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Abstract 
Loop unrolling is one of the most promising paral- 

lelization techniques, because the nature of programs 
causes most of the processing time to be spent in their 
loops. Unrolling not only the innermost loop but also 
outer loops greatly expands the scope for reusing data 
and pnrullelizing instructions. Nested-loop unrolling 
is therefore a very effective way of obtaining a higher 
degree of parallelism, However, we need a method for 
measuring the eflciency of loop unrolling that takes 
account of both the reuse of data and the pamllelesm 
between instructions. This paper desc,ribes a heuristic 
algorithm for deciding the number of times and the di- 
rections in which loops should be unrolled, through the 
use of information such as dependence, reuse, and ma- 
chine resources. Our method i s  evaluated b y  applying 
benchmark tests. 

1 Introduction 
Optimization of loops can greatly reduce the execu- 

tion time of a program, because most of the execution 
time of a program is spent in the loops. Especially 
in numerical programs, the restrictions on parallel ex- 
ecution due to dependences between instructions in 
loops are not tight. Since such programs are easily ex- 
ecuted in parallel on vector processors or instruction- 
level processors, a good deal of research has been done 
on loop optimization [I ,  21. 

Loop unrolling is a kind of loop optimization tech- 
nique that unrolls a loop body several times This 
method is effective because it removes the Compare 
and Jump instructions that create loop structures, 
and reduces pipeline disruptions. Especially, impor- 
tant is t,he fact that it removes control dependences 
and allows instructions to move beyond loop bound- 
aries. In iterations of a loop, the same member of an 
array is often referred to repeatedly, or the same value 
is calculated repeatedly. If the loop is unrolled, the ref- 
erence and the calculation can be done just once, and 
subsequent repetitions can be replaced by reference to 
a register containing the data. This can reduce the 
number of instructions and the execution time of the 
program. 

Loop unrolling is so effective that several methods 
have been proposed, some of which work not only for 
the innermost loop but also for nested loops. We think 
that methods for unrolling nested loops are very im- 
portant, because several loops can be unrolled simul- 
taneously in fully permutable nested loops [3], and un- 
rolling of nested loops greatly increases the scope for 
reusing data and parallelizing instructions. In previ- 
ous work on unrolling nested loops [4], “balance” was 
considered to consist in maintaining the same num- 
ber of floating-point operations and the same amount 
of memory traffic. However, no use was made of the 
information on the dependences between instructions 
and on the reuse of data, which strongly affects the 
efficiency obtained by loop unrolling. 

The efficiency obtained by unrolling nested loops is 
affected by the dependences between instructions and 
by the reuse of data over the iteration of the loops; 
therefore, the direction of unrolling (i.e., which loops 
should be unrolled) and the number of times it is done 
have an extremely strong effect on the efficiency of the 
execution of the unrolled loop. It is thus important to 
obtain information on dependence and reuse among 
the iterat,ions by analyzing program structures. 

In addition, the efficiency obtained by unrolling 
will saturate, because hardware resources are limited; 
therefore, at certain times, no further effect can be ob- 
tained by unrolling the loop. To obtain the best effect, 
we have to decide the number of times and the direc- 
tion in which loops should be unrolled, on the basis 
of information such as the dependences among itera- 
tions, the reuse of data, and the machine resources. 

2 Characteristics of the unrolling of 

2.1 Unrolling of nested loops 
The characteristics of the unrolling of nested loops 

are illustrated by means of an example. Figure 1 shows 
the target program to be unrolled. An example of the 
unrolling of nested loops is as follows: First, Fig. 2 
shows the dependence graph of the target program in 
Fig. 1. This program consists of double-nested loops, 

nested loops 
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for i := 1 to IMAX do 
for j := 1 to JMAX do 

D[i] := D[i] + A[i& * (Bu] + CUI); 

Figure 1: Target program 

tmpl := BG] tmp2 := Cfj] -5-1 
I tmp3 := tmpl + tmp2 I I tmp4 := A[i,j] I 

tmp5 := D[i] tmp6 := tmp3 * tmp4 

tmp7 := tmp5 + tmp6 

I I I 

I D[i] := tmp7 I 
Figure 2: Dependence graph of a loop body 

and can be unrolled by index i (direction i) and index 
j (direction j) simultaneously. 

