in L?*(0,5;1L2())
as n — oo. We can also derive that

o Aw(t) — n*ﬂt‘ < piym * | Aw — J, Au ).
pr/mx Aw(t) — py W), g S PV w © s @)
Therefore, by using Young’s inequality, we have

11 A = 1 T gy S 1Plz®) [Aw Y@z )

< 3[Aw — JpAw| 1 612 () -

Since the right hand side converges to zero by virtue of Lebesgue’s dominated convergence
theorem, we can assure that py, * J, Aw strongly converges to Aw in L*(0, S;L2(Q)).






Chapter 3

Global Solvability in Bounded
Domains

3.1 Problems and Main Theorems

In this chapter, we consider the system (DCBF) in bounded domain 2 with sufficiently
smooth boundary 0.

( ou + vAgu + au = PagT + PohC + Po fi (:C,t) S QX[O,S],
T +u-VT = AT + fy (x,t) € Qx]0, 5],
0:C +uVC = AC + pAT + f3 (x,t) € Qx][0, 5],
(

(DCBF) .. o
u(-,0) = ug, 7(-,0) =Ty, C(-,0) = Cy Initial condition),

u(-,0) =u(-,9), T(-,0)=T(,S), C(-,0)=C(-,S) (Periodic condition).
We deal with both Dirichlet boundary condition case:
u=0, T=0 C=0 (x,t) € 00 x [0, 5]

and Neumann boundary condition case:

or _, oC _

8_71— , a—n—O (I,t)G@QX[O,S]

u =0,
We simply write A and P in order to represent the Stokes operator Ag and the orthogonal
projection Pq. Throughout this chapter, the norms of L(Q), Wk4(Q), H*(Q), LI(£),
WH4(Q)) and H*(Q) will be simply denoted by | - |74, |  [wwa, | |55 |+ [La, |+ |wra, and
| - |mx respectively (in subsequent chapters, we also use these notation if no vagueness
arises)
In Terasawa-Otani [60], the following solvability of the initial boundary value problem
with Dirichlet condition is given.

39
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Proposition 3.1.1. Let N = 2,3 and let f; =0, fo, f3 = 0. Then for each initial data
uy € HL(Q), Ty, Co € HY(Q), the initial boundary value problem of (DCBF) with the
homogeneous Dirichlet boundary condition admits a unique solution (u,T,C) satisfying

u € C([0, S, H(2)) N L0, S;HA(Q)) N WH2(0, S5 L2 (),
T,C e C([0, S); HA(Q)) N L2(0, S: H2(Q)) N W2(0, 5: L2(Q))

for any S > 0.

Motivated by this result, we aim to solve other types of problems in a bounded domain,
i.e., the solvability of the initial boundary value problem with homogeneous Neumann
boundary condition and the time periodic problem with Dirichlet and Neumann bound-
ary conditions in this chapter.

In the next section, we first show the existence of a unique global solution for the
initial boundary value problem with Neumann boundary condition. To this end, we
follow the strategy of Terasawa-Otani [60], i.e., we reduce (DCBF) to an abstract prob-
lem in some Hilbert space and we apply Proposition 2.3.3 and Proposition 2.3.4, the
abstract result given in Otani [41] to this problem. In this way, the following result will

be demonstrated in Section 3.2 (see Section 2.5 about the fractional power of operators
A* and (—Apn)%).

Theorem 3.1.1 (Initial boundary value problem with Neumann boundary condition).
Let N = 2,3 and let f; € L*(0,S;1L%(Q)), fo, f3 € L*(0,S; L*(Q2)). Then for each initial
data wy € D(A%), Ty, Co € D((—AN)®) with o € [1/4,1/2], the initial boundary value
problem of (DCBF) with the homogeneous Neumann boundary condition admits a unique
solution (u,T,C) satisfying

(

u e C([0,SL3(Q), T.C € C([0,5]; L*(9)),

1279, t1%7 Au € L*(0,S;1L2()),

(#)o /2 Vulizg) € LU0,5) Vg € [2,00],

t1/2=e9,T, tY2729,C, tY/?=AT, t'/272AC € L*(0, S; L*(Q)),
V2|V T | 12y, Y27V C12() € L1(0,S) Vg € [2, 00].

Here we note L1 = Li(dt/t), ie., |glr10,s) = (fol |g(t)|qt_1dt>1/q for ¢ € [1,00) and
L(0,5) = L>(0,5).

Remarks

(1) Ifa=1/2, ie., if ug € D(AY?) = HL(Q) and Ty, Co € D(AY?) = HY(Q), then
(#)1/2 implies that the solution satisfies

u € C([0, S|; Hy () N L*(0, 83 HA(Q)) N WH2(0, S;L3(Q)),
T,C € C([0,S); H' () N L*(0, S; H*(2)) n WH2(0, S; L*(Q)).
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(2) Even if Neumann boundary condition is replaced by Dirichlet boundary condition,
our argument which will be employed in Section 3.2 can be carried out with obvious
modifications and the following result, which includes that of Terasawa Otani [60], can
be assured.

Corollary 3.1.1 (Initial boundary value problem with Dirichlet boundary condition).
Let N =2,3 and let f; € L*(0,S;1L*(Q)), fa, f3 € L*(0,S; L*(Q)). Then for each initial
data wy € D(A%), Ty, Co € D((—Ap)®) with o € [1/4,1/2], the initial boundary value
problem of (DCBF) with the homogeneous Dirichlet boundary condition admits a unique
solution (u,T,C) satisfying

((weC(0,S;L2(), T,C e C([o,S]; L*Q)),

V2=, tV27 Au € L*(0, S;L2(Q)),

/270 || 20y € L9(0,5) Vg € [2,00),

{12-09, T, $1/2-05,0, 11/2-0AT, /2= AC € L2(0, S; L2(Q)),
[ 177V T 12, 1774V O 20) € LY(0, 5) Vg € [2,00].

Next we consider the periodic problem of (DCBF) with Dirichlet and Neumann
boundary conditions. Basic strategies is the application of Proposition 2.3.5, i.e., the ab-
stract result given by Otani [42]. Here we remark that the required conditions in Proposi-
tion 2.3.5 are stricter than those in Proposition 2.3.3 and Proposition 2.3.4. Then, due to
the presence of convection terms w- VT, u-VC' and the buoyancy terms g7', hC' it is dif-
ficult to apply Proposition 2.3.5 directly to (DCBF). In order to cope with this difficulty,
we introduce some approximation system involving some dissipation terms and cut-off
functions and we show the solvability of these systems by using Proposition 2.3.5. In
particular, for the Neumann boundary condition case, we need to introduce another step
of approximation and impose some additional condition on the external forces fs and f3,
since the operator —Ay does not possess the coercivity. Finally, discussing the conver-
gence of solutions for approximate equations, we shall prove the following results in Sec-

tion 3.3 and 3.4 respectively (recall C([0,S]; X) := {U € C([0,S]; X);U(0) =U(S)}).

Theorem 3.1.2 (Periodic problem with Dirichlet boundary condition). Let N = 2,3
and let fi € L*(0,S;1L3(Q)), fa, f3 € L*(0,S; L*(Q)). Then the time periodic problem
of (DCBF) with the homogeneous Dirichlet boundary condition possesses at least one
periodic solution (u,T,C) satisfying

u € Cr((0, 5], Hg () N L2(0, S, HA(Q)) N WH2(0, S;L2(€)),

T, C € Cx([0, S]; Hy(92)) N L*(0,5; H*(Q)) N WH(0, S; L* ().

Theorem 3.1.3 (Periodic problem with Neumann boundary condition). Let N = 2,3
and let f; € L*(0,S;1L.%()), fo, f3 € L*(0,S; L*(Q)). Moreover, we assume that

(3.1) Ai&ﬁ@ﬂ@ﬁzli&ﬁ@ﬂ@ﬁz&
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Then the time periodic problem of (DCBF) with the homogeneous Neumann boundary
condition possesses at least one periodic solution (u,T,C) satisfying

u € Cr([0, S HL(92)) N L*(0, S () n WH2(0, S; L3 (%)),

T, C € Cx([0, 8] H' () N L*(0, S; H*(€2)) N WH(0, S5 L*(92)).
Remark We can easily show that (3.1) assumed in Theorem 3.1.3 is also a necessary
condition under the homogeneous Neumann boundary condition. Indeed, let (u,T,C')

be a periodic solution derived from Theorem 3.1.3. From the homogeneous Neumann
boundary condition and the solenoidal condition of u, we have

/ ATdr =0, / ACdx =0,
Q Q

/u-Vde:—/TV-udx:(), /u-VCdsz.
Q Q Q

Therefore, integrating the second and the third equation over €2, we get

d d
dt o, T /Qf2557 dt/ﬂcx /Qfsf

Since T" and C' are time-periodic with period S, integration over [0, S] yields

/OS/sz(x’t)dxdt:/OS/Qf:%(III,t)dxdt:O.

Furthermore, for Dirichlet boundary condition case, we can obtain the following
uniqueness result.

Theorem 3.1.4 (Uniqueness of periodic solution). There exists a constant 6 depending
on |g|,|h|,v,p and | filr20,s020)) satisfying the following: if |fo|r2(0,5:02(0)) < 0 and
| f3lr2(0,8:02()) < 0, then the periodic solution of (DCBF) given in Theorem 3.1.2 is
unique.

Remark Under the homogeneous Neumann boundary condition, the uniqueness of
periodic solution (given in Theorem 3.1.3) generally does not hold, even if the external
forces are vary small. Indeed, we can see that g = (¢*,---,¢") and h = (h',--- | hY)
possess potential functions, i.e., g = VG and h = VH are valid, where

G(x):=g' (@' —ag) + -+ gV (" —a7),
H(z) = h'(z" — ) + -+ V(@Y — )

(z = (2%,---,2V) € RY is the variable and x},- -,z are arbitrary fixed numbers).
Since (2 is assume to be bounded, G, H € H'(€2) holds. This fact implies that g and h
belong to Go(€) (the orthogonal complement of I.2(£2)), that is to say, we obtain Pg =
Ph = 0. Therefore, if we can deduce a time-periodic solution (u, T, C') of (DCBF) with
the homogeneous Neumann boundary condition, we can assure that (w, T+ Mz, C+ M)
also becomes periodic solution under the Neumann boundary condition for any real

number Mr and Mc.
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3.2 Initial Boundary Value Problem with Neumann
Boundary Condition

3.2.1 Reduction to an Abstract Problem

To begin with, we prove Theorem 3.1.1. To this end, we first reduce the system

Ou + vAu + au = PgT + PhC + P fi,
0C — ANC +u-VC = pANT + f3

to an abstract equation.
We define the Hilbert space H by

H:=12(Q) x L*(Q) x L*(Q).

Moreover, for each parameter n € (0, 1], H, designates the Hilbert space H endowed
with the following inner product:

2
(3.2) (U1, Ua)m = (w1, wg)re + (11, T2) 12 + 977_p2(01’ C) 1z,
where U; = (u;, T;, C;)* (1 = 1,2) and (-, -)p2, (-, )2 describe the inner product in 12(€2),
L?(92) respectively, i.e.,

(w1, wa)p2 iz/ul'uzdl’, (V1, Vo) 2 iZ/Vﬂ/zdiU
Q Q

for w; € L?*(Q) and V; € L*(Q) (i = 1,2). The wight 7%/9p? in the third component of
the inner product (3.2) is added so that we can deal with the term pAT as a sufficiently
small perturbation (see next subsection, Check of (A3),). For elements belonging to H,,
we here put

0, P
AU U fl

U = T Ty = o, , F= fo
C o,C f3

Next we define ¢ : H,, — (—00, 4+00] by

v 2 :
5IVull, + 3|V + 125 VCi. if U € D(p),

(3.3) p(U) = . if UeH,\D(p)

with the effective domain D(y) := HL(Q) x H'(Q) x H'(Q2). Then, recalling ¢s and
oy defined in Section 2.3, we can show that ¢ is a proper lower semi-continuous convex
function on H, and its subdifferential Oy coincides with

vAAu
&P(U> = —ANT
—AynC
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with domain D(0p) = D(A) x D(—Ay) x D(—Ay). We note that dy is single-valued
operator, although the subdifferential operators could be generally multi-valued opera-
tors. Collecting the other remainder terms, we define the single-valued non-monotone
perturbation B by

au — PgT — PhC
B(U) = w-VT
u-VC — pANT

In this way, we can reduce our problem to the following abstract Cauchy problem (CP)
in the Hilbert space H,:

dU
(cP) aF dp(U)+ B(U) = F,

3.2.2 Existence of Local Solution

According to Otani [41], i.e., Proposition 2.3.3 and Proposition 2.3.4, the existence of
time local solution of (CP) satisfying (#), is assured, provided that our system (DCBF)
satisfies the conditions (A1), (A2), (A3), and (A4) (recall and see Section 2.3). In this
subsection, we check these conditions and show the local existence.

We substitute ¢, the exponent appearing in the condition (A3), (see Section 2.3.2),
by 7, the parameter of the Hilbert space H,,. If there is no confusion, the Hilbert space
H, = H. is simply designated by H henceforth.

e Check of (Al) : For any L € (0,+0c0), the set {U € H;o(U) + ||U||} < L} is
compact in H.

Since {U € H; p(U) + ||U||3 < L} is a closed and bounded subset in H!(Q) x H'(Q) x
H'(Q), Rellich-Kondrachov’s theorem (Proposition 2.1.7) immediately leads to the com-
pactness of this set in L2(Q) x L?(Q2) x L*(Q).

e Check of (A2) : B(-) is ¢p-demiclosed.

Assume that the sequence {Uytren = {(uk, Tk, Ck) }ren and its limit U = (u,T,C)"
satisfy

u, — u  strongly in C([0, S];L2(Q)),
T, — T  strongly in C([0, S]; L*(2)),
C,, — C  strongly in C([0, S]; L*(Q)),

vAu, — vAu weakly in L2(0, S;1L2(Q)),
— ANTy — —ANT  weakly in L?(0,5; L*(Q)),
— AnCr — —ANC  weakly in L?(0,5; L*(Q)),
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auy, — PgT), — PhC), — hy  weakly in L?(0, S;1L2(f2)),
ug - VI, — hy weakly in L?(0,S; L*(2)),
uy - VO, — pANT) — hs weakly in L?(0,S; L*(Q)).

We can derive u(t) € D(A) and T'(t),C(t) € D(—Ay) for a.e. t € [0,5] from the fact
that 0p(U) belongs to L*(0, S; H). By the strong convergences of {Uy }ren, we can easily
get hy = au—PgT — PhC. Fix ¢ € C§°((0,5); C5°(€2)). Using the solenoidal condition
and boundary condition of u;, and applying the integration by parts, we have

S
/ /gzﬁuk - VT dzxdt
0 Q
S S S
0 o0 0 Q 0 Q

S
= — / / ’U,ka : ngdxdt
0 Q

Then taking the limit as & — oo and using the integration by parts again (recalling
u € D(A), T € D(—Ay), which implies that V - (uT) = u - VT is well defined in

L?*(Q)), we obtain
s s
/ / hoddadt — — / / uT - Vodudt
o Jo o Jo

S
= / / w - VTodrdt
0 Q

for any ¢ € C§°((0,5); C5°(9)). Since C5°((0,5); C5°(€2)) is dense in L*(0,S; L*(9)),
we can assure that ho = w - VT'. By exactly the same reasoning, we can get hy =
u-VC — ,OANT

e Check of (A3), : For each given € > 0, 3¢(-) such that
B < (101 {100l + 2 o) 11} 0 € D@
By the definition of B and the inner product of H = H., we get
[BU)llr < alulez + |gl[T]2 + |R[|C]L
#lw VT o (ju VOlpe o+ pIAT]z2)

Here applying Holder’s inequality and using the fact |U[35 < |U|2|U]zs (recall Corollary
2.1.1 in Section 2.1), we have

1/2
lw- VT = (/Q |u|2|VT|2d:zc) < ulP VTP

1.3/2

< |ules | VT e < Julis VT2 VT2

L2 LS
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Moreover, from Sobolev’s inequality and elliptic estimate,

~Yolulg VT2 VT
Yol Ve VT ° | AT

ulus VT2V TV

NN

can be derived for N = 2, 3, where 7 is some general constant. Here, we use the following
fact:

VT = VT < [T |52 < (AT |12 + T 12)
< (AT |22 + 0| VT |12) < Y|AT" |12 = Y0|AT |12,

where T" := T — ﬁ fﬂ Tdz and we apply Poincaré-Wirtinger’s inequality (Proposition
2.5.5 in Section 2.5). Then we can obtain

o| V| VT2 | AT
|AT|L2 + ?|V’U,|L2|VT|L2

|'LL . VT|L2

Similarly,
9
[u- VClz < ZIAC) + %vmiwcyﬂ

holds for N = 2,3. From these inequalities above, we can derive
7
IBO)|lr < lUllu + !AT\LZ + —Oqu|?L2\VT|L2
—\AT\Lz + 3,/ ACN + 2o [Vulta VOl
70 372
<llUla + EH&O(U)HH + =92 (0),
which guarantees the condition (A3), with « € [1/4,1/2).
e Check of (A4) : 3/(-) and 3k € [0,1) such that
IBU)IE < kl10p(U) |7 + e(U) +[U|5) YU € D(9p).

Let € = 1 in the procedure above, Check of (A3),. Then we can get

IBWO)|la < %H&O(U)HH +70 (10Ul +¢*2(U)) (N =2,3),

which obviously assures the condition (A4).

Therefore, if N = 2,3, (DCBF) satisfies all the required conditions in Proposition
2.3.3 with a € [1/4,1/2) and in Proposition 2.3.4. That is to say, we can assure the
existence of time local solution (u, T, C')" which satisfies (#), (1/4 < o < 1/2) for initial
data (wo, T, Co)" € Bao = D(AY) x D((—An)*) x D((—An)®) and satisfies (#);/o for
initial data (wug, Ty, Cp)! € D(p) = HL(Q) x HY(Q) x HY(Q).
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3.2.3 Global Existence and Uniqueness

In this subsection, we show that the time local solutions derived in the previous subsec-
tion can be extended to the whole interval [0, S] by establishing some a priori estimates.
We also discuss the uniqueness of solution in the end of this section.

Let Sop € (0,5] and let Q(21, 22, --) denote a general constant depending on the
variables z1, zo, - - -. Multiplying the second equation of (DCBF) by 7" and integrating
over ), we get

1d

(3.4 35 Tl + 9T = [ fiTde < |lial Tl
Q

In (3.4), we use the fact that
1

(3.5) /(u-VT)Tdatzl/u-V(Tg) dm:——/TQV-'u,dm:O.
Q 2 Ja 2 Ja

Applying Proposition 2.5.2 (see Section 2.5) to (3.4) with n = |T'|2, k = |To|z2 and
¢ = |f2|r2, we have

t S
T (t)|z2 < |Tolre +/ | f2(8)|r2ds < |To| 2 +/ | f2(8)|2ds
0 0

which yields
sup |T'(t)|r2 < [Tolr2 + |f2’L1(O,S;L2(Q))-

0<t<So

Integrating (3.4) again, we get
S() SO
/ VT () Radt < Tyl + / | fal8)] 21T (8) e ds
0 0

s

< |TolZ: + (|Tolz2 + |f2|L1(0,S;L2(Q)))/ | fa(s)|z2ds
0

< QUTolz2, [ falLr(0,5:L2(2)))-

Next, multiplying the third equation of (DCBF) by C' and using (3.5) with 7" replaced
by C, we have

Ld

Q Q

< pIVT 12|V C 12 + | fs]12]C| 12
1 2
< 3IVOLR + S IVT s +1fel 2]Clie,

ie.,

Ld o 1 2 P’ 2
(3.6) §%|C|L2 + §|VC|L2 < 3|VT|L2 + | f3]22|C 2.
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Applying Proposition 2.5.2 to (3.6) with n = |C|2, k = [Colr2 + F|VT12(0,50;22(0)) and
¢ = |f2|2, we have

S
sup |[C(t)|r2 < |Colrz + QUTo 2, | fol L1 (0,5:02(0))) +/ | f5(s)|2ds.
0

0<t<Sp

Moreover, integration of (3.6) also yields

So

S() SO
/ IVC(tH%zdt < |O()|%2 +/ |VT(S)|%2d8 +/ |f2(8)|L2|C(S)|L2d8
0 0 0
< QUTolz2, |Colr2, [ folLr(o,8:0200)), | f3] L1 0,5:22(02)))-
Multiplying the first equation of (DCBF) by 0,u and using Holder’s inequality, we get
vd
2dt
(3.7) < [Ovulrz (19T ]2 + |A||C| L2 + [ filL2)
1 1
< S 10mf2s + 5 (lIT ]z + IRIICLia + | filee)

2 ad,

]@uhig + ‘V’U;’H} + ——

Integrating (3.7) over [0, ], we have

So
sup vIVa(t)fs + sup afult)is+ [ ou(s)ds
(3.8) 0<t<So 0<t<So 0

< Q(S, [Vuolez, [|Uollu, [ Flr2(0,5:m))

From (3.8) and the first equation of (DCBF), we can derive

So
(3.9) / |Au(s)[F2ds < Q(S, [Vuolz, [|Uoll, | Fl2(0,5:m))-
0

Multiplying the second equation of (DCBF) by —AT and recalling the estimates of
convection term w - VT in the previous section (Check of (A3),), we obtain

1d

§E|VT|%2 +|AT[L < [AT|p2|w - VT2 + |AT] 2] fol 12

1
< §|AT|i2 +u - VT2, + | fo]2
1
< §|AT|%2 + ’YO|VU|%‘2|VT|L2|AT|L2 + |f2|%2,

ie.,

1d

.10
(3.10) 2dt

1



49

By applying Gronwall’s inequality to (3.10) (Proposition 2.5.1 with n = |[VT|7,) we can
derive
sup |VT(t)[7. < Q(S, [Vuoliz, [VTo|r2, [|Uoll . | F|r2(0,5:m))-

0<t<Sp

From (3.10), we also get

So
/ AT () Padt < Q(S, [Vaaolie, [V Tol 2, 1Usllrs |Flizo.semm)-
0

Multiplying the third equation of (DCBF) by —AC and using the same argument as for
(3.10), we have

1d
§%|VC|%2 + |AC)T: < |AC|2 (Ju - V|2 + p|AT |2 + | f3]12)
1d 1

$§E|VC|%2 + Z|AC|%2 < | Vull=|VO[7: + 3p°|AT 7 + 3| f37,

which leads to

So
VO(t 22+/ AC(8)|?.dt
(3.11) oglg%ol )z i IAC ()|

< QS [V, |To| . |Colmrs | Flr2(0,8:m)) -

Collecting the estimates above, we can assure the following boundedness of solution
(u,T,C):
sup |w(t)|m + sup |T()|m + sup |C(t)|m
(3.12) 0<t<So 0<t<So 0<t<So
< QS Vo2, |To|ars | Colmrs | Flr2(0,8:m))-

We remark that this a priori bounds (the right hand side of 3.12) is independent of
So € (0,S]. Therefore, time local solutions with the initial data Uy € D(y) can be
continued globally up to [0, S]. Moreover, recalling the regularity (#)., we can assure
that every local solutions with the initial data Uy € D(A%) x D((—ApN)*) x D((—AN)%)
possesses to € (0,Sy) such that U(tg) € D(p). Then, regarding U(ty) as an initial data
and applying the global existence result for the case where Uy € D(y), we can also
extend time local solutions globally for the general case where o € [1/4,1/2].

We next show the uniqueness of the solution. Let U; = (u;,T;,C;)" (i = 1,2) be
solutions with the same initial data and let 60U = (du, 0T, 5C)" be the difference of these
two solutions, i.e.,

ou = U — U2, 0T = T1 - TQ, 0C := Cl — OQ.
From (DCBF), 6U satisfies the following equations:

Oou + v Adu + adu = PgdT + PhoC,
(D)< 9,0T — AT = —uy - VOT + du - Vs,
0;0C — ASC = pAST — uy - V6C + du - VCs.
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Multiplying the first equation of (D) by du, we get

1d
——|duli, + v|VoulZ, < |g||0T |2 |0ul2 + |h||6C| 2|02

2 dt
(3.13) B2

2

g]?

1
< (gl + BP)loults + Lo 0T: + 5O e,

Noting that
1
/(ul -V6T)oTdr = —= / STV - wydr = 0,
Q 2 Q

/ (- VT)Tdz — — / Ty(6u - V6T + 6TV - Su)de — — / (b - V6T Tydz
Q Q Q

and multiplying the second equation of (D) by d7", we have
1d
2dt
1
(3.14) < §|V5T|%2 + 71 [0ulpz | Voulp2| Tolfn

0T |2, + |VOT |25 < |6uTy|r2|VOT |12 < |6w|ps|To| 1o | VT 2

1 v
< §|V(5T|%2 + Z|V5'U/|E2 + 71’6U|EQ|T2‘%117

where v is some suitable general constant. Similarly, multiplying the third equation of
(D) by 0C', we obtain

1d
5 719C1L: +[VoC]E < |62 V5w 2 Col 1 |V 6C 12

+ ,0|V(ST|L2 |V5C|L2

3.15 1
(3.15) < 51%0@ + PV OT | 2

VPQ 2 2 4
+ T\Wuhz +71|0wli2|Col -

Let y(t) = [du(t)|?2 + |0T(t)[72 + #|5C’(t) Z,. Then, summing up (3.13), (3.14) and
52 % (3.15), we obtain

d
YO < (L+ DO+ |Co0)]5) y(0)-
Here we note that (#), with o € [1/4,1/2] implies that

Y270 Ty 2, V27V Cy| 12 € LA(0,5) = |VTh| 12, [VCy| 12 € L40, S).

Hence, the uniqueness follows from Gronwall’s inequality. m
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3.3 Time Periodic Problem with Dirichlet Boundary
Condition

In this section, we consider the solvability of time periodic problem with homogeneous
Dirichlet boundary condition (Theorem 3.1.2). Comparing the required condition (A5)
in Proposition 2.3.5 (see section 2.3)

1B < EllopU)IE + IUNm) (e(U) + 1),

with the estimate of non-monotone perturbation term B(U) derived in Check of (A3),

2

y
IBO)z < X100 @)z + 5 (eU) + [1Ullz),

we realize that it is difficult to apply Proposition 2.3.5 directly to (DCBF). We also face
some difficulties in checking the condition (A6).

3.3.1 Approximate Equations

To cope with the difficulties above, we first introduce the following approximate equations
with parameter e > 0.

Ou + vAu + au = Pg[T]. + Ph|C|. + P fi1,
(DCBF),{ O, — ApT + ¢|T|92T + u - VT = fo,
0,C — ApC + €|C192C + u - VC = pApT + fo,

where the cut-off function [-]. is defined by

T(z,t) if |T(x,t)] < 1/e,
(Sgn T'(x,t)) x /e if |[T(x,t)| = 1/e

[T]E(SL’, t) =

(SgnT :=T/|T| : the sign of T') and ¢ is a large exponent to be fixed later on.

