
A Method for Estimating Optimal Unrolling Times
for Nested Loops

A. Koseki H. Komastu Y . Fukazawa

School of Science & Engineering Tokyo Research Laboratory
Waseda University IBM Japan, Ltd. Waseda University

3-4-1 Okubo, Shinjuku-ku 1623-14 Shimotsuruma, Yamato-shi 3-4-1 Okubo, Shinjuku-ku
Tokyo 169, Japan Kanagawa 242, Japan Tokyo 169, Japan

koseki@fuka.info.waseda.ac.jp komatsu@trl.ibm.co.jp fukazawa@fuka.info. waseda.ac. jp

School of Science & Engineering

Abstract
Loop unrolling is one of the most promising paral-

lelization techniques, because the nature of programs
causes most of the processing time to be spent in their
loops. Unrolling not only the innermost loop but also
outer loops greatly expands the scope for reusing data
and pnrullelizing instructions. Nested-loop unrolling
is therefore a very effective way of obtaining a higher
degree of parallelism, However, we need a method for
measuring the eflciency of loop unrolling that takes
account of both the reuse of data and the pamllelesm
between instructions. This paper desc,ribes a heuristic
algorithm for deciding the number of times and the di-
rections in which loops should be unrolled, through the
use of information such as dependence, reuse, and ma-
chine resources. Our method i s evaluated b y applying
benchmark tests.

1 Introduction
Optimization of loops can greatly reduce the execu-

tion time of a program, because most of the execution
time of a program is spent in the loops. Especially
in numerical programs, the restrictions on parallel ex-
ecution due to dependences between instructions in
loops are not tight. Since such programs are easily ex-
ecuted in parallel on vector processors or instruction-
level processors, a good deal of research has been done
on loop optimization [I , 21.

Loop unrolling is a kind of loop optimization tech-
nique that unrolls a loop body several times This
method is effective because it removes the Compare
and Jump instructions that create loop structures,
and reduces pipeline disruptions. Especially, impor-
tant is t,he fact that it removes control dependences
and allows instructions to move beyond loop bound-
aries. In iterations of a loop, the same member of an
array is often referred to repeatedly, or the same value
is calculated repeatedly. If the loop is unrolled, the ref-
erence and the calculation can be done just once, and
subsequent repetitions can be replaced by reference to
a register containing the data. This can reduce the
number of instructions and the execution time of the
program.

Loop unrolling is so effective that several methods
have been proposed, some of which work not only for
the innermost loop but also for nested loops. We think
that methods for unrolling nested loops are very im-
portant, because several loops can be unrolled simul-
taneously in fully permutable nested loops [3], and un-
rolling of nested loops greatly increases the scope for
reusing data and parallelizing instructions. In previ-
ous work on unrolling nested loops [4], “balance” was
considered to consist in maintaining the same num-
ber of floating-point operations and the same amount
of memory traffic. However, no use was made of the
information on the dependences between instructions
and on the reuse of data, which strongly affects the
efficiency obtained by loop unrolling.

The efficiency obtained by unrolling nested loops is
affected by the dependences between instructions and
by the reuse of data over the iteration of the loops;
therefore, the direction of unrolling (i.e., which loops
should be unrolled) and the number of times it is done
have an extremely strong effect on the efficiency of the
execution of the unrolled loop. It is thus important to
obtain information on dependence and reuse among
the iterat,ions by analyzing program structures.

In addition, the efficiency obtained by unrolling
will saturate, because hardware resources are limited;
therefore, at certain times, no further effect can be ob-
tained by unrolling the loop. To obtain the best effect,
we have to decide the number of times and the direc-
tion in which loops should be unrolled, on the basis
of information such as the dependences among itera-
tions, the reuse of data, and the machine resources.

