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Chapter 1

Overview

The standard model of particle physics is the most successful model that describes the strong
and electroweak (EW) interactions among elementary particles. It is established by the dis-
covery of Higgs field at the LHC experiment. However, some ultraviolet completion beyond
the standard model (SM) seems to be required from several observations of its theoretical and
phenomenological/cosmological problems. The most severe problem is that the gravitational
interaction, which is not included in the SM, is not renormalizable despite the expectation that
the gravity universally couples to all the elementary particles. For the past decades, string the-
ory has been expected as the unified theory of all the elementary forces, because the gauge and
gravitational interactions are simultaneously realized among the string interaction. Moreover,
most important predictions of typical string theories are the existence of the “extra dimensions”
and “supersymmetry” (SUSY). These two concepts are expected to play important roles for
solving the theoretical and phenomenological/cosmological problems in the SM.

From the cosmological point of view, the current observational data demand the existence of
cold dark matter whose relic abundance occupies about twenty-five percent of an energy density
of our present universe. In supersymmetric standard models, that is, the supersymmetric
extensions of the standard model, the certain superpartner of ordinary particle becomes a
plausible candidate for dark matter, consistent with the cosmological observations as well as
the collider experiments. Furthermore, we believe the existence of initial era of accelerating
universe, i.e., the cosmic inflation [1, 2, 3], because the inflation scenario can not only solve the
flatness and horizon problems, but also reproduce the current cosmic microwave background
(CMB) data. The inflation mechanism is realized by the vacuum energy density of Lorentz
scalar field called inflaton field which is consistent with our isotropic universe. The vacuum
energy density of the inflaton field leads to an expanding universe and its quantum fluctuations
produce the origin of density perturbation of our universe. However, its potential terms as well
as the kinetic term are severely constrained in order to be consistent with CMB observations.
From the theoretical point of view, it is required to specify the origin of such an inflaton field
itself, otherwise these parameters will not be restricted.

In the higher-dimensional theory including the string theory, a lot of four-dimensional scalar
fields (moduli fields) appear associated with extra-dimensional components in vector and tensor
fields in higher-dimensional spacetime with the compactified extra dimensions. In particular,
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within the framework of string theory, the vacuum expectation values of closed string moduli
fields determine the size and the shape of extra-dimensional space, whereas those of open string
moduli fields give the positions of D-branes [4] (solitonic objects in the string theory) and
Wilson-lines of the gauge potential induced in them. Moduli fields are ubiquitous in the string
theory in the sense that the number of closed string moduli is typically of order of one hundred
in the string landscape. Since the parameters in modulus scalar potential are constrained by
the higher-dimensional Lorentz and gauge symmetries in preference to those of matter fields,
moduli inflation scenario has a high prophetic instinct for the cosmological observations.

We next mention about the standard model including the extra-dimension and SUSY from
the phenomenological point of view. Supersymmetric models are attractive scenarios, e.g., the
minimal supersymmetric standard model (MSSM) predicts not only a gauge coupling unifica-
tion at a high energy scale, so-called grand unification scale (GUT scale), around 2.1 × 1016

GeV, but also a radiative electroweak symmetry breaking through the renormalization group ef-
fects whereas the breaking is an assumption for the SM. Furthermore, the local supersymmetric
models, i.e., supergravity models necessarily contain the gauge and gravitational interactions
among elementary particles. Although most phenomenological/cosmological models are formu-
lated in the four-dimensional supergravity (4D SUGRA), some of them would be derived via
the compactification of certain superstring theory. Finally, we show the theoretical problems
in the SM. The observed hierarchical structure of quark and lepton mass matrices is not ex-
plained at all in the SM itself and Yukawa couplings are treated just as parameters. In the
higher-dimensional model with compactified extra dimensions, the size and flavor structure of
Yukawa couplings of quarks, leptons and Higgs bosons are determined by the overlap integrals
of their wavefunction, which can be localized in the extra-dimensional spaces. Then, the hier-
archical structure of Yukawa coupling can be dynamically generated by the quasi-localization
of the wavefunction of quarks, leptons and Higgs fields. (For more details, see, e.g., Ref. [5] for
the five-dimensional cases.) Moreover, since the matter wavefunction depends on the certain
moduli fields appearing from the dimensional reduction of the extra dimensions, the moduli
stabilization mechanism is also quite important for the particle phenomenology.

In order to solve the theoretical and phenomenological/cosmological problems of the stan-
dard model of particle physics, in this thesis, we take the following two approaches. One of
them is called as “bottom-up approach”, in which we try to explain these problems by mini-
mally extending the SM. In the first part of this thesis from Chapter 2 to Chapter 4 (part I),
we consider a five-dimensional supergravity model (5D SUGRA) that is a minimal extension
of the SM to include the extra dimension and SUSY. As explained above, these two concepts
are indicated from the string theory. In the second part of this thesis, part II, we take another
approach called “top-down approach”, in which we study a certain ultraviolet theory and the
standard model would be realized as its low energy effective theory. In particular, we focus on
the cosmological aspects of string theory from Chapter 5 to Chapter 7. In both approaches, we
discuss implications, from the future high-energy experiments and cosmological observations,
for the string model building.
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The moduli cosmology in 5D supergravity model

As a bottom-up approach, we consider the 5D SUGRA, especially, a 5D SUGRA model com-
pactified on S1/Z2, which is the simplest but a workable theory, where the 4D chiral matters
arise from the orbifolding of the fifth dimension.

The first part of this thesis, part I, includes the explanation of the cosmological and phe-
nomenological aspects of the five-dimensional supergravity model with multiple moduli fields.
First, we show the simple supersymmetric moduli inflation and the moduli stabilization in
Chapter 2, where one can consider both small- and large-field inflations by employing the
wavefunction localization of matter fields in the extra dimension [6]. The small-field inflation
obtained is similar to the Starobinsky model [1], whereas the large-field inflation is categorized
into a natural inflation. On the basis of the successful moduli inflation, we discuss parti-
cle phenomenology in the MSSM with low-scale SUSY-breaking in Chapter 3 and high-scale
SUSY-breaking in Chapter 4, respectively. In the low-scale SUSY-breaking scenario, the grav-
itino becomes a viable dark matter candidate without contradicting to the Planck and LHC
data, even if the SUSY-breaking effects are communicated by the gravity mediation [7]. On
the other hand, in the high-scale SUSY-breaking scenario, sparticle spectra are similar to those
of split SUSY [8], spread SUSY [9] and pure gravity mediation [10]. Then, the dark matter
is considered as wino-like neutralino, whose relic abundance is originated from the nonthermal
decay of gravitino [11].

In general, when the other fields oscillate after the inflation, they behave like matter fields
and would dominate the universe. Since the moduli fields gravitationally couple to the matter
fields in the standard model, their decay would occur after the epoch of Big-Bang Nucleosynthe-
sis (BBN). Its problem is known as a cosmological moduli problem [12], because the successful
BBN is violated by the moduli decay. However, in both scenarios, the cosmological moduli and
gravitino problems can be solved simultaneously thanks to the structure of supersymmetric
moduli inflation and stabilization.

The axion inflation and its cosmology in string theory

As a top-down approach, we have studied the string theory which is expected as a consistent
theory of quantum gravity. In particular, we have focused on the type IIB string theory and
heterotic string theory [13, 14] with the emphasis on the axion inflation and its cosmological
consequences in each model in the second part of this thesis, part II.

When we start from the string theory, a lot of moduli fields and the axions appear in the
low-energy effective theory, through a compactification of extra dimensions. The axions are
defined as the imaginary part of moduli fields associated with the higher-dimensional tensor
fields. First of all, we will briefly review the string axions and the possible inflation mechanisms
based on them in the framework of the superstring effective action in Chapter 5. In the string
setup, the axion potential is perturbatively prohibited by the gauge symmetry of the higher-
dimensional tensor fields. One can generate the axion potential at the non-perturbative level,
in which the continuous gauge symmetry is broken into the discrete one. Then, the axion
potential is typically of the form of natural inflation. However, in this case, its decay constant
should be much larger than the Planck scale to be consistent with the Planck data [15, 16]. It
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is difficult to realize such a trans-Planckian axion decay constant, because the string scale is
typically lower than the Planck scale.

In order to overcome the difficulty about the trans-Planckian axion decay constant, we
discuss the enhancement mechanism of axion decay constant by employing the (gauge) threshold
corrections for the heterotic string theory in Chapter 6 and type IIB string theory in Chapter 7.
Contrary to the previous studies, our inflation scenario predicts the modulation terms in the
inflaton potential, which give sizable effects for the cosmological observables. Hence, it is
possible to pursue our inflation scenario in the near-future cosmological observations. Finally,
we summarize this thesis in Chapter 8.
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Part I

Particle phenomenology and cosmology
in five-dimensional supergravity models
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Chapter 2

Moduli inflation and stabilization in 5D
SUGRA

In this chapter, we investigate the moduli cosmology based on Ref. [6] within the framework
of the off-shell supergravity. In this framework, one can write down the exact form of moduli
kinetic terms and their scalar potential as well as their couplings to matter fields in the SM.
In particular, the 5D supergravity, known as a minimal extension of the SM with the local
SUSY and an extra dimension, has an off-shell formulation [17, 18] in the language of a local
superconformal symmetry. This method allows us a systematic study for the 4D effective action
of moduli and matter fields. Indeed, as shown in Ref. [19], the effective action obtained by the
dimensional reduction keeps the off-shell structure of the 4D supergravity, which is written in
terms of 4D N = 1 superspace [20, 21]. Therefore, after the gauge fixing of 4D superconformal
symmetry, one can obtain the on-shell action. It is the starting point for the study of moduli
inflation and its cosmology as will be discussed in Part I of this thesis. Before going to the
detail of the moduli inflation, first we review the matter contents in the 5D off-shell supergravity
action compactified on orbifold S1/Z2 with two fixed points.

2.1 Elements of 5D SUGRA on S1/Z2

In this section, we review the moduli effective action obtained by compactifying 5D off-shell
supergravity on orbifold S1/Z2. Since the minimal spinor in 5D has eight real components
(Dirac spinor), it corresponds to the four-dimensional N = 2 supersymmetric theory. However,
one has to break this N = 2 SUSY to the N = 1 to obtain chiral theory. The simple set up
to carry out it is the S1/Z2 orbifold in fifth dimension that corresponds to an explicit breaking
of one of the N = 2 SUSY and Lorentz symmetry in five dimensions. In general, the 5D
background metric preserving a 4D flatness is given by

ds2 = GMNdx
MdxN = e−2f(y)ημνdx

μdxν − dy2, (2.1)

where M,N = 0, 1, 2, 3, 4 are 5D spacetime indices, whereas μ, ν = 0, 1, 2, 3 are 4D spacetime
indices with ημν =diag(1,−1,−1,−1) being the metric of 4D Minkowski spacetime. The warp
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factor appearing in front of the metric of 4D Minkowski spacetime, f(y) depends on the fifth
coordinate y. The fundamental region of y is constrained within the range 0 ≤ y ≤ L under
the Z2 orbifold projection y → −y. Furthermore, points on a circle are identified as y � y + L
with L being the length of orbifold segment and y = 0, L correspond to the fixed points.
Such the orbifold projection restricts not only the background geometry but also the fields
propagating the bulk in addition to the periodic condition g(x, y + L) = g(x, y), where g(x, y)
represents an arbitrary 5D field. Indeed, any fields g(x, y) are categorized in one of the two
classes, such as Z2-even and -odd fields, satisfying the Z2 transformations g(x,−y) = g(x, y)
and g(x,−y) = −g(x, y), respectively. Then, only Z2-even fields have zero-modes which can
appear in the low-energy effective theory below the compactification scale, whereas Z2-odd
fields do not have zero-modes as shown later.

Let us show an explicit example for the boundary condition under Z2-orbifold. We first
consider a complex scalar field with the Lagrangian in flat 5D spacetime,

S =

∫
d4xdy

1

2
(∂μφ

∗∂μφ+ ∂yφ
∗∂yφ) .

After the Kaluza-Klein (KK) expansion of this scalar field,

φ(x, y) =
∞∑

n=−∞
φ(n)(xμ)e2πiny/L,

we obtain

S =
L

2

∫
d4x

∞∑
n=−∞

(
∂μφ

(n)∗∂μφ(n) −
(
2πn

L

)2

φ(n)∗φ(n)

)
.

Thus, we have an infinite tower of scalar fields φ(n) with the mass-squared (2πn/L)2. In
particular, the massless complex scalar field φ(0) is called a zero-mode. As a solution of breaking
N = 2 SUSY, we introduce S1/Z2 orbifold by identifying points on a circle under the action,
y → −y. Under this Z2 parity transformation, there are two types of scalar fields whose
transformations are different from each other,

φ(x,−y) = φ(x, y) ⇒ φ(x, y) =
∞∑

n=−∞
φ(n)(xμ) cos

(
2πny

L

)
(Z2 − even field),

φ(x,−y) = −φ(x, y) ⇒ φ(x, y) =
∞∑

n=−∞
φ(n)(xμ) sin

(
2πny

L

)
(Z2 − odd field). (2.2)

The above arguments are also applied to fermions and gauge bosons.

2.1.1 The matter contents

First of all, we list the relevant matter contents of 5D SUGRA. From the structure of N = 2
SUSY in 5D theory, there are three types of 5D supermultiplets such as Weyl multiplet (in-
cluding gravity), hypermultiplets (including matter contents) and vector multiplets (including
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gauge fields). These supermultiplets can be decomposed into the supermultiplets in terms of
4D N = 1 SUSY owing to the structure of the orbifold.

In the following, we focus on the vector multiplets V I with I = 1, 2, . . . , nV and hypermul-
tiplets Φα with α = 1, 2, · · · , nΦ + nC where nC is the number of compensator hypermultiplets
that play a role of gauge fixing local superconformal symmetry. After imposing the orbifold
projection, these supermultiplets are decomposed into 4D vector multiplets V I and three types
of chiral multiplets ΣI , Φα and ΦC

α , that is, V
I = {V I ,ΣI} and Φα = {Φα,Φ

C
α} in the language

of 4D N = 1 SUSY. In addition to the usual Z2-even vector multiplets V I involving the vector
multiplets in the SM, we introduce multiple Z2-odd vector multiplets V I′ with I ′ = 1, 2, . . . , n′

V .
In this thesis, we identify the Z2-odd vector fields AI′

M in V I′ as gauge fields of extra U(1)I′
symmetries in addition to the SM gauge symmetries, for simplicity. Although extra U(1)I′
symmetries are broken by orbifolding, Z2-even chiral multiplets ΣI′ have zero-modes where we
denote these massless chiral multiplets as moduli chiral multiplets T I′ . The potential terms
for such moduli are prohibited by the hidden U(1)I′ gauge symmetry. For n′

V = 1, the single
modulus T I′=1 is called as radion chiral multiplet satisfying 〈ReT I′=1〉 = L/π, whereas, in the
case of multi moduli n′

V > 1, the radion is identified as a linear combination of T I′s determined
by their cubic polynomial function as presented later. Moreover, one of these moduli becomes
an inflaton field as shown later. For the hypermultiplets Φα = {Φα,Φ

C
α}, in the following, we

define the zero-mode of chiral multiplets Φα as Qα that includes the MSSM chiral multiplet,
right-handed neutrino chiral multiplets, SUSY-breaking chiral multiplet and the stabilizer chiral
multiplets Hi (i = 1, 2, . . . , nH). The stabilizer multiplets play a role of generating a desirable
moduli potential for the particle cosmology and phenomenology. These hypermultiplets Φα can
have U(1)I′ charges c

(α)
I′ under the extra U(1)I′ symmetries.

2.1.2 Moduli effective action in four-dimensional effective super-
gravity

First of all, we fix the number of vector and hypermultiplets in the framework of 5D supergravity.
In the following, we choose nC = 1 for simplicity. The potential of moduli multiplets T I′ is
generated by introducing the same number of stabilizer hypermultiplets as that of Z2-odd vector
multiplets, that is, nH = n′

V as shown later. The 5D bulk action is characterized by a cubic
polynomial of vector multiplets, so-called “norm function”,

N (M) =

nV∑
I,J,K=1

CI,J,KM
IMJMK , (2.3)

with CI,J,K for I, J,K = 1, 2, . . . , nV being real constants. If the 5D supergravity models are
derived from the more fundamental theories, such as type IIB string theory on a warped throat
or heterotic M-theory on Calabi-Yau (CY) manifold, these coefficients CI,J,K correspond to the
intersection numbers of the CY manifolds [22].

So far, we have focused on the bulk configurations in the 5D SUGRA on S1/Z2. In addition
to these bulk terms, in general, one can introduce the boundary terms at the orbifold fixed
points y = 0, L, where the N = 2 SUSY is partially broken down to the N = 1 SUSY.
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Kähler and superpotential terms are allowed at Along the line of successful modulus stabi-
lization as pointed out in Ref. [23], we consider the following superpotential for the stabilizer
chiral multiplets Hi at the boundary fixed points,

W = J
(i)
0 Hi δ(y) + J

(i)
L Hi δ(y − L), (2.4)

with J
(i)
0,L being the real constants. We now assume that such linear terms of Hi are domi-

nant [19] in the superpotential W compared with the other terms. This assumption would be
ensured by some symmetries or dynamics. (See, Ref. [24] for a similar moduli ptential in the
case of nC = 2.) Even if the higher-order terms of Hi appear in the superpotential, these terms
could be suppressed due to the almost vanishing vacuum expectation values of Hi as will be
shown in the following analysis. It is also supposed that the boundary terms in the Kähler
potential are also negligible compared with the bulk terms in the Kähler potential, which can
be ensured when the volume of fifth dimension, L/π, is larger enough than the inverse of the
mass scales originating from these terms.

Now the supergravity action for moduli multiplets is completely determined. In accordance
with Ref. [19], we can integrate over the fifth coordinate y out the Kaluza-Klein (KK) expansion
of fields keeping theN = 1 SUSY. As a result, one can extract the following 4D Kähler potential
K and the superpotential W of moduli (T I′) and zero-mode of stabilizer fields (Hi),

K = − lnN (ReT ) + Zi,̄i(ReT ) |Hi|2,
W =

(
J
(i)
0 + e−c

(i)

I′ T
I′
J
(i)
L

)
Hi, (2.5)

where

Zi,j̄(ReT ) =
1− e−2c

(i)

I′ ReT I′

c
(i)
I′ ReT

I′
δij, (2.6)

is the Kähler metric of 4D zero-modes Hi. It is remarkable that the exponential factors in
K and W originate from the wavefunctions’ profile of zero-modes Hi in fifth direction [19],

Hi|y=L = e−c
(i)

I′ T
I′
Hi|y=0. The quasi-localization of Hi is controlled by the U(1)I′ charges c

(i)
I′ of

Hi corresponding to the 5D bulk mass. The exponential behavior plays important roles of not
only realizing a successful moduli inflation and stabilization, but also the hierarchical Yukawa
couplings of quarks and leptons as will be discussed in the Chapter 4.

In this way, we now discuss the effective 4D scalar potential V for moduli and stabilizer
fields in the framework of 4D SUGRA, in which the scalar potential is provided by∗

V = eK
(
Km,n̄ DmW Dn̄W̄ − 3|W |2

)
, (2.7)

with Wm = ∂mW , Km = ∂mK and m,n runs over moduli fields (I ′ = 1, 2, · · · , n′
V ) and

stabilizer fields (i = 1, 2, · · · , nH). DmW = Wm + KmW is the Kähler covariant derivative

∗Here and in what follows, we employ the reduced Planck unit MPl = 2.4 × 1018 GeV = 1 and the same
notation between the fields and their chiral multiplets, unless we specify them.
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for the superpotential and Km,n̄ denotes the inverse of Kähler metric Km,n̄ = ∂m∂n̄K. The
extremal condition of them 〈∂I′V 〉 = 〈∂iV 〉 = 0 is satisfied by the supersymmetric conditions
〈DI′W 〉 = 〈DiW 〉 = 0. We find that the expectation values of moduli T I′ and stabilizer fields
Hi become

c
(i)
I′ 〈T I′〉 = ln

J
(i)
L

J
(i)
0

, 〈Hi〉 = 0, (2.8)

which is also discussed in the single modulus case [23]. When there are no moduli mixings in
the Kähler metric, KI′,J̄ ′ = 0 for I ′ �= J ′, their supersymmetric masses are also estimated at a
minimum

m2
I′i �

e〈K〉〈WI′i〉2
〈KI′,Ī′〉〈Ki,̄i〉

, (2.9)

where Wmn = ∂m∂nW with 〈WI′i〉 = −c
(i)
I′ e

−c
(i)

I′ 〈T
I′ 〉J

(i)
L . From the mass formula (2.9), the mass-

squared of moduli and stabilizer fields are exponentially suppressed by the factor e−c
(i)

I′ 〈T
I′ 〉

which is originated in the wavefunction localization in the fifth dimension. Then, it enable us
to verify the description of 4D effective theory, because the compactification scale (typically
KK mass) can be lower than that of moduli and stabilizer fields. Furthermore, the obtained
minimum given in Eq. (2.8) lead to the supersymmetric Minkowski minimum as can be seen in
Eqs. 〈V 〉 = 0 and 〈W 〉 = 0.

Let us comment on the moduli mixing in the Kähler metric. When there is a sizable
moduli mixing in the Kähler metric, KI′,J̄ ′ �= 0 for I ′ �= J ′, a saddle point or a local maximum
would appear in the scalar potential. In order to avoid the destabilization of moduli fields, the
coefficients CI′,J ′,K′ in the norm function (2.3) are constrained to be an almost diagonal Kähler
metric of moduli fields, KI′,J̄ ′ ≈ 0 for I ′ �= J ′. However, the hierarchical supersymmetric masses
|〈WI′i〉| 
 |〈WJ ′j〉| (∃I ′, J ′, i, j) do not lead to the above situation even in the case of a sizable
Kähler mixing as utilized in Sec. 2.3.

From a particle phenomenological point of view, no existence of SUSY implies that SUSY
should be broken above the TeV scale. When we add a SUSY-breaking sector with almost
vanishing cosmological constant 〈V 〉 ≈ 0, the moduli stabilization will be generically affected
by them. For the time being, we assume that the SUSY-breaking scale is much smaller than the
supersymmetric mass (2.9) in order not to affect the moduli potential. In this case, the deviation
from the supersymmetric Minkowski minimum (2.8) is negligible. The above assumption is
verified in Sec. 2.4 by incorporating the moduli potential and SUSY-breaking sector at the
same time.

2.2 Moduli inflation (small-field inflation)

From now on, we show that the discussed moduli potential induces a small-field moduli inflation.
The prediction of cosmological observables are better fitted with recent Planck data [15, 16].
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First of all, we consider the situation where one pair of modulus and stabilizer fields, e.g.
T I′=1 and Hi=1, is decoupled from the other pairs T I′ �=1 and Hi �=1. By setting c

(i �=1)
I′=1 = c

(i=1)
I′ �=1 = 0

in Eq. (2.5),
∣∣∣c(i �=1)

I′ �=1

∣∣∣ < ∣∣∣c(i=1)
I′=1

∣∣∣ and ∣∣∣J (i=1)
0,L

∣∣∣ < ∣∣∣J (i �=1)
0,L

∣∣∣ in Eq. (2.9), the other pairs of moduli and

stabilizer fields are much heavier than the light pair. Below the heavier mass scale mI′ �=1,i �=1,
the other pairs (T I′ �=1, Hi �=1) are replaced by their vacuum expectation values given at their
supersymmetric minimum (2.8). Thus, one can extract the potential of the lightest pair (T I′=1,
Hi=1) with the following effective Kähler potential and superpotential,

Keff(T
1, H1) = K(T I′ , Hi)

∣∣∣
0
= − lnN (ReT )

∣∣∣
0
+ Z1,1̄(ReT )

∣∣∣
0
|H1|2,

Weff(T
1, H1) = W (T I′ , Hi)

∣∣∣
0
=

(
J
(1)
0 + e−c

(1)
1 T 1

J
(1)
L

)
H1, (2.10)

respectively. Here and in what follows, we denote f(T I′ , Hi)
∣∣∣
0
≡ f(T I′ , Hi)

∣∣∣ T I′ �=1 = 〈T I′ �=1〉
Hi�=1 = 〈Hi �=1〉

for

an arbitrary function f(T I′ , Hi). The Kähler metric of H1 is then given by

Z1,1̄(ReT )
∣∣∣
0
=

1− e−2c
(1)
1 ReT 1

c
(1)
1 ReT 1

.

The effective potential for the light pair (T I′=1, Hi=1) is calculated by means of the effective
Kähler potential and superpotential (2.10), where m,n = {T I′ , Hi} with I ′ = 1 and i = 1,

Veff(T
1, H1) = eKeff

(
(Keff)

m,n̄ DmWeff Dn̄W̄eff − 3|Weff |2
)
. (2.11)

2.2.1 Moduli potential

Next, we study the detail of effective potential for the modulus T 1 given in Eq. (2.11). On the
H1 = 0 hypersurface, it reads as

Veff(T
1, H1 = 0) = eKeff (Keff)

i=1,̄i=1̄ |(Weff)i=1|2
∣∣∣
H1=0

=
c
(1)
1 ReT 1

N (ReT )
∣∣∣
0

×

∣∣∣J (1)
0

∣∣∣2 ∣∣∣∣1 + J
(1)
L

J
(1)
0

e−c
(1)
1 T 1

∣∣∣∣
2

1− e−2c
(1)
1 ReT 1

, (2.12)

where (Keff)
i,̄i
∣∣∣
H1=0

= 1/Zi,̄i(ReT )
∣∣∣
0
. The first factor in Eq. (2.12), i.e., the polynomial term

is canceled out in the restricted case,

N (ReT )
∣∣∣
0
= P0ReT

1, (2.13)

where P0 is independent of T 1. Then, the potential has the exponential form as drawn in
Fig. 2.1, in which Veff(T

1, H1)/V∞ is plotted on the ImT 1 = H1 = 0 hypersurface with the
following choice of parameters,

c
(1)
1 = 1/10, J

(1)
L /J

(1)
0 = −3, J

(1)
0 = 2.5× 10−4, (2.14)
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Figure 2.1: The inflaton potential Veff(T
1, H1)/V∞ on the ImT 1 = H1 = 0 hypersurface as

drawn in Fig. 1 in Ref. [6].

in the reduced Planck unit. In Fig. 2.1, the flat region of the potential is originating from the
following structures,

lim
ReT 1→0

∣∣Veff(T
1, H1 = 0)

∣∣ = ∞,

lim
ReT 1→∞

Veff(T
1, H1 = 0) = c

(1)
1 P−1

0

∣∣∣J (1)
0

∣∣∣2 ≡ V∞, (2.15)

for J
(1)
L /J

(1)
0 �= −1 and c

(1)
1 > 0. The overshooting to negative region ReT 1 < 0 is prohibited

as can be understood in Eq (2.15).
The obtained potential is identical to that of Starobinsky inflation [1] in the large positive

value of ReT 1, although the origin of the potential is different. When we identify ReT 1 as a
inflaton field, it will slowly rolls down to the minimum given by Eq. (2.8) with i = 1 from its
large positive initial value.

We have analyzed the tree-level Kähler potential. In contrast to the superpotential, the
one-loop correction appears in the moduli Kähler potential which is calculated in the large
volume limit [25],

K = − ln N +O
(

1

32π2N

)
, (2.16)

where the correction terms depend on the number of the charged fields for the gauge fields
in Z2-odd vector multiplets V I′ . Nevertheless, such contributions in the scalar potential are
negligible in the previous analysis, since the moduli fields are stabilized at a minimum of
potential independently to the Kähler potential. Furthermore, the one-loop effects do not alter
the inflation mechanism in the range ReT 1 � 1, where the inflaton slowly rolls the potential.
We confirm the effects of one-loop corrections in the following numerical analysis.

Finally, we remark a necessary and sufficient condition for the existence of flatness of the
potential in the large ReT 1 region. As the most general form of the norm function satisfying

12



the assumption (2.13), we find that

N (M) = P(M)M1, (2.17)

where

P(M) =

n′
V∑

J ′,K′ �=1

C1,J ′,K′MJ ′
MK′

, (2.18)

is a quadratic polynomial of fieldsM I′ �=1 in Z2-odd vector multiplets V I′ �=1 apart from V I′=1, up
to the fieldsM I′′ in Z2-even vector multiplets V I′′ = {V I′′ ,ΣI′′} with I ′′ = n′

V +1, n′
V +2, . . . , nV .

Z2-odd chiral multiplets ΣI′′ are different from ΣI′′ carrying the moduli fields. When the other
fields are larger enough than T 1, the coefficient P0 of ReT 1 in Eq. (2.13) is repressed by their

vacuum expectation values as shown in Eq. (2.18), i.e., P0 = P(ReT )
∣∣∣
0
. Following the above

argument, the suitable flat region for the slow-roll inflation is achieved in a moduli potential
generated by the superpotential (2.4) and the peculiar form of the norm function (2.19) in
5D SUGRA on S1/Z2. Note that, a cubic polynomial norm function N (M) prohibit the
condition (2.19) for the single modulus case n′

V = 1.
Although the form of the norm function is undermined at the level of 5D SUGRA, the norm

function is directly related to the topology of internal manifold, if the 5D SUGRA is taken as
an effective description of certain ultraviolet theory such as heterotic M-theory on Calabi-Yau
three-fold. Then, norm function is identical to the N = 2 prepotential and their coefficients
are related to the intersection numbers of Calabi-Yau three-fold [22]. The moduli would be
identified as the closed string moduli.

2.2.2 The inflation dynamics and cosmological observables

In this section, we show the details of inflaton dynamics by identifying the real part of the
lightest modulus, ReT 1, as the inflaton field. One can consider any number of moduli fields
in Z2-odd vector multiplets V I′ n′

V ≥ 2. In the following, we choose n′
V = 3 in the light of

particle cosmology and phenomenology as will be shown in Chapters 3 and 4. The form of
norm function

N (ReT ) = ReT 1ReT 2ReT 3, (2.19)

is chosen in order to realize a diagonal Kähler metric of moduli fields, for simplicity. Its
choice corresponds to the choice P0 = ReT 2ReT 3 in Eq. (2.18). As mentioned in the previous
section, one pair of moduli and stabilizer fields (T 1, H1) can be lighter enough than other pairs
(T I′ �=1, Hi �=1). Furthermore, in the following, we assume that the oscillations of the other light
fields ImT 1, ReH1 and ImH1 around their expectation values 〈ImT 1〉 = 〈ReH1〉 = 〈ImH1〉 =
0 are negligible during and after the inflation. For ReH1 and ImH1, their minima of the scalar
potential are fixed around the origin by the Hubble-induced masses and their supersymmetric
masses during and after the inflation, respectively. ImT 1 is also stabilized at the origin by its
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supersymmetric mass. The fluctuations of these fields are negligible to the inflaton dynamics
as explicitly shown in Appendix A.

On the ImT 1 = ReH1 = ImH1 = 0 hypersurface of the field space, the dynamics of single
field σ ≡ ReT 1 is given by its equation of motion

σ̈ + 3Hσ̇ + Γσ
σσσ̇

2 + gσσ
∂Veff

∂σ
= 0, (2.20)

where the dot denotes the derivative with respect to a cosmic time t, gσσ = 2(Keff)I′=1,J ′=1,
gσσ = g−1

σσ and Γσ
σσ = −1/σ is the Christoffel symbol constructed by the metric gσσ. The

Hubble parameter H is defined in terms of the scale factor of 4D spacetime,

H2 =

(
ȧ

a

)2

=
1

6
gσσσ̇

2 +
Veff

3
, (2.21)

where Veff is the effective potential (2.11).
For a computational reason, we change the variable from the cosmic time to the e-folding

number N ≡ ln a(t) in Eq. (2.20). By substituting the explicit form of H and Γσ
σσ into the

Eq. (2.20), the equation of motion of σ is rewritten as

σ′′ = −
(
1− gσσ(σ

′)2

6

)(
3σ′ + 6σ2V

′
eff

Veff

)
+

(σ′)2

σ
, (2.22)

where the prime denotes the derivative with respect to N .
The numerical values of parameters for the light pair of fields (T 1, H1) and heavy pairs of

fields (T 2,3, H2,3) are chosen as (2.14) and

c
(2)
2 = c

(3)
3 =

1

50
, J

(2)
0 = J

(3)
0 = −1

9
, J

(2)
L = J

(3)
L = 1, (2.23)

respectively. By inserting these values into Eq. (2.8), their vacuum expectation values are
numerically estimated as

〈T 1〉 � 11, 〈T 2〉 = 〈T 3〉 � 110, 〈H1〉 = 〈H2〉 = 〈H3〉 = 0, (2.24)

which lead to the supersymmetric mass-squared (2.9) of the light pair (T 1, H1) and heavy pairs
(T 2,3, H2,3),

m2
I′=1,i=1 �

(
4× 1012 GeV

)2
, m2

I′=2,i=2 = m2
I′=3,i=3 �

(
4.8× 1015 GeV

)2
. (2.25)

On the other hand, the inflation scale is characterized by the Hubble parameter

Hinf ≡ (V∞/3)1/2 � 1.0× 1012 GeV, (2.26)

with V∞ given in Eq. (2.15). Because all of these scales mI′=1,i=1, mI′=2,3,i=2,3 and Hinf are
below the compactification scale (typical Kaluza-Klein mass scale)

MC ≡ π

L
� π

〈N 1/2〉 � 2.1× 1016GeV,
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the 4D effective-theory description is ensured in the present choice of parameters. The Kaluza-
Klein scale is reduced to the grand unification theory (GUT) scale owing to the mild large
volume of the fifth dimension, 〈N 1/2〉 � 364. As shown in the next Chapter 3, such a mild
large volume plays important roles of gauge coupling unification at GUT scale in the framework
of MSSM and suppression of undermined boundary Kähler potential. It is also confirmed that
the heavy pairs of fields (T 2,3, H2,3) are decoupled from the inflation dynamics because of
mI′=1,i=1 ∼ Hinf 
 mI′=2,i=2,mI′=3,i=3. Hence, their oscillations can be neglected and they are
fixed by their own superpotential in Eq. (2.5).

From now on, we discuss whether a small-field inflation is consistent with the recent Planck
data or not. To estimate the cosmological observables for the CMB, we first define the gener-
alized slow-roll parameters for the inflaton with its non-canonical kinetic term [26, 27],

ε ≡ M2
P l

2

∂σVeffg
σσ∂σVeff

V 2
eff

∼ (2c
(1)
1 σ)2

(
J
(1)
L

J
(1)
0

e−c
(1)
1 σ

)2

,

η ≡ ∇σ∇σVeff

Veff

=
gσσ∂2

σVeff − gσσΓσ
σσ∂σVeff

Veff

∼ −(2c
(1)
1 σ)2

J
(1)
L

J
(1)
0

e−c
(1)
1 σ, (2.27)

where ∇σ is the Kähler covariant derivative with respect to the field σ. By employing these
generalized slow-roll parameters, the observed quantities such as the power spectrum of adi-
abatic curvature perturbation, its spectral tilt and the tensor-to-scalar ratio are brought into
the following form,

Pξ(k) =
1

24π2

V

εM4
Pl

,

ns = 1 +
d lnPξ(k)

d ln k
� 1− 6 ε+ 2 η,

r = 16 ε. (2.28)

With the initial conditions σ = 114 and σ′ = 0 at N = 0, we numerically solve Eq. (2.22).
From the trajectory of σ in Fig. 2.2, we find that the inflation ends and oscillates around
Nend � 72.3 where the slow-roll condition is violated as max {ε, η} = 1.