Next we reduce (DCBF), to an abstract equation. Here, we choose n = 1 in (3.2),
definition of the inner product of H = L2(Q) x L*(Q) x L*(2). We define proper lower
semi-continuous convex functions ¢’ and v, by

5IVull. + 3| VT [ + VO[5 if U € D(¥),
+ o0 if Ue H,\D(¢),

@' (U) =

s - {81l + 555lCl iU € DG
' oo it U e H\ D(3,),
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where D(¢') := HL(Q) x H}(Q) x H}(Q) and D(¢).) := L2(2) x LI(Q) x LY()). Then,
recalling ¢g, ¢p and ¢, defined in Example 1, 2 and 3 (Section 2.3), we have

vAu 0
op'(U)=| —ApT |, op(U)=| €elTI">T
—ApC elC|a2C

with domain D(9¢') = D(A) x D(—Ap) x D(—Ap) and D(d1.) = L2(Q2) x L=V (Q) x
L*7=1(Q). Moreover, by the same reasoning as that explained in Example 4 of Section
2.3, we can assure that (¢’ + ¥.) = d¢' + 0. and D(O(¢" + 1)) = D(0¢") N D(0.),
since we get

(05 (U), 00 (U)) gt = (AT, | T|*2T) 12 + (—AC, | C12C) 12

(3.16)
— e(p— 1)/ T2\ VT 2dz + (g — 1)/ OV CPdz > 0.
Q Q

Then putting
au — Pg[T]. — Ph|C].
B.(U) = u-VT :

we can reduce approximate problems (DCBF), to the following abstract problem.

) WO | dp0) + B.wW) = Fe) te0,8)

U(0) = U(9),

where . := ¢’ + ..

3.3.2 Existence of Approximate Solutions

In this subsection, we check that the conditions (A1), (A2), (A5) and (A6) in Propo-
sition 2.3.5 (section 2.3) are satisfied for (DCBF),. (we note that Poincaré’s inequality
guarantees the condition

o |U]|% < v@c(U) holds for any U € D(p.) and ¢, is strictly monotone,

which is also required in Proposition 2.3.5).

e Check of (A1) : For any L € (0,400), the set {U € H; o (U) + ||U||3 < L} is
compact in H.

Since {U € H; . (U) + ||U||% < L} is closed and bounded in H.(Q) x H'(Q) x H'(Q),
this set becomes compact by virtue of Rellich-Kondrachov’s theorem (Proposition 2.1.7)
in H.
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e Check of (A2) : B.(:) is p.-demiclosed.
Assume that

u, — uw  strongly in C([0, S];L2(Q)),
T, — T  strongly in C([0,S]; L*()),
C, — C  strongly in C([0, S]; L*(Q)),

vAu, — vAu weakly in L?(0, S;1L2(2)),
— ApT}. + €|Tk’q_2Tk — —ApT + €|T’q_2T Weakly in L2<O, S, LQ(Q)),
— ApCy + €|Cy|172C, = —ApC + €|C|72C' weakly in L*(0, S; L*(1)),

auy, — Pg[Ty]c — Ph[Cy] — h} weakly in L?(0, S;1L2(£2)),
uy, - VT, — b weakly in L?(0, S; L*(9)),
uy, - VO — pApTy — hY weakly in L?(0, S; L*(9)).

From the strong convergences, we can easily derive b} = au—"Pg[T|.—Ph[C].. Using the
angular condition (3.16), the strong convergence of {Uy }ren and the weak convergences
of {0¢c(Ug) }ren, we obtain

.

— ApT, — —ApT weakly in L%(0,S; L*(Q2)),
€|Ty|7 2Ty — €|T|9*T  weakly in L?
— ApC,, — —ApC weakly in L2
| €|Cp|T2C), — €|T|" 2T  weakly in L*(0,S; L*(Q)).

Therefore, we can repeat exactly the same argument that in Check of (A2), Section 3.2
and we can assure that h, = w - VT and hf =u - VC — pApT.

e Check of (A5) : There exists a monotone increasing function ¢(-) and a constant
k € [0,1) such that

IB(U) % < KOOz + U Nm)(0e(U) +1)* YU € D(9ge).
By the definition of the inner product in H and B.(U), we get
BAU)E < llUI% + 2|ATE VT + —lu- VO]
1B(U)zr < 2llUll + GIAT |2 + - VT + 9—p2|U' |25

where 75 is a suitable general constant and we use the fact that

[Tlelz2 < [Tle2; [[Clelez <1CL2
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Using the integration by parts, the condition V-« = 0 and applying Holder’s inequality,
we obtain

lu- VT2, z/VT-u(u-VT)d:v
Q

_ /Q TuV(u-VT)dx — / T(u-VT)V - udz

Q

< / T\l V (u - VT)|de
9]

N N N N
g/\THu\Z\Vu“]Z\&:NT]dx—i—/\THU\Z\M‘Z]V&;“TMQJ
Q p=1 p=1 @ p=1 p=1

N
< T peuluo [ Valus VT2 + [T pefwls ulus Y 105, VT 2.

p=1

By Sobolev’s inequality, elliptic estimates and the fact that |U[7, < |U|p|U3s (see
Corollary 2.1.1 in Section 2.1), we have

IT| Lo |l | V| s | VT | 2 < 72| T iz | V2| Va4 [V ulP5H VT 12
Yl T o [V 254 Au L VT
AUl + 5| T Vs VT

N

//\

1%
—|Au|i2 + 7| Vulis + 7 TS|V TR

//\

|AU|L2 + P)/Q(’VU‘LZ + |VT‘L2 + |T’L12)

N
T\ pelulus wles > 105, VT2 < [T gz |ul 5l 12T e
pn=1
< Y| T oo | Vel ful 11 AT 2

1
< GIAT [ + T [ Vul (2 ul; 2

1
5/ AT L2 + (| Varle + [T ulLz).

Therefore, we can deduce

v 1
lu- VT2, < E|Au|§2 - —|AT|§2
+ ’}/2<|V’U,|L2 + |VT|L2 + |T|L12(1 + |'U/|§12))
Similarly,

v 9p?

1
22 | Auls + |ACE:

+72(\VUIL2 +[VC[L + Ol + U[E))-

u- VO <
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Therefore, by taking ¢ > 12 in 9., we can derive

IBU)IE < 22Ul +92(02(U) + (A + U|5)

v, o, 1 12
+ 6|AU|L2 + §|AT|L2 + §W|AC|L2

< RlUNE +92620) + DA+ |UNE) + gllawe(U)ll?q,

whence follows (A5) with £ = 1/3, provided that ¢ > 12 in 1.
e Check of (A6) : There exist positive constants «, K such that

(=0¢(U) = B.(U), )y + ap(U) < K YU € D(dg,).

The definition of the inner product of H yields

1 €
(O U). U} = vIVully + [VT[L: + g 5[VOfs + €Tl + 5[l
> 20.(U).

Noting that (u - VT, T)2 = (u - VC,C)2 = 0 (see (3.5)) and |[T]c(x,t)| < 1/,
[[Cle(z,t)] < 1/€, we have

(B(U),U)u
1
>alult: — |gllwlz|[T]el 2 — |hlule2|[Ce|r2 — —IVT|L2|VC|L2

1/2 1

Salults ~ P fula(g) + b)) - 39T - 1 IVCEs
a €2
> |ul?, — —= 2 _ '
>2luft — o (gl + [Bl)? = ¢.(U)
Hence we obtain
]

(=0¢(U) = B(U). U)nr < —¢(U) + 5—(Ig] + |h])?%,

2ae
i.e., (A6) is satisfied with « = 1 and K = %(|g| + |h|)%

Thus, for any parameter e, the existence of a periodic solution (u., T;, C.)" of approx-
imate equations (DCBF), can be assured by Proposition 2.3.5.

3.3.3 Convergence

In this subsection, discussing the convergence of {(u., T,, Cc)'} =0 as € — 0, we conclude
the solvability of the original system (DCBF).

To this end, we establish some a priori estimates of (u,T;,C,)"!. Throughout this
subsection, 73 denotes the general constant independent of e. Multiplying the second
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equation of (DCBF), by T, integrating over €2 and using the fact that (w.-VT.,T.)r2 =0
(recall (3.5)), we get

1d

5| +[VEEs + LIt = [ pTd.
Q

Applying Poincaré’s inequality, we have
1 K
/QfQTedx g K1/2|f2|L2|VTE|L2 < §|VT€|%2 + §|f2‘%2
here, k is a constant satisfying |V|%, < k|VV|r2 for any V € HZ(Q)). Then we obtain
L 0
d o 2 q 2
(3.17) g Lelzz + IVTelze + 2€¢[Tel1s < wlfole.
We here note that
*d 2 2 2
| T ads = IS =~ T = o

since T, satisfies the periodic condition. Therefore, integrating (3.17) over [0, S], we have

S S
/0 VT (5) Bads + ¢ / IT.(5) %05 < Al Fol2a00. 510200

Moreover, Poincaré’s inequality yields

s
/0 | Te(8)]72ds < K2 fal22(0.5.2(0)-

Here, since T, belongs to C'([0, S]; L*(Q2)), there exist 5 € [0, S] such that |T.(+)|.2 attains
its minimum at ¢7, i.e.,
Tt = in [0)] 2

Then, we get
2

. 1 [ K
Tl < 5 [ To)ads < Sl s

namely, |T.(t$)|.2 is bounded independently of e. Then integrating (3.17) over [t{,¢] with
t € [t5,t5 + S| and recalling the time periodicity of T,, we can obtain

K/Q
sup (L0 < (%5 + &) albsosas
0<t<S

Hence multiplication of the second equation of (DCBF), by T, yields

s s
(3.18) sup |T6(t)|%2 —I—/ |VT€(3)|%2ds + e/ T.(5)|34ds < 3.
0 0

0<t<S
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Next, multiplying the third equation of (DCBF), by C., we get

5 dt’C 72 4+ [VCe|72 + €|Cel Ty < p|VTe| 2| VCe 12 + Hl/Z’fS‘LQ‘VCG|L2

1
< SIVCL + IV + nlfills,

le.,
d
(3.19) |l + VOl + 2€|Cclf < 20°|VTLL2 + 26l fol 2.

Using \VTJ%Q(O s.2(0) S 3 and repeating the same procedure as above, we can obtain
s S
(3.20) sup |Ce(t)]32 +/ VO, (s)[32ds + e/ |Ce(8)]%,ds < 3
0<t<sS 0 0

Multiplying the first equation of (DCBF). by wu. and noting that |[T¢].(z,t)] <
|T.(x,t)| and |[Celc(x,t)| < |Ce(x,t)], we get

1d

gl AT s < sl + IO 1)

!V’ue\w t3, (\QIIT 2 + [R[|Cl 12 + | £l 2)*.

Recalling supg<;<g |Te(t)|72 + supg<i<s |Ce(t)[72 < 73, we obtain
d
gpluelis + VIV + 20fudfs < 53(1+ [fil72),
which yields
s
(3.21) sup. [u(t)[2s + / Ve (s)|2ads < 7s.
0<t<S 0

Multiplying the first equation of (DCBF), by O,u., we get

(3.22) ]@uEhLz Y |VuE\L2 +2 |ue\L2 < vs(1+ | filf2)-

2dt 2dt
In view of (3.18), (3.20) and (3.21), we obtain

S
/0 oe(U())ds < 7.

Recalling the regularities in Proposition 2.3.5, i.e., ¢.(Uc(:)) € C([0,S]), we can assure
the existence of t5 € [0, S] where ¢ (Uc(-)) attains its minimum. From these facts, we
can derive p (U(t5)) < 73, 1.e.,

(3.23) Ve ()l + [VT(ty) 12 + [VC(t5)I12 + el T(t5) 70 + el Ce(t5) |70 < 13-



58
Using (3.23) and integrating (3.22) over [t5,t] (¢ € [t5,t5 + S]). we have

s
(3.24) sup |Vue(t)|Lz +/ 0w (5)[F2ds < 3
0

0<t<S

From the first equation of (DCBF)., we can also obtain

s
(3.25) / |Au,(s)|2ds < 7.
0
Multiplying the second equation of (DCBF), by —AT, and using

/ ~AT.e|T.|9*T.dx = e(q — 1)/ \VT.|*|T.|" ?dx,
Q Q
e - VT6|%2 < |u6|1LG|VT6|%3 < 73|vue|ﬂ%2|VTe|L2|AT6|L2

(see (3.16) and the estimate for the convection terms given in Check of (A3), in Section
3.2), we obtain

1d

1
9 dt|VT |L2 §’AT€|%2 < 73’V’U,6|ﬁ2|VTE|%2 + 2|f2|%2

By applying Gronwall’s inequality and integrating over [t5,t] with t € [t5,t5 + S| (see
(3.23)), we get

s
(3.26) sup |VT.(t)|3- +/ |AT,(5)|72ds < 73.
0

0<t<S

Moreover, multiplying the second equation of (DCBF), by 0,7, we have

ed
!@eT!Lz ‘: IVT 12 + a\Te\%q < |ue - VI + |12

2dt
< 73|vu6|1%,2|VT6|L2|ATe|L2 + |f2|%2

In view of (3.24), integration over [to, t] with ¢ € [to, 5 + S| gives

(3.27) sup €|T.(t)|%, + /|8t s)|32ds < 3.

0<t<S

Similarly, multiplying the third equation of (DCBF), by —AC, and 9;,C,, we obtain

S SO + IACE: < IV VOl + AIVTE + 1ol
and
ed
110G + 5 ZIVCLE + SZICI,
< 73!Vue\52!VCEIL2\ACeIL2 + P°| AT 7 + | fs]Z2,
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which yield
sup [VC(t)[72 + sup €|Cc(t)]%q < s,

0<t<S 0<t<S

/ ’AC |L2dS+/ |at ‘LQdS

Furthermore, from the second and the third equation, we can derive

(3.28)

S S
(3.29) [T TS ads + [ JC 2 Cs) s <
0 0

Making use of a priori estimates (3.18), (3.20), (3.21), (3.24), (3.25), (3.26), (3.27),
(3.28) and (3.29), we can discuss the convergence of solutions {U, }.~o = {(u, T, C)" }e=o-
We obtain

(3.30) sup ([|Ue(t)]lz + e(Ue(t))) < 73,

0<t<S

which implies that the sequence {U,(t) }¢~0 is pre-compact in H for arbitrary ¢ € [0, 5], by
virtue of Rellich-Kondrachov’s compactness theorem. Moreover, by using the estimates
for dyu., 0,1, and 0,C,, we get

t
|m@—m@m</quﬂmm<%wﬂW%

I Te(t) = Te(s)lp= < vsft — 8|2, |Celt) = Ce(s) |2 < sft — s['/2

for any ¢, s € [0, S], which imply the equi-continuity of {U.(¢)}.~¢ in H. Hence, by virtue
of Ascoli’s theorem (Proposition 2.5.3), there exists a subsequence {U, }nen, simply
denoted by {U, },en, with €, — 0 as n — oo such that

(3.31) U, — U strongly in C.([0,S]; H) as n — 0.

From (3.29), there exist subsequences of {€,|T., |**T,, }nen and {¢,|C.,
weakly converge in L?(0,S; L*(€2)). Moreover, since

1720, }nen which

LT, = & T = & ATD]]) < = 0

q

as € — 0 for any t € [0,5] (¢ = ¢/(qg — 1)), we can see that the weak limits of
{e,|T.,|"7%T,, }nen and {e,|Ce, |972C,, }nen coincide with 0 (recall that C5°((0, S); C5°(92))
is dense in L?(0,S; L*(Q2))). We can also show that [T, ], — T, [C.,]., — C strongly
in L2(0,S; L*(Q2)), since |[T,, ], (z,t)| <|T., (x,t)|, |[Cc, e, (x, )] < |C,, (z,t)] and strong
convergence (3.31) holds.

From the strong convergence (3.31) and uniform a priori bounds for L?(0, S; H)-norm,
we can assure that

du, dU
dt dt

(3.33) 0. (U,) — 89 (U) = (Au, —ApT, —ApC)!

(332) (at'u, 8tT 8150) s
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weakly in L?(0,S; H) as n — oco. Then, we obtain the limit satisfies U € W'%(0,S; H)
and 0¢'(U) € LQ(O,S, H). By virtue of Lemma 2.3.2, we can deduce ¢'(U(:)) €
W*1(0,5), namely, the absolute continuity of ¢'(U(+)). Moreover, supy,<g goe(Ue(t)) <
73 and strong convergence (3.31) yield

Op, Up, — Oy, 1 * -weakly in L°°(0, S;1L*(Q)),
Oy, Ty — 0, T * -weakly in L>°(0,S; L*(Q)),
0, Cpp = 0,,C * -weakly in L>(0,.5; L*())

for all 4 = 1,2,--- N, which imply the weak continuity of d,,u(-) in L*(Q2) and
02, T(-), 0,,C(+) in L2( ) on [0,S]. Since we have the norm-continuity and weak con-
tinuity of d,,u(-), 9,,7(-) and 9,,C(-), we can deduce 9,,u € C([0,S];L*(2)) and
0,,T,0,,C € C(0, S] LQ(Q)) for each p=1,2--- N. Furthermore, the periodicity of
U in H immediately leads to

u € Cr([0, S];H, (), T,C € Cr([0,S]; Hy ().

Hence the limit (u, T, C)" satisfies all the regularities required in Theorem 3.1.2.
Finally, since the weak convergences of convection terms {u., - VT, }nen and {u,,

V., }nen can be assured by exactly the same argument as given above (see Check of
(A2) in Section 3.2),

(3.34) B, (U,

€n

)= B(U)  weakly in L*(0,5; L*(Q)) asn — oo

is valid.

Thus, it follows from (3.31), (3.33), (3.32) and (3.34) that solutions of approxi-
mate system (DCBF). weakly converge to the solution of the original system (DCBF)
(u, T,C)" in L*(0,S; H). O

3.3.4 Uniqueness

In this subsection, we show the uniqueness of the periodic solution (Theorem 3.1.4).
Let U; = (u;, T;, C;)' (i = 1,2) be periodic solutions and let

ou = U — U9, 0T = T1 — TQ, 0C = Cl — Cg.
Recall that oU satisfies the following (Section 3.2):

Odu + v Adu + adu = PgdT + PhdC,
(D)< 9,0T — AT = —uy - VOT + du - Vs,
0,0C — ASC = pAST — uy - VOC + ou - VCs.

Multiplying each equation of (D) by Adu, §7 and 6C respectively, we get
d
EMT&? + |V5T|i2 < ’Y4|V5U|i2|VTQ|%2,

d
Ewcﬁz + |VC 32 < 27| Voulia| Va7 s + 20% VST | 2,

ff!g|2 fﬁlh|2

d
Elwuliz + v Adul?s < VT |3 + ——|VC[3,
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(recall (3.13), (3.14) and (3.15) in Section 3.2 and use Poncaré’s inequality |V|7. <
k|VV3,). Here, 74 is the constant appearing in
|V’U)|L2 S |V|L4|’UJ|]L4 ’}/4|V|H1|’ID|H1
< Wu|VV] Vw2 YV € Hy(Q), Yw € Hy(Q).

Then, putting n(t) := |6T|3, + $|5C|%2 + g{—i|v5u|i2, where x := max{|g|, |h|} and
B :=min{1,1/2p?}, we can see that 7(t) satisfies

(335) ;lt (t) + ﬁ(t) (|VT1‘L2 + — ’VCl’[;) (),

where o := min{1/4, v}, v} := max{ys, 8X—;'y4}. Therefore, if

o
3.36 sup |VTi(t)|52 + su —|VC o < —,
( ) O§t£S| 1 )|L P P22 | 1 (t )|L K

then we have fOS y(t)dt < 0, which implies the uniqueness.

In order to show (3.36), we establish a priori estimates. Multiplying each equation
(DCBF) by Aw, T, C' and repeating almost the same calculations as those in the previous
section (see (3.17), (3.19) and (3.22)), we have

d
E|T‘%Q + VT3> < | falre,

d
(3.37) Z|Clie + VO < 20°[V T2 + 26| [z,

3/@|g|2 3/@|h|2

d
£|VU|E2 -+ I/|.A’U/|E2 X |VT|L2 + — |VC’L2 + — |f1|%2

Integrating each inequality of (3.37) and using the perlodlclty of solution T',C', Vu, we
have

S
/ |VT(S)|%2dS < H’fQ‘%2(O,S;L2(Q)) =: Ql,
0

(3.38) ’ 2 2 [° ) )

; IVC(s)[12ds < 2p ; IVT(s)|12ds + 26| f3]72(0,5,22(0))

< 206l fali2(0, 8,020)) + 261 falT20,502(0)) =2 @2
and
s

/ |Au(s)|?2ds

3/<a|g|2 3;-@|h]2
RS [ 9T aas + 2R w0 s + Sl s

| K’ 2 212 2
S~ (lg1* + 20°|h| )|f2’L2(0,S;L2(Q))

62| h|? 3
+— Il (0,5:L2(0)) T ﬁ|f1|%2(0,s;m2(9)) =: (3.
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By the continuity of solution and Poincaré’s inequality, (3.38) and (3.39) imply that
there exist some t3, 4,15 € [0, S] such that

(3.40) (VT (t3)]3: <

Then integrating the third inequality of (3.37) over [t5,t], we have

K
sup |[Vu(t)|t: < & + Q3 =: Q4.

0<t<S

Multiplying the second and the third equations by —AT and —AC respectively, we get

1
AT, 4+ 2 VT < A2Vl VT + |l
ZQiIVT!iz + | faliz,
(3.41) 3p° 3
—IACILz + thIVC\Lz < ’Y S IVuliz[VO[Le + = |AT [ + S| falie

3
< 17§Q421|VC|%2 + 7|AT|%2 + §|f3|%2>
where 75 is a constant appearing in
|w - VV|2L2 < 75|Vw|i2|VV|L2|AV|L2

for any w € H}(Q) and V € D(—Ap) (see Check of (A3), in Section 3.2). Integrating
(3.41) over [0, S|, we have

s
/ |AT( )|L2d$ 475@4@1 + 4|f2’L2 0,5;L2(Q)) — - Qt'n
0
s
/ |AC(s)[72ds < 993Q5Q2 + 6p°Qs + 6] fs] 720 5.02()) = Qe
0
Then applying Gronwall’s inequality to (3.41) and recalling (3.40), we have

[VT(t)[7> < exp(295Qi(t — t3))[VT (3|7

+2 [ IR0 vl - )as
for any t € [t3,t3 + S] and
VOOl < e (52203~ 1)) IVCEL:
+3 [ (IS + Ll e (5205 - ) ) ds

tq
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for any t € [t4,ts + S]. Therefore, we can obtain

sup [VT'(t)[7. (Ql + 2| fol72 osﬂ(@)) exp(275Q39),

0<t<S

(3.42) 0, .
sup [VC(t)[7: <3 (35 + Qs + | 3172 (0,5;L2(0 ))) exXp (575?@215) :
0<t<S

Since @1, @2, @5 is monotone decreasing to 0 and ()4 does not increase as | f2|12(0,5;22(0)) —
0 and |f3]r2(0,5;2(2)) — 0, inequalities (3.42) imply that for each fixed v, p, g, h, p and
f1, there exist some sufficiently small f; and f3 satisfying (3.36), whence follows the
uniqueness of time periodic solution. O

3.4 Time Periodic Problem with Neumann Bound-
ary Condition

In this section, we consider the solvability of time periodic problem of (DCBF) with the
homogeneous Neumann boundary condition.

The replacement of the boundary condition does not make it difficult to construct
approximate solutions. That is to say, we can guarantee the existence of a time periodic
solution of the following equations by exactly the same argument as those in the previous
section, Dirichlet boundary condition case.

o + vAu + au = Pg[T|. + Ph[C]. + P fi,
T — ANT + €|T|9 2T +u - VT = fo,
ﬁtC — ANC + €|C|q720 +u- VC = pANT + fg,

where the cut-off function [-]. is defined by

T(x,t) it [T, 1)] < 1/e,

(] (a.1) = |
Sgn T'(x,t)/e = T(x,t)/e|T(x,t)| if |T(x,t)] > 1/e.

and ¢ is a sufficiently large exponent (see Check of (A5) in section 2.3.2). However, since
Poincaré’s inequality plays essential role in a priori estimates for Dirichlet boundary
condition case, it is difficult to deduce the uniform boundedness of approximate solutions
and discuss the convergence for Neumann boundary condition case.

In order to manage this difficulty, we introduce another approximation step.
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3.4.1 Approximate Equations

We consider the following system with two approximation parameters e, A > 0.

Ou + vAu + au = Pg[T]. + Ph[C]. + P fi,
(DCBF)_, {4 0T — ANT + AT + €|T|" T +u - VT = fo,
0,C — ANC + A\C + €|C1772C + u - VC = pANT + fs.

By the same way as that in the previous section, we can reduce (DCBF), , to the following
abstract problem (AP), :

(AP),, %ﬁt) +0pA(U(t) + B(U(t) = F(t) telo,5],

U(0) = U(S)

in the Hilbert space H = L2(Q) x L*(Q) x L?(Q2) with the inner product

1
(U1, Us) g := (wq, w2)12 + (11, 1%) 2 + 9_p2(01’ Cy)re.
Here,
u at’u, Pfl
Uv=| T ,%: ar |, F=| f
C 0,C f3
and
rvAu
0o \(U) = —ANT + €|T)92T + AT |,
—ANC +¢€|C|772C + \C
au — Pg[T]. — Ph|C].
B.(U) = u-VT ,
u-VC — pAT
where

18p2
oo it Ue H\D(p)

with domain D(y) := HL(Q) x H'(Q) x H*(Q),
por() = il Tle + g Ol + 3T + @Ol if U e D),
7 + o0 if Ue ffw\l)<1be7k)
with domain D(¢). ) := L2(2) x LI(Q) x LI(R),
Per = 99'+'@baA'

S(U) = { UVl + L VTR, + 125 VO, it Ue D(yp),
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Since the presence of the relaxation terms A7 and AC' does not prevent us from re-
peating arguments in Section 3.3, we can assure the existence of a periodic solution
(ter, Ten, Cen)t of (DCBF), , by applying Proposition 2.3.5. Moreover, in a priori esti-
mates, the coercive approximation terms AT and AC' can shoulder the role of Poincaré’s
inequality. Therefore, due to the terms AT and AC', we can deduce the following esti-
mates by almost the same procedure in the previous section.

sup ||Ue,)\(t>HH + sup SOE,A(UE,)\(t)) < V6,
0<t<S 0<t<S

dU. »
dt

+ |8S06,)\(U6,>\)’L2(07S;H) < Y,
L2(0,5;H)

where 74 is a constant independent of the parameter e (which may depend on \). These
uniform boundedness guarantee the convergence of solutions of (DCBF). , as the param-
eter € tends to 0. Therefore, by repeating the same argument as those carried out in
Dirichlet boundary condition case (Section 3.3), we can assure that the following system
(DCBF), possesses a periodic solution (uy, Ty, Cy)".