Next, in order to unroll the loops twice in direction 
i and three times in direction j, the loop indices are 
divided as shown in Fig. 3. A loop block consisting 
of double-nested loops that contains six iterations is 
obtained by exchanging loops i and jj (Fig. 4).  This 
process can be performed only when loops i and ji are 
exchangeable; in short, there is no dependence that 
prevents the loops from being exchanged. 

Finally, the loop block is unrolled to form a new 
loop body (Fig. 5 . The process shown in Figs. 1 to 
5 is called nested oop unrolling. In this example, we 
have a new loop body that contains six iterations of 
the original loop It was unrolled twice in direction i 
and three times in direction j. 
2.2 Optimization of an unrolled loop 

After unrolling, instructions in the loop body are 
parallelized and data are reused. 

First, in Fig. 5, there are two instructions that refer 
to BE], Blj + 11, and Blj + 21, respectively, and each 
data item has the same value, so we can use a single 
LOAD instruction for the first reference to the data, 
and then move the data to a register. At the second 
rcfcrcncc, we can use the data in the register without 
a LOAD instruction. Thus, three LOAD instructions 
can be removed by data reuse. In the same way, for 
references to array C ,  three LOAD instructions can 
be removed. 

Removal of instructions by the reuse of data can 
be adapted not only to LOAD instructions but also 
to arithmetic calculations. In this example, the calcu- 

body 

for ii := 1 to IMAX step 2 do 
for i := ii to ii + 1 do 

for jj := 1 to JFrlAX step 3 do 
forj :=jj tojj + 2 do 

D[i] := D[ii] + Arid] * (BQ] + Clcj]); 

Figure 3: Division of loop indices 

for ii := 1 to IMAX step 2 do 
for jj := 1 to JMAX step 3 do 

for i := ii to ii + 1 do 
for j := jj to jji + 2 do 

D[i] := D[i] + A[ij] * (BU] + CUI); 

Figure 4: Loop blocking 

lation Bb] + Cb] appears twice, but each calculates 
the same value. Therefore, the data can be calculated 
once, and moved to  a register. For the second calcu- 
lation, we can use the data in the register instead of 
using an ADD instruction. In the same way, for cal- 
culations BGj+l]+Clj+l], Blj+2]+CIj+2], three 
ADD instructions can be removed. 

In the reference to array D, dependence between in- 
structions referring to the array complicates the task 
of optimization. The instruction that assigns a value 
to D[i] has a flow-dependence on the instruction that 
refers to D[i] in the next line. Among these instruc- 
tions referring to D[i], the value of D[i is same, so 
the LOAD instruction that refers to D r' 11 can be re- 
placed by the data in the source register of the STORE 
instruction that previously assigned a value to D[i]. 
This optimization is called scalar replacement. Other 
LOAD instructions can be replaced in the same way. 

There are also output-dependences among the in- 
structions that assign values to D[i], and each STORE 
instruction transfers data to the same address. There- 
fore, the first and secoind STORE instructions can 
be removed. In the same way, the first and second 
STORE instructions that set D[i+ 11 can be removed. 

Finally, there is no dependence among the instruc- 
tions that refer to arravs A,  B,  and C .  Therefore, 
LOAD instructions that refer to A i,j], A[i,j + 1 
A i , j + 2 ] ,  A[ i+ l , j ] ,  B 8 [ i + l , j + 1 ,  f 
Bb], BGj + 13, Blj + 21, CGj], Cb + 11, and Cb + 21 
can be executed in parallel. 

In this example, we have been optimizing the loop 
body. This is an example in which we unrolled the 
loop twice in direction i and three times in direction 
j. We are showing that parallelization and reuse can 
be parameterized by the direction and the number of 
times unrolling is performed. For example, LOAD in- 
structions that refer to array B can be reused as many 
times as the loop is unrolled in direction i ,  and paral- 
lelized as many times as the loop is unrolled in direc- 
tion j. 