In order to estimate the e-folding number after the pivot scale k0 = 0.05 [Mpc−1], we denote

the scalar potential as V
1/4
∗ ≡ V 1/4(σ∗) with its field value at the pivot scale σ = σ∗. The scalar

potential at the end of inflation is defined as V
1/4
end ≡ V 1/4(σend). From the simple formula

of e-folding number after the pivot scale given by [28], one can realize an enough amount of
e-folding number

Ne ≡ Nend −N∗ � 62 + ln
V

1/4
∗

1016 GeV
+ ln

V
1/4
∗

V
1/4
end

− 1

3
ln

V
1/4
end

ρ
1/4
R

� 56. (2.29)

It is now assumed that the energy of inflaton is instantaneously converted into radiation. Fur-
thermore, we employ V

1/4
∗ � V

1/4
end � 2×1015 GeV and the energy density of the universe at the
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Figure 2.2: The trajectory of inflaton field σ = ReT 1 as a function of the e-folding number N
as drawn in Fig. 2 in Ref. [6].

reheating epoch ρ
1/4
R = (π2g∗/30)TR � 1× 1011 GeV. As determined later in Sec. 2.2.3, the ef-

fective degrees of freedom of radiation g∗ = 915/4 at the reheating temperature TR � 1.38×109

GeV are fixed by assuming the MSSM matter contents.
By contrast, on the basis of the slow-roll approximation, the same number Ne is defined as

Ne = −
∫ t∗

tend

dt̃H(t̃) � 1

M2
Pl

∫ σ∗

σend

dσ
Veff

gσσV ′
eff

, (2.30)

and then the numerical value

σ∗ � 111 (2.31)

is determined by equating Eq. (2.29) with Eq. (2.30).
Next, we focus on the Planck normalization on the power spectrum of adiabatic curvature

perturbation, Pξ(k0) = 2.20±0.10×10−9 [15, 16]. At the pivot scale k0, the slow-roll parameters
ε and η are obtained by employing the numerical value (2.31),

ε ∼ (2c
(1)
1 σ)2

(
J
(1)
L

J
(1)
0

e−c
(1)
1 σ

)2 ∣∣∣
σ=σ∗

� O(10−6),

η ∼ −(2c
(1)
1 σ)2

J
(1)
L

J
(1)
0

e−c
(1)
1 σ
∣∣∣
σ=σ∗

� O(−0.02). (2.32)

They yield the correct order of the observed power spectrum, Pξ(k0) ∼ 2.2 × 10−9. Inversely

speaking, the parameters J
(1)
0,L are set as those in Eq. (2.14) in order to realize that resultant

Pξ(k0) resides within the observed region.
In our model, by employing Eq. (2.28) and Eq. (2.32), we can also realize the correct value

of the spectral tilt of curvature perturbation, ns � 0.96 reported by the Planck collaborations
ns = 0.9655± 0.0062 [15, 16]. In 4D supergravity inflation models, the slow-roll parameter η is
likely to be of order 1, i.e., |η| � 1 at the pivot scale. It is called as η problem peculiar to the
4D supergravity framework. However, our inflation model is free from such η problem because
of the exponential factor and the large value of the inflaton field (real part of modulus field).
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We summarize the numerical results of inflation dynamics. With the sample values of
parameters (2.14) and (2.23), the numerical values of cosmological observables are estimated
as

Pξ = 2.23× 10−9, ns = 0.96, r = 1.6× 10−5, (2.33)

with the enough e-foldings Ne � 56. The tiny values of tensor-to-scalar ratio is outside the
current sensitivity of Planck,

r < 0.11, (2.34)

at the scale k∗ = 0.05 [Mpc−1] [15, 16]. The running of the scalar spectral index is also neg-
ligible, relative to the current observational sensitivity. Hence, the analyzed inflation model
is consistent with the Planck data [15, 16]. It is remarkable that this inflation mechanism is
categorized as the small-field inflation, since the field variable of the canonically normalized
inflaton field σ = ReT 1 is smaller than the reduced Planck scale,

Δσ̂ ≡ σ̂∗ − σ̂end � 0.3MPl, σ̂ =
1

2
log σ. (2.35)

In this class of small-field inflation, the tensor-to-scalar ratio is suppressed by the tiny slow-roll
parameter ε as can be seen in Eq. (2.33). Although the obtained predictions are in agreement
with the current Planck data, it is hard to detect to them even in the near-future experiments.

In Sec. 2.3, we will show a large-field inflation which is one of the few candidates to generate
a detectable tensor-to-scalar ratio on the basis of similar moduli potential.

2.2.3 Reheating process

Before going to the detail of large-field inflation, we discuss the reheating process. After the
end of inflation, the coherent oscillation of inflaton field dominates the energy density of the
universe and releases the entropy. When inflaton decays into the particles in the supersymmetric
standard model, the universe is thermalized. For the matter content of the visible sector in
the 4D effective theory, we consider that of MSSM. Although the inflaton decay is expected
to be model-dependent, the main decay channel is the inflaton into gauge-boson pairs through
the gauge kinetic function as confirmed in Chapters 3 and 4. We also discuss the other decay
channels later. Thus, the reheating temperature is roughly estimated from this main decay
channel.

The moduli fields couple to gauge fields through the following Lagrangian,

L = −1

4
Re frF

r
μνF

aμν

= −1

4
〈Re fr〉F r

μνF
rμν − 1

4

〈
∂ Re fr
∂σ̂

〉
δσ̂F r

μνF
rμν , (2.36)

where fr =
∑3

I′=1 ξ
r
I′T

I′ with ξrI′ ≡ CI
′
, J

′′
=r,K

′′
=r is the bulk gauge kinetic function fr(T ).

The index r = 1, 2, 3 stands for the gauge groups in the standard model, U(1)Y , SU(2)L,
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SU(3)C respectively. The total decay width from the canonically normalized inflaton σ̂ into
the gauge-bosons (g(r)) is calculated as

Γ �
3∑

r=1

Γ(σ̂ → g(r) + g(r)) =
3∑

r=1

N r
G

128π

〈
ξ1r√

(Keff)T 1T 1Re fr

〉2
m3

σ̂

M2
Pl

� 3.95GeV, (2.37)

where {N1
G, N

2
G, N

3
G} = {1, 3, 8} is the number of the gauge bosons in the MSSM. The coeffi-

cients in the gauge kinetic function are the free parameters in 5D SUGRA. We chose them as
ξ11 = ξ21 = ξ21 = 0.22 and otherwise zero so that the gauge coupling unification at the GUT scale
is realized,

Re fa(〈T 〉) =
(

1

ga

)2

� 3.73. (2.38)

When the inflaton decays into gauge-boson pairs instantaneously, the reheating temperature
is roughly estimated by equating its total decay width with the expansion rate of the universe,

Γ � H(TR),

⇔ TR =

(
π2g∗

90

)−1/4√
ΓMPl � 1.38× 109 GeV, (2.39)

with g∗ = 915/4 at the reheating in the MSSM. As will be verified in Sec. 2.4, other heavy
fields do not oscillate so much and do not dominate the energy density of the universe.

2.3 Moduli inflation (large-field inflation)

In this section, we show the large-field inflation on the basis of the 4D effective theory. In
contrast to the small-field inflation, the large-field inflation produces a sizable gravitational
wave which could be checked by the near-future observations. In the following, we focus on
two light pairs of modulus and stabilizer fields, e.g., (T I′ , Hi) with I ′ = i = 1, 2. The other
pairs T I′ �=1,2 and Hi �=1,2 can be heavier enough than the light pairs under the following choice of

parameters c
(i �=1,2)
I′=1,2 = c

(i=1,2)
I′ �=1,2 = 0 in Eq. (2.5),

∣∣∣c(i �=1,2)
I′ �=1,2

∣∣∣ < ∣∣∣c(i=1,2)
I′=1,2

∣∣∣ in Eq. (2.9),
∣∣J i=1,2

0

∣∣ < ∣∣∣J i �=1,2
0

∣∣∣
and

∣∣J i=1,2
L

∣∣ <
∣∣∣J i �=1,2

L

∣∣∣ in Eq. (2.9). One can replace the heavy pairs by their expectation

values below the heavier mass scale mI′ �=1,2 i �=1,2. Then, the effective Kähler potential and
superpotential for the light pairs (T I′ , Hi) with I ′ = i = 1, 2 are described by

Keff(T
1, H1, T

2, H2) = − lnN (ReT )
∣∣∣
0
+ Z1,1̄(ReT )

∣∣∣
0
|H1|2 + Z2,2̄(ReT )

∣∣∣
0
|H2|2,

Weff(T
1, H1, T

2, H2) =
(
J
(1)
0 + e−c

(1)

I′ T I′
J
(1)
L

)
H1 +

(
J
(2)
0 + e−c

(2)

I′ T I′
J
(2)
L

)
H2, (2.40)

where f(T I′ , Hi)
∣∣∣
0
≡ f(T I′ , Hi)

∣∣∣ T I′ �=1,2 = 〈T I′ �=1,2〉
Hi �=1,2 = 〈Hi �=1,2〉

for an arbitrary function of moduli and sta-

bilizer fields f(T I′ , Hi). Here, we implicitly assume that H1 (H2) has only U(1)1 (U(1)2) charge
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and their Kähler metrics are given by

Z1,1̄(ReT )
∣∣∣
0
=

1− e−2c
(1)

I′ ReT I′

c
(1)
I′ ReT

I′
, Z2,2̄(ReT )

∣∣∣
0
=

1− e−2c
(2)

I′ ReT I′

c
(2)
I′ ReT

I′
. (2.41)

Thus, the effective scalar potential of light pairs is obtained in terms of Kähler potential and
superpotential (2.40),

Veff(T
1, H1, T

2, H2) = eKeff
(
(Keff)

m,n̄ DmWeff Dn̄W̄eff − 3|Weff |2
)
, (2.42)

where m,n = {T I′ , Hi} with I ′ = 1, 2 and i = 1, 2.
To complete our discussions, we have to specify the form of the norm function. Its most

general form carrying two light moduli T 1 and T 2 is

N (ReT )
∣∣∣
0

= C1,1,1(ReT
1)3 + C1,1,2(ReT

1)2(ReT 2) + C1,2,2(ReT
1)(ReT 2)2 + C2,2,2(ReT

2)3,

(2.43)

up to the heavy-moduli-dependent parts. Here, we omit the couplings between the heavy fields
T I′ with I

′
= 3, 4, · · · and the lighter fields T 1 and T 2 for simplicity. To simplify the scalar

potential (2.42), we redefine the moduli fields as

T̂ 1 ≡ c
(1)
1 T 1 + c

(1)
2 T 2

c
, T̂ 2 ≡ c

(2)
1 T 1 + c

(2)
2 T 2

d
. (2.44)

Correspondingly, the stabilizer fields H1 and H2 have the U(1) charges, c and d, for a linear
combination of the Z2-odd vector fields AI′

M in VI′ with I ′ = 1, 2. In this field base (T̂ 1, T̂ 2),
there are no mixing terms between T̂ 1 and T̂ 2 in the superpotential (2.40) as can be seen from

Weff(T̂
1, H1, T̂

2, H2) =
(
J
(1)
0 + e−c T̂ 1

J
(1)
L

)
H1 +

(
J
(2)
0 + e−d T̂ 2

J
(2)
L

)
H2. (2.45)

Since each of T̂ 1 and T̂ 2 has the independent superpotential, the vacuum expectation values
of moduli T̂ 1, T̂ 2 and stabilizer fields H1, H2 are determined in a similar way as in the case
of small-field inflation (2.8). Thus, the minimization conditions of moduli and stabilizer fields
in the scalar potential (2.42) 〈VÎ′〉 = 〈Vi〉 = 0, Î ′, i = 1, 2 with VI′ = ∂I′V and Vi = ∂iV are
satisfied under

〈T̂ 1〉 =
1

c
ln

J
(1)
L

J
(1)
0

, 〈T̂ 2〉 =
1

d
ln

J
(2)
L

J
(2)
0

, 〈H1〉 = 〈H2〉 = 0. (2.46)

Then, one can obtain the supersymmetric Minkowski minimum = 〈V 〉 = 0 because 〈DÎ′W 〉 =
〈DiW 〉 = 〈W 〉 = 0 at the minimum given by Eq. (2.46).

To obtain the successful large-field inflation, we assume that the coefficients CI′,J ′,K′ in the

norm function and the U(1) charges c
(i)
I′ for I ′, J ′, K ′ = 1, 2 and i = 1, 2 are chosen so that the

norm function has the following form in the hatted field base,

N (ReT )
∣∣∣
0
= a(ReT̂ 1)(ReT̂ 2 − bReT̂ 1)2, (2.47)
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up to the heavy-moduli-dependent parts, which is omitted in the following analysis for sim-
plicity. Here, a and b are positive real constants fixed by values of CI′,J ′,K′ and c

(i)
I′ as, e.g.,

a = c
(1)
1 (d)2/c (c

(2)
2 )2, b = c c

(2)
1 /d c

(1)
1 for c

(1)
2 = C1,1,1 = C1,1,2 = C2,2,2 = 0 and C1,2,2 = 1.

The above specific form of norm function (2.47) yields a moduli mixing in the Kähler metric,
K

Î
′
,
¯̂
J
′ �= 0 for Î

′ �= Ĵ
′
, which will plays an important role of stabilizing the Re T̂ 1 as will be

shown in Sec. 2.3.1.
Next, we analyze the mass-squared matrix given by the scalar potential (2.42). It reduces to

a block-diagonal form with two nonvanishing blocks at the vacuum, because the mixing terms
are absent as follows,

〈V
T̂ 1 ¯̂

T 2〉 = 〈VT̂ 1H̄1
〉 = 〈VT̂ 1H̄2

〉 = 〈VT̂ 2H̄1
〉 = 〈VT̂ 2H̄2

〉 = 0,

〈(Keff)
T̂ 1H̄1〉 = 〈(Keff)

T̂ 1H̄2〉 = 〈(Keff)
T̂ 2H̄1〉 = 〈(Keff)

T̂ 2H̄2〉 = 0, (2.48)

for Vmn = ∂n∂mV with m,n = {T I′ , Hi} with I ′, i = 1, 2. Thus, one can analyze the mass
matrices of the moduli T̂ I′ and the stabilizer fields Hi independently.

First of all, let us analyze the mass-squared matrix of the moduli m2
t , where the canonically

normalized moduli fields (tI
′
) are given by

tI
′
=

2∑
J ′=1

√
2(KT̂ )I′UI′,J ′T̂ J ′

, (2.49)

with (KT̂ )1 and (KT̂ )2 being the eigenvalues of kinetic terms of moduli diagonalized by the
matrix U . Their explicit form are given by†

(KT̂ )1 =
(2 + 3b2)(σ1)2 − 2b σ1σ2 + (σ2)2

8(σ1)2(σ2 − b σ1)2
+

√
A(σ1, σ2)

8(σ1)2(σ2 − b σ1)2
,

(KT̂ )2 =
(2 + 3b2)(σ1)2 − 2b σ1σ2 + (σ2)2

8(σ1)2(σ2 − b σ1)2
−

√
A(σ1, σ2)

8(σ1)2(σ2 − b σ1)2
,

A(σ1, σ2) ≡ (4 + 4b2 + 9b4)(σ1)4 + 4b(2− 3b2)(σ1)3σ2

+ 2(5b2 − 2)(σ1)2(σ2)2 − 4b σ1 (σ2)3 + (σ2)4, (2.50)

where σI′ = ReT̂ I′ and

U =

(
U1,1 1
U2,1 1

)
,

U1,1 =
(2− 3b2)(σ1)2 + 2b σ1σ2 − (σ2)2

4b (σ1)2
−
√
A(σ1, σ2)

4b (σ1)2
,

U2,1 =
(2− 3b2)(σ1)2 + 2b σ1σ2 − (σ2)2

4b (σ1)2
+

√
A(σ1, σ2)

4b (σ1)2
. (2.51)

†Although we omitted such a diagonalizing matrix U in the imaginary part of T̂ J ′
in Ref. [6], the following

discussion and conclusion are the same expect for the supersymmetric masses scale of Im tI
′
given by Eq. (2.67)

and the discussion of reheating process in Sec. 2.3.2.
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In this basis, their mass-squared matrix is estimated as

m2
t =

⎛
⎝
√

1
(KT̂ )1

0

0
√

1
(KT̂ )2

⎞
⎠U

(
V
T̂ 1 ¯̂

T 1 0
0 V

T̂ 2 ¯̂
T 2

)
U−1

⎛
⎝
√

1
(KT̂ )1

0

0
√

1
(KT̂ )2

⎞
⎠ , (2.52)

where V
T̂ I′ ¯̂TJ′ = 〈eKeff (Keff)

HiH̄jWT̂ I′Hi
WT̂J′

Hj
〉.

Second, canonically normalized stabilizer fields hi are given by

hi =
√
2(KH)iHi, (2.53)

where (KH)1 = 〈(Keff)H1H̄1
〉 and (KH)2 = 〈(Keff)H2H̄2

〉 are the eigenvalues of the diagonalized
Kähler metric of the stabilizer fields. In this basis, the mass-squared matrix of the stabilizer
field is estimated as

m2
h =

⎛
⎝
√

1
(KH)1

0

0
√

1
(KH)2

⎞
⎠(

VH1H̄1
VH1H̄2

VH2H̄1
VH2H̄2

)⎛⎝
√

1
(KH)1

0

0
√

1
(KH)2

⎞
⎠ , (2.54)

where VHiH̄j
= 〈eKeff (Keff)

T̂ I′ ¯̂TJ′
WT̂ I′Hi

WT̂J′Hj
〉.

Consequently, we find the supersymmetric masses of the canonically normalized moduli tI
′

and stabilizer fields hi as

m2
Re t1 = m2

Im t1 �
e〈Keff〉〈(Keff)

H1H̄1〉〈WT̂ 1H1
〉2

〈(Keff)T̂1
¯̂
T1
〉 ,

m2
Re t2 = m2

Im t2 � e〈Keff〉〈(Keff)
H2H2〉〈(Keff)

T̂ 2 ¯̂
T 2〉〈WT̂ 2H2

〉2,

m2
Reh1

= m2
Imh1

�
e〈Keff〉〈(Keff)

T̂ 1 ¯̂
T 1〉〈WT̂ 1H1

〉2
〈(Keff)H1H̄1

〉 ,

m2
Reh2

= m2
Imh2

�
e〈Keff〉〈(Keff)

T̂ 2 ¯̂
T 2〉〈WT̂ 2H2

〉2
〈(Keff)H2H̄2

〉 . (2.55)

Thus, their supersymmetric mass-squared are all positive at the vacuum under the limit of
〈WT̂ 1H1

〉 
 〈WT̂ 2H2
〉. As mentioned in Sec. 2.1.2, if there is no hierarchy between 〈WT̂ 1H1

〉 and
〈WT̂ 2H2

〉, sizable Kähler mixings may spoil the stability of the vacuum.

As can be seen in Eqs. (2.46) and (2.55), two lighter pairs of modulus and stabilizer (T I′ ,
Hi) with I ′ = i = 1, 2 have totally independent vacuum expectation values and supersymmetric
masses to each other. By assuming a hierarchy between the parameters in the superpotential
such as |J1

0 | < |J2
0 | and |J1

L| < |J2
L|, we can further integrate out the second pair (T̂ 2, H2) in

addition to the heavy pairs of moduli and stabilizers. The effective potential for the first pair
(T̂ 1, H1) is then extracted as

Veff(T̂
1, H1) = eKeff

(
(Keff)

m,n̄ DmWeff Dn̄W̄eff − 3|Weff |2
)
, (2.56)
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wherem,n = {T̂ I′ , i} with Î ′ = 1 and i = 1. In the notation f(T I′ , Hi)
∣∣∣
0
≡ f(T I′ , Hi)

∣∣∣ T I′ �=1,2 = 〈T I′ �=1,2〉
T̂ I′ �=2 = 〈T̂ I′ �=2〉
Hi�=1 = 〈Hi �=1〉

for an arbitrary function f(T I′ , Hi), the above effective Kähler potentialKeff and superpotential
Weff are expressed as

Keff(T̂
1, H1) = − lnN (Re T̂ )

∣∣∣
0
+ Z1,1̄(Re T̂ )

∣∣∣
0
|H1|2,

Weff(T̂
1, H1) =

(
J
(1)
0 + e−c T̂ 1

J
(1)
L

)
H1. (2.57)

2.3.1 Moduli potential

From now on, we analyze the dynamics of light pair of modulus and stabilizer field appearing
in the above effective potential (2.56). On the H1 = 0 hypersurface, the scalar potential of the
modulus T̂ 1 = σ + iτ is given, by setting the parameter in the norm function (2.47) as a = 1,
by

Veff(T̂
1, H1 = 0) = eKeff (Keff)

i=1,̄i=1̄ |(Weff)i=1|2
∣∣∣
H1=0

= Λ4(1− λ cos(c τ)), (2.58)

where

Λ4 ≡ c

(〈Re T̂ 2〉 − b σ)2
J2
01 + J2

L1e
−2c σ

1− e−2c σ
,

λ ≡ 2
J01JL1e

−c σ

J2
01 + J2

L1e
−2c σ

. (2.59)

With the following choice of parameters

c = 1/10, J
(1)
L = −4.7× 10−3, J

(1)
0 = 4.25× 10−3, b = 15, (2.60)

in the reduced Planck unit, the scalar potential on the (σ, τ)-plane is drawn in Fig. 2.3. Here
and in what follows, we employ the different numerical values of parameters from those in
Ref. [6] in order to be better fitted by the Planck data [15, 16]. It is found that the potential
has a periodic property in the imaginary direction τ and τ will be stabilized at the origin as
can be seen in Eq. (2.58). To show the behavior of the real direction σ, we draw the potential
on the hypersurfaces τ = 10 (dotted line), τ = 5 (dot-dashed line) and τ = 0 (thick line) in Fig.
2.4. Equation (2.58) shows that the negative region of σ < 0 is unphysical one, because the
volume of fifth direction can be negative. Indeed, Λ in Eq. (2.58) diverges in the limit of σ → 0.
On the other hand, the overshooting to a large-field region, σ > 〈Re T̂ 2〉/b, is also prohibited
as shown in Eq. (2.58) which is coming from the negative sign in the norm function (2.47). We
then find the following property of the potential (2.58)

lim
Re T̂ 1→〈Re T̂ 2〉/b

∣∣∣Veff(T̂
1, H1 = 0)

∣∣∣ = ∞. (2.61)
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Figure 2.3: The inflaton potential (2.58) on the H1 = 0 hypersurface as drawn in Fig. 5 in
Ref. [6].

Figure 2.4: The dotted, dot-dashed, and thick lines represent the inflaton potential (2.58) on
the hypersurfaces τ = 10, τ = 5 and τ = 0, respectively as drawn in Fig. 6 in Ref. [6].

Now, we suppose that Re T̂ 2 is already stabilized at the supersymmetric minimum of the po-
tential given by Eq. (2.46).

From the above argument, the potential of natural inflation [29] is effectively realized when
we identify τ = Im T̂ 1 as the inflaton field. The real direction σ will effectively stabilized
at a value without depending on the field value of τ and will not be destabilized during the
inflationary era. After the inflation, σ rolls down to the true minimum (2.46) and oscillates
around it. The above statements is justified by solving the equations of motion for two fields σ
and τ . The stabilizer fields ReH1 and ImH1 are stabilized at the origin by the vacuum energy,
i.e., Hubble-induced mass,

∂2Veff

∂H1∂H̄1

� (Keff)H1H̄1
Veff , (2.62)

where (Keff)H1H̄1
= ∂H1∂H̄1

Keff = Z1,1̄(Re T̂ ) is the Kähler metric of stabilizer field H1. There-
fore, in the following analysis, we omit the fluctuations of the stabilizer fields, ReH1 and ImH1,
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around their vacuum expectation values 〈ReH1〉 = 〈ImH1〉 = 0 during and after the inflation.
On the 〈ReH1〉 = 〈ImH1〉 = 0 hypersurface, the equations of motion for σ and τ reduce to

σ
′′
= − (1− Lkin)

(
3σ

′
+ 6

σ2(〈T̂ 2〉 − bσ)2

(〈T̂ 2〉 − bσ)2 + 2b2σ2

∂σVeff

Veff

)
+

(σ
′
)2 − (τ

′
)2

σ(〈T̂ 2〉 − bσ)

(
(〈T̂ 2〉 − bσ)3 − 2b3σ3

(〈T̂ 2〉 − bσ)2 + 2b2σ2

)
,

τ
′′
= − (1− Lkin)

(
3τ

′
+ 6

σ2(〈T̂ 2〉 − bσ)2

(〈T̂ 2〉 − bσ)2 + 2b2σ2

∂τVeff

Veff

)
+

2σ
′
τ

′

σ(〈T̂ 2〉 − bσ)

(
(〈T̂ 2〉 − bσ)3 − 2b3σ3

(〈T̂ 2〉 − bσ)2 + 2b2σ2

)
,

Lkin ≡ (〈T̂ 2〉 − bσ)2 + 2b2σ2

2σ2(〈T̂ 2〉 − bσ)2

(
(σ

′
)2 + (τ

′
)2
)
, (2.63)

where the prime denotes the derivative with respect to the e-folding numberN , and the Christof-

fel symbol for the target space is conduced by the metric gσσ = gττ = (〈T̂ 2〉−bσ)2+2b2σ2

2σ2(〈T̂ 2〉−bσ)2
.

First of all, we set the numerical values of parameters as those (2.60) for the light fields (T̂ 1,
H1) and

d = 1/20, J
(2)
L /J

(2)
0 = −9, J

(0)
0 = 10−1, (2.64)

for the heavier fields T̂ 2 and H2, respectively. Eq. (2.46) allows us to estimate the vacuum
expectation values of fields,

〈T̂ 1〉 � 1, 〈T̂ 2〉 = 43.94, 〈H1〉 = 〈H2〉 = 0, (2.65)

which are also translated into those of the canonically normalized fields defined in Eqs. (2.49)
and (2.53),

〈Re t1〉 � 2.29, 〈Re t2〉 � 1.22, 〈φ1〉 = 〈φ2〉 = 〈h1〉 = 〈h2〉 = 0. (2.66)

By inserting them into Eq. (2.55), one can estimate the supersymmetric masses of moduli and
stabilizer fields as

(mRe t1)
2 � (mIm t1)

2 � (mReh1)
2 � (mImh1)

2 �
(
6× 1013 GeV

)2
,

(mRe t2)
2 � (mIm t2)

2 � (mReh2)
2 � (mImh2)

2 �
(
4× 1016 GeV

)2
, (2.67)

which ensures that second pair (T̂ 2, H2) are heavier enough than the first pair (T̂ 1, H1) as
mentioned before. The numerical value of Hubble scale becomes

Hinf =
(
Vinf/3M

2
Pl

)1/2 � 2× 1014GeV, (2.68)

where Vinf ∼ Λ4 is given in Eq. (2.58). Thus, it is found that the masses of moduli and
stabilizers (2.67) and Hubble scale (2.68) are well below the compactification scale MC �
πMPl/〈N (Re T̂ )〉1/2 � 2.6 × 1017GeV, and the 4D effective theory description is valid. We
again remark that the pair (T̂ 2, H2) playing a role of stabilizing Re T̂ 1 is stabilized at (T̂ 1,
H1)-independent minimum and they are decoupled from the inflaton dynamics, i.e., H2

inf 

(m2

t2), (m
2
φ2), (m2

Reh2), (m2
Imh2). Then, one can treat only the inflaton dynamics.
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Next, in order to estimate the cosmological observables constrained by Planck, we define
the general slow-roll parameters in the case of two fields [26, 27],

ε =
gσσ

2

(
∂σVeff

Veff

)2

+
gττ

2

(
∂τVeff

Veff

)2

,

η = minimum eigenvalue of

{
1

Veff

(
∇i∇jVeff ∇i∇j̄Veff

∇ī∇jVeff ∇ī∇j̄Veff

)}

=
gσσ

2

⎛
⎝∂σ∂σVeff

Veff

+
∂τ∂τVeff

Veff

−
√(

∂σ∂σVeff

Veff

− ∂τ∂τVeff

Veff

− 2Γσ
σσ

∂σVeff

Veff

)2

+ 4

(
∂σ∂τVeff

Veff

− Γσ
σσ

∂τVeff

Veff

)2
⎞
⎠ ,

(2.69)

with i, j = T̂ 1. In a similar way to the single field case, the cosmological observables are defined
in terms of these slow-roll parameters as shown in Eq. (2.28).

Let us numerically solve their equations of motion (2.63) as a function of e-folding number
N . By setting the initial conditions (σ, τ) = (1, 20) and (σ

′
, τ

′
) = (0, 0) at N = 0, σ and τ

evolve as drawn in Fig. 2.5. The violation of slow-roll condition, max {ε, η} = 1, occurs at
about Nend � 76 e-folds. As confirmed in Fig. 2.5, in the inflationary era, the real part of the
light modulus, σ, is stabilized at a field value different from that at the true vacuum. After the
end of inflation, it rolls down to the minimum and oscillates around the vacuum.

Such a phenomenon is understood from the mass term of σ and the equation of motion (2.63).
The mass-squared of σ consists of two parts. First one is the Hubble-induced mass Hinf defined
by Eq. (2.68) and second one is the supersymmetric mass term mSUSY ∼ mt1 ∼ O(1013)GeV
in the superpotential (2.40). The mass term is thus given by

∂σ∂σVeff � 3k(σ)H2
inf +m2

SUSY. (2.70)

Here, k(σ) represents a certain function of σ whose numerical value is of O(1) during and after
the inflation. Since the Hubble parameter has an almost constant value during the inflation, it
controls the mass-squared of σ in Eq. (2.70). Then, in the inflationary era, the real part σ is
effectively stabilized at a different point away from its vacuum determined by the second term
in Eq. (2.70). After the inflation, the later part in Eq. (2.70) dominates the mass term of σ
compared with the Hubble-induced one.

Next, we analytically estimate the “stabilized” value of σ during the inflation. In the slow-
roll regime, σ

′ 
 1 and τ
′ 
 1, the equation of motion for σ given in Eq. (2.63) is simplified

by dropping the mixing term proportional to σ
′
τ

′

σ
′
= −gσσ

Vσ

V

= −gσσ

(
2

〈T̂ 2〉/b− σ
− 2c e−2c σ

1− e−2c σ
− c

)
+

Vvac(σ)

V
, (2.71)

where Vvac(σ) = eKeff (Keff)
H1H̄1c

(∣∣∣J (1)
0

∣∣∣2 − ∣∣∣J (1)
L

∣∣∣2 e−2c σ

)
/N . When the terms in the first
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Figure 2.5: The trajectories of σ = Re T̂ 1 (black curves) and τ = Im T̂ 1 (red curves) as a
function of the e-folding number N drawn in Fig. 7 in Ref. [6].

parentheses of Eq. (2.71) vanish at the field value σ = σinf , σinf satisfies the following relation,

2

〈T̂ 2〉/b− σinf

− 2c e−2c σinf

1− e−2c σinf
− c = 0,

⇔〈T̂ 2〉
b

=
−2 + c σinf + e2c σinf (2 + c σinf)

c (1 + e2c σinf )
. (2.72)

When the value of σinf is chosen as that at the vacuum 〈σ〉 given by Eq. (2.46), the second term
in the right handed side of Eq. (2.71) is almost vanishing simultaneously. From this perspective,
the parameters of the heavier modulus T̂ 2 are constrained to satisfy

〈T̂ 2〉
b

� −2 + c 〈σ〉+ e2c 〈σ〉(2 + c 〈σ〉)
c (1 + e2c 〈σ〉)

, (2.73)

which holds in the our numerical analysis.
As a result, the real part σ is effectively stabilized at σinf and the inflaton dynamics is

dominated by the imaginary part τ . One can then consider the single-field inflation model.
In contrast to the multi-field inflation model, sizable isocurvature perturbations caused by the
real part σ can be suppressed. Around the end of inflation, one cannot capture the dynamics of
σ through Eq. (2.71), because the slow-roll conditions are violated. Therefore, we numerically
solve the full equations of motion (2.63) and find the trajectories of σ and τ . The inflationary
trajectory is drawn on the (τ , σ)-plane in Fig. 2.6, where the equation of motion of inflaton
is approximated in Eq. (2.71) on the black dotted curve, whereas on the red solid curve, the
equations of motion (2.63) are numerically solved.

From the observational point of view, the inflaton potential is categorized into that of
natural inflation [29]. With our choice of parameter settings (2.60) to realize σinf ∼ 〈σ〉, the
value of λ appearing in the scalar potential (2.59) is almost equal to 1. For the canonically
normalized field φ1 ≡ kτ , the effective potential becomes

Veff = Λ4(1− λ cos(ĉ φ1)), (2.74)
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Figure 2.6: The inflaton trajectory on the field space of τ and σ as drawn in Fig. 8 in Ref. [6].
The equation of motion of inflaton is approximated in Eq. (2.71) on the black dotted curve,
whereas on the red solid curve, the full equations of motion (2.63) are numerically solved.

where ĉ ≡ c/k and k ≡
√

2(Keff)T̂ 1 ¯̂
T 1 =

√
(〈T 2〉−b σ)2+2b2 σ2

2σ2(〈T 2〉−b σ)2
. Correspondingly, the slow-roll

parameters are obtained as

ε =
M2

Pl

2

(
∂φ1V

V

)2

=
(ĉMPl)

2

2
λ2 1− cos2(ĉ φ1)

(1− λ cos(ĉ φ1))2
,

η = M2
Pl

∂φ1∂φ1V

V
= (ĉMPl)

2λ
cos(ĉ φ1)

1− λ cos(ĉ φ1)
,

ξ2 = M4
Pl

V
′
V

′′′

V 2
= −2(ĉMPl)

2ε, (2.75)

and hereafter, the tensor-to-scalar ratio, spectral tilt of curvature perturbation and its running
are yielded as in Eq. (2.28), up to a leading order,

r = 16 ε,

ns = 1− 2η + 6ε,

dns/d ln k = −24ε2 + 16ε η − 2ξ2. (2.76)

In our setup, the inflaton field τ is the zero-mode of fifth component of the U(1)I′=1 gauge
field, AI′=1

y , i.e., axion. The Kähler potential has a shift symmetry originating from the U(1)I′=1

gauge symmetry, whereas in the superpotential, the continuous shift symmetry is broken to the
discrete one. Such a discrete symmetry is controlled by its decay constant fφ1 = ĉ−1, as shown
in the potential (2.74). The recent Planck data [15, 16] requires the large axion decay constant
fφ1 ≥ 5MPl which is achieved by the small U(1)I′=1 charge c in Eq. (2.60). Moreover, the
η-problem peculiar to the 4D supergravity models is prevented in our framework. However, the
η-problem is solved in a different way to the case of small-field inflation in Sec. 2.2. Since the

27



Kähler potential does not contain the axion field τ because of the U(1)I′=1 gauge symmetry,
the slow-roll parameter η can be taken smaller than 1.

Along the same step outlined in Sec. 2.2, we define the e-folding number N = N∗ and
the scalar potential V∗ ≡ V (σ∗, τ∗) at the field values (σ, τ) = (σ∗, τ∗) corresponding to the
pivot scale, whereas Nend and Vend ≡ V (σend, τend) are evaluated at the field values (σend, τend)
corresponding to the end of inflation. Then, an amount of e-folding number Ne ≡ Nend − N∗
can be written in terms of them [28],

Ne � 62 + ln
V

1/4
∗

1016GeV
+ ln

V
1/4
∗

V
1/4
end

− 1

3
ln
V

1/4
end

ρ
1/4
R

, (2.77)

with V
1/4
end � 4×1014 GeV and ρ

1/4
R = (π2g∗/30)TR � 2.6×109 GeV. The reheating temperature

TR � 8.8×108 GeV will be given later in Sec. 2.3.2. Since the same amount of e-folding number
Ne is also defined by

Ne = −
∫ t∗

tend

H(t̃) dt̃, (2.78)

it is found that the numerical values of moduli fields σ∗, τ∗ and the scalar potential V
1/4
∗ are

obtained by equating Eq. (2.77) with Eq. (2.78),

σ∗ � 0.98, τ∗ � 16, V 1/4
∗ � 3× 1016 GeV, N∗ = 16, Ne = 60. (2.79)

At these field values corresponding to the pivot scale, we extract the numerical values of
cosmological observables such as the power spectrum of curvature perturbation Pξ, its spectral
index ns, the running of its spectral index dns/d ln k and the tensor-to-scalar ratio r as follows,

Pξ � 2× 10−9, ns = 0.963, r � 0.09, (2.80)

which are consistent with those of usual natural inflation [30]. This natural inflation is cat-
egorized into the large-field inflation, because the field variable of the canonically normalized
inflaton φ1 is provided by

Δφ1 = φ1
∗ − φ1

end � 13.3MPl. (2.81)

We comment on the details of natural inflation with single axion and multiple axions on the
basis of string theory in Chapter 5. In the following subsections 2.3.2 and 2.4, we focus on the
oscillations of moduli and stabilizers after the inflation.

2.3.2 Reheating process

After the inflation, the field t1 and the axion-inflaton φ1 oscillate at the same time. Since
the axion-inflaton φ1 is not included in the Kähler potential because of a shift symmetry, that
is a U(1) symmetry, φ1 cannot decay into the matter chiral multiplets Qα originating in the
hypermultiplet Φα through the Kähler potential. A possible decay channel is only coming from
the superpotential, in particular, the Yukawa coupling in the superpotential. However, these
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decay widths are suppressed by the masses of matter fields. Although the couplings among
the modulus φ1 and the gauge bosons are dimension-five operators, φ1 mainly decays into the
gauge-boson pairs.

Let us consider the 4D effective theory as MSSM. The reheating process after the end of
inflation is almost the same as discussed in Sec. 2.2. Around the vacuum, the relevant terms
in the Lagrangian is expanded as

L ⊃ −1

8
Im frε

μνρσF r
μνF

r
ρσ

= −1

8
〈Im fr〉εμνρσF r

μνF
r
ρσ −

1

8

〈
∂ Im fr

∂φ1

〉
δφ1 εμνρσF r

μνF
r
ρσ. (2.82)

Then the total decay width from the field φ into the gauge bosons (g(r)) is calculated as

Γφ1 �
3∑

r=1

Γ(φ1 → g(r) + g(r)) �
3∑

r=1

N r
G

64π

〈
ξ1r

Re fr

〉2〈
U2,2√

2(KT̂ )1(U1,1U2,2 − U1,2U2,1)

〉2
m3

t1

M2
Pl

� 22 GeV, (2.83)

where N r
G is the number of the gauge bosons in the MSSM. With the numerical values of

moduli fields (2.66), the eigenvalues and diagonalized matrix of Kähler metric are yielded
as 〈

√
2(KT̂ )1〉 � 0.76, 〈U1,1〉 � −42.34, 〈U2,1〉 � 0.024, 〈U1,2〉 = 〈U2,2〉 = 1 and mφ1 �

6× 1013GeV. In addition, we set ξ1r = 3.72 and otherwise 0 to realize the correct size of gauge
coupling unification 〈fr〉 = 1/(gr)

2 � 3.73 at the GUT scale (� 2.0× 1016[GeV]).
By employing the sudden-decay approximation, the reheating temperature is estimated by

equating the total decay width of inflaton with Hubble parameter,

Γφ1 � H(TR),

⇔ TR =

(
π2g∗

90

)−1/4√
Γφ1MPl � 8.8× 108 GeV, (2.84)

where g∗ = 915/4 is the effective degrees of freedom at the reheating in the MSSM. Although
the real part σ also oscillates at the end of inflation, its decay time is almost the same as that
given by Eq. (2.84).