Oruy + vAuy + auy = PgTy + PhCy + Pfi,
(DCBF), ¢ 0T\ — ANT) + ATy +uy - VT = fo,
0,0\ — ANCr + ACy +uy - VO = pANT) + f3,
where (uy, Ty, C)\)" satisfies the following regularities:
uy, € Cr([0, SJ; H, () N L*(0, S HA(Q)) nWH(0, S5 L7 (%)),
Ty, Cy\ € CL([0,S]; HY(Q)) N L*(0, S; H*(Q)) n WH(0, S; L*(Q)).
3.4.2 Convergence

To complete our proof, we establish some appropriate a priori estimates independent of
A and we discuss the convergence of Uy = (uy, Ty, Cy)". In this subsection, v; denotes a
general constant independent of the approximation parameter \.

Integrating the second and the third equations of (DCBF), over 2, we get

d
E/{)T,\(:E,t)dx—i-/\/ﬂTA(x,t)dx:/Qfg(:p,t)dx,

4 OA(x,t)da:—ir)\/OA(x,t)dx:/f3(x,t)dx.
dt Jo Q Q

(3.43)

Here we used the following facts:

/ AnT\dx = %dS =0,
Q aq On

/ u) - VT)\CZ(E == / V- (U)\T)\)dﬂi‘ — / T)\V . ’U,)\d.T = / u,\T,\dS =0.
Q Q Q o0
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Integrating (3.43) with respect to ¢ over [0, S| and using the periodic condition and (3.1),

we find that 5 5
)\/ / Ty\(z,t)dzdt =0, /\/ / Ci(z,t)dzdt = 0.
o Ja o Ja

Then, by the continuity of 7T}, C'\ and the intermediate value theorem, there exist some
ty,t2 €10, S] such that

/ Ty (z,t))dz = 0, / Cy(z,t2)dx = 0.
Q Q

Applying Gronwall’s inequality to (3.43), we have

¢
(3.44) /Tx(x,t)dx—/ ek(ts)/fg(x, s)dxds Yt € [ty tg + S].
Q Q

A
5

From Poincaré-Wirtinger’s inequality (Proposition 2.5.5):

V—— | Vdzx

|Q| < Kw|VV|L2 vV e Hl(Q),

L2

‘ 1

we obtain

1
UﬂmﬁwaRUm+Mﬂ/R@m
L2

/ 4 (t)dz
/A A= 8)/f2 Ydxds

< /iw‘VT)\(tM[ﬁ + 5 1/2 |f2|L2(O,S;L2(Q))

1
= kw|VINO)|r2 + 7577
(3.45) VQVW

= rw |VIA(t)|2 + 15773

’9’1/2

for any ¢ € [t3, 3 + S]. Similarly, we get
(3.46) [Cr(®)lz2 < mw|VCAD)2 + S| falr20,s5220)

for any ¢ € [t2,12 + 5.

Replacing Poincaré’s inequality by the inequalities (3.45) and (3.46) in our argument
of Section 3.3, we can derive uniform a priori bounds. Multiplying the second equation
of (DCBF), by T\, we get

|T)\|L2 + |VT)\|L2 + )\|T)\|L2
2dt

=/ﬁﬂm<mmmmz
Q

<ww|VTa|r2| fol 2 + S| folr2(0,8.02(0)) | ol 124



le.,
d
(3.47) T2 + VDL + AT < syl folzz + 25Y2| fol r20,5:02() | fol 22
Integrating (3.47) over [0, S], we have
S S
Gas) [ IVEORads+ A [ ITads < (i + 25l sz
0 0

which immediately yields, together with (3.45),

S S
/ |T)\(s)|%2ds</ 202 VT4 (5) 2 + 25| fo(s) [2ads
0 0

< 2 (ki (53 + 25) + 5) | fal22(0.5.22(0))-

(3.49)
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Combining the continuity of Ty with (3.49), we can assure that there exist a t3 € [0, 5]

such that )
Ta ()72 < g (riv (K +25) + S) [ f2lT2(0.5:02 ()

Then integrating (3.47) over [t3,t] with t € [t3,13 + S], we obtain

2K
(3.50) Sup TA(1)]7: < ( SW + 5Ky + 25 + 2) | folZ2(0.5:22(0)-

Similarly, multiplication of the third equation of (DCBF), by C gives

d
%|C>\|%2 + |VCy22 + 2)|C 2
< 20°| VT[5> + 263y | fal 2 + 25| fal 20,8502 fl 2,

which implies

S s
(3.51) sup |C(t)] 2 —|—/ |VCiy(5)|22ds + /\/ |C\(5)|22ds < 7.
0 0

0<t<S

Moreover, multiplying the first equation of (DCBF), by Awu, and d;u,, we have

1d v 1
—— |V l2s + o [Auy L + a|Vuy |t < — (19| Thl 2 + |B]|Cal iz + | file2)?
2.dt 2 2U
1 9
< a_ )
5 (v7 + | file2)
1 vd ad 1 9
5181:%’1%2 + §%|vu)\|]%2 + §£|UA\12L2 <3 (IgITx|L2 + [R[|CxlL2 + | fi]L2)
1
<5 O + 1 filee)”
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From these inequality, we obtain

S S
(3.52) sup Jua ()l + / A (s)[Zads + / Byta(s)|Padls < 7.
0 0

0<t<S

Recalling our calculations in Section 3.2 and 3.3, (see (3.10) or procedures for (3.27),
(3.28)), we can derive the followings from the multiplication of the second and the third
equation of (DCBF), by —AT), 0,7y and —AC), 9,C\.

|VT>\|L2 +7 IATA|%2 + A!VTA|%2 < Vsl VI + |z,

2dt
1 d
|3tT>\|L2+ |VT)\|L2+>\ |T>\|L2 77|VU)\|%‘2|VT)\|L2|AT)\|L2+|f2|2Lz,
1 d
2dt|V(JA|L2 + = |ACA|L2 + AV 22 < v | Vs |t2 [ VCA22 + 302 ATy |22 + 3| 52,
—|@t0)\|22 |VC)\| 2 )\ d|0,\| 2 ’77|V’U,)\|22|VC)\|L2|AC/\|L2+p2|AT)\|22+|f3|22
4 L th L 2dt L L L L=

which yield

sup |[VTy(t)|p2 + sup |VO\(t)|r2 < 77,
0<t<S

0<t<S

S S
(3.53) /O |AT)\(5)’%2dS+/O |ACK(8)|F2ds < 7,

S S
/ |atT,\(S)|%2d$ -+ / ’atC)\(S)‘%zdS < Y7
0 0

From the uniform bounds (3.48), (3.50), (3.51), (3.52) and (3.53), we can accom-
plish the convergence argument and we can assure the existence of the original system
(DCBF). Indeed, by (3.48) and (3.51), we can show that AT\ — 0, AC’y — 0 strongly in
L?(0,5; L*(£2)) as A — 0, since

S
RVaNF (0,5;L2(Q)) — )\/ MNT5(5)[32ds < Ayr.
0

Moreover, (3.48), (3.50), (3.51), (3.52) and (3.53) imply that Uy = (uy, Ty, C))" satisfies

sup [[Ux(t)[|w + sup (Ux(1)) < 7,
0<t<S 0<t<S

U,

7t + 100U 120,5.1) < 77-

L2(0,S;H)

Thus, we can employ the same convergence argument as that in Section 3.3.3 and we
can assure the existence of a time periodic solution for Neumann boundary condition
case. O



Chapter 4

Initial Boundary Value Problem in
Unbounded Domains

4.1 Problems and Main Theorems

In this chapter, we deal with the initial boundary value problem of (DCBF) in general
domains.

Ou +vAu + au = PgT' + PhC +Pf, (x,t) € Qx][0,5],
T +u VT = AT + f, (x,t) € Qx]0, 5],
0,C +u-VC = AC + pAT + f3 (z,t) € Qx[0, 5],
u(-,0) = ug, T(-,0) =Ty, C(-,0) = Cp.

(DCBF)

We mainly deal with the Neumann boundary condition case in this chapter (in the end of
this chapter, we shall show that the same solvability result holds for Dirichlet condition
case as that for Neumann case).

In addition to the notations fixed in Chapter 2, we use the followings in order to
state our result.

Ws = C([0, S];HL(2)) N L*(0, S; H*()),
X :={f € L'0,8; L*(Q); Vtf € L*(0,5; L*(Q))},

Yy 1= {U e C([0, S]; L*(Q2)) N L*(0, S; HY(Q)): VIAU, Via,U € L*(0, S, LQ(Q))},

Zs = { ( g ) € C([0, S| Lg () x L*(Q) x L*(Q)); 15;5 ZVZQ(Q&E%’» } '

69
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The norm of Wy, Xg and Ys are defined by

S 1/2
fulwy = sup fuOlesio + ([ Au(Oit)
0

tx

S 1/2
1Fllxe = |l stz + ( / tlf(t)liz(mdt) |
0

|Ullyg == sup |U<t)|L2(Q) + |VU|L2(0,S;L2(Q))
0<st<S
s
+ (/ t|atU(t)|2LQ(Q)dt)
0

S
+ (/ t|AU(t)|iz(Q)dt)
0

The main purpose of this chapter is to show the following solvability result for
(DCBF).

Theorem 4.1.1. Let N < 4 and let the space domain ) be either the whole space RY or
uniform C*-domain. Moreover, assume that the initial data satisfy ug € HL(Q), Ty, Cy €
L*(Q) and the external forces satisfy fi € L*(0,S;L*(Q)), f2, f3 € Xs. Then the initial
boundary value problem of (DCBF) with the homogeneous Neumann boundary condition
admits a unique solution (u,T,C)" € Zs.

1/2 1/2

Our proof in this chapter consists of the following four steps.

Step 1: Fix u € Wg. Then we find a unique solution (T, C') of the following problem
in YS X YSZ

O — ATl +u- VI = f,

0C —AC +u-VC = pAT + fs,

Lloa =0, Llog=0,
I(ao> - T07 Q(,O) - C(0'

(4.1)

We define the mapping @7, ¢, : Ws — Ys x Yg by the relationship ®p, ¢, () := (T, C)
based on the solvability of (4.1).

Step 2: Replacing T, C' in the first equation of (DCBF) by the unique solution T', C'
derived in Step 1, we consider the following problem:

2) {am+yAa+aa:sz+PhQ+Pf1,

ﬁbQ - 07 ﬁ() 0) = Uy,
and we show that (4.2) possesses a unique global solution w in Wg. Then we define
U, : Ys X Y — Wg by the correspondence ¥, ((T,C)) := w.

Step 3: We check that the mapping ¥,,, o @7, ¢, becomes a contraction mapping in
W, for a sufficiently small Sy € (0,S]. Then we can show the existence of time-local
solution for (DCBF) belonging to Zg,.

Step 4: Establishing some a priori estimates, we assure that local solutions can be
extended up to the prescribed interval [0, S].
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4.2 Construction of Solutions for Steps 1 and 2

In this section, we check Steps 1 and 2. That is to say, we assure the solvability of (4.1)
and (4.2).

4.2.1 Well-Definedness of @7, ¢,
We first consider (4.1) in this subsection.

Lemma 4.2.1. Let N < 4 and let the space domain Q2 be either the whole space RY
or uniform C*-domain. Then for any Ty € L*(Q), uw € Ws and fo € Xg, the following
initial boundary value problem (4.3) possesses a unique global solution T belonging to Y.

43) {8tT—AT+u~VT:f2 in Qx[0, 9],

oo =0, T(-,0)=Tp.

Proof. To begin with, we consider the case where Ty € H'(Q) and f, € L*(0, S; L*(Q)).
According to Proposition 2.3.1 (solvability of evolution equation governed by subdiffer-
ential operators), Proposition 2.1.12 and Example 2 in Section 2.3.1 (maximal mono-

tonicity of —Ay), there exists a unique global solution 7" of the following problem (4.4)
with Ty € H(Q) and f, € L*(0,S; L*(Q2)):

(4.4) {atT — ANT = f, in Qx]0,5],

T(-,0) = T,

where T satisfies
T € O([0,S]; HY(Q)) N L*(0, S; H*(Q)) n Wh2(0, S; L*(Q)).
Here we define a Banach space Y by
Y§ = C([0, S]; H()) 0 L(0, S5 HX(Q))
with the norm 5
U = sup (V@O + [ 1AUGs)ads.

¥ osis<s 0

Let w € C([0,5]; D(A)) and U € Y. Then w - VU belongs to L*(0, S; L*(2)), since

jw - VU2 < [wlZs|VU 7 < Y|l VU s
< Y| wlm [wlws VU | 12| VU] 4
< ylwle [wlez[ VU2 |U| 2
< Ylwlm [wlez[ VU2 (|AU|z2 + |U|12)

(4.5)

holds with N < 4, where v is some suitable general constant and we use Holder’s
inequality, Sobolev’s inequality and the elliptic estimate (recall properties in Section
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2.1) in (4.5). Therefore, for any U € Y§ and w € C([0,S]; D(A)), the following problem
(4.6) also admits a unique global solution:

(46) {atT—ANT+w-VU:f2 in Qx[0, 3],

T(', 0) - To,
where T belongs to C([0, S]; H(2))N L*(0,S; H*(2))nW12(0, S; L*(€2)). Based on this
fact, we define a mapping ¥¢, : Y§ — Y by the relationship ¢, (U) := T

Let ¢ 7, (U;) :=T; (i = 1,2) and 6U := Uy — Uy, 6T := Ty — Ty. Obviously, 6U and
0T satisfy the following problem:

(4.7) 00T — AnOT +w - VOU =0 in Qx[0,5],
' 5T(-,0) = 0.
Multiplying (4.7) by 0T, we get

1d
§E|5T|%Z + |V(5T|i2 = —/5T’wV5de == /5U’wV5de
1 2 1 2 2
< |w5U|L2|V5T|L2 < §|V5T|L2 + §|w|]L4|5U|L4
1
< 5IV6T s + ol 60T,
ie.,

d
(4.8) 0TIz + [ VOT |7 <A16U 70

(recall w € C([0,S]; D(A)) C L*(0,S;H?*(€2))). Hence, integrating (4.8) over [0, ] for
each t € [0, 5], we obtain

(4.9) sup [6T(t)[% < 7S sup [5U(1)[%.

0<t<S 0<t<S
Next, multiplying (4.7) by —AdT and using (4.5), we get

1d

Zdt\vmiz + AT 2: < |w - VU | 2| AST| 12

1
< §\A5T\%2 + Y| w|F VU |2 (|ASU |2 + [6U] 12)

ie.,

d
wvmig + |AST 2, < VU |2 (|ASU |2 + [6U|12)
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which yields
sup ]VéT(t)ﬁz + |A5T|%2(O,S;L2(Q))

0<t<S

(4‘10) < ’}/51/2 sup |V(5U(t>|L2 (|A6U|L2(O,S;L2(Q)) —i—Sl/z sup |5U(t)’L2>

0<t<S 0<t<S
<252+ 5) (180U By + 51 U@ )

From (4.9) and (4.10), we can derive
16T, < (SY2 + S)|I8U|IT,,

which implies that X ;. becomes a contraction mapping in Yy for sufficiently small

So € (0, 5], namely, we can assure that the following problem has a unique local solution
T €Yy, for any w € C([0,5]; D(A)).

(@11) {@T—ANT+w-VT:ﬁ3u19wm&m

T(-,0) = Ty.

Furthermore, multiplications of (4.11) by 7" and —AT yield

1d
§%|T|i2 + VT |32 < | folz2|T |2
and
1d 5 5
VTR 4 AT < fo - VT2 AT+ | fl o AT

1

< §|AT|%2 + VT |2 (AT |2 + |T|12) + | fol 2
3

< Z'AT|%2 + VT2, + T2 + | fo]2e.

Integrating them over [0,t] (¢ € [0,Sy]) and [0, Sp|, we obtain

So
sup |T(t)|7 +/ |AT(s)|72ds < (14 9)Q(y, |Tolm, | fol 2 (0,5:22(0)))
0<t<So 0

(Q(z1, 22, - - - ) denotes a monotone increasing function of zy, 29, - -+ ) for any Sy € [0, 5],
which implies that the local solution of (4.11) can be extended globally up to S.

Let w € Ws. Then, recalling Proposition 2.5.6 in Chapter 2, we can assure the
existence of a sequence {u, } ey satisfying u,, € C([0, S]; D(A)) and w,, — w strongly in
C([0, S]; HL(Q)) N L?(0, S; H2(2)). Therefore, for each n € N and f, € L*(0,5; L*()),
the following problem possesses a unique global solution 7,.

(4.12)

{@ﬂ—Aﬂ+uWVﬂ:ﬁ in Qx[0, 9],

Grlon =0, T(,0) =Ty € HY(Q),
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where

T, € C([0,S); H'(Q)) N L*(0, S5 H*(2)) N WH2(0, S5 L*(9)).
Multiplying (4.12) by 7,,, we have

1d

4.1
(4.13) 2 dt

—ATul1z + [VTLlLe < |fole2|Talre,

since fQ T,u, - V1, dr = 0. Hence, we obtain

(4.14) sup [T (t)|z2 + [Vl r20,8502(2) < 715
0<t<S

where 7, denotes a general constant independent of n. Next, multiplying (4.12) by
—AT,, we get
1d

2dt
which, together with (4.5) and the fact that supy<,<g|wn(t)|[m < 71, leads to

1 1
|VT |L2 Z_L|ATn|%2 < |’U,nVTn|%2+§|f2|%2,

1d

1
— VT2 + | AT,|7-

1 1
< 'Yl‘un|1?ﬂZIVTn|%2 + §’f2‘%2 + §’Tnﬁ:2'

Applying Gronwall’s inequality to (4.15), we have

< (rvm%z + [ (A + L)) ds) xp (% / ) \w(s)\%ﬂzds) .

From (4.14) and the fact that fo [, (s)|Zzds < 71, we can derive

(4.16) sup |VT,(t)]32 < 1.

0<t<S

Integrating (4.15) over [0, S] and using (4.16), we get

S
(4.17) / |AT,(5)[72ds <
0

Similarly, multiplication of (4.12) by 9,7,, gives

(4.18) @T 12+ — \VT 12 < iltnlee VT2 (IAT 22 + |Talz2) + 1 fol 22,

dt 2
which yields

(419) / |8t ’LQdS Y1-
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By using these estimates, we are going to show that {7, },en becomes a Cauchy
sequence in Banach space

Y = C([0,S]); H'(Q)) N L*(0,S; H*(Q)) N WH2(0,.S; L*())

with the norm

S S
[UJ2, = sup |U<t)|§p+/ |AU(s)]2des+/ 0,U(5)Eads.
0<t<S 0 0

Let du := uw,, — u,, 0T :=1T,, — T,. Then du and T satisfy the following equation:

(420 {6t6T—A5T+5u-VTm+un-V(ST:O in Qx|0, 5],

B0 =0, T(-,0)=0.
Multiplication of (4.20) by 67" yields

1d
5E|5TFL2 + V6T |2,

= — / 0Tou - VT,,dr = / Thou - VoTdx
Q Q

1 1

N

i.e.,
d

Integrating (4.21) over [0, ¢], we have

s
(4.22) sup |(5T(t)|%2+/ (VT (s)|32ds < 1 sup |[du(t)|Z:.
0

0<t<S 0<t<S
Next, multiplying (4.20) by —AdT, we get

1d
2dt
1

+ ’)/1|5U|H1|(5U|H2|VTm|L2 (|ATm|L2 + |Tm|L2) s

1
|VoT|3: + §|A6T\%z

(4.23)

1
il i [VOT 2 + 51071}
+ ’)/1|(SU‘H1‘(SU|H2 (|ATm|L2 + 1) s
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where we used (4.14), (4.16) and the following estimates of convection terms which can
be given by almost the same procedures as that for (4.5):

6w - VT, |32

< l0wlem [dulme [V 2 (|AT w12 + | Tl z2)
\un : V5T|%2

< | lw [t |2 [VOT | 12 (|AGT |2 + |67 [ 12) -

(4.24)

Then using uniform bounds
S
sup (O + [ fun(s) Eads <
0<t<S 0

and applying Gronwall’s inequality, we have

IVOT(t)]2,

S
s@A{ww@mwwﬁmuumwmﬁ+n+wﬂ@@}%

S
X exp <71/ Iun(S)\%zdS)
0

S
<71/ {1ow(s)l [ou(s)luz (IAT(5)|L2 + 1) + 6T (s)[72 } ds.
0
Moreover, by using the uniform boundedness fOS |AT,,,(t)[3.dt < 1 and (4.22), we obtain

(4.25) sup |VOT(t)]3. <m ( sup |du(t)|Z + \5u|iz(07S;Hz(Q))> .

0<t<S <t<
Similarly, multiplying (4.20) by 0,67, we get
Ld
2dt
s%mpvm@+mwvw@

1
§|at5T|iQ + IVOT|2,

< |oulm [0ulme VT, |12
+ 71|un|H1|un|H2|V5T|L2 (|A5T|L2 + |5T|L2) ,

which implies

S
420 [T10aTORd <o (s () + ultg s )
0 0<t<S
Therefore, from (4.22), (4.25) and (4.26), we can assure that
157 <2 ( sup IS0 + 60l 55m0n )

0<t<S
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i.e., {1} }nen is a Cauchy sequence in Y. Hence (4.3) has a unique global solution in Y¢
for any Ty € H'(Q) and f, € L*(0,5; L*()).

Next we consider the solvability of (4.3) with L%initial data. Let Ty € L*(€2) and let
{Tom }men € HY(Q) satisfy Ty, — Tp in L?(Q) as m — oo. Then for each m € N and for
any fo € L%(0,5; L*(Q)), the following problem possesses a unique solution T}, € Y-

(4.27)

3tTm—ANTm+uVTm:f2 n QX[O,S],
T(-,0) = Tom.

Then {T},}men becomes a Cauchy sequence in Yy. Indeed, for any my,my € N, T :=
T, — 1o, satisfies

(428 {ataT — ANOT +u- V6T =0 in Qx|0,S],

(ST(, O) — T0m1 - TOmQ-

Multiplying (4.28) by 07", —tAdT and t0;0T, we get (see (4.23) and use (4.5))

1d

2 dt
1d

2 dt
t

|5T’L2 + |V5T|L2 =0,

—t|VOT |2, — §\V5T@2 + AT,

1d
HOOT 3 + 5

g §|8t5T\L2 —+ t”y|u’H1|’u,]H2]V5T]L2(|A5T\L2 + |5T|L2);

1
—t|VoT 3, — §\V5T\iz

which yield
(430) H(STH%/S < 7‘T0m1 - T0m2|%2

with some suitable constant . Therefore, we can assure that (4.3) possesses a unique
global solution T' € Yg for any initial data Ty belonging to L?(Q) and fo € L?(0, S; L*(2)).
Finally, we consider the case where f, € Xg. Here, we define

(4.31) y(t) :={ ’ e ;)>

0
1 (ife

//\ //\
//\ /\

Since it is easy to see that f5 := x.fo belongs to L?(0,S; L?(Q2)), the following problem
(4.32) possesses a unique global solution 7. € Yy for each ¢ > 0 and Ty € L*(Q).

(432) {atTg —ANT. +u-VT. = ff in Qx0,9],

T(-,0) =T



78

Then, for each e1,e9 > 0, 0T :=T., — T., and 0 fy := f5' — f5? satisfy

(4.33)

00T — AnST +u- VT =6f, in Qx[0,S],
5T(-,0) = 0.

Multiplying (4.33) by 07", we get

Ld

thymiz +|VOT |22 < 0T 12|60 f2| 2.

By Gronwall’s inequality, we have

sup [07'(t)[r2 < |6 f2]r10,5:22())

0<t<S
which also yields .
| 19T s < ool s
By almost the same argument as those for (4.29) and (4.30), we obtain

1d
§Et|V5T|%2 — |VOT 2, + t|AST |2,

t
< yluli w3t VOT |3, + §|A5T|%2 +t|6T |22 4 |5 fo|22,
2 1 d 2 1 2
t|at5T|L2 + §Et|V5T|L2 - §’V(ST|L2

t

From these inequalities, we can derive

S

S S
sup t\V5T(t)yi2+/ syAaT(s>y§2ds+/ s]&téT(s)ﬁgdsg’y’/ 16 fo(s) [2ads
0 0 0

0<t<S

with some general constant 7' independent of 1, 5. Hence,
167113 < V'llo f2l1%,

holds. Since f5 — f; in Xg as ¢ — 0, we can assure that {7.}.~o becomes a Cauchy
sequence in Y.

Consequently, we can assure that (4.3) possesses a unique global solution 7" € Yy for
any initial data Ty belonging to L*(2) and f, € Xs. O

Next, we consider the third equation.
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Lemma 4.2.2. Let N < 4 and let the space domain Q be either the whole space RN or
uniform C*-domain. Moreover, assume that Cy € L*(Q), uw € Wg, T € Y5 and f3 € Xg.
Then the following problem (4.34) has a unique global solution C' € Y.

(434 {8tC—AC+u~VC:pAT+f3 in Qx[0, 9],

oo =0, C(-,0) = Cp.

This problem is quite similar to the previous problem (4.3). However, we can not
apply Lemma 4.2.1 directly, since it is not known whether AT € X.

Proof of Lemma 4.2.2. Let x. : [0, 5] — R be the cut-off function defined by

Xe(t) = { ’ (i -

0<t<
1 (fe<t<S).

//\ //\

Since T' € Ys implies that py.AT € Xg, we can show that the following problem admits
a unique global solution C. € Ys for each parameter € > 0 by applying Lemma 4.2.1.

(4.35)

0,C. — AC. +u-VC. = px.AT + f3 in Qx]0,5],
805]39—0 C.(+,0) = Cy.

Then, by assuring that the sequence {C.}.~¢ is a Cauchy sequence in Yg, we conclude
the existence of solution for (4.34). Let xz := X¢, — Xey, 1-€.,

X§<t> - { 1 (61 <t < 62),

0 ( otherwise ).

Then, 6C := C,, — C., satisfies the following problem in Yi:

(436 {atac — ASC +u-VC = py-AT in Qx0,5],

9B 90 =0, 6C(-,0) =0.

Multiplying (4.36) by dC, we have

1d ) 5

§£|5C|L2 +|VC12 < pxe| VOO | 2| VT 12
(4.37) : ,

Integrating (4.37) over [0, ] and [0, S], we obtain

€2
(438) sup |6C(t)|%2 + |V50|%2(0,S;L2(Q)) < p2/ |VT|%2dS

0<t<S €1
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Moreover multiplication of (4.36) by —tAdC and (4.24), estimates for the convection
terms, yield

1

2

(4.39)

t
< VQ\u\ﬁptyvac\ig L X€|AT]L2 . |50\L2 4o yv(sc\LQ,

where the coefficient 7, is a general constant independent of €1, 5. Applying Gronwall’s
inequality to (4.39), we obtain

tIVSO(t)|3. < /{Sp AT (s)[72 + s[6C(s)[72 + |[VEC(s)|72} ds

X exp (272 / ]u(s)\%ﬂzds) |
0

sup t|VSC(t)]7: < 72/ {S|AT(3>|%2 + |VT(3)’%2} ds.