2 Characteristics of the unrolling of

2.1 Unrolling of nested loops
The characteristics of the unrolling of nested loops

are illustrated by means of an example. Figure 1 shows
the target program to be unrolled. An example of the
unrolling of nested loops is as follows: First, Fig. 2
shows the dependence graph of the target program in
Fig. 1. This program consists of double-nested loops,

nested loops

376 1087-4089197 $10.00 0 1997 IEEE

mailto:koseki@fuka.info.waseda.ac.jp
mailto:komatsu@trl.ibm.co.jp

for i := 1 to IMAX do
for j := 1 to JMAX do

D[i] := D[i] + A[i& * (Bu] + CUI);

Figure 1: Target program

tmpl := BG] tmp2 := Cfj] -5-1
I tmp3 := tmpl + tmp2 I I tmp4 := A[i,j] I

tmp5 := D[i] tmp6 := tmp3 * tmp4

tmp7 := tmp5 + tmp6

I I I

I D[i] := tmp7 I
Figure 2: Dependence graph of a loop body

and can be unrolled by index i (direction i) and index
j (direction j) simultaneously.

Next, in order to unroll the loops twice in direction
i and three times in direction j, the loop indices are
divided as shown in Fig. 3. A loop block consisting
of double-nested loops that contains six iterations is
obtained by exchanging loops i and jj (Fig. 4). This
process can be performed only when loops i and ji are
exchangeable; in short, there is no dependence that
prevents the loops from being exchanged.

Finally, the loop block is unrolled to form a new
loop body (Fig. 5 . The process shown in Figs. 1 to
5 is called nested oop unrolling. In this example, we
have a new loop body that contains six iterations of
the original loop It was unrolled twice in direction i
and three times in direction j.
2.2 Optimization of an unrolled loop

After unrolling, instructions in the loop body are
parallelized and data are reused.

First, in Fig. 5, there are two instructions that refer
to BE], Blj + 11, and Blj + 21, respectively, and each
data item has the same value, so we can use a single
LOAD instruction for the first reference to the data,
and then move the data to a register. At the second
rcfcrcncc, we can use the data in the register without
a LOAD instruction. Thus, three LOAD instructions
can be removed by data reuse. In the same way, for
references to array C , three LOAD instructions can
be removed.

Removal of instructions by the reuse of data can
be adapted not only to LOAD instructions but also
to arithmetic calculations. In this example, the calcu-

body

for ii := 1 to IMAX step 2 do
for i := ii to ii + 1 do

for jj := 1 to JFrlAX step 3 do
forj :=jj tojj + 2 do

D[i] := D[ii] + Arid] * (BQ] + Clcj]);

Figure 3: Division of loop indices

for ii := 1 to IMAX step 2 do
for jj := 1 to JMAX step 3 do

for i := ii to ii + 1 do
for j := jj to jji + 2 do

D[i] := D[i] + A[ij] * (BU] + CUI);

Figure 4: Loop blocking

lation Bb] + Cb] appears twice, but each calculates
the same value. Therefore, the data can be calculated
once, and moved to a register. For the second calcu-
lation, we can use the data in the register instead of
using an ADD instruction. In the same way, for cal-
culations BGj+l]+Clj+l], Blj+2]+CIj+2], three
ADD instructions can be removed.

In the reference to array D, dependence between in-
structions referring to the array complicates the task
of optimization. The instruction that assigns a value
to D[i] has a flow-dependence on the instruction that
refers to D[i] in the next line. Among these instruc-
tions referring to D[i], the value of D[i is same, so
the LOAD instruction that refers to D r' 11 can be re-
placed by the data in the source register of the STORE
instruction that previously assigned a value to D[i].
This optimization is called scalar replacement. Other
LOAD instructions can be replaced in the same way.

There are also output-dependences among the in-
structions that assign values to D[i], and each STORE
instruction transfers data to the same address. There-
fore, the first and secoind STORE instructions can
be removed. In the same way, the first and second
STORE instructions that set D[i+ 11 can be removed.

Finally, there is no dependence among the instruc-
tions that refer to arravs A, B, and C . Therefore,
LOAD instructions that refer to A i,j], A[i,j + 1
A i , j + 2] , A[i+ l , j] , B 8 [i + l , j + 1 , f
Bb], BGj + 13, Blj + 21, CGj], Cb + 11, and Cb + 21
can be executed in parallel.