We havc to analyzc how reuse and parallelization 
are carried out, and then use them to unroll a loop 
effectively. 
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for i := 1 to IMAX step 2 do 
for j := I to JMAX step 3 do 
begin 

D[i] := D[i] + A[ij] * (Bul + CUI); 
D[i] := D[i] + A[ij+l] * (Blj+l] + CQ+l]); 
D[i] := D[i] + A[ij+2] * (BG+2] + CG+2]); 
D[kl] := D[i+l] + A[i+lj] * (BG] + CG]); 
D[i+l] := D[i+l] + A[i+lj+l] * (Blj+l] + Cfj+l]); 
D[i+l] := D[i+l] + A[i+lj+2] * (Blj+2] + Cu+2]); 

end 

Figure 5: Unrolling nested loops 

3 Extraction of the characteristics of a 
program 

In this section, we describe how to parameterize the 
optimization of a loop body, and how to use informa- 
tion derived from a program. 
3.1 Extraction of dependences and reuse 

A dependence graph is built by analyzing the global 
data flow of a loop body. The information described 
below is obtained by using reuse vectors and loop- 
carried dependence [5, 61. 

3.1.1 Extraction of loop-carried dependence 

In the execution of a loop, some instructions have 
dependences over the iterations of the loop. This 
is called loop-carried dependence. Loop-carried de- 
pendences are analyzed using array references derived 
from the names of arrays and indices. 

In this paper, loop-carried flow-dependences, anti- 
dependences and outsput-dependences are denoted as 
follows: 

0 flow-dependence(n. n . ,  ...) 

e anti-dependence(n;,nj, ...) 

0 output-dependence(n- 1, n. ,  J ...) 

Each parameter shows the numbers of times un- 
rolling is performed for each index. The numbers are 
ordered from outer loops to inner loops, and from 
left to right. For example, flow-dependence(n;, nj) 
shows that the loops are double-nested, and a flow- 
dependence appears when the outermost loop is un- 
rolled iii times and the innermost loop is unrolled n- J 
times 

1’ J 

3.1.2 

In the execut.ion of a loop, some data can be reused 
in later iterations. This is called reuse over it,erations. 
Reuse over iterations is also analyzed by using array 
references derived from the names of arrays and in- 
dices. 

In this paper, reuses over iterations are denoted as 
follows: 

Extraction of reuse over iterations 

resuse 
(190) 

tmpl + tmp2 I I tmp4 := A[ij]I 

tmp5 := D[i] I I tmp6 := tmp3 * tmp4 

tmp7 := tmp5 + tmp6 

flow- output- 
dependence 
(091) 

Figure 6: Dependence graph and information derived 
from the graph 

reuse(n;,nj, ...) 

Each braced part shows the numbers of times un- 
rolling is performed for each index. The numbers are 
ordered from outer loops to inner loops, and from left 
to right. For example, reuse(n. ne) shows that a 
reuse of data appears when the outermost loop is un- 
rolled n; times and the innermost loop is unrolled n- J 
t,imes. 

1 ’  J 

3.1.3 Example 

Figure 6 shows the result of analyzing Fig. 2 as de- 
scribed above. In Fig. 6, three reuses appear when the 
program is unrolled once in direction i ,  and two de- 
pendences appear when the program is uiirolled once 
in direction j .  
3.2 Calculation of parameters for un- 

We have two parameters for unrolling. One is an 
increase in the length of the longest path of a depen- 
dence graph when a h o p  is unrolled once; this increase 
is derived from the information on dependence. The 
other is a decrease in the nuniber of instructions in a 
loop body when a loop is unrolled once; this decrease 
is derived from the information on reuse. 