0<t<S

(4.40)

Hence from (4.38), we can derive

Moreover, integrating (4.39) over [0, S], we have

S €9
(4.41) / tIASC(1)|3.dt < 72/ {s|AT(s)[72 4+ [VT(s)|72} ds.
0 €1

Multiplying (4.36) by t0;0C, we can obtain (see our arguments for (4.26))

S €2
(4.42) / t|0,0C (t)]32dt < 72/ {s|AT(s)[72 4+ [VT(s)|72} ds.
0 €1
Thus, we can assure that {C.}.~o forms a Cauchy sequence in Yy since T' € Yg. Hence,
the problem (4.34) possesses a unique global solution. O

Hence it follows that we can obtain a unique global solution T', C' of (4.1) and we can
guarantee the well-definedness of ®7, ¢ .

4.2.2 Well-Definedness of ¥,

The Step 2 can be immediately accomplished by virtue of Proposition 2.5.6 in Chapter
2. In fact, applying Proposition 2.5.6 with

[ (w) = 5IVwliz o) + 5lwlfa g if w € H;(Q),
—+00 otherwise,

we can assure that the following.
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Lemma 4.2.3. Let N € N and assume that uwy € H.(Q) and F € L*(0,5;1L2(Q)).
Then the following problem (4.43) admits a unique global solution w € Wy satisfying
O € L*(0,S;1L2(Q)).

(4.43) {8tu+1/Au—|—au:F in Qx]0,95],

uloo =0, wu(-,0) = uo.

Then, taking F' := PgT + PhC + Pf, in (4.43), we can show the existence of a
unique global solution @ of (4.2) and the well-definedness of W, .

4.3 Application of Contraction Mapping Principle

In this section, we assure the local existence of a unique solution by using Banach’s
contraction mapping principle.
Let w, € Wy (1 =1,2), (T,,C;) == Pp, 0 (w;) and @; := ¥, (T, C;)), namely,

(

ou; + vAw; + au; = Pal, + ’PhQi +Pfi,
L, = AL +u,; - VI; = fo,

(4.44) C; — AC; +u; - VC; = pAT; + fs,
_ or, ac,
5ui|39 =0, — =Y =0,
on |50 on |4

ﬂz(ao) = Uy, IZ(,O) = T0> Qz(ao) = CO-

\
Moreover, let du = w, —u,, 07 :=1, - T,, 6C :=C, — C, and duw := w; — uy. Then
ou, 0T, 6C' and dwu satisfy the following equations:

(

o ou + v Adu + adu = PagdT + PohoC,

(4.45) 0,0C — ASC' 4+ u,-VIC + 6u-VC, = pAiT,
' o 00T 06C
Sl =0, =—| =0, ==| =o0,
on |yq on |0

§u(-,0) =0, 6T(-,0) =0, 6C(-,0) = 0.

\

Multiplying the first equation of (4.45) by duw and Adw, we get

1d
5%5&]@ + v|Véuli. + aloul?,
< (|gl[0T' |2 + |h]]0C| 12) |6T] L2,
(4.46) 1d

_ v _ _
§£|V5u|i2 + Z|A5U|H%2 + CL|V§U|]%2
\g|2 2 |h|2 2
< - T 2 E— 2.
9% 10T 12 + B0
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Applying Gronwall’s inequality (Proposition 2.5.2) to (4.46), we have

S S
sup 6%()lez < |9 / 0T ()| 2ds + || / 16C(s)| ods
o<t<S 0 0

(4.47)
<5 (|g| sup [T(H)]2 + h| sup |5C(t)|L2) |

0<t<S 0<t<S

Moreover, integrating (4.46) over [0, S], we obtain

s
sup |Véu(t)|?. —1—3/ |Adw(s) |2 ds
(4.48) Ostss 2 Jo
' S

< = (|g!2 sup |6T(t)|52 + 2|h|* sup |5C’(t)|%2) )

0<t<S 0<t<S

Next, from the facts that

/5T5Q-V£dx =— [ T5u-ViTdz,
Q Q

/ 0Tw,-VoTde =0
Q
and from the multiplication of the second equation by 67, we can derive

d
(4 49) %MT‘%Q + |V5T’%2 < ‘Q(Sﬂﬁﬁ < ’&’%4|5Q|E4

< 73‘5%1‘5@‘1%11’

where 73 is a constant depending only on Sobolev’s embedding constant.

multiplying the third equation of (4.45) by 6C, we have
d 2 1 2 2 2 2 2

Then (4.49) and (4.50) yield

s
sup |67 (t)72 +/ |V6T(5)|32ds
0

0<t<S

S
< sup [u() / Ty(s) Bpuds,
(4.51) Ost<s 0

sup [5C(1) 2

0<t<S

Similarly,

S S
< sup O {2 [ Tao)uds +2 [ ICa(oBpds |
0

0<t<S
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Hence, combining (4.47) and (4.48) with (4.51), we can derive

s
sup |6w(t)|Zn +/ |Adu(s) |72 ds
0<t<S 0

(4.52) ; .
<uS(1+S) sup |5g<t>\%p{ [ 1mas + [ @(s)ﬁpds},
0 0

0<t<S

where v, is a constant depending only on v, |g|, |h|,p and 73. Here, multiplying the
second and the third equation of (4.44) with i = 2 by 75 and Cs, we get

1d
2.dt
1d

§d—t|@|iz +|VCsli2 < p| VT2 12|V |12 + |Calr2| f3] 12,

T3]3 + IV Tal7 < |Tal12] fol 2,

which implies

sup [To(t)|z2 < [Tolzz + | folrr0,5:02(0)),
0<t<S

S
/ |V§(5)|QL2d3 < |T0|%2 + (|T0|L2 + |f2|L1(O,S;L2(Q))) |f2|L1(0,S;L2(Q))a
0

Sup |Ca(t) 12 < |Colrz + p|VTa|r2(0,8:02(0) + | f3lL1(0,8:22(0)
<t<

S S
| 9 ads <ICults + 7 [ VI ads + sup |Calt)ellurasazian
0 0 <t<

Hence fOS |T5(s) |3 ds and fOS |Cs(s)[31ds are bounded only by L?-norm of the initial data
and L'(0,S; L*(Q2))-norm of the external forces. Thus, we can assure that W, o @7, o,
becomes a contraction mapping on Wy, for a sufficiently small Sy € (0, S], whence follows
the existence of a unique local solution of (DCBF).

4.4 Global Existence

In this section, we shall show that the unique time-local solution constructed in the
previous section can be extended up to S by establishing some a priori estimates.

Multiplying the second and the third equations of (DCBF) by T"and C' (and repeating
exactly the same calculations as above), we get

1d
§E|T|i2 + VT 32 < |T|z2| falze,

1d
577 |Clee +IVCILe < pIVT112|VCli2 + [Cliz| fo| 1z,
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which yield

sup |T |L2 +/ |VT |L2d8 <|T0|L2a |f2|L1(O,S;L2(Q)))7

0<t<S

sup |C |L2+/ |VC |L2d8

0<t<S

QTolz2, |Col L2, [ folLr(0,8:22(0)), | f3] L1 0,5:22(02)))

where Q)(z1, 22, - - - ) is some monotone increasing function of zy, 2o, - - -. Multiplying the
first equation of (DCBF) by w and Au, we obtain
1d

|U|L2 + V|VU|L2 + a|u|IL2

< (IglT]e2 + [P][Clez + | file2) [wlee,

2 dt

1d v
§E|Vu|iz + —\Auﬁz + alVul?,

3|g|2 3|h!2

T3+ 20Ol + oL i

ie.,

S
sup [u(®)i + [ | Aus)ads < 3(1+ ),
0<t<S 0

where 75 is a general constant which depends on v, |g|, |h|, |To|r2, |Colr2, | f2|01(0,5:22(9))
| f3lr10,8:02(2))s [ f1lr2(0,55.2())s [wolmr and independent of S. Therefore, for any Sy €

(0,8 ) we can assure that

sup {[T(1)[r2 + |C(#)[r2 + |u(@) |} < 5(1+95).

0<t<So

This uniform bound independent of Sy implies that the local solution constructed in the
previous section can be extended onto the whole of the prescribed interval [0, S], whence
follows our result. O

4.5 Remarks

4.5.1 For H!'-Initial Data

If the initial data belong to H(Q) x H'(Q) x H'(Q), we can derive the following result.

Corollary 4.5.1. Let N < 4 and let the space domain ) be either the whole space
RN or uniform C?-domain. Then for any ug € HL(Q) , Ty, Cy € HY(Q) and for any
fi1 € L*0,S;1L%)), fo, f3 € L*(0,S; L*(2)), (DCBF) with the homogeneous Neumann
boundary condition admits a unique solution (u,T,C) satisfying the following requlari-
ties:

w e C([0, S} HL(9) N L2(0, S HA(Q)) 0 WH2(0, 8 L2(0)),

T, C € C([0,S]); H'(Q)) N L*0,S; H*(Q)) nW2(0,S; L*()).
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In our proof for Lemma 4.2.1, we already saw that the following lemma is valid.

Lemma 4.5.1. Let N < 4 and let the space domain Q be either the whole space RN or
uniform C*-domain. Assume that Ty € H(Q), w € Ws and fo € L*(0,S; L*(Q)). Then
the following problem (4.53) has a unique global solution T in Y{.

(459 {atT —AT+uVT =f, in Qx[0,8],

9o =0, T(-,0) = Ty.
Here we recall that
YY = C([0,S]; HY(Q)) N L*(0,S; H*(Q)) N WH2(0, S; L*(Q)).
Lemma 4.5.1 immediately assure the solvability of the third equation:

0,0 — AC+u-VC = pAT + fs in Qx[0, 5],
g_ng:O? O(',O):CO,

since T € Y implies AT € L?(0, S; L*(Q)).

Therefore, we can show the existence of local solution of (DCBF) for H'-initial data
by almost the same argument as above.

Finally, we check the uniform boundedness of solution. Recall that

sup {|T(1)[z2 +1C(0)] 2 + [ } < 76,

0<t<So

So So So
/ |VT(s)|72ds + / IVO(s)|72ds + / |Au(s)[F2ds < v
0 0 0

hold for any Sy € [0,S], where 75 is a general constant independent of Sy. Moreover,
multiplying the second and the third equation of (DCBF) by —AT, —AC respectively
and repeating our procedures for (4.15), we obtain

1d 1 1 1
§£’VT’%2 + g\AT|%2 < Yolulie |VT|7: + §!f2\%2 + §!T|iz,

1d 1 1 1
577Vl + 61 ACH: < v6lulia|VOIL: + 51 fslz: + 5IC1L + 4% AT L.
By applying Granwall’s inequality to these inequalities, we have

sup {|VT(t)|2 + |VC(t)|12} < 7,

0<t<So

which implies the time-local solution can be extended up to S.
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4.5.2 Dirichlet Boundary Condition Case

Evidently, our argument in this chapter can be carried out for the initial boundary
value problem with Dirichlet boundary condition without any changing and modification.
Namely, we can assure the following.

Corollary 4.5.2. Let N < 4 and let the space domain ) be either the whole space
RN or uniform C*-domain. Then for any uy € HL(Q), Ty, Cy € L*(Q) and any fi €
L*(0,5;1L2()), fa, f3 € X, (DCBF) with the homogeneous Dirichlet boundary condition
admits a unique solution (w, T, C)' € Z, where

YU = {U e 0([0, S]: L*(Q)) N L2(0, S; HY(Q)); VIAU,V2,U € L*(0, S L?(Q))} ,

u
o LT 2 2 2 . UEWS7 T7C€Y5/'”7
ZS T g < C([O7S]7LU(Q) X L (Q) X L (Q))a atu c L2(075; LZ(Q))
with the norm ||Ul|yz == [|U||vg.

Moreover, if fi € L*(0,S;1L%(Q)), f2, f3 € L*(0,S; L*(Q)) and ug € HL(Q), Ty, Cy €
H}(QY) , Then the solution satisfies the following regqularities:
u € CO([0, S|, H () N L2(0, S;HA(Q)) N WH2(0, S5 L2(€2)),
T, C € O([0,8]; Hy(2)) N L*(0,8; H*()) N WH(0, S; L*(Q)).



Chapter 5

Time Periodic Problem in the
Whole Space

5.1 Problems and Main Theorems

We here consider the following time periodic problem of (DCBF) in the whole space RY.

(DCBF)

\

Ou =vAu —au—Vp+gT +hC + f (z,t) € RV x[0,9],
T +uVT = AT + f, (z,t) € RV %[0, 9],
0,C +u-VC = AC + pAT + f3 (z,t) € RV %[0, 9],
Vau=0 (z,t) € RV %[0, 9]

'u,(-,O) = u(-,S), T(70)

The main purpose of this chapter is to show the existence of solution in the following sense
(recall that the conjugate Holder exponent and the critical Sobolev exponent associated
with ¢ are designated by ¢’ := q/(q¢ — 1) and ¢* := qN/(N — q) respectively).

Definition 5.1.1 (Periodic solution of (DCBF)). Let N = 3 or 4. Then (u,T,C) is
said to be a periodic solution of (DCBF), if

1. (u,T,C) satisfies the following regularities:

u € Cx([0, S|; L (R™)),
O, u € Cr([0, S]; L*(RY)),
dru € L*(0, ;L3 (RY)),
02,0z, u € L*(0, S; L*(RY)),
Au € L*(0, S; L2(RY))

T,C € Cx([0, 8]; L* (RY)),

0y, T, 9.,C € Cr([0, 8]; LA (RY)),
o,T, 0,C € L*(0,S; L*(RY)),
0:,00, T, 9,,0,,C € L*(0,S; L*(RY)),

forallv,p=1,2,--- N.

2. (u,T,C) satisfies the second and the third equation of (DCBF) in L*(0, S; L*(RY)).

87
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3. For all ¢ € L*(0, S;L2(RY)) N L2(0, S; LEV (RN)), (u,T,C) satisfies
S
(5.1) / / (Ou — Au+au — gI' — hC — f1) - ¢ dzdt = 0.
0 RN

Our argument in this chapter is divided into the following three steps:

Step 1: We show the solvability of the following problem with two approximation
parameters n € N and A > 0.

(

ou+ vAg,u+ au = Pq,gT + Po,hC + Pq, fila, (z,t)

T +uNT + T = AT + fq, (x,t) € Q,x]0,95],
9,C +u-VC +\C = AC + pAT + f3]q, (2,1)

u=0, T=0C=0 (2,t)

u(-,0) =u(-,S), T(-,0)=T(,9), C(-,0)=C(-S).

\

Throughout this chapter, {2z denotes the open ball centered at the origin with radius
R >0, ie, Qr = {z € RY;|z| < R} and -|, designates the restriction of function onto
wC RY,

Step 2: We discuss the convergence of solutions given in Step 1 as n — oo and we
assure that the following problem possesses a solution for each parameter A > 0.

O + vAgnu + au = Py gT + PryvhC + Pyy fi (z,t) € RV x[0,9],
OT +uNT + AT = AT + f (,1) € R¥x[0, 9],
0,C +u-VC + \C = AC + pAT + f3 (z,t) € RV x[0,9],
u(-,0) =u(-,S), T(-,0) =T(-,S), C(-,0)=C(-,9).

Step 3: We show that the solutions of Step 2 converge to a periodic solution of the
original problem (DCBF) by letting the relaxation parameter A tend to 0.
In this way, we demonstrate the following main theorem in this chapter.

Theorem 5.1.1. Let N =3 or 4 and a > 0. Moreover, assume that
f1 © WLQ(O,S;]L2(RN>), fl(o) :f1<S)7
fa, 5 € L*(0, S LA(RY)) N L(0, §; L&V (RY)).

Then (DCBF) possesses at least one periodic solution (u,T,C').

Remark. We can show that the identity (5.1) is equivalent to the first equation of
(DCBF). Since T, C' € C,([0,5]; L* (RY)) and f; € C4([0, S]; L*(RY)), then gT'(t), hC(t)
and fi(t) can be decomposed as follows:

gT(t) = vr(t) +wr(t),  hC(t) =vo(t) +we(t),  filt) = vp (1) +wy, (1)
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for any ¢ € [0, S], where

vr(t), ve(t) € Ly (RY),  wr(t), we(t) € G- (RY),
vy, (t) € Lo(RY), wy, (t) € G2(RY).

Here we recall that

[or(t) = vr(s)|Ler @ry + [wr(t) = wr(s)|Ler @ry < @lgT(t) = gT(5)[p2 @v)

holds for any t,s € [0,S], where « is some suitable constant independent of ¢ and
s. This inequality implies that vy, wr € C,([0,S];L* (RY)). By exactly the same
reasoning, ve, we € Cr ([0, S]; L¥ (RY)) and vy, wy, € C.([0,S]; L?(RY)) are also valid.
Then, since L*(0, S; L2(RY))NL*(0, S; LC(TQ*)/(RN)) is the dual space of L?(0, S; L2(RY))+
L*(0, ;12" (RY)), (5.1) yields

Ou—Au+au — vy —ve —vf =0

5.2
(5:2) & Ou—Au+au+wr+we+wy =gl +hC+ fi

in L2(0,9;L2(RM)) + L?(0, S; L% (RY)). By the definition of G,(R"), there exist p; and
po such that

pl('at) € I/Vli)f* (RN)v p2('>t) € I/Vl(l)f(RN) Vi € [07 S]a

vPl = wr + we € CTF([()’ S]7L2* (RN))J
Vs = wy, € Cr([0, S|; L2 (RY)).

Therefore (5.2) is equivalent to the first equation of (DCBF) with p = p; + po.

5.2 Bounded Domain Case

We first consider Step 1, i.e., the solvability of the following equations in bounded do-
mains with large data.

Lemma 5.2.1. Let Q C RN be a bounded domain with sufficiently smooth boundary 0S)
with N < 4. Moreover, assume that Fy € L*(0,S;1L*(Q)) and Fy, Fy € L*(0,S; L*(Q)).
Then for any non-negative constants a and A, the following system (5.3) possesses at
least one periodic solution (u,T,C').

Ou + vAqu + au = PogT + PohC + PoF,  (z,t)

(53 T +uVT + AT = AT + F, (z,t) € Qx[0, 5],
' 0,0 4+ u-VC + \C = AC + pAT + F3 (z,1)
(@, t)

u=0 T=0 C=0

Here (u,T,C) is said to be a periodic solution of (5.3), if
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1. (u,T,C) satisfies

u € C([0, S];HL(Q)) N L*(0, S HA(Q)) nWH(0, S;L2(R)),

(5.4) T,C € CL([0,S]; Hy(2)) N L*(0, S; H*(Q)) N W20, S; L*(Q)).

2. (u,T,C) satisfies the second and the third equation of (5.3) in L*(0,S; L*(%)).
3. (u,T,C) satisfies the first equation of (5.3) in L*(0,S;L2(Q)).

Solvability of (5.3) has been already proved in Chapter 3 for N < 3. By using almost
the same procedures, we can also guarantee the solvability of (5.3) with N = 4 (for
instance, we first consider the following approximate system:

ou + vAqu + au = PogT + PohC + PoFy
T + eN’T — ApT +u-VT = F,
@C+ 6A2C' — ADC—f- u-VC = pADT+ Fg,

where A% := (—Ap)? After we show the solvability of these approximate equations by
Proposition 2.3.5, we discuss the convergence of approximate solutions as the parameter
e tends to 0).

However, we here give another way to prove this fact.

Proof. Fix T,C € L?*(0,S; L*(Q)) arbitrarily. Then by virtue of Proposition 2.3.2, the
following problem (5.5) possesses a periodic solution u belonging to C, ([0, S]; HL(Q2)) N
L2(0,S;H2(Q2)) n W20, S;1L2(Q)).

Ou + vAqu + au = PogT + PohC + PoF, (x,t) € Qx]0, 5],
(5.5) u=0 (x,t) € 002 x [0, 5],

u(0) = u(9).

It is easy to see that the solution of (5.5) is unique. Indeed, let u; and us be solutions
of (5.5). Then u; — uy satisfies

O(ug — us) + vAq(ug — ug) + a(u; —us) =0
(5.6) 1d v
:>——|’U/1 — 'U/2|]]2_‘2(Q) + (E + CL) |'U/1 — 'UthQ(Q) < O,
where k is a constant appearing in Poincaré’s inequality:
|U‘%2(Q) < K’VU&?(Q)a "U|%2(Q) < "‘JWU|%2(Q)7
IVU|%2q) < 6|AUZ20),  [VO[720) < K[ ATz
for any v € D(Aq) and U € D(—Ap). Integrating (5.6) over [0,S] and using the

periodicity of u; and wus, we obtain

S
/ un (5) — a() o ds <O,
0



91

which implies w; = uy. Let u be the unique periodic solution of (5.5). Then we can
define @ : X¢ — Y by the relationship ®((Z, C')) := u, where

Xg = L*(0,5; L*(Q2)) x L*(0, S; L*(Q2)),
s = C((0, 5] HL (@) 1 12(0, 5; (%)),

Fix u € Yg arbitrarily. Then we next consider the following system:

T +u- VT + T = AT + F, (x,t) € 2x][0,95],
(5.7) 0,C+uVC+\C =AC+ pAT + Fy  (z,t) € 2x[0,5],
T=0 C=0 (z,t) € 90 x [0, 5].

According to Chapter 4, the initial boundary value problem of (5.7) has a unique solution
for any initial data T(0) € L*(Q) and C(0) € L*(Q2). Moreover, this solution satisfies

the following regularities:
. 7.C € ([0, S| L(®) N 120, 5; H) (@),
' VAT, VtO,T, VAC, V19,C € L*(0,S; L*(Q)).

Let (T, Cy) and (Ty, Cy) be two solutions of the initial boundary value problem for (5.7).
Then 6T :=T) — Ty and 0C := C] — Cs satisfy

80T + w VT + MT = AST,
8;0C + w-V5C + \6C = ASC + pAST.

Multiplying each equation by 07" and 0C respectively, we get

1d
(5.9) anm%z(m + [VOT |20y + AOT|72(q) = 0
and
Ld 2 2 2
(5.10) =— p/ VoT -VoC
Q

1 2
<pIVOT 1200y [VEC] 120 < 5IVOC a0 + S IVOT gy,

Then (5.9) and (5.10) yield

d 1 1

Therefore, by applying Poincaré’s inequality and Gronwall’s inequality, we have

S
K

1 1 -~
(|6T<s>|iz(m T ;wow)@z@) < (|5T(O)|%2(Q) T ;rac<o>|22(m) s
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Therefore, we can derive the existence of a unique periodic solution of (5.7) from the
application of Banach’s contraction mapping principle in L*(Q) x L?(Q).

Let (T, C) be the periodic solution of (5.7) and define ¥ : Yy — Xg by the corre-
spondence ¥(u) := (T, C). Since T/(0),C(0) € HL(2) hold by the periodicity and (5.8),
the following regularities of W(u) = (T, C) can be obtained for any given u € Yy (recall
Lemma 4.5.1 and Corollary 4.5.2 in Chapter 4).

T,C € C.([0,5]; Hy () N L*(0,8; H*(Q)) N W20, S; L*(Q)).

Moreover, multiplying each equation of (5.7) by T and C respectively, we get

2dt|T|L2 + |VT|%2(Q) < Bl T) 20y < VEIF2|r20) VT | 12(0)

(5.11) :>E|T|L2(Q) + |VT|2L2(Q) < ’<G|F2|%2(Q)

S S
ﬁ/ IVT(S)|%2(Q)dS < Ii/ |F2(S)|%2(Q)d8
0 0

and

1d — _

2 dt|C|L2(Q) + |VC|L2(Q) |VT|L2 |VC|L2(Q) + |F3‘L2(Q)|C|L2(Q)
(5.12) :>E|C|L2(Q) +|VCli2q) < 20°|VT |12y + 26| F| 12 ()

S S S
0 0 0

for arbitrary u € Ys.
Define the set K C Xg by

‘Ul‘%2 0,5;L2(Q <H2’F2’22 S:12(Q
K =3 (U, Uy) € Xg; (0,85L2(€) L2(0,5:2()) _
{( ' 2) |U2|%2(0,S;L2(Q)) < 2P2HQ|F2|%2(O,S;L2(Q)) +2K2|F3|%2(0,S;L2(Q))

Then (5.11) and (5.12) imply that K satisfies ¥ o &(K) C K. Obviously, K is convex
and compact with respect to the weak topology of Xg.

Let {T, }xen and {C| }ren be sequences which weakly converge in L?(0, S; L?(Q2)) and
let T and C denote their limits respectively. Furthermore, we define w, := ®((T},C})),
u = O((T,0)), (Ty,Cy) := ¥(u) and (T, C) := ¥(u). Multiplying

Oy, + vAquy, + awy, = Pogl'), + PohC) + PoFy

by u;, Aqu, and d;u,, we have

1d
2 dt ‘gklﬂﬁ

3|g!2

v
_|Vﬂk’i2(§2 + a|“k’i?(§z)

1

3K
|Tk|L2(Q) + |Ck|L2(Q E|F1|]%2(Q)
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1d v
( ) 2dt|vuk|uﬂ §’Aﬂﬁk|ﬂ2}
5.14
< 3‘g| |T |2 3’h’2|0 | _|_ |F |2
S o, L2+ Klrz@) T 5 L)
Loy oy + L 1Ty Py + L 2
5 1Ottiliz ) T 5 IV ®kIL20) T 5 7tz e)
(5-15) 3|g\2 3|h|2 3
T4 1720 (e —!Fllwz)

Here we remark that [T, |? 12(0,5.2()) and |Qk| 12(0,5.2(2)) POssess uniform bounds inde-
pendent of k£ € N. Then, by integrating inequalities (5.13), (5.14) and (5.15) over [0, S],
we obtain the following estimates for w,:

s s s
(5.16) / |uk(s)|§ﬂ1(g) ds + / |AQHk(5)|12L2(Q) ds + / |0y, (5) [ 20y ds < .
0 0 0

Here and henceforth, v, designates some general constant independent of k£ € N. Since
u, € C([0,S];HL(Q)), there exists t& € [0,S] where Ui ()| () attains its minimum.
From (5.16), we can immediately derive

I 2
|uk to |H1 g/ |Hk(5>|H1(Q) ds <m
0
Integrating (5.13) and (5.14) over [tf,t] with t € [t§, tF + S], we obtain

o<t<S

By virtue of (5.16), (5.17) and Ascoli’s theorem (Proposition 2.5.3), we can extract a
subsequence {u, }jen which converges strongly in Cr ([0, SJ; L2 (2)). Let u’ designate its
limit. From (5.16) again, we can derive

Ao, — Aou/ weakly in L*(0, S;1L2(Q)),
ey, — Opu’ weakly in L*(0, S;1L2(Q)).

Recalling that wu,, is a solution of
dwy, = —vAquy, — awy, + Pogl', + PohC) + PoFi

and taking the limit as j — oo, we can show that ' becomes a periodic solution of the
following equation:

ou' = —vAqu' — au' + PogT + PohC + PoF;.