2.4 Cosmological moduli problems

In this section, we take into account the oscillations of other moduli and stabilizer fields. In
general, when the other fields oscillate after the inflation, they behave like matter fields and
would dominate the universe. Since the moduli fields gravitationally couple to the matter
fields in the standard model, its decay time would occur after the epoch of Big-Bang Nucle-
osynthesis (BBN). This problem is known as a cosmological moduli problem [12], because the
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successful BBN is violated by the moduli decay. Moreover, the nonthermally generated grav-
itinos produced by the moduli decay are severely constrained in order not to induce the huge
amount of dark matter and violate the successful BBN. This is called moduli-induced gravitino
problem [31].

In our both inflation models, the moduli and stabilizers do not break the supersymmetry and
the decay into the gravitino is suppressed. Thus, one can solve the moduli-induced gravitino
problem. Even if we add a source of the SUSY-breaking, these moduli and stabilizers would
have large supersymmetric masses and do not obtain the F-term. In the following, we add the
SUSY-breaking effects on the inflaton superpotential Weff in Eq. (2.57) or‡,

W = Weff +ΔW (T̂ 1), (2.85)

where ΔW (T̂ 1) denotes the SUSY-breaking sector, that generically involves the inflaton mul-
tiplet T̂ 1. Here, it is assumed that the other fields (T̂ I′ , Hi) with I ′, i �= 1 are stabilized and
do not oscillate around their supersymmetric minimum thanks to their large supersymmetric
masses.

When the SUSY-breaking scale is larger enough than the inflation scale, one has to analyze
the full scalar potential in general. From now on, we focus on the situation which the SUSY-
breaking is smaller than the inflation scale. By assuming 〈ΔW 〉 ∼ 〈∂T̂ 1(ΔW 〉) 
 1 in the
reduced Planck unit, the deviation from the supersymmetric Minkowski minimum (2.8) is
evaluated by employing the reference point method [32].

The reference point is chosen as the minimum as close to the true minimum as possible. In
our model, the reference point is set to satisfy

DH1W |ref = WH1 + (Keff)H1W = 0,

↔ c T̂ 1|ref = ln
J
(1)
L

J
(1)
0

and H1|ref = 0,

DT̂ 1W |ref = (Keff)T̂ 1ΔW, (2.86)

where one can choose the effective Kähler potential Keff given in Eqs. (2.10) or (2.57) for each
scenario. As explicitly shown in Appendix A, the deviations δϕ from the reference point ϕ|ref
for ϕ = T̂ 1, H1 are found as,

δT̂ 1 = O
( |ΔW |2
WT̂ 1H1

)
, δH1 = −(Keff)T̂ 1ΔW

WT̂ 1H1

+O(|ΔW |2). (2.87)

The scalar potential is minimized by these variations at the first order of δT̂ 1 and δH1. Thus,
our reference point method is justified only if the the supersymmetric masses of the moduli
and stabilizers are larger than the supersymmetry breaking scale, that is, 〈WT̂ 1H1

〉 � 〈ΔW 〉
in the reduced Planck unit. In terms of them, the F-terms of T̂ 1 and H1 are evaluated at the

‡In the following analysis, one can both consider the inflation scenarios.
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SUSY-breaking minimum as,√
(Keff)T̂ 1 ¯̂

T 1F
T̂ 1

= −eKeff/2
√

(Keff)T̂ 1 ¯̂
T 1(Keff)

T̂ 1J̄ DJW � O
(

(m3/2)
3

(mRe t1)2

)
,

√
(Keff)H1H̄1

FH1 = −eKeff/2
√

(Keff)H1H̄1
(Keff)

H1J̄ DJW � O
(

(m3/2)
3

(mReh1)
2

)
, (2.88)

where (mt1)
2 and (mh1)

2 are the supersymmetric masses of moduli and stabilizers given in
Eq. (2.55).

We conclude that the SUSY-breaking sector does not alter the inflaton dynamics if the size
of SUSY-breaking scale is much smaller than the inflation scale. Since the light fields T̂ 1 and H1

have almost vanishing F-terms, their decay channels into the gravitino are enough suppressed.
There is no moduli-induced gravitino problem in our framework. In Chapter 3, we construct
the detailed SUSY-breaking sector and evaluate the amount of gravitino quantitatively. In
addition to the above issues, we check whether the field oscillations are suppressed or not. If
the fields other than the inflaton oscillate and dominate the universe after the inflation, they
drastically change the thermal history of the universe.

In each inflation scenario, even if we add the source of small SUSY-breaking scale compared
with the supersymmetric mass term in the superpotential, the stabilizer field H1 and the in-
flaton obtain the supersymmetric masses of the same order at the SUSY-breaking minimum.
However, in the inflationary era, H1 has the Hubble-induced mass proportional to Hinf shown in
Eqs. (2.26) and (2.68) in each inflation scenario proposed in Sec. 2.2 and Sec. 2.3, respectively.
Then, its oscillation amplitude ΔH1 becomes

ΔH1 � δH1|inf − δH1|vac � O
(
ΔW

Hinf

)
−O

(
ΔW

mh1

)
, (2.89)

where δH1|inf (δH1|vac) is the deviation of H1 from the supersymmetric Minkowski mini-
mum (2.8) during the inflation (at the SUSY-breaking minimum). As a result, in each inflation
scenario, H1 is strictly fixed at the origin during inflation and at the SUSY-breaking minimum
after inflation, respectively. The oscillation of H1 is enough suppressed so that it does not
dominate the universe. By a similar argument as in the case of small-field inflation discussed
in Sec. 2.2, the imaginary part of modulus ImT 1 is also strictly fixed at the origin as well if
its initial position is located at the value close to the origin. Since the Kähler potential has a
shift symmetry orginating from the gauge symmetry for the imaginary part, the inflationary
dynamics is irrelevant to the it.

Finally, we check whether the one-loop corrections affect the inflaton dynamics or not. As
calculated in Ref. [25], the moduli Kähler potential given by Eq. (6.10) receives the following
one-loop correction,

eKeff � e1/(32π
2N )

N → ∞, (2.90)

In the large field inflation scenario, the Re T̂ 1-dependence of Kähler potential is the same as
that of the tree-level one. Thus the scalar potential also diverges in the limit bRe T̂ 1 → Re T̂ 2

and Re T̂ 1 is effectively stabilized in the same way as discussed in Sec. 2.3. Also, in the case of
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small field inflation, the inflaton rolls down to the minimum from the large field value of ReT 1.
In this region, such a correction is suppressed and inflaton dynamics is not altered.

2.5 Implication for string model building

It would be possible to derive the 5D supergravity studied in this chapter from a more fun-
damental theory such as type IIB superstring theory in ten-dimensions and the M-theory in
eleven-dimensions [22].

The discussed moduli inflation highly depends on the form of norm function. If the 5D
supergravity model is embedded into the heterotic M-theory on CY manifold, the norm function
coefficients CI,J,K correspond to the intersection numbers of CY manifold. In particular, in the
case of large-field inflation, the negative sign in the norm function is important to stabilize other
fields than the inflaton. Such a structure can be also seen in the Kähler moduli stabilization in
type IIB string theory on “Swiss-Cheese” manifold [33].

On the other hand, the 5D supergravity background is also realized in type IIB string theory
on a warped throat represented by Klebanov-Witten model [34]. When a large number of D3-
branes exist at the same point in the internal space such as toroidal background, the effective 5D
spacetime appears through their backreaction [35]. Moreover, the U(1)I′ symmetries discussed
above might have an origin in more higher-dimensional local symmetries and then the moduli
multiplets would be identified as closed or open string moduli fields. Thus, the cosmological
and phenomenological features of 5D SUGRA would be governed by the structure of internal
manifold behind it.

2.6 Summary

In this chapter, we have discussed the cosmological feature of 5D supergravity models compact-
ified on S1/Z2, in particular, successful two types of moduli inflations, small-field inflation in
Sec 2.2 and large-field inflation in Sec. 2.3. Through the compactification of the fifth direction,
the inflaton is identified as a linear combination of moduli fields that correpond to the zero-mode
of Z2-even chiral multiplets included in five-dimensional extra U(1) vector multiplets.

When the real part of the lightest modulus plays a role of inflaton field, one can realize
the small-field inflation whose potential is similar to the one in Starobinsky model [1]. The
exponential behavior in the inflaton potential is originated from the exponentially localized
wavefunction of the stabilizer field in the fifth dimension. Thus, when a linear-type superpo-
tential term for the stabilizer field H1 at the boundary fixed point is dominant, the obtained
inflaton potential is consistent with Planck data [15, 16].

We further presented a different type of inflation scenario within the same framework of 5D
supergravity model as the previous scenario. In contrast to the previous small-field inflation, the
inflaton field is considered as the imaginary part of the lightest modulus and then the obtained
potential takes the form of natural inflation [29]. When it rolls down in the scalar potential, the
corresponding real part of modulus will be destabilized in general, since a runaway direction
will appear in the potential. To realize the situation where the real part of lightest modulus is
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stabilized during the inflation, we introduced the two light pairs of moduli and stabilizer fields
(T̂ I′ , Hi) with I ′, i = 1, 2. Then, the real part of the heavier modulus produces the potential
barrier for the real part of lightest modulus through the couplings in the Kähler potential.
During and after the inflation, the stabilizer fields are also fixed at the origin respectively
by the Hubble-induced and their own supersymmetric masses. These moduli potential are
generated by the superpotential of stabilizer fields in a similar way to the previous small-field
inflation. The near-future cosmological observations have a chance to detect the gravitational
wave predicted by a class of large-field inflation. We stress that both the inflation scenarios do
not suffer the η problem which is the generic feature of inflation models on the basis of the 4D
N = 1 supergravity models.

After the end of inflation, the inflaton field oscillates and dominates the universe. When the
inflaton reheats the universe, the reheating temperature is mainly determined by the inflaton
decay into the gauge-boson pairs, provided that the couplings among them are not suppressed.
Moreover, both the proposed inflation scenarios are irrelevant to the dynamics of supersym-
metry breaking, if the inflation scale is much larger than the SUSY-breaking scale. This is
ensured by the fact that the large masses of inflaton and stabilizer fields are provided by their
supersymmetric masses in the superpotential. From this perspective, the decay width of infla-
ton into the gravitino(s) is suppressed by almost vanishing F-term of inflaton field. We leave
the detail of further phenomenological aspects of the 5D SUGRA associated with these two
inflation scenarios to the following Chapters, in which we set the concrete matter sectors and
SUSY-breaking sector at the same time.

So far, we have concentrated on the moduli dynamics within the framework of 5D super-
gravity. It turns out that the moduli potential is strictly constrained by the symmetries in
higher-dimensional spacetime such as Lorentz and gauge symmetries. In our scenario, extra
U(1)I′ symmetries enabled us to generate the quasi-localized wavefunctions of charged stabilizer
fields and the desirable moduli potential in the inflation scenario. The form of norm function
also played essential roles to determine the shape of potential. It would be possible that the 5D
supergravity model is derived from, e.g., the low-energy effective theory of heterotic M-theory
in eleven-dimensions [22] compactified on CY manifold. In such a case, the norm function is
identical to the N = 2 prepotential and its coefficient CI,J,K is related to the intersection num-
bers of CY manifold. The U(1)I′ symmetries might then have an origin in the local symmetries
on heterotic five-branes or M5-branes. We conclude that our 5D models are attractive scenario
from the observational as well as theoretical points of view.
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Chapter 3

Moduli rolling to a natural MSSM
vacuum with gravitino dark matter

In this chapter and next chapter 4, we further study the phenomenological and cosmological
aspects of 5D SUGRA on S1/Z2 where the 4D chirality is caused by the partial breaking of
N = 2 SUSY. So far, several systematic studies have been performed by focusing separately
on the particle cosmology [36, 6] or phenomenology [37] within the framework of the off-shell
formulation of 5D SUGRA [17, 18]. However, it would be important to take both of them into
account simultaneously. For this reason, in this chapter and next chapter 4, we propose the
phenomenological models consistent with the ongoing LHC experiments [38] and the successful
moduli inflation discussed in Chapter 2.

From the phenomenological point of view, the low-scale supersymmetric model is an at-
tractive scenario which not only protects the mass of the Higgs boson from the large radiative
corrections but also gives the plausible dark matter candidates. MSSM also gives rise to the
successful gauge coupling unification at the GUT scale. In addition to it, the existence of
SUSY is also partially motivated in the string theory where the SUSY guarantees the absence
of tachyons.

The observed Higgs boson mass [39] indicates that the large radiative corrections are re-
quired within the MSSM. The high-scale SUSY-breaking scenario is then discussed as one of
the solutions to raise the Higgs boson mass in the MSSM. This is because the dangerous SUSY
flavor and CP interactions can be suppressed by the heavy supersymmetric particles. How-
ever, such a high-scale SUSY-breaking scenario suffers from a fine-tuning problem, because the
large radiative corrections appear in the mass of the Higgs boson. On the other hand, one can
enhance the Higgs boson mass by the different approach which can be applied in the case of
low-scale SUSY-breaking scenario. The authors of Refs. [40] pointed out that the nonuniversal
gaugino masses at the GUT scale not only enhance the Higgs boson mass, but also relax the
degree of tuning to realize the EW symmetry breaking. In this chapter, we focus on this low-
scale SUSY-breaking scenario on the basis of Ref. [7], whereas in the next Chapter 4, we treat
the high-scale SUSY-breaking scenario on the basis of Ref. [11].
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3.1 SUSY-breaking scenarios

There is no hint of SUSY at the scale below TeV scale from the collider experiments. It implies
that the supersymmetric particle should be heavier than such a scale due to the effect of SUSY-
breaking. It is well known that the mechanisms for communicating the breaking effects to the
MSSM sector are classified into the gravity mediation [41], gauge mediation [42], the anomaly
mediation [43] and their mixed one. As mentioned in Chapter 2, the cosmological problems, in
particular, the cosmological gravitino problem [44] are captured by the gravitino mass. Indeed,
in the case of unstable gravitino, the mass of the gravitino should be larger than O(10)TeV
in order not to contradict with the successful BBN data, although it depends on the reheating
temperature after the inflation. (See, for more details, Refs. [44, 45, 46, 47, 48].)∗ Thus, before
going to details of our model, we summarize the typical features of several SUSY-breaking
scenarios in the light of gravitino mass.

The gauge mediated SUSY-breaking scenario predicts the ultralight gravitino with mass
m3/2 
 O(1)GeV in the low-scale SUSY-breaking scenario. Note that when the gravitino
mass is larger than GeV scale, the gravitational interactions would spoil the dynamics of
the SUSY-breaking sector and change the sparticle spectrum. In the pure anomaly mediated
SUSY-breaking scenario, the wino-like neutralino becomes the dark matter candidate through
the renormalization group effects in the MSSM [50]. From the recent results of the LHC ex-
periments [51], the gluino mass is constrained to be larger than TeV scale that is in turn in
one-to-one correspondence with the gravitino m3/2 � O(100)TeV in its framework. In the
mirage mediation [52], which is the mixture of moduli mediation and anomaly mediation, the
mixed neutralino will correspond to the dark matter candidate. In order to avoid the cosmo-
logical gravitino problem, the gravitino mass has to be larger than O(10)TeV. One may dilute
such a gravitino abundance by moduli decay or the topological defects. Finally, in the gravity
mediation, the neutralino becomes the plausible dark matter candidate. However, the large
gravitino mass above O(10)TeV is required not to contradict with flavor experiments. Since
the gravitational interactions are flavor dependent interactions, the dangerous SUSY flavor
violations will generically appear in this class of model.

In this chapter, we focus on the gravity-mediated SUSY-breaking scenario. In contrast to
the previous studies, our model is compatible with the low-scale SUSY and observed Higgs
boson mass and is free from the cosmological gravitino and SUSY flavor problems. Since
the soft SUSY-breaking terms is originating from the gravitational interactions, the scale of the
gravitino mass is correlated with the masses of supersymmetric particles in general. In this way,
it would be difficult to combine the low-scale SUSY-breaking and solution of the cosmological
gravitino problem. The following sections are organized as follows. To overcome this problem,
we propose one of the solutions to generate the mass hierarchies between the gravitino and the
other supersymmetric particles on the basis of a general four-dimensional N = 1 supergravity
(4D N = 1 SUGRA) in the rest of this chapter. In particular, we focus on a scenario where
the gravitino is the lightest supersymmetric particle (LSP) so as not to contradict with the
BBN data. Its mass is typically of O(100) GeV which is outside the mass range expected by
the gauge mediated SUSY-breaking scenario. That would be a typical feature of the sparticle

∗The light gravitino is possible in the extension of the MSSM, e.g., Ref. [49].
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spectrum in the gravity mediation. There are several directions to study the cosmological
implications of gravitino dark matter by assuming the certain sparticle spectrum and it turns
out that the next-to-the-lightest supersymmetric particle (NLSP) is severely constrained in
order not to contradict with BBN data. (See, for more details, e.g., Refs. [48, 53, 54, 55].)
However, the sparticle spectrum is sensitive to the relevant higher-dimensional operators in
4D N = 1 SUGRA, which requires the knowledge of a fundamental theory. In terms of 5D
SUGRA, we can specify these higher-dimensional operators and predict the sparticle spectrum
controlled by the U(1) charges of matter fields in the MSSM. Moreover, one can estimate the
relic abundance of dark matter on the basis of the successful moduli inflation and stabilization
as suggested in Chapter 2. We find that the relic abundance of the gravitino is sensitive to the
moduli dynamics, e.g., the moduli decay into the gravitino.

3.2 The gravitino dark matter in 4D SUGRA

To combine the low-scale SUSY-breaking and the solution of the cosmological gravitino problem,
we show the mechanism to generate the mass hierarchies between the gravitino and other
supersymmetric particles on the basis of 4D N = 1 SUGRA. The scalar potential in 4D N = 1
SUGRA is described by

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
= KIJ̄F

IF J̄ − 3eK/2|W |2, (3.1)

where F I = −eK/2KIJ̄DJ̄W̄ are the F-terms of chiral superfields QI . The almost vanishing
cosmological constant 〈V 〉 � 0 relates their F-terms and gravitino mass (m3/2 = e〈K〉/2〈W 〉)
through

m2
3/2 =

1

3
〈KXX̄F

XF X̄〉, (3.2)

where the SUSY is assumed to be broken by a single chiral superfield X. One can apply the
following discussion to multiple SUSY-breaking fields. On the other hand, along the line of
Ref. [56, 57], the soft SUSY-breaking masses of the gauginos (Mr) and scalar components of
the chiral superfields QI (m2

QI ) are estimated as

Mr = 〈FX∂X ln (Refr)〉,
m2

QI = −〈FXF̄ X̄∂X∂X̄ lnYQI 〉, (3.3)

where fr, r = U(1)Y , SU(2)L, SU(3)C represent the gauge kinetic functions of the standard
model gauge groups. The kinetic term of QI , YQI , is severely constrained by the flavor structure
of elementary particles as shown in a concrete model later. By comparing the above Eqs. (3.2)
and (3.3), there are two possibilities induced by the nontrivial Kähler metric of the SUSY-
breaking field X:
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• The gravitino dark matter:
Let us consider the small Kähler metric of the SUSY-breaking field 〈KXX̄〉 
 1. When
the value of Kähler metric of the SUSY-breaking field X at the tree-level is smaller than
the loop and higher derivative corrections for them, we would have to take into account
them. Under this condition, the mass scale of gravitino can be chosen smaller than those
of other supersymmetric particles without depending on the value of F-term of SUSY-
breaking field 〈FX〉. It is expected that the gravitino would become the dark matter
candidate even in the gravity mediated SUSY-breaking scenario with TeV scale gauginos
and sparticles. The above situation is realized when the derivatives of the gauge kinetic
function ∂XRefr and the kinetic term of ΦI , ∂X∂X̄ lnYΦI satisfy the certain conditions.
This is because the sparticle spectrum receives the sizable quantum corrections through
the renormalization group (RG) effects, that can be found in the case of constrained
MSSM (CMSSM) [58].

Furthermore, in order to consider the realistic stable gravitino dark matter consistent with
the BBN data, the abundance and decays of NLSP should be restricted by the success
of BBN [48, 53, 54, 55]. Also, the relic abundance of gravitino is constrained within the
data reported by the Planck Collaboration [15, 16]. We remark that, in the case of stable
gravitino, the F-term of the SUSY-breaking field can be considered as usual low-scale
SUSY-breaking scenario and it is favored from the perspective of naturalness.

• Other dark matter candidates:
For the opposite case 〈KXX̄〉 � 1, the gravitino would be heavier than the other sparticles
for any value of the F-term 〈FX〉 when ∂XRefr and ∂X∂X̄ lnYΦI are of order of unity.
Then, the cosmological gravitino problem can be also relaxed even in the low-scale SUSY-
breaking scenario. The gravitino mass should be larger than O(10) TeV, otherwise the
electronic and hadronic showers produced by the gravitino decay threaten to spoil the
success of BBN. Although we do not pursue such a possibility in this thesis, it is interesting
to work in this direction.

3.3 4D effective Lagrangian of matter fields

First of all, we again remark the relevant matter contents of 5D SUGRA. The structure of the
orbifold breaks 5D SUSY into the 4DN = 1 SUSY. In addition to the moduli multiplets T I′ and
stabilizer multiplets Hi as discussed in the previous Chapter 2, we consider the following zero-
modes of chiral multiplets included in the hypermultiplets Φα and Z2-even vector multiplets
V I involving the standard model gauge fields,

(V 1, V 2, V 3) : gauge vector multiplets,

(Qi,Ui,Di) : quark chiral multiplets,

(Li, Ei, Ni) : lepton chiral multiplets,

(Hu,Hd) : Higgs chiral multiplets,

(X) : SUSY-breaking chiral multiplet. (3.4)
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The index i = 1, 2, 3 denotes the number of generation andX is the gauge singlet chiral multiplet
under the standard model gauge groups. The above chiral multiplets have representations of
the standard model gauge groups and extra U(1)I′ gauge groups with their gauge fields AI

M and
AI′

M in vector multiplets V I with I = 1, 2, 3 and V I′ with I ′ = 1, 2, · · · , n′
V , respectively. In

particular, U(1)I′ charges c
(α)
I′ are assigned to the hypermultiplets Φα. In summary, the visible

sector consists of the MSSM plus right-handed (s)neutrinos, whereas the SUSY-breaking is
induced by the SUSY-breaking chiral multiplet.

Next, we summarize the 4D effective action after the off-shell dimensional reduction of the
5D off-shell supergravity [17, 18] along the line of Refs. [59, 60, 19]. As shown in Refs. [20, 21],
the 4D effective Lagrangian is described in the 4D N = 1 superspace† as follows

Leff =− 1

4

[∫
d2θ

∑
r

fr(X, T )tr(WrWr) + h.c.

]
+

∫
d4θ |φ|2Ωeff(|Q|2,ReT )

+

[∫
d2θ φ3W (Q, T ) + h.c.

]
, (3.5)

where φ is the compensator multiplet fixing the 4D conformal symmetry, Wr are the field
strength supermultiplets for a massless 4D vector multiplets V r with r = U(1)Y , SU(2)L, SU(3)C
in the 5D Z2-even multiplets V I , Qα are all the 4D chiral multiplets, and T I′ are the moduli
chiral multiplets.

The gauge kinetic functions fr(X, T ) in Eq. (3.5) are extracted as

fr(X, T ) = ξrXX +

n′
V∑

I′=1

ξrI′T
I′ , (3.6)

where the first term on the right-handed side denotes the gauge kinetic function at the orbifold
fixed point y = 0 with ξrX being the real constants. The others on the right-handed side are the
bulk gauge kinetic functions with ξrI′ being the real constants determined by the real coefficients
CI′,J,K in the norm function. We will no go into the detail of the gauge kinetic functions at
the orbifold fixed points which is dependent on the dynamics of the SUSY-breaking sector, but
come back to it later.

In addition, the effective Kähler potential in Eq. (3.5) becomes

Ωeff(|Q|2,ReT )

= −3N 1/3(ReT )

[
1− 2

3

∑
α

Y (c(α) · T )|Qα|2 +
∑
α,β

Ω̃
(4)
α,β(ReT )|Qα|2|Qβ|2 +O

(
|Q|6

)]
,

(3.7)

up to a boundary Kähler potential at the orbifold fixed points y = 0, L. The kinetic terms of
Qα, Y (z) (z = c(α) · T ), are obtained by solving their equation of motion in the fifth direction,

Y (z) ≡ 1− e−2Rez

2Rez
, (3.8)

†It is generalized by Refs. [61, 62] including the Z2-odd fields.
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where the above exponential factor is a consequence of the localized wavefunctions in the fifth
dimension. The bulk mass, i.e., U(1)I′ charges control the wavefunction profile of charged fields

in our framework. Furthermore, the four-point couplings between chiral multiplets Qα, Ω̃
(4)
α,β

also depends on the U(1)I′ charges,

Ω̃
(4)
α,β ≡ (c(α) · Pa−1 · c(β)){Y ((c(α) + c(β)) · T )− Y (c(α) · T )Y (c(β) · T )}

3(c(α) · ReT )(c(β) · ReT ) − Y ((c(α) + c(β)) · T )
9

,

(3.9)

where aIJ ≡ −(NIJ −NINJ/N )/(2N ) and PI
J ≡ δI J −X INJ/3N is the projection operator

from the moduli multiplet out the radion multiplet, which is a single modulus T I′=1 with
n′
V = 1. Finally, as in the moduli superpotential discussed in Chapter 2, Z2-orbifolding enables

us to write the superpotential W (Q, T ) at the orbifold fixed points y = 0, L where the N = 2
SUSY reduces to N = 1 SUSY. Its explicit form is shown later.

3.4 Gravitino dark matter in 5D SUGRA

We now proceed to discussion where one can realize the idea in Sec. 3.2 on the basis of 5D
SUGRA on S1/Z2 or not. From Eq. (3.7), the bulk Kähler potential is rewritten in terms of
Ωeff = −e−Kbulk/3,

Kbulk = −lnN (ReT ) +
∑
a

ZQα(ReT )|Qα|2 + ZX(ReT )|X|2 +O(|Q|4), (3.10)

where ZX(ReT ) = KXX̄ (ZQα(ReT ) = KQαQ̄α
) is the Kähler metric of SUSY-breaking field X

(matter chiral multiplet Qα),

ZX(ReT ) =
1− e−2cX ·ReT

cX · ReT

�
{

1
cX ·ReT

, cX · ReT > 0,
1

|cX ·ReT
|exp(2|cX · ReT |) cX · ReT < 0.

(3.11)

The moduli dependence in the Kähler metric appears only when the fields have the U(1)I′
charges for the Z2-odd vector multiplets V I′ . When the volume of the fifth dimension is large,
L � N 1/2(〈ReT 〉) � 1, the vacuum expectation value of the Kähler metric is smaller than
O(1) in the case of positive U(1)I′ charges, i.e., 〈KXX̄〉 
 1. Thus, one can obtain the desired
situation so that the gravitino would be lighter than the other sparticles.

The couplings between the SUSY-breaking multiplet X and Qα appear through the four-
point couplings Ω̃

(4)
α,X in Eq. (3.9). When 〈FX〉 �= 0, the soft SUSY-breaking masses for the

scalar components of Qα are generated. As will be shown in the concrete model in Sec. 3.7, the
soft SUSY-breaking masses of Qα are typically larger than the gravitino mass for U(1)I′ charge
assignments of Qα which are determined to reproduce the realistic Yukawa couplings of quarks
and leptons. Furthermore, by substituting the gauge kinetic functions in Eq. (3.6) into the
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formula (3.3), the gaugino masses at the cutoff scale (compactification scale in our scenario)
are given by

Mr =
〈FX〉
g2r

ξrX +

n′
V∑

I′=1

〈F T I′ 〉
g2r

ξrI′ . (3.12)

When the compactification scale (such as KK scale) is set as the GUT scale, the gaugino
masses at the EW scale (Ma(MEW)) are written in terms of those at GUT scale (Ma(M,GUT))
by considering the one-loop RG equations from the GUT scale to the EW scale,

M1(MEW) � 0.4M1(MGUT), M2(MEW) � 0.8M2(MGUT), M3(MEW) � 2.9M3(MGUT).
(3.13)

When these gaugino masses at the EW scale and Higgsino mass are larger than the gravitino
mass, gravitino becomes LSP. This is because Higgsino is likely to be light in the low-scale
SUSY-breaking scenario. The parameters ξaX and ξaI′ in Eq. (3.12) are constrained to realize the
gauge coupling unification at GUT scale. In this way, the gravitino becomes the dark matter
candidate in the 5D supergravity model for any values of F-term as mentioned in Sec. 3.2. Since
the abundance of gravitino is thermally and nonthermally generated by the moduli and/or
inflaton decay, we discuss its abundance by taking into account the concrete successful moduli
inflation and stabilization scenarios in the next section 3.5.

We comment on the Kähler potential at the orbifold fixed points y = 0, L. In our setup, it
can be taken small compared with the bulk Kähler potential (3.10) owing to the suppression
from the mild large volume of fifth dimension N 1/3 � 1 as can be seen from its explicit form,

Kboundary = N−1/3
(
K(0)(|X|2) +K(L)(e−cX (̇T+T̄ )|X|2) + · · ·

)
. (3.14)

The mild large volume of the fifth dimension also suppresses the one-loop corrections in the
moduli Kähler potential (2.90).

On the other hand, when the U(1)I′ charges of SUSY-breaking field are chosen as negative,
the vacuum expectation value of the Kähler metric becomes larger than O(1), i.e., 〈KXX̄〉 � 1.
The mild large volume of fifth dimension contributes to enhance it. According to it, it is
possible to consider a scenario that gravitino is much heavier than the sparticles for any vacuum
expectation values of F-term of the SUSY-breaking field from the general mass formula of
gravitino and sparticles given by Eqs. (3.2) and (3.3). It would gives rise to one of the solutions
to the cosmological gravitino problem and fine-tuning problems.

3.5 The SUSY-breaking effects

To complete our discussion, we focus on the moduli inflation and stabilization scenario as those
discussed in Sec. 2.2, in which one of three moduli multiplets is relevant to the slow-roll inflation.

So far, we do not specify the SUSY-breaking sector and its matter couplings. In the follow-
ing, we take into account the O’Raifeartaigh model [63] with the simplified Kähler potential
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and superpotential,

K = ZX(ReT
2,ReT 3)|X|2 − 1

Λ2
|X|4,

W = w + νX, (3.15)

where w and ν are the real parameters determined in the SUSY-breaking sector. Here we assume
that the SUSY-breaking field X has no U(1)1 charge for Z2-odd vector multiplets carrying the
inflaton field. This assignment prohibits the inflaton decay into the SUSY-breaking field as
will be discussed later. In addition, there are loop corrections to the Kähler potential after
integrating out the heavy modes in the SUSY-breaking sector and this mass scale is given by
Λ [64].

Such SUSY-breaking effects deviate the supersymmetric minimum of the moduli and sta-
bilizer fields from their supersymmetric minimum. As mentioned in Sec. 2.4, their F-terms are
sensitive to the cosmological moduli problems as well as the sparticle masses. To estimate them,
we adopt the reference point method [32] for the Kähler and superpotential (3.15) in addition
to those of Eq. (2.5) with I ′, i = 1, 2, 3. The reference points for the moduli and stabilizer fields
are chosen as those satisfying their global supersymmetric minimum,

DHi
W |ref = WHi

+KHi
W = 0,

↔ c T̂ I′=i|ref = ln
J
(i)
L

J
(i)
0

and Hi|ref = 0,

DT I′W |ref = KT I′w. (3.16)

The reference point of SUSY-breaking field X is chosen as that satisfying its extremal
condition:

e−KVX |ref = ∂X(
∑
I′

KT I′ T̄ Ī′ |DT I′W |2 +KXX̄ |DXW |2 − 3|W |2)

� 3WXW̄ + ∂X(K
XX̄)|WX |2 +KXX̄WXKXX̄W̄ − 3WXW̄

� 4|WX |2
Λ2(ZX)2

X̄ +WXW̄ = 0, (3.17)

in the limit w 
 1, where VX = ∂XV . Then, we find its minimum,

X|ref = −Λ2(ZX)
2

4

(
W

WX

)
� −Λ2(ZX)

2w

4ν
. (3.18)

Around their reference points, we search for the true vacua of moduli, stabilizer and SUSY-
breaking fields after expanding the total F-term potential under the expansion of fields, φ →
φ|ref + δφ, φ = T I′ , Hi, X with I ′, i = 1, 2, 3,

V = V |ref + VI |refδφI + VĪ |ref ¯δφI + VIJ |refδφIδφJ + VIJ̄ |refδφI ¯δφJ + VĪ J̄ |ref ¯δφI ¯δφJ +O(δφ3),
(3.19)
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where VI = ∂IV and VIJ = ∂I∂JV are the derivatives with respect to the relevant fields φ. Their
corrections deviated from the reference points given by Eqs. (3.16) and (3.18) are evaluated as
those satisfying∣∣∣VI |refδφI + VĪ |ref ¯δφI

∣∣∣� ∣∣∣VIJ |refδφIδφJ + VIJ̄ |refδφI ¯δφJ + VĪ J̄ |ref ¯δφI ¯δφJ

∣∣∣. (3.20)

Thus, it is found that φ|ref + δφ are considered as the vacuum expectation values of relevant
fields. Note that these perturbations are relied on the fact that the SUSY-breaking scale is
smaller than those of supersymmetric masses given by Eq. (2.9). We follow the details of the
their evaluations in Appendix A. The perturbations of moduli, stabilizers and SUSY-breaking
field around their reference points (3.16), (3.18) become

δHi �
w

2ReT I′=iWT I′=iHi

, δT I′=i �
(

w

WT I′=iHi

)2

, δX �
(
Λ2Z2

X

4w2

)
5wWX , (3.21)

which lead to their F-terms and squared masses of moduli, stabilizer, and SUSY-breaking fields,

√
KT I′ T̄ I′F T I′ � O

(
w3

m2
T I′

)
,
√

KHiH̄i
FHi � O

(
w3

m2
Hi

)
,
√

KXX̄F
X � −ν

N 1/2Z
1/2
X

,

m2
T I′ � m2

Hi
�

eKW 2
T I′Hi

KT I′ T̄ I′KHiH̄i

(I ′ = i), m2
X � eK

KXX̄

4w2

Λ2Z2
X

, (3.22)

at their vacuum, φ = φ|ref + δφ. We now denote the mass-squared of real and imaginary
parts of moduli, stabilizer, and SUSY-breaking fields as m2

T I′ , m
2
Hi

and m2
X . Although the

mass differences between mT I′=i and mHi
are determined by the SUSY-breaking scale, that

is, the gravitino mass m3/2 = e〈K〉〈W 〉, in our choice of parameters, SUSY-breaking effects are
parametrically negligible as shown later. Thus, the real and imaginary parts of fields are almost
the same as each other.

Indeed, the numerical values of their masses are summarized as

mT 1 � mT 2 � mH1 � mH2 � 4.8× 1015 GeV, mT 3 � mH3 � 4× 1012 GeV, (3.23)

and their vacuum expectation values of F-terms are also estimated as

〈F T 1〉 � 〈F T 2〉 � 〈FH1〉 � 〈FH2〉 � 1× 10−42, 〈F T 3〉 � 〈FH3〉 � 1.6× 10−36, (3.24)

in the reduced Planck unit. The tiny cosmological constant can be realized by properly setting
the parameters w and ν at the vacuum φ = φ|ref + δφ,

e−KV |φ=φref+δφ � KKX̄ |DXW |2 − 3|W |2

� ν2

ZX

− 3w2 � 0. (3.25)

42



We stress that the moduli and stabilizer fields have almost vanishing 〈F 〉-terms compared
with the SUSY-breaking field X. With the following choice of parameters in the Kähler and
superpotential (3.15) for the SUSY-breaking sector,

ν � −1.567× 10−14, w = −6× 10−14, Λ = 10−4, c
(1)
X =

3

10
, c

(2)
X =

1

10
, c

(3)
X = 0, (3.26)

one can estimate the masses of the gravitino and X and its F-term as

m3/2 � 395GeV, mX � 6× 108 GeV,
FX

MPl

� 4541GeV, (3.27)

which shows that the SUSY is mainly broken by SUSY-breaking X. The tiny cosmological
constant is achieved by properly choosing ν. The above parameters suppress the Kähler metric
of the SUSY-breaking field, KXX̄ � 1/(cX · ReT ) � 0.023 as discussed in Sec. 3.4. We confirm
that the obtained small gravitino mass is smaller than the other sparticle spectra in Sec. 3.7.3.

3.6 Moduli-induced gravitino problem

Following the above arguments, the moduli and stabilizer fields are much heavier than the
inflaton field and it is expected that they decay into the particles in the MSSM before the
BBN. However, as commented in Sec. 2.4, one should study the cosmological moduli problem,
in particular, the moduli-induced gravitino problem [31, 65], even if the masses of heavy modes
are larger than O(100) TeV.