An increase in the length of the longest path of 
a dependence graph when a loop is unrolled once in 
a particular direction is obtained through the analy- 
sis of dependences that may appear when the loop is 
unrolled in that direction. In detail, for each depen- 
dence, after calculation of the increase in the length 
of the longest path when the loop is unrolled enough 
times to make the dependence appear, and calculation 
of the average increase in each dependence when the 
loop is unrolled once, the maximum of the average in- 
creases is the increase in the length of the longest path 
when the loop is unrolled once in that direction. 

rolling 
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A decrease in the number of instructions in a loop 
body when a particular loop is unrolled once in a direc- 
tion is obtained through the analysis of reuses, flow- 
dependences, and output-dependences that may ap- 
pear when the loop is unrolled in that direction. The 
decrease is achieved by removal of instructions, scalar 
replacement, and reuse of instructions. In det,ail, for 
each flow- and output-dependence, after calculation of 
the decrease in the number of instructions in a loop 
body when the loop is unrolled enough times to make 
the dependence appear, and calculation of the average 
decrease in each dependence when the loop is unrolled 
once, the sum of the average decreases is the decrease 
in the number of instructions achieved by removal of 
instructions and scalar replacement when the loop is 
unrolled once in that direction. The decrease in the 
number of instructions achieved by reuse is calculated 
as the number of reuses that exist in the dependence 
graph. 

Taking Fig. 2 for an example, analysis of Fig. 6 
shows that there is a decrease of two instructions and 
an increme of one unit in the length of the longest 
pat,h when the loop is unrolled once in direction j, and 
a decrease of three instructions and no increase in the 
length of the longest path when the loop is unrolled 
once in direction i. 

4 Method overview 
4.1 Unimodular loop transformation 

If we want to improve the efficiency of the execu- 
tion by blocking or unrolling nested loops, the more 
permutable loops there are, the better the result is. 
Therefore, before actual loop unrolling, we maximize 
the number of permutable loops, using unimodular 
loop transformations [3]. 
4.2 Unrolling nested loops 

The number of times unrolling is performed for each 
direction is selected in such a way as to maximize the 
efficiency of loop unrolling, using the information on 
dependence and reuse. The decision algorithm is de- 
scribed in Section 6. The algorithm has a heuristic 
evaluation based on the efficiency of the execution of 
a loop, which is described in Section 5. 

5 Estimating the efficiency of the exe- 
cution of a loop 

Of the many factors determining the efficiency of 
the execution of a loop, we believe that loop-carried 
dependences and reuses over iterations are the most 
important. This section describes a method for esti- 
mating the efficiency by using this information. 

The efficiency of the execution of a loop improves 
according to the number of times unrolling is per- 
formed. However, the improvement saturates when 
the number of instructions in a loop body exceeds 
a machine’s capacity for parallel execution. Further- 
more, the efficiency improvement is also limited by the 
number of registers and capacity of the cache memory. 
Therefore, it is very important to determine the opti- 
rnal number of times for unrolling. 

Generally, the more the parallelism of a machine is, 
the shorter the execution cycle (time) of a program 

Number of cycles 

t Number of cycles / 

c 

Distance 

Figure 7: Saturation of the efficiency of loop execution 

becomes. But no matter how much the parallelism 
of a machine is, there is always a lower bound (soft- 
ware bound) on the execution cycle. Similarly, the 
more the parallelism jln a program, the shorter the 
execution cycle of that program. But no matter how 
much parallelism a program contains, there is always a 
lower bound (hardware bound) on the execution cycle. 
The former cycle (software bound) is the one needed 
to execute the longest path of a dependence graph, 
and is determined by the dependences in a program. 
The latter cycle (hardware bound) is the one needed 
to execute instructions if all the instructions are ex- 
ecuted in parallel, ancl is determined by the number 
of instructions, the parallelism of a machine, and the 
number of cycles needed to issue the next instructions 
consecutively. While a loop is being unrolled, the lat- 
ter exceeds the former. When the latter exceeds the 
former, the efficiency of the loop execution starts to 
saturate, and the number of cycles needed to execute 
a program increases. 