Due to the uniqueness of periodic solution of (5.5), 4’ coincides with w. Since arguments

above do not depend on the choice of subsequences, we can assure that w, — w strongly
in C([0, S];L2(Q)).
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Multiplying
(5.18) 0Ty — ATy +u, VT, + T, = Fy
by T, we get
d T2 T2 2
EITHLQ(Q) + [VT[7200) < I F2[72(0)
(5.19)

S
= / Tu(5) Bpngends <
0

Since T, € C([0, S]; Hi(€2)), there exists t§ € [0,.5] such that |T5(t})|m1q) < 71. Then,
from (5.19), we obtain

2
sup |T'x( < .
0<t£)S | k )}L2(Q) SN

Next multiplying (5.18) by —AT}, and 9,1, we have

1d 1, . = _
2dt|VTk|L2 _’ATkE?(Q) < \ﬂk‘VTk&z’(Q) + ’F2’%2(Q)>
1d Ad = _
2 2 2 2
5‘0tTk"L2( 9 dt’VTk’m(Q §E‘Tk’L2(Q) < ‘Hk'VTk‘LZ(Q) + ’F2’L2(Q)

We here recall the following estimates (see (4.5) in Section 4.2 and use Poincaré’s in-
equality).

|w - VU‘%? ’w‘m ’VU‘%S/S(Q) < W’w‘évl,S/S(QﬂVU‘%S/S(Q)

77|w‘w1,2(g)‘wyw1,4(g) IVUle(Q) ’VU‘LAL(Q)
(5.20)
T]l’w|H1(Q)|w|H2(Q)|VU|L2(Q)|U|H2(Q)

NN N //\

n’vw’LQ(Q)|-AQ'w|IL2(Q)|VU|L2(Q)|AU|L2(Q)7

where w € D(Aq), U € D(—Ap) and 7 is some suitable constant. From this inequality,
we can derive
1d 1 —
2dt|VTk|L2 Z’ATk’%Q(Q)
S 71|Vuk|12L2 |-AQ’Ufk|J2L2(Q)|VTk|%2 @ T |F2|%2(Q)

1d \d
T T
2dt|v Tiliewy 2dt| Tiliemy

< 71|Vuk|L2(Q)|AQuk|JL2(Q)|VTk|L2(Q)|ATk|L2(Q) + |F2|%2(Q)7

1 —
Z|8tTk|%2(
which, together with (5.16) and (5.17), yield

0<t<S

s S
2 N =
(5.21) sup | T( )‘Hl(Q) +/0 ‘ATk(sﬂLQ(Q) ds—l—/o |8tTk(s)|%2(Q)d8 <M.
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Similarly, multiplications of

by Uk, —Aak and &gék give

d — _
—|Ck|%2 + |V0k|%2 2R|F3|L2 +20 |VTI<:|L2(Q)7

ld

2dt|VOk|L2(Q) + - |A0k|L2
2 2 =2 307 = 2 3 2
< 71|V2k|]L2(Q)|AQHk\L2(Q)|Vck|L2(9) + _|AT1€|L2(Q) + §|F3|L2(Q)

)\d

1= 1d,_— ,
Z|at0k|L2(Q)+§Elvck’L2( th

—[CklZ20
3
< |Vl Aot 2@ [ VCk 2| ACk 120 +—’ATk|L2(Q §|F3‘%2(Q)

which yield

S S
2 — 2 —
(5.22) sup |Cy(t ‘Hl(Q) —|—/ ‘AC’k(s)‘LQ(Q) ds —|—/ |8tC’k(s)|2LQ(Q)ds <M.
0 0

0<t<S

From (5.21) and (5.22), there exist subsequences {T'y, };jen and {C, }jen which converge
strongly in C([0, S]; L*(2)). Let T" and C’ designate their limits as j — oo respectively.
Furthermore (5.21) and (5.22) yield

ATy, = AT, 0Ty, — 0T weakly in L*(0,S; L*(12)),
ACy, — AC',  9,Cy, — 0,C"  weakly in L*(0,S; L*(2)).

We can also assure that {w;, VT, }jen and {uy, - VCl,}jen weakly converge to w- V1"
and w - VC” in L*(0,S; L*(2)) respectively. Indeed, for any ¢ € C5°(Q x (0, 9)),

_]HOO

/ ¢y, - VT dr = — / Trwy, - Vode — — / T'u-Vodr = — / du - VT'dx
Q Q Q Q

holds by virtue of the strong convergences of {u;, }jen and {T},}jen (recall our argument
for Check of (A2), in Chapter 3). Hence, taking the limit as j — oo in

8tTkj — ATk] +gkj-VTkj + /\Tk]. = FQ,
&Ekj — Aékj + ykj-V5kj + )\616] = pATkj + Fj,
we can see that (77, C") becomes a periodic solution of the following equations:

T — AT +u-VT' + \T" = F,,
0,C" — AC" + u-VC' + \C' = pAT" + F3.
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Since the periodic solution of (5.7) is unique, we can show that 7" =T and C’ = C, i.e.,
{T)}ren and {C}ren strongly converge to T and C in C,([0,S]; L*(Q)) respectively.
This implies the continuity of the mapping ¥ o ® under the weak topology of Xg.
Thus, applying Schauder—Tychonoft’s fixed point theorem (Proposition 2.5.2) to the
mapping Wo® on K endowed with the weak topology of L(0, S; L?(2)) x L*(0, S; L*(£2)),
we can guarantee the existence of a periodic solution of (5.3). O]

5.3 Relaxation Problem in RY

Next we consider the following periodic problems in RY with relaxation terms A1 and

AC.

Lemma 5.3.1. Let N = 3 or 4 and assume that f; € L*(0,S;L2(RY)) and fs, f3 €
L*(0,S; L*(RY)). Then for any positive constants a and X, the following system (5.23)
possesses at least one periodic solution (u,T,C').

Ou + vApnu + au = PrngT + PrpvhC + Pra fi (2,t) € RV [0, 9],
(5.23) T +w VT + \T = AT + f, (z,t) € RN %[0, 9],
0,C +u-VC + \C = AC + pAT + f3 (z,t) € RV %[0, 9].

Here (u,T,C) is called periodic solution of (5.23), if
1. (u,T,C) satisfies

u € Cx([0, S|, HL(R™)) N L*(0, S;HA(R™)) N WH2(0, S; L3 (RY)),

(5.24) T,C € C, ([0, 8]; H'(RY)) N L2(0, S; HARN)) 0 W2(0, S; L2(RN)).

2. (u,T,C) satisfies the second and the third equation of (5.23) in L*(0,S; L*(RY)).
3. (u,T,C) satisfies the first equation of (5.23) in L*(0,S;L2(RY)).

Proof. According to Lemma 5.2.1, for each natural number n € N and positive number
A, the following equations (DCBF),, \ possess a periodic solution (wy, 1), Cy):

Ou, + vAq, u, + au, = Pq,gT, + P, hC, + Paq, fila, (z,t) € Q,%[0,5],

(DCBF) T, + u,-VT, + \T,, = AT, + fs]a, (x,t) € Q,x][0,5],

" 0,Cn + u, VO, + NC, = AC, + pAT, + f3]a, (x,t) € Q,x][0,5],
u,=0,7T7,=0 C,=0 (x,t) € 092,10, 5],

where (u,, T, C,) satisfies

(5.25) uy, € C([0, S]; Ho (24)) N )LQ(O, SyH(Q,)) VW0, 8512 ().

)
T, Cy, € C(]0,S]; Hy(2,)) N L*(0,S; H*(Q2,)) n W0, S; L*(2,)).
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To begin with, we establish some a priori estimates for (u,, T, C,) independent of n.
Throughout this section, 7, stands for a general constant independent of n. Multiplying
the second equation of (DCBF),, \ by T),, we have

1d 1 A
5 dt'T |L2(Q + VT, ’LQ an + AT, 72 (Qn) ﬁ|f2’9n|%2(ﬂn) + §|Tn|%2(9n),
namely,
d 9 1 Lo
(5.26) E|TH|L2(Qn) + 2|V, 72, + ATul72(,) < |f2|Qn|L2 Q) S X|f2|L2(RN)'

Integrating (5.26) over [0, S] and recalling T'(-,0) = T'(-, S), we get

s
(5.27) / |Tn(s)|12ql(ﬂn)ds <7
0
Then, by the continuity of T},, there exists ¢§ € [0, 5] satisfying

Tt s = i I T3,

From (5.27) again, we can derive

Then integrating (5.26) over [t5,t] (¢t € [t5,t5 + S]) and using the boundedness (5.28),
we obtain

(5.29) Sup Tu(D) 720,y < 72

Multiplying the third equation of (DCBF), » by C, and repeating almost the same
procedure as above, we have

d 1
%|Cn|%2(gn) + |Vcn|%2(nn) + )‘|Cn|%2(ﬂn) < p2|VTn|%2(Qn) + X|f3|%2(RN)7

S
/0 1Col(3) By s <

(5.30) sup |Cn(t)|%2(9n) < 7o
0<t<S

which yields

and
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Moreover, multiplying the first equation of (DCBF),, \ by w,, Aqg,u, and Jyu, (see
(5.13), (5.14) and (5.15)), we have

E|un|iz + 2V|V’U,n|i2( + a|un|iz(9n)

3m2 &MQ
T3, Culiaqay + 11l
d
E|vun|L2 Q ) + V|AQnun|]L2
SMQ &MQ 3
I Talz20,) + = |Culiz,) + S il

d d
|8tun]L2(Q ) + V ‘V’U/nhLQ Qn) + CL |un\L2 Q)

< 3lgf? ’TnlLQ(Qn) + 3|k’ |Cn|L2(Qn) + 3|f1’]%2(RN)7

which immediately lead to

5 31 / |un |H1 dS +/ ‘AQ 'u/n |[L2 ds +/ ‘atun |]L2 \

and

(5.32) sup |un(t)]12m1(9n) < 7e.

0<t<S

We here prepare the following lemma concerning the elliptic estimate and the estimate
for convection terms so that we can accomplish second energy estimates of 7}, and C,.

Lemma 5.3.2. Let R > 0 and let w € H*(Qx) NHL(Qg) and U € H*(Qr) N HE(QR).
Then there exist some constant 5 which is independent of R such that the following
imequalities hold:

(5.33) [w - VU720, < BIVw[T20,) VU 20 AU 22(0p),

if N = 3.

(5.34) |w : VU|%2(QR) < /6|vw|L2(QR)|AQRw|]L2(QR)|VU|L2(QR)|AU’L2(QR),
if N =4.

(5.35) ‘85”L8IMU‘L2(QR) < B |AU|L2(QR) ) |axbaxuw‘L2(QR) < /B |AQRw|L2(QR)

for N =3,4 and for all L,p=1,2,--- | N.
Proof of Lemma 5.53.2. Let N = 3, then Holder’s inequality yields

[w - VU720, < [wlis0n VU200 VU L5 (2)-



99

By Sobolev’s inequality, w € H (Qg) satisfies [w|Zsq ) < 7[Vwl|fsq,,) with some con-
stant v independent of R. Moreover, by using Sobolev’s inequality, elliptic estimate and
Poincaré’s inequality, we have

(5'36) |VU|L6(QR) < 59R|U|H2(QR) < BQR|AU|L2(QR)

for U € H*(Qgr) N Hg(QR), where fq,, is a suitable constant which may depend on the
radius R. Therefore, we can assure that (5.33) holds with 8 = v5q, and we only have
to show that the coefficient S can be taken independently of R.

For any U € H*(Qr)NH}(Qr), we define Ug € H*(Q1)NH(Q4) by Ur(y) := U(Ry),
where y € {2;. We here remark that,

1
an,uUR<y) (:u = 17273)

holds under the change of variable y = z/R (v € Qg, y € §;). Therefore, we get

VU Sa) = / Z

D=1

AUl = |
M

Then using (5.36) again with R = 1, we obtain

0,,U(x) =

6
Rgd’y = R_3|VyUR|(26(Q1),

2

Z ﬁajﬂ )| Ry = R7AUrl} 0,

pn=1

V.Ul rsop = B2V, Ul s

(5.37) B B
< R7Y280,|AUrl 200y = B 28a, R AU | 12,

which implies that (5.33) is valid for any R > 0 with the coefficient § = vfq,, which is
independent of R.

Let N =4 and U € H*(Qg) N HY(QR), w € H?*(Qp) NHL(Qr). Then we have
lw - VU|%2(QR X |'w|1L8 (Qr) |VU|L8/3 ()

(5.38)
< 10250, VU L2200 | VU 10

Moreover, since
(5.39) [VU|sp) < BorlUln2p) < BarlAU[L2(p)
and

BQR’“’|W1 8/3(QR) 6QR‘w‘W1 2(QR) ‘w’WM (Qr)

"w’]?ﬁ(QR <
< Lo, wla p | Wl r) < B, VWl gl Aoy Wiz @y

(5.40)

hold with some general constant fq, and fg , then (5.34) is valid for each R > 0 with
B = Bagba, (see (5.20)).
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Here we define Ur € H%(Q)NH}(Qy) and wr € HA(Q,)NHL (Q4) by Ur(y) := U(Ry)
and wg(y) = w(Ry) (y € Q) respectively. Then, by the same reasoning as that for
(5.37), i.e., from (5.39) and identities

4 4
1
VaUlps = /Q > | 5O Urw)| Ry = |V,Unlisq,),
1op=1
1 2
\AzU&z(gR):/Q ZE%U(:{:) R'dy = |A,Ugl}>0,)
1 u=1

we can derive
\VaUlra@p) = IVyUr| 10y
< Bay 1Ay UR| 200y = By | AcUl 2 (0),

where x € Qg and y € Q. Under the change of variable y = /R, the following identities
also hold:

(5.41)

[, = / wr()[*Ridy = R'[wilis),
1

4
Vel = [ -

L op=1
We here remark that the following identity also can be verified:

(5.42)

1 2
anuwR(l’) R4dy = R2|Vwa|H%z(Ql).

1
(5.43) PapAsw(x) = EPQIAwa(y).

Indeed, since w € H?*(Qg), the Helmholtz decomposition A,w = v!' + v? holds, where
vl € L2(Qg) and v? € G5(Qg). We recall that the definition of G5(Q2z) implies that
there exists P € W2(Qp) such that v = V,P. Let vk(y) := v!'(Ry), v%(y) := v*(Ry)
and Pr(y) := P(Ry) with y € ;. Then, vy € L2(;) is clear by the definition of
L2(Qr) and v% € Go(;) is also evident by Pp € W?(Qy). These facts yield the
decomposition gz Aywr = v + v under the change of variable y = x/R. Therefore,
since the decomposition is unique, we can assure the identity (5.43).
Then, (5.43) gives us

Ayl = / oy A,w() P
(5.44) " . )
:/ 73 Pa, Aywr(y)

Q

R2
Recalling (5.40), together with (5.42) and (5.44), we obtain

R4dy = |AQIwR|I2L2(Q1)‘

\’w|12LS(QR) = R|wR’J2L8(Ql) < Rﬂle|Vwa’L2(Ql)\AQIWR|L2(QI)

(5.45) o
= RBo, R Vaw|L2(qp) AWl (op) -
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Hence, by (5.38), (5.41) and (5.45), we can assure that the coefficient in (5.34) can be
taken as 8 = fBq, (g, for any R.

Let w € H?(Qp) NHL(Qr) and U € H?*(Qgr) N HY(Qg). Combining the elliptic
estimates with Poincaré’s inequality, we get

‘8%81MU|L2(QR) < BQR |AU|L2(QR) ) ‘8@896“10‘]142(912) < BQR ’AQRthQ(QR)

for any ¢,p = 1,2,--- , N. Then we can immediately assure that (5.35) holds with
B = Pq, for arbitrary R, since the identities

-4 N—4
100,00, U 120,y = BF 1000y, Ur| 2,y 18Ul 2y = BF 1A UR| 20,y »
N4 N—4
|axL8sz’L2(QR) =R > }6%8%103&2(91), |AQRw|]L2(QR) =R > |Agle|Lz(Ql)
are valid (use (5.43) again). O

Proof of Lemma 5.3.1 (continued). Multiplying the second equation of (DCBF), \ by
—AT, and using (5.33) and (5.34), we get

1d
5 77| VInlEa,) + AT 20,
< \un VT 20 |1 AT 2200 + | folon | 20,0 [ AT 20
< 2| Vtnli(n) VTl g AT, + el | r2@u | AT 2,
(5.46) ( ()
1
< §|AT |L2 +’Y2‘Vun‘1L2 (Qn) VT, |L2 @) T |f2|L2 (RN)

d
:E‘VTHE%QR) + AT, 720, < ’Y2|Vun\ﬁ2(9n)’VTn|i2(Qn) + 2|f2|%2(]RN)

for N =3 and

2dt|VT |L2(Q )+ AT, ’LQ )
1/2 1/2 3 2
x 72|vun|L2(Qn)|AQnun|L/2(Q |VT | ; 2(Q )|AT ’ ’ + |f2’L2(RN)|ATn’L2(Q )
1
(5.47) < §|ATn’%2(Qn) + V2|V’U'n|]i2(gn)|A§2nun|L2(Qn)NTn|L2(Qn) + |f2|%2(RN)
d
:Ewmimn) + |AT, |32

< 72|vun|I2L2(Qn)|AQnun|]i2(Qn)|VTH|%2(Q,L) + 2|f2|%2(]RN)

for N = 4. We here recall that there exist some t5 € [0,.S] such that |Tn(tg)|§{1(9n) < e
(see (5.28)). Applying Gronwall’s inequality to (5.46) and (5.47) over [t5,t] with ¢ €
[th,t5 + S| and using the uniform boundedness of w,, ((5.31) and (5.32)), we obtain
(5.48) sup |VTn(t)|%2(Qn) < 7a.

0<t<S
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Integrating (5.46) and (5.47) over [0, .S] and using (5.48), we have

S
(5.49) / AT, (5) a5 < 7o
0

From (5.35) and (5.49), we can derive
S
(550) / ’axtaqun(S)‘%z(Qn)dS < Y2 VL’VM = 1’ 2’ ce ’N'
0

Multiplying the second equation of (DCBF),, by 0,1,,, we get

Ad
0., ’L2(Q )y T 2dtWT |L2(Qn) + 5 5 dt'T 22 ()

< —|5tT 22y + [n - VTali20,) + [ fal72@n)
(5.51) |8tT |L2 ) T ’VQ‘V’U/nhLQ )’VTn|L2(Qn)‘ATn|L2(Qn) + ‘f2|%2(RN)

:>|8tTn|L2(Qn) + E|VTH‘%2(Qn) + )\E|Tn|%2(9
< 72|Vun|ﬂ%2(gn)‘VTn|L2(Qn)|AT”|L2(Qn) + 2|f2|%2(RN)

for N = 3 and

Ad
0T, ’L2(Q )+ 2dt|VT |L2(Qn) + 5 5 dt’T ’LQ(Qn)

< §|atTn|L2(Qn) + |f2|L2(RN)

(5.52) + V2| V|20, |Aﬂnun|]L2 @) VTl 20, [ AT 120,
=0:Tl72(q,) + %|VT71’L2 Q) T /\ |T 220,

< 72 Vualiz o) Ao, iz @,) \VTn|L2(Qn)|ATn’L2(Qn> + 2|f2|%2(RN)

for N = 4, which yield

(553) / ‘at ’LQ Q )dS Y2

By almost the same calculations as above, multiplication of the third equation by —AC,,
and 0,C,, give

%ch’%?mn) + |ACn|%2(Qn)
< 72|Vun|fi2(9 Ve, |2L2(Q +3p°| AT, 720,y + 3l fal 72y
|3t0n|%2(9n) + |VC |L2(Q +)\ ’C |L2(Q
< 72|V’Ufn|L2(Qn)|VCn|L2 o ACul12(0,) + 30°| AT 720,y + 3| fal72@m
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for N = 3 and

IV Culiaie, + 1ACH e
< ’Y2|Vun‘12L2 y[Aa, unhi?(g )|VC ’%2(9 ) T 3/?2‘ATn|%2(Qn) + 3’f3‘%2(RN)7
’atcn‘%Z(Qn NC 22 (Qn) +>\ |C 22 (Qn)
< 72|Vun\m2 o !Aﬂnunh?(ﬂn)|VCn’L2(Qn)|ACn|L2(Qn) + 3p°| AT, [T 20,y + 31 f3l 72
for N = 4. From (5.31), (5.32), (5.49) and (5.35), we can derive

sup |VC |L2(Q )‘F/ |AC |L2 d8+/ |0 (3 C |L2 )dS <’72,

0<t<S
S

(5.54)
/ 10:Cn ()] 720,45 < 72
0

for any ¢, u=1,2,---, N.
Let * and []" designate the zero-extension of function to RV, i.e.,

R ={ P00
We remark that

Ofw)" =0l QI =T AIC" =[0G
We also have

Viw]" = [Va]', VL= VL), VG = VG

) and T,(t), C,.(t) € H3(,) for any ¢ € [0,S]. Then, from (5.29),

since u,(t) € HL(Q,
(5.32), (5.48), (5.49), (5.50), (5.53) and (5.54), we can derive

(5.30), (5.31),

Sy 2
osgltlgs n( Hl . / [AT,]" |L2(RN ds +/0 0T,(s) L) ds < e,

Sy 2
5.55 su i ( [AC, " d8+/ 0:Cy (s ds < 7.,
555w G+ [T Oy s+ [ [0Ga)]], ds <

S
sup @(t)@l(m " / o, ) (5) ey ds + [ 10 (5) gan ds < s
0 0

0<t<S
and
s
/ Ha 0z T ‘LQ RN)d < V2 / Hamaxuc ’Lz (RN) ds < 72,
(5.56) o 0

(02,00, ,)(5)|;

|]L2(]RN) dS < V2

0
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for any ¢, 0 =1,2,--- | N. By (5.33) and (5.34), we also have

S S
(5.57) / [tn - VT (5) ey s + / [n - VCJ(3) vy ds < -
We here remark that
v e L2(Q) = v € LZ(RY), v € HL(Q) = v € H (RY)

hold for any Q C RY, due to the definition of L2(©2) and H(€2). Therefore we obtain
u, € C.([0,S]; HL(RY)) and Oy, [Ag,u,]" € L?(0,S;L2(RY)) for each n € N.

By using (5.55), (5.56) and (5.57), we can assure that there exists a subsequence
{(w,,, T;., 6’;)}2@\; of {(@,, Th, Cy)}lnen, which is simply denoted by {Ui}ien =
{(@;, T;, Ci)}ien, such that

A~

T, — T, * -weakly in L>°(0, S; H'(RY)),
(5.58) oI, — T, weakly in L?(0, S; L*(R")),
[@L%Ti] N weakly in L*(0,S; L*(RY)) Ve,V =1,2,--- N),
AT — T weakly in L*(0,S; L*(R")),
C;, = C, * -weakly in L>°(0, S; H'(RY)),
(5.50) 0,C; — Cl, weakly in L*(0, S; L*(RM)),
(0,,0,,Ci]" — C4 weakly in L*(0,9; L*(R™))  (Vi,Vu=1,2,---N),
[AC]N = Clns weakly in L?(0,5; L*(RY)),
w; — U,  -weakly in L>°(0, S; H(R™Y)),
(5.60) Opt; — Uy weakly in L?(0, S; L2(RY)),
(0, 05, wi] — ult, weakly in L*(0, 9;L*(RY)) Ve,V =1,2,---N),
[Ag, wi]" = U weakly in L*(0, S;L2(R"Y)),
(5.61) [u; - VT;]" = xa weakly in L*(0,9; L*(RY)),
[u; - VCiJ* = xa weakly in L*(0,S; L*(RY)).

Let ¢1 € C2((0,S); L*(RY)). Then

S S
0 JRN 0 JRN

Since T, weakly converges to T, in L2(0,S; L2(RY)), taking the limit as i — oo, we get

S
/ / Teprdzdt = / / T, 0yprdzdt
RN 0o JrN

for any ¢ € C}((0,S); L*(RY)), which implies that T, = 9,T holds in L?(0, S; L2(RY)).
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Next we assume that ¢, € C°(RY x (0,5)). Since ¢y possesses a compact support
in RY x (0, 5), there exist some natural number M € N such that suppgs C Qpr x (0,.9)
holds, where supp@, denotes the support of ¢o. Then we have

S S
/ $2(0,,0,, T1]" / ¢2\Q 05,05, Tiddt = / / N @;n )a Todzdt
0 RN n;

n; RN

for any ¢ such that n; > M. Taking the limit as ¢ — oo, we obtain

S S
0 JRN 0 JRN

Therefore T/ = 8,,0,,T. and 9,,0,,T. € L*(0,5; L*(RY)) are valid for any ¢, =

kokk

1,2,---, N. Moreover for n; = M, we obtam

s S S
/ Go| AT\ dxdt = / / Oolo ATidzdt = — / Vo, - VTdxdt,
0 JRN 0 JQn, ‘ 0 JRN

which yields

S S S
/ G2 T yssxdrdt = — / Voo - VT.dxdt = / Do AT, dxdt.
0 RN 0 RN 0 RN

Hence Thuwe = AT, in L?(0, S; L*(RY)).

By exactly the same argument as above, we have

Ciwo = 0,Cy, Cph =00,Cs, Ciu =AC,, Uy = Oiu,, = 0,0,u..

***

Fix ¢3 € C5°((0,9); C>(RY)) arbitrarily and let a natural number M € N satisfy
supppz C Sy x (0, 5). Since @3, € C5°((0,5); CP(Q2y,)) for n; = M, we get

S S s
/ b3 - [.Agni u;| dxdt = / (ﬁg‘gni - Ag,udxdt = —/ ¢3|Qni - Au;dxdt
0o JrN 0o Ja,, 0o Ja,,

S S
0 n; 0 RN

Taking the limit as i — oo and using the fact that wu.(t) € D(Agrn) for a.e. t € [0, 5],

we obtain 5 g
/ / D3+ Ussndrdt = / ¢3 - Apvu,dzdt.
0 JRN 0 JRN

Since C§°((0, S); C=(RY)) is dense in L?(0, S; L2(RY)), we can show that U, = A~ u.
holds.
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Moreover, using the fact that u, € W2(0, S; LZ(RY)) and Agvu. € L*(0,S;L2(RY))
and applying Lemma 2.3.2, we can assure the absolute continuity of |Vu.(-) ’]i?(R xy- Com-
bining the continuity of |Vu*(-)|i2(RN) with the fact that w, € L*(0,S;H(RY)), we
obtain w, € C([0,S];HL(RY)). Likewise, we have T,,C, € C([0,S]; H'(R")). Hence
u,, T, and C, satisfy required regularities (5.24) except their periodicity.

From (5.55), it is obvious that

sup |T;| (¢ +/ oT;| (s) ds < 72,
0<t<S O g1Q,) 0 n L2(n)

N 2 s 2
sup [C| (1) —i—/ 0Cs|  (s) ds < 72,
o<t<S | 19 g, Jo @ L2(Qn)

s

_ 2 _ 2

A . <
s [, O+ [ 9, ()i, ds <

for any © € N and n € N. These inequalities imply that we can apply Ascoli’s theorem
to the {U, };en and its subsequence on €, for any n € N.

Therefore, by applying Ascoli’s theorem on €, we can extract a subsequence of
{Ui}iEN = {(’&\Z, TZL', Ci)}i€N7 Wthh iS denoted by {Ui;}jEN = {(’61\]1, T‘zjl7 Cijl.)}jeNa

satisfying the following convergences:

Talo, = T' strongly in C([0, S]; L* (<)),
Cilo, = C' strongly in C([0, S); LA()),
'Ei\}|ﬂ1 — u' strongly in C([0, S]; L?(€2))).