In this example, we have been optimizing the loop
body. This is an example in which we unrolled the
loop twice in direction i and three times in direction
j. We are showing that parallelization and reuse can
be parameterized by the direction and the number of
times unrolling is performed. For example, LOAD in-
structions that refer to array B can be reused as many
times as the loop is unrolled in direction i , and paral-
lelized as many times as the loop is unrolled in direc-
tion j.

We havc to analyzc how reuse and parallelization
are carried out, and then use them to unroll a loop
effectively.

377

for i := 1 to IMAX step 2 do
for j := I to JMAX step 3 do
begin

D[i] := D[i] + A[ij] * (Bul + CUI);
D[i] := D[i] + A[ij+l] * (Blj+l] + CQ+l]);
D[i] := D[i] + A[ij+2] * (BG+2] + CG+2]);
D[kl] := D[i+l] + A[i+lj] * (BG] + CG]);
D[i+l] := D[i+l] + A[i+lj+l] * (Blj+l] + Cfj+l]);
D[i+l] := D[i+l] + A[i+lj+2] * (Blj+2] + Cu+2]);

end

Figure 5: Unrolling nested loops

3 Extraction of the characteristics of a
program

In this section, we describe how to parameterize the
optimization of a loop body, and how to use informa-
tion derived from a program.
3.1 Extraction of dependences and reuse

A dependence graph is built by analyzing the global
data flow of a loop body. The information described
below is obtained by using reuse vectors and loop-
carried dependence [5, 61.

3.1.1 Extraction of loop-carried dependence

In the execution of a loop, some instructions have
dependences over the iterations of the loop. This
is called loop-carried dependence. Loop-carried de-
pendences are analyzed using array references derived
from the names of arrays and indices.

In this paper, loop-carried flow-dependences, anti-
dependences and outsput-dependences are denoted as
follows:

0 flow-dependence(n. n . , ...)

e anti-dependence(n;,nj, ...)

0 output-dependence(n- 1, n. , J ...)

Each parameter shows the numbers of times un-
rolling is performed for each index. The numbers are
ordered from outer loops to inner loops, and from
left to right. For example, flow-dependence(n;, nj)
shows that the loops are double-nested, and a flow-
dependence appears when the outermost loop is un-
rolled iii times and the innermost loop is unrolled n- J
times

1’ J

3.1.2

In the execut.ion of a loop, some data can be reused
in later iterations. This is called reuse over it,erations.
Reuse over iterations is also analyzed by using array
references derived from the names of arrays and in-
dices.

In this paper, reuses over iterations are denoted as
follows:

Extraction of reuse over iterations

resuse
(190)

tmpl + tmp2 I I tmp4 := A[ij]I

tmp5 := D[i] I I tmp6 := tmp3 * tmp4

tmp7 := tmp5 + tmp6

flow- output-
dependence
(091)

Figure 6: Dependence graph and information derived
from the graph

reuse(n;,nj, ...)

Each braced part shows the numbers of times un-
rolling is performed for each index. The numbers are
ordered from outer loops to inner loops, and from left
to right. For example, reuse(n. ne) shows that a
reuse of data appears when the outermost loop is un-
rolled n; times and the innermost loop is unrolled n- J
t,imes.

1 ’ J

3.1.3 Example

Figure 6 shows the result of analyzing Fig. 2 as de-
scribed above. In Fig. 6, three reuses appear when the
program is unrolled once in direction i , and two de-
pendences appear when the program is uiirolled once
in direction j .
3.2 Calculation of parameters for un-

We have two parameters for unrolling. One is an
increase in the length of the longest path of a depen-
dence graph when a h o p is unrolled once; this increase
is derived from the information on dependence. The
other is a decrease in the nuniber of instructions in a
loop body when a loop is unrolled once; this decrease
is derived from the information on reuse.