Figure 7 shows how the efficiency of loop execution 
reaches saturation. In this figure, Distance represents 
the length of the vector as the number of times un- 
rolling is performed in each direction, and the thick 
line shows the actual execution time after loop un- 
rolling. As will be described later, when n-fold nested 
loops are unrolled, the number of cycles determined by 
instructions in the loop increases by the nth power of 
D ,  where D represents distance. On the other hand, 
the number of cycles determined by the longest path 
of the dependence graph increases by the first power 
of D .  The effectiveness of loop unrolling is the differ- 
ence between the number of cycles in an unrolled body 
and that of a pre-unrolled body. The effectiveness de- 
creases drastically when saturation of the efficiency of 
loop unrolling occurs. 

To determine the optimal number of times unrolling 
should be performed, it is necessary to estimate the 
efficiency of loop execution - that is, the number of 
iterations of an original loop in an unrolled loop per 
cycle (the number of iterations / the execution cycle) 
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- before actually starting loop unrolling. 
The target is assumed to be a fully permutable loop 

obtained by unimodular loop transformations. All the 
directions of loop unrolling are numbered from the 
outside in. The number of times unrolling should be 
performed, k ,  ( k i  = 1 when it is not unrolled), is de- 
termined by using the following parameters: 

m(> 0) The number of instructions that can be exe- 

p ( >  0) The number of cycles in which the next in- 

N ( >  0) The number of instructions in a loop body 

C ( 2  cz) The number of cycles of the longest path of 

ci(> 0) The increase in the number of cycles when a 

ni(2 0) The decrease in the number of instructions 

cuted in one cycle in parallel 

structions can be issued 

before unrolling 

a dependence graph before unrolling 

loop is unrolled once in direction i 

when a loop is unrolled once in direction i 

Of these parameters, m and p are constant values de- 
termined by the architecture of a machlne. The others 
are determined by the characteristics of a program. 
They can be calculated by analysis of the dependence 
and reuse of the program, as described above. 

to be the vector consisting of the num- 
ber of times unrolling is performed in each direct>ion, 
we have the following formulas: 

Assuming 

e The number of cycles determined by instructions 
in the loop 

C,(i) c + C { C i ( k i  - 1)) 

e The number of cycles determined by the longest 
path of the dependence graph after unrolling 

0 The condition of saturation (saturated when it is 
true) 

0 The number of iterations per cycle (the efficiency 
of loop execution) 

-+ ni ki 
P ( k )  ii 

max(C,,(i) ,Ch(i))  

When no reuse is available (in other words, when 
ni = 0 for each i )  the efficiency P ( g )  has a maxi- 
mum value when s(;) is true, and then P(z) keeps 
m / ( p N )  as a constant value. Therefore, every point 
in the graph at which S( i )  is true provides an optimal 
value. However, the decrease in the number of instruc- 
tions resulting from reuses in loop unrolling slightly in- 
creases the efficiency as ki increases, and the efficiency 
approaches 

m 
p ( N  - "i) 

at the limit of Vi(ki -+ CO). There are many points in 
t8he sa.turated area tha.t provide a lower value than the 
limit value. However, we consider that all the points 
in the saturated area provide optimal values, because 
they are almost same. 

The number of t,imes unrolling is performed should 
be close to the boundary of the saturated area, because 
the rate of increase of the efficiency is much lower in a 
non-saturated area than in a saturated area. We con- 
sider that all the points in the saturated area provide 
optimal values, but it is necessary to choose the point 
for which unrolling is performed the fewest times, in 
order to decrease the number of instructions in the un- 
rolled body. The number of times and the directions 
in which unrolling is performed are determined by the 
algorithm described in the next section. 

6 Algorithm 
This section describes a method for calculating a 

set of the numbers of times unrolling is performed in 
all directions {ki}. The values of ki are limit,ed to  
natural numbers. Initially, every value is 1. Next,, the 
direction i, in which the loop can be most effectively 
unrolled, is selected, and 1 is added to { k i }  until { k i }  
enters the sa,turated area or the number of instructions 
exceeds the capacity of an instruction cache. The al- 
gorithm can be represented as follows: 

1. For each value of i, set 1 to ki 

2.  Calculate S for {ki}, and terminate the algorithm 

3.  Terminate the algorithm if the number of instruc- 
tions exceeds the capacity of an instruction cache. 

4. For each value of i ,  calculate 

if S is true. 