First of all, we show the relevant couplings between moduli and gravitinos in the unitary
gauge,

L3/2 = εμνρσψ̄μσ̄νD̃ρψσ − eK/2W ∗ψμσ
μνψν − eK/2Wψ̄μσ̄

μνψ̄ν , (3.28)

where D̃ρψσ = ∂ρψσ + 1
4
(KJ∂ρφ

J −KJ̄∂ρφ̄
J̄) are the covariant derivatives with respect to the

gravitino ψμ in two-component formalism. (See, for more details, e.g., Refs. [65].) Under a
field-dependent chiral transformation,

ψμ →
(
W

W

)−1/4

ψμ, (3.29)

the Lagrangian (3.28) is brought into the following form

L3/2 = εμνρσψ̄μσ̄ν∂ρψσ +
εμνρσ

4
(GJ∂ρφ

J −GJ̄∂ρφ̄
J̄)ψ̄μσ̄νψσ − eG/2(ψμσ

μνψν + ψ̄μσ̄
μνψ̄ν), (3.30)

with G = K + ln|W |2 and GJ = ∂JG. Around the vacuum expectation values of moduli T I′

given by (3.16) and (3.21), the Lagrangian (3.28) is expanded in terms of the four-component
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formalism of the gravitino Ψμ,

L3/2 = −εμνρσ

2
Ψ̄μγ5γν∂ρΨσ +

εμνρσ

8
(〈GTJ′ 〉∂ρδT J ′ − 〈G

T
J′ 〉∂ρδT

J̄ ′
)Ψ̄μγνΨσ

− 1

4
〈eG/2〉Ψ̄μ[γ

μ, γν ]Ψν −
1

8
〈eG/2〉(〈GTJ′ 〉δT J ′

+ 〈G
T

J̄′ 〉δT J̄ ′
)Ψ̄μ[γ

μ, γν ]Ψν . (3.31)

From the mass-squared (2.25) of the moduli and stabilizer fields, the pair (T 1, H1) is lighter
enough than other pairs. Thus, the dynamics of heavy pairs are irrelevant to the thermal
history of the universe after the inflation and in what follows, we analyze the decay processes
of T 1, H1, and SUSY-breaking field X.

3.6.1 The decay of inflaton field

Let us estimate the decay width from inflaton into gravitino pair. According to the equivalence
theorem [66], the gravitino wavefunction is written in terms of its helicity ±1/2 components,
i.e., goldstinos at a high-energy limit. With the F-term of modulus (3.22) and the mass of light
modulus field given by Eq. (2.25), we find that the canonically normalized inflaton (σ1) decay
width into the gravitino pair (Ψ3/2 +Ψ3/2) is

Γ(σ1 → Ψ3/2Ψ3/2) �
1

288π〈KT 1T̄ 1〉

∣∣∣∣
〈
DT 1W

W

〉∣∣∣∣
2 m5

T 1

m2
3/2M

2
Pl

� 1

288π〈KT 1T̄ 1N〉
mT 1m2

3/2

M2
Pl

� 1.6× 10−18
( m3/2

400GeV

)2

GeV, (3.32)

which is calculated from the couplings in Eq. (3.31). The factor m−2
3/2 originating from the

longitudinal mode of the gravitino enhances the decay width. It would produce an enough
amount of gravitinos and threaten to spoil the successful BBN. However, the above direct
decay can be neglected thanks to the almost vanishing 〈F 〉-term of the inflaton as shown in
Eq. (3.22). The main decay channel of inflaton is derived from the following Lagrangian,

LTgg = − 1

4(gr)2
F r
μνF

rμν − 1

4
ξrJ ′δT J ′

R F r
μνF

rμν − 1

8
ξrJ ′δT J ′

I εμνρσF r
μνF

r
ρσ, (3.33)

with T J ′
R = ReT J ′

and T J ′
I = ImT J ′

. The gauge kinetic functions fr(X,T ) are now considered
as in Eq. (3.6), where the R-symmetry breaking term such as ξrXX is assumed in the gauge
kinetic function. Note that the R-symmetry is also explicitly broken by the existence of constant
superpotential w in Eq. (3.15).

The main decay width from the inflaton into the gauge-boson pairs (g(r)+ g(r)) is estimated
as

3∑
r=1

Γ(σ1 → g(r)g(r)) �
3∑

r=1

N r
G

128π

〈
ξr3√

2KT 1T̄ 1

〉2
m3

T 1

M2
Pl

� 3.95 GeV, (3.34)
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with the numerical values of mass and vacuum expectation value of inflaton (2.8) and (2.25).
As shown in Sec. 2.2.3, the number of gauge bosons N r

G is that of MSSM and the coefficients in
the gauge kinetic function (free parameters in 5D SUGRA) are chosen as ξ11 = ξ21 = ξ21 = 0.22
otherwise zero so that the gauge coupling unification at the GUT scale is realized.

Although the inflaton also decays into the gauginos λr with the following interactions,

LTλλ = − i

2

∑
r

Re fr(λ
rσμDμλ̄r + (H.c.)) +

i

2

∑
r

Im frDμ(λ
rσμλ̄r)

+
∑
r

(
1

4

∂fr
∂T I′F

T I′
λrλr + (H.c.)

)
, (3.35)

with Dμλ
r being the covariant derivative with respect to gaugino, the above decay channels are

suppressed by the gaugino masses and almost vanishing F-term of inflaton such as

3∑
r=1

Γ(σ1 → λ̃rλ̃r) �
3∑

r=1

mT 1

16π

(ξr1)
2m2

λr

M2
Pl

� 1.5× 10−21

3∑
r=1

(ξr1)
2
( mλr

1.5TeV

)2

GeV, (3.36)

where λ̃r are the canonically normalized gauginos. Now, the derivative of F-term for the inflaton
is estimated as,〈

∂F T 1

∂T 1

〉
=

〈
∂

∂T 1
eK/2

(
KT 1T̄ 1 |DT 1W |2 +KT 1H̄1DT 1WDH1W

)〉
∼ O

(
m4

3/2

m2
T 1

)
. (3.37)

Finally, we comment on the other decay processes. When the masses of sfermions are much
smaller than that of the inflaton field, the inflaton decay into the sfermions is suppressed by the
factor, msfermion/mT 1 . The inflaton decay into the fermion pairs and quark-quark-gluon are also
negligible compared with the main decay channel owing to their small masses and phase factors,
as pointed out in Ref. [65]. In our setup, the inflaton decay process via a μ-term is irrelevant
in our estimation as will be shown in Sec. 3.7.1. This is because μ-term is smaller enough
than the inflaton mass mT 1 . Since SUSY is broken at the vacuum, the inflaton can decay into
superpartner of inflaton field, so-called the modulino, and gravitino. The SUSY-breaking, in
particular, the gravitino mass determine not only the mass difference between the inflaton and
modulino, but also the mixing terms between T 1 and H1 in their mass-squared matrices. One
can then find that the inflaton decay width into the modulino σ̃1 and gravitino is given by

Γ(σ1 → σ̃1Ψ3/2) �
1

48π

(
mT 1

MPl

)2(m3/2

mT 1

)
m3/2 � 7.2× 10−22

( m3/2

400GeV

)2

GeV, (3.38)

with mT 1 � 4 × 1012GeV given by Eq. (3.23). By a similar argument as in the case of
other decay channels, the phase factor m3/2/mT 1 leads to the small amount of gravitino. As
mentioned before, we take the ansatz that X does not have a U(1)1 charge for the 5D Z2-odd
vector multiplet carrying the inflaton field. Thus, the inflaton decay into the SUSY-breaking
field X is also suppressed, because of the vanishing tree-level interaction between X and T 1.
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In summary, the total decay width and the branching ratios of the inflaton decaying into the
gravitino(s) are

Γσ1

all ≡ Γ(σ1 → all) �
3∑

r=1

Γ(σ1 → g(r)g(r)) � 3.95 GeV,

Br(σ1 → Ψ3/2Ψ3/2) �
Γ(σ1 → Ψ3/2Ψ3/2)

Γσ1

all

� 1.4× 10−20,

Br(σ1 → σ̃1Ψ3/2) �
Γ(σ1 → σ̃1Ψ3/2)

Γσ1

all

� 1.8× 10−22, (3.39)

in the case of m3/2 = 395GeV. As discussed in Sec. 2.2.3, the reheating temperature TR �
1.38×109GeV is estimated in Eq. (2.39) by equating the total decay width of inflaton Γσ1

all with
the Hubble parameter HR. The tiny branching ratio of the inflaton decay into the gravitino(s)
reduces the nonthermally generated gravitino yield Y3/2,

Y3/2 =
n3/2

s
� Br(σ1 → σ̃1Ψ3/2)

3TR

4mT 1

� 3.8× 10−24, (3.40)

with m3/2 = 395GeV, TR = 1.38 × 109 GeV and s = 4ρ/3T . n3/2, s, and ρ represent the
number density of the gravitino, entropy and energy densities of the Universe, respectively. In
the previous calculation, we assume that the oscillating energy of inflaton field dominates that
of the Universe after the inflation and the energy densities of other fields will be analyzed in
the next section.

We stress that the gravitino nonthermally generated through the inflaton decay can be
suppressed by the structure of the supersymmetric moduli stabilization and inflation. Thus, it
is expected that supersymmetric moduli inflation would give the solution to the cosmological
moduli problem, in particular, the moduli-induced gravitino problem. We show an another
gravitino production through the stabilizer fields, the SUSY-breaking field, and the thermal
bath in the next section.

3.6.2 The decay of stabilizer and SUSY-breaking fields

Next, we discuss the decay of stabilizer field H1 and SUSY-breaking field X. Their imaginary
components ImH1 and ImX stay at the origin during and after the inflation. Hence, they do
not oscillate as explicitly shown in Appendix A. By contrast, the real parts of stabilizer field
h1 = ReH1 and SUSY-breaking field x = ReX are stabilized at the values close to the origin by
the Hubble induced masses during the inflation. When the Hubble parameters are comparable
to the mass scales of h1 and x after the inflation, they oscillate around their SUSY-breaking
minima of potential (3.21) evaluated by the reference point method (3.16).

The results of Appendix A allow us to write down the amplitudes of both fields

Δh1 �
m3/2

mH1

, Δx �
(
m3/2

mX

)2

. (3.41)
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First of all, we take into account the dynamics of h1. From the mass of h1 given in Eq. (3.23)
and the reheating temperature (2.39), h1 stars to oscillate before the reheating process, i.e.,
Hh1

osc � mh1 � H(TR), where Hosc is the Hubble parameter at the beginning of its oscillation.
When there are no interactions between H1 and fields in the MSSM, H1 mainly decays into the
gravitino pairs ‡,

Γh1
all ≡ Γ(h1 → Ψ3/2Ψ3/2) �

1

288πKH1H̄1

∣∣∣∣
〈
DH1W

W

〉∣∣∣∣
2 m5

H1

m2
3/2M

2
Pl.

� 1

288π〈KH1H̄1
N〉

m3
H1

M2
Pl

� 0.02 GeV, (3.42)

from which, h1 decays after the coherent oscillation of h1 and reheating process, i.e., Hh1
osc >

H(TR) > Hh1
dec, with Hh1

osc � mh1 and Hh1
dec � Γ(h1 → Ψ3/2Ψ3/2). Here and in what follows, we

represent HR, H
Φ
osc, and HΦ

dec as the Hubble parameters at the moment of reheating, beginning
of oscillation of relevant fields Φ, and decay of Φ, respectively. Correspondingly, the scale
factors of 4D spacetime aR, a

Φ
osc, and aΦdec are also defined in a similar fashion to the Hubble

parameters presented above.
When h1 oscillates after the inflation around its SUSY-breaking minimum, its oscillating

energy density is represented as

ρh1 �
1

2
m2

H1
(Δh1)

2 � 1

2
m2

3/2

(
a

ah1
osc

)−3

, (3.43)

which is converted into the gravitino yield,

Y h1

3/2 =
2ρh1

mH1s
� 1

4

m2
3/2TR

m3
H1

� 8.2× 10−25
( m3/2

400GeV

)2

, (3.44)

with TR = 1.38 × 109GeV, mH1 = 4 × 1012 GeV and s is the entropy density of the Universe.
As can be seen in the following inequality, h1 does not dominate the Universe and release a
sizable amount of entropy,

1 � ρh1

ρR

∣∣∣∣
T=T

h1
dec

=
ρh1

ρ

∣∣∣∣
end

(
TR

T
t
h1
dec

)
�

m2
3/2M

2
Pl

2Vinf

(
TR

T
t
h1
dec

)
, (3.45)

where ρh1 (ρR) is the energy density of h1 (radiation). In addition, ρ|end = Vinf � O(10−13)
stands for the energy density at the end of inflation and T h1

dec corresponds to the decay temper-
ature of h1,

T h1
dec =

(
π2g∗

90

)−1/4√
Γh1
allMPl � 8.6× 107 GeV. (3.46)

The tiny mass of the gravitino contributes to the suppression of the amplitude of h1 and its
energy density.

‡Even if H1 couples to the standard model field, the conclusion is the same as that of the following discussion.
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Next, we discuss the dynamics of SUSY-breaking field x. The production of gravitinos
through x decay is evaluated from the following dominant decay width,

Γ(x → Ψ3/2Ψ3/2) �
1

288π〈KXX̄〉

∣∣∣∣
〈
DXW

W

〉∣∣∣∣
2 m5

X

m2
3/2M

2
Pl

� 1

288π〈KXX̄〉
∣∣∣ ν
w

∣∣∣2 m5
X

m2
3/2M

2
Pl

. (3.47)

which is enhanced by the factor m−2
3/2 originating from the longitudinal mode of the gravitino.

By employing the parameters (3.26), the VEVs of moduli (2.8), and masses of gravitino Ψ3/2

and SUSY-breaking field X (3.27), the total decay width of x is estimated as

Γx
all ≡ Γ(x → Ψ3/2Ψ3/2) � 3.7× 108 GeV. (3.48)

Thus, the reheating process starts after the oscillation and decay of x = ReX, that is, Hx
osc >

Hx
dec � H(TR), with Hx

osc � mX and Hx
dec � Γ(x → Ψ3/2Ψ3/2). The energy density of the

coherent oscillation x at the reheating

ρx � 1

2
m2

x(Δx)2 � 1

2

(
m4

3/2

m2
x

)(
axdec
axosc

)−3(
aR
axdec

)−4

, (3.49)

is converted into gravitino yield which is relativistic at the production,

Y x
3/2 =

2ρx
mxs

� 3

2

TR

mX

(
m3/2

mX

)16/3
(
Γσ3

all

Γx
all

)2/3

� 2× 10−32
( m3/2

400GeV

)16/3

. (3.50)

Now, the scale factors are related as,

aR
aσ1

osc

=

(√
6Γσ1

all

mT 1

)−2/3

,
axosc
aσ3

osc

=

(√
6mX

mT 1

)−2/3

,
axdec
aσ3

osc

=

(
6(Γx

all mX)
2

m4
3/2

)−1/3

, (3.51)

and the numerical values are given in Eqs. (3.27), (3.39), (2.39), and (3.48). Since x decaying
into the gravitino is negligible because of the tiny mass of the gravitino, it implies that the
gravitino production from x decay is not the dominant source for the relic abundance of gravitino
reported by Planck. At the same time, x does not produce a sizable entropy in a way similar
to the case of h1. Our results are consistent with the studies in Ref. [67], which suggest that
the gravitino production is significantly relaxed under the condition m3/2 
 mX 
 mT 1 ≤ Λ.
When Λ is smaller than the inflaton mass, i.e., mT 1 ≥ Λ, the inflaton would decays into the
fields in the hidden sector which also produce the gravitino fields. In the next section, we show
the thermal production of gravitino, which will explain the current relic abundance of gravitino.

3.7 The Higgs boson mass, gravitino dark matter and

sparticle spectra

3.7.1 Yukawa couplings and naturalness

Before going to the detail of the relic abundance of gravitino, we analyze the Yukawa couplings
and μ-term included in the superpotential of MSSM. The holomorphic superpotential can be
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only introduced at the orbifold fixed points y = 0, L, where the N = 2 SUSY is partially broken
down to the N = 1 SUSY. First, the Yukawa couplings among the MSSM chiral multiplets and
(s)neutrinos chiral multiplets involved in the hypermultiplets Φα are written as

WYukawa = λu
ijQiHuUj + λd

ijQiHdDj + λe
ijLiHdEj + λn

ijLiHuNj, (3.52)

where λu,d,e,n
ij are the holomorphic Yukawa coupling constants. We choose the size of λu,d,e,n

ij

as of O(1). Furthermore, the R-charge of the chiral multiplets in Eq. (3.4) (Rφ) is assigned as
RX = RHa = 2, RQi

= RUi
= RDi

= RLi
= REi = RNi

= 1, RHu = RHd
= 0. After canonically

normalizing their matter chiral multiplets, the physical Yukawa couplings are obtained as

yuij =
λu
ij√

〈YQi
YHuYUj

〉
, ydij =

λd
ij√

〈YQi
YHd

YDj
〉
, yeij =

λe
ij√

〈YLi
YHd

YEj〉
, ynij =

λn
ij√

〈YLi
YHuYNj

〉
,

(3.53)

where

Ya ≡ 2N 1/3(ReT )
{
Y (ca · T ) + Ω̃

(4)
a,X(ReT )|X|2 +O(|X|4)

}
� 2N 1/3(ReT )Y (ca · T ), (3.54)

with an almost vanishing vacuum expectation value of X. The function Y (z) is always positive,
and is approximated as

Y (z) ≡ 1− e−2Rez

2Rez
�
{

1
2Re z

Re z > 0,
1

2|Rez|exp(2|Rez|) Re z < 0,
(3.55)

which reflects the fact that the wavefunctions of fields in the fifth direction are localized toward
y = 0 (y = L) when ca · 〈ReT 〉 is positive (negative). When all the relevant fields are localized
toward y = 0, the size of Yukawa couplings yu,d,e,nij are of O(1). On the other hand, in the
localized case toward y = L, the Yukawa coupling constants among relevant matter fields are
exponentially small. It is thus possible to realize the hierarchical Yukawa couplings of quarks
and leptons, and the tiny Yukawa couplings of neutrinos, even in the case of Dirac neutrinos. As
shown in Tables 3.1 and 3.2, we find that the observed masses and mixing angles of quarks and
leptons at the EW scale are obtained by setting the proper U(1)I′ charges of matter fields and
the holomorphic Yukawa couplings λu,d,e,n

i,j with of O(1). Their numerical values are obtained
by solving the full one-loop RG group equations of the MSSM from the GUT scale to EW scale.

Interestingly, the U(1)I′ charge assignments of matter fields give rise not only to the observed
hierarchical masses and mixing angles among the elementary particles, but also to the flavor
structure of the soft SUSY-breaking terms which are derived from the four-point couplings be-
tween the SUSY-breaking field and the matter multiplets in the effective Kähler potential (3.9).
The soft SUSY-breaking terms are characterized by the Lagrangian,

Lsoft =−
∑
α

m2
Sα
|Sα|2 −

(
1

2

3∑
r=1

Mrλ
rλr +

1

6

∑
α,β,γ

aαβγSαSβSγ +Bμhuhd + h.c.

)
, (3.56)
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cI
′=3

Qi
= (0.1, 0.1, 1.1) cI

′=3
Li

= (0.1, 0.1, 1.6) cI
′=3

Hu
= 0

cI
′=2

Qi
= (−0.1,−0.1, 0.8) cI

′=2
Li

= (−0.1,−0.1, 0) cI
′=2

Hu
= 0.1

cI
′=1

Qi
= (0.1, 0.4, 1) cI

′=1
Li

= (0.1, 0.5, 0) cI
′=1

Hu
= −0.9

cI
′=3

Ui
= (0.1, 0.1, 0.6) cI

′=3
Ei = (0.1, 0.2, 0.2) cI

′=3
Hd

= 0

cI
′=2

Ui
= (−0.1,−0.1, 0.3) cI

′=2
Ei = (−0.1,−0.1, 0) cI

′=2
Hd

= 0
cI

′=1
Ui

= (−0.2, 0.2, 1) cI
′=1

Ei = (−0.2, 0, − 0.5) cI
′=1

Hd
= −0.1

cI
′=3

Di
= (0.1, 0.1, 0.2) cI

′=3
Ni

= (0.1, 0.1, 0.1)

cI
′=2

Di
= (−0.1,−0.1, 0) cI

′=2
Ni

= (−0.3,−0.3,−0.3)
cI

′=1
Di

= (0.3, 0.2, − 0.5) cI
′=1

Ni
= (−0.7, − 0.7, − 0.7)

Table 3.1: U(1)I′ charge assignments of the quarks, leptons, and Higgs for the Z2-odd vector
multiplets V I′ in Ref. [7].

|λu
ij| |λd

ij|⎛
⎝ 0.32 0.35 0.95

0.22 0.42 0.33
0.51 0.48 1.5

⎞
⎠

⎛
⎝ 0.45 0.5 0.59

0.28 0.24 0.38
1.03 1.02 0.81

⎞
⎠

|λe
ij| |λn

ij|⎛
⎝ 0.28 0.22 0.52

0.4 1.15 0.31
0.8 1.02 1.05

⎞
⎠

⎛
⎝ 0.77 0.85 0.69

0.25 0.98 0.58
0.34 0.26 1.03

⎞
⎠

Table 3.2: The holomorphic Yukawa coupling constants λu,d,e,n
ij in the superpotential (3.52) [7].

where Sα = hu, hd, q̃i, ũi, d̃i, l̃i, ẽi, ν̃i are the scalar components of Hu,Hd,Qi,Ui,Di, Li, Ei, Ni

and λr (r = 1, 2, 3) are the gauginos. The soft SUSY-breaking masses and trilinear scalar
couplings (A-terms) are determined as [56, 57],

m2
Sα

= −〈F IF̄ J̄∂I∂J̄ ln(ŶSα)〉, aαβγ = yαβγ〈F I∂J ln(ŶSαŶSβ
ŶSγ )〉, (3.57)

where the indices I and J run over all the chiral multiplets. As a counterpart of μ-term in the
MSSM, we consider the following superpotential,

Wμ =
3∑

i=1

κiHiHuHd, (3.58)

with κi being the O(1) dimensionless couplings. The R-charge is assigned to the stabilizer chiral
multiplets as 2 and Higgs chiral multiplets as 0, respectively. Even if we add the above cubic

50



Sparticles Mass [GeV] (S)Particles Mass [GeV]
mQ̃1

1682 mL̃3
2834

mQ̃2
1530 mẼ1 1157

mQ̃3
581 mẼ2 2390

mŨ1
1157 mẼ3 2298

mŨ2
1698 mÑ1

414.5
mŨ3

799 mÑ2
414.5

mD̃1
1636 mÑ3

414.5
mD̃2

1698 MHu 1100
mD̃3

2298 MHd
298.5

mL̃1
1682 M3 550

mL̃2
1396

Table 3.3: The soft scalar masses mQ̃α
, the up-and down-type Higgs boson masses MHu,d

, and

the gluino mass M3 at the GUT scale in Ref. [7]. The subscripts Q̃α denote the mass eigenstates
for the three-generations of left-handed Q̃i, up-type right-handed Ũi, down-type right-handed
D̃i squarks, left-handed L̃i, right-handed Ẽi charged sleptons, and right-handed sneutrinos Ñi

with i = 1, 2, 3.

interactions between the stabilizer fields and Higgs fields, the moduli stabilization and inflation
scenario in Sec. 2.2 are irrelevant to their dynamics. This is because their vacuum expectation
values are almost vanishing at the vacuum. Thus, the effective μ-term at the GUT scale is
generated by the existence of nonvanishing vacuum expectation values of Hi. It is expressed as

μ =
3∑

i=1

κi〈Hi〉
〈YHi

YHuYHd
〉 , (3.59)

where the relevant fields are canonically normalized. The above μ-term could be chosen as TeV
scale, e.g., in the case of κ1 = κ2 = 0, κ3 = 2/3, m3/2 = 395GeV, mH3 � 4.8 × 1015 GeV, and
〈H3〉 � m3/2/mH1 given by Eq. (3.21),

μ � 3.8× 10−3m3/2

mH3

MPl � O(m3/2). (3.60)

The suppression factor 3.8×10−3 is related to the mild large volume of fifth dimension. One can
also consider the origin of μ- and Bμ-terms as the Giudice-Masiero terms [68] in the boundary
Kähler potential at y = 0,

K(0) = cHuHd + h.c., (3.61)

with c being a constant, that leads to μ-and Bμ-terms of the order of gravitino mass,

μ � cm3/2, Bμ � −cm2
3/2. (3.62)
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These holomorphic terms do not have an origin in the bulk Kähler potential (3.7) in the nature
of N = 2 SUSY.

As a result, one can estimate the masses and coupling constants of supersymmetric particles.
In Table 3.3, the soft scalar masses and gluino masses at the GUT scale are summarized by
employing the U(1)I′ charges in Table 3.1 and the F-term of the SUSY-breaking field X given
by Eq. (3.27). On the other hand, the tiny F-terms of moduli give rise to the almost vanishing
A-terms. In the light of relic abundance of gravitino and Higgs boson mass, we parametrize
the ratios of gaugino masses at the GUT scale as

r1 =
M1(MGUT)

M3(MGUT)
, r2 =

M2(MGUT)

M3(MGUT)
, (3.63)

where Mr(MGUT), r = 1, 2, 3 represent the bino, wino, and gluino masses at the GUT scale.
Their ratios can be changed by the parameters ξaX in the gauge kinetic function (3.6) without
spoiling the gauge coupling unification at the GUT scale. This is because the SUSY-breaking
field X is irrelevant to the size of gauge couplings owing to its tiny vacuum expectation value.

After the EW symmetry breaking, the Z-boson mass mZ and soft SUSY-breaking masses
of the up-type Higgs mHu satisfies the following relation at the EW scale,

m2
Z

2
� −m2

Hu
(MEW)− |μ(MEW)|2 +O

(
1

tan2β

)
, (3.64)

where μ(MEW) and mHu(MEW) are the μ-term and mHu at the EW scale, respectively. Here,
we take the limit of large value of tanβ to realize the correct Higgs boson mass in the low-
scale SUSY-breaking scenario. In order to obtain the observed Z-boson mass, the μ-term and
up-type Higgs boson mass are typically of the order of the Z-boson mass mZ = 91.2 GeV,
otherwise we have to properly tune both terms. As a measure of degree of tuning of μ-term at
the GUT scale, we introduce the so-called Barbieri-Giudice parameter [69], 100×|Δ−1

μ | % with

Δμ =
1

2

∂ lnm2
Z

∂ ln |μ| . (3.65)

In the following, we explore the parameter regions on the place of the ratio of gaugino masses
to obtain the observed Higgs boson mass and correct relic abundance of gravitino without
demanding the fine-tunings.

We remark about the origin of neutrino masses and related phenomenology. Although
we focus on the Dirac neutrinos, one can introduce the mass terms of Majorana neutrinos
under a different ansatz of R-charges of matter fields that also explain the tiny masses of
the neutrinos by employing the see-saw mechanism [70]. In such a case, these terms would
be inserted in the superpotential at the other boundary y = L to obtain the correct mass
scale of Majorana neutrino. In terms of O(1) parameters κij and the U(1)I′=i charges of the
Majorana neutrino chiral multipletsNi for the U(1)I′=i vector multiplets V I′ , the superpotential

is obtained as W = κije
−2c

Ni
I′ T̂

I′
NiNj. As discussed in Ref. [71], the inflaton decays into the

Majorana neutrinos, i.e., T 1 → N1N1 after the inflation. When the Majorana neutrino is
not thermalized, the nonthermally generated Majorana neutrinos induce the lepton-number
violations and hereafter baryon asymmetry is generated by the sphaleron process [72, 73, 74],
known as the nonthermal leptogenesis [75].
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3.7.2 Relic abundance of gravitino dark matter

In this section, we estimate the relic abundance of the gravitino by employing the obtained
sparticle spectrum. The discussion in Sec. 3.6 indicates that the gravitino is not efficiently
produced by the decay of inflaton, heavy moduli, stabilizer, and SUSY-breaking fields after the
inflation. However, for the thermal bath that is occupied of the relativistic particles after the
reheating process, the gravitinos are thermally produced by the particles in the MSSM. The
light supersymmetric particles would also produce the gravitino at their decoupling time.

First, we study the thermal production of gravitino from the thermal bath. The dominant
production channel comes from the scattering between gauginos and gravitinos, provided that
the couplings among them are not suppressed. On the other hand, other production channels
through the sparticles are more suppressed than those of gauginos as discussed in Refs. [76, 77].
The authors of Refs. [76, 77] show that the abundance of gravitino is written in terms of
numerical parameters wr = (11, 27, 72) and kr = (1.266, 1.312, 1.271) in Ref. [77],

ΩTP
3/2h

2 =
3∑

r=1

(
1 +

Mr(TR)
2

3m2
3/2

)
wrgr(TR)

2 ln

(
kr

gr(TR)

)(
m3/2

100GeV

)(
TR

1010GeV

)
, (3.66)

where h is dimensionless Hubble parameter. We plot the thermal abundance of gravitino
in Fig. 3.1 as a function of the ratios of gaugino masses at the GUT scale MGUT, r1 =
M1(MGUT)/M3(MGUT) and r2 = M2(MGUT)/M3(MGUT) with M3(MGUT) = 550 GeV. Here,
we suppose that the gaugino masses at the reheating temperature Mr(TR) are given by those
at GUT scale Ma(MGUT) by employing the one-loop RG equations in the MSSM. In Fig. 3.1,
the dotted curves correspond to the upper and lower limits of dark matter abundance 0.1175 ≤
ΩTP

3/2h
2 ≤ 0.1219 reported by the Planck Collaboration [15, 16]. It is now assumed that the relic

abundance of dark matter only consists of the thermally produced gravitino.

NNLSP(Higgsino-like neutralino) mass[GeV]
χ̃0
1 441

NLSPs(right-handed sneutrinos) mass[GeV]
ν̃e2 415
ν̃μ2 415
ν̃τ2 415

LSP(gravitino) mass[GeV]
Ψ3/2 395

Table 3.4: The masses of NNLSP, NLSPs, and the gravitino at the EW scale for the reference
point (r1, r2) = (6, 3.5) in Ref. [7]. The subscripts denote the mass eigenstates for the sneutrinos
(ν̃) and the Higgsino-like neutralino (χ̃).

Next, we show the nonthermal productions of gravitino from the decay of the light super-
symmetric particles such as the NLSP and/or next-to-next-to-lightest supersymmetric particle
(NNLSP). Let us take the ratios of gaugino masses (r1, r2) = (6, 3.5) in a consistent way with
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0.1175
0.1219

Figure 3.1: The thermal abundance of gravitino within the range of Planck data [15, 16],
0.1175 ≤ ΩTP

3/2h
2 ≤ 0.1219. As drawn in Ref. [7], it is dependent on the ratios of gaugino masses

r1 and r2.

the observed relic abundance of dark matter as drawn in Fig. 3.1. By solving the full one-loop
RG equations in the MSSM from GUT to EW scales with (r1, r2) = (6, 3.5) and the input pa-
rameters in Table 3.3, one can obtain the sparticle spectra. As shown in Table 3.4, the NLSPs
and NNLSP are identified as three degenerate sneutrinos and Higgsino-like neutralino. The
full sparticle spectra are shown in the next section. Since the tiny Yukawa couplings of Dirac-
type neutrinos suppress the couplings between the degenerate sneutrinos and other (s)particles,
loop-corrections are negligible for the soft SUSY-breaking masses of right-handed sneutrinos.
It implies that the interactions of gravitino and right-handed sneutrinos are so suppressed that
they are not thermalized. In this respect, the abundance of nonthermal gravitino produced by
the higgsino-like neutralino is roughly estimated in terms of mass and the thermal abundance
of the Higgsino-like neutralino χ̃0

1, mχ̃0
1
and Ωχ̃0

1
,

ΩNTP
3/2 h2 =

m3/2

mχ̃0
1

Ωχ̃0
1
h2. (3.67)

In the low-scale SUSY-breaking scenario, that is, μ < O(500)GeV, the thermal abundance of
Higgsino-like neutralino is suppressed by the large annihilation cross section which originates
from the nature of degenerated chargino and Higgsino-like neutralino. Then, the decoupled
time of both chargino and Higgsino-like neutralino are almost the same as each other. As a
result, the abundance of nonthermal gravitino is outside the current sensitivity of Planck,

ΩNTP
3/2 h2 
 0.11, (3.68)

and then the relic abundance of gravitino is given by its thermal abundance as mentioned
before,

Ω3/2h
2 � ΩTP

3/2h
2. (3.69)
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0.1175

0.1219

10 %

1 %

124.4 GeV

Figure 3.2: The blue shaded regions correspond to the Higgs boson mass resides in the allowed
range, 124.4 ≤ mh ≤ 126.8GeV [39]. The green dashed (solid) line represents the 1% (10%
) tuning the μ-term, |Δμ| × 100(%). The relic abundance of the gravitino Ω3/2h

2 corresponds
to the red dashed curves constrained within the ranges 0.1179 ≤ Ω3/2h

2 ≤ 0.1215 by the
Planck [15, 16]. This figure is shown in Ref. [7].

However, the neutralino and sneutrinos decay into the gravitino dark matter after the BBN.
The electronic and hadronic showers released by the their decay threaten to spoil the successful
BBN. Although the right-handed neutrinos are produced associated with the sneutrino decay
into the gravitino, their abundance is suppressed and harmless for the BBN.

For the Higgsino-like neutralino decay, one can relax the constraints from the BBN when
the NLSP occupies the Dirac-type right-handed sneutrinos [78]. The result of Ref. [78] in the
case of bino-like neutralino NNLSP is also applied in our setup, because the sparticle spectrum
is almost the same. Thus, the small thermal abundance of Higgsino-like neutralino reduces the
constraints from BBN data. The bino-like neutralino can be also considered in our scenario by
choosing the small value of |r1| in Fig. 3.1. However, the nonthermal production of gravitino
enhanced by the large thermal abundance of bino-like neutralino would break the successful
BBN as discussed in Refs. [48, 55, 78].

3.7.3 Results

In the previous section, it is found that the relic abundance of gravitino constrains the ratios of
gaugino masses at the GUT scale, r1 and r2 as illustrated in Fig. 3.1. On top of that, we show
that the mass of Higgs boson gives the further constraints on r1 and r2 in this section. One of
the two Higgs bosons in the MSSM, in particular, the lightest CP-even Higgs boson becomes
a plausible candidate of that of standard model. The low-scale SUSY-breaking scenario in
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the MSSM is difficult to achieve the realistic Higgs boson mass. Since it is of the order of the
Z-boson mass at the tree-level, the loop corrections play an important role for raising the Higgs
boson mass to be consistent with the LHC experiment [79]. Moreover, the recent LHC data
implies that such loop-corrections have to be maximally enhanced that can be realized by the
maximal mixing of left-and right-handed top squarks. When the mass eigenstates of these top
squarks are nearly degenerated, it could be difficult to realize the observed lightest CP-even
Higgs boson mass. As pointed out in Ref. [40], the certain nonuniversal gaugino masses are
relevant to realize such an enhancement through the renomralization group effects and at the
same time, the degree of tuning the μ-parameter can be relaxed. This is because the up-type
Higgs boson mass appearing in Eq. (3.64) can be suppressed by the certain ratios of gaugino
masses.

In this regard, we analyze the full one-loop renormalization group equations of the MSSM
from GUT scale to the EW scale by scanning the ratio of nonuniversal gaugino masses r1 and
r2. The numerical calculation of Higgs boson mass and the degree of tuning the μ-parameter,
|Δμ| × 100%, are drawn in Fig. 3.2. It is then found that the blue-colored region resides in
the range of 124.4 ≤ mh ≤ 126.8 [39], whereas the green dashed and solid lines correspond to
the degree of tuning the μ-parameter 1% and 10%, respectively. Thus, there are parameter
regions which lead to the correct relic abundance of gravitino and the observed Higgs boson
mass simultaneously without a severe fine-tuning.

In Tables 3.4, 3.5, and 3.6, we show a typical sparticle spectrum, the Higgs boson mass mh,
and the degree of tuning the μ-parameter |Δμ| × 100(%) for the benchmark point (r1, r2) =
(6, 3.5). Our results are consistent with the experimental lower bounds for all the sparticle
masses reported by the LHC experiments in Refs. [51] and [80]. In the gravity-mediated SUSY-
breaking scenario, the flavor dependent interactions in general cause the dangerous SUSY flavor
violations. However, in our setup, the flavor dependent soft SUSY-breaking terms induced by
the A-terms are suppressed by the vanishing F-terms of moduli fields. Even if the moduli fields
have the sizable F-terms at the vacuum, the SUSY flavor violating interactions are controlled
by the U(1)I′ charge assignments of matter fields [81]. As a result, dangerous SUSY flavor-
violating interactions in the decay channels such as μ → eγ and b → sγ are not discriminated
by the present sensitivity of experiments [82, 83]. In the next chapter, we discuss the high-scale
SUSY-breaking scenario considered as another simple solution to raise the Higgs boson mass
and avoid the SUSY flavor violations by allowing some demanding the tuning of parameters to
obtain the EW vacuum.