An increase in the length of the longest path of
a dependence graph when a loop is unrolled once in
a particular direction is obtained through the analy-
sis of dependences that may appear when the loop is
unrolled in that direction. In detail, for each depen-
dence, after calculation of the increase in the length
of the longest path when the loop is unrolled enough
times to make the dependence appear, and calculation
of the average increase in each dependence when the
loop is unrolled once, the maximum of the average in-
creases is the increase in the length of the longest path
when the loop is unrolled once in that direction.

rolling

378

A decrease in the number of instructions in a loop
body when a particular loop is unrolled once in a direc-
tion is obtained through the analysis of reuses, flow-
dependences, and output-dependences that may ap-
pear when the loop is unrolled in that direction. The
decrease is achieved by removal of instructions, scalar
replacement, and reuse of instructions. In det,ail, for
each flow- and output-dependence, after calculation of
the decrease in the number of instructions in a loop
body when the loop is unrolled enough times to make
the dependence appear, and calculation of the average
decrease in each dependence when the loop is unrolled
once, the sum of the average decreases is the decrease
in the number of instructions achieved by removal of
instructions and scalar replacement when the loop is
unrolled once in that direction. The decrease in the
number of instructions achieved by reuse is calculated
as the number of reuses that exist in the dependence
graph.

Taking Fig. 2 for an example, analysis of Fig. 6
shows that there is a decrease of two instructions and
an increme of one unit in the length of the longest
pat,h when the loop is unrolled once in direction j, and
a decrease of three instructions and no increase in the
length of the longest path when the loop is unrolled
once in direction i.

4 Method overview
4.1 Unimodular loop transformation

If we want to improve the efficiency of the execu-
tion by blocking or unrolling nested loops, the more
permutable loops there are, the better the result is.
Therefore, before actual loop unrolling, we maximize
the number of permutable loops, using unimodular
loop transformations [3].
4.2 Unrolling nested loops

The number of times unrolling is performed for each
direction is selected in such a way as to maximize the
efficiency of loop unrolling, using the information on
dependence and reuse. The decision algorithm is de-
scribed in Section 6. The algorithm has a heuristic
evaluation based on the efficiency of the execution of
a loop, which is described in Section 5.

5 Estimating the efficiency of the exe-
cution of a loop

Of the many factors determining the efficiency of
the execution of a loop, we believe that loop-carried
dependences and reuses over iterations are the most
important. This section describes a method for esti-
mating the efficiency by using this information.

The efficiency of the execution of a loop improves
according to the number of times unrolling is per-
formed. However, the improvement saturates when
the number of instructions in a loop body exceeds
a machine’s capacity for parallel execution. Further-
more, the efficiency improvement is also limited by the
number of registers and capacity of the cache memory.
Therefore, it is very important to determine the opti-
rnal number of times for unrolling.

Generally, the more the parallelism of a machine is,
the shorter the execution cycle (time) of a program

Number of cycles

t Number of cycles /

c

Distance

Figure 7: Saturation of the efficiency of loop execution

becomes. But no matter how much the parallelism
of a machine is, there is always a lower bound (soft-
ware bound) on the execution cycle. Similarly, the
more the parallelism jln a program, the shorter the
execution cycle of that program. But no matter how
much parallelism a program contains, there is always a
lower bound (hardware bound) on the execution cycle.
The former cycle (software bound) is the one needed
to execute the longest path of a dependence graph,
and is determined by the dependences in a program.
The latter cycle (hardware bound) is the one needed
to execute instructions if all the instructions are ex-
ecuted in parallel, ancl is determined by the number
of instructions, the parallelism of a machine, and the
number of cycles needed to issue the next instructions
consecutively. While a loop is being unrolled, the lat-
ter exceeds the former. When the latter exceeds the
former, the efficiency of the loop execution starts to
saturate, and the number of cycles needed to execute
a program increases.

Figure 7 shows how the efficiency of loop execution
reaches saturation. In this figure, Distance represents
the length of the vector as the number of times un-
rolling is performed in each direction, and the thick
line shows the actual execution time after loop un-
rolling. As will be described later, when n-fold nested
loops are unrolled, the number of cycles determined by
instructions in the loop increases by the nth power of
D , where D represents distance. On the other hand,
the number of cycles determined by the longest path
of the dependence graph increases by the first power
of D . The effectiveness of loop unrolling is the differ-
ence between the number of cycles in an unrolled body
and that of a pre-unrolled body. The effectiveness de-
creases drastically when saturation of the efficiency of
loop unrolling occurs.