Pi E P((k1 ,  .., ki + 1, .., k n } ) ,  

select the value of i for which the value of Pi is 
maximum, and add 1 to ki. 

5 .  Go to step 2. 

According to the formula for determining the effi- 
ciency of loop execution P ,  P increases monotonically 
until it saturates. Therefore, this algorithm never 
chooses directions that lead to local maximum points. 
Moreover, it can find the point for which unrolling 
is performed the fewest times, because it chooses the 
nearest sat,urated point,. 
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7 Evaluation 
In this section, we evaluate our method by using 

Livermore Fortran Kernels, which are benchmark pro- 
grams for parallel architectures. In these kernels, loops 
Nos. 4, 8, 18, 21, and 23 are selected, because they 
have nested loops. We estimate the optimal unrolling 
times of the loops for a VLIW processor, and com- 
pare the efficiency of the loop execution, which is the 
number of iterations of an original loop per cycle (the 
number of iterations / the execution cycle). 

Table 1 shows the relative efficiencies of the execu- 
tions of the loops and the estimated unrolling times. 
Each value of the efficiency is relative to the efficiency 
of loop execution when the loop is not unrolled. Each 
number of Unrolling Vector(UV) is represented by a 
vector consisting of the number of times unrolling is 
performed for all the directions from the outside in. 
Each number of UV in innermost loop unrolling is the 
number of times the loop is unrolled for the efficiency 
of loop execution to reach saturation without using 
our method. We suppose that the target machine 
can execute four floating- and fixed-point instructions, 
four load/store instructions, and four jump instruc- 
tions per cycle, and assume that all the instructions 
are executed in one cycle, except for floating-point and 
load/store instructions, which require two cycles. In 
addition, the machine is assumed to have a sufficient 
number of registers and to  have some hardware sup- 
port for speculative movement of instructions such as 
TORCH [7]. 

The values in Table 1 show that higher efficiencies 
are obtained by unrolling nested loops. This is be- 
cause more instructions are reused and executed in 
parallel than with innermost loop unrolling. The im- 
provements in efficiency are especially notable for ker- 
nels Nos. 21 and 23. In kernel No. 21, the outer- 
most loop is unrolled three times, and the innermost 
two loops twice. In kernel No. 23,  each loop is un- 
rolled five times. These programs have loop-carried 
dependences, and therefore the enough parallelism can 
not be obtained by innermost loop unrolling. When 
nested loops are unrolled simultaneously, the number 
of instructions increases by the nth power of the dis- 
tance (described in section 5), where n is the number 
of nested loops, while the number of cycles needed 
increases by the first power of the distance. The par- 
allelism in a program is determined by the number of 
instructions can be executed in parallel. Therefore, 
unrolling of nested loops provides higher parallelism. 

Next, we describe the adequacy of the method used 

Table 1: The relative efficiency of loop execution for 
each kernel 

I 1  nnermost IOOD I Nested IOODS 
ciency 

1.43 
7.41 

kl 

4 5  6 7  8 
0 . 3 0 8  0 . 3 3 3  0 . 3 5 3  0 . 3 6 8  0 . 3 8 1  

0 . 6 1 5  0 . 6 6 7  0 . 7 0 6  0 . 7 3 7  0 . 7 6 2  

Figure 8: Estimated efficiency of loop execution of 
kernel No.21 

Figure 9: Measured efficiency of loop execution of ker- 
nel No.21 

to determine the number of times and the directions 
in which loop unrolling is performed. Figures 8 and 9 
show the estimated and actually measured efficiencies 
of the executions of loops when kernel No. 21 is un- 
rolled. Figures 10 and 11 show the estimated and ac- 
tually mc,sured efficiencies of the executions of loops 
when kernel No. 23 is unrolled. Each value is obtained 
by dividing the number of iterations by the number of 
cycles. In each figure, the meshed area indicates that 
the efficiency is saturated, and thick rectangles show 
the points that provide the actual optimal efficiencies. 