3.8 Summary

In an former part of this chapter, we have discussed the several SUSY-breaking scenarios on
the basis of the 4D N = 1 SUGRA in the light of gravitino mass. In particular, we focus on the
gravity-mediated SUSY-breaking scenario where the gravitino is the lightest supersymmetric
particle, i.e, the gravitino dark matter that is triggered by the nontrivial Kähler metric of the
SUSY-breaking field. With the small Kähler metric of SUSY-breaking field, the gravitino mass
becomes small compared with those of other supersymmetric particles without relying on the
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Sparticles Mass[GeV] Sparticles Mass[GeV]
mũ1 2618 mẽ1 3241
mũ2 2359 mẽ2 2525
mc̃1 2520 mμ̃1 2421
mc̃2 2011 mμ̃2 2331
mt̃1 1735 mτ̃1 2133
mt̃2 974 mτ̃2 1447
md̃1

2625 mν̃e1
3240

md̃2
2620 mν̃e2

415

ms̃1 2522 mν̃μ1
2330

ms̃2 2189 mν̃μ2
415

mb̃1
2117 mν̃τ1

2132

mb̃2
1724 mν̃τ2

415

mχ̃0
4

1723 mχ̃±
1

444

mχ̃0
3

1135 mχ̃±
2

1723

mχ̃0
2

448

mχ̃0
1

441

Table 3.5: The mass eigenvalues of sparticle spectra at the EW scale for the reference point,
(r1, r2) = (6, 3.5) in Ref. [7]. The subscripts denote the mass eigenstates of sparticles such as
up (ũ), charm (c̃), top (t̃), down (d̃), strange (s̃), bottom (b̃) squarks, the scalar electron (ẽ),
muon (μ̃), tauon (τ̃), neutrino (ν̃), the neutralino (χ̃), and the chargino (χ̃±).

details of SUSY breaking mechanism. Thus, one can consider the gravitino dark matter with
low-scale SUSY-breaking scenario where the cosmological gravitino problem is solved if NLSP
decays do not spoil the success of BBN. Note that here the gauge kinetic functions and the
kinetic terms of the matter fields should satisfy certain conditions as discussed in the case of
CMSSM [58].

Since the abundance of gravitino depends on the moduli and inflaton decays, as a concrete
model, we have considered the 4D N = 1 SUGRA derived from 5D SUGRA model on S1/Z2

as discussed in Chapter 2. The gravitinos produced by the moduli decays would threaten to
spoil the success of BBN when these moduli have sizable F-terms. One of the solutions to
avoid such problems is that these moduli F-terms are suppressed. Such a situation can be
realized in our supersymmetric moduli stabilization and inflation shown in Chapter 2. The
moduli, inflaton, and stabilizer fields have supersymmetric masses at their supersymmetric
vacuum. We found that, even after introducing the source of SUSY-breaking, their minima
are not so deviated from their supersymmetric one and then their F-terms are suppressed by
the gravitino mass. Although the couplings between matter fields in the MSSM and SUSY-
breaking field are controlled by their U(1) charge assignments for 5D Z2-odd vector multiplets,
they are almost uniquely determined to realize the hierarchical Yukawa couplings among the
elementary particles. In our setup, the NLSP and NNLSP are then uniquely fixed as the
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mh[GeV] mH [GeV] mA[GeV] mH±[GeV]
125.4 1423 1423 1425

Δ−1
μ × 100(%) M1(mZ)[GeV] M2(mZ)[GeV] M3(mZ)[GeV]

2.1 1133 1719 1575

Table 3.6: The masses of lightest CP-even Higgs boson mh and charged Higgs bosons mH , mA,
and mH± , the degree of tuning of the μ-parameter, |Δμ| × 100(%), and the gaugino masses at
the EW scale for the reference point (r1, r2) = (6, 3.5) in Ref. [7].

sneutrino and Higgsino-like neutralino, respectively. The small thermal abundance of Higgsino-
like neutralino leads to a negligible nonthermal productions of the gravitino. The sneutrionos
are not thermalized due to tiny Yukawa couplings of Dirac-type neutrinos. One can relax the
constraints from the BBN in these sparticle spectrum as discussed in Refs. [48, 55, 78], and
at the same time, the produced right-handed neutrinos via the sneutrino decay are irrelevant
to the BBN. Thus, the total relic abundance of gravitino dark matter is dominated by its
thermal production after the inflation, that is controlled by the gaugino masses. The authors
of Refs. [40] show that the certain ratios of gaugino masses also play an important role for
raising the Higgs boson mass in the MSSM without a severe fine-tuning. Taking these issues
into account, we find that certain ratios of gaugino masses in our model lead to both the correct
relic abundance of gravitino reported by Planck [15, 16] and observed Higgs boson mass in LHC
data [39].

So far, we concentrated on the gravitino dark matter in 5D SUGRA as one of concrete models
describing particle phenomenology and cosmology both at the same time. The suppressed
Kähler metric of the SUSY-breaking field is the key ingredient to generate the mass hierarchies
between the gravitino and other supersymmetric particles. If the 5D SUGRA model is derived
from type IIB string theory on a warped throat and/or heterotic M-theory on the Calabi-Yau
manifold [22], the SUSY-breaking sector could be originated from the gauge theory living on
D-branes and/or NS5-branes. For the case of type IIB string, the visible and SUSY-breaking
sectors can be constructed from the different types of D-branes wrapping the different cycles
in the internal manifold. The different sizes of internal cycles would lead to the hierarchical
Kähler metric between the SUSY-breaking field and matter fields in the visible sector as in the
5D model discussed here.
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Chapter 4

Moduli rolling to a MSSM vacuum
with wino dark matter

In contrast to the previous chapter, we study the 5D SUGRA with high-scale SUSY on the basis
of Ref. [11]. Before going to its details, we summarize the current experimental results of the
LHC. The LHC Run I results show that there is no hint of supersymmetric particles up to a scale
of O(1) TeV [38], and as we mentioned in Chapter 3, certain mechanism is required to realize
the observed Higgs boson mass [39] in the framework of MSSM with a low-scale SUSY-breaking.
Even in the case of low-scale SUSY-breaking scenario, one can achieve the observed value of
Higgs boson mass as discussed in Chapter 3. When the SUSY-breaking scale is larger than
O(10)TeV, the observed Higgs boson mass is achieved in the MSSM with split SUSY [8], spread
SUSY [9] or pure gravity mediation [10]. These high-scale SUSY-breaking models predict the
small gaugino masses compared with those of the other supersymmetric particles. In particular,
in the pure gravity mediation scenario, the gaugino masses are generated by the anomaly
mediation [43, 84], whereas the other sparticle masses are induced by the gravity-mediated
SUSY-breaking. Thus, in such a scenario, the lightest supersymmetric particle is the wino-like
neutralino that will be the dark matter candidate [43, 84]. However, one cannot determine the
relic abundance of wino-like neutralino unless we specify the thermal history of the universe
after the inflation. In addition to thermally produced wino-like neutralino, there is a nonthermal
production from the gravitino decay [85], moduli decay [50] and Q-ball [86]. In this respect, one
has to specify a concrete model to discuss the high-scale SUSY-breaking scenario with the wino
dark matter. In the following, we construct a phenomenologically successful model derived
from the 5D SUGRA on S1/Z2 with successful moduli inflation and stabilization proposed in
Chapter 2.

4.1 High-scale SUSY-breaking scenario and sparticle spec-

tra

In addition to the low-scale SUSY-breaking model in Chapter 3, we discuss a high-scale SUSY-
breaking scenario of 5D SUGRA on the basis of the previous moduli inflation and stabilization
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in Chapter. 2. The SUSY-breaking sector is set as that in the low-scale SUSY-breaking scenario
in Chapter 3. Even in this situation, one can discuss the high-scale SUSY-breaking scenario
without contradicting to the moduli inflation and the moduli stabilization, as far as the SUSY-
breaking scale is much lower than the inflation scale. In contrast to the low-scale SUSY-breaking
scenario, we do not consider the R-parity violating operator in the gauge kinetic function,
represented by f (0) = ξxX with ξx being the real parameter. Thus, the sizable gaugino masses
are not generated from the tree-level gauge kinetic function,

fr(T ) =

n′
V∑

I′=1

ξrI′T
I′ . (4.1)

due to the almost vanishing F-terms of moduli fields. The anomaly mediation generates the
gaugino masses [43, 84],

Mr =
brg

2
r

16π2
m3/2, (4.2)

where br = (33/5, 1,−3) are the beta-function coefficients in the MSSM. Now, the relevant
vacuum expectation values of conformal compensator, 〈F φ〉/〈φ〉 are replaced by the gravitino
mass m3/2, since the moduli and the stabilizer fields have almost vanishing F-terms (3.22) and
the vacuum expectation value of SUSY-breaking field X is much smaller than reduced Planck
scale (3.18).

Furthermore, there are other one-loop threshold corrections to the gaugino masses. When
the μ-term is of the order of the gravitino mass m3/2, the heavy higgsino contributes to the
gaugino masses as calculated in Refs. [84, 85],

Mr =
brcrg

2
r

16π2
μ sin2β

m2
A

|μ|2 −m2
A

ln
|μ|2
m2

A

, (4.3)

where cr = (1/11, 1, 0) and tan β = vd/vu with vu,d being the vacuum expectation values of
up-and down-type Higgs fields. Here, we take the limit, mW 
 μ,mA with mW and mA being
the masses of W-boson and CP-odd heavy Higgs boson, respectively. We explain the origin of
μ- and Bμ-terms later.

The soft SUSY-breaking masses of supersymmetric particles are derived from the four-
point couplings between X and the matter multiplets Sα in the MSSM (3.9) that depend on
the U(1)I′ charges of Sα for 5D Z2-odd vector multiplets. As shown later, typical sparticle
masses are of the order of the gravitino mass. It then turns out that these sparticle spectra
are similar to those predicted by the pure gravity mediation [10], where the gaugino masses
are lighter than other sparticle masses by one-loop factor (4.2). Then, the wino-like neutralino
corresponds to the LSP through the renormalization group effects as can be seen in Eq. (3.13).
The thermal abundance of wino LSP is determined by the wino mass that is converted into
the gravitino mass from Eq. (4.2) after solving the Boltzmann equations. On the other hand,
the nonthermal abundance of wino is highly model-dependent. Hence, on the basis of moduli
inflation as discussed in Chapter 2, we proceed to study these nonthermal abundances produced
by the decays of gravitino, moduli and stabilizer fields.
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The U(1) charges of the matter chiral multiplets in the MSSM and (s)neutrinos yield the
flavor structure of them as well as the hierarchical structure of the mass matrices of quarks and
leptons as shown in Chapter 3. In the high-scale SUSY-breaking scenario, we set the same U(1)
charges of matter fields as in the case of low-scale SUSY-breaking scenario. In addition, we
also consider the origin of μ-term as in Eq. (3.58), which leads to the μ-term of the order of the
gravitino mass (3.60). Bμ-term is obtained from the Giudice-Masiero terms [68] in Eq. (3.61).
From the soft SUSY-breaking terms defined in Eq. (3.63), the soft scalar masses are of the
order of the gravitino mass and they can be extracted from the four-point couplings between
the SUSY-breaking field X and the matter multiplets in Eq. (3.9). On the other hand, the
gaugino masses and the A-terms are almost vanishing, because the moduli and the stabilizer
fields have almost vanishing F-terms. Therefore, one-loop anomaly mediated effects are the
leading contribution to them, which yields Eq. (4.2) for gaugino masses and

aαβγ = −
(
γζ
αyζβγ + γζ

βyαζγ + γζ
γyαβζ

)
m3/2, (4.4)

for A-terms, where γβ
α = 1

16π2

(
1
2
yαβγy∗αβγ − 2g2rCr(Sα)δ

α
β

)
are the anomalous dimension with

Sα being the fields in the MSSM and Cr(Sα) are the quadratic Casimir invariants. These
anomaly mediated effects for the soft SUSY-breaking masses can be negligible compared with
the F-term of SUSY-breaking field X, that is, gravity-mediated effects. We stress that the wino
mass is constrained by the LHC experiments. The unstable gravitino must decays before the
BBN, otherwise the electronic and hadronic showers associated with the gravitino decay would
spoil the successful BBN. Thus, from Eqs. (3.13) and (4.2), the wino mass is constrained to
M2 > 200 − 250GeV. The LHC experiments searching for the disappearing tracks [87] also
give the lower bound for the wino mass M2 > 270GeV.

4.2 Relic abundance of wino dark matter

In the following, we explore the relic abundance of the wino LSP by a similar argument as
in the case of low-scale SUSY-breaking scenario in Chapter 3. Their main contributions are
categorized into two types of decay channels. First, the inflaton (σ1 = ReT 1), the real part of
stabilizer (h1 = ReH1) and SUSY-breaking fields (x = ReX) decay into the gravitino pair after
the inflation and hereafter the nonthermally produced gravitinos decay into the wino LSP at
its decoupling time. On the other hand, their imaginary parts of fields, ImT 1, ImH1 and ImX
do not oscillate around their minimum in the inflationary era and the other heavy moduli and
stabilizer fields are also irrelevant to the inflaton dynamics. Second, the thermally produced
gravitinos in the thermal plasma during the era of radiation domination decay into the wino
LSP.

First of all, we estimate the nonthermal production of gravitinos given through the decays
of σ1, h1 and x after the inflation shown in Ref. [7]. For the inflaton decays into the gravitino
pairs, the gravitino yield Y3/2 = n3/2/s written in terms of the number density of gravitino n3/2
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and the entropy density of Universe s is given by

Y σ1

3/2 � Br(σ1 → Ψ3/2Ψ3/2)
3TR

4mT 1

� 1

288π〈KT 1T̄ 1〉Γσ1

all

3m2
3/2TR

4M2
Pl

� 2× 10−19
( m3/2

105 GeV

)2
(

TR

109GeV

)
, (4.5)

where Γσ1

all � 3.95GeV is the total decay width of inflaton and TR � 1.38 × 109 GeV is the
reheating temperature, which are calculated in Sec. 3.6.

Next, the gravitino yield produced by the stabilizer field h1 = ReH1 becomes

Y h1

3/2 =
2ρh1

mH1s
� 1

4

m2
3/2TR

m3
H1

= 2.5× 10−18
( m3/2

105GeV

)2
(
1012 GeV

mH1

)3(
TR

109GeV

)
, (4.6)

with ρh1 being the energy density of field h1. Finally, the following amount of gravitino is
yielded by the decay of the SUSY-breaking field x = ReX,

Y x
3/2 �

3

2

TR

mX

(
m3/2

mX

)16/3
(
Γσ1

all

Γx
all

)2/3

� 1.2× 10−18
( m3/2

105GeV

)20/3
(
109 GeV

mX

)29/3(
TR

109GeV

)
,

(4.7)

where Γx
all is the total decay width of SUSY-breaking field x,

Γx
all � Γ(x → Ψ3/2Ψ3/2) �

1

96π

m5
X

m2
3/2M

2
Pl

. (4.8)

We conclude that the gravitino yield from the decays of σ1 and h1 is suppressed as a
consequence of almost vanishing F-terms of T 1 and H1 . However, for x decay, the gravitino
yield is sensitive to the masses of gravitino m3/2 and SUSY-breaking field mx, which is also
pointed out in Ref. [88]. Fig. 4.1 shows that the particular values of mX and m3/2 lead to a
sufficient abundance of gravitino. Throughout the above calculations, it is supposed that there
is no matter dominated era for the fields expect the inflaton field and thus inflaton releases the
entropy and reheats the universe at its decay after the inflation.

In addition, the gravitino is thermally produced in the radiation-dominated era. As dis-
cussed in Sec. 3.6, the thermal abundance of gravitino is calculated in Refs. [76, 47, 77, 89]
in terms of dimensionless Hubble parameter h, and the numerical parameters yr/10

−12 =
(0.653, 1.604, 4.276) and kr = (1.266, 1.312, 1.271) defined in Ref. [89],

Y th
3/2 =

3∑
r=1

yrgr(TR)
2

(
1 +

Mr(TR)
2

3m2
3/2

)
ln

(
kr

gr(TR)

)
×
(

TR

1010GeV

)
, (4.9)

where Mr(TR) and gr(TR) are the gaugino masses and gauge couplings in the MSSM at the
reheating temperature TR. After solving the Boltzmann equation for wino LSP (χ̃0

1), its non-
thermal abundance is estimated as [50, 86],

Y nth
χ̃0
1

� min
[
Y th
3/2 + Y σ1

3/2 + Y h1

3/2 + Y x
3/2,

√
45

8π2g∗(T3/2)

1

MPlT3/2〈σannv〉
]
, (4.10)
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where the entropy released from the gravitino decay is neglected and g∗(T3/2) � 10.75 is the
effective degrees of freedom in the MSSM at decay temperature of gravitino,

T3/2 =

(
10

π2g∗(T3/2)
M2

PlΓ
2
3/2

)1/4

. (4.11)

The gravitino decay width (Γ3/2) is determined by the gravitino decays into the gauginos in the
case of our sparticle spectrum as can be seen in Tab. 4.1. Since the other sparticles are heavier
than the gravitino, Γ3/2 is simplified as

Γ3/2 =
3

8π

m3
3/2

M2
Pl

. (4.12)

The thermally averaged annihilation cross section of the wino LSP (〈σannv〉) in Eq. (4.10) is
roughly estimated by the annihilation cross section between wino and W-boson,

〈σannv〉 =
3(g2(MEW))4

16πM2
2

, (4.13)

where it is given in the limit of mW 
 M2 and g2(MEW) is the SU(2)L gauge coupling at
the EW scale. For more details of estimating the annihilation cross section of wino LSP, refer
to, e.g., Ref. [90]. The annihilation of the nonthermally produced wino LSP can be negligible
due to its large cross section. In our setup, the wino yield produced nonthermally is then
approximately given by Y nth

χ̃0
1

� Y th
3/2 + Y σ1

3/2 + Y h1

3/2 + Y x
3/2.

Second, we estimate the thermal production of wino LSP given in the thermal plasma and
it is also roughly estimated by solving its Boltzmann equation,

Y th
χ̃0
1
�

⎛
⎝
√

8π2g∗(Tχ̃0
1
)

45
〈σannv〉MPlTχ̃0

1

⎞
⎠

−1

, (4.14)

with g∗(Tχ̃0
1
) � 80 being the effective degree of freedom in the MSSM at the freeze-out tem-

perature of wino LSP Tχ̃0
1
. When we consider the non-perturbative effects for the estima-

tion of thermal abundance of wino LSP, the wino yield is affected in the mass region above
mχ̃0

1
> O(1)TeV [91]. In such a case, the observed dark matter density is achieved for

mχ̃0
1
� 2.7TeV in the case of pure wino produced thermally.
Therefore, the sum of its thermal and nonthermal abundances contribute to the relic density

of wino LSP, i.e., Yχ̃0
1
� Y th

χ̃0
1
+ Y nth

χ̃0
1
. Since Yχ̃0

1
becomes constant at the time of low enough

temperature, the total relic density of wino LSP becomes

Ωχ̃0
1
= Ωth

χ̃0
1
+ Ωnth

χ̃0
1
, (4.15)

where
Ω

th(nth)

χ̃0
1

= mχ̃0
1
Y

th(nth)

χ̃0
1

snow
ρcr

. (4.16)
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The ratio of critical density of Universe ρcr and the present entropy density of Universe snow are
evaluated as ρcr/snow � 3.6h2×10−9GeV [16], where h � 0.673 is the present Hubble constant in
units of 100km/sec/Mpc [16]. We plot the total relic abundance of wino LSP as functions ofm3/2

and mX in Fig. 4.1. The dotted, dashed and solid contours denote the Ωχ̃0
1
h2 = 0.1, 0.11, 0.12,

respectively. The results are consistent within the range 0.1175 ≤ Ωχ̃0
1
h2 ≤ 0.1219 reported by

the Planck collaboration [15, 16]. Although, in our estimation, we do not take into account
the non-perturbative effect known as Sommerfeld effect for the annihilation cross sections of
wino [91], it is expected that the obtained result is reliable for mχ̃0

1
≤ 1TeV. Even if the non-

perturbative effect reduces an amount of thermally produced wino in the mass region above
O(1)TeV, the nonthermal production of wino compensates its total relic abundance.

In particular, with the gravitino massm3/2 = 1.4×105GeV and mass of SUSY-breaking field
mX = 2.9× 108 GeV, the total relic abundance of the wino is within the range reported by the
Planck [15, 16]. At this point, the sparticle spectra and the Higgs boson mass are summarized
in Table 4.1 by setting tan β = 4 and the U(1)I′ charges of matter fields given in Tab. 3.1.
The above numerical masses of sparticles are given by employing the one-loop RG equations of
MSSM from the SUSY-breaking scale m3/2 to the compactification scale MC � 2.1× 1016GeV,
whereas we evaluate the Higgs boson mass on the basis of the formula shown in Ref. [92]. The
sparticle spectrum in Tab. 4.1 implies that there are no dangerous SUSY flavor and CP-problems
peculiar to the supergravity models, that is a common feature in high-scale SUSY-breaking
scenario. Note that it is now supposed that the parameters w, ν,Λ in the superpotential (3.15)
are chosen so as to realize the above masses of gravitino m3/2 = e〈K/2〉〈W 〉 and SUSY-breaking
field through Eq. (3.22).

In this chapter, we have studied the particle phenomenology and cosmology on the same
footing with an emphasis on the relic abundance of wino LSP. It is possible to check these
wino dark matter scenario by the ongoing LHC 14 TeV data [93] and cosmological observations
represented by the cosmic rays from the Fermi Gamma-Ray Space Telescope [94] and AMS-02
experiment [10, 95, 96]. When the large mass of wino dark matter is excluded by collider
experiments and cosmological observations, the nonthermal production of wino LSP explicitly
shown in this chapter is quite important to realize its correct relic abundance.
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Figure 4.1: The relic abundance of the wino-like neutralino as functions of the gravitino mass
m3/2 and the mass of SUSY-breaking field mX in Ref. [11]. The dotted, dashed and solid
contours denote Ωχ̃0

1
h2 = 0.1, Ωχ̃0

1
h2 = 0.11 and Ωχ̃0

1
h2 = 0.12, respectively.
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mass[GeV] mass[GeV]
mũ1 1.3× 106 mẽ1 1.2× 106

mũ2 1.2× 106 mẽ2 9.3× 105

mc̃1 9.1× 105 mμ̃1 1.0× 106

mc̃2 8.9× 105 mμ̃2 9.0× 105

mt̃1 7.0× 105 mτ̃1 9.0× 105

mt̃2 4.1× 105 mτ̃2 8.6× 105

md̃1
1.3× 106 mν̃e1

1.2× 106

md̃2
1.3× 106 mν̃e2

1.4× 105

ms̃1 1.3× 106 mν̃μ1
1.0× 106

ms̃2 8.9× 105 mν̃μ2
1.4× 105

mb̃1
6.7× 105 mν̃τ1

8.6× 105

mb̃2
4.1× 105 mν̃τ2

1.4× 105

mχ̃0
4

7.3× 105 mχ̃±
1

377

mχ̃0
3

7.3× 105 mχ̃±
2

7.3× 105

mχ̃0
2

1227 m3/2 1.4× 105

mχ̃0
1

377 mh 125.5

M3 3896

Table 4.1: The masses of sparctiles, the Higgs boson mass mh, the gravitino mass m3/2, and
the gluino mass M3 are evaluated at the EW scale in Ref. [11]. The subscripts of sparticles
denote such as up (ũ), charm (c̃), top (t̃), down (d̃), strange (s̃), bottom (b̃) squarks, the scalar
electron (ẽ), muon (μ̃), tauon (τ̃), neutrino (ν̃), the neutralino (χ̃) and the chargino (χ̃±).

4.3 Summary

We have investigated the 5D SUGRA compactified on S1/Z2 in a high-scale SUSY-breaking
scenario. In our setup, the systematic analysis for the particle phenomenology and cosmology
can be performed on the same footing. In general, the nonthermal abundance of dark matter
is highly model-dependent and one has to study them in a concrete model. We adopted the
successful scenario for moduli inflation and stabilization explained in Chapter 2 to estimate the
relic abundance of dark matter.

The supersymmetric moduli stabilization and inflation do not lead to the gaugino masses
at the tree-level, unless the R-parity violating term is introduced in the gauge kinetic function
as discussed in Chapter 3. Thus, in our model, after introducing the SUSY-breaking sector,
the gaugino masses are dominated by the anomaly mediation and/or threshold corrections,
whereas the gravity mediation via the SUSY-breaking field dominates the other soft SUSY-
breaking terms such as sparticle masses. As commented in Chapter 2, the flavor structure of
soft SUSY-breaking terms is governed by the extra U(1) symmetries. Thus, the sparticle spectra
in this high-scale SUSY-breaking model are almost the same as those predicted by pure gravity
mediation [10] and the lightest supersymmetric particle corresponds to the wino-like neutralino,
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which would be dark matter candidate. Its relic abundance arises from the sum of thermal and
nonthermal processes after the inflation. The inflaton and moduli are supersymmetrically
stabilized at the minimum of potential so that the gravitino production from their decays is
suppressed by their negligible F-terms. As a result, the small amount of nonthermally produced
wino-like neutralino via the gravitino decay is irrelevant to the Planck data. On the other hand,
the SUSY-breaking field and thermal bath generated after the inflation produce the significant
amount of gravitino that decays into the wino LSP. The amount of wino LSP depends on the
masses of gravitino and SUSY-breaking field as shown in Fig. 4.1. The wino-like neutralino is
also produced by the thermal process in the thermal bath.

In summary, it is found that the relic abundance of wino dark matter is approximately given
by its nonthermal abundances when the mass of wino-like neutralino is smaller than O(1)TeV.
Thus, the nonthermal process is quite important to realize the correct relic abundance reported
by Planck [15, 16] that would be checked by ongoing collider experiments and cosmological
observations. If the large mass of wino dark matter is excluded by them, the scenario of moduli
inflation and stabilization shown in Chapter 2 is one of possibilities to realize the wino dark
matter scenario.
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Part II

Axion inflation in string theory
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Chapter 5

String axions

Axion is the light scalar field introduced by the Pececi-Quinn as the solution to the strong CP
problem [97]. In QCD (quantum chromodynamics), one can generically write down the CP
violating term,

L =
θ

32π2
GμνG̃

μν , (5.1)

whereG and G̃ are the field strength of gluons and its dual one, respectively. The no-observation
of the electric dipole moment of the neutron [98] and and 199Hg [99] show that the size of θ
should be smaller than 10−10. It is no reason why the theta is so small within the framework of
QCD (strong CP problem). As the solution to the strong CP problem, Peccei-Quinn introduced
the global symmetry called as PQ symmetry. After the spontaneous PQ symmetry breaking,
the Pseudo-Nambu-Goldstone boson appeared through the following coupling

L =
a

fa
GG̃, (5.2)

a is the axion and fa denote the scale of PQ symmetry breaking. When the axion obtain the
vacuum expectation value, the theta term is canceled out.

In contrast to QCD axion, axions are defined in string theory in a different way. The string
axion is the extra-dimensional components of several higher-form fields through the dimensional
reduction of the obtained effective supergravity action. In this chapter, we briefly review the
cosmology of string axion on the basis of the 10D low-energy effective supergravity action of
several string theory. We also show the possible string inflation with axion in the light of its
axion decay constants. .

5.1 Elements of weakly coupled heterotic string theory

First of all, we begin with the heterotic string theory [13] in which the closed string is only
propagating. The anomaly-and tachyon-free heterotic string theory allows the existence of
gauge fields whose gauge groups are only SO(16) × SO(16) or SO(32) or E8 × E8. For our
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purpose, we restrict ourselves to the SO(32) and E8 × E8 heterotic string theory in which the
SUSY exists.∗

The matter contents in the bosonic sector are dilaton (φ10), metric tensor (gMN) with
M,N = 1, 2, ..., 10, antisymmetric tensor (BMN), adjoint gauge field (AI

M) with I = 1, 2, ..., 16
being the Cartan indices of SO(32) or E8 × E8. Also, their superpartners appear as massless
modes. The low-energy effective action of the heterotic string theory in string frame is described
by 10D supergravity action whose bosonic part is given in the notation of [101],

S
(hetero)
bulk ⊃ 1

2κ2
10

∫
M(10)

e−2φ10

[
R + 4dφ10 ∧ ∗dφ10 −

1

2
H

(h)
3 ∧ ∗H(h)

3

]
− 1

2g210

∫
M(10)

e−2φ10tr(F ∧ ∗F ),

(5.3)

which can be determined by the relevant scattering amplitudes on the worldsheet up to of order
O(α′) with α′ being the regge slope. The gravitational and Yang-Mills couplings are defined as
2κ2

10 = (2π)7(α
′
)4, g210 = 2(2π)7(α

′
)3 and the vacuum expectation value of the ten-dimensional

dilaton φ10 leads to the string coupling, gs = e〈φ10〉. F represents for the field-strength of
SO(32) or E8 × E8 gauge groups and it has the index of vector-representation, normalized as
trv(T

aT b) = 2δab. In what follows, “tr” and “Tr” represent for the trace in the vector and
adjoint representation of the SO(32) gauge group, respectively. In addition, H denotes the
heterotic three-form field strength defined by

H
(h)
3 = dB2 −

α
′

4
(wYM − wL), (5.4)

where wYM and wL are the gauge and gravitational Chern-Simons three-forms, respectively.
One can extract the kinetic term of the B-field from the three-form field strength given in

Eq. (5.3),

Skin + SWZ = − 1

4κ2
10

∫
M(10)

dB2 ∧ ∗dB2 −
∑
a

NaT5

∫
Γa

B6

= − 1

4κ2
10

∫
M(10)

dB2 ∧ ∗dB2 −
∑
a

NaT5

∫
M(10)

B6 ∧ δ(Γa), (5.5)

where the latter part denote the magnetic sources for the Kalb-Ramond field B6, so-called
Wess-Zumino term. Such sources correspond to the non-perturbative objects, i.e., the stacks of
Na five-branes with their tensions being T5 = ((2π)5(α

′
)3)−1, where Na = ±1 correspond to the

single heterotic and anti-heterotic five-branes, respectively. To preserve the SUSY, five-branes
wrap the holomorophic two-cycles Γa and their Poincáre dual four-forms are represented by
δ(Γa). The Kalb-Ramond two-form B2 and six-form B6 are connected with the ten-dimensional
Hodge duality,

∗dB2 = e2φ10dB6, (5.6)

∗Although it is difficult to discuss the consistency condition and five-branes in SO(16) × SO(16) heterotic
string theory for lack of SUSY, there are several studies in this direction, see for Refs. [100].
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and then the action of Kalb-Ramond two-form in Eq. (5.5) are rewritten in terms of six-form
B6 as

Skin + SWZ = − 1

4κ2
10

∫
M(10)

e2φ10dB6 ∧ ∗dB6

+
α ′

8κ2
10

∫
M(10)

B6 ∧
(
trF 2 − trR2 − 4(2π)2

∑
a

Naδ(Γa)

)
. (5.7)

The following tadpole condition of the NS-NS fluxes results from the equation of motion of B6,

d(e2φ10 ∗ dB6) = −α
′

4

(
trF̄ 2 − trR̄2 − 4(2π)2

∑
a

Naδ(Γa)

)
= [0], (5.8)

in cohomology and where R̄ and F̄ represent the field strengths of the extra-dimensional com-
ponents of curvature on internal manifold and gauge fields whose gauge groups are embedded
in SO(32) or E8 × E8. When the five-branes do not exist, the tadpole condition must be
canceled by the contributions between the geometrical part and magnetic fluxes, otherwise the
non-Abelian gauge and gravitational anomalies arise in the system. If the heterotic five-branes
exist, such anomalies are canceled by themselves at the non-perturbative level. On the world-
sheet, these heterotic five-branes also recover the modular invariance [102, 103] which can be
shown in the case of heterotic orbifold [104]. However, in such a case, we must take into account
the gauge anomaly and the global Witten anomaly on heterotic five-branes where the partition
function is vanished in the even number of chiral fermions on the heterotic five-branes [105, 106].

At the field theoretical approach, the cancellation of Abelian gauge and gravitational anoma-
lies are captured by taking into account the following one-loop Green-Schwarz term at the string
frame [107, 108],

SGS =
1

24(2π)5α′

∫
B2 ∧X8, (5.9)

which can be extracted from the S-dual type I theory up to normalization factors as shown in
Ref. [109] and the eight-form X8 is yielded as

X8 =
1

24
TrF 4 − 1

7200
(TrF 2)2 − 1

240
(TrF 2)(trR2) +

1

8
trR4 +

1

32
(trR2)2. (5.10)

For more details of the cancellation of Abelian gauge anomalies through Green-Schwarz mech-
anism, see Refs. [110]. Hence, the abelian and non-abelian gauge anomalies and gravitational
anomalies are canceled by the above Green-Schwarz mechanism (5.9) and the tadpole condi-
tion (5.8) as discussed in Refs. [111, 110]. These conditions severely constrain the phenomeno-
logical models in the framework of heterotic string theory. It is possible to achieve these
anomaly cancellation by constructing just the three-generation standard-like models. However,
even if there are no Abelian gauge anomalies, the Abelian gauge bosons may become massive by
absorbing the axions appearing through the Green-Schwarz coupling given by Eq. (5.9) [110].
One should take care of the couplings among hypercharge gauge boson and axions in order to
avoid such situations.
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5.2 Axions in heterotic string theory

Let us dimensionally reduce the above effective action of the heterotic string theory on a general
complex 6D manifold M. Along the line of Refs. [110], we expand the B-field in the basis of
Kähler form wk with k = 1, 2, · · · , h1,1 and its hodge dual four-form ŵk,

B2 = b
(2)
0 + l2s

h1,1∑
k=1

b
(0)
k wk,

B6 = l6sb
(0)
0 vol6 + l4s

h1,1∑
k=1

b
(2)
k ŵk, (5.11)

where ls = 2π
√
α′ is the string length and vol6 = w1 ∧ w2 ∧ w3 is the volume form of internal

manifold normalized by
∫
M vol6 = 1. The two-form B2 and six-form B6 are related by the

Hodge duality, ∗10dB2 = e2φ10dB6. Note that the hodge dual four-form satisfies the following
relation ∫

M
wk ∧ ŵk

′ = δkk′ . (5.12)

We call the b
(0)
0 and b

(0)
k as the universal axion pairing with the dilaton and the Kähler axion

pairing with the Kähler moduli, respectively. These axions have continuous shift symmetry
originating from the gauge symmetry of Kalb-Ramond B2,6 field, where B2 (B6) couple to
the fundamental string (a five-dimensional object called as heterotic five-branes). The explicit
computation showed that such a shift symmetry is preserved to all orders in the σ-model
perturbation theory [112].

When the heterotic five-branes appear in the low-energy effective theory, one cannot ensure
the approximation of weakness of string coupling which arises from the fact that the tension
of heterotic five-branes is of order g−2

s . In order to study these objects, it is required to start
from the strong coupling limit of heterotic string theory. The strong coupling limit of SO(32)
heterotic string is described by its S-dual theory, that is, type I string theory, in which the
heterotic five-branes become D5-branes. On the other hand, Horava and Witten pointed out
the existence of the strong coupling limit of E8×E8 heterotic string theory in Ref. [113] and the
low-energy phenomena is captured by eleven-dimensional supergravity on S1/Z2 background.

In the strongly coupled E8×E8 heterotic string theory, the heterotic five brane is considered
as the M5-brane compactified on eleventh direction S1/Z2, where the self-dual tensor field B̃
exist. In the same way as in the case of weakly coupled heterotic string theory, we can define
the axion and dual two-form under the following convention

B̃ = b̃
(2)
0 + l2s

h1,1∑
k=1

b̃
(0)
k wk, (5.13)

where wk denote the two-cycle wrapped by the M5-brane. Thus, existence of M5-brane implies
that the extra axions (b̃

(0)
k ) and two-form field (b̃

(2)
0 ) appear in the low-energy effective theory.
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In addition, in the strongly coupled SO(32) heterotic string theory, the heterotic five brane is
considered as the S-dual of D5-brane where the symplectic gauge fields live on. The axion is
also defined as the four-dimensional component of Ramond-Ramond field living on D5-brane.

5.3 Elements of type II string theory

Next, we discuss the type IIA and IIB string theory, in which both the closed and open strings
are propagating. Before going to define the axions in type II string theory, let us first summarize
their matter contents and low-energy effective actions on the basis of Ref. [114].