Let U := (u!, T",C"). Here we remark that since U; possesses the time-periodicity for
each i € N, U! is also time-periodic function, i.e.,

U' € C.([0, S];L2(9) x L*(Q4) x L*()).
Next, applying Ascoli’s theorem again with n = 2, we obtain the existence of a subse-
quence {UZ? }jen of {UZ-; }jen which satisfies
Ui? — U? strongly in C([0, S]; L*(Q) x L*() x L*(Qy)).
As for the relationship between U! and U?, we can easily show that
Ul(z,t) = U*(z,t) Vte0,5], forae. x€Q.

Repeating the same procedure as above inductively and applying the diagonal argument,
ie., along the diagonal subsequence {Uj }ien, simply denoted by {Ui}en (ie., {it} is
denoted by {i} for simplicity), we obtain the following convergences:

Tilg, = T" strongly in C([0, SJ; L*()),

Clla, — C™ strongly in C([0, S]; L*(2,,)),

wlg, — u" strongly in C(]0, S]; L?(£2,,))
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for any n € N, where U™ := (u", T", C™) belongs to C ([0, S]; L?(2,) x L*(2,,) X L*(2,,)).
Moreover,
UM(z,t) =U"(x,t) Vtel0,5], forae. xe€f,

holds for ny > ny. We note that {U;},en still satisfies (5.58), (5.59), (5.60) and (5.61).
Define U := (u, T, C) by

Uz, t) :=U"(x,t) if x € Q,.

Let ¢y € C°(RY x (0,5)) and assume that suppey C Qur % (0,5) for some M € N.

From (5.58), we have
s R s N
/ / Tiudadt = / / Tl Galony drdt
0 RN 0 Qs

S S
— / / T, padxdt = / / TM ¢4, drdt,
l=oo Jo JrN o Jau

which implies that T' coincides with T,. Similarly, we obtain C' = C, and u = wu,.
From the periodicity of T,C and wu, we can derive T,,C, € C,([0,5]; HY(RY)) and
u, € Cr([0,S]; HL(RY)). Moreover,

S
/ / - VT pudadt
0 RN

S S
:/ / u; - Vﬂ¢4|gnl dxdt = —/ / ’U,lﬂ : V¢4|in dxdt
0 Qn, 0 Qn,

S
= —/ / 'U;Z‘QJMI_HQJM . V¢4|QMd$dt (Vl s.t. ny 2 M)
0 Qs

S S
— / / Y1padxdt = — / / uMTM -V oy|q,, drdt
I=oo  Jo JRrN 0 Jou

s
——/ / ul - Vydadt.
0 JRN

Since T = T,, u = u, and u, - VT, belongs to L*(0,S; L*(RY)), x; = u - VT is valid in
L*(0,S; L?(RY)). By exactly the same procedure as above, we can show that y, = u-VC
in L2(0, S; L*(RY)).

Thus, we can assure that (u., T, C\) becomes a periodic solution of (5.23). O

5.4 Convergence as A — 0

Let (uy, T, Cy) designate the periodic solution of (5.23) with parameter A > 0. In this
section, we discuss the convergences of solutions {(wy, 7y, Cy\)}rs0 as A — 0 and we
complete our proof.
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We first introduce the uniform boundedness of {(wy, Th, C))}a>0 independent of A by
establishing some a priori estimates. To this end, we here prepare the following lemma
for convection terms and elliptic estimates.

Lemma 5.4.1. Let w € H*(RY) and U € H?*(RY™). Then there exists a constant 3
satisfying the following inequalities:

(5.62) W - VU |Zany < BIVW[E 2@y VU L2mm) | AU 2 ),

if N = 3.

(5.63) w - VU|%2(JRN) < BIVwlpe @) | Aw|pz@n) [ VU | 2@y |AU | 2wy,

if N =4.

(564) |8%89EMU|L2(RN) < 5 |AU|L2(RN) ) |awLaz,uw|]L2(RN) < 5 ’Ath?(RN)

for N =3,4 and for all L,y =1,2,--- ,N.

Proof. Let w € H2(RY), U € H*(RY) and let {wy}reny C CP(RY) and {Ug}ren C
Cs°(RY) be sequences satisfying wy, — w in H2(RY) and U, — U in H*(RY) as k — oo
respectively. Since wy and U}, possess compact supports, we can apply almost the same
procedures as those for Lemma 5.3.2 and we can assure that (5.62), (5.63) and (5.64)
are valid with wy, U, and suitable coefficient § independent of k. Then immediately,
(5.62), (5.63) and (5.64) can be verified for all w € H?(RY) and U € H?(RY) by letting
k — oo. O]

From now on, we write simply | - [z» and | - |g+ in order to designate the norm of
LP(RY) and H*(RY) respectively, if no confusion arises. Multiplying the second equation
of (5.23) by TA, we get

|T>\‘L2 + |VT)\|L2 + )‘|T)\|L2 / fQTAdx ’Y3|f2’L(2*>’ VTA'LQ

th

where we use Holder’s inequality and Sobolev’s inequality. Here and henceforth, -3
stands for a general constant independent of \. Then we obtain

1d

2dt|T>\|L2 +5 |VTA|%2 + M7 < slfol? ey

which yields
S S
(5.65) VT3 () Zadls + A / ITo(5)Zads < 75,
0 0

since f, belongs to L2(0,S; L&) (RN)). Multiplying the third equation of (5.23) by C),
we have
‘C)\’Lz + |VC)\|L2 + )‘|C)\|L2 =p C)\AT,\dI + fgC,\dx
2 dt RN
!VCA’BWTA\L? + Y3l f3l gy

VCV/\|L2a
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ie.,

1d
2dt
Integrating this over [0, 5] and using (5.65), we obtain

—|C\[22 + = IVCA]%Q + ACal7 < PPIVTa2 + 73l f3]% e

S S
(5.66) / VO (s) Zads + )\/ 1O () 2ads < s,
0 0

since f3 € L2(0,S; L&) (RN)). Multiplying the first equation of (5.23) by —Awu,, we
have

1d
§E’vu>\|ﬁp + V|A’U1)\|E2 + CL|V'U,)\|E2

= —/ Auy - PryvgThdx — / Auy - PrvhChdx — Pry f1 - Auydz.
RN

RN RN

Here we recall (5.24), i.e., Auy(t) € L2(RY) for a.e. t € [0,S]. Then by integration by
parts, we obtain

/ A’U,A : PRNQT)\dZL‘
RN

N
= Auy - gThdx = /Au g'Ihdx = — uk - g"VThdx

pn=1

. = (a l9"?

Vil 19T < 3 (§IVidl + 20 \vmm)
pn=1 pn=1

2

g

’ ’ |VT)\|L2

Similarly,
2
/N A’U,)\ . PRNQT)\dJZ |V >\|]L2 + |—|VC>\|L2
R
holds. Therefore, multiplication of the first equation by —Aw, yields
2
(5.67) §dt|VUA‘LQ t3 |A’“’A|IL2 + —|V AEe < |g| = |VTi[72 + |—|VOA‘L2 + ,/\f1|12L2-

Integrating (5.67) over [0, S] and using the elliptic estimate (5.64), we have

S S S
(568) / |AUA(S)|i2d8 -+ / |VUA(S>|i2d8 -+ / |a$La$M’U,)\(S)|H2_‘2dS < Y3
0 0 0

for t,u = 1,2,--- ,N. From the fact that u, € C,([0,S];HL(RY)) and (5.68), there
exists t3 € [0, S] where |Vu(#3)|L2 < 73 holds. Therefore integrating (5.67) over [t3,]
with ¢ € [t3,t3 + 5], we obtain

(5.69) sup |Vauy(t)|rzds < 7s.

0<t<S
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Moreover, Sobolev’s inequality and (5.69) lead to the fact that wy € C([0, S]; L¥ (RY))
and

(5.70) sup |ux(t)|perds < 3.

0<t<S

Multiplying the second equation of (5.23) by —AT\ and 9,7 (by exactly the same
procedures as those for (5.46), (5.47), (5.51), (5.52) and by using (5.62), (5.63)), we get

d
%IVTAI%Z +[AT[72 < 73|VUA|fi2|VTA|%z +2| fola,

(5.71)
0, Tx[7- + — |VT/\|L2 + )\ |T>\|L2 V3| Vs 22| VT 2| AT 12 + 2| fol7-
for N = 3 and
d
5.72) E|VTA|%2 + ATy |7 < 73|VUA\E2|AUA|i2|VTA|i2 + 2| fo]72,
5. 72

\atmimu |VTA|L2+>\ \TA|L2 V3|V Lz | Awy L2 | VT, 2 | ATy 2 + 2| fo| 22

for N = 4. From the fact that T) € C([0,S]; H}(RY)) and (5.65) holds, there exists
1 €10, 5] such that

VTG + MTA(t)[72 = min (VA0 + ATA®)]F2) < 7.

Therefore, integrating (5.71) and (5.72) over [t},t] and applying Gronwall’s inequality,
we obtain

s s
(5.73) sup |T,\(t)|%2* + sup |VT/\(t)|%2 +/ |AT,\(S)|%2d8+/ |8tT>\(s)|%zds <3
0 0

0<t<S 0<t<S

Similarly, we get the followings from the third equation of (5.23).

d
%|VC’>\|%2 + |AC)\|%2 < 73|Vuk|ﬁ2|VCAI%2 + 3p2|AT)\|%2 + 3|f3|%2,

|6tCA|%2+ |VC>\|L2+/\ |C>\|L2
RS 73|VUA‘L2|VO)\|L2|AO)\|L2 + 3p2|AT)\|%2 + 3|f3|%2

for N =3 and
d
%\VCA\ZE +]AC) 72 < 73‘VUA|H%2‘AUA‘12L,2’VOA’%2 + 30| AT 72 + 3| f3]72,

‘8t0,\‘%2 + |VC/\‘L2 + )\ |C,\‘L2
X 73’V’U,)\|L2|AU)\|L2‘VC)\|L2‘AC,\‘L2 + 3p2|AT)\’%2 + 3‘f2|%2
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for N = 4. Then we can obtain

S S
(:74) sup [CA(Ofr + sup VOO -+ [ IACK(s)fads + [ |ACA(5)ads < s
<t< 0 0

0<t<S

By virtue of the elliptic estimates (5.64), (5.73) and (5.74) yield

(5.75) /|E9IL8HT,\ |L2ds—|—/ 10,05, C(5)[72ds < 73

for any ¢, u=1,2,-

Let Dh’U,)\( ) = ’Ll/)\(t + h) - ’U/)\(t), DhT)\(t) = T)\(t + h) - T/\(t), DhC)\<t) = C,\(t +
h) — C\(t) and Dy fi(t) := fi(t + h) — fi(t) (h > 0). Then from the first equation of
(5.23), we get

(576) O:Dyuy — vVADpuy + aDpuy = PrygDyTy + PrnhDy,C\ + Pry Dy, fr.
Multiplying (5.76) by Djuy, we have

3|g|2 3|hl2

d 3
%|Dhu>\’i2 + 2V|VDh’u,)\|i2 + CL|Dh’U,)\|]i2 B |DhT)\|L2 + |DhC)\|L2 5’Dh.f1|I2LQ‘

Since Dpuy € Cr([0, S]; LE(RY)), f1 € Wl’z(O, S;L?(RY)) and we already have estimates
for 9,7\ and 0,C) in (5.73) and (5.74), integration of this inequality over [0, S] gives us

S
/ | Dy (5)|2ads < 7sh?
0

for any h > 0. Hence we get (by virtue of Proposition 2.1.16)

S
(5.77) / |Ovu(s)[f2ds < v
0

Moreover, from (5.62) and (5.63), we can also derive

S S
(578) / |’U,)\ : VT)\(S)|%/2 ds + / |’Ll,>\ : VC)\(S)li2 ds < Y3
0 0

By using the uniform boundedness (5.68), (5.69), (5.70), (5.73), (5.74), (5.75), (5.77),
(5.78) and the standard arguments of convex analysis, we can extract a subsequence of
{(ux, T\, C\) }as0, denoted by {Vi}ien := {(w;, T}, Ci) }ien, which satisfies the following

convergences:

T, —T, * -weakly in L>°(0, S; L* (R™)),

0, T; — TE, x-weakly in L>(0,S; L*(RY))  (Vu=1,2,---N),
(5.79) T — Tu weakly in L*(0, S; L*(R"Y)),

O, 00, T; — T11, weakly in L*(0, S; L*(R"Y))  (V¢,Vu=1,2,---N),

ATy — T weakly in L*(0, S; L*(RY)),
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C; — C,  -weakly in L>°(0, S; L*" (R™)),

0., C; — C*, x -weakly in L>=(0,5; L*(RY))  (Vu=1,2,---N),
(5.80) 0,C; — Cps weakly in L2(0, S; L*(RY)),

02,05, C; — CUL, weakly in L?(0,S; L*(RY))  (Vi,Vu=1,2,---N),

AC; = Chyuns weakly in L?(0, S; L*(R")),

w; — u, * -weakly in L>°(0, S; L2 (R™Y)),

O, u; — Uk, x -weakly in L>(0, S;L*(RY))  (Vu=1,2,---N),
(5.81) Oyth; — Ussr weakly in L2(0, S; L2(RY)),

0,0z, u; — Uil weakly in L*(0, S; L*(RY)) (Ve,Vpu=1,2,---N),

AU; = Ussrnn weakly in L*(0, S;L2(RY)),
(5.82) u; - VI, = x3 weakly in L*(0,S; L*(RY)),

u; - VO — x4 weakly in L*(0, S; L*(RY)).

Moreover, ATy and AC) strongly converge to zero in L?(0,S; L>(RY)) as A — 0, since,
from (5.65) and (5.66),

/ |)\T)\’L2dt / )\|T)\|L2dt )\’}/3
0

For each n € N, V; satisfies

s
2 2
sup ‘VT’QH )|L2(Qn) +/0 ‘afTilﬂn (t)lLQ(Qn) ds < 73,

o<t<S

S
2 2
(5.83) sup [VCla, (03, + [ 10Ca, 0f35q,, 05 < 7

0<t<S
S
2 2
s [Vudo, (O]}, + /0 Ol (O 2o, ds <
Moreover, using (5.70), (5.73), (5.74) and Holder’s inequality, we get

2 2-2.1

+ sup ‘C|Q Sup

Sup ‘T|Q 0<t<S )‘ip(gn)

),
0<t<S L2($2)

Therefore, we can repeat exactly the same argument as that in Section 5.3 and we can
assure that there exists a subsequence of {V;};en, which is simply denoted by {V,}en,
and there exists {V"},en := {(u™, T", C™) } hen such that

Tila, — T" strongly in C([0, S]; LQ(QH)),
Cila, — C" strongly in C,([0,S]; L*(Q,)),
wlq, — u” strongly in C([0, S];Lz(Qn))
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hold for each n € N and V"™ (z,t) = V"2(z,t) holds for any ¢ € [0, 5] and for a.e. z € Q,,
with ny > ny.
As in Section 5.3, we here define V := (u, T, C) by
V(z,t) :=V"(x,t) it v € Q.

Then we can show that VT,9,T € L*(0,S; L% _(RY)). Indeed, the uniform boundedness
(5.83) implies that, for each fixed n € N; there exists a subsequence of {T;},cn, which is
denoted by {7jn }men satisfying the following convergences:

aqul%‘Qn =Ty weakly in L*(0, S; L*(2,)),

0T ‘Q — Ty weakly in L*(0, S; L*(€2,,))
for yp = 1,2,--- ,N. Since T|, = T" belongs to L*(0,S; L*(2,)), we can assure that
" = 0, T}Q and Tj, = 0T, in L*(0,5;L*(Q,)). This guarantees the well-
deﬁnedness of VT and 9,T as functions belonging to L*(0, S; L2 (R"Y)). By the same rea-
soning, we can show that VC’ 0,C € L*0,8; L (RY)) and Vu, d,u € L*(0, S; L2 (RY)).

loc

Let ¢5 € Cg°(RY x (0,5)) and let M € N satisfy suppos C Qur x [0,5]. Then,

//ﬂ¢5dl’dt // ﬂ’ﬂnl¢5|QMd$dt
RN Qs

/ | roududr - / | o dud,
l—>oo RN Qs

which yields T, = T and T € L>=(0, S; L*> (RY)). Likewise, C, = C'in L*°(0, S; L*" (RY))
and u, = w in L>(0, S; L% (RY )) are verified. Moreover, we can see that

S S 5
| [ outostzar =~ [ [ 1o, oudadi = [ [ Lo 0,000, ot
RN 0o JRN 0o Jau
S
// ”*<Z55dl‘dt=—/ / T0,,psdxdt
l%oo RN 0 RN

S
/  OTisdadt — / / Tt dsdadt = / / Tilo,, Oids|a,, dudt
RN Qnr

/ / ***¢5 dxdt = / / T@t ¢5 dl’dt,
l%OO RN 0 RN

which imply that 7., = 9,7 and T¥, = 9,1 hold in the distribution sense. Since V1" and
O,T are well defined in L*(0, S; L? (]RN)), we can assure that 9,7 € L?(0,S; L*(RY)) and

loc

9., T € L>(0,5; L*(RY)) for p = 1,2,--- , N. Moreover, for any ¢¢ € L*(0,S; H'(RY)),

we have
s s
/ / axﬁz#E%dxdt:—/ / 8xu7}3xb¢6dxdt
RN 0 JRN

S
/ / ***¢6 dxdt = / / agju TaxL ¢6 dxdt.
l—)oo 0 RN
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Therefore T, = 0,,0,, T holds in L*(0, S; H*(RY)). Hence 8,,8,,T € L*(0,S; L*(RY))

for each ¢, p = 1,2, -+ | N, which immediately leads to Ty = AT in L2(0, S; L2(RY)).
By exactly the same argument, we can derive the followings:

C* - C7 Cf* = axucy C*** = atCa Cuh, = a:mam#c’a C***-k* - ACa

*kkk

L’ e JR—
U, =u, U, =0, U, Uy =0u, Uk, =0,0,U U =Au

for all ¢, u =1,2,--- N. Moreover, we can also show that y3 =u-VT and x4, = u - VC
in L2(0,S; L>(RY)) by exactly the same argument as that in previous section.

Finally, we check the continuity of Vu, VT and VC. We here remark that the
standard argument via the abstract result Lemma 2.3.2 can not be applied, since it is
difficult to check whether w € L?(0, S;L2(RY)) and T,C € L*(0, S; L*(RY)).

Recalling (5.69) and (5.77), the uniform boundedness of uy, we obtain

t
(5.84) ar(t) — wi(s)z < / Os ()2 dr < st — 5]
and
IV (t) — Vuy(s)| 2 < s,

which implies that {w;(t) — w;(s)}en has a subsequence which weakly converges in
H! (RY) for each fixed s,t € [0,S]. Moreover, from the space-local strong convergences
of {u; }ien, i.e., from the fact that

wlq, — u" strongly in C.([0, S]; L*(£2,))
for any n € N, it is easy to see that the weak limit of {w;(t) — w;(s) }ien coincides with

u(t) — u(s) (use the density of C5°((0,8); C(RY)) in L2(0,S;L*(RY))), in particular,
it can be shown that

u(t) —u(s) € HE(RY) vt Vs € [0,5].
Moreover, (5.84) yields

(5.85) [w(t) — u(s)|e < liminf [ (t) — w(s)] 2 < slt —s['7,
—00

which implies that w(-) — u(s) belongs to C([0, S]; L2(RY)) for arbitrary fixed s € [0, S].
Recalling the regularities of w derived above, we can fix t5 € [0, S] such that

dru(ts) € L2(RY),  Vults), 0,,0,,u(ts) € L*(RY)  (Ve,Vu=1,2,--- ,N).
Therefore, the time t5 € [0, 5] also satisfies

u(") —u(ts) € WH(0, $; L3 (RY)),
u(t) — u(ts) € D(Agn) for ae. t €0,5],
Apn (u(-) —u(ts)) = A(u(-) —u(ts)) € L*(0, S;L2(RY)).
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These imply that we can apply the standard argument via Lemma 2.3.2 to u(-) — u(t5),
i.e., we can assure Vu(-) — Vu(ts) € C([0,S];L?(RY)). This fact immediately leads to
Vu € C([0,S]; L2(RY)) since Vu(ts) € L2(RY).
Moreover, since u(t) — u(s) € HL(RY), we can apply the Sobolev’s inequality and
we have
(t) — 0(8) e < s [Vau(t) — V().

Together with the fact that Vu € C([0, S]; L*(RY)), we obtain w € C ([0, S]; L2 (RY)).
By almost the same arguments above, we can show that T, C € C([0,S]; L? (RY)) and
VT,VC € C([0,S]; L*(RY)).

Thus, we can assure that (u,T,C'), constructed above, becomes a periodic solution
of the original system (DCBF), whence follows our result. [






Chapter 6

Existence of Attractors

6.1 Problems and Main Theorems

We consider the existence of global and exponential attractor for solutions of (DCBF).

ou+ Au+ au = PgT + PhC+Pf  (x,t) € 2x]0,9],
0T — AT +uwVT = f, (z,) € Ox[0, 8],
0,C — AC +u-VC = pAT + f; (x,t) € Qx]0, 5],
u(-,0) = ug, T(-,0) =Tp, C(-,0) = Cp.

(DCBF)

In this chapter, we deal with the case where {2 is bounded domain with sufficiently
smooth boundary 02 and the autonomous case, i.e., the external forces f;, fo and f3
depend only on the space variable x. As for the boundary condition for (DCBF), we
impose either Dirichlet boundary condition:

u=0 T=0, C=0, (x,t) € 902x]0, 5],

or Neumann boundary condition:
— =0, (x,t) € 92x]0, S].

Throughout this chapter, We use the following notations:

H = HL(Q) x L*(Q) x L*(),
Hp ::H1(Q)XH1( ) x H (9
Hy = HL(Q) x HY(Q) x H'(Q
HH = (HA(Q) N HG(Q)) x HY(Q) x HY(Q),

H? = H>? = (HA(Q) NHL(Q)) x HA(Q) x H*(Q),

),
)

I
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where each spaces are endowed with the norm defined by

|01, = [Vulfs + [T + CF2.

1012, = 1012y = [Vula + [T +1CPn,
1013 2= |AulZs + 1T + (Ol

101 o= [Auls + TP + O

According to our results in Chapter 4, we can assure the following solvability.

Proposition 6.1.1 (Dirichlet case). Let N < 4 and let Dirichlet boundary condition
be imposed. Moreover, we assume that fi € L*(Q) and fy, f3 € L*(Q). Then, for any
initial data (wo, Ty, Cy) belonging to H, (DCBF) possesses a unique solution (u,T,C)
which satisfies the following reqularities:

u € C([0, S|; H,(2)) N L*(0, S; H*(Q)),
dyu € L*(0,5;L2(Q)),
T, C € C([0,S]; L*(Q)) N L*(0, S; Hy (2)),
VAT, Vto,T, VIAC, Vtd,C € L*0,S; L*(Q))
for any time interval S > 0. Furthermore, if the initial data (ug, Ty, Cy) belongs to H,
(DCBF) possesses a unique solution (w,T,C') which satisfies the following regularities:
u € C([0, SJ;H, () N L2(0,5; HA(Q)) N WH2(0, S;1L2(€2)),
T, € e C(0, 8] HL(Q)) N L3(0, 5; HA(Q)) n WH2(0, 8 13(Q)

for any S > 0.

Proposition 6.1.2 (Neumann case). Let N < 4 and let Neumann boundary condition
be imposed. Moreover, we assume that fi € L*(Q) and fs, f3 € L*(Q). Then, for any
initial data (wo, Ty, Co) belonging to H, (DCBF) possesses a unique solution (w,T,C')
which satisfies the following reqularities:

u € C([0, S]; H, () N L*(0, S, H*(Q)),
atu/ € L2(07 S? ]Lg(Q))v
T, C e C([0,5]; L*(Q)) N L*(0, S; H'()),
VAT, V0, T, VIAC, Vt0,C € L*(0,S; L*(2))
for any time interval S > 0. Furthermore, if the initial data (ug, Ty, Co) belongs to HY,
(DCBF) possesses a unique solution (w,T,C) which satisfies the following regularities:
u € C([0, S|, H, (€2)) N L*(0, S;H*(2)) N WH2(0, S5 L3 (€2)),
T, C € C([0,8]; H'(2)) N L*(0,5; H*(Q)) N WH*(0,.5; L*(2))

for any S > 0.
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On the basis of Proposition 6.1.1, we can define the semigroup {.%p(t) }1>0 acting on H
and H} by the correspondence .#p(t)(ug, Ty, Co) := (u(t), T(t),C(t)), where (u, T, C) is
the unique solution of (DCBF) given in Proposition 6.1.1 with the initial data (uo, Tp, Cp).
In the same manner, we define the semigroup {#n(t)};>0 acting on H and H},, based
on Proposition 6.1.2.

We first show the following results for the Dirichlet boundary condition case.

Theorem 6.1.1. The dynamical system ({p(t)}i>0,H) possesses a global attractor
Ap.

Theorem 6.1.2. The dynamical system ({p(t) >0, H) possesses an exponential at-
tractor Mp.

Theorem 6.1.3. The dynamical system ({Fp(t)}i>0, Hb) possesses a global attractor
3 and an exponential attractor M} .

In order to apply the abstract results stated in Section 2 (Proposition 2.4.1, Corollary
2.4.1 and Proposition 2.4.2), we establish some minute a priori estimates in the next sec-
tion. From almost the same procedures as those in the previous chapters, we can derive
the second energy estimates for solutions of (DCBF). However, in order to assure the
existence of compact absorbing set for the dynamical system ({-#p(t)}i>0, H}), we have
to establish the pointwise estimates for |w(t)|gz, |T(¢)|z2 and |C(t)|z2. In order to cope
with this difficulty, we introduce the abstract result given in Brézis [11] (Proposition
6.2.1) and we prepare Lemma 6.2.1 and Corollary 6.2.1, which can be proved by some
argument similar to that for Proposition 6.2.1. In section 6.3, we discuss the estimate for
differences of two distinct solutions so that we can guarantee some continuity required
in Proposition 2.4.1, Corollary 2.4.1 and Proposition 2.4.2 and we demonstrate the ex-
istence of global and exponential attractors for Dirichlet boundary condition case. In
this argument, Proposition 6.2.1, Lemma 6.2.1 and Corollary 6.2.1 play an essential role
again.

When we consider the Neumann boundary condition case, it is easy to see that

attractors can not exist in the usual sense. Indeed, integrating the second equation of
(DCBF) over €2 and [0, ], we have

/QT(t)dx:/QToda:th/ﬂfgdx,

which yields the following inequality:

/ngﬂ?—i—t/fgdl’
Q Q

where Q| is the measure of Q. Therefore, if [, fodz # 0, then |T'(t)|.2 strictly increases
as t — 0o. Moreover, even if [, fodz =0, |T'(t)|2 is always bounded from below by the
mean value of initial data Ty. This implies that there is no bounded subset in H which
attracts all orbit of solution.