First, the adequacy of the method for determining 
the number of times is described. Figures 9 and 11 
show that the efficienc,y is not greatly improved in the 
saturated area. In Fig,. 9, the average increase in ef- 
ficiency at each of the adjoining two points is 1.800 
in the non-saturated area, and 1.028 in the saturated 
area. In Fig. 11, the average increase in efficiency 
at each of the adjoining two points is 1.175 in the 
non-saturated area and 0.6696 in the saturated area. 
Thus, there is an obvious difference between the gains 
in non-saturated areas and in saturated areas. There- 
fore, we believe that loops are most effectively unrolled 
on the boundaries of saturated areas. This method 
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k l l  1 I 2 1 3  4 5 6 7 8 

k2 

2 

3 

I I  I I I I I I I 

I 

10.067 10.074 0.077 0.078 0.079 0.080 0.080 0 . 0 8 1  

0 . 0 7 4  0 .103LO.118 0.127 0 . 1 3 3  0.138 0.141 0.144 
I 

1 
0.077 10.11s 0,14310.160 0.172 0.182 0.189 0.195 

Figure 10: Estimated efficiency of loop execution of 
kernel No.23 

8 0.094 0 . 1 6 8  0.199 .205 0 . 2 1 1  0 . 2 1 3  0.215 0 . 2 1 6  

Figure 11: Measured efficiency of loop execution of 
kernel No.23 

can find an adequate number of times that provides 
the optimal efficiency, because it increases the num- 
ber of times until the efficiency is saturated. In Fig. 
9, the efficiency is saturated when the method chooses 
the point {kl,k:!,k3)={3,2,2) from {2,2,2}, and the 
optimal numbers of times and directions are obtained. 

Second, the adequacy of the method for determin- 
ing the directions is described. Though every point 
on the boundary of the saturated area is supposed to 
provide optimal efficiency, this does not mean that any 
point will do. For example, in Fig. 11, the point {4,8} 
has 1.3 times as many numbers of times unrolling is 
performed as the point chosen by our method. There- 
fore, to decrease the number of instructions in the un- 
rolled body, it is necessary to choose the point for 
which unrolling is performed the fewest times, because 
the numbers of times unrolling is performed are differ- 
ent in the saturated area. At each point, our method 
chooses the direction that increases the efficiency the 
most. The efficiency is guaranteed to increase mono- 
tonically, so we can find the point for which unrolling 
is performed the fewest times. This is guaranteed by 
the function P described in section 5. The characteris- 
tic of the function is imaginary but this is sufficiently 
practical to search for the point for which unrolling 
is performed the fewest times. For example, the pro- 
cess shown in Fig. 8 of searching for the point shows 
that our method always chooses adequate directions 
according to comparison with Fig. 9, and this indi- 

cates the adequacy of our method. In addition, com- 
parisons of Figs. 8 and 9 and Figs. 10 and 11 show 
that the change in the estimated efficiency is very sim- 
ilar to the change in the actually measured efficiency, 
and that they are identical at 93% of points. There- 
fore, choosing directions by using estimated efficiencies 
turns out to be adequate. 

8 Conclusions 
In this paper, we introduced a method for estimat- 

ing the optimal number of times for unrolling nested 
loops, and described the characteristics of the method. 
We also explained how a decrease in the number of in- 
structions in a loop body and an increase in the length 
of the longest path of a dependence graph affect the 
efficiency of the execution of a loop. Finally, we pro- 
posed an algorithm that determines the optimal num- 
ber. of times that unrolling should be performed for 
each direction. By using this method, which unrolls 
outer loops simultaneously, rather than methods un- 
rolling only the innermost loop, we can take advantage 
of the higher level of parallelism of instruction-level 
parallel machines. We are now researching a faster 
algorithm with a deep analysis of loop-carried depen- 
dences and reuses. This algorithm will take account 
of the effect of code scheduling and register allocation. 
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