In type IIA superstring theory, massless fields in the bosonic sector are dilaton (φ10), met-
ric tensor (gMN), antisymmetric tensor (BMN) for Neveu-Schwarz (NS) sector and Ramond-
Ramond (RR) fields such as a one-form C1 and a three-form C3. Other RR-fields are related
to above them by hodge duality. Also, their superpartners appear as massless modes. Its low-
energy effective action in string frame is described by 10D supergravity action whose bosonic
part is given by

S
(IIA)
bulk = SNS + S

(IIA)
R + S

(IIA)
CS , (5.14)

where

SNS =
1

2κ2
10

∫
M(10)

e−2φ10

[
R + 4dφ10 ∧ ∗dφ10 −

1

2
H3 ∧ ∗H3

]
,

S
(IIA)
R = − 1

4κ2

∫
M(10)

[
F2 ∧ ∗F2 + F̃4 ∗ ∧F̃4

]
,

S
(IIA)
CS = − 1

4κ2

∫
M(10)

B2 ∧ F4 ∧ F4, (5.15)

which can be calculated by the relevant scattering amplitudes on the worldsheet up to of
order O(α′). The gravitational and Yang-Mills couplings are defined as 2κ2

10 = (2π)7(α
′
)4,

g210 = 2(2π)7(α
′
)3 and the vacuum expectation value of the ten-dimensional dilaton φ10 leads

to the string coupling, gs = e〈φ10〉 in the notation of [101]. In addition, H3 and F2,4 denote the
NS and R-R field strengths defined by

H3 = dB2,

Fp = dCp−1,

F̃4 = F4 + C1 ∧H3. (5.16)

By contrast, in type IIB string theory, massless fields in the bosonic sector are dilaton
(φ10), metric tensor (gMN), antisymmetric tensor (BMN) for Neveu-Schwarz sector and several
Ramond-Ramond fields such as a scalar C0, a two-form C2 and a four-form C4. Other R-R
fields are related to above them by hodge duality. Also, their superpartners appear as massless
modes. Its low-energy effective action in string frame is described by 10D supergravity action
whose bosonic part is given by

S
(IIB)
bulk = SNS + S

(IIB)
R + S

(IIB)
CS , (5.17)
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where

S
(IIB)
R = − 1

4κ2

∫ [
F1 ∧ ∗F1 + F̃3 ∧ ∗F̃3 +

1

2
F̃5 ∧ ∗F̃5

]
,

S
(IIB)
CS = − 1

4κ2

∫
C4 ∧H3 ∧ F3, (5.18)

with Fp = dCp−1, F̃3 = F3−C0∧H3 and self-dual field strength F̃5 = F5− 1
2
C2∧H3+

1
2
B2∧F3

satisfying the constraint F̃5 = ∗F̃5.
String theory is not only the theory of string, but also describes the solitonic objects such

as D-branes where the open strings have the Dirichlet (Neumann) boundary conditions in the
directions transverse (longitudinal) to the brane. From the quantization of the open string living
on a D-brane, one finds the massless gauge field and its superpartner. The low-energy action
of Dp-brane with p being spatial dimension is calculated by computing scattering amplitude
between open strings and closed strings. The explicit form of it is obeyed by the Dirac-Born-
Infeld (DBI) action in a supergravity background and Chern-Simons term,

SDBI = −
∫
M

dp+1ξe(p−3)φ/4
√
−det(gEij + e−φ/2(Fij − Bij)),

SWZ =

∫
M

eF−B ∧ C, (5.19)

where ξi denote the coordinate of world volume M mapped by the that of 10D spacetime and
gEij is the pullback of the metric at the Einstein frame. The metric at the string frame gSij is
transformed under SL(2,R) symmetry of worldsheet which is related to the SL(2,R)-invariant
metric at the Einstein frame gEij = e−φ/2gSij.

5.4 Axions in type II string theory

Let us perform Kaluza-Klein reduction of the type II string effective action on CY threefold.
For completeness, we restrict ourselves to the type IIB string theory.† In the same way as the
case of heterotic string theory, we expand the Kähler form J , B-field and R-R form in the base

†An extension to the case for type IIA string theory is straightforward.
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of Kähler form wk with k = 1, 2, · · · , h1,1 and its hodge dual four-form ŵk of CY threefold,

J = l2s

h1,1∑
I=1

tIwI ,

B2 = b
(2)
0 + l2s

h1,1∑
I=1

b
(0)
I wI ,

C2 = c
(2)
0 + l2s

h1,1∑
I=1

c
(0)
I wI ,

C4 = l4s

h1,1∑
I=1

θ
(0)
I ŵI , (5.20)

where tI , b
(0)
I , c

(0)
I and θ

(0)
I are h1,1 four-dimensional scalar fields. b

(2)
I and c

(2)
I four-dimensional

two-form fields. Up to now, there is a unbroken N = 2 SUSY in four-dimensional effective
theory derived from type IIB string theory on CY manifold. In order to obtain chiral spec-
trum, it is required to break N = 2 SUSY to N = 1 SUSY. That situation is realized in
the presence of non-dynamical objects, i.e., orientifold planes. It plays an important role for
tadpole cancellation induced by certain D-branes including the standard model sector.

We briefly review the CY orientifold with O3/O7-planes on the basis of Ref. [115]. In
the presence of O3/O7-planes, the basis of Kähler form is decomposed as the orientifold-even
and-odd bases wi, i = 1, · · · , h1,1

+ and wα, α = 1, · · · , h1,1
− , respectively. Since only orientifold

invariant fields appear in the four-dimensional effective theory, the orientifold-even fields (R-R

0-form C0, dilaton Φ, θ
(0)
I , tI) appear in the four-dimensional effective theory when they are

expanded in the basis of wi. On the other hand, the orientifold-odd fields (b
(0)
I , c

(0)
I , b

(2)
0 and

c
(2)
0 ) appear in the four-dimensional effective theory when they are expanded in the basis of wα.
Thus, the orientifold invariant fields are the axiondilaton τ , Kähler moduli Ti, two-form scalars
Gα summarized as

τ = C0 + ie−Φ,

Ti =
1

2
κijkt

jtk + iθ
(0)
i +

1

4
eΦκiαβG

α(G− Ḡ)β,

Gα = cα − τbα. (5.21)

The orientifold-odd complex structure moduli ζα also appear through the complex structure
deformations of CY metric,

δgij =
6i

ΩklmΩ̄klm
ζα(ξα) ¯iijΩ

īj
j , (5.22)

where Ω is the holomorphic three-form of CY manifold. Note that b
(0)
0 and b

(0)
k as the universal

axion pairing with the dilaton and the Kähler axion pairing with the Kähler moduli, respec-
tively. These axions have continuous shift symmetry originating from the gauge symmetry of
Kalb-Ramond B-field.

75



5.5 Inflation with axions

The cosmic inflation is a most successful scenario which not only generates an origin of the
current temperature fluctuation, but also provides testable predictions for the cosmological
observables. Especially, the primordial gravitational wave is one of the main target for the
current and future cosmological observations. According to the size of the tensor-to-scalar ratio,
the slow-roll inflation scenarios are mostly classified into two types of them. The small-field
inflation predicts the small tensor-to-scalar ratio, whereas the other scenario is the large-field
inflation which predicts a measurable tensor-to-scalar ratio. These large field inflation would
be testable for the near-future cosmological observations. Thus, it has substantial implications
for the fundamental theory such as string theory. For the detectable tensor-to-scalar-ratio,
r = O(0.01 − 0.1), a so-called Lyth bound [116] suggested that the inflaton is realized in the
region of the trans-Planckian value of inflaton field. However, in this field regime, one cannot
neglect the Planck suppressed operators and correspondingly description of effective field theory
is lost. In the case of large-field inflation models, we always encounter such problems how to
treat the trans-Planckian field values. In this section, we show the treatment of the trans-
Planckian values on the basis of the string theory.

5.5.1 Natural inflation

When we consider string axions as the candidate of inflaton, axion potential is mainly classified
into two types of models. One is the natural inflation scenario where the inflaton is identified
as the pseudo-Nambu Goldstone boson [29] with the following Lagrangian,

L = −1

2
(∂φ)2 − Λ4

[
1− cos

(
φ

f

)]
, (5.23)

where φ is the axion with f being its decay constant. In the string set up, the axion shift
symmetry is spontaneously broken down to the discrete one by nonperturbative effect such as
D-brane instanton effects and gaugino-condensation living on the hidden D-brane expect for the
D-brane including the standard model. In any cases, their dynamical scales are characterized
by Λ. However, the natural inflation compatible with the observed Planck data [15, 16] requires
the trans-Planckian axion decay constant. (See, for more details, e.g., Ref. [30].) It is in general
hard to realize such the axion decay constant beyond the Planck scale in the 4D effective theory
as well as the higher-dimensional theory, since the scale of axion decay constant is connected to
the volume of internal manifold and the cut-off scale of higher-dimensional theory. In particular,
the string theory shows that the typical fundamental axion decay constants are below the scale
1017GeV as pointed out in [117].

To overcome such a problem, there are several approaches to realize the natural inflation
with trans-Planckian axion decay constant. Along the line of Ref [118], let us consider the
scenario where two axion fields φ1 and φ2 couple to two non-Abelian gauge groups G1 and G2.
When these gauge theories are confined at the dynamical scales Λ1 and Λ2, the axion potential
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becomes

L = Λ4
1

[
1− cos

(
φ1

f1
+

φ2

f2

)]
+ Λ4

2

[
1− cos

(
φ1

g1
+

φ2

g2

)]
, (5.24)

where f1,2 and g1,2 are axion decay constants. In the case of Λ4
2 � Λ4

1, there appears a heavy
and a light linear combination of axions,

φ̃heavy =
1√

g21 + g22

(
φ1

g1
+

φ2

g2

)
,

φ̃light =
1√

g21 + g22

(
φ1

g1
− φ2

g2

)
. (5.25)

After integrating out φ̃heavy, the effective potential for φ̃light becomes

L = Λ4
1

[
1− cos

(
φ̃light

f

)]
, (5.26)

with

f =
√
g21 + g22

(
f1f2
g1g2

)(
f2
g2

− f1
g1

)−1

. (5.27)

As pointed out in Ref [118], under the condition

f2
g2

� f1
g1
, (5.28)

the effective axion decay constant for φ̃light can be chosen as trans-Planckian size. This align-
ment mechanism is realized even for the sub-Planckian axion decay constants f1,2, g1,2 
 MPl.
It is generalized to many axion cases in Ref. [119]. Also, in the case of many axions, one can
realize the super-Planckian decay constant called as N-flation [120]. (See, a similar proposal
for assisted inflation [121] and M-flation [122].) On the other hand, in the single axion case,
its decay constant can be enhanced by a small five-dimensional gauge coupling as pointed out
in the five-dimensional theory [123, 6]. In the next Chapter, we show an another approach to
enhance the axion decay constant in the single axion case on the basis of Ref. [124].

5.5.2 Axion monodromy inflation

Let us focus on the another popular axion inflation, i.e., the axion monodromy inflation [125,
126] in string theory. In contrast to the natural inflation, the axion shift symmetry is explicitly
broken down by the existence of D-brane. As a result, the inflaton potential has a structure
of monodromy and the field range of inflaton during the inflation becomes larger than its
fundamental period determined by the axion decay constant. In this scenario, we do not need
the trans-Planckian axion decay constant.
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The axion monodromy inflation is characterized by the following Lagrangian

L = −1

2
(∂φ)2 − μ4−p

1 φp, (5.29)

where φ is the axion associated with the higher-dimensional form fields and μ1 denotes the
energy scale as shown later. p is the model-dependent fractional number. (For more details,
see Ref. [114] and references therein.)

We proceed to explain the details of monodromy inflation by taking into account the space-
time filling D5-brane in type IIB string theory [126]. Now, we assume that the D5-brane wraps
the 4D spacetime and certain internal two-cycle Σ2 in the 6D internal space. The action of
D5-brane is given by the unmagnetized DBI action,

SD5 =
1

(2π)5gs(α′)3

∫
d6σ

√
−det(Gab +Bab), (5.30)

where Gab, a, b = 0, 1, 2, 3, 4, 5 denotes the pullback of the metric of the target space and an
extra-dimensional component of the Kalb-Ramond field Bab corresponds to the axion b =

∫
Σ2

B2

where B2 is the Kalb-Ramond two-form.
After dimensional reduction of DBI action along the cycle Σ2 with its volume l in α′ = 1,

the axion potential is extracted as

Veff � T
(2π)5gs(α′)2

√
l4 + b2, (5.31)

where T is some unknown warp factor. In the large field regime of axion b � l2, one can obtain
a linear-type potential term,

Veff � T
(2π)5gs(α′)2

b. (5.32)

The relevant Lagrangian of the canonically normalized axion φ = b is given by

L = −1

2
(∂φ)2 − μ3

1φ, (5.33)

where μ3
1 =

T
f(2π)5gs(α′)2 with f being the axion decay constant for φ. We stress that the axion

exhibits not a shift symmetry but monodromy in its scalar potential. Furthermore, the above
discussion is also applied for its S-dual NS5-brane. The axion living on an NS5-brane wrapping
the cycle Σ2 is defined as a four-dimensional component of RR field C2. The other types of
monodromy inflation in Eq. (5.29) with p = 2/3 [125] have been proposed for the D4-brane
in type IIA string theory on a twisted torus. When we consider a coupling between NS-NS
two-form and the R-R field strength, the axion monodromy inflation becomes the form of
Eq. (5.29) with p = 4/3, 3 [127]. Also, the other types of axion monodromy inflation with p = 2
is discussed in terms of the seven-branes [128] or a four-form field strength [129].
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Chapter 6

Natural inflation in weakly coupled
heterotic string theory

In this chapter, we take into account the weakly coupled heterotic string theory with an em-
phasis on axion dynamics based on Ref. [124]. When the anomalous U(1) symmetries exist in
the system, the moduli fields contribute to the anomaly cancellation through the Stückelberg
couplings between the axions and gauge bosons. Such axions appearing in the Stückelberg
couplings are then absorbed by the anomalous U(1) gauge bosons and become massive. Those
mass scales are typically the string scale. Thus, certain axion fields are decoupled from the sys-
tem. In particular, when the anomalous U(1)s are included in the Cartan direction of E8 ×E8

heterotic string theory, it is possible to absorb the linear combinations of the universal axion
b
(0)
0 and Kähler axions b

(0)
i . In this chapter, we identify one of the unabsorbed Kähler axion

as the inflaton. Also, the real parts of moduli fields such as dilaton and Kähler moduli should
be stabilized and heavier enough than the inflaton field, otherwise they would be destabilized
and generate non-adiabatic curvature perturbations constrained by Planck data. In order to
overcome this problem, we consider that the certain non-perturbative corrections lead to sta-
bilize the dilaton and real parts of Kähler moduli. Note that, the complex structure moduli
can be stabilized at the minimum by the flux-induced superpotential at the tree-level. When
the internal manifold is chosen as “Swiss-Cheese” CY manifold, its geometrical structure leads
to stabilize a linear combination of Kähler moduli without relying on a lot of non-perturbative
effects to the superpotential. These CY manifold is extensively studied in the string phe-
nomenology and cosmology on the basis of the Type IIB string theory [33], F-theory [130]
and heterotic string theory [131]. The remaining Chapter is organized as follows. First of all,
we review the heterotic string theory on general CY manifold with multiple anomalous U(1)
symmetry in Sec. 6.1. In Secs. 6.2.1 and 6.2.2, we propose two successful inflation models. We
summarize this chapter in Sec. 6.3.
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6.1 Effective action of heterotic string with U(1) mag-

netic fluxes

We restrict ourselves to the Evis
8 ×Ehid

8 heterotic string.∗ In contrast to the standard embedding
where the SU(3) gauge fields in Evis

8 are identified as the spin connection of CY manifold, we
consider other class of model by employing the U(1) magnetic fluxes (line bundles) called as non-
standard embedding. In such a model, the visible Evis

8 gauge group decomposes into the product
group ofGvis (certain GUT or just the SM gauge groups) and multiple U(1)s whose rank depends
on that of Gvis. Such a decomposition of the gauge group is induced by multiple U(1) magnetic
fluxes (multiple line bundles), in other words, the constant extra-dimensional components of
multiple U(1) field strengths. Although we do not know the consistent quantization condition of
string in the presence of magnetic fluxes in contrast to type II string theory, we assume that they
are treated as those in the field theoretical approach. These U(1) fluxes play phenomenologically
important role of realizing the 4D SMmodel gauge groups and chiral matters. Their possibilities
were pointed out in Refs. [111, 109] and the type IIB string theory [132]. Throughout this
chapter, we further assume that the charged scalar fields under the multiple U(1)s and bundle
moduli (Wilson line moduli in type II string theory) do not affect our following discussion. It
would be ensured by the remaining gauge symmetries and certain dynamics.

Let us carry out the KK reduction of 10D Evis
8 ×Ehid

8 heterotic supergravity on the general
CY manifold. Effective tree-level Kähler potential becomes

K =−M2
Pl ln

(
S + S̄

)
−M2

Pl ln(V), (6.1)

where M2
Pl =

e−2φ10V
κ2
10

. First part is the the Kähler potential of dilaton and the latter is that of

Kähler moduli ti whose size determines the internal two-cycle of CY manifold with its volume
being V = 1

6

∫
CY

J ∧ J ∧ J written in terms of Kähler form J = l2s
∑

i tiwi. The dilaton and
Kähler moduli are defined as

S =
1

4π

[
e−2φ10V

l6s
+ ib

(0)
0

]
,

Ti = ti + ib
(0)
i , (6.2)

where their imaginary parts correspond to the dilaton axion b
(0)
0 and Kähler axion b

(0)
i for

i = 1, 2, · · ·h1,1, respectively.
Let us take a closer look at these axionic couplings descended from 10D kinetic terms

of H in Eq. (5.3) and one-loop GS counter term [108] in Eq. (5.9). When U(1) magnetic
fluxes (extra-dimensional components of constant field strength) are inserted into the Cartan
direction of Evis

8 , the axions have the following couplings of the U(1)m gauge bosons Am,
m = 1, · · · , 8− rank(Gvis) in the action,

Saxion =
∑
m

Qm
S

4l2s

∫
R1,3

b
(2)
0 ∧ Fm +

∑
i,m

Qm
Ti

2l2s

∫
R1,3

b
(2)
i ∧ Fm, (6.3)

∗It is straightforward to extend the following analysis to SO(32) heterotic string theory.
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where

Qm
S ≡ tr(TmTm)

∫
CY

trF̄m

2π
∧ 1

16π2

(
trF̄ 2 − 1

2
trR̄2

)
, Qm

Ti
≡ tr(TmTm)

∫
Ti

trF̄m

2π
. (6.4)

Here, Fm and F̄m represent the four-dimensional and extra-dimensional U(1)m field strengths
with their generators Tm. F̄ is the extra-dimensional components of field strengths of Evis

8

symmetry. The above Stückelberg couplings indicate that the dilaton and Kähler moduli have
U(1)m charges, Qm

S and Qm
Ti

i = 1, · · ·h1,1, respectively.
Hence, 4D U(1) gauge symmetries restrict the form of tree-level Kähler potential as

K =−M2
Pl

[
ln

(
S + S̄ −

∑
m

Qm
S

16π2
Vm

)

+ ln

{
κijk

48

(
Ti + T̄i −

∑
m

Qm
Ti

2π
Vm

)(
Tj + T̄j −

∑
m

Qm
Tj

2π
Vm

)(
Tk + T̄k −

∑
m

Qm
Tk

2π
Vm

)}]
,

(6.5)

where κijk stands for the intersection number of CY manifold. U(1) vector multiplets Vm,
m = 1, · · · , 8 − rank(Gvis), respect the shift symmetry (gauge symmetry) of dilaton axion

b
(0)
0 and Kähler axion b

(0)
i for i = 1, 2, · · ·h1,1. As mentioned before, we focus on so-called

“Swiss-cheese” CY manifolds with the following form of Kähler potential,

K = − ln
{
k1(T1 + T̄1)

3 −
h1,1∑
i=2

ki(Ti + T̄i)
3
}
, (6.6)

with k1, ki > 0. In the next section, such a negative sign in the moduli Kähler potential plays
an important role of stabilizing the Kähler moduli.

After expanding the Kähler potential to second order on the vector multiplets, the mass
terms of the U(1) gauge bosons are obtained as

Smass = −
∑
m,n

M2
Pl

4

(
KSS̄Qm

S Qn
S

(16π2)2
+
∑
i,j

KTiT̄j
Qm

Ti
Qn

Tj

(2π)2

)∫
R1,3

Am ∧ ∗4An, (6.7)

which is typically of the order of the string scale M2
s = 1/l2s with ls = 2π

√
α′.† The U(1)

invariant Kähler potential with U(1) magnetic fluxes in Eq. (6.5) also generate the moduli-
dependent Fayet-Iliopoulos terms [135],

ξm =
∂K
∂Vm

∣∣∣∣∣
Vm=0

= − Qm
S

16π2
KS −

h1,1∑
i=1

Qm
Ti

2π
KTi

, (6.8)

where KI = ∂K/∂ZI for ZI = S, T1, · · · , Th1,1 .

†See for more details, e.g., Refs. [110, 133] for E8 × E8 and [133, 134] for SO(32) heterotic string theories.
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For our purpose, we show the gauge threshold correction for gauge kinetic function of the
non-abelian gauge groups embedded in E

(vis)
8 ×E

(hid)
8 gauge group. The existence of U(1) mag-

netic fluxes induce the one-loop corrections originating from the one-loop GS term in Eq. (5.9),

fvis = S + βiTi,

fhid = S − βiTi, (6.9)

where

βi ≡
1

8π

∫
CY

1

16π2

(
trF̄ 2 − 1

2
trR̄2

)
∧ ŵi. (6.10)

As shown in Eq. (5.8), the gauge threshold corrections in both visible and hidden sectors

are correlated each other. It is originated from the tadpole cancellation condition of E
(vis)
8 ×

E
(hid)
8 heterotic string theory. On the other hand, the gauge kinetic functions of non-abelian

gauge groups embedded in SO(32) heterotic string theory have the nonuniversality due to the
structure of SO group.

6.2 Natural inflation and moduli stabilization

Based on the weakly coupled heterotic string theory on “Swiss-Cheese” Calabi-Yau manifold,
we propose two moduli stabilization scenarios in Secs. 6.2.1 and 6.2.2. In both cases, the
lightest Kähler axion have the trans-Planckian axion decay constant that induces a successful
natural inflation. Its axion decay constant can be enhanced by the one-loop corrections to the
gauge kinetic function of the hidden Ehid

8 groups. That situation is different from the usually
considered aligned natural inflation scenario in the case of two axions with sub-Planckian axion
decay constants [118].

The other moduli fields expect for the inflaton should be heavier than the inflaton field,
otherwise they would be destabilized. In our setup, the multiple U(1) gauge bosons absorb the
linear combination of the other Kähler axions. These axionic couplings (Stückelberg couplings)
are originated from multiple U(1) magnetic fluxes. The real part of dilaton is assumed to be sta-
bilized at its minimum by the contributions from the non-perturbative effects. In Sec. 6.2.1, the
dilaton potential is generated from the Kähler potential in Sec. 6.2.1 and gaugino-condensation
effects in Sec. 6.2.2. Furthermore, the world-sheet instanton effect gives rise to stabilize one of
the real parts of Kähler moduli and then the structure of “Swiss-Cheese” Calabi-Yau manifold
contributes to the stabilization of other real parts of Kähler moduli.

6.2.1 Single gaugino condensation

Let us take a closer look at the detail of moduli stabilization. In our setup, the multiple U(1)
gauge bosons absorb the universal and Kähler axions except for the axion-inflaton as seen in
Eq. (6.7). After that, the non-perturbative effects stabilize the dilaton and all the real parts of
Kähler moduli at the SUSY-breaking minimum. At this level, one of the Kähler axion remains
massless. Finally, after considering the Kähler axion as the inflaton, one can obtain its effective
scalar potential.
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Setup

For complete our discussion, we adopt the following “Swiss-Cheese” CY manifold with five
Kähler moduli (h1,1 = 5) and four anomalous U(1)m symmetries (m = 1, 2, 3, 4) in the reduced
Planck unit,

K =K
(
S + S̄, V 1, V 2, V 3

)
− ln

⎧⎨
⎩k1(T1 + T̄1)

3 − k2

(
T2 + T̄2 −

3∑
n=1

qnT2
V n

)3

− k3

(
T3 + T̄3 −

3∑
n=1

qnT3
V n

)3

−k4
(
T4 + T̄4 − q4T4

V 4
)3 − k5

(
T5 + T̄5 − q4T5

V 4
)3}

, (6.11)

where qmTi
≡ Qm

Ti
/2π and ki, i = 1, 2, 3, 4, 5 are the positive constants in correspondence with

the intersection numbers of “Swiss-Cheese” CY manifold, dt1t1t1 , dt2t2t2 , dt3t3t3 , dt4t4t4 ,dt5t5t5 .
We will come back to the reason why we consider the model with five Kähler moduli and four
anomalous U(1)s in the next section. The dilaton Kähler potential is given in terms of its U(1)n
charges qns = Qn

S/16π
2, n = 1, 2, 3,

K0 = − ln

(
S + S̄ −

3∑
n=1

qnSV
n

)
, (6.12)

at the tree-level.
Moreover, we consider the following U(1) invariant superpotential,

W =W0 + Ae−
8π2

a
(S−β2T2−β3T3−β4T4−β5T5) +B e−μ1T1 , (6.13)

whereW0 is the constant term as a consequence of the moduli stabilization of complex structure
moduli of CY manifold. In a similar way to the case of type IIB string theory, the flux induced
superpotential could be tuned to small values when we consider the vacuum away from large
complex structure limit. In such a case, it is expected that the backreaction from the three-form
flux to the CY manifold is the sub-leading order. When the hidden sector gaugino condensate,
the second term in Eq. (6.13) appears in the superpotential. It encodes the contribution of one-
loop threshold corrections in Eq. (6.10) to the gauge kinetic function at the hidden sector. The
third term in Eq. (6.13) corresponds to the non-perturbative potential for T1 as a consequence
of world-sheet instanton effects on its cycle.

Moduli stabilization at the perturbative level

Next, we explore the moduli stabilization at the perturbative level. With the help of NS-
NS three-form flux as shown in Eq. (6.13), the complex structure moduli associated with the
“Swiss-Cheese” CY manifold can be stabilized.

The certain linear combinations of imaginary components of the dilaton and the Kähler
moduli, i.e., axions are also stabilized (absorbed) by the anomalous U(1)m gauge bosons in-
cluded in the vector multiplets V m, m = 1, 2, 3, 4. The mass-squared of U(1)m vector multiplets
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depend on U(1)m magnetic fluxes as shown in Eq. (6.7). It is then turned out that the following
linear combination of the canonically normalized axions,

X1 =
1

N1

(
ImS

q1S
√
KSS̄

+
ImT2

q1T2

√
KT2T̄2

+
ImT3

q1T3

√
KT3T̄3

)
,

X2 =
1

N2

(
ImS

q2S
√
KSS̄

+
ImT2

q2T2

√
KT2T̄2

+
ImT3

q2T3

√
KT3T̄3

)
,

X3 =
1

N3

(
ImS

q3S
√
KSS̄

+
ImT2

q3T2

√
KT2T̄2

+
ImT3

q3T3

√
KT3T̄3

)
, (6.14)

are absorbed by U(1)n (n=1,2,3) gauge bosons. The overall normalization factor is denoted as

Nn =

√
(1/qnS

√
KSS̄)2 + (1/qnT2

√
KT2T̄2

)2 + (1/qnT3

√
KT3T̄3

)2, (6.15)

for n = 1, 2, 3. The details of Kähler metrics of axions are summarized in Appendix B. Thus,
after canonically normalizing the U(1) gauge bosons, we obtain their mass-squared matrices

M2
m,n � M2

Pl

4
√
〈Re fm,m〉

√
〈Re fn,n〉

(
KSS̄q

m
S q

n
S +

∑
i,j

KTiT̄j
qmTi

qnTj

)
, (6.16)

for m,n = 1, 2, 3. The gauge kinetic functions of U(1)s, fm,n are also obtained by compactifying
the internal manifold, fm,n = tr(TmT n)Sδm,n +O(βT ). We stress that U(1)n gauge invariance
of the superpotential (6.13) requires the following relation between these U(1) charges of the
moduli S, T2 and T3,

q1S = q1T2
β2 + q1T3

β3, q2S = q2T2
β2 + q2T3

β3, q3S = q3T2
β2 + q3T3

β3. (6.17)

Since the U(1) gauge invariance condition (6.17) restricts the form of mass-squared matri-
ces (6.16), one can achieve the full-rank mass matrices (6.16) iff the number of U(1)s is bigger
than three. As a result, the imaginary components of S, T2 and T3 are completely absorbed
by the U(1)1,2,3 gauge bosons. From the superpotential (6.13), the decay constant of universal
axion is much smaller than the Planck scale and it cannot be identified as the inflaton.

In a similar fasion, the following linear combination of axion is absorbed by U(1)4 gauge
boson,

X4 =
1

N4

(
ImT4

q4T4

√
KT4T̄4

+
ImT5

q4T5

√
KT5T̄5

)
, (6.18)

where N4 =
√

(1/q4T4

√
KT4T̄4

)2 + (1/q4T5

√
KT5T̄5

)2, and the orthogonal direction of X4

Y 4 =
1

N4

(
− ImT4

q4T5

√
KT5T̄5

+
ImT5

q4T4

√
KT4T̄4

)
, (6.19)
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remains massless at this stage. Its massless axion is identified as the inflaton later. Following
the above arguments, one can stabilize the complex structure moduli and the four imaginary
parts of the moduliXm, m = 1, 2, 3, 4 at the perturbative level in the presence of four anomalous
U(1) vector multiplets.

Moduli stabilization at the non-perturbative level

Next, we discuss the stabilization mechanism of moduli fields at the non-perturbative level.
In order to stabilize the dilaton field, we assume the following form of non-perturbative

correction to the dilaton Kähler potential in addition to its tree-level one (6.12),

Knp = d g−pe−b/g, (6.20)

where b, p, and d are the real unknown constants. The gauge coupling in the hidden sector is
expressed as g = (ReS −∑

i �=1 βiReTi)
−1/2 as given in the superpotential (6.9). The authors

of Refs. [136, 137, 138] proposed that the two ansatzs of the non-perturbative correction to the
Kähler potential Knp which are written by‡

K = K0 +Knp or K = ln
(
eK

0

+ eK
np
)
. (6.21)

Along the line of Ref. [139], the dilaton is assumed to be stabilized at the minimum in the
presence of such corrections to the Kähler potential. However, our following inflation mechanism
does not rely on the detailed form of non-perturbative effects.

Then, one can write down the F-term scalar potential in terms of the Kähler potential (6.11)
and the superpotential (6.13). To simplify the analysis, we redefine the linear combination of
the dilaton and the Kähler moduli as,

Φ = S − β2T2 − β3T3 − β4T4 − β5T5, (6.22)

which leads to the following form of the Kähler potential (6.11) and superpotential (6.13),

K =K
(
Φ + Φ̄, T2 + T̄2, T3 + T̄3, T4 + T̄4, T5 + T̄5, V

1, V 2, V 3
)

− ln

⎧⎨
⎩k1(T1 + T̄1)

3 − k2

(
T2 + T̄2 −

3∑
n=1

qnT2
V n

)3

− k3

(
T3 + T̄3 −

3∑
n=1

qnT3
V n

)3

−k4
(
T4 + T̄4 − q4T4

V 4
)3 − k5

(
T5 + T̄5 − q4T5

V 4
)3}

,

W =W0 + Ae−
8π2

a
Φ +B e−μ1T1 . (6.23)

In what follows, we suppose that the gaugino condensation term in Eq. (6.23) is enough small

compared with the others in Eq. (6.23), i.e., W0, B e−μ1T1 � Ae−
8π2

a
Φ. In this way, it enables

‡The non-perturbative correction to dilaton Kähler potential was also addressed in the approaches of effective
field theory [137].
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us to ignore the gaugino condensation term that generates the inflaton potential as discussed
later.

In these field bases, the moduli T1, ReT2, ReT3, ReT4, ReT5 and ReΦ can be stabilized at
the minimum satisfying the supersymmetric conditions,

DT1W = 0,

DT2W = KT2W = 0, DT3W = KT3W = 0, DT4W = KT4W = 0, DT5W = KT5W = 0,

DΦW = KΦW = 0, (6.24)

where the non-perturbative correction to the dilaton in Eq. (6.21) is importanto to stabilize
ReΦ. The real parts of moduli Tj, j = 2, 3, 4, 5, are also stabilized under the following condi-
tions,

KTj
� 3kj(Tj + T̄j)

2

k1(T1 + T̄1)3
+

∂K0

∂Tj

� 3kj(Tj + T̄j)
2

k1(T1 + T̄1)3
− βj

Φ + Φ̄
+O

(
βj

∑5
k=2 βkReTk

ReΦ

)
= 0, (6.25)

in the limit of ReT1 > ReTi and ReS > ReTi. The dilaton Kähler potential is now approx-
imated as its tree-level one K0 in Eq. (6.21). After solving the Eq. (6.25) for ReΦ, ReΦ is
written in terms of Kähler moduli,

ReS � ReΦ � k1(ReT1)
3

3kjReT 2
j

βj � βjReTj, (6.26)

for j = 2, 3, 4, 5. Therefore, as shown in Eq. (6.9), the gauge kinetic function is dominated by its
tree-level part rather than its one-loop corrections. It implies that the perturbative expansion
is valid in our setup. This structure is coming from the condition ReT1 > ReTj (j �= 1) and
negative signs in the volume of “Swiss-Cheese’ CY manifold (6.11). Since the above stabilization
mechanism cannot be realized without these negative sign, it is an important feature of the
“Swiss-Cheese” Calabi-Yau manifold. Finally, we comment on the D-term potential provided
by the anomalous U(1) symmetries included in Kähler potential (6.11). In our setup, the D-
term potentials are automatically vanished thanks to the supersymmetric conditions for moduli
fields, KT2 = KT3 = KT4 = KT5 = KΦ = 0,

At the minimum of the relevant moduli fields given by Eq. (6.24), the scalar potential of
4D N = 1 supergravity,

V = eK
(
KIJ̄DIWDJ̄W̄ − 3|W |2

)
, (6.27)

has the supersymmetric AdS minimum,

〈V 〉 = −3eK |W |2. (6.28)

Although several approaches to uplift such an AdS vacuum have been addressed in various
papers such as the F-terms with dynamical SUSY-breaking sector [140, 32, 64, 141] or D-terms
with anti-heterotic five branes [142], in the following, the SUSY is assumed to be broken by
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the dynamical SUSY-breaking sector as discussed in Chapter. 3. Their Kähler potential and
superpotential are described by

ΔK = |X|2 − |X|4
Λ2

,

ΔW = νX. (6.29)

Here, we suppose that the dynamical SUSY-breaking sector is originating from the non-abelian
gauge theory living on the heterotic five-branes and Λ is its dynamical SUSY-breaking scale.
X is a gauge singlet chiral superfield under Evis

8 × Ehid
8 symmetry. Furthermore, we omit the

moduli dependence of X for simplicity. By setting the parameter ν as also discussed in 5D
SUGRA in Chapter 3,

〈V 〉+ΔV � e〈K〉
(
−3|〈W 〉|2 +KXX̄ |ν|2

)
= 0 ⇔ |ν|2 = 3|〈W 〉|2, (6.30)

the Minkowski minimum can be realized.
In the following discussion, we take into account the term Ae−

8π2

a
Φ omitted in the superpo-

tential (6.23). Even when such a term is included in the full scalar potential, the moduli ReΦ,
T1, ReT2, ReT3, ReT4 and ReT5 could remain to stay at the minimum close to the values given
by Eq. (6.24). This is because it is supposed that the gaugino condensation term is much small
compared with the others in the superpotential (6.23) at the minimum. Thus, the inflaton mass
appearing through the gaugino condensation term can be parametrically lower than those of
heavy moduli fields which are stabilized by the flux-induced constant term and the world-sheet
instanton effect in Eq. (6.23), and the D-term contribution in Eq. (6.11). It will be shown in
the following numerical analysis. The explicit form of their mass matrices are summarized in
the Appendix B. We again remark that the four U(1) gauge bosons absorb the same number of
axions except for the axion-inflaton Y 4 at the string scale and then, they are decoupled from
the inflaton dynamics below the string and compactification scale.

Inflaton potential and its dynamics

Let us write down the inflation potential. Along the above stabilization procedures, one can
integrate out the heavy moduli and substitute their field values given by Eq. (6.24). First,
we canonically normalize the light moduli Y 4 (the orthogonal direction of absorbed axion in
Eq. (6.19)) as

Ŷ 4 � 1

N4

√
2

(
KT4T̄4

(q4T5
)2KT5T̄5

+
KT5T̄5

(q4T4
)2KT4T̄4

)
Y 4 ≡ N̂4 Y 4 (6.31)

by employing the following relation,

ImT4 =
1

N4

(
X4

q4T4

√
KT4T̄4

− Y 4

q4T5

√
KT5T̄5

)
,

ImT5 =
1

N4

(
X4

q4T5

√
KT5T̄5

− Y 4

q4T4

√
KT4T̄4

)
. (6.32)
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Note that U(1)4 gauge invariance of the superpotential (6.23) requires

q4T4
β4 + q4T5

β5 = 0. (6.33)

Then, one can extract the effective scalar potential for Ŷ 4

Veff � Λ4(1− cos (β Ŷ 4)), (6.34)

in the limit of Ae−
8π2

a
〈ReΦ〉 
 W0, Be−μ1〈T1〉. The overall scale of scalar potential (inflation

scale) Λ4 and the inverse of its axion decay constant β are given by

Λ4 ≡ 6 eKe−
8π2

a
ReΦA(W0 +Be−μ1T1),

β ≡ 8π2

aN4N̂4

(
β5

q4T4

√
KT4T̄4

− β4

q4T5

√
KT5T̄5

)
. (6.35)

The obtained scalar potential (6.34) is that of natural inflation by identifying the axion
Ŷ 4 as the inflaton. The observed power spectrum of curvature perturbation is achieved by
setting the parameter in Eq. (6.35) satisfying Λ4 ∼ O(10−9) in the reduced Planck unit. The
trans-Planckian axion decay constant β−1 is realized by the enhancement of one-loop factor
compared with the dilaton-axion as shown in Eq. (6.35). We expect that the spectral index of
curvature perturbation and the tensor-to-scalar ratio can be consistent with the Planck data.