To determine the optimal number of times unrolling
should be performed, it is necessary to estimate the
efficiency of loop execution - that is, the number of
iterations of an original loop in an unrolled loop per
cycle (the number of iterations / the execution cycle)

379

- before actually starting loop unrolling.
The target is assumed to be a fully permutable loop

obtained by unimodular loop transformations. All the
directions of loop unrolling are numbered from the
outside in. The number of times unrolling should be
performed, k , (k i = 1 when it is not unrolled), is de-
termined by using the following parameters:

m(> 0) The number of instructions that can be exe-

p (> 0) The number of cycles in which the next in-

N (> 0) The number of instructions in a loop body

C (2 cz) The number of cycles of the longest path of

ci(> 0) The increase in the number of cycles when a

ni(2 0) The decrease in the number of instructions

cuted in one cycle in parallel

structions can be issued

before unrolling

a dependence graph before unrolling

loop is unrolled once in direction i

when a loop is unrolled once in direction i

Of these parameters, m and p are constant values de-
termined by the architecture of a machlne. The others
are determined by the characteristics of a program.
They can be calculated by analysis of the dependence
and reuse of the program, as described above.

to be the vector consisting of the num-
ber of times unrolling is performed in each direct>ion,
we have the following formulas:

Assuming

e The number of cycles determined by instructions
in the loop

C,(i) c + C { C i (k i - 1))

e The number of cycles determined by the longest
path of the dependence graph after unrolling

0 The condition of saturation (saturated when it is
true)

0 The number of iterations per cycle (the efficiency
of loop execution)

-+ ni ki
P (k) ii

max(C,,(i) ,Ch(i))

When no reuse is available (in other words, when
ni = 0 for each i) the efficiency P (g) has a maxi-
mum value when s(;) is true, and then P(z) keeps
m / (p N) as a constant value. Therefore, every point
in the graph at which S(i) is true provides an optimal
value. However, the decrease in the number of instruc-
tions resulting from reuses in loop unrolling slightly in-
creases the efficiency as ki increases, and the efficiency
approaches

m
p (N - "i)

at the limit of Vi(ki -+ CO). There are many points in
t8he sa.turated area tha.t provide a lower value than the
limit value. However, we consider that all the points
in the saturated area provide optimal values, because
they are almost same.

The number of t,imes unrolling is performed should
be close to the boundary of the saturated area, because
the rate of increase of the efficiency is much lower in a
non-saturated area than in a saturated area. We con-
sider that all the points in the saturated area provide
optimal values, but it is necessary to choose the point
for which unrolling is performed the fewest times, in
order to decrease the number of instructions in the un-
rolled body. The number of times and the directions
in which unrolling is performed are determined by the
algorithm described in the next section.

6 Algorithm
This section describes a method for calculating a

set of the numbers of times unrolling is performed in
all directions {ki}. The values of ki are limit,ed to
natural numbers. Initially, every value is 1. Next,, the
direction i, in which the loop can be most effectively
unrolled, is selected, and 1 is added to { k i } until { k i }
enters the sa,turated area or the number of instructions
exceeds the capacity of an instruction cache. The al-
gorithm can be represented as follows:

1. For each value of i, set 1 to ki

2. Calculate S for {ki}, and terminate the algorithm

3. Terminate the algorithm if the number of instruc-
tions exceeds the capacity of an instruction cache.

4. For each value of i , calculate

if S is true.

Pi E P((k1 , .., ki + 1, .., k n }) ,

select the value of i for which the value of Pi is
maximum, and add 1 to ki.

5 . Go to step 2.

According to the formula for determining the effi-
ciency of loop execution P , P increases monotonically
until it saturates. Therefore, this algorithm never
chooses directions that lead to local maximum points.
Moreover, it can find the point for which unrolling
is performed the fewest times, because it chooses the
nearest sat,urated point,.

380

7 Evaluation
In this section, we evaluate our method by using

Livermore Fortran Kernels, which are benchmark pro-
grams for parallel architectures. In these kernels, loops
Nos. 4, 8, 18, 21, and 23 are selected, because they
have nested loops. We estimate the optimal unrolling
times of the loops for a VLIW processor, and com-
pare the efficiency of the loop execution, which is the
number of iterations of an original loop per cycle (the
number of iterations / the execution cycle).