< [ [relds < QP
Q
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Based on this fact, we assume

AﬁM_AﬁM_O

for the Neumann boundary condition case. Then we can define the dynamical systems
{FN ()0, Hinpme) and ({n () }z0, HN iy ), Where
1
Lmﬂy:{UEEGM‘—i/Um:gm}
9] Jo

HmTva = H;(Q) X L?nT (Q> X L%nc (9)7
H]lV,mT,mC = 7{WLTﬂnC N 7-[]1\[

We can show the existence of attractors for these dynamical systems in the last section
of this chapter.

Theorem 6.1.4. Assume that

Aﬁ@:éhwzo

Then, for any positive numbers myp and me, the dynamical system ({n(t) }i>0, Himgpme)
possesses a global attractor Dn . me and an exponential attractor AN mypme - Further-
more, for arbitrary me,me > 0, the dynamical system ({n(t)} >0, Hympme) admits

a global attractor sz/]\l, and an exponential attractor ///J{TMT,

mr,mc mc”

Remarks.

(1) To be precise, @p = &3 holds true. In fact, since &} is bounded in H, @} is
attracted to o/p by the semigroup {.p(t) }+>0. Moreover, from the strict invariance, i.e.,
S (t)p = o/}, we can derive

mwﬂg@J@):ﬁmdmmung@J@)za

This identity and the compactness of «p in H implies that &} C @p. Conversely,
we can obtain the fact that /p is bounded in H},, since @p C %y, where %, will be
defined the end of Section 6.2 (recall that .o7p is the smallest compact absorbing set of
({-#D(t) }+>0, H)). Then, together with the strict invariance of 7p and the compactness
of o7}, we can assure that disty (/p,</5) = 0, which yields /p C o75. By the same

reasoning, Ay mp.me = Ay holds for arbitrary mz, me > 0.

ymr,mc
(2) If |f2|r2 and |fs]z2 are sufficiently small (the smallness will be given concretely by
(6.61) in Section 6.3), then we can show that the global attractor <7, consists only one
element and o7, satisfies all the definitions of exponential attractor (see estimates (6.60)
in Section 6.3).

(3) Let
eQ{N = U ﬂN,mT,mC'

my,mc =0
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Then we can assure that o7y is strictly invariant and satisfies attracting property for the
dynamical system ({-#n(t)}+>0, H). Similarly,

1. 1
oy = U ,QZN,mT’mC

mp,mc >0

becomes a strictly invariant attracting set of ({n(¢)}i>0, HY ). Immediately, @y = o5
is valid (see remark (1)).

6.2 A priori Estimates

We first establish some a priori estimates in this section so that we can construct a com-
pact absorbing set. Throughout this chapter, x is the coefficient appearing in Poincaré’s
inequality:

(U2, < 6|VU|2,,  |VU2 < &|AUZ,, YU € H*(Q) N HL(Q),
lulf. < K[Vulf.,  |Vulf. < k|Auli, Vu € H*(Q) N HL(Q)

1 . {1 1/}
b:=—minq —, — .
2 K K

Fix a positive number g > 0 arbitrary. Let the initial data (ug, Ty, Cp) belong to

and the constant b is defined by

(6.1) By, = {(u0, To, Co) € H; |uoliy + |Tol72 +[Col72 < p}.
Multiplying the second equation of (DCBF) by T', we get
Ld
2dt
(6.2) = %\T@z + VT3 < &l fal

T[7: + VT3 < | folr2|T |2 < VE|fol 2| VT 12

d
= %mig +0|T|2% + (1 — b&)|VT)2: < K| fa]2.

Using Gronwall’s inequality, we have

t

t
(6:3) [T(®)|2 + (1 —br) / e INVT (s)[72ds < |Tolf2e7" + 6l fal 72 / e =9 s,
0 0

1 K
t;lL = max {O, ~3 log (@|f2|%2> }

and let t > t}l. Then, since

Here define

2
K
e < pe —|fZ’L2
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holds for ¢ > t}u we obtain

t
2
(64) T+ (1= be) [ M ITT() fads < 1l = Mo
0

Integration of (6.2) over [t,t + 1] yields

t+1
©5) [ VT ds < [T + Al < M+ wlflls = Mo
t
Similarly, multiplication of the third equation by C' and Gronwall’s inequality give
d
Z|Clie + IVCIi2 < 26/ fslfa + 20| VT

d

= —|ClL +bICIL: + (1= bR)| VO < 26 fsl72 + 20|V T

(6.6) t

= O3+ (1 - bH)/ e P\ VC (s)[2.ds
0

t t
< |Col32e7" + 25| 532 / e Pt ds + 2p2/ et =TT (s5)|2.ds.
0 0

Here we define ¢, := max{ —+ log (£|f3 %2> } Then, the estimates (6.1), (6.4), (6.5)
and (6.6) yield

t
2
6.7)  [CWOR+ (1 br) / M TO(8) s < S\ foffa + LMy = My
0

and

t+1 t+1
/ IVO(s)|32ds < |C(t)|32 + 2k| f3]32 + 2p2/ |VT(s)|3.ds
t t
< M3 + 2Ii|f3|%2 + 2,02M2 = M4

(6.8)

for any ¢t < 2. Multiplying the first equation of (DCBF) by Au, we get
I

d 3|gl® 3|h|2 3
D ivups + viaus < 20, Phiog, 2 g,
d 3/<|g|2 3/@|h|2
= E|V’U/|E2 -+ b|V'U/|I2LQ NS |VT|L2 |VO|L2 + _|f1|L2
(6.9)
= ’VU(lf)’%} < ‘V’U,o‘%geibt + b_y’f1|]L2
3 2 t 3 h 2 t
+M/ e P9V T (5)]20ds + K’V’ / e =9V C ()2, ds.
v 0 0

Here we define

1 | f1l22
t?L ‘= max {ti, ~3 log ( bl/;; .
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Then, by virtue of (6.1), (6.4), (6.7) and (6.9), we obtain

3k|g|* 3k|h|?

4
1 L < — Al M My =: M,
(6 0) ‘vu(t)‘]LQ b]/’fl,LQ + I/(l _ b/i) 1t V(l _ b/i) 3 5
and in view of (6.5), (6.8), (6.9) and (6.10), we have
t+1 1 3 2 3 h 2
(6.11) / |Au(s)|P2ds < - <M5 + /flyg| ffl | M, + _|f1|]L2) — M
t

for ¢ > ¢,. Multiplying the first equation of (DCBF) by dyu, we get

d
(6.12)  |Opulis + v |V'u,\]L2 + a |u|L2 < 3k|g)? VT 72 + 36|R)* VO + 3| fil7-.
From (6.5), (6.8) and (6.10), we can derive
t+1
(6.13) / |0y (s)|F2ds < vMs + axMs + 3k|g|* My + 3k|h|* My + 3| fi]. = M;
t
for any ¢ > . Next multiplying the second equation of (DCBF) by —tAT, we have

d 27

Here g is a constant satisfying the following inequality (see estimates for the convection
terms in Chapter 4 and Chapter 5):

(6.15) |w - VV|2: < | Vw2 |Aw|2|VV 2| AV]2  Vw € D(A), YV € D(—=Ap).

Integrate (6.14) over [s,t + 1] with s € [t,¢ + 1] and ¢ > ¢, Then applying Gronwall’s
inequality, we obtain

(t+1)|VT(t+1)[7
t+1 t+1
< <S|VT(S)|%2 +/ IVT|32dT + 2\f2|%2/ TdT)

6.16 1 o
(010 <o ([ Hgvalau.ar)
2 2 27 2
< (E+DIVT(s)l52 + Mo+ 2| Sl (¢ + 1)) exp { M5 M | -

Integrating (6.16) over [t,t + 1] with respect to the s-variable and using (6.5), we can
deduce

(t+D|VT(E+1)72 < ((t+ 1) Mo+ Mo+ 2| fo|72(t + 1)) exp <22—77§M5M6) .
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Hence,

27
(6.17) IVT(t)|72 < (2Ma + 2| fo]72) exp (77§M5M6) =: My

holds for ¢ > ), + 1. Moreover, integration (6.14) over [t,t + 1] (t > t) 4 1) gives
t+1
e[ AT
¢
t+1
</ s|AT(s)|32ds
t

t+1
<t|VT(t)\i2+/ |VT(s)]2.ds
t

27 t+1 ) , , , t+1
+?70 s|Vuli:|Auli VT |72ds + 2| fol7e sds,
¢ t
which implies that
t+1
(618) / ‘AT(S)’%QdS § Mg -+ M2 -+ 27’}/(2)M5M6M8 -+ 4‘f2’%2 = Mg
t

is valid for any t > tg + 1. Multiplying the second equation of (DCBF) by t0,T and
using (6.15), we get

d
to, T2, + —t|VT|?,
< VT |72 + 2ty | Vulrz | Aul [VT | 12| AT | 12 + 2t f]7-.

Integration of (6.19) over [t,t + 1] (t > ¢, + 1) with respect to the variable s yields

t+1
t/ 10,T(s)|32ds
t
< Mg + My + 2(t + Dy My P My MY My? + 2| fol 22 (t + 1),

namely,

t 1/2 1/2 1/2 1/2
(6.20) / 10,T(5)|22ds < Mg + Ms + 4y M2 My M My? + 4] fo]2> = My,

t

By almost the same procedures as above, the following inequalities can be derived from
the third equation of (DCBF):

d
Eﬂvcﬁz +tAC2,
27
d
t|0,C32 + %ﬂvcyig
< V|22 4 3ty | V|2 | A2 | VO 2 |AC| 2 + 3p%t| AT |25 4 3t| f3]22.
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Then we can assure that

t+1 t+1
IVO(t+1)]7: < (2/ |VC’(S)|2L2ds+4|f3|%z+4p2/ |AT(s)|izds)
t t

t+1 27
(6.22) < exp ( [ St >|L2\Au<s>|izds)

t

2 2 27 2
< (2My + 4] f3]72 + 4p° M) exp ?70M5M6 =: My,

for any ¢t > tg + 1 and

t+1
/ IAC(s)|22ds
t

(623) < M11 + M4 + 27")/3M5M6M11 + 8p2M9 + 8|f3|%2 = Mlg,
t+1
/ 10,0(5)|3ds
t
(6.24) < My + My + 640 Ma 2 MY M ML + 6p° My + 6| f3]2, =: Mis

for any ¢ > ) + 2.
Here we define

(6.25) Dpu(t) :=u(t+h)—u(t), D,T(t) :=T(t+h)=T(t), D,C(t) = C(t+h)—C(t)
for each fixed h € (0,1). Then, we get

(6.26) Oy Dpu(t) + vADyu(t) + aDpu(t) = PagDyT(t) + PohD,C(t)

from the first equation of (DCBF). Multiplying (6.26) by Dju, we have

2/1|g\2 25\h\2

d
(6.27) £|Dhu(t)|i2 + v|VDyu(t)|?2 < |DLT(1)|32 + ———|DyC(1)|3,.

Let t > ) +2 and s € [t,t + 1]. Integrating (6.27) over [s,t + 1], we obtain

|Dhu(t + 1)|i2

(6.28) 2| h|*

t+1 t+1
/ |DhT(T)‘%2dT—|— / ’Dhc<7)’%2d7'

We here note that

t+1
/ Dyu(s)Pads < 212Ms,
tt+1
/ |DhT( )|L2d8 2h MlO;
t

t+1
/ DuC(s)Zads < 2h2Mys
t
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are valid for t > t) + 2, since estimates (6.13), (6.20) and (6.24) hold. Using these
inequalities, we have

2

(6.29) .

‘u(t +h) —u(t)

4 2M 4k|h|2 M
/@|g|y 0 K|h| 13> — My,

< (2M7 +
]LQ
for any t > tg + 3. Here we introduce the following abstract result given in Brézis [11]
so that the estimate of |u(t)|g2 can be derived form (6.29).

Proposition 6.2.1. Let H be a Hilbert space and A be a (single-valued) maximal mono-
tone operator in H. Moreover, assume that U € C([0,S]; H) is a solution of the equation

d
d—lt]JrAU:F in H,

where F' € C([0,5]; H). Then for each fized ty € [0,S5), the following conditions are
equivalent:

1. U(ty) € D(A) (where D(A) is the domain of A).

U(to+h)—=U(to)
7 . < 0.

2. lim iIlfh_m7 h>0)

3. U is right differentiable at ty and the right derivative of U at ty, denoted by d;—tU(to),
satisfies

d*U
— - (to) = =AU (to) + F(to).

Proof. See Theorem 3.5 of Brézis [11] or see our proof of Lemma 6.2.1 and Corollary
6.2.1 given later on. O

From (6.29), we can assure that the first equation of (DCBF) satisfies the condition
2 of Proposition 6.2.1 for t > ), + 3 with H = L2(Q), A = vA+al and F = PgT +
PhC' + P fi. Therefore, the condition & of Proposition 6.2.1 yields

dTu

7@) < Mff

]LZ

(6.30)

for t > tg + 3. Moreover, the condition 3 of Proposition 6.2.1 also give us

1

2
1/2 1/2 1/2 1/2
Au(t) e < =5 (ar'20037% + || + [ 4 fulz + ML)

= M15,

(6.31)

where t > tg + 3.
Integrating (6.27) over [t,t + 1] with ¢ > tg + 3 again and using (6.29), we get

t+1 1 4 2M 4k|h 2M
/ |V Dpu(s)|fzds < > <M14_|_ k|g|* Mo n k|h| 13) B2
t

14 v
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According to Proposition 2.1.16 in Section 2.1, this inequality implies that
Vu € Wh(t,t + 1;1L%(Q))

and

i 1 4k|g|* Mo 4k|h[*M
(6.32) / 10, Vu(s)|iads < > <M14+ klg|* Mo n klh| 13> — Mg
t

v 14

for any t > t2+3.

Here we introduce the following lemma in order to establish estimates for |T'(t)|p2
and |C(t)|ge.

Lemma 6.2.1. Let N < 4 and w € C([0,S];HL(Q)). Moreover, assume that V €
C([0,S]; L*(Q)) 14s a solution of the following equation:

8V — ApV +wVV = F (z,1) € Q x (0, 9),

where F' € C([0,S]; L2/(Q)) and L% (Q) designates the space L*(Q) endowed with the weak
topology. Then, for any ty € [0,S), the following conditions are equivalent:

1. V(to) € D(~Ap) = HX(Q) N HL(Q).

V(to+h)—V (to)
h

2. lim infh_>0, h>0

< Q.
L2

3. 'V is weakly right differentiable at to and the weak right derivative at ty, denoted by
W—dZ—tV(to), satisfies

Proof. Tt is obvious that the condition & implies the condition 2.

Assume the condition 2. Then we can extract a subsequence of {W}
h>0

which weakly converges in L?(2). Let this subsequence be denoted by {W}
n neN

and its weak limit be designated by y. Fix an arbitrary W € D(—Ap). Then
WV —-W)—=Ap(V-W)4+w-VV = f— (=Ap)W

holds. Multiplying this equation by V(¢) — W and using the monotonicity of —Ap, we
get
1d

6.33
( ) 2dt

V() = WL < (—w(t)  VV () + F(t) — (=Ap)W, V(t) = W),
where (-, )2 stands for the usual inner product of L*(€2). Here we note that

(w(t) - VV (1), V(t) = W), = (w(t) - VIV, V() = W)
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holds by the solenoidal condition of w. Then integration of (6.33) over [to,to + hy,|, we
have

(V(to + hn) = Vo), V(to) = W)

(6.34) . /“*hn : / / /
< (—w(t) - VW + F(t") — (=Ap)W, V(') = W), . dt’,

to

where we use the fact that

1 1

V(D) ~ Wl = SIV(s) ~ W > (V) ~ V(s), V(s) — W)y
for any ¢,s € [0,S]. Here, we remark that the integrand on the right hand side
(—w(:) - VW + F(-) = (=Ap)W, V(-) = W), is continuous on [0, S] for N < 4, since
we assume that w € C([0,S];HL(Q2)), V € C([0,S]; L*(Q)) and F € C([0,S]; L2 ()).
Hence, dividing (6.34) by h,, and taking the limit as n — oo, we can obtain

(x, V(to) = W)Lz
< (—w(ty) - VIV + F(ty) — (=Ap)W, V(tg) — W),.

(—w(to) - VV(to) + F(to) — (=Ap)W, V(to) = W),

that is to say,
0 < (=x —w(to) - VV(to) + F(to) — (=Ap)W, V(to) = W),

for any W € D(—Ap). By the maximal monotonicity of —Ap in L*(Q) (recall the
definition in Section 2.3.1), we can assure that V(ty) € D(—Ap) and

e Vit +ha) = V(o)

hn—40 hn

— ADV(tO) + 'lU(to) . VV(to) = F(to).

Since this argument does not depend on the choice of subsequence {h,}, we conclude
that the original sequence {W} also weakly converges to x as h — +0.
h>0

>
Finally, assume that V(tg) € D(—Ap). Repeating almost the same procedures as
those for (6.33) and integrating over [to,to + h], we get

|V (to+h) — V(to)|r2 < /jﬁh | —w(t') - VV(ty) + F(t') + AV (to)|r2dt
0
for any h > 0. Since w € C([0, S]; HL(Q)) and F € C([0, S]; L2(Q2)) € L>(0,S; L*(Q2)),
there exist some suitable constant M° independent of ¢ € [0,S] such that
| —w(t) - VV(ty) + F(t) + AV (t)|2 < M°

for a.e. t € [0, 5] with N < 4, which yields
V(to+h) = V(to)

h

Hence, we can repeat our argument in the previous step and assure the existence of a weak

limit of {W}h which coincides with —w(ty) - VV (to) + F(to) + AV (t). O
>0

< M°.

L2
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If F' is strongly continuous, we can assure the strong right-differentiability of V:

Corollary 6.2.1. In addition to assumptions in Lemma 6.2.1, we assume that F' belongs
to C([0,S]; L*(Q)). Then, for any to € [0,S), the following conditions are equivalent:

1. V(to) € D(—Ap) = HX(Q) N HH(Q).

V(to+h)—V (to)

7 < Q.

2. lim iIlfh_>07 h>0
L2
3°. 'V us strongly right differentiable at ty and the right derivative at ty, denoted by
d;—tv(to), satisfies

d;_tv(tg) — —w(te) - VV(to) — (~ApV(to)) + Flty).

Proof. According to our argument in the proof of Lemma 6.2.1, we only have to prove
that the condition I leads to the condition 3’ in particular, to the fact that the sequence

{V(to+h)*v(to)
h

Let V(ty) € D(—Ap) (condition 7). Recalling our proof of Lemma 6.2.1, we get

} strongly converges in L*(Q).
h>0

[V (to+ h) — V(to)|r2

< /t0+h | —w(t') - VV(ty) + F(t') — (=ApV (to))]|r2dt’.

to

If F belongs to C([0,S]; L*(Q2)), then the integrand on the right hand side becomes
continuous due to w € C([0,S];HL(2)). Therefore, dividing this inequality by kA > 0
and taking the limit as A — 0, we obtain

V(to+ h) — V(ty)
h oo
< | —w(ty) - VV(tg) + F(to) — (—ApV (to))]| 2.

lim sup
h—+0

We here recall that {W}h converges weakly to x = —w(ty) - VV (to) +
>0

F(to) + AV (ty) (arguments for Lemma 6.2.1). Hence we obtain

V(to+ h) — V(ty)
h

V(to +h) = Vito)
h

.
Pl < By

L2

< Tim sup < Il

h——+0

L2

which implies that {W} strongly converges to x as h — +0. Thus, we
h>0

assure the strong right-differentiability of V' at . O
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Remark.

In Lemma 6.2.1 and Corollary 6.2.1, the homogeneous Dirichlet boundary condition can
be replaced by any boundary condition which guarantees the maximal monotonicity of
the operator —A, e.g., the homogeneous Neumann boundary condition.

From the second equation of (DCBF),
OyDyT(t) — ADYT(t) +u(t + h) - VD,T(t) + Dpu(t) - VI'(t) =0

holds, where D,T(t) := T(t + h) — T(t) and Dpu(t) := u(t +h) —u(t) (0 < h < 1).
Multiplication of this equation by D,T gives us

1d
2dt
_— / DyT(t)u(t + h) - VD, T(t)dz — / Dy T(t)Dyu(t) - VT (t)dz

|DyT(1)32 + VDT (1),

=0+ / T(t)Dpu(t) - VDT (t)dx
Q
1 2 1 2
<§|VDhT(t)|L2 + §|T(t)Dhu(t)|L2~
Therefore
d
(6.35) athT(t)‘%z + VDT ()7 < | VT(1)[7:]V Dyu(t)fs.
Here and henceforth, v, denotes the coefficient of the following inequality:
Uwli. < |[Uljs|lwlis < 1| VU] [Vwli.  Vw € HL(Q),VU € Hy(9)

for N < 4. Integration of (6.35) over [s,t + 1] and again over [t,t + 1] with respect to
the variable s yields

t+1
(6.36) |DyT(t+1)]72 < / |DLT(5)|32ds + 27, Mg Mi6h?
: t

< 2(My + 71M8M16)h2

fort > t2—|—3. Then, the second equation of (DCBF) satisfies all requirements in Corollary
6.2.1 with V =T, w = uw and ' = f, and condition 2 for ¢t > tg + 4. Hence condition
3’ yields
2

< 2(Myo + 11 MsgMig) =: Mix.
L2

dtT
a ()
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for t > tg + 4. Since

|AT ()] 2

.
<| S|+l VTOl + 1ol

L2

atrT

< = O+ IVu)2 | Au®) 2 VT O IAT (0] + | fol 2
L2

1
< 7@) + §\AT(75)|L2 + %fvu(t)hw’Au(t)hBWT(tﬂm + [ fa| L2,
LQ

condition &’ also guarantees the following estimates:

|AT(t)] 12

. <22+ 2 ol 2 + 0l Vau() o[ Aw () o[ VT (1) 2
' <

OML? 42| folre + oMM MY? = MY

for t > t), + 4. Integrating (6.35) over [t,t 4 1] with ¢ > ¢} 4 4 again, using estimates
(6.36) and applying Proposition 2.1.16, we can deduce

ONT € L*(t,t + 1; L*(Q))

and
t+1
(638) / |8tVT( )|L2d8 (M17 —f- 2’)/1M8M16) = M19
t

for t > 1), 4 4.
Similarly, from the third equation,

0yDLC(t) — ADRC(t) +u(t + h) - VDL,C(t) + Dpu(t) - VCO(t) = pAD,T(t)
is valid, where
DyT(t):=T(t+h)=T(t), DyC(t):=C(t+h)—C(t), Dpu(t) :=u(t+h)— u(t).
Multiplying this equation by D,C(t), we get

d
£|Dh0(t)|i2 + VDL C(t)|2:
< 2m|VO(t)[72IV Dpu(t)[f2 + 20%| VDR T (17

(6.39)

By almost the same argument as that for (6.36), we have
(640) ‘DhC(fJ —|— 1)|%2 g (2M13 —|— 4’)/1M11M16 + 2p2M19)h2

for t > tz + 4. Here we note that the third equation of (DCBF) satisfies all hypotheses
in Lemma 6.2.1 with V = C, w = w and F = f3 + pAT, since T € C([0, +00); H'(Q))
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and (6.37) yield the weak continuity of AT'(-) in L*(2) on [}, 44, 00). Moreover, (6.40)
implies that condition 2 of Lemma 6.2.1 is satisfied for any ¢ € [t} + 5,00). Therefore,
for any ¢ > ) + 5, we can assure that C(t) € D(—=Ap) and

lim inf (t i h> — C(t) < 2M13 + 4:'71M11M16 + 2p2M19 = MQ(),
h—+0 h 12
Cit+h)—C(t
w- lim (t+h)—CH) _ AC(t) +u(t) - VCO(t) = pAT(t) + fs.
h—+0 h

These immediately lead to

|AC(H)] 12 < 2Myd” + 20| AT (8)] 2 + 2| fo 12
+ 70| V() L Au(t) 12 [V O (1) 2
< 2My0” + 200 + 2 fol e + oM P My My
= My[?