To justify our expectation, we numerically estimate the cosmological quantities constrained
by the cosmological observations. As a matter of convenience, we take the dilaton Kähler
potential as K0 +Knp given by Eqs. (6.11) and (6.20). Their parameters are chosen as

k1 =
1

6
, k2 = k3 = k4 = k5 = 4,

d = 7, b = 1, p = 2, (6.36)

in the Kähler potential and

A =
1

300
, a = 30, B = −1

2
, μ1 = 2π, W0 = 6× 10−4, μ � 1× 10−3,

β2 � β3 � β4 � β5 �
1

8π
, (6.37)

in the superpotential given by Eqs. (6.13) and (6.29), respectively. Here, we consider O(1) U(1)
charges of moduli fields.

By setting these parameters, the vacuum expectation values of the moduli are obtained as

T1 � 1.3, T2 � T3 � T4 � T5 � 0.025, S � Φ � 1.9, (6.38)

which yield the typical Kaluza-Klein scale

MKK � Ms

V1/6
� 1.2× 1017 GeV, (6.39)
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with

Ms =
MPl√
4πα−1

� 1.4× 1017 GeV. (6.40)

This size of gauge coupling of visible gauge group Gvisα
−1 � 24 is mainly determined by

the vacuum expectation value of dilaton and it is consistent with that predicted by the gauge
coupling unification at the string scale . On the other hand, one would suspect that the effective
field description is violated because the vacuum expectation values of Kähler moduli given in
Eq. (6.38) are smaller than 1 in string unit. In such a case, the effective field theory generically
receives the stringy and higher derivative corrections that translates into the correction terms
to the CY volume (ΔV) in the Kähler potential, although we do not its explicit form in the
CY manifold. However, in our setup, the CY moduli volume is larger than the correction term
ΔV at the vacuum given in Eq. (6.25) and then moduli Tj (j = 2, 3, 4, 5) will still be stabilized
at the vacuum close to that in Eq. (6.25). In any rate, our proposed idea to enhance the axion
decay constant is irrelevant to the detail of moduli stabilization.

The input parameters given by Eqs. (6.36) and (6.37) are set to reproduce the CMB scale

Λ4 � 3.22× 10−9, (6.41)

and the desired trans-Planckian axion decay constant,

β−1 � 6.1, (6.42)

in the reduced Planck unit.
As discussed in Chapter 2, in terms of the slow-roll parameters,

ε ≡ M2
Pl

2

(
∂Ŷ 4Veff

Veff

)2

,

η ≡ M2
Pl

∂2
Ŷ 4Veff

Veff

,

ξ2 ≡ M4
Pl

∂Ŷ 4Veff∂
3
Ŷ 4Veff

V 2
eff

, (6.43)

an amount of e-folding from the time t∗ at the pivot scale to the inflation end tend is estimated
as

Ne = −
∫ t∗

tend

dtH(t) � 1

MPl

∫ Ŷ 4
end

Ŷ 4∗

dŶ 4

√
2ε
, (6.44)

where H(t) is the Hubble parameter, Ŷ 4
∗ and Ŷ 4

end represent for the field values of the inflaton
Ŷ 4 at the time t∗ and tend, respectively. The end of inflation corresponds to the violation of
slow-roll conditions, max{|ε|, |η|} = 1. From the cosmological observables written in terms of
the slow-roll parameters given by Eq. (2.28), it turns out that their numerical values and the
e-folding number at the field value Ŷ 4

∗ � 13MPl,

Pξ � 2.2× 10−9, ns � 0.961, r � 0.05, Ne � 62, (6.45)
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are consistent with the Planck data [15, 16],

Pξ = 2.196+0.051
−0.060 × 10−9, ns = 0.9655± 0.0062, r < 0.11, (6.46)

at the pivot scale k∗ = 0.05Mpc−1. The dual Coxeter number a = 30 of hidden Ehid
8 gauge

group and factors β3 � β4 � β5 � 1/8π are important to enhance the axion decay constant of
inflaton field.

6.2.2 Double gaugino condensations

Contrary to the moduli stabilization in the previous section 6.2.1, in this section, we derive the
inflaton potential along the different type of the Kähelr potential and superpotential. In the
previous model in Sec. 6.2.1, the dilaton is assumed to be stabilized at the minimum by the
Kähler potential including the non-perturbative corrections (6.21), whereas in the model of this
Sec. 6.2.2, the dilaton is stabilized by the inclusion of the gaugino condensation terms. That is
the the main difference between the model 1 and the model 2. In a similar way to the model in
Sec. 6.2.1, the one-loop threshold corrections enhance the axion decay constant which appear
in the gauge kinetic function of the hidden gauge group. Guided by the results in model in
Sec. 6.2.1, the volume form of “Swiss-Cheese” CY manifold also gives rise to stabilize the real
parts of moduli.

Setup

For complete our discussion, we adopt the “Swiss-Cheese” CY manifold with three Kähler
moduli (h1,1 = 3) and one anomalous U(1) symmetry,

K = − ln
(
S + S̄

)
− ln

(
kb(Tb + T̄b)

3 − ks

(
Ts + T̄s −

Qs

2π
Vs

)3

− k′
s

(
T ′
s + T̄ ′

s −
Q′

s

2π
Vs

)3
)
,

(6.47)

where kb, ks, k′
s are positive constants in correspondence with the intersection numbers of

“Swiss-Cheese” CY manifold dtbtbtb , dtststs , dt′st′st′s . Since only two moduli Ts and T ′
s have U(1)s

charges under an anomalous U(1)s vector multiplet Vs, the single linear combination of Kähler

axions b
(0)
s and b

′ (0)
s are absorbed by it. By contrast, its orthogonal direction remains massless

and is identified as the inflaton later. Differently from the previous model in Sec. 6.2.1, we do
not consider the non-perturbative corrections to the dilaton Kähler potential.

Moreover, the U(1)s invariant superpotential is chosen as,

W =w0 + A2 e
− 8π2

a2
(S−β

(1)
s Ts−β

′(1)
s T ′

s) + B2 e
− 8π2

b2
(S−β

(2)
s Ts−β

′(2)
s T ′

s) + C2 e
−μbTb , (6.48)

where w0 is the constant term as a consequence of the complex structure moduli of the CY
manifold. When the gauginos condensate at two hidden sectors, the second and third terms in
Eq. (6.48) appear in the superpotential, where these gaugino condensation scales are determined
by ranks of the two hidden gauge groups characterized by a2 and b2, respectively. On the
other hand, the fourth term of the (r.h.s.) denotes the non-perturbative potential for Tb as a
consequence of the world-sheet instanton effect on its two-cycle.
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Moduli stabilization

Next, we begin with the moduli stabilization at the perturbative level. As with the case of
model in Sec. 6.2.1, the complex structure moduli associated with “Swiss-Cheese” CY manifold
are stabilized with the help of fluxes, whereas one linear combinations of the Kähler axions are
stabilized by anomalous U(1)s symmetry.

Indeed, U(1)s vector multiplet absorbs the following linear combination of the canonically
normalized axions Im Ts and Im T ′

s as,

Xs =
1

Ns

(
ImTs

qs
√
KTsT̄s

+
ImT ′

s

q′s
√
KT ′

sT̄
′
s

)
, (6.49)

where Ns =
√
(1/qs

√
KTsT̄s

)2 + (1/q′s
√

KT ′
sT̄

′
s
)2 with qs = Qs/2π and q′s = Q′

s/2π. Now the

Kähler mixing of two Kähler moduli are neglected due to the fact that their stabilization is
also the same as model 1 in Sec. 6.2.1. Its orthogonal direction

Ys =
1

Ns

(
− ImTs

q′s
√

KT ′
sT̄

′
s

+
ImT ′

s

qs
√

KTsT̄s

)
, (6.50)

remains massless and it is identified as the inflaton later. Note that the U(1)s gauge invariance
of the superpotential (6.48) requires that the U(1)s charges of the moduli are related as

qs β
(1)
s + q′s β

′(1)
s = 0,

qs β
(2)
s + q′s β

′(2)
s = 0. (6.51)

To simplify our analysis of F-term scalar potential, we change the field basis as

Φ = S − β(1)
s Ts − β′(1)

s T ′
s, (6.52)

which leads to the following form of the Kähler poential and superpotential,

K = − ln
(
Φ + Φ̄ + β(1)

s (Ts + T̄s) + β′(1)
s (T ′

s + T̄ ′
s)
)

− ln

(
kb(Tb + T̄b)

3 − ks

(
Ts + T̄s −

Qs

2π
Vs

)3

− k′
s

(
T ′
s + T̄ ′

s −
Q′

s

2π
Vs

)3
)
,

W =w0 + A2 e
− 8π2

a2
Φ
+B2 e

− 8π2

b2
(Φ+(β

(1)
s −β

(2)
s )Ts+(β

′(1)
s −β

′(2)
s )T ′

s) + C2 e
−μbTb . (6.53)

In what follows, we suppose that the third term of the (r.h.s.) in Eq. (7.9) is much smaller than

the other terms in Eq. (7.9), i.e., w0, A2 e
− 8π2

a2
Φ
, C2 e

−μbTb � B2 e
− 8π2

b2
(Φ+(β

(1)
s −β

(2)
s )Ts+(β

′(1)
s −β

′(2)
s )T ′

s).
In particular, such a hierarchical structure among two gaugino condensations result from the
different hidden gauge groups. In this way, it enables us to ignore the third term in the super-
potential (7.9) that generates the inflaton potential as discussed later.
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Next, we show the moduli stabilization at the non-perturbative level. At this stage, the
dilaton (Φ) and Kähler moduli (Tb, ReTs, ReT

′
s) are stabilized at the minimum satisfying the

supersymmetric conditions. They are written by

DΦW = 0,

DTb
W = 0,

KTs = KT ′
s
= 0. (6.54)

Since Tb is stabilized at its own superpotential, Ts and T ′
s are also stabilized under the following

conditions,

KTi
� 3ki(Ti + T̄i)

2

kb(Tb + T̄b)3
− βj

Φ + Φ̄
= 0, (6.55)

in the limit of ReT1 > ReTs,ReT
′
s and ReS > ReTs,ReT

′
s. After solving the above Eq. (6.55)

for ReΦ, ReΦ is written in terms of Kähler moduli,

ReS � ReΦ � kb(ReTb)
3

3kiReT 2
i

βj � βjReTj, (6.56)

Therefore, the gauge kinetic function in Eq. (6.9) is dominated by its the tree-level part com-
pared with its one-loop corrections when ReT1 > ReTi (j �= 1) is satisfied. It implies that the
perturbative expansion is valid in our setup. This structure is coming from the negative signs in
the volume of “Swiss-Cheese” CY manifold (6.47). It is an important feature of “Swiss-Cheese”
CY manifold. Although we focus on the F-term potential until now, the D-terms induced from
the Kähler potential (7.9) is vanished due to the supersymmeric conditions (6.54).

At the minimum of relevant moduli fields given by Eq. (6.54), the scalar potential of 4D
N = 1 supergravity has the the supersymmetric AdS minimum at the minimum,

〈V 〉 = −3eK |W |2. (6.57)

In the same way as model 1 in the Sec. 6.2.1, we suppose that the dynamical SUSY-breaking
sector associated with the heterotic five-brane uplift the AdS minimum. The Kähler potential
and superpotential of SUSY-breaking field X in the dynamical SUSY-breaking sector become

ΔK = |X|2 − |X|4
Λ2

,

ΔW = νX, (6.58)

where X do not have some charges under Evis
8 ×Ehid

8 symmetry and Λ is the dynamical SUSY-
breaking scale. Here, we omit the moduli dependence in the Kähler potential of X which is
irrelevant to the moduli stabilization, for simplicity. By setting the parameter ν as

〈V 〉+ΔV � eK
(
−3|W |2 +KXX̄ |ν|2

)
= 0, ⇔ |ν|2 = 3|〈W 〉|2, (6.59)
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one can obtain the Minkowski minimum.

In the following discussion, we take into account the termB2 e
− 8π2

b2
(Φ+(β

(1)
s −β

(2)
s )Ts+(β

′(1)
s −β

′(2)
s )T ′

s)

omitted in the superpotential (7.9). Even when such a term is included in the full scalar poten-
tial, the moduli Φ, Tb, ReTs, ReT

′
s are stabilized at the values close to the minimum given by

Eq. (6.54). This is because it is supposed that one of the gaugino condensation term is much
small compared with the others in the superpotential (7.9) at the minimum. Thus, the inflaon
mass appearing through the other gaugino condensation term can be lower than those of heavy
moduli. As ReTs and ReT ′

s, their masses also include the D-term contributions from the Kähler
potential (7.9).

Inflaton potential

Let us write down the inflaton potential. Along the above stabilization procedures, one can
integrate out these heavy moduli and they could be replaced with the vacuum expectation
values given by Eq. (6.54). First of all, we canonically normalize the lightest moduli Ys (the
linear combination of ImTs and ImT ′

s given by Eq. (6.50)) as

Ŷs �
1

Ns

√
2

(
KTsT̄s

(q′s)
2KT ′

sT̄
′
s

+
KT ′

sT̄
′
s

(qs)2KTsT̄s

)
Ys ≡ N̂s Ys, (6.60)

by employing the following relation, moduli,

ImTs =
1

Ns

(
Xs

qs
√
KTsT̄s

− Ys

q′s
√

KT ′
sT̄

′
s

)
,

ImT ′
s =

1

Ns

(
Xs

q′s
√

KT ′
sT̄

′
s

+
Ys

qs
√

KTsT̄s

)
, (6.61)

We stress that U(1)s gauge invariance of the superpotential (6.48) requires

qs β
(1)
s + q′s β

′(1)
s = 0,

qs β
(2)
s + q′s β

′(2)
s = 0. (6.62)

Thus, for the canonically normalized field Ŷs, one can obtain its effective scalar potential,

Veff � Λ4
s(1− cos (βs Ŷs)), (6.63)

in the limit of B2e
− 8π2

b2
〈ReΦ〉 
 w0, A2e

− 8π2

a2
〈ReΦ〉

, C2e
−μb〈Tb〉. The overall scale of scalar potential

(inflation scale) Λ4
s the inverse of its decay constant β are given by

Λ4
s ≡ 6eKe

− 8π2

b2
ReΦ

B2(w0 + A2 e
− 8π2

a2
Φ
+ C2 e

−μbTb), βs ≡
8π2

b2NsN̂s

(
−β

(1)
s − β

(2)
s

q′s
√
KT ′

sT̄
′
s

+
β
′(1)
s − β

′(2)
s

qs
√

KTsT̄s

)
.

(6.64)
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The obtained scalar potential is that of natural inflation when we identify the axion Ŷs as
the inflaton. The correct power spectrum of the curvature perturbation is achieved by setting
the parameter in Eq. (6.64) satisfying

Λ4
s ∼ O(10−9), (6.65)

in the reduced Planck unit. The enhancement of axion decay constant β−1
s originates from the

loop-correction in the gauge kinetic function which do not arise in the dilaton-axion as shown
in Eq. (6.64). As a result, the spectral index of curvature perturbation and the tensor-to-scalar
ratio are expected to be consistent with the Planck data. By solving equation of motion of
inflaton field, we find that the predictions of this model are same as those obtained in the
previous model in Sec. 6.2.1. However, it is difficult to consider two gaugino condensation
terms originating from E8 × E8 or SO(32) heterotic string theories. This is because the rank
of E8×E8 or SO(32) gauge groups should incorporate the rank 4 SM gauge groups in addition
to two gaugino condensation sectors. In such a case, it is required to tune some parameters
to realize the correct inflation scale. Therefore, in this section, we focus on the situation that
at least one of the gaugino condensation sector is derived from the gauge theory living on the
heterotic five-branes.

6.3 Summary

In this chapter, we proposed the natural inflation scenario in the framework of weakly coupled
Evis

8 × Ehid
8 or SO(32) heterotic string theory on the “Swiss-Cheese” CY manifold. The Evis

8

gauge group are decomposed into the SM (GUT) and extra U(1) gauge groups, where the
magnetic fluxes are inserted into this Cartan direction. Recent Planck data indicate that the
axion-inflaton should have the trans-Planckian decay constant, otherwise the obtained natural
inflation is inconsistent with the Planck data. So far, there are several approaches to attack this
problem. The most familiar scenario to obtain the trans-Planckian axion decay is alignment
mechanism by employing two axions with sub-Planckian decay constants [118]. In this chapter,
in order to overcome such a problem, we focused on the one-loop corrections to the gauge
coupling in the hidden gauge group. These corrections result from the dimensional reduction
of one-loop Green-Schwarz term [107, 108] which is the typical feature of the weakly coupled
heterotic string theory. In particular, these threshold corrections are not relevant to a dilaton
axion but influential to Kähler axions. Thus, we considered the inflaton as one of Kähler axions
associated with the two-cycles of the CY manifold. The axion potential is generated by gaugino
condensation terms in the hidden gauge group. As a result, the decay constant of axion-inflaton
reaches the trans-Planckian value which leads to the successful natural inflation.

In order to extract the potential of single axion, we must take into account the moduli
stabilization of other fields so as not to destabilize them. Their mass scales are then constrained
to be larger than the inflation scale and one can avoid the cosmological moduli problem. Hence,
we discussed two moduli stabilization scenarios in Secs. 6.2.1 and 6.2.2. In Sec. 6.2.1, the non-
perturbative corrections to the dilaton Kähler potential lead to stabilization of the real part of
dilaton. On the other hand, in Sec. 6.2.2, the dilaton is stabilized by the gaugino condensation
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term. In both cases, the volume moduli can be stabilized by the world-sheet instanton effect.
The structure of “Swiss-Cheese” Calabi-Yau manifold plays an essential role to stabilize the
other real parts of Kähler moduli. Furthermore, the anomalous U(1) gauge bosons absorb the
imaginary parts of the moduli except for the axion-inflaton, and they become massive. As
a result, one can stabilize the moduli fields expect for the inflaton and the obtained scalar
potential is the form of natural inflation with trans-Planckian axion decay constant. In the
next chapter, we discuss the natural inflation in type II string theory.

95



Chapter 7

Natural inflation with and without
modulations in type IIB string theory

In this chapter, we take into account the type IIB string theory with an emphasis on axion
dynamics, in particular, the axion inflation based on Ref. [143]. In the same way as in the case
of heterotic string theory, we show that the decay constant of axion associated with the complex
structure moduli is enhanced to the trans-Planckian value due to the moduli-dependent gauge
threshold corrections. Thus, it is expected to identify the inflaton as the imaginary part of the
complex structure moduli. As a simple setup to study such threshold corrections, we consider
the internal space as toroidal orientifold or orbifold.

This chapter is organized as follows. First of all, we briefly review the moduli-dependent
gauge threshold corrections in type IIB string theory. The open strings stretched between D-
branes in the N = 2 bulk induces the moduli-dependent corrections for the gauge coupling.
In Sec. 7.2, we show the moduli stabilization except for the inflaton sector. In contrast to the
heterotic string theory, the three-form flux-induced potential generates the potential of dilaton
and complex structure moduli. However, it depends on the quanta of three-form fluxes. In our
setup, certain linear combinations of dilaton and the complex structure moduli remain massless
at the perturbative level.

Next, we consider the remaining moduli stabilization by the non-perturbative effects such as
the racetrack scenario [144] adopted in Secs. 7.2.1, 7.2.2 and the Kachru-Kallosh-Linde-Trivedi
(KKLT) scenario [145] adopted in Sec. 7.2.2. Then, one can stabilize the linear combination of
dilaton and complex structure modulus, and Kähler modulus. At the same time, the real part
of complex structure moduli paired with the axion-inflaton can be also stabilized due to the
nonvanishing superpotential terms.

Finally, from the other non-perturbative effects, one can extract the effective scalar potential
of remaining massless axion. The obtained axion potential is a type of natural inflation in the
large complex structure moduli limit, where the vacuum expectation values of complex structure
moduli are much larger than 1 in the string unit. Since its decay constant is enhanced by the
loop-corrections, the successful natural inflation is realized to be discussed in Sec. 7.3. On the
other hand, in the region away from the large complex structure moduli limit, it is found that
there are the modulation terms to the original scalar potential of natural inflation as shown in
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Sec. 7.4. Finally, we summarize these contents in Sec. 7.5.

7.1 Moduli-dependent threshold corrections

Along the line of Refs. [146, 147], we summarize the fact that the gauge couplings on D-branes
receive the one-loop gauge threshold corrections. Let us consider the non-abelian gauge theory
with the gauge group Ga living on D-branes. At the scale μ below the string scale Ms, the
running gauge coupling (ga(μ)) on D-branes is given in terms of 4D gauge coupling at the string
scale Ms (ga) and the beta-function coefficient of the gauge group Ga,

1

g2a(μ)
=

1

g2a
+ ba ln

(
M2

s

μ2

)
+

Δa

16π2
. (7.1)

In type II string theory, Δa stands for the one-loop corrections originated from the open
strings between two stacks of D-branes or O-planes. Such correctoins are mostly moduli-
dependent [148].

In particular, the stringy threshold corrections are explicitly calculated by means of CFT
technique. The authors of [146] calculated their detailed form in type IIA string theory on
toroidal orientifold or orbifold in the existence of O-planes and D6-branes which wrap a certain
supersymmetric three-cycle of tori. There is some studies on the local cycle in type IIB/F-theory
in the existence of fractional D-branes [149, 150]. As he T-dual system of type IIA string theory,
one can two brane systems depend on the choice of T-duality. One is the D5/D9-branes system
and other is D3/D7-branes system that will be concentrated in this chapter. Since there are
O3/O7-planes in addition to the D3/D7-branes, the gauge coupling on D7-branes with the
gauge group Ga receives the threshold corrections from the N = 2 SUSY sector in this system.
Its explicit form is provided by

Δa = −
∑
c

bN=2
ac

[
ln |η(i Uk)|4 + ln

(
ReUk |pka + i qkaReT

k|2
ReT k

)]
, (7.2)

up to the regularization constant, where η(i Uk), (k = 1, 2, 3) is the Dedekind eta-function
depends on not the Kähler moduli (T k), but three complex structure moduli Uk. (pka, q

k
a)

denote the wrapping numbers on three two-tori and bN=2
ac are the beta-function coefficients

labeled by the a-stack of D7-branes and the other c-stack of D-branes. The contribution from
the charged massive open strings stretched between both branes is counted by the summation
over c.

Since the gauge kinetic function is a holomorphic function, correspondingly only holomor-
phic corrections appear in the gauge kinetic function on D7-branes [151]. Thus, the first term
on the right-handed side of Eq. (7.2) contributes to it,

f 1−loop
a = − 1

4π2

∑
c

bN=2
ac ln

(
η(i Uk)

)
. (7.3)

97



In particular, the Dedekind eta-function in Eq. (7.3) is approximately given in the large complex
structure moduli limit (|Uk| � 1, k = 1, 2, 3),

η(i Uk) → e−
π
12

Uk

. (7.4)

Note that in such a large complex structure moduli limit, the instanton effects for the Kähler
and superpotential are suppressed. In the case away from the large complex structure limit, we
have to include a more general form of Dedekind eta-function in Eq. (7.2) that is discussed later.
In summary, the gauge kinetic function on D7-branes is expressed by including the threshold
correction,

fa �
∑
i

T i

4π
+
∑
j

bj

48π
U j, (7.5)

where the summations of Kähler and complex structure moduli depends on the wrapping cycle
of D7-branes and bj characterize the effects of charged massive string. Here we consider the
gauge kinetic function without dilaton dependence. When the two-form fluxes inserted along
the wrapping cycle of D7-branes, the gauge kinetic function has a dilaton dependence. However,
we omit such a dilaton dependent term, because it is irrelevant in our moduli stabilization and
inflation as shown later.

7.2 Moduli stabilization on toroidal orientifold or orb-

ifold

Let us proceed to the details of moduli stabilization on the basis of type IIB string theory on
toroidal orientifold or orbifold such as T 2/Z2 or T 2/(Z2 × Z2) with D3/D7-branes.

Contrary to the heterotic string theory on Calabi-Yau three-fold in Chapter 6, in the type
IIB string theory, there are R-R three-form flux F3 and NS-NS three-form flux H3. These
three-form fluxes generate the dilaton S and complex structure moduli Uk dependent potential
in the 4D effective theory. This kind of flux-induced potential is formulated in the language of
superfield by Gukov-Vafa-Witten superpotential [152],

Wflux =

∫
CY

G3 ∧ Ω, (7.6)

where Ω is the holomorphic three-form of the CY manifold and G3 = F3 − i SH3 is the three-
form flux. In general, such fluxes yield the potential of the dilaton and all complex structure
moduli and they could be stabilized at the perturbative level [153].

As an example, when we take into account the extra-dimensional space as T 2/Z2 or T
2/(Z2×

Z2), moduli fields are categorized into dilaton S, three complex structure moduli Uk and Kähler
moduli T k with k = 1, 2, 3. In what follow, we study the overall Kähler modulus T = T 1 =
T 2 = T 3 for simplicity. Our following analysis can be applied to the more general case of three
Kähler moduli. In the next section, we show the detail of their moduli stabilization.
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7.2.1 Moduli stabilization at the perturbative level

First of all, we begin with the stabilization of the dilaton (S) and complex structure moduli
(U1, U2, U3) in terms of the three-form flux (7.6). By dimensionally reducing the system, their
Kähler potential and superpotential is written as

K = − ln(S + S̄)−
3∑

i=1

ln(U i + Ū i),

Wflux = w1 + iw2 (U
1 − U2) + iw3 U

3 + iw4 S + w5U
3 (U1 − U2) + w6S U3 + w7S (U1 − U2)

+ iw8SU
3(U1 − U2), (7.7)

in the reduced Planck unit, MPl = 1, where the three-form fluxes are specified in Eq. (7.7)
with wm (m = 1, 2, . . . , 8) being integers originated from the quantization conditions of the
R-R and NS-NS fluxes. The above ansatz plays an important role for the moduli stabilization
as discussed later.

Before going to discuss the potential with the Kähler and superpotential (7.7) we redefine
one of the complex structure modulus as

U4 = U1 − U2, (7.8)

which leads to following Kähler potential and superpotential,

K = − ln(S + S̄)− ln(U2 + Ū2)− ln(U3 + Ū3)− ln(U4 + Ū4 + U2 + Ū2),

Wflux = w1 + iw2 U
4 + iw3 U

3 + iw4 S + w5U
3 U4 + w6S U3 + w7S U4 + iw8SU

3U4. (7.9)

in the field base S, U2, U3 and U4.
These moduli fields are stabilized at the minimum satisfying the supersymmetric condition,

i.e., the extremal condition,

DIW = 0, (7.10)

for ΦI = S, U2, U3 and U4. Moreover, we search for the supersymmetric Minkowski minimum
W = 0. Then, the above stabilization condition (7.10) can be summarized as

WS = WU3 = WU4 = W = 0. (7.11)

Under the following ansatz of R-R and NS-NS fluxes

w1 = w2w6, w3 = −w5w6, w4 = −w6 w7, w8 = 1, (7.12)

the expectation values of S, U3 and U4 are obtained so as to satisfy the Eq. (7.11),

ReU3ReS = −(w2 + w5w7), ReU4 = 0, ImU3 = w7, ImU4 = w6, ImS = w5. (7.13)
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At this supersymmetric Minkowski minimum, we find that their mass-squared matrices in the
field basis (U4, U3, S) become

m2
S =⎛

⎝KU3Ū3 |WU3U4 |2 +KSS̄|WSU4 |2 0 0

0 KU4Ū4 |WU3U4|2 KU4Ū4
WU3U4W̄S̄Ū4

0 KU4Ū4
W̄Ū3Ū4WSU4 KU4Ū4 |WSU4 |2

⎞
⎠ , (7.14)

whose rank is 2. Thus, U4 and the linear combination of S and U3 are stabilized at the
supersymmetric Minkowski minimum with some appropriate choices of the integers wm. For
the supersymmetry breaking minimum, the authors of Ref. [154] pointed out the possibilities
of one massless axion in the light of F-term axion monodromy inflation. So far, we do not
canonically normalize these moduli field. These canonically normalization is summarized in
the Appendix C.

We comment on the tadpole condition which severely constrains the string model building.
Although, with the above choice of R-R and NS-NS fluxes, one would not realize the tadpole
condition among themselves, the following moduli inflation scenario is irrelevant to the structure
of tadpole condition.

7.2.2 Moduli stabilization at the non-perturbative level

Next, we concentrate on the remaining massless moduli. They are complex structure modulus
U2, the linear combination of S and U3 and overall Kähler modulus T . The Kähler potential
of single overall Kähler modulus T is described in the large volume limit,

K = −3 ln(T + T̄ ). (7.15)

where we do not consider the world-sheet instanton effects, that possibilities are discussed in
a separate paper. The non-perturbative corrections to the superpotential such as the gaugino
condensation on D3/D7-branes are introduced to stabilize the Kähler modulus T , complex
structure modulus ReU2 and dilaton S,

Wnon = A(U)e
− 8π2f1

N1 −B(U) e
− 8π2f2

N2 + C(U)e
− 8π2f3

N3 −D(U) e
− 8π2f4

N4 , (7.16)

where f1 (f2) represents the gauge kinetic function of pure SU(N1) (SU(N2)) gauge theory on
two stacks of D7-branes,

f1 = f2 =
T

4π
+

b2U2

48π
. (7.17)

To simplify our discussion, it is then assumed that both gauge kinetic functions receive the
same U2-dependent threshold corrections characterized by beta-function coefficient b2. On the
other hand, the latter parts are originated from pure SU(N3)×SU(N4)) gauge theories on two
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stacks of D3-branes at the orbifold fixed points with the following gauge kinetic functions f3
and f4,

f3 = f4 =
S

4π
. (7.18)

Even if the prefactors in the gaugino condensation terms (A(U), B(U), C(U), D(U)) depend
on the heavy complex structure moduli stabilized at the tree-level (7.6), there will no sizable
influences for the following discussion of moduli stabilization. Then, these prefactors are treated
as constants and neglect the fluctuations of these heavy complex structure moduli around their
minimum (7.13).

To brighten the outlook for stabilizing the moduli fields, we first redefine the Kähler modulus
as

T̃ = T +
b2

12
U2. (7.19)

In these field basis (T̃ , S), the Kähler modulus T̃ and dilaton S are stabilized along a similar
step to the the racetrack scenario [144]. Their supersyummetric conditions

DT̃Wnon = (Wnon)T̃ +KT̃Wnon = 0,

DSWnon = (Wnon)S +KSWnon = 0, (7.20)

enable us to estimate the expectation values of Kähler modulus and dilaton,

〈T̃ 〉 � N1N2

2π(N2 −N1)
ln

N2 A

N1 B
, 〈S〉 � N3N4

2π(N4 −N3)
ln

N4C

N3 D
, (7.21)

at the racetrack minimum under the condition that 〈Wnon〉 
 〈(Wnon)T̃ 〉, 〈(Wnon)S〉. Such a
relationship is satisfied in the following numerical analysis. The racetrack superpotential for
S stabilizes the certain linear combination of S and U3, whereas the orthogonal direction is
already stabilized by the flux-induced superpotential as discussed in Sec. 7.2.1. Now, we choose
w5 = 0 in the superpotential (7.9) so that the stabilized point of ImS is the same as that given
in Eq. (7.13).

Next, we focus on the massless complex structure modulus U2. Since we rotate the field
basis of Kähler modulus as in Eq. (7.19), the Kähler potential is also changed as

K = − ln(U2 + Ū2)− ln(U4 + Ū4 + U2 + Ū2)− 3 ln(T̃ + ¯̃T − b2

12
(U2 + Ū2)). (7.22)

,whereas the superpotential do not include the potential of U2. Therefore, the extremal condi-
tion VU2 = ∂V/∂U2 = 0 is satisfied under the following condition:

KU2 = − 1

U2 + Ū2
− 1

U4 + Ū4 + U2 + Ū2
+

b2

4

1

T̃ + ¯̃T − b2

12
(U2 + Ū2)

= 0, (7.23)

101



which leads to the expectation value of ReU2 by employing 〈ReU4〉 = 0,

ReU2 =
24〈Re T̃ 〉

5b2
. (7.24)

In the above analysis, we assume that U4 and the linear combination of U3 and S are replaced
by constants given by the supersymmetric conditions DU3W = DU4W = DSW = 0, when
we evaluate the stabilization of light moduli T̃ , S and ReU2. Furthermore, we neglect the
deviations and fluctuations of heavy moduli from the minimum given by Eq. (7.13). This
assumption is ensured when the gaugino condensation scale is small compared with the mass
scales of heavy moduli in Sec. 7.2.1.

The stabilization of ReU2 is checked by evaluating the rank of the mass matrices for U2,
U3, U4, S and T̃ . It turns out that the squared mass of ReU2 is positive at the uplifted
vacuum as shown later. This is because the gaugino condensation scale determined by the
superpotential (7.16) is suppressed from the mass scales of heavy moduli such as U4 and the
linear combination of U3 and S. They are summarized in Appendix C.

So far, the non-vanishing superpotential 〈W 〉 �= 0 gives rise to the negative vacuum energy
at the supersymmetric minimum DIW = 0 for I = U2, U3, U4, S and T̃ . In a similar way to the
case of heterotic string theory, we assume that the AdS vacuum is uplifted to the Minkowski
minimum by some uplifting sector as suggested in Ref. [145],

V = VF + Vup, (7.25)

where VF denotes the F-term scalar potential obtained in the above analysis. It is possible to
construct the uplifting potential Vup in type IIB string theory by setting anti-D3-branes [145]
on warped throat and some dynamical SUSY-breaking sectors [140, 32, 64, 141]. In the next
section, we move on to the dynamics of the light axion ImU2 that corresponds to the inflaton
field.

Finally, we show an another possibility to stabilize the Kähler modulus T . Until now, we
perform the racetrack scenario [144] for the stabilization of Kähler modulus, whereas, for the
case of KKLT scenario [145], its stabilization is achieved by single non-perturbative correction
and a tiny constant value in the superpotential. In such a case, one can also derive the same
inflaton potential for ImU2 as will be shown in the next section, since the obtained inflaton
potential is irrelevant to the detail of Kähler moduli stabilization. One way to realize the
tiny constant value of superpotential in the KKLT scenario is to tune R-R and NS-NS fluxes
in such a way that the tiny expectation value of superpotential 〈W 〉 < 10−2 is realized so
as to be compatible with the large-volume limit of T as shown in Eq. (7.15). Furthermore,
the energies of these fluxes may spoil the background solution and the product of three-tori
is modified to complicated geometry such as non-Kähler manifold so as to keep the stability
of system. Even when the supersymmetric fluxes are turn on, the D-branes and O-planes
required from the tadpole cancellation [153] may give the backreactions to the geometry. From
this perspective, these backreactions induced by the three-form fluxes and the source of branes
are further assumed to be negligible in the relevant sector of moduli stabilization.

We again remark that the stabilization of other Kähler moduli. Although we have taken
int account the single overall Kähler modulus T , the other Kähler moduli Ti (i = 1, 2) could
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be stabilized by the similar step as in the case of T . It can be realized by the another non-
perturbative corrections to the superpotential such as the gaugino condensation on D7-branes
wrapping the irrelevant cycle associated with the modulus T . Let us demonstrate the above
statements. When the gauginos of SU(M

(i)
1 ) and SU(M

(i)
2 ) gauge theories condensate at a scale

heavier than the those for the modulus T , the superpotential is generated as

W =
∑
i

Ai(U)e
− 8π2f

(i)
1

M
(i)
1 −Bi(U) e

− 8π2f
(i)
2

M
(i)
2 , (7.26)

where f
(i)
1 = a1Ti and f

(i)
2 = a2Ti with a1, a2 being constants and these prefactors Ai(U) and

Bi(U) depend on only the heavy complex structure moduli stabilized at the tree-level (7.6).
Then, T1 and T2 are also stabilized at the racetrack minimum.

7.3 Natural inflation without modulations

Let us proceed to discuss the inflaton potential. First of all, we set an another SU(L) gaugino-
condensation term on D7-brane wrapping the cycle associated with T ,

W ⊃ E(〈U〉)e− 2π
L
〈T 〉− bπ

6L
〈ReU2〉−i bπ

6L
ImU2

, (7.27)

where the gauge coupling on SU(L) gauge theory receives the U2-dependent threshold cor-
rections. The other threshold corrections from the heavy complex structure moduli, U3 and
U4 are included in the prefactor of gaugino condensation term E(〈U〉). Here, the rank of the
SU(L) and SU(Ni) (i = 1, 2, 3, 4) gauge theories are chosen as L < Ni with i = 1, 2, 3, 4 to
ensure the reliability of our calculation. In this setup, one can analyze only the dynamics of
ImU2, because all the other moduli fields are much heavier than ImU2 due to the flux-induced
superpotential (7.6) and the high-scale gaugino-condensation terms (7.16). Under L � Ni, the
other moduli discussed in the previous section would not be fixed at the minimum of potential
given by Eqs. (7.13) and (7.21) and one cannot neglect their fluctuations around their vacuum
expectation values.