Table 1 shows the relative efficiencies of the execu-
tions of the loops and the estimated unrolling times.
Each value of the efficiency is relative to the efficiency
of loop execution when the loop is not unrolled. Each
number of Unrolling Vector(UV) is represented by a
vector consisting of the number of times unrolling is
performed for all the directions from the outside in.
Each number of UV in innermost loop unrolling is the
number of times the loop is unrolled for the efficiency
of loop execution to reach saturation without using
our method. We suppose that the target machine
can execute four floating- and fixed-point instructions,
four load/store instructions, and four jump instruc-
tions per cycle, and assume that all the instructions
are executed in one cycle, except for floating-point and
load/store instructions, which require two cycles. In
addition, the machine is assumed to have a sufficient
number of registers and to have some hardware sup-
port for speculative movement of instructions such as
TORCH [7].

The values in Table 1 show that higher efficiencies
are obtained by unrolling nested loops. This is be-
cause more instructions are reused and executed in
parallel than with innermost loop unrolling. The im-
provements in efficiency are especially notable for ker-
nels Nos. 21 and 23. In kernel No. 21, the outer-
most loop is unrolled three times, and the innermost
two loops twice. In kernel No. 23, each loop is un-
rolled five times. These programs have loop-carried
dependences, and therefore the enough parallelism can
not be obtained by innermost loop unrolling. When
nested loops are unrolled simultaneously, the number
of instructions increases by the nth power of the dis-
tance (described in section 5), where n is the number
of nested loops, while the number of cycles needed
increases by the first power of the distance. The par-
allelism in a program is determined by the number of
instructions can be executed in parallel. Therefore,
unrolling of nested loops provides higher parallelism.

Next, we describe the adequacy of the method used

Table 1: The relative efficiency of loop execution for
each kernel

I 1 nnermost IOOD I Nested IOODS
ciency

1.43
7.41

kl

4 5 6 7 8
0 . 3 0 8 0 . 3 3 3 0 . 3 5 3 0 . 3 6 8 0 . 3 8 1

0 . 6 1 5 0 . 6 6 7 0 . 7 0 6 0 . 7 3 7 0 . 7 6 2

Figure 8: Estimated efficiency of loop execution of
kernel No.21

Figure 9: Measured efficiency of loop execution of ker-
nel No.21

to determine the number of times and the directions
in which loop unrolling is performed. Figures 8 and 9
show the estimated and actually measured efficiencies
of the executions of loops when kernel No. 21 is un-
rolled. Figures 10 and 11 show the estimated and ac-
tually mc,sured efficiencies of the executions of loops
when kernel No. 23 is unrolled. Each value is obtained
by dividing the number of iterations by the number of
cycles. In each figure, the meshed area indicates that
the efficiency is saturated, and thick rectangles show
the points that provide the actual optimal efficiencies.

First, the adequacy of the method for determining
the number of times is described. Figures 9 and 11
show that the efficienc,y is not greatly improved in the
saturated area. In Fig,. 9, the average increase in ef-
ficiency at each of the adjoining two points is 1.800
in the non-saturated area, and 1.028 in the saturated
area. In Fig. 11, the average increase in efficiency
at each of the adjoining two points is 1.175 in the
non-saturated area and 0.6696 in the saturated area.
Thus, there is an obvious difference between the gains
in non-saturated areas and in saturated areas. There-
fore, we believe that loops are most effectively unrolled
on the boundaries of saturated areas. This method

381

k l l 1 I 2 1 3 4 5 6 7 8

k2

2

3

I I I I I I I I I

I

10.067 10.074 0.077 0.078 0.079 0.080 0.080 0 . 0 8 1

0 . 0 7 4 0 .103LO.118 0.127 0 . 1 3 3 0.138 0.141 0.144
I

1
0.077 10.11s 0,14310.160 0.172 0.182 0.189 0.195

Figure 10: Estimated efficiency of loop execution of
kernel No.23

8 0.094 0 . 1 6 8 0.199 .205 0 . 2 1 1 0 . 2 1 3 0.215 0 . 2 1 6

Figure 11: Measured efficiency of loop execution of
kernel No.23

can find an adequate number of times that provides
the optimal efficiency, because it increases the num-
ber of times until the efficiency is saturated. In Fig.
9, the efficiency is saturated when the method chooses
the point {kl,k:!,k3)={3,2,2) from {2,2,2}, and the
optimal numbers of times and directions are obtained.