(6.41)

for ¢ > ¢, + 5. Moreover, the third equation of (DCBF) and the estimate (6.41) give us

|0,C(t)] 2
<JAC(#) 2 + 3 2 IVu(t) |62 Aw(t) [}V O () L1 AC )|
+ plAT()| 22 + | fo 2
SM{? + 302 M M M My + pMI + | f) e
=:M,y°

for a.e. t > t) + 5. Integrating (6.39) over [t,t 4 1] again, we can obtain
t+1
/ |VDhC(S)|%2dS < (M20 + 4’71M11M16 + 4p2M19)h2
t
and by the same reasoning as for (6.32), we obtain
t+1
(642) / |8tVC( )|L2d8 MQQ + 4’}/1M11M16 + 4p M19 = Mgg
t

Thus, estimates (6.3), (6.7), (6.10), (6.17), (6.22) and (6.31) imply that the set %,
defined by

|V'U'0|]%2 < Ms, |AUO|L2

<
By = (uo, Ty, Cy) € H; | Tol7 < My, [VT[7. < Ms
|Col3. < M3, |[VCo|3. <
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becomes an absorbing set of ({-#p(t)}i>0, H). Obviously, %, is compact in H by virtue
of Rellich-Kondrachov’s compactness theorem. Moreover, from (6.37) and (6.41), we can
assure the set %, defined by

(Vug|?, < Ms,  |Auglfz < Mis
By = (ug, Ty, Co) € Hp; Tol7. < My, |[VTol3. < Ms, |ATol3. < Mg
1Col3. < M3, |VCol|7. < My, [ACo|3. < My

becomes an compact absorbing set of ({p(t) }+>0, H})-

Estimates derived above are not sufficient to show the continuity of .#p(t) on H}
and to construct an exponential attractor, since our estimates are established for ade-
quately large t. Therefore we have to prepare some additional estimates of solutions on
time interval [0,¢], namely, we show the dependence on initial data and ¢ by applying
techniques employed above. Let U = (u, T, C') be a solution of (DCBF) with the initial
data Uy = (uo, T, Cp). Integrating or applying Gronwall’s inequality to (6.2), (6.6),
(6.9), (6.12) over [0,t], we can assure

t
sup [T(5)3: + [ [VT()Eads < Qe T,
0

0<s<t

t
sup [C(s)fia+ [ [VC(5)ads < QU Tl Gl
IS 0

(6.43) t
sup |Vu(s)[z: +/ |Au(s)|Z2ds < Q(t, [Vuo|Zz, [Tol72, |Col72),
0

0<s<t
t
/ () 2ads < QE, [Vl [Tol2a, [Col2a):
0

From now on, let Q(z1, 22, -+ ) stand for some general monotone increasing function of
variables zi, 29, - - -. Moreover, by almost the same ways as those for (6.14), (6.19) and
(6.21) (repeating the same calculations without the weight t), we obtain

27

d
VL + AT L < Sl Vale | Auliz VT L + 2| fof2e,

6.44 d
(6.44) 0,72, + %WT&Q < 29| Vel [ Az [VT | 2| AT 12 + 2| fol72,
d 2 2
a%“7(j|L2 %“13(7|L2
27

d
10,C)2 + %'VC‘%Q
< 390 | V|2 | A2 [ VO 2| AC| 12 + 3p| AT |2: + 3| f5]2.
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Integrating each inequality of (6.44) and (6.45) over [0, t], we have
sup |VT(S)|%2 < Q<t7 |V'U,0|]iz, |T0|%11’ |OO|2L2)7

0<s<t
t t
/0 AT (5)2ads + / 0T (5)Pads < QUt, |Vatol2a, | Toln, [Col2e),
sup [VO(s)% < Qt, [Vt | Tol2r, [ColZp),

0<s<t

t t
/ |AC(S)|%2CZ$ -+ / |8tC(S)|%2dS < Q(f, |VUO|]%2, |T0|?{1, |C()|?{1)
0 0

(6.46)

Repeating the same procedures as those for (6.28), we obtain

t
| Dru(t)|7. + V/ |V Dyu(s)|:2ds
0

< [Dpu(0)[E2 + h*Q(t, [Vuolts, [ TolFn, [Col7n),

(6.47)

where Dyu(t) := u(t + h) — u(t) with h > 0. Therefore, if uy belongs to D(A), then
u(t) € D(A) also holds for any ¢t > 0 and

2

=20+ QU [Vuola, [Tl [Colin)
L2

< Q(tv |V'u’0|]%42a ‘Auoli% ’Tﬂﬁil’ ‘Cﬂﬁil)

(6.48)

is valid by virtue of Proposition 6.2.1. Immediately, we get
(6.49) [Oru(t)liz < QU [Vuolts, MuolZs, [Tolfm, [Colfn)
for a.e. t > 0. Moreover, (6.47) also gives us Vu € W12(0,¢;1L?(Q)) and

t
(6.50) / 10:Vu(s)[Zads < Q(t, [VuolLa, [Auoliz, [Tol3, [Coli)
0
for any ¢ > 0. Integrating (6.35) over [0,¢] and using (6.43), (6.46) and (6.50), we get
t
|DhT(t)’%2 +/ |VDhT<8)‘%2dS
0

< ’DhT(O)|%2 + h2Q(t, ‘VUO‘]%% ‘Au0’i2> ’T()ﬁ{la |CO|%{1)

Therefore, under the assumption of Ty € D(—Ap), taking the limit as h — 0, applying
Corollary 6.2.1 and Proposition 2.1.16, we can deduce

TP
ATOz2 < | == 0)|  + QUL [Vuolis, [Auoliz, [Toli, |Colin)
LQ
(6.51) < Q(t, [Vuolfa, [Auo |tz [ Tol72, [Coln),

t
/ OVT(3)ads < Q(t, [Vaio 2, [ Auola, | Tol2es |Coln)
0
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for t > 0. Obviously,
(6.52) 0T (1)72 < QL [Vuoliz, |Auolfz, [Tol e, |Col )

holds for a.e. ¢ > 0. Integrating (6.39) over [0,¢] and using (6.43), (6.46), (6.50) and
(6.51), we get

t
|Dh0(t)|%2 +/ |VDhC(S)|%2dS
0
< |DhC(0)[72 + R2Q(t, [Vuolz 2, [ Auo|fs, [ Tol32, [Col )

(6.53)

Let Cy € D(—Ap). Since the equation
(MC—C’O) —A(C—Co)+U'V(C—Co) :pAT—i—ACO—F’U,VCo—ng
is valid, multiplication of the above equation by C' — C yields

h
C(h) — C(0)]2 < / PAT(s) + ACo + u(s) - VCo + folpads
0
< hQ(h, [Vugltz, | Augl?2, [Tol32, [Col2).-

(6.54)

Therefore applying Lemma 6.2.1 to the third equation of (DCBF), together with (6.53)
and (6.54), we obtain

(6.55) [AC(H)[72 < QL [Vuols, [Auol?s, Tol32, [Colze).

Moreover, we have (see (6.51) and (6.52))

t
| 19 ads < Qe [Tuofs, [ Auol ol o)

0
B0 < QUL [Tuofs, | Aualts [Ty, [Colf)

(6.56)

Let 79 be a time such that the absorbing set %, is absorbed in %, itself by the
semigroup {.%p(t) }i>0, i.e., Sp(t) By C Ay for any t > 15. Then we define Ay, by

Boo = | Sp(t)%o.

0<t<70

By using (6.43), (6.46) and (6.48), we can assure that there exist a constant My, de-
pending only on My, M3, M5, Mg, My, M5 and 7y such that

(657) ||yD<t)U0||'H2,1 < M24

for any Uy € %y and any t € [0, 75]. This fact guarantees the compactness of the set %y
in H. It easy to see that Ay is positively invariant under the semigroup {.p()}i>0
and Ay is also an absorbing set.
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Similarly, we define
By = | Spt)%,
0<t<Ta
where 7§ is a time such that .#p(t)%By C %, for any t > 74. Owing to (6.43), (6.46),

(6.48), (6.51) and (6.55), there exist some constant Mys which depends only on M, Ms;,
M5, Mg, MH, M15, Mlg, M21 and T0 such that

(6.58) D) Usl[22 < Mos

for any Uy € %} and any ¢ € [0,7)]. Therefore, the set %}, is compact and positively
invariant absorbing set in H1,.

6.3 Continuity of Semigroup

Since we can assure the existence of compact absorbing sets %y, B}, Boo and By, we
only have to show some continuity of solutions in order to apply Corollary 2.4.1 and
Proposition 2.4.2 so that we complete our proof of Theorem 6.1.1, 6.1.2 and 6.1.3, exis-
tence of attractors for Dirichlet boundary condition case. Throughout this section, U; =
(u;, T;, C;) denote the unique solutions of (DCBF) (with Dirichlet boundary condition)
with the initial data Uy = (w0, Tio, Cio) (i = 1,2). Then du := u; — uq, 67 :=T) — T
and 0C' := (] — Cs satisfy the following equations:

Oou + v Adu + adu = PgdT + PhiC,
(D) ¢ 90T — AT + du-VT} + uy-VOT = 0,
0;6C — AIC + 6u-VC) + uy-VoC = pAdT.

Multiplying each equation of (D) by Adu, 6T and dC respectively, we get

d
0T [12 + [VOT L2 < 1 |VTil3:| Vulis,

d

2|h|*k

2|g|*k
VOT [ + == = |VaCl3

d
%\V&uhﬁz + V’A(g’u’%} < T
(recall that x denotes the coefficient of Poincaré’s inequality and 7, is a coefficient ap-
pearing in

Uwliz < 11|VU|Z| Vwlis,

where w € H(Q2) and U € H}(Q2)). We here define

1 vp3
,_ 2 2 2
n(t) := 0T (t)[1> + 4p2!50(f)\m + 8XH\V5U(t)!L27
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where x := max{|g|?, |h|?} and  := min{1, ﬁ} From (6.59), we have

d v / 2 1 2
G0+ 24(0) < o (19T + 5 9EE ) (o)

where 9 := min{%, v} and ] := max{~, 85—;71}. Hence applying Gronwall’s inequality,
we can obtain

t / t 19
n(t) < n(0)exp (7{/ IVTy(s)|32ds + 7—12/ IVCi(s)]32ds — —t)
(6.60) 0 20%Jo R
‘ 4 1Kt 9
< n(0) exp <27{|T10\%2 - 27—;2|Cm|%2 + 29} Kt| fa] 22 + 717|f3\%2 _ Et> :
where we use the following a priori estimates derived from the second and third equations
of (DCBF) (integrate (6.2) and (6.6) over [0,¢]):

t
/ VT3(5)[2eds < [T (0)2a + it o2,
0

t t
| Vs < GO + 267 [ IVTi(5) Bads + 26t ol
0 0

Then (6.60) guarantees the continuity of mappings .#p(t) on H for each fixed ¢ > 0.

Hence we can assure Theorem 6.1.1, i.e., the existence of global attractor «7p of the
dynamical system ({-#p(t)}1>0,H) by the existence of compact absorbing set %, the
continuity of .#p(t) and the application of Corollary 2.4.1. In addition, if

YK 9

(6:61) 2pmlfalfs + LAl <

then (6.60) implies that n(t) — as t — +oo. Hence, when (6.61) is satisfied, we can
assure that @7p consists only one element and o7y satisfies the definition of exponential
attractor (recall remark (2) in Section 6.1).

According to (6.60),

(6.62) 16T ()12 < Q(t, |TrolL2, |Crol 22) 16U (0) 15¢

holds (@) is some suitable monotone increasing function). Integrating inequalities of
(6.59), we have

t
/ ASu(s)[2ads < Q(E, [Tiol2a, |Crol2)IISU (O)]2,
0
t
(6.63) / V6T (5)2ads < Ot [TrolZs, [Cro[22) [6U(0) 2,

t
/ [VOC(s)[12ds < Q(t,[Trol 12, [Crol22) 6T (0) 5.
0
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Multiplying the second and third equation of (D) by —AJT and —AJC respectively,
we have (see (6.14), (6.19), (6.21), (6.44) and (6.45))
d
%’V5T|%2 + AT 3,

27
< 77§|Vu2|i2|Au2|ﬁ2|V5T|%z + 29| Vo2 | Adu|2 | VT | 12| ATy 2,

6.64 d
(6.64) aywcﬁﬁmwyi?

27
< 7’}/(2) |V’U,2 |]]2_; |A’U,2|I2Lz |V(5C|%2
+ 4”)/0|V(5'U/’]L2 |A6U|L2 |V01 |L2 ‘AC'1|L2 + 4)02|A(5T‘%2
Applying Gronwall’s inequality to (6.64), we obtain

VT ()32 + |VOC(t)|32

6.65
GO < O, [Tl ICu0 s [ Fusof2a, [Vl [ Too s, [Caol2) ISU(O)

From (6.62) and (6.65), we can derive the following estimate which implies the continuity
of mappings .p(t) on H}, for each fixed ¢ > 0.

||6U<t>||7-£1
Q(t,

(6.66)
Q(t, ITwolip1. [Croln [Vt [Vaaolia, [ Toolz2, [Cool72) 6T (0) 5,1 -

Hence the existence of global attractor <73 of the dynamical system ({p(t)}i>0, Hb)
(Theorem 6.1.3) can be assured by the existence of %} and (6.66).

Next we consider the existence of exponential attractor. Recall the compact positively
invariant absorbing set %y, defined by

B = | Spt)%0

0<t<7o

From (6.57) and positive invariance of %o, we can derive the following boundedness for
any t > 0 and for any U belonging to Hy.

(6.67) ||<7D(t)UO||fH2,1 < Moy,

According to Proposition 2.4.2, it is sufficient that we show the following lemma to assure
the existence of exponential attractor of ({p(t)}i>0, H).

Lemma 6.3.1. There exist constants Msg and Moy satisfying

(6.68) |-7D(1)Uso — Fp(1)Usl|21 < Mg ||Uro — Uso|2,
(669) HyD(t>U10 — yD(S)UmHH M27’t |1/2

for any Uy € By (i = 1,2) and any t,s € [0,1].
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Proof. By (6.46), we have

t t
/ ATy (5) 2ads + / OT(5)2ads < Q(t, Uil ),
(6.70) 0 0

t t
| 1aCiEads + [ 0Cio)ads < Q. [Vl )
0 0
for any ¢ > 0. Moreover, from (6.49) and (6.50), we can derive

(6.71) |0vui (1)[F2 < QL [|Uiollp21)

for a.e. t > 0 and

t
(6.72) | 7o) s < Qe Vil
0

for any t > 0 respectively. Therefore, we can obtain
1D (t)Ur0 = 7D (8)Uroll
< [om@lpar + [ 10+ [ 07w hadn
<QUrollaz2)t = s['V* < Q(Ma) [t — s|'/2

for any t, s € [0, 1], which implies (6.69).
We recall (6.62) and (6.63), i.e.,

16U (0]l < QE, 1Usoll#) 10U (0) [l

and

t
| Msu(s)ads < Qe U0l ISV O)
0
t
[ 19876 s < Qe 1Whall) 16U O]
0

t
/0 V6C(s) 2ads < Q(t, | Unoll20) 15U (0|12,

Moreover, multiplying the first equation of (D) by J;0u and integrating over [0,t], we
get

(6.73) / 05u(s)Bads < Q(t. | Unolls) 6T (O)],
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Multiplying the second equation of (D) by —tAdT and t9,6T, we have (see (6.14)
and (6.19))

%twmig +t|AST |32 < |VOT|32 + 2ty | Vou|r2 | Adw|p2 | VT | 12| AT |2
6 + T8 Vusf? s Aus 22 VT
t|0;0T |72 + %ﬂvm; < VT |32 + 2ty0| Vou|pe | ASulp2 | VT | 12| AT | 12
+ 2ty | Vug |2 | Aws |2 | VOT | 2| AST| 12
Therefore, together with (6.43), (6.46), (6.62) and (6.63), we obtain
t|VOT(1)]2

t t
< (/ |V5T(S>|%2d8 + 2’)/()/ S|V5’U,’]L2|A5'U,|]L2|VT1|L2|AT1|L2dS)
0 0

(6.75) ¢ g7
X exp (/ ?7§|Vu2|ﬁz|Au2|izds)
0
< QU |Urollae,: 1Tl 18T (0)]13,

and

t

/ S| AOT (s)[72ds < Q(t, |Uollaet, U20l20) 18T (0) 13,

(6.76) 0

t
/0 s[0:0T (s)|2ds < Q(t, [Usollsey, 1020l 20) 16U (0) 13-
Similarly, from the third equation of (D), we have (see (6.21))

d
ZHVEC[2: + t|ASC
< |V(SC|%2 + 4t’}/0‘V(5’LL|L2‘A5’UJ‘L2’V01’L2|A01|L2

27
(6.77) + 50| Veualz [ Aua iz [VOC: + 4p*H AGT Y7,

d
%ﬂwcﬁz + t]0,0C%,
< |V(SC|%2 + 3t70|V5u|L2|A5u|L2|VC'1|Lz|AC’1|L2
+ 3tyo| Vg |2 | Atg|12 | VOC | 12| ASC| 2 + 3p*t| AT,
which yield

t

t
t]V(SC(t)\%Q—l—/ S|A50(S)|%2d$+/ 8|at50(8)|%2d8
0 0

< Q@ ([T, 1U20]1) 16U (0) 13,

(6.78)



141

for any ¢t > 0.
Let h > 0. Then Dpéu(t) := du(t + h) — ou(t), DpoT(t) := 0T (t +h) — 6T'(t) and
DyéC(t) :== 6C(t + h) — 6C(t) satisty

0y Dpou(t) + vADyou(t) + aDydu(t) = PagDpoT(t) + PohDyoC(t),
which yields (see (6.27))

2%ql? 2% |h?
“Iljg‘ I DROT (1) + HL’

|Dy6C (1) ]2

d
(6.79) %|Dh(5u(t)li2 + v|VDpou(t) 2 <

Integrating (6.79) over [s,t] with ¢ > 0 and using estimates for 0,07 and 9,6C ((6.76)
and (6.78)) we have (see (6.28))

2| g|? 2K

(6.80) < [Dpdu(s)fz. +

v v

t ’h|2 t
/ |DLOT(7)|22dT + / |DLOC(T) |22 dT

h2
< [ Dudu(s)|fa + ~ Q. Vol 1 Tsoll20)16T (0) 13-

Integrating (6.80) again over [1/2,¢] with s-variable and using (6.73), we obtain,

(t_ 1) ‘5u(t+h) ~ Sult)

2

1
< QU [l [l (10t ~ 108 5 ) 18U O

> h L
i.e.,
Su(t + h) — ou(t)|’ logt + log 2
o8 [P < ot Wil Il 2 U O
L2 2

for t > 1/2. Especially, at t = 1,

2

(6.82) < (2108 2)Q([Unollay, » 1 U203 16T (0) 15,

du(l+ h) — ou(l)
"

]L?

can be acquired. Hence applying Proposition 6.2.1 to the first equation of (D), we can

assure
]LQ)

|./45’U,(1)|]L2

dTou
dt ()

1
659 <o (alSule + lgloT (D] + BCWs +
<Q[Uroll34,, 1U20112)16U (0) 3,
Consequently, from (6.62), (6.75), (6.78) and (6.83), we can derive

(6.84) 16U (D)[l32r < QUIT0l31, 5 102012 18U (0)[ |32 < Q(Mo4)[|6U(0) 3,
(recall (6.57)), which implies (6.68). O
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Thus, by applying Proposition 2.4.2, we can assure Theorem 6.1.2, namely, the existence
of exponential attractor .#p of ({p(t)}i>0, H).

Finally, we demonstrate the reminder of Theorem 6.1.3, i.e., the existence of expo-
nential attractor .#}, of ({/p(t)}i>0, Hb) via the abstract result Proposition 2.4.2.

We here recall that the existence of compact positively invariant absorbing set %y,
in Hp. It is easy to see that

(685) ||yD(t)U0||H2,2 < M25

holds for any Uy € %}, and any t > 0 (see (6.58)). In order to apply Proposition 2.4.2,
we need to check the following estimates.

Lemma 6.3.2. There exist constants Mag, Mg and Msy satisfying

(6.86) 1D (6)Ur0 — D) Usoll21, < Mas|[Uro — Usoll3
(6.87) 1 p(1)U10 = ZD(1)Usoll322 < Mag|[Uro — Unoll4y,,
(6.88) -7 (t)Uso — -b(8)Usollpes, < Miolt — s|'/*

for any Uy € By (i =1,2) and any t,s € [0,1].

Proof. The inequality (6.86) is obvious from (6.66).
From (6.85) and each equation of (DCBF), we have

(6.89) 0w (D)]L2 + [0/ Ti (1) 72 + 10:Ci(1) 72 < QUIUiollnzz2) < Q(Mas)
for a.e. t > 0. Moreover, from (6.50), (6.51) and (6.56) we have
t t t
090 [oTu)ds+ [ VL) s+ [ 0VCi(s)fds < QL)
0 0 0
which immediately yields (6.88). Here and henceforth, Q(t, ||Uio||322, ||Usol|22) and

Q(t, Mss) will be simply denoted by Q(t).
Here, we recall (6.63) and (6.66), i.e

16U @)1, < QST O)5,.

(6.91)
/|A5u |L2d8+/ |VoT (s |L2ds+/ IVoC (8)|32ds < (t)||5U(O)||§{

Moreover, integrating (6.64) over [0, t], we have

(6.92) /0 |A(§T(S)|%2d8+/0 |A50(s)|%2ds<Q(t)||5U(O)||3Ab.

Multiplying each equation of (D) by 0,0u, 0,07, 0;0C respectively and integrating over
0,¢], we obtain (see (6.74) and (6.77))

(6.93) /|8t(5u \des—l—/ 10,0 (s ]L2+/ 10,6C(5)]32 < (t)H(SU(O)HiL}J.
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Then integration of (6.79) over [s,t] and over [0,¢] with respect to s-variable again,
together with (6.93), yields

(6.94) tou(t + h) = du(t)[7> < Q16U (0)[I3,

for any ¢t > 0 and A > 0. Applying Proposition 6.2.1 and taking the limit as h — +0,
we obtain

(6.95) Adu(t)E, < SQIUO) I,

for any ¢ > 0. Integrating (6.79) again over [1/4,¢], we have

(6.96) [M@vmwﬁﬂw<wammﬁ

for any ¢t > 1/4.
From the second equation of (D),

(6.97) + us(t + h) - VDRT(t) + Dpus(t) - VST(t) = 0

is satisfied by DpéT'(t) := 6T(t + h) — 0T (t) and Dpdu(t) := du(t + h) — du(t) with
h > 0. Multiplying (6.97) by D,dT'(t), we obtain

d
E|Dh5T(t)\%2 + V6D, T (1) |2,

(6.98) < 3IDpsu(t)Ty(t + h)|22 + 3|0w(t) DyTy(1)|22 + 3| Drug(t)0T(t) 7>
< 3 |VDRu(t)[f|VTi(t + h)|7s
+ 3 |Vou(t) 22| VDR T (t) |72 + 371 |V Dyus(t) 2| VOT (1)

Let s € [1/4,t]. Integrating (6.98) over [s,t] and using (6.66), (6.85), (6.90) and (6.96),
we have

(6.99) | DhdT (t)]72 < [Dr0T(s)[72 + h*Q()10U (0) I3,

for any t > s > 1/4. Integrating (6.99) over [1/4,t] with respect to the variable s, we
obtain, by (6.93),

(6.100) (1= ) IDOT(O: < QIO

We here mention that the second equation of (D) satisfies all requirements in Lemma
6.2.1 with U = 6T, w = uy and F = —du - VT, since du € C([0,00); HL(Q)), T} €
C([0,00); HY(2)) and |dw - VT |2 € L>=(0,t) are varied. Moreover, (6.100) implies that
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condition 2 of Lemma 6.2.1 is satisfied by the second equation of (D) for ¢ > 1/4.

condition 3 of Lemma 6.2.1 and (6.100) yield

AT (1)) 12
0T(t+h) —oT(t
< ‘W- lim (t+ ]z Ol 4 15u(t) - VT + [slt) - VOT(H)]
— 12
0T (t+h) —o0T'(t

90 2 Vs (1) 152 [ A (1) |12V OT (1) 12| AST (1)
1

< ———=QIISU(0)llg, + Q)T (0) 2 + Q)8 (0) |3y |AST (1)

t—g

Hence

1
(6.101) IAST(1)]22 < —

T

QUISUO)5,,-

Hence

holds for any ¢ > 1/4 Moreover, from (6.98) and (6.100), we can derive the following for

any t > 1/2:

t
/ |DLVST () 2ads < B2Q(1)]|5U (0)|2,
1/2 K

which implies

(6.102) / 1008 s < QIO

for t > 1/2. Similarly, multiplying

8ch50(t) — A(SDhC(t) + Dh(Su(t)-VC’l(t + h) + 5'u,(t)~VDhC’1 (t)
+us(t + h) - VDRSC(t) + Dyus(t) - VSC(t) = pADyST(¢)

by DdC(t), we obtain

d
(6.103) Z1PRCO)[22 < 4p*|VDRST (1) + 4|V Dadu(t) 2| VOt + h)|Z2

+ 4’71 |V5'u,(t) |i2 |VDh01 (t) |%2 + 4’}/1 |VDh’U:2 (t) |i2 |V50(t) |i2

From (6.66), (6.85), (6.90), (6.93), (6.96) and (6.102), integration of (6.103) over [s,?]

and over [1/2,t] with respect to s-variable again gives us

(6.104) (1= 3) IPOTOR: < QOITO)E,,
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We can easily check that the third equation of (D) satisfies requirements in Lemma 6.2.1
with U = 0C, w = uy and F' = —du - VC; + pAdT and we can obtain

ASC (1)1
SC(t+h) — 6C(t)

h—0 1.2
+ [ua(t) - VOC(t)|12 + [pAST ()] 2
1

<

=Q10U (0)llseg, + QU (), + QUIIST(0) 51 |AC(#)],1,

t—3

that is to say,

1
(6.105) [ASC(#)[7 < =< QWISU(0)]3,

2

for any ¢t > 1/2. Hence we can derive (6.87) from (6.95), (6.101) and (6.105). O

6.4 Neumann Boundary Condition Case

In this section, we consider Neumann boundary condition case (Theorem 6.1.4). Let
(u,T,C) be a solution of (DCBF) (with homogeneous Neumann boundary condition)
with the initial data (ug, 7o, Cp). We here recall that

LﬁﬂzLﬁM:O

is assumed in Theorem 6.1.4. Under this assumption, we obtain the following mass
conservation properties:

(6.106) Kﬁ@mzémm K?@W:A%M

for any ¢ > 0, by integrating the second and the third equation over €, [0,¢] and using
the following facts:

/ ANTdZE = 0, / ANCCZ[L’ = O,
Q Q

/u-Vdez—/TV-ucMzO, /u-VC’dx:(),
Q Q Q

which can be assured by homogeneous Neumann boundary condition and solenoidal
condition. Therefore the semigroup {.#n(t)}:>0 acts on the restricted space H,p. m. and
HJIV,mT,m .. for arbitrary positive number mr and mc, namely, the dynamical systems
{N () Yez0, Himpme) and ({ N (t) 20, H N mpme) ave well defined for any mq, me > 0.
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Here we define
1
T(t) = T(t) — — / Todz, C'(t) = C(t) — — / Coda.
19| Jo 19| Ja

Then combining the mass conservation law (6.106) with Poincaré-Wirtinger’s inequality:

2
<K|VU. VU e H'(Q)

L2

U—-— | Udx

‘ 1
€2 Ja

(k' is a suitable constant), we can assure that 7" and C” satisfy
(6.107) IT'7: < NIVT'32, |C')5. < N|VC']3e.

Obviously, T, C" and u satisfies the following equations:

1 1
@u + rvAu — au = PgT/ + 'Pg@ / T()dl’ + PhC” + Ph@ / O()dl‘ + Pfl,
Q Q

(6.108) T — AT +uw VT = f,,

8,C" — AC' + u-VC' = pAT' + f5.

Then, under assumptions fQ fodx = fQ fadr = 0, we can assure the existence of
global attractor and exponential attractor by repeating the same arguments as those for
Dirichlet boundary condition case with substitution of (6.107) for Poincaré’s inequality.
Actually, calculations for the second and the third equation can be established by exactly
the same procedures as those in previous sections, with 7" and C replaced by 7" and C’
respectively (we here note that the replacement of boundary conditions dose not affect
our argument for Lemma 6.2.1 and Corollary 6.2.1). As for the first equation of (6.108),

we remark

1 ’ 2 1 ’ 2 2

Pog=~ [ Todz| =|g| — | Todz | dz < |g|°|Qm7,
9] Jo 17 o \9] Jo

< |h*[Qme,,

1 2
Ph—/Cdx
9l Jo L

1 1
— | Tyodx — — | Tyd
PQQ|Q|/Q 10dx PQQ|Q|/Q 20dx

2

L2
1 2 1 2
= ‘PQQ—/TH) —Tydz| < |g)*— (/ 0T — T20dl’) < |gl?|To — Tol32,
12| Jo 7 2] \Ja

2
< |B)?|Cho — 020|%27
2

1 1
— dx — Poh— d

which allow us to accomplish almost the same procedure for the first equation as those
above (obviously, the terms Pq gﬁ fQ Thdz and Pghﬁ fQ Codz do not hinder us applying
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Proposition 6.2.1). Moreover, since

ST (0|2 + |Tole> < [T'(#)| 22 + m,
L2

1
T(1)] 2 < |T'(0)] 12 + | = / Tyde
o Jo

< |C' ()12 + |Colr2 < [C(#)]r2 + me,

€2 L2
| TY(t) — To(t) |2 < [Th(t) — To(t)| 22 + [Tao — Taol2,
|Ci(t> - Oé(t>|L2 < |Ol(t) - OQ(t)|L2 + |CIO - CQO|L27
VT'=VT, AT =AT, 9,T" = 0,T,
VC'=VC, AC' =AC, 0,C" =090,

, 1
)12 < |C'(0)|p= + ’—/C’Odm
9]

estimates for 77 and ¢’ immediately lead to those for 7" and C.

Hence, for each my and m¢, we can assure the existence of a global attractor and
an exponential attractor by almost the same reasoning stated in Sections 6.2 and 6.3,
whence it follows our results. O
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