As a result, one can extract the effective scalar potential for ImU2 from Eq. (7.27) by setting
certain uplifting sector (7.25),

Veff = Λ1 (1− cos (λ1φ)) , (7.28)

where Λ1 � 6e〈K〉〈Wnon〉E(〈U〉)e− 2π
L
〈T 〉− bπ

6L
Re〈U2〉 and λ1 = bπ/6dL. Now, we canonically nor-

malize the axion as φ = d ImU2 where the canonical normalization factor d � 1/〈ReU2〉
depends on the relevant complex structure moduli. It is summarized in Appendix C. Although
there are kinetic mixing between U2, U4 and T̃ as can be seen in the Kähler potential (7.22),
their mixing terms are negligible on the inflaton dynamics. This is because other fields expect
for ImU2 are already fixed at their minmum.

By identifying the inflaton as φ, the axion potential is just that of natural inflation as men-
tion before in Chapter 5. The desired trans-Planckian axion decay constant can be obtained
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by the enhancement factor as seen in the scalar potential (7.28). In addition to the inverse of
one-loop factor, the ratio b/L and the vacuum expectation value 〈ReU2〉 are dominant sources
to enhance the axion decay constant that leads to the successful cosmological observables re-
ported by Planck [15, 16]. We stress that the beta-function coefficient b in N = 2 sector is
irrelevant to the dynamics of SU(L) gauge sector.

The cosmological observables such as the power spectrum of the curvature perturbation Pξ,
its spectral tilt ns, running of the ns dns/d ln k and the tensor-to-scalar ratio r are are estimated
by employing the slow-roll parameters for the inflaton φ,

ε =
1

2

(
∂φVeff

Veff

)2

=
(λ1)

2

2

1− cos2(λ1 φ)

(1− cos(λ1 φ))
2 ,

η =
∂φ∂φVeff

Veff

= (λ1)
2 cos(λ1 φ)

1− cos(λ1 φ)
,

ξ =
∂φVeff∂φ∂φ∂φVeff

V 2
eff

= −(λ1)
4 1− cos2(λ1 φ)

(1− cos(λ1 φ))
2 , (7.29)

An amount of e-folding is also evaluated from

Ne =

∫ φ∗

φend

Veff

∂φVeff

dφ, (7.30)

where φ∗ and φend stand for the field values at the pivot scale and the end of inflation, respec-
tively. The inflation ends when the slow-roll condition is violated, max{ε, η, ξ} = 1.

In the following numerical analysis, we choose the representative parameters in the super-
potential given by Eqs. (7.9), (7.21), (7.27) and the Kähler potential given by Eq. (7.22) as
follows,

w5 = 0, w6 = 1, w2 = −8, w7 = −3, N1 = N3 = 12, N2 = N4 = 20, L = 10, b = 1,

b2 = 12, A = −8, B = −3, C = 9, D = 3, E =
1

12
, (7.31)

and the other parameters in Eq. (7.9) are fixed to satisfy Eq. (7.12). These parameters are fixed
such that the correct order of power spectrum of curvature perturbation is generated. Also,
these parameters give rise to vacuum expectation values of moduli fields,

〈ReU1〉 � 〈ReU2〉 � 2.8, 〈ReU3〉 � 1, 〈ImU1〉 � 1, 〈ImU2〉 � 0, 〈ImU3〉 � −3,

〈ReS〉 � 7.7, 〈ImS〉 � 0, 〈T̂ 〉 � 7.1. (7.32)

By solving the equation of motion of inflaton field with the above set of parameters, we find
that the cosmological observables with an enough amount of e-folding Ne � 61 are

ns � 0.963, r � 0.06, dns/d ln k � −8× 10−4, (7.33)

consistent with WMAP and Planck data [15, 16] as shown in Eq. (6.46).
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We again remark that, the gauge coupling receives the moduli-dependent threshold correc-
tion induced by the massive open-string. The axon appear through such corrections have the
trans-Planckian axion decay constant due to the enhancement of one-loop factor in Eq. (7.18).
It is the model-independent feature in string theory and higher-dimensional theory. Thus, when
we consider certain non-perturbative effects depending on such the particular axion, it gives
rise to a successful natural inflation and one can obtain several tensor-to-scalar ratio which is
of O(0.01− 0.1) in our framework.

7.4 Modulated Natural inflation

In the previous analysis, we approximate the Dedekind eta-function in the threshold correction
by its leading term in Eq. (7.4). It is an usually considered situation corresponding to the large
field limit of complex structure moduli and in this limit, the obtained inflaton potential is just
that of usual natural inflation with trans-Planckian decay constant.

In this section, we take a closer look at the next leading term in the Dedekind eta-function,

η(i U2) → e−
π
12

U2
[
1− e−2πU2 −O(e−4πU2

)
]
, (7.34)

that will deviate the minimum from that given in the large complex-structure limit, the correc-
tion terms are suppressed exponentially though. According to it, the inflaton potential receives
the following corrections,

Vinf = Veff + Vmod, (7.35)

where

Vmod = Λ2 cos (λ2φ) , (7.36)

with Λ2 = Λ1
2b
L
e−(2π+

b π
6L )〈ReU2〉 and λ2 = (2π + b π/6L)/d. Even though it is the next leading

term in the scalar potential, the modulations [155, 156, 157] to the leading inflaton potential Veff

will appear as a consequence of the correction Vmod. That effect depends on the vacuum expec-
tation value 〈ReU2〉. In the previous analysis with the numerical values of parameters (7.31),
such a correction is suppressed by the large field value of 〈ReU2〉 � 1.

However, we should take into account the strong CP problem if the relevant axion couples
o the QCD sector. When there is a tachyonic potential around the origin, φ = 0, φ has the
nonvanishing vacuum expectation value, which would lead to the unobservable θ-term. Let us
estimate whether its tachyonic potential appears or not. From the axion mass-squared at the
origin given by

∂2
φVinf

∣∣
φ=0

= (λ1)
2Λ1 − (λ2)

2Λ2, (7.37)

its positivity is realized under the following condition,

(λ1)
2Λ1 − (λ2)

2Λ2 > 0 ↔
(π
6

)2 b

L
> 2

(
2π +

π b

6L

)2

e−2π〈ReU2〉. (7.38)
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Thus, in the following analysis, we concentrate on the region where the above inequality is
satisfied.

Next, we discuss the cosmological effects, in particular, modulations from the additional
scalar potential Vmod. For the general scalar potential (7.35), the slow-roll parameters are
found as

ε =
(λ1Λ1 sin (λ1 φ)− λ2Λ2 sin (λ2 φ))

2

2V 2
inf

,

η =
(λ1)

2Λ1 cos (λ1 φ)− (λ2)
2Λ2 cos (λ2 φ)

Vinf

,

ξ2 = −λ1Λ1 sin (λ1 φ)− λ2Λ2 sin (λ2 φ)

Vinf

× (λ1)
3Λ1 sin (λ1 φ)− (λ2)

3Λ2 sin (λ2 φ)

Vinf

, (7.39)

In addition, the spectral index ns including the next-leading order of slow-roll approximation
are given by

ns = 1 + 2η − 6ε+ 2

[
−
(
5

3
+ 12C

)
ε2 + (8C − 1)ε η +

1

3
η2 −

(
C − 1

3

)
ξ2
]
+ · · · , (7.40)

where C = −2+ln 2+γ is the numerical factor written in terms of the Euler-Mascheroni constant
γ � 0.577. The ellipsis includes more higher corrections about slow-roll parameters, e.g., fourth
derivative with respect to the inflaton field as discussed in Ref. [26]. Eq. (7.40) implies that ,in
some parameter regions, a sizable ξ2 = O(0.01) will contribute to the numerical value of spectral
tile ns. On the other hand, the authors of Refs. [158, 159] discuss the higher-order corrections
to Pξ which do not induce sizable effects. It is remarkable that such a modification from the
natural inflation is controlled by the field value of complex structure modulus (〈ReU2〉) and
the ratio of beta-function coefficient and rank of gauge group (b/L) in the superpotential (7.9).

In the following numerical analysis, we focus on a particular value 〈ReU2〉 � 1 by setting
certain numerical values of parameters different from Eq. (7.31). A non-negligible Vmod gives
a different prediction of cosmological observables from that of natural inflation. In particu-
lar, several values of b/L and 〈ReU2〉 drastically change the cosmological observables r, ns,
dns/d ln k as shown later. The power spectrum of curvature perturbation Pξ can be fixed as
the observed value 2.2 × 10−9 by suitably choosing overall scale of inflaton potential, i.e., the
gaugino-condensation terms in Eq. (7.21). As drawn in Fig. 7.1, for the universal value of
〈ReU2〉 = 1 with b/L = 1/10, 1/5, 1/4, 1/3, 1/2, one can predict several size of spectral index
ns and the tensor-to-scalar ratio r within enough amount of e-folding numbers, 50 ≤ Ne ≤ 60.
The oscillating curves in Fig. 7.1 are originating from the oscillations of slow-roll parameters
through the modulation term in the scalar potential. In Fig. 7.2, we set b/L = 1/5 (1/10) and
〈ReU2〉 = 1.2 (2.4) in the left (right) panel such that the leading scalar potential Veff has the
same structure. However, in the left panel with 〈ReU2〉 � 1, the next-leading scalar poten-
tial Vmod provides significant contributions compared with the right panel. With b/L = 1/5 and
〈ReU2〉 = 1.2, the scalar potential with and without such modulations is shown in Fig. 7.3, al-
though there is no significant difference between them. If we consider the region of 〈ReU2〉 < 1,
the next-to-next leading order of the Dedekind functions should be add in the potential. In

106



such a parameter space, we should include the instanton correction to the Kähler potential and
superpotential. In Tab. 7.1, we summarize the predictions of cosmological observables.

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
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r

Figure 7.1: Predictions of spectral tilt of curvature perturbation ns and tensor-to-scalar ratio
r within the range of e-folding number, 50 ≤ Ne ≤ 60 in Ref. [143]. For the universal value of
〈ReU2〉 = 1, black-solid, red-dashed, green-dashed, blue-dot-dashed and orange-dotted curves
represent the fixed ratios b/L = 1/10, 1/5, 1/4, 1/3, 1/2, respectively.
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Figure 7.2: The three slow-roll parameters, ε, η and ξ2 as a function of inflaton field φ.
ε, η and ξ2 are in correspondence with black-dot-dashed, red-dashed and blue-solid curves,
respectively [143]. We set the numerical values of parameters as b/L = 1/5 (1/10) and
〈ReU2〉 = 1.2 (2.4) in the left (right) panel.

As a result, one can obtain several values of the tensor-to-scalar ratio r and allowed spectral
index ns � 0.96 reported by Planck which is sensitive to the value of complex-structure modulus,
〈ReU2〉. This intersecting phenomena is seen not in an original natural inflation model [29],
but in a modulated natural inflation discussed here. It is governed by the structure of Dedekind
eta-function. In the large field limit of complex structure moduli 〈ReU2〉 � 1, our inflaton
potential reduces to the original natural inflation [29], whereas, in 〈ReU2〉 � 1, modulation
terms appear in the scalar potential. Such modulation effects are also discussed in the multi-
natural inflation scenario [71]. In a near-future, it is expected that future precise cosmological
observations select certain values of cosmological observables.
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Figure 7.3: The scalar potential V as a function of the inflaton field φ shown in Ref. [143].
In a similar way to Fig. 7.2, the black-solid curve denotes the scalar potential (7.35) with
modulations by setting the parameters b/L = 1/5 and 〈ReU2〉 = 1.2, whereas the red-dotted
curve denotes the leading scalar potential (7.28) without modulations for the same parameters.

7.5 Summary

In this chapter, we discussed the natural inflation in the framework of type IIB string theory on
toroidal orientifold or orbifold. The trans-Planckian decay constant required in the successful
natural inflation is achieved by one-loop threshold corrections for the gauge coupling. In type
IIB string theory, there is an explicit calculation for such quantities on the toroidal orientifold
or orbifold background [146, 147]. In general, such corrections are moduli-dependent. When
one of the moduli appearing in the threshold correction is identified as the inflaton, its decay
constant can be enhanced by the inverse of one-loop factor. As shown in this chapter, these
gauge threshold corrections are phenomenologically important not only for the gauge coupling
unification, but also for the cosmic inflation.

On toroidal background, the moduli-dependent correction is characterized by the Dedekind
eta-function which respect the modular symmetry of torus. In our model, the axion paired with
the complex structure modulus plays the role of inflaton. The other axions and moduli fields are
stabilized at the minimum by three-form flux induced potential and racetrack superpotential.
Then, they are decoupled from the inflaton dynamics. In the large complex-structure limit,
〈ReU2〉 > 1, the obtained form of inflaton potential reduces to that of natural inflation, whereas
in 〈ReU2〉 � 1, one has to treat the full Dedekind eta-function. Due to the analytic form of the
function, cosmological observables such as tensor-to-scalar ratio and spectral tilt of curvature
perturbations are better fitted with the Planck data. Indeed, both the small and large tensor-
to-scalar ratios can be realized with the fixed spectral tilt of curvature perturbation. It is
expected that the modulated spectrum of natural inflation could be detectable in the near-
future experiments. Thus, one can obtain suggestive cosmological implications for string model
building.

Although it is also interesting to extend our scenario to more general curved background
such as Calabi-Yau manifold, we do not know the explicit form of one-loop threshold corrections.
It is expected that some (discrete) symmetries would be preserved in the effective theory of
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b/L 〈ReU2〉 Ne ns r dns/d ln k
1/10 1.3 50 0.96 0.14 −0.0008
1/10 1.3 57 0.96 0.12 −0.012
1/5 1.2 55 0.96 0.08 −0.002
1/5 1.2 60 0.96 0.08 −0.001
1/4 1.2 53 0.96 0.07 −0.002
1/4 1.2 58 0.96 0.06 −0.001
1/3 1.1 54 0.96 0.04 −0.002
1/3 1.1 60 0.96 0.04 −0.001
1/2 1.1 50 0.95 0.01 −0.0003

Table 7.1: The input parameters b/L, 〈ReU2〉 and the obtained results such as the e-folding
number Ne, spectral tilt of curvature perturbation ns, its running of spectral index dns/d ln k
and tensor-to-scalar ratio r in Ref. [143].

type IIB string theory on curved background. By focusing on such symmetries, one would guess
the moduli-dependent function appeared in the threshold correction. We leave it for a future
work. If a lot of axions appear in the low-energy effective theory derived from the string theory,
they would induce the isocurvature and the cross-correlated perturbations in addition to an
adiabatic curvature perturbations induced by the inflaton. In Ref. [160], we have found that
Planck analysis on the generally correlated isocurvature perturbations prefers the existence of
the correlated isocurvature modes for the axion monodromy inflation in contrast to the situation
in the natural inflation.
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Chapter 8

Conclusions and discussions

In this thesis, we have taken into account the following two approaches to solve and explain
the theoretical and phenomenological/cosmological problems of the standard model of particle
physics. One of them is the “bottom-up approach” that explains these problems by minimally
extending the standard model. In particular, we adopt the five-dimensional supergravity model
compactified on S1/Z2 in the light of the extra-dimension and local SUSY. In Chapter 2, we
investigated the cosmological aspects of 5D SUGRA with the emphasis on the moduli inflation.
The moduli fields appear associated with extra-dimensional components of higher-dimensional
vector and tensor fields. In our setup, the moduli fields are represented by chiral multiplets
in the 4D effective theory, those are originated from 5D U(1) Z2-odd vector multiplets. As
shown in this chapter, the parameters in modulus scalar potential as well as the kinetic term
are severely constrained by the higher-dimensional Lorentz and gauge symmetries.

We have presented two types of successful inflation scenario in the single framework of
phenomenological 5D supergravity model. One of them is the small-field inflation that is similar
to the Starobinsky one [1], whereas the other one behaves like a natural inflation categorized
as the large-field inflation. Both mechanisms are achieved by the potential induced by the
U(1) charged stabilizer fields. The stabilizer fields play essential roles of giving not only the
desired inflaton potential, but also the supersymmetric moduli stabilization that enables us to
integrate out the heavy moduli and stabilizer fields supersymmetrically. Thus, the obtained
results are irrelevant to the dynamics of SUSY-breaking field and therefore it turns out that
the SUSY-breaking scale is constrained to be lower than the inflation scale.

Based on the successful moduli inflation scenarios, we have studied the phenomenological as
well as cosmological aspects of 5D SUGRA in Chapters 3 and 4, where the SUSY-breaking scale
is taken as low- and high-scale, respectively. The low-scale SUSY-breaking scenario discussed
in Chapter 3 is attractive scenario which not only protects the mass of the Higgs boson from
the huge radiative corrections, but also gives the plausible dark matter candidate. By setting
the U(1) charge assignments of matter fields in the MSSM to realize the observed hierarchical
mass matrices of quarks and leptons, one can explicitly determine the couplings between the
SUSY-breaking field and matter fields. It is then possible to consider the stable gravitino in
the suppressed Kähler metric of SUSY-breaking field, which is realized by mildly large volume
of fifth dimension. The obtained results are consistent with not only the observed Higgs boson
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mass by LHC experiments, but also the BBN data in the case of sneutrino NLSP and higgsino
NNLSP scenario.

In contrast to the discussion in Chapter 3, we also studied the high-scale SUSY-breaking
scenario with wino LSP in Chapter 4. The relic abundance of wino-like neutralino is so model-
dependent that one cannot determine it unless we specify the whole thermal history of the
universe after the inflation. In Chapter 4, we have taken into account both the thermal and
nonthermal processes to estimate the relic abundance of wino-like neutralino. As a result, it was
found that its relic abundance depends on the gravitino mass. When ongoing LHC experiments
and cosmological observations give an hint of the mass of wino LSP, one would judge whether
the abundance of wino is originated from the thermal or nonthermal process. One would then
extract the constraints on the inflation and SUSY-breaking sector in this scenario.

In Part I of this thesis, we have concentrated on the cosmological and phenomenological
aspects of 5D supergravity model. However, when 5D supergravity is derived as a low-energy
effective theory of ultraviolet theory such as heterotic M-theory and type IIB string theory on
a warped throat, our results and discussions provide insights into such ultraviolet completions.
Indeed, the norm function coefficients in the Kähler potential are related to the intersection
number of CY manifold and the extra U(1) symmetries can be originated from local symmetries
in D-brane or M5-brane configurations. It is interesting to proceed in this direction that will
be studied elsewhere.

In the second part of this thesis, we take an another approach called “top-down approach”, in
which we have studied certain ultraviolet theories towards the standard model. In particular, we
have focused on the cosmological aspects of heterotic string theory on CY manifold in Chapter 6
and type IIB string theory on toroidal orientifold or orbifold in Chapter 7, respectively. In both
scenarios, we have studied a natural inflation caused by the closed string axion. The recent
Planck data suggested that the decay constant of axion-inflaton should be larger than the Planck
scale. It is problematic in the string theory, because the fundamental axion decay constants
are typically lower than the Planck scale. To overcome this problem, in both scenarios, we
have studied the threshold corrections in the gauge coupling. When the axion-inflaton appears
in the gauge kinetic function only through such threshold corrections, its decay constant can
reach the trans-Planckian value. For the heterotic string theory discussed in Chapter 6, the
correction terms are originated from the one-loop Green-Schwarz term that depends on the
Kähler axions. We analyzed the system where the gauginos condensate in the hidden gauge
group and one of the Kähler axion becomes an inflaton field. We have shown the stabilization
of other moduli fields by employing the nature of “’Swiss-cheese” CY manifold.

In the case of type IIB string theory, the threshold corrections are also calculated in a simple
toroidal orientifold or orbifold. However, in contrast to the heterotic string theory, the correc-
tion terms are written in terms of Dedekind eta-function depending on the complex structure
moduli. When we consider the non-perturbative effects in the hidden gauge group, one of the
axions in the complex structure moduli have a potential similar to that of natural inflation.
Interestingly, the potential has a modulation term stemming from the Dedekind eta function.
After performing the numerical calculation including the modulation terms, it turns out that
the cosmological observables are more consistent with those predicted by the natural inflation
without modulation. The near-future cosmological observations such as BICEP, Keckarray and
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Planck have a potential to detect such modulation effects. Even in the case of general curved
background, it is expected that some discrete symmetries protect the form of moduli-dependent
threshold corrections and we would obtain the similar results.

In Part II of this thesis, we have obtained successful cosmic inflation scenarios within the
framework of string theory. However, there are no phenomenologically desired string model,
at present compatible with both the collider experiments and cosmological observations. By
comparing the results in bottom-up and top-down approaches, we will reveal an underlying
nature of the standard model of particle physics and cosmology in the future.

112



Acknowledgements

First, I would like to thank Hiroyuki Abe and Tatsuo Kobayashi for various suggestions,
stimulating discussions and giving my line of study during my doctoral course. The author
also thanks Kenji Kadota, Junichiro Kawamura, Akane Oikawa, Yutaka Sakamura, Yasufumi
Takano, Takuya H. Tatsuishi and Yusuke Yamada for the collaborations and useful discussions.
I also appreciate Tetsutaro Higaki and Shun’ya Mizoguchi for fruitful discussions for the basic
of string theory and toric algebra. He thanks Hiromichi Nakazato and Kei-ichi Maeda for read-
ing and commenting on this thesis. I express my gratitude to all members of Abe/Nakazato
laboratories for their hospitality. Finally, I would like to express my appreciation to my family
for their supports. This work is supported since April 2014 by a Grant-in-Aid for JSPS Fellows
No. 26-7296.

113



Appendix A

The SUSY-breaking effects to the
moduli inflation in 5D SUGRA

A.1 The fluctuations of fields around the vacuum

Along the line of Ref. [7], we summarize the deviations of moduli, stabilizer, and SUSY-breaking
fields from the SUSY-preserving minimum to the SUSY-breaking minimum. The reference
point method enables us to extract the fields values at the SUSY-breaking minimum under
the expansion of fields around the reference points given in Eqs. (3.16) and (3.18). Then, the
superpotential and Kähler potential are expanded as

W � w +WXδX +
3∑

I′=i

WT I′Hi
δT I′δHi,

K �
3∑

I′=1

⎛
⎝−ln(ReT I′)− Re δT I′

ReT I′ +
1

2

(
Re δT I′

ReT I′

)2
⎞
⎠+

3∑
i=1

ZHi
|δHi|2 + ZX |δX|2, (A.1)

where δφ, φ = T I′ , Hi, X with I ′, i = 1, 2, 3, denote the perturbations around the reference
points. In the field basis (T 1, T 2, T 3, H1, H2, H3, X), the Kähler metric is obtained as

KIJ̄ = K
(0)

IJ̄
+K

(1)

IJ̄
, (A.2)

where

K
(0)

IJ̄
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/(2ReT 1)2 0 0 0 0 0 0
0 1/(2ReT 2)2 0 0 0 0 0
0 0 1/(2ReT 3)2 0 0 0 0
0 0 0 ZH1 0 0 0
0 0 0 0 ZH2 0 0
0 0 0 0 0 ZH3 0
0 0 0 0 0 0 ZX − 4|X|2/Λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.3)

114



and

K
(1)

IJ̄
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 aH1H1 0 0 a1XX
0 0 0 0 aH2H2 0 a2XX
0 0 0 0 0 aH3H3 a3XX

aH1H̄1 0 0 0 0 0 0
0 aH2H̄2 0 0 0 0 0
0 0 aH3H̄3 0 0 0 0

a1XX̄ a2XX̄ a3XX 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.4)

with

aHi
≡ ∂ZHi

∂T I′ =
1

ReT I′

(
e−2cHi

ReT I′ − ZHi

2

)
, (I ′ = i),

aiX ≡ ∂ZX

∂T I′ =
ciX

cX · ReT

(
e−2cX ·ReT − ZX

2

)
,

(A.5)

The inverse matrix of Kähler metric is given by

KT I′ T̄ I′ � (2ReT I′)2 + 8ReT I′Re δT I′ , KT I′H̄i � −AHi
δHi,

KT I′X̄ � −Ai
XX − Ai

XδX, KHiH̄i � 1

ZHi

− 2aHi

(ZHi
)2
Re δT I′ ,

KXX̄ � 1

ZX

− 2aiX
(ZX)2

Re δT I′ +
4

Λ2(ZX)2
|δX|2, (A.6)

where

AHi
≡ (2ReT I′)2

aHi

ZHi

, Ai
X ≡ (2ReT I′)2

aiX
ZX

. (A.7)

Thus, the covariant derivatives of superpotential with respect to moduli, stabilizer, and
SUSY-breaking fields are given by

DT I′W � KT I′w,

+WT I′Hi
δH i +KT I′ T̄ I′w(δT I′ + δT̄ I′) +KT I′WXδX

+WT I′T I′Hi
δT I′δHi +

∑
J ′=k

KT I′WTJ′Hk
δT kδHk,

DHi
W � WT I′Hi

δT I′ +KHiH̄i
wδH̄i +

WT I′T I′Hi

2
(δT I′)2,

DXW � WX +KXX̄wδX̄ +
1

2
∂X(KXX̄)w(2|δX|2 + (δX)2 + (δX̄)2), (A.8)

115



and the total F-term scalar potential is found at the second order of δφ,

V � W 2
X

ZX

− 2wWX(δX + δX̄)−
∑
I′=i

(2ReT I′)wWT I′Hi
(δHi + δH̄i)

+
4w2

Λ2Z2
X

|δX|2 +
∑
I′=i

W 2
T I′Hi

ZHi

|δT I′ |2 +
3∑

I′=i

(2ReT I′)2W 2
T I′Hi

|δHi|2

+
3∑

I′=i

(−2ReT I′wWT I′T I′Hi
+ wWT I′Hi

)(δT I′δHi + δT̄ I′δH̄i)

+
∑
I′=i

AHi

2ReT I′wWT I′Hi
(δT I′δH̄i + δT̄ I′δHi)−

3∑
i=1

wWT I′Hi
(δT I′ + δT̄ I′)(δHi + δH̄i)

+
3∑

I′=i

2ReT I′WXWT I′Hi
(δHiδX̄ + δH̄iδX)

+
3∑

I′=i

3∑
J ′=1

T I′ + T̄ I′

T J ′ + T̄ J ′wWT I′Hi
(δT J ′

+ δT̄ J ′
)(δHi + δH̄i). (A.9)

From the obtained scalar potential, the moduli and stabilizer fields receive the following varia-
tions from the SUSY-preserving minmum,

δHi �
w

2ReT I′WT I′Hi

∼ O
(
m3/2

mHi

)
, δX �

(
Λ2Z2

X

4w2

)
5wWX ,

δT I′ �
(

w

WT I′Hi

)2

ZHi

(
1 + AHi

KT I′

2ReT I′ +
WT I′T I′Hi

WT I′Hi

− 3

ReT I′

)
∼ O

(
m3/2

mT I′

)
. (A.10)

and the F-terms of moduli, stabilizer, and SUSY-breaking fields are

√
KT I′ T̄ I′F T I′

= −eK/2
√

KT I′ T̄ I′KT I′ J̄DJW ∼ O

(
m3

3/2

m2
T I′

)
,

√
KHiH̄i

FHi = −eK/2
√

KHiH̄i
KHiJ̄DJW ∼ O

(
m3

3/2

m2
Hi

)
,

√
KXX̄F

X � −eK/2
√

KXX̄K
XX̄DXW � −WX

(ReT 1ReT 2ReT 3)1/2Z
1/2
X

, (A.11)

with

DT I′W = min

(
O

(
m3

3/2

m2
T I′

)
, O

(
m3

3/2

m2
X

))
, (I ′ = 2, 3),

DT 1W = O

(
m3

3/2

m2
T 1

)
, DHi

W = O

(
m2

3/2

mHi

)
, (i = 1, 2, 3), DXW � ν. (A.12)

The SUSY is mainly broken by the SUSY-breaking field X and the F-terms of moduli and
stabilizer fields are suppressed by the gravitino mass.
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A.2 The fluctuations of fields during the inflation

Next, we show the deviations of fields during the inflation in contrast to those around the vac-
uum. The reference point method also allows us to extract them in a similar way to the previous
analysis at the vacuum. By expanding the fields around the reference points in Eqs. (3.16) and
(3.18), the covariant derivatives of superpotential with respect to φ = T I′ , ImT 1, Hi, X with
I ′ = 2, 3 and i = 1, 2, 3, are obtained as

DT I′W � KT I′w +WT I′Hi
δHi +KT I′ T̄ I′w(δT I′ + δT̄ I′) +KT I′ (WH1δH1 +WXδX)

+KT I′ T̄ I′WH1(δT
I′ + δT̄ I′)δH1 +WT I′T I′Hi

δT I′δHi +KT I′

3∑
J ′=j

WTJ′
HjδT J ′

δHj,

DH3W � WT 3H3
δT 3 +KH3H̄3

wδH̄3 +KH3H̄3
WH1δH̄3δH1,

DH2W � WT 2H2
δT 2 +KH2H̄2

wδH̄2 +KH2H̄2
WH1δH̄2δH1,

DH1W � WH1 +WT 1H1
δT 1 +KH1H̄1

WδH̄1 + ∂T 1(KH1H̄1
)w(δT 1 + δT̄ 1)δH̄1,

+KH1H̄1
(WH1 |δH1|2 +WXδH̄1δX) +

WT 1T 1H1

2
(δT 1)2,

DXW � WX +KXX̄wδX̄ +
1

2
∂X(KXX̄)w(2|δX|2 + (δX)2 + (δX̄)2) +KXX̄WH1δH1δX̄,

(A.13)

which lead to the variations of relevant fields after solving their the extremal conditions

δτ 1 = δτ 2 = δτ 3 = δk1 = δk2 = δk3 = δy = 0,

δσI′ ∼ O

(
ZHi

W 2
T I′Hi

ReT I′
|WH1 |2
ZH1

)
� O

((
Hinf

mT I′

)2
)
, (I ′ = 2, 3),

δhi ∼ O

(
KT I′w

WT I′Hi
(2ReT I′)2

)
� O

(
m3/2

mHi

)
, (i = 2, 3),

δh1 ∼ O

(
w

WH1

)
� O

(
m3/2

mH1

)
,

δx ∼ O

(
Λ2Z2

X

4W 2
X

WXw

)
� O

((
m3/2

mX

)2
)
, (A.14)

where

δT I′ ≡ δσI′ + iδτ I
′
, δHi ≡ δhi + iδki, δX ≡ δx+ iδy, (A.15)

with I ′, i = 1, 2, 3.
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Appendix B

Mass matrices in the inflationary
model of heterotic string theory

Along the line of Ref. [124], we review the mass-squared matrices of dilaton and Kähler moduli
in the case of single gaugino condensation with the dilaton Kähler potential being the type of
K = K0 +Knp in Eq. (6.21).

Before going to estimate the masses of moduli fields, we canonically normalize the moduli
fields whose Kähler metrics are given in the limit of ReS � βjReTj and T1 � Tj with
j = 2, 3, 4, 5,

KΦΦ̄ � − b

16

2

(Φ + Φ̄)3/2
Knp +

1

2

(
p− b

(
Φ + Φ̄

2

)1/2
)

1

(Φ + Φ̄)2
,

KΦT̄j
� βj

(Φ + Φ̄)2
,

KT1T̄1
� 3

(T1 + T̄1)2
,

KT1T̄j
� 9kj(Tj + T̄j)

2

k1(T1 + T̄1)4
,

KTj T̄j
� 6kj(Tj + T̄j)

k1(T1 + T̄1)3
,

KTiT̄j
� 9kikj(Ti + T̄i)

2(Tj + T̄j)
2

k2
1(T1 + T̄1)6

, (B.1)

where i �= j, i, j = 2, 3, 4, 5. These moduli fields are stabilized at the supersymmetric minimum
KI = 0 with I = Φ, T 2, T 3, T 4, T 5. Thus, the off-diagonal elements of Kähler metric is negligible
compared with the diagonal one, because of small βj and values of moduli Tj, j = 2, 3, 4, 5.
The Kähler metric of moduli fields are then dominated by the diagonal components such as

KIJ̄ � KIJ̄δIJ̄ , (B.2)

with I, J = Φ, T1, Tj for j = 2, 3, 4, 5.
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These mass-squared matrices of moduli fields receive both the F-term and and D-term
contributions. First, we show the D-term potential induced by the anomalous U(1) symmetries,

VD =
1

2fU(1)1
(q1SKS + q1T2

KT2 + q1T3
KT3)

2 +
1

2fU(1)2
(q2SKS + q2T2

KT2 + q2T3
KT3)

2

+
1

2fU(1)3
(q3SKS + q3T2

KT2 + q3T3
KT3)

2 +
1

2fU(1)4
(q4T4

KT4 + q4T5
KT5)

2, (B.3)

where fU(1)m denote the gauge kinetic functions of U(1)m, m = 1, 2, 3, 4 symmetries and their
approximated forms become fU(1)m � tr(TmTm)S. Such D-term contributions are also ex-
panded by the smallness of βj, j = 2, 3, 4, 5 at the supersymmetric minimum of moduli fields,

(VD)IJ̄ = (VD)
0
IJ̄ + (VD)

1
IJ̄ , (B.4)

where the leading term is given by

(VD)
0
ΦΦ̄ =

3∑
n=1

1

2fU(1)n
(qnSKΦΦ̄ + qnT2

KT2Φ̄ + qnT3
KT3Φ̄)

2,

(VD)
0
ΦT̄2

=
3∑

n=1

1

2fU(1)n
(qnSKΦΦ̄ + qnT2

KT2Φ̄)q
n
T2
KT2T̄2

,

(VD)
0
ΦT̄3

=
3∑

n=1

1

2fU(1)n
(qnSKΦΦ̄ + qnT3

KT3Φ̄)q
n
T3
KT3T̄3

,

(VD)
0
T2T̄2

=
3∑

n=1

1

2fU(1)n
(qnT2

)2(KT2T̄2
)2,

(VD)
0
T2T̄3

=
3∑

n=1

1

2fU(1)n
qnT2

qnT3
KT2T̄2

KT3T̄3
,

(VD)
0
T3T̄3

=
3∑

n=1

1

2fU(1)n
(qnT3

)2(KT3T̄3
)2,

(VD)
0
T4T̄4

=
1

2fU(1)4

(
q4T4

KT4T̄4
+ q4T5

KT4T̄5

)2
,

(VD)
0
T4T̄5

=
1

2fU(1)4

(
q4T4

KT4T̄4
+ q4T5

KT4T̄5

) (
q4T4

KT4T̄5
+ q4T5

KT5T̄5

)
,

(VD)
0
T5T̄5

=
1

2fU(1)4

(
q4T4

KT4T̄5
+ q4T5

KT5T̄5

)2
, (B.5)

and otherwise zero. Although these leading terms are of order (βj)
2, j = 2, 3, 4, 5, the next-

leading terms are of order (βj)
3. In our choice of parameters, the next-leading terms are smaller
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than the mass scales originating from the F-term contributions which are summarized as

(VF )ΦΦ̄ �eKKΦΦ̄|KΦΦ̄W |2,
(VF )T1T̄1

�eKKT1T̄1 |WT1 |2,
(VF )T2T̄2

�eKKT2T̄2 |KT1T̄1
W |2,

(VF )T3T̄3
�eKKT3T̄3 |KT3T̄3

W |2,
(VF )T4T̄4

�eKKT4T̄4 |KT4T̄4
W |2,

(VF )T5T̄5
�eKKT5T̄5 |KT5T̄5

W |2. (B.6)

As a result, the total mass-squared matrices are summation of both the D-term and F-term
contributions,

(V )IJ̄ � (VD)
0
IJ̄ + (VF )IJ̄ . (B.7)
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Appendix C

The canonical normalization in the
inflationary model of type IIB string
theory

Following Ref. [143], we summarize the canonical normalization of moduli fields in the case of
type IIB string theory.

The Kähler metric of dilaton and complex structure moduli are described as

KIJ̄ =

⎛
⎜⎜⎜⎜⎝
KU4Ū4 KU4Ū2 0 0 0
KU2Ū4 KU2Ū2 K

U2 ¯̃T
0 0

0 KT̃ Ū2 K
T̃ ¯̃T

0 0
0 0 0 KU3Ū3 0
0 0 0 0 KSS̄

⎞
⎟⎟⎟⎟⎠ , (C.1)

where

KU2Ū2 =
1

(U2 + Ū2)2
+

1

(U4 + Ū4 + U2 + Ū2)2
+

3(c2)
2

(T̃ + ¯̃T − c2(U2 + Ū2))2
=

10

3

1

(U2 + Ū2)2
,

KU2Ū4 = KU4Ū2 = KU4Ū4 =
1

(U2 + Ū2)2
, K

U2 ¯̃T
= KT̃ Ū2 = − 4

3c2

1

(U2 + Ū2)2
,

KU3Ū3 =
1

(U3 + Ū3)2
, KSS̄ =

1

(S + S̄)2
, KT T̄ =

3

(T̃ + ¯̃T − c2(U2 + Ū2))2
=

4

3(c2)2
1

(U2 + Ū2)2
,

(C.2)

with c2 ≡ b2/12. For the case of c2 = 1, the numerical values of the eigenvalues (Keig)I and
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diagonalizing matrix UIJ̄ are obtained as

(Keig)U4 � 4.3

(U2 + Ū2)2
, (Keig)U2 � 1.1

(U2 + Ū2)2
, (Keig)T̃ =

0.27

(U2 + Ū2)2
,

(Keig)U3 = KU3Ū3 , (Keig)S = KSS̄,

UIJ̄ =

⎛
⎜⎜⎜⎜⎝
−0.67 −2.19 1 0 0

1 0.14 1 0 0
−1.1 0.8 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (C.3)
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