Second, the adequacy of the method for determin-
ing the directions is described. Though every point
on the boundary of the saturated area is supposed to
provide optimal efficiency, this does not mean that any
point will do. For example, in Fig. 11, the point {4,8}
has 1.3 times as many numbers of times unrolling is
performed as the point chosen by our method. There-
fore, to decrease the number of instructions in the un-
rolled body, it is necessary to choose the point for
which unrolling is performed the fewest times, because
the numbers of times unrolling is performed are differ-
ent in the saturated area. At each point, our method
chooses the direction that increases the efficiency the
most. The efficiency is guaranteed to increase mono-
tonically, so we can find the point for which unrolling
is performed the fewest times. This is guaranteed by
the function P described in section 5. The characteris-
tic of the function is imaginary but this is sufficiently
practical to search for the point for which unrolling
is performed the fewest times. For example, the pro-
cess shown in Fig. 8 of searching for the point shows
that our method always chooses adequate directions
according to comparison with Fig. 9, and this indi-

cates the adequacy of our method. In addition, com-
parisons of Figs. 8 and 9 and Figs. 10 and 11 show
that the change in the estimated efficiency is very sim-
ilar to the change in the actually measured efficiency,
and that they are identical at 93% of points. There-
fore, choosing directions by using estimated efficiencies
turns out to be adequate.

8 Conclusions
In this paper, we introduced a method for estimat-

ing the optimal number of times for unrolling nested
loops, and described the characteristics of the method.
We also explained how a decrease in the number of in-
structions in a loop body and an increase in the length
of the longest path of a dependence graph affect the
efficiency of the execution of a loop. Finally, we pro-
posed an algorithm that determines the optimal num-
ber. of times that unrolling should be performed for
each direction. By using this method, which unrolls
outer loops simultaneously, rather than methods un-
rolling only the innermost loop, we can take advantage
of the higher level of parallelism of instruction-level
parallel machines. We are now researching a faster
algorithm with a deep analysis of loop-carried depen-
dences and reuses. This algorithm will take account
of the effect of code scheduling and register allocation.

References
Weiss, S. and Smith, J . E.: A Study of Scalar
Compilation Techniques for Pipelined Supercom-
puters, Proc. 2nd International Conference on Ar-
chitectural Support for Programing Languages and
Operating Systems, pp. 105-109 (1987).

Su, B., Ding, S. and Xia, J.: URPR-An Extension
of URCR for Software Pipelining, Proc. MICRO-
19, pp. 104-108 (1986).

Wolf, M . E. and Lam, M. S.: A Loop "ransforma-
tion Theory a.nd an Algorithm to Maximize Paral-
lelism, IEEE Trans. Parallel and Distributed Sys-
tems, Vol. 2 , No. 4, pp. 452-471 (1991).

Carr, S. and Kennedy, K.: Improving the Ratio
of Memory Operations to Floating-Point Opera-
tions in Loops, A C M Trans. Programming Lan-
guages and Systems, Vol, 16, No. 6 , pp. 1768-1810
(1994).

Wolf, M. E. and Lam, M. S.: A Data Locality
Optimizing Algorithm, Proc. ACM SIGPLAN '91
Conference on Programming Language Design and
Implementation, pp. 30-44 (1991).

nication Optimization and Code Generation for
Distributed Memory Machines, Proc. A CM SIG-
PLAN '93 Conference on Programming Language
Design and Implementation, pp. 126-138 (1993).

Smith, M. D., Lam, M. S. and Horowitz, M. A . :
Boosting Beyond Static Scheduling in a Super-
scalar Processor, Proc. 17th Annual Internatzonal
Symposium on Com.puter Architecture, pp. 344-
354 (1987).

Amarasinghe, S. P. and Lam, M. S.: Commu-